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ABSTRACT OF THE THESIS

Application-Driven Coding Techniques:

From Cloud Storage to Quantum Communications

by

Siyi Yang

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2021

Professor Lara Dolecek, Chair

Data-driven applications are becoming ubiquitous. This dissertation is focused on devel-

oping advanced channel coding techniques for improved reliability and latency in a variety

of data-hungry applications, from cloud storage, to memory devices, and quantum commu-

nications.

The first line of our work focused on cloud storage. In order to accommodate the ever-

growing data from various, possibly independent, sources and the dynamic nature of data

usage rates in practical applications, modern cloud data storage systems are required to

be scalable, flexible, and heterogeneous. The recent rise of the blockchain technology is

also moving various information systems towards decentralization to achieve high privacy

at low costs. We proposed channel codes with hierarchical locality that were the first to

simultaneously achieve scalability and flexibility for both centralized cloud storage and de-

centralized storage networks (DSN). In particular, we proposed a joint coding scheme where

each node receives extra protection through the cooperation with nodes in its neighborhood

in a heterogeneous DSN with any given topology. Our proposed construction not only pre-

serves desirable properties such as scalability and flexibility, which are critical in dynamic

networks, but also adapts to arbitrary topologies, a property that is essential in DSNs but
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has been overlooked in existing works.

The second line of our work focused on spatially-coupled (SC) codes design for advanced

memory devices and quantum communications. SC codes have demonstrated potential in a

variety of applications thanks to their excellent error-correcting performance and desirable

structures that enable low latency decoding. While high memory SC codes are known to

have superior performance, no prior work was able to produce practical codes due to compu-

tational complexity of the high-memory regime. We overcome this computational bottleneck

in the finite-length construction of high-performance SC codes with high memory, with a

novel coding framework that unifies seemingly disparate probabilistic and combinatorial ap-

proaches, and benefits from both. Simulation results show that codes obtained through

our proposed method notably outperform state-of-the-art codes in a variety of practical set-

tings, including flash memories and hard disk drives. Building on this new framework, we

then developed a new class of channel codes for quantum communications. Combined with

irregular-repeat-accumulate (IRA) codes that are known for excellent performance on low

rate region, we constructed state-of-the-art SC-IRA codes for multidimensional quantum key

distribution to efficiently generate private keys for one-time pad encrypted communications.
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CHAPTER 1

Introduction

Nowadays, the burgeoning industry of artificial intelligence has been pervasive and consis-

tently bringing out insatiable appetite for data-driven applications in storage and communi-

cation systems. From cloud storage to quantum communications, being efficiently scaled up

to accommodate additional workload while simultaneously maintaining desirable properties

like high reliability, low latency, and perfect security has always been a major challenge. Error

correction coding (ECC) has been demonstrated to be an indispensable technique in overcom-

ing the aforementioned challenges in various data-intensive applications [1, 2, 3, 4, 5, 6, 7, 8].

Cloud storage, known for delivering on demand data storage services to eliminate buying

and managing your own data storage infrastructure, provides agile, durable, and low-cost

data access that can be efficiently scaled up with the growth of user communities. Cloud

storage providers such as Microsoft Azure and Amazon Web Services have become among the

most widely deployed public cloud services. Erasure coding has been widely deployed in cloud

storage to combat the possible errors incurred from data loss. In particular, files are split into

various pieces and distributively stored among nodes in the cloud with added redundancy

as a backup for retrieving the data with the presence of component failures. However, while

ECC brings up desirable reliability, it inevitably increases the latency for introducing extra

reading time on decoding the encoded data. The latency-reliability dilemma is solved by

multi-level accessible codes [9, 10, 11, 12, 13, 14, 15, 16], enabling each node to access different

sets of helper nodes to retrieve the data, where the sizes of the sets get reduced if the number

1



of erasures to be recovered is small enough. This architecture is referred to as codes with

hierarchical localities.

While hierarchical codes efficiently achieve reliability-latency trade-off, other practical

challenges emerged from the dynamic nature of the networks are overlooked, which hinder

the existing work from being widely deployed to large-scale dynamic networks [17]. Prac-

tical management of personal devices faces numerous challenges from component failures,

high churn rates, heterogeneous bandwidths and link speeds, in addition to dynamic node

balancing for content delivery of hot files [18]. In addition, the recent rise of blockchain tech-

nology has initiated a trend of decentralization, accelerating the shift from centralized cloud

storage to decentralized storage networks (DSNs), to reach better security at lower costs

[19, 20, 21]. In this dissertation, we focus on three major properties, scalability, flexibility,

and heterogeneity in coding solutions for both centralized and decentralized cloud storage.

Scalability enables expanding the backbone network to accommodate additional work-

load, i.e., additional clouds, without rebuilding the entire infrastructure. Heterogeneity refers

to the property of allowing nonidentical local data lengths and providing unequal local pro-

tection, which is important for cloud storage with heterogeneous structures. A heterogeneous

structure arises in networks consisting of geographically separated components, and they of-

ten store data from different sources. Flexibility has been firstly investigated for dynamic

data storage systems in [22], and it refers to the property that the local cloud can be split

into two smaller local clouds without worsening the global erasure-correction capability nor

changing the remaining components. This splitting, for example, is applied when cold data

stored at a local cloud become hot unexpectedly. In addition, under the context of DSN, we

seek for solutions that also fit into any topology (a property referred to as topology-adaptivity

later on) with customizable data lengths and redundancies are desired to exploit the existing

resources [23, 24, 25, 26, 27]. Topology-adaptivity has been either overlooked or tackled under

oversimplified models in existing coding schemes proposed for DSNs [28, 23, 29, 30, 31, 32].

Our proposed hierarchical coding scheme [33, 34, 35] is the first solution to possess all the

2



aforementioned properties that are desirable in practical cloud storage, while operating on

Galois field grows linearly with the maximum local block size.

Challenges from scaling in response to the explosion of data are by no means unique

in cloud storage, advanced memory devices also have been consistently paving their way to

denser solutions that accommodate the rapid growth of data. From single-level cell (SLC) to

more advanced triple-level cell (TLC), and to the most recent 3DXpoint solutions [36], devices

with larger storage capacity are always achieved at a cost of higher raw bit error rate (RBER),

calling for more advanced and powerful coding solutions to maintain high reliability. Low

density parity check (LDPC) codes operating at extremely low frame error rate (FER) region

have been the major codes implemented in memory devices and has been intensely studied.

Spatially-coupled (SC) LDPC codes, known for their threshold saturation phenomenon, are

ideal for data storage systems. SC codes are constructed by partitioning an underlying

block code, followed by rearranging and concatenating the partitioned components in a

convolutional manner [37, 38, 39, 3, 4]. The number of partitioned components determines

the memory of SC codes.

To construct high-performance SC codes, high memories are always desired. Nonetheless,

finite-length optimization over SC codes with high memories to expurgate detrimental objects

that dominate the error profile is known to be computationally challenging [40, 41, 42, 43, 44].

Heuristic optimization methods strategically avoids the high complexity in combinatorial

optimization that aims at globally minimizing the number of detrimental objects [45, 46, 47,

44]. However, high-memory codes designed by purely heuristic methods are unable to reach

the potential performance gain that can be achieved through high memories due to lack

of theoretical guidance; several of these codes can even be beat by optimally designed SC

codes with lower memories under the same constraint length [47]. In this thesis, we propose

a novel coding framework, referred to as gradient descent distributor, algorithmic optimizer

(GRADE-AO), that unifies seemingly disparate probabilistic and combinatorial approaches,

and benefits from both. Simulation results show that codes obtained through our proposed
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method notably outperform state-of-the-art codes in a variety of practical settings, including

flash memories and hard disk drives.

GRADE-AO is a general framework that applies to a potentially large class of appli-

cations; one out of them is information reconciliation in quantum key distribution (QKD).

Unconditional security in data communication is currently being deployed in commercial ap-

plications. Nonetheless, it faces a number of important challenges including secret key rate,

distance, size, cost and practical security. Quantum communications promise to deliver un-

precedented levels of security, and to fundamentally change how we transmit and process sen-

sitive data. An important phase of quantum communications is the QKD, which aims at gen-

erating private keys used in one-time pad encrypted communications [48, 49, 50, 51, 52, 53].

Error-correction codes, especially LDPC codes, have been demonstrated to be a major tech-

nique that enables QKD with desirable secure key rate [5, 54, 55, 56]. High-dimensional

quantum key distribution (QKD) protocols based on energy-time entangled photons have

been actively investigated for their potential in achieving high secure key rate (SKR). To

reach a high SKR, one major challenge is to simultaneously achieve desirable raw key rate

(RKR) and photon information efficiency (PIE). Increasing the RKR inevitably leads to de-

graded channels with errors that are more uniform, thus resulting in lower PIE. This situation

calls for robust error correcting codes capable of combating uniform errors. Compared with

broadly considered multi-level-coding (MLC) schemes, non-binary (NB) codes are not reliant

on the dependencies between bit layers and are more appropriate for high-dimensional QKD.

In this work, we develop NB spatially-coupled (SC) irregular repeat accumulate (IRA) codes

that strategically combine high performance SC codes and IRA codes. Using the normalized

photon efficiency (RPE) as a useful proxy of SKR, where the gain in SKR is lower bounded

by the gain in RPE, simulation results show a gain of up to 20.62% of SC-IRA codes in RPE

over the MLC scheme, resulting from the improved PIE in the high RKR region.

1.1 Outline of Contributions
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In this section, we provide a summary of the contributions in each of the remaining chapters

of the dissertation. Our related publications and manuscripts in the references are [33] for

Chapter 2, [34] and [35] for Chapter 3, [57] and [58] for Chapter 4, in addition to the relevant

publication [59]. Further details about the work contained in this dissertation can be found

in the aforementioned publications.

Contributions in Chapter 2

In this chapter, we focus on codes with hierarchical locality and additional properties mo-

tivated by their practical importance, including scalability, flexibility, and heterogeneity, as

mentioned in previous discussions. We propose a new class of codes based on Cauchy ma-

trices, on a finite field with size that grows linearly with the maximum local codelength.

We show that our constructions are able to be scaled up without entirely reinventing the

infrastructure, and are adaptive to the dynamic change in usage rates from different local

clouds, which are desirable and important in dynamic cloud storage.

Contributions in Chapter 3

In this chapter, we propose a topology-adaptive cooperative data protection scheme for

DSNs, which significantly extends our previous work on hierarchical coding for centralized

distributed storage. We discuss the recoverable erasure patterns of our proposed scheme,

demonstrating that our scheme corrects patterns pertaining to dynamic DSNs. Our scheme

achieves faster recovery speed compared with existing network coding methods, and enables

an intrinsic information flow from nodes with higher reliability to nodes with lower reliability

that are close to them on the network. Our constructions are also proved to be scalable and

flexible, making them a construction with great potential to be employed in dynamic DSNs.

Most importantly, our coding scheme adapts to DSNs with arbitrary topologies, a property

that is especially important in DSNs but has been overlooked in existing works.
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Contributions in Chapter 4

In this chapter, we propose the so-called GRADE-AO method, a probabilistic framework

that efficiently searches for locally optimal QC-SC codes with arbitrary memories. We ob-

tain a locally optimal edge distribution that minimizes the expected number of the most

detrimental objects via gradient descent. Starting from a random partitioning matrix with

the derived edge distribution, we then apply a semi-greedy algorithm to find a locally optimal

partitioning matrix near it. While the application of GRADE-AO in optimizing the number

of short cycles has shown noticeable gains, we focus in this chapter on minimizing the number

of more detrimental objects, the concatenated cycles. This finer-grained optimization avoids

unnecessary attention on individual cycles which are typically not problematic on their own,

especially in codes with high variable node (VN) degrees and irregular codes. Simulation

results show that our proposed constructions have a significant performance gain over state-

of-the-art codes; this gain is shown to be universal in both waterfall and error floor regions,

as well as on channels underlying various practical systems. Future work includes extending

the framework to other classes of underlying block codes.

Contributions in Chapter 5

In this chapter, we further extend our GRADE-AO framework to adapt to a larger variety

of underlying block codes, especially those perform well in low rate region such that the

resultant codes are applicable to QKD. In particular, we generalize GRADE-AO in cycle

optimization to adapt to underlying block codes with irregular degrees. Built upon this

updated framework and in combination with the well-known IRA codes, we manage to

develop a finite-length SC-IRA code optimization that efficiently optimizes over the number

of cycles in the SC codes with an underlying IRA code. Simulation results demonstrate a

nontrivial improvement of our proposed scheme over the MLC/MSD scheme in combating

global errors and channel variations in QKD.

6



CHAPTER 2

Hierarchical Coding for Centralized Cloud Storage

2.1 Introduction

Codes offering hierarchical locality have been intensely studied because of their ability to

reduce the average reading time in various erasure-resilient data storage applications includ-

ing Flash storage, redundant array of independent disks (RAID) storage, cloud storage, etc.

[11]. Codes with shorter block lengths offer lower latency, but they provide limited erasure-

correction capability in a cloud storage system. To deal with more erasures, longer codes

can be employed. However, since a simultaneous occurrence of a large number of erasures

is a rare event, longer codes result in unnecessary extra reading cost, and are on average

inefficient. Therefore, maintaining low latency while simultaneously recovering from a po-

tentially large number of erasures is one of the major challenges in cloud storage. Codes with

hierarchical locality have been shown to address this issue by providing multi-level access

in cloud storage, which enables the data to be read through a chain of network components

with increasing data lengths from top to bottom; this architecture is exploited to increase

the overall erasure-correction capability[9].

In the literature, codes offering double-level access have been intensely studied[11, 9, 15,

14, 12, 22]; these codes are applicable in double-level cloud storage. In this configuration, p

consecutive local messages are jointly encoded into p correlated local codewords. Each local

codeword is stored at the neighboring servers of the corresponding local cloud. The codes are
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Figure 2.1: Double-level cloud storage. Servers connected to local clouds store the local
codewords; the local clouds are connected to a central cloud.

designed such that each local message can be successfully decoded from the corresponding

local codeword when there are fewer than d1 local erasures, and the global codeword provides

extra protection against (d2 − d1) unexpected errors in a local codeword, for some d2 > d1.

An example having p = 4 is in Fig. 1. Suppose d1 = 2 and d2 = 3. When there is at

most 1 server failure, accessing the servers connected to cloud 1 is sufficient to successfully

decode the data stored in cloud 1. If the number of server failures in cloud 1 is 2, the data

can still be obtained through accessing all the servers. Codes with hierarchical locality are a

generalized extension of double-level accessible codes, in which more than two levels of access

are allowed and are naturally suitable for cloud storage with multiple layers. An application

in which these codes are needed is hybrid cloud storage [60].

Along with hierarchical locality discussed previously, it is also important for the coding

schemes to support scalable, heterogeneous, and flexible cloud storage[17]. Scalability en-

ables expanding the backbone network to accommodate additional workload, i.e., additional

clouds, without rebuilding the entire infrastructure. Heterogeneity refers to the property

of allowing nonidentical local data lengths and providing unequal local protection, which
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is important for cloud storage with heterogeneous structures. A heterogeneous structure

arises in networks consisting of geographically separated components, and they often store

data from different sources. Flexibility has been firstly investigated for dynamic data stor-

age systems in [22], and it refers to the property that the local cloud can be split into two

smaller local clouds without worsening the global erasure-correction capability nor changing

the remaining components. This splitting, for example, is applied when cold data stored at

a local cloud become hot unexpectedly.

Various codes offering hierarchical locality have been studied. Cassuto et al.[11] presented

so-called multi-block interleaved codes that provide double-level access; this work introduced

the concept of multi-level access. The family of integrated-interleaved (I-I) codes, including

generalized integrated interleaved (GII) codes and extended integrated interleaved (EII)

codes, has been a major prototype for codes with multi-level access [9, 12, 14, 15]. GII codes

have the advantage of correcting a large set of error patterns, but the distribution of the

data symbols is highly restricted, and all the local codewords are equally protected. EII

codes are extensions of GII codes with double-level access, where specific arrangements of

data symbols have been investigated, mitigating the aforementioned restriction. However,

no similar study has been proposed for GII codes with hierarchical locality. Therefore, I-I

codes are more suitable for applications where heterogeneity and flexibility are less important.

Sum-rank codes are another family of codes that is proposed for dynamic distributed storage

offering double-level access[22]. These codes are maximally recoverable, flexible, and allow

unequal protection for local data. However, sum-rank codes require a finite field size that

grows exponentially with the maximum local block length, which is a major obstacle to being

implemented in real world applications.

In this chapter, we introduce code constructions with hierarchical locality and a small

field size that achieve scalability, heterogeneity, and flexibility. The chapter is organized as

follows. In Section 2.2, we introduce the notation and preliminaries. In Section 2.3, we

present a new construction of codes offering hierarchical locality that is based on Cauchy
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Reed Solomon (CRS) codes. This construction requires a field size that grows linearly with

the maximum local codelength. In Section 2.4, we then show that our coding scheme is

scalable, heterogeneous, and flexible. Finally, we summarize our results in Section 4.7.

2.2 Notation and Preliminaries

Throughout the rest of this chapter, [N ] refers to {1, 2, . . . , N}, and [a : b] refers to {a, a +

1, . . . , b}. Denote the all zero vector of length s by 0s. Similarly, the all zero matrix of size s×t

is denoted by 0s×t. The alphabet field, denoted by GF(q), is a Galois field of size q, where q

is a power of a prime. For a vector v of length n, vi, 1 ≤ i ≤ n, represents the i-th component

of v, and v [a : b] = (va, . . . , vb). For a matrix M of size a × b, M [i1 : i2, j1 : j2] represents

the sub-matrix M′ of M such that (M′)i−i1+1,j−j1+1 = (M)i,j, i ∈ [i1 : i2], j ∈ [j1 : j2]. All

indices start from 1.

2.2.1 Notation and Definitions

Let m and c represent messages and codewords, respectively. A set C is called an (n, k, d)q-

code if C ⊂ GF(q)n, dim(C) = k, and min
c1,c2∈C,c1 6=c2

dH(c1, c2) = d, where dH refers to the

Hamming distance. We next define a family of codes with double-level access. Note that

our discussion is restricted to linear block codes.

Definition 1. Let p, q ∈ N. Let n = (n1, n2, . . . , np) ∈ Np, k = (k1, k2, . . . , kp) ∈ Np,

D ∈ N2×p, (D)x,y = dx,y, where d1,x < d2,x, kx < nx, for all x, y ∈ [p].

Let n = n1 + n2 + · · · + np. Let s0 = 0 and sx = n1 + n2 + · · · + nx, x ∈ [p]. Let cx

denote c [sx−1 + 1 : sx] and let mx denote the message corresponding to cx, for x ∈ [p]. A

set C ⊂ GF(q)n is called an (n,k,D, p)q-code if the following conditions are satisfied:

1. Let Cx = {c [sx−1 + 1 : sx] : c ∈ C}, x ∈ [p]. Each Cx is an (nx, kx, d1,x)q-code.

2. Let Ax = {c [sx−1 + 1 : sx] : c ∈ C, c [sy−1 + 1 : sy] = 0ny ,∀y ∈ [p]\{x}}, x ∈ [p]. Each

Ax is an (nx, kx, d2,x)q-code.
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Any (n,k,D, p)q-code specified according to Definition 1 corrects (d1,x − 1) erasures in

the i-th local codeword via local access, and corrects additional (d2,x−d1,x) erasures through

global access when other local codewords are all correctable via local access. Following this

notation, Definition 2 extends Definition 1 into the triple-level case.

Definition 2. Let q, p0 ∈ N, p = (p1, p2, . . . , pp0) ∈ Np0, p = p1 + p2 + · · · + pp0. Let n =

(n1,n2, . . . ,np0) ∈ Np0, k = (k1,k2, . . . ,kp0) ∈ Np0, where nx = (nx,1, nx,2, . . . , nx,px) ∈ Npx,

kx = (kx,1, kx,2, . . . , kx,px) ∈ Npx, for all x ∈ [p0].

Let t0 = 0, tx = p1 + p2 + · · · + px, x ∈ [p0]. Suppose D ∈ N3×p. Let dl,x,i = (D)l,tx−1+i,

l ∈ [3] so that d1,x,i < d2,x,i < d3,x,i, for x ∈ [p0] and i ∈ [px]. Let Dx = D [1 : 2, tx−1 + 1 : tx],

x ∈ [p0]. Let nx = nx,1 + nx,2 + · · ·+ nx,px for all x ∈ [p0]. Let n = n1 + n2 + · · ·+ np0. Let

s0 = 0, sx = n1 +n2 + · · ·+nx, x ∈ [p0]. Let sx,0 = sx, sx,i = sx +nx,1 +nx,2 + · · ·+nx,i, for

all x ∈ [p0] and i ∈ [px]. Let cx,i denote c [sx,i−1 + 1 : sx,i] and let mx,i denote the message

corresponding to cx,i, for x ∈ [p0], i ∈ [px]. A set C ⊂ GF(q)n is called an (n,k,D, p0,p)q-

code if the following conditions are satisfied:

1. Let Cx = {c [sx−1 + 1 : sx] : c ∈ C}, x ∈ [p0]. Each Cx is an (nx,kx,Dx, px)q-code.

2. Let Ax,i = {c [sx,i−1 + 1 : sx,i] : c ∈ C, c [sy,j−1 + 1 : sy,j] = 0ny,j ,∀y ∈ [p0] , j ∈

[py] , (x, i) 6= (y, j)}. Each Ax is an (nx,i, kx,i, d3,x,i)q-code.

This definition can be easily generalized into codes with more than three levels of access.

For simplicity, we constrain our discussion to the triple-level case.

2.2.2 Cauchy Matrices

Cauchy matrices are the key component in the construction that we will introduce shortly.

Before we describe the constructions in detail, we first introduce the so-called Cauchy

matrices that are used as major components in the generator matrices of our codes. Codes

based on Cauchy matrices, the so-called Cauchy Reed-Solomon (CRS) codes, have been
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studied in [61, 62]. CRS codes present desirable properties, as discussed later, and have

been proposed to be applied to distributed storage systems in [63, 64]. In our work, we

further exploit the scaling property of CRS codes, which makes them an ideal choice to

accommodate hierarchical access on arbitrarily deployed nodes in DSNs.

Definition 3. (Cauchy matrix) Let s, t ∈ N and GF(q) be a Galois field of size q. Suppose

a1, . . . , as, b1, . . . , bt are s + t distinct elements in GF(q). The following matrix is known as

a Cauchy matrix, 

1
a1−b1

1
a1−b2 . . . 1

a1−bt

1
a2−b1

1
a2−b2 . . . 1

a2−bt
... ... . . . ...
1

as−b1
1

as−b2 . . . 1
as−bt


We denote this matrix by Y(a1, . . . , as; b1, . . . , bt), and refer to sequences (a1, a2, . . . , as),

(b1, b2, . . . , bt) as the row indicator and the column indicator of the specified Cauchy

matrix, respectively.

Cauchy matrices possess desirable properties that make them an ideal alternative to Van-

dermonde matrices, the major components of the parity-check matrices of Reed-Solomon

(RS) codes, as the parity-computing (non-systematic) components in systematic generator

matrices of some maximum distance separable (MDS) codes with low encoding and decoding

complexities [63]. Cauchy matrices are totally invertible, i.e., every square sub-matrix of

a Cauchy matrix is invertible. Therefore, horizontally concatenating a Cauchy matrix with

another Cauchy matrix having an identical row indicator but a non-overlapping column indi-

cator results in a third Cauchy matrix. Similarly, vertically concatenating a Cauchy matrix

with another Cauchy matrix having an identical column indicator but a non-overlapping

row indicator also results in a third Cauchy matrix. This property, referred to as the scaling

property previously, is desirable for hierarchical access in topology-adaptive DSNs. More-

over, Lemma 1 presents another useful property about Cauchy matrices, which will be used

repeatedly in this chapter.
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Cauchy matrices are totally invertible, i.e., every square sub-matrix of a Cauchy matrix is

invertible. The inverse of a given Cauchy matrix can be explicitly computed using algorithms

of lower complexity than those for inverting Vandermonde matrices. Lemma 1 presents a

useful result about Cauchy matrices that will be used repeatedly in this chapter.

Lemma 1. Let s, t, r ∈ N such that t − s < r ≤ t, and A ∈ GF(q)s×t. If A is a Cauchy

matrix, then the following matrix M is a parity-check matrix of an (s+r, s+r−t, t+1)q-code1,

M =

 A

−Ir 0r×(t−r)


T

.

Proof. The parity-check matrix of an (s+ r, s+ r− t, t+ 1)q-code satisfies the property that

every t columns of this matrix are linearly independent. Therefore, we only need to prove

that every t rows of MT are linearly independent. We prove Lemma 1 by contradiction.

Suppose there exist t rows from MT that are linearly dependent. Suppose a of these linearly

dependent rows r1, r2, . . . , ra are from A, and the other t− a rows ra+1, ra+2, . . . , rt are from[
−Ir 0r×(t−r)

]
, where 0 ≤ t − a ≤ r. Suppose the entries with −1 in ra+1, ra+2, . . . , rt are

located in the i1, i2 . . . , it−a-th columns of MT, then ip ≤ r for all 1 ≤ p ≤ t−a. Observe that

[t] is the set of indices of all columns in MT. Suppose [t] \ {i1, i2, . . . , it−a} = {j1, j2, . . . , ja}.

Then, the a×a sub-matrix of the intersection of the rows r1, r2, . . . , ra and the j1, j2, . . . , ja-th

columns of A is singular. A contradiction.

2.3 Codes for Multi-Level Access

Following the definitions and notation introduced in Section 2.2, we present a CRS-based

code with double-level access in Section 2.3.1. Then, we extend our construction into a

triple-level case in Section 2.3.2.
1Note that when q is a power of 2, the minus operand can be removed, as shown in Example 1, since

subtraction and addition are equivalent on the Galois field GF(q) in this case.
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2.3.1 Codes with Double-Level Access

In this subsection, we provide a construction of codes offering double-level access based on

the CRS codes. Note that the generator matrix of any systematic code with double-level

access has the following structure:

G =



Ik1 A1,1 0 A1,2 . . . 0 A1,p

0 A2,1 Ik2 A2,2 . . . 0 A2,p

... ... ... ... . . . ... ...

0 Ap,1 0 Ap,2 . . . Ikp Ap,p


. (2.1)

Construction 1. (CRS-based code) Let p ∈ N, k1, k2, . . . , kp ∈ N, n1, n2, . . . , np ∈ N,

δ1, δ2, . . . , δp ∈ N and δ = δ1 + δ2 + · · ·+ δp, with rx = nx− kx > 0 for all x ∈ [p]. Let GF (q)

be a finite field such that q ≥ maxx∈[p]{nx}+ δ.

For each x ∈ [p], let ax,i, bx,j, i ∈ [kx + δx], j ∈ [rx − δx + δ], be distinct elements of

GF(q). Consider the Cauchy matrix Tx ∈ GF(q)(kx+δx)×(rx−δx+δ) such that Tx = Y(ax,1, . . . ,

ax,kx+δx ; bx,1, . . . , bx,rx−δx+δ). For each x ∈ [p], we obtain {Bx,i}i∈[p]\{x}, Ux, Ax,x, according

to the following partition of Tx,

Tx =

 Ax,x Bx,1 . . . Bx,p

Ux Zx

 , (2.2)

where Ax,x ∈ GF(q)kx×rx, Bx,i ∈ GF(q)kx×δi, Ux ∈ GF(q)δx×rx. Moreover, Ax,y = Bx,yUy,

for x 6= y.

Matrices Ax,x and Ax,y are substituted in G specified in (3.1), for all x, y ∈ [p], x 6= y.

Let C1 represent the code with generator matrix G.

Lemma 2. Following the notation in Definition 1, let d1,x = rx−δx+1, d2,x = rx−δx+δ+1,

for x ∈ [p]. Then, code C1 specified in Construction 3 is an (n,k,D, p)q-code.

Sketch of the proof. For each x ∈ [p], define yx = ∑
y∈[p],y 6=x myBy,x. It follows from mG = c
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Table 2.1: Polynomial and normal forms of GF(24)
0 0000 β4 1100 β8 1010 β12 1111
β 0100 β5 0110 β9 0101 β13 1011
β2 0010 β6 0011 β10 1110 β14 1001
β3 0001 β7 1101 β11 0111 β15 = 1 1000

and (3.1) that for x ∈ [p], cx = [mx,mxAx,x + yxUx]. Define the local parity-check matrix

HL
x and the global parity-check matrix HG

x , for each x ∈ [p], as follows:

HG
x =

 Ax,x Bx,1 . . . Bx,p

−Irx 0rx×δ−δx


T

,HL
x =


Ax,x

−Irx

Ux



T

.

We next prove the equations of the local distance d1,x = rx − δx + 1 and the global distance

d2,x = rx − δx + δ + 1 using HL
x and HG

x , x ∈ [p].

To prove the equation of the local distance, let c̃x = [cx,yx]. Then, one can show that

c̃x belongs to a code CL
x with the local parity-check matrix HL

x . From Lemma 1, CL
x is an

(nx+ δx, kx, rx+ 1)q-code. Therefore, any rx erasures in c̃x are correctable. Provided that yx

has length δx, we can consider the entries of yx as erasures and thus any (rx − δx) erasures

in the remaining part of c̃x, i.e., cx, can be corrected. Therefore, d1,x = rx − δx + 1.

To prove the equation of the global distance, assume all the local codewords except for cx

are successfully decodable locally. Then, for each x ∈ [p], yx and sx = [mxBx,1, . . . ,mxBx,p]

are computable. Let c̄x = cx− [0kx ,yxUx], then one can show that HG
x c̄T

x = [0rx , sx]
T. From

Lemma 1 and from the construction of HG
x , any (rx − δx + δ) erasures in c̄x are correctable,

thus (rx − δx + δ) erasures in cx are also correctable. Therefore, d2,x = rx − δx + δ + 1.

We next provide a working example for codes in Construction 3. For simplicity, we let

all the local codeword lengths and local data lengths be equal. However, the construction

itself allows them to be unequal.
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T1 = T2 =

 A1,1 B1,2

U1 Z1

 =

 A2,2 B2,1

U2 Z2



=



1
β−β8

1
β−β9

1
β−β10

1
β−β11

1
β2−β8

1
β2−β9

1
β2−β10

1
β2−β11

1
β3−β8

1
β3−β9

1
β3−β10

1
β3−β11

1
β7−β8

1
β7−β9

1
β7−β10

1
β7−β11


=



β5 β12 β7 β9

1 β4 β11 β6

β2 β14 β3 β10

β4 1 β9 β7


.

(2.3)

Example 1. Let q = 24, p = 2, r = r1 = r2 = 3, δ′ = δ1 = δ2 = 1, k = k1 = k2 = 3,

n = n1 = n2 = k + r = 6, δ = δ1 + δ2 = 2. Then, d1 = r − δ′ + 1 = 3 − 1 + 1 = 3,

d2 = r − δ′ + δ + 1 = 3 − 1 + 2 + 1 = 5. Choose a primitive polynomial over GF(2):

g(X) = X4 +X + 1. Let β be a root of g(X), then β is a primitive element of GF(24). The

binary representation of all the symbols in GF(24) is specified in Table 3.1.

Let A1,1 = A2,2, B1,2 = B2,1, U1 = U2, and T1 = T2 as specified in (2.3). Therefore,

A1,2 = A2,1 = B2,1U1 =


β13 β9 β3

β10 β6 1

β14 β10 β4

 .

Then, the generator matrix G is specified as follows,

1 0 0 β5 β12 β7 0 0 0 β13 β9 β3

0 1 0 1 β4 β11 0 0 0 β10 β6 1

0 0 1 β2 β14 β3 0 0 0 β14 β10 β4

0 0 0 β13 β9 β3 1 0 0 β5 β12 β7

0 0 0 β10 β6 1 0 1 0 1 β4 β11

0 0 0 β14 β10 β4 0 0 1 β2 β14 β3


.

Suppose m1 = (1, β, β2), m2 = (β, 1, 0), then c1 = (1, β, β2, β14, 0, 0) and c2 = (β, 1, 0, β6, 0,
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β13). Moreover, HL
1 and HG

1 are specified as follows,

HG
1 =



β5 β12 β7 β9

1 β4 β11 β6

β2 β14 β3 β10

1 0 0 0

0 1 0 0

0 0 1 0



T

,HL
1 =



β5 β12 β7

1 β4 β11

β2 β14 β3

1 0 0

0 1 0

0 0 1

β4 1 β9



T

.

According to Construction 3, G is the generator matrix of a double-level accessible code that

corrects 2 local erasures by local access and corrects 2 extra erasures within a single local

cloud by global access. In the following, we denote the erased version of c1 by c′1, and erased

symbols by ei, i ∈ N.

As an example of decoding by local access, suppose c′1 = (1, e1, β
2, e2, 0, 0). Then, the

erased elements of c̃1 = (1, e1, β
2, e2, 0, 0, e3) can be retrieved using HL

1 as the parity-check

matrix. In particular, we solve HL
1 c̃T

1 = (0, 0, 0)T for e1, e2, e3 and obtain (e1, e2, e3) =

(β, β14, β7). We have decoded c1 successfully.

As an example of decoding by global access, suppose c′1 = (e1, e2, β
2, e3, e4, 0), and c2 has

been locally decoded successfully. Then, c2 = (β, 1, 0, β6, 0, β13) implies that m1B1,2U2 =

(β6, 0, β13) − β · (β5, β12, β7) − 1 · (1, β4, β11) = (1, β11, β5). Since U2 = (β4, 1, β9), we

obtain m1B1,2 = β11. Moreover, we compute m2B2,1U1 = (β11, β7, β). Let c̄1 = c′1 −

(0, 0, 0, β11, β7, β) = (e′1, e′2, β2, e′3, e
′
4, β). Then, we solve HG

1 c̄T
1 = (0, 0, 0, β11)T and obtain

(e′1, e′2, e′3, e′4) = (1, β, β10, β7). Therefore, e1 = e′1 = 1, e2 = e′2 = β, e3 = e′3 + β11 = β14,

e4 = e′4 + β7 = 0, and we have decoded c1 successfully.
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2.3.2 Codes with Hierarchical Locality

Based on the double-level accessible codes presented in Section 2.3.1, we present a class of

codes with hierarchical locality in Construction 2. For simplicity, we just present a construc-

tion with triple-level access. Note that the coding scheme itself can be naturally extended to

have more than three levels. A detailed explanation of the subscripts used in the following

discussion is provided in [33].

A generator matrix of such a code is as follows:

G =



F1,1 F1,2 . . . F1,p0

F2,1 F2,2 . . . F2,p0

... ... . . . ...

Fp0,1 Fp0,2 . . . Fp0,p0


, (2.4)

where for any x ∈ [p0],

Fx,x =


Ikx,1 Ax,x;1,1 . . . 0 Ax,x;1,px
... . . . . . . ... ...

0 Ax,x;px,1 . . . Ikx,px Ax,x;px,px

 , (2.5)

is a generator matrix of a code offering double-level access, and

Fx,y =


0 Ax,y;1,1 . . . 0 Ax,y;1,py
... . . . . . . ... ...

0 Ax,y;px,1 . . . 0 Ax,y;px,py

 . (2.6)

Properties of Fx,x,Fx,y are to be discussed later.

Construction 2. Let p0 ∈ N, p = (p1, . . . , pp0) ∈ Np0. Let kx,i, nx,i, δx,i, γx ∈ N, for

x ∈ [p0] and i ∈ [px], such that rx,i = nx,i − kx,i > 0 and 2γx < mini∈[px]{rx,i − δx,i}. Let

δx = δx,1 + · · ·+ δx,px, γ = ∑
x∈[p0] pxγx, for all x ∈ [p0]. Let GF (q) be a finite field such that
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q ≥ max
x∈[p0],i∈[px]

{nx,i + δx − (px − 2)γx + γ}.

Let ux,i = kx,i + δx,i + 2γx, vx,i = rx,i − δx,i + δx − pxγx + γ, for x ∈ [p0], i ∈ [px]. For

each x ∈ [p0], i ∈ [px], let ax,i,s, bx,i,t, s ∈ [ux,i], t ∈ [vx,i], be distinct elements of GF(q).

Consider the Cauchy matrix Tx,i on GF(q)ux,i×vx,i such that Tx,i = Y(ax,i,1, . . . , ax,i,ux,i ;

bx,i,1, . . . , bx,i,vx,i), for x ∈ [p0], i ∈ [px]. Then, we obtain Ax,x;i,i, Bx,x;i,i′, Ex,y;i;j, Ux,i, Vx,i,

x ∈ [p0], i′ ∈ [px] \ {i}, y ∈ [p0] \ {x}, j ∈ [py], according to the following partition of Tx,i,

Tx,i =


Ax,x;i,i Bx,x;i Ex,1;i . . . Ex,p0;i

Ux,i

Vx,i

Zx,i

 , (2.7)

where Bx,x;i =
[

Bx,x;i,1 . . . Bx,x;i,px

]
(2.8)

and Ex,y;i =
[

Ex,y;i;1 . . . Ex,y;i;py

]
, (2.9)

such that Ax,x;i,i ∈ GF(q)kx,i×rx,i, Bx,x;i,i′ ∈ GF(q)kx,i×δx,i′ , Ex,y;i;j ∈ GF(q)kx,i×γy , Ux,i ∈

GF(q)δx,i×rx,i, Vx,i ∈ GF(q)2γx×rx,i. Moreover, Ax,x;i,i′ = Bx,x;i,i′Ux,i′. Suppose Ex,y;i;py+1 =

Ex,y;i;1; let Ax,y;i,j = [Ex,y;i;j,Ex,y;i;j+1] Vy,j.

Matrices Ax,x;i,i and Ax,y;i,j are substituted in Fx,x and Fx,y to construct G as specified

in (2.4), (2.5), and (2.6). Let C2 represent the code with generator matrix G.

Theorem 1. Following the notation in Definition 2, let d1,x,i = rx,i − δx,i − 2γx + 1, d2,x,i =

rx,i − δx,i + δx + 1, d3,x,i = rx,i − δx,i + δx − pxγx + γ + 1, for x ∈ [p0], i ∈ [px]. Then, the

code C2 defined in Construction 2 is an (n,k,D, p0,p)q-code.

Sketch of the proof. For each x ∈ [p0] and i ∈ [px], define the local cross parity yx,i =∑
i′∈[px]\{i}mx,i′Bx,x;i,i′ , and the global cross parities zx,i = ∑

y∈[p0]\{x},j∈[py ] my,jEy,x;j;i. Let

zx,px+1 = zx,px . Then, it follows from mG = c that cx,i = [mx,i,wx,i] for some wx,i =

mx,iAx,x;i,i + yx,iUx,i + [zx,i, zx,i+1] Vx,i.

The local erasure-correction capability d1,x,i = rx,i− δx,i−2γx + 1 and the global erasure-

correction capability d3,x,i = rx,i− δx,i + δx− pxγx + γ + 1 can be easily derived by following
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the same logic used in the proof of Lemma 3. Therefore, we only need to prove that d2,x,i =

rx,i − δx,i + δx + 1.

To prove this statement, suppose all the local codewords in the x-th group except for

cx,i are successfully decodable locally, for some x ∈ [p0], i ∈ [px]. In other words, for all

i′ ∈ [px] \ {i}, there are at most d1,x,i′ − 1 erasures in the corrupted version cx,i′ of the local

codeword. From the construction, we know that the row spaces of any two matrices from

Ax,x;i,i, Ux,i, and Vx,i have no common elements except for the all zero vector. Therefore,

for all i′ ∈ [px] \ {i}, mx,i′ , yx,i′ , [zx,i′ , zx,i′+1], can all be derived from cx,i. This implies

that [zx,i, zx,i+1] is known and thus, the entire contribution of global cross parities can be

removed. Namely, let c̃x,i′ = cx,i′ −
[
0kx,i′ , [zx,i′ , zx,i′+1] Vx,i′

]
, for all i′ ∈ [px], then the

message mxFx,x = c̃x, where c̃x = [c̃x,1, . . . , c̃x,px ]. Thus, from Lemma 3, (rx,i − δx,i + δx)

erasures in c̃x,i are correctable. Therefore, d2,x,i = rx,i − δx,i + δx + 1.

Remark 1. Note that the constraint of γy ∈ N in Construction 3 can be relaxed to 2γy ∈ N

if py is even. In this case, we have Ex,y;i;j ∈ GF(q)kx,i×2γy . Moreover, we need to modify the

equation of Ex,y;i to be Ex,y;i =
[
Ex,y;i;1, . . . ,Ex,y;i;py/2

]
, and Ax,y;i,j = Ex,y;i;dj/2eVy,j.

The following is a working example of Construction 2. For simplicity, we let the middle

code be the code presented in Example 1. However, the construction itself doesn’t impose

any constraints on rx,i, δx,i, and γx, except for 2γx < miny∈[px]{rx,y − δx,y}.

Example 2. Here, we build on Example 1 using the same GF (q). Let p0 = 2, p = (p1, p2) =

(2, 2), γ′ = γ1 = γ2 = 1/2, γ = p1γ1 + p2γ2 = 2. Let F1,1 = F2,2 = G of Example 1. Then,

n = 6, r = 3, δ′ = 1, δ = 2 as in Example 1. Therefore, d1 = r − δ′ − 2γ′ + 1 =

3 − 1 − 2 · (1/2) + 1 = 2, d2 = r − δ′ + δ + 1 = 5, d3 = r − δ′ + δ − 2γ′ + γ + 1 = 6. We

assume Tx,i, x, i ∈ [2], are all identical, then so are Vx,i and Ex,y;i;1, x 6= y, i ∈ [2]. Let

these matrices be defined as follows:

Vx,i =
[

1
β6−β8

1
β6−β9

1
β6−β10

]
=
[
β β10 β8

]
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and Ex,y;i;1 =


1

β−β12

1
β2−β12

1
β3−β12

 =


β2

β8

β5

 .

For simplicity, we abbreviate Ex,y;i;1 as E. Note that here p1, p2 are even; thus, the construc-

tion follows the modification described in Remark 1. The components Ax,y;i,j are therefore

all identical for x, y, i, j ∈ [2], x 6= y, and are described as follows:

Ax,y;i,j = EVy,j =


β3 β12 β10

β9 β3 β

β6 1 β13

 .

Then, the generator matrix is given in (2.10).



1 0 0 β5 β12 β7 0 0 0 β13 β9 β3 0 0 0 β3 β12 β10 0 0 0 β3 β12 β10

0 1 0 1 β4 β11 0 0 0 β10 β6 1 0 0 0 β9 β3 β 0 0 0 β9 β3 β

0 0 1 β2 β14 β3 0 0 0 β14 β10 β4 0 0 0 β6 1 β13 0 0 0 β6 1 β13

0 0 0 β13 β9 β3 1 0 0 β5 β12 β7 0 0 0 β3 β12 β10 0 0 0 β3 β12 β10

0 0 0 β10 β6 1 0 1 0 1 β4 β11 0 0 0 β9 β3 β 0 0 0 β9 β3 β

0 0 0 β14 β10 β4 0 0 1 β2 β14 β3 0 0 0 β6 1 β13 0 0 0 β6 1 β13

0 0 0 β3 β12 β10 0 0 0 β3 β12 β10 1 0 0 β5 β12 β7 0 0 0 β13 β9 β3

0 0 0 β9 β3 β 0 0 0 β9 β3 β 0 1 0 1 β4 β11 0 0 0 β10 β6 1

0 0 0 β6 1 β13 0 0 0 β6 1 β13 0 0 1 β2 β14 β3 0 0 0 β14 β10 β4

0 0 0 β3 β12 β10 0 0 0 β3 β12 β10 0 0 0 β13 β9 β3 1 0 0 β5 β12 β7

0 0 0 β9 β3 β 0 0 0 β9 β3 β 0 0 0 β10 β6 1 0 1 0 1 β4 β11

0 0 0 β6 1 β13 0 0 0 β6 1 β13 0 0 0 β14 β10 β4 0 0 1 β2 β14 β3


(2.10)

Note that the decoding process based on local access and global access have already been

introduced in Example 1. Thus, we only focus on decoding based on the middle-level access in

this example. Suppose m1,1 = (1, β, β2), m1,2 = (β, 1, 0), m2,1 = (β2, 0, β), m2,2 = (0, β, 1).

Then, c1,1 = (1, β, β2, β12, β14, β12), c1,2 = (β, 1, 0, β9, β14, β).
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Suppose there are 3 erasures in c1,1 so that c′1,1 = (e1, β, β
2, e2, e3, β

12), where e1, e2, e3

represent the three erased symbols. Suppose c1,2 is successfully corrected by local access.

Then, codeword c1,1 is correctable through middle-level access, i.e., by operating on c′1,1 and

c1,2.

First, from c1,2 = (β, 1, 0, β9, β14, β), we know that m1,2 = (β, 1, 0). Following the proof

of Theorem 1, we know that (β9, β14, β) = m1,2A1,1;1,2 + y1,2U1,2 + z1,2V1,2. Here, y1,1 =

m1,1B1,1;1,2, z1,2 = (m2,1+m2,2)E = z1,1. Then, y1,2 and z1,2 can be computed as y1,2 = (β11),

z1,2 = (β4). Therefore, z1,1V1,1 + m1,2A1,1;2,1 = z1,2V1,1 + m1,2A1,1;2,1 = (β5, β14, β12) +

(β11, β7, β) = (β3, β, β13).

Let c̃1,1 = c′1,1−(0, 0, 0, β3, β, β13) = (e′1, β, β2, e′2, e
′
3, β). We obtain (e′1, e′2, e′3) = (1, β10, β7)

by solving HG
1 c̃T

1,1 = (0, 0, 0, e11)T, where HG
1 is specified in Example 1. Therefore, e1 = e′1 =

1, e2 = e′2 + β3 = β12, e3 = e′3 + β = β14. We have successfully decoded c1,1.

2.4 Scalability, Heterogeneity, and Flexibility

In Section 2.3, we have presented a construction of codes with hierarchical locality for cloud

storage, which enables the system to offer multi-level access. However, multi-level accessi-

bility is not the only property that is considered in practical cloud storage applications. In

this section, we therefore discuss scalability, heterogeneity, and flexibility of our construc-

tion, which are pivotal particularly in dynamic cloud storage. Although our discussion is

restricted to cloud storage, the properties of heterogeneity and flexibility are also of practical

importance in non-volatile memories.

2.4.1 Scalability

As discussed in Section 2.1, scalability refers to the capability of expanding the backbone

network to accommodate additional workload without rebuilding the entire infrastructure.

More specifically, when a new local cloud is added to the existing configuration, comput-

ing a completely different generator matrix resulting in changing all the encoding-decoding
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components in the system is very costly. The ideal scenario is that adding a new local cloud

does not change the encoding-decoding components of the already-existing, local clouds.

We show that our construction naturally achieves this goal. Observe that in Construc-

tion 3, the components Ax,x, Ux, Bx,i, i ∈ [p] \ {x} are built locally. Suppose cloud p + 1

is added into a double-level configuration adopting Construction 3. The following steps will

only result in adding some columns and rows to the original G without changing the existing

ones:

1. Parameter Selection: Local cloud p + 1 chooses its local parameters Ap+1,p+1, Up+1,

Bp+1,i, i ∈ [p], and local cloud i chooses the additional local parameters Bi,p+1;

2. Information Exchange: Local cloud p + 1 sends mp+1Bp+1,i to the central cloud, and

local cloud i sends miBi,p+1 to the central cloud;

3. Information Exchange: The central cloud forwards mp+1Bp+1,i to local cloud i, and

sends yp+1 = ∑
i∈[p] miBi,p+1 to local cloud p+ 1;

4. Update: Local cloud p+ 1 computes its finalized parity-check symbols mp+1Ap+1,p+1 +

yp+1Up+1, and local cloud i adds mp+1Bp+1,i to its current parity symbols.

Note that although the local erasure-correction capability of a local cloud does not change,

the global erasure-correction capability of each local cloud increases by δp+1 after adding the

new local cloud p+ 1 into the system.

2.4.2 Heterogeneity

While codes with identical data length and locality have been intensively studied, hetero-

geneity has become increasingly important in real world applications, especially in cloud

storage. There are typically two forms of heterogeneity: the heterogeneity of the network

structure, and unequal usage rates (according to how hot the data stored are) of local com-

ponents. It is reasonable to assume a heterogeneous structure since components connected
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to a larger network are typically geographically separated and they often store data from

unrelated sources. Heterogeneous networks naturally require codes with different local code

lengths and nonidentical data lengths, corresponding to flexible nx and kx in our construc-

tion, respectively. Unequal protection of data, corresponding to flexible rx and δx, also has

received increasing attention in recent years. This observation is reasonable since the usage

rate of the data is not necessarily identical. Clouds storing hot data (data with higher usage

rate and more time urgency) should receive more local protection than those store cold data.

Although the examples we presented in Section 2.3 have identical local parameters among

all the clouds for simplicity, Construction 3 and Construction 2 do not impose such restric-

tions, and they are actually suitable for heterogeneous configuration.

2.4.3 Flexibility

The concept of flexibility has been originally proposed and investigated for dynamic cloud

storage in [22]. In a dynamic cloud storage system, the usage rate of a piece of data is not

likely to remain unchanged. When the data stored in a local cloud become hot, splitting

the local cloud into two smaller clouds effectively reduces the latency. However, this action

should be done without reducing the erasure-correction capability of the rest of the system

or changing the remaining components.

Take Construction 3 as an example, if the data stored in local cloud 1 becomes unex-

pectedly hot, then the following procedure splits it into two separate clouds 1a and 1b:

1. Select the desired local parameters (ka
1 , r

a
1, δ

a
1) and (kb

1 , r
b
1 , δ

b
1 ) for clouds 1a and 1b,

respectively, such that ka
1 + kb

1 = k1, ra
1 + rb

1 = r1, δa
1 + δb

1 = δ1, and

A1a,1a = A1,1 [1 : ka
1 , 1 : ra

1] ,

B1b,1a = A1,1 [ka
1 + 1 : k1, 1 : δa

1 ] ,

A1b,1b = A1,1 [ka
1 + 1 : k1, , r

a
1 + 1 : r1] ,

B1a,1b = A1,1
[
1 : ka

1 , r
a
1 + 1 : ra

1 + δb
1

]
,
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Ua
1 = U1 [1 : δa

1 , 1 : ra
1] ,

Ub
1 = U1

[
δa

1 + 1 : δ1, r
a
1 + 1 : rb

1

]
;

2. Compute y1 by solving the equation y1U1 = c1 − m1A1,1, where yi, i ∈ [p], are

described in the proof of Lemma 3. Find ya
1 ∈ GF(q)δa

1 , yb
1 ∈ GF(q)δb

1 such that

y1 =
[
ya

1,yb
1

]
;

3. Compute ca
1 =

[
ma

1,ma
1A1a,1a +

(
mb

1B1b,1a + ya
1

)
Ua

1

]
, and

cb
1 =

[
mb

1 ,mb
1A1b,1b +

(
ma

1B1a,1b + yb
1

)
Ub

1

]
.

One can prove that the local codewords stored in the new clouds 1a and 1b such that they

are capable of correcting (ra
1 − δa

1) and (rb
1 − δb

1 ) local erasures, respectively. Other local

clouds are not affected.

2.5 Conclusion

Multi-level accessible codes have been shown to be beneficial for cloud storage. While the

previous literature works was typically focused on double-level accessible codes and their

erasure-correction capabilities, in this chapter, we focus on codes with hierarchical locality

and additional properties motivated by their practical importance. We proposed a CRS-

based code on a finite field with size that grows linearly with the maximum local codelength.

We showed that our construction achieves scalability, heterogeneity and flexibility, which are

important in dynamic cloud storage.
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CHAPTER 3

Hierarchical Coding for Decentralized Cloud Storage

3.1 Introduction

In response to the rapidly growing demand of data management, cloud storage such as Mi-

crosoft Azure and Amazon Web Services have become among the most widely deployed

public cloud services. In these centralized cloud services, a tech giant takes full custodi-

anship over data of all its customers; this situation can result in expensive infrastructure

maintenance and may lead to privacy violations. Decentralized storage networks (DSNs)

such as Storj [18], in which no entity is solely responsible for all data, have emerged as

a secure and economic alternative to centralized cloud services. DSNs are believed to be

economically attractive since extra capacity can be afforded by utilizing idle storage space

on devices at the edge of the network. Despite all advantages of decentralization, practical

management of personal devices also faces challenges from component failures, high churn

rates, heterogeneous bandwidths and link speeds, in addition to dynamic node balancing

for content delivery of hot files [18]. While erasure correction (EC) codes are widely used

to combat component failures, EC schemes that address the aforementioned issues are rela-

tively overlooked. In this chapter, we propose EC solutions that are tailored to tackle those

challenges pertaining to DSNs.

Latency and reliability are among the most critical factors that customers care about

in cloud storage. However, DSNs naturally impose numerous challenges on simultaneously
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maintaining low latency and high reliability. EC solutions with large block lengths are more

resilient to large weight errors, but they simultaneously slow down the recovery for the more

frequent cases where only few erasures occur. To reach a better trade-off between data

reliability and latency, codes enabling multi-level access are desired. In these codes, any

node is allowed to access different sets of helper nodes to retrieve the data, where the sizes

of the sets get reduced if the number of erasures to be recovered is small enough. This

architecture is referred to as codes with hierarchical localities. While hierarchical coding

in the context of centralized storage [9, 10, 11, 12, 13, 14, 15, 16, 33] has been intensively

studied, codes for DSNs have been mostly discussed without considering localities [1, 65, 66].

More recently, codes with localities in multi-rack storage, a special case of DSNs, have also

been investigated, where either the system is considered to be homogeneous [29, 30, 31, 32],

or the network topology has a simple structure [28, 23]. However, DSNs typically have more

sophisticated topologies characterized by heterogeneity among bandwidths of communication

links and erasure statistics of nodes due to the arbitrary and dynamic nature of practical

networks [23, 24, 25, 26, 27]. Instead of solutions for simplified models, schemes that fit into

any topology (a property referred to as topology-adaptivity later on) with customizable

data lengths and redundancies are desired to exploit the existing resources.

Another major challenge for DSNs comes from the high churn rate, namely, participants

join the network and leave without a predictable pattern. Therefore, it is essential for a DSN

to enable its organic growth, i.e., enable expanding the backbone network to accommodate

additional node operators, without rebuilding the entire infrastructure [17]; this property

is referred to as scalability. It has been reported that Storj has around 13500 storage

nodes across its global network, where each file is split into 80 pieces and any 29 of them

is needed to recover a file [67]. This indicates that the network is of massive scale and

the erasure correction is indispensable. Moreover, data stored at certain nodes occasionally

become hotter than anticipated, and the download rate can thus exceed the bandwidth

limit. In such a scenario, dynamic node balancing is required for content delivery to reach
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a lower latency. In particular, the cloud (node) should be split into smaller clouds without

worsening the global erasure correction capability or changing the remaining components.

This property is referred to as flexibility and has been firstly investigated for dynamic data

storage systems under the discussion of the so-called sum-rank codes [22]. However, sum-

rank codes require a Galois field size that grows exponentially with the maximum local block

length, which is a major obstacle to being implemented in real world applications [22].

In this chapter, we strategically combine hierarchical locality and topological properties

of a DSN. We develop a hierarchical coding scheme that is topologically-adaptive. The

scheme is built upon our prior work on centralized cloud storage [33] and preserves desirable

properties including scalability and flexibility. The Galois field size of this scheme grows

linearly with the local block length. Our proposed coding scheme enables joint encoding and

decoding of the data stored at all nodes such that nodes in a neighborhood cooperatively

protect and validate their stored data collectively in the DSN. Cooperation in DSNs further

improves the reliability since information propagates from more reliable nodes to less reliable

nodes through paths connecting them.

The rest of the chapter is organized as follows. In Section 3.2, we introduce the DSN

model and necessary preliminaries. In Section 3.3, we define erasure correction (EC) hi-

erarchies as well as their depth to systematically describe the maximal number of recov-

erable erasures corresponding to different access levels. We present a coding scheme with

depth 1 that results in a better recovery speed compared with existing schemes that are

not topologically-adaptive [28, 23]. We also discuss the recoverable erasure patterns of the

proposed construction and show that our scheme enables correction of erasure patterns rel-

evant to DSNs. In Section 3.4, we extend the single-level construction (depth 1) to have

higher-level cooperation. In the hierarchical scheme, the cooperation between nodes in the

DSN is described by the so-called cooperation graphs. We also present sufficient condi-

tions on any graph to be a cooperation graph, and refer to graphs satisfying these conditions

as compatible graphs. In Section 3.5, we first present an algorithm that searches for a
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(mj1 , cj1)

(mj2 , cj2) (mj3 , cj3)

(mi, ci)
ei,j1

ei,j2
ei,j3

Figure 3.1: Decentralized storage network (DSN). For the cluster with the master node vi,
message mi is encoded to ci, and symbols of ci are stored distributively among non-master
nodes that are locally connected to vi. In the figures after Fig. 3.1, we omit the local
non-master nodes for clarity of figures.

cooperation graph on any DSN with a given topology. Next, we show that our coding scheme

supports scalability and flexibility. Finally, we summarize our results in Section 3.6.

3.2 Notation and Model

In this section, we discuss the model and mathematical representation of a DSN, as well as

necessary preliminaries. Throughout the remainder of this chapter, [N ] refers to {1, 2, . . . , N}.

For a vector v of length n, vi, 1 ≤ i ≤ n, represents the i-th component of v, and

v [a : b] = (va, . . . , vb). For a matrix M of size a × b, M [i1 : i2, j1 : j2] represents the sub-

matrix M′ of M such that (M′)i−i1+1,j−j1+1 = (M)i,j, i ∈ [i1 : i2], j ∈ [j1 : j2]. For vectors

u and v of the same length p, u � v and u ≺ v means ui > vi and ui < vi, for all i ∈ [p],

respectively; u � v and u � v means ui ≥ vi and ui ≤ vi, for all i ∈ [p], respectively. For

any m,n ∈ N, an identity matrix of size n × n is denoted by In, and a zero matrix of size

m× n is denoted by 0m×n. For any q ∈ N, GF(q) refers to a Galois field with size q. In this

chapter, we constrain q to be a power of 2.
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3.2.1 Decentralized Storage Network

In a DSN, nodes are typically partitioned into distributed clusters of nodes, where each

cluster has a “master node” that functions in this cluster similar to that of a central node in a

centralized network, which is what the “decentralization” refers to. As shown in Fig. 3.1, each

master node, represented by big bold-colored nodes, communicates with both its neighboring

master nodes and other nodes in the cluster it belongs to, whereas each non-master node,

represented by small light-colored nodes, only communicates with the master node of the

cluster it belongs to. The cost of intra-cluster communications is negligible compared with

the cost of inter-cluster communications. Therefore, for clarity and simplicity of figures

and notation, it is sufficient to use a single compound node to represent each cluster in

the remainder of the paper, where each compound node accesses the storage nodes in the

represented cluster and performs calculations over the data. Moreover, the communications

between master nodes in clusters can be simply referred to as the communications between

the compound nodes representing them. We then refer to the compound nodes and the

communication links among them as “nodes” and “edges”, respectively.

As shown in Fig. 3.1, a DSN is modeled as a graph G(V,E), where V and E denote the set

of nodes and edges, respectively. Let p = |V |, G is associated with a tuple (n,k, r) ∈ (Np)3,

where k, r � 0 and n = k+r. For the cluster represented by node vi ∈ V , 1 ≤ i ≤ p, message

mi ∈ GF(q)ki is encoded to ci ∈ GF(q)ni , and symbols of ci are stored distributively among

storage nodes in the cluster represented by vi. Failed components in a cluster are regarded

as erased symbols in the codeword stored at this cluster. For simplicity, we instead say “ci

is stored at node vi” in the rest of the paper. Each edge ei,j ∈ E, 1 ≤ i, j ≤ p and i 6= j,

represents a communication link connecting node vi and node vj, through which vi and vj

are allowed to exchange information. Messages {mi}vi∈V are jointly encoded as {ci}vi∈V ,

and ci is stored at the cluster of nodes containing vi.

Each node vi, 1 ≤ i ≤ p, is associated with Li ∈ N, vector di = (di,0, di,1, . . . , di,Li) ∈
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NLi+1, and sets {H`
i}
Li
`=1, where di,0 < ri < di,1 < · · · < di,Li and ∅ ⊂ H1

i ⊂ H2
i ⊂ · · · ⊂

HLi
i ⊆ V , for all ` ∈ [Li]. The maximum number of erased symbols vi can recover in ci locally,

i.e., without communicating with neighboring nodes, is di,0. Moreover, di,` represents the

maximum number of erased symbols vi can recover in ci if codewords stored on all nodes

from H`
i are recoverable, for all ` ∈ [Li]. This property is referred to later as hierarchical

locality and discussed later in detail. Let m = (m1,m2, . . . ,mp) and c = (c1, c2, . . . , cp).

Denote the set of all neighbors of node vi by Ni, e.g., Ni = {vj1 , vj2 , vj3} in Fig. 3.1, and refer

to it as the neighborhood of node vi. A coding scheme C : ⊗pi=1GF(q)ki → ⊗pi=1GF(q)ni

maps each vector m of messages to a vector c of codewords. As mentioned previously, our

major goal is to design coding solutions C that are topology-adaptive, scalable, and flexible.

The aforementioned properties are specified as follows:

1. Topology-adaptivity: The selection of the sets of helper nodes {H`
i}`i=1 is based

on the underlying topology G of the DSN, which specifies the graph indicating the

information flow, the so-called cooperation graph discussed in details later on. The

code construction is based on the chosen cooperation graph.

In particular, H1
i only contains the neighborhood Ni of vi and the union of the neigh-

borhoods of nodes in Ni. Node vi is able to correct ri erasures in ci (i.e., fully utilizes

its local redundancy) when codewords stored on nodes from its neighborhood are re-

coverable, and it can receive additional parities (up to (di,1 − ri) parities) from nodes

in neighborhood of vj ∈ Ni through vj if vj is further recovered.

In addition to that, while the information of helper nodes participating in higher level

cooperations are encoded and stored in vi, the construction must ensure that the in-

formation from nodes of higher level cooperations can be removed even if they are not

recovered, which is required in lower level cooperations. Simultaneously, the redun-

dancy/erasure correction capability trade-off cannot be compromised. In particular,

the construction should accommodate a large set of erasure patterns where the sum of

erasures in each node is equal to the number of redundant symbols in the network.
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(a) (b)

Figure 3.2: Examples of a hierarchically centralized network (a) and a DSN (b).

Note that the selection of the cooperation graph and constructions of the coding scheme

over it satisfying the above properties is nontrivial, and will be discussed later in detail.

2. Scalability: When adding a node vp+1 with local parameters (np+1, kp+1, rp+1) ∈ N3

that encodes mp+1, vp+1 is able to compute the codeword cp+1 to be stored in it locally

with limited communications with other nodes, and without accessing the encoding

functions of other nodes nor changing codewords stored on nodes from V \ HLp+1
p+1 .

3. Flexibility: When a node vi becomes hotter than anticipated, both the message mi

and the codeword ci can be split into two shorter components, namely, mi = (mia ,mib)

and ci = (cia , cib). Then, cia , cib can be stored at two smaller nodes via and vib such

that mia , mib can be decoded from cia and cib with di,0 = dia,0 + dib,0. Moreover,

knowledge about encoding functions of other nodes is not required; the codewords

stored on nodes from V \ HLi
i are not changed.

The major difference between a centralized cloud and a DSN is that the DSN requires

codes that adapt to arbitrary topologies. In particular, as shown in Fig. 3.2(a), a centralized

network can be represented as a tree, where only the leaves are storage nodes and other nodes

are virtual nodes indicating different decoding layers. In particular, each virtual node can

access the content of all its descendants. From the bottom of the tree to its top, the number
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of tolerable erasures increases. In contrast, in the DSN shown in Fig. 3.2(b), nodes only

communicate with their neighbors, which requires more subtly designed codes to enable

a decoding solution that strictly fits into the topology. Therefore, the existing literature

[9, 10, 11, 12, 13, 14] works on locally recoverable codes can not be directly applied to DSNs.

While Cauchy matrices have been applied in our previous construction for centralized

clouds [33], these constructions cannot be directly applied to DSNs. Among the three prop-

erties we discussed above, scalability and flexibility are inherited from the constructions for

centralized clouds: they are achieved, in part, because of the underlying Cauchy matrices.

Topology-adaptivity, on the other hand, is a property unique to constructions for DSNs, and

it is discussed here under the scenario where whether two nodes can communicate depends

on practical relevance characterized by metrics such as their geographical distances. One

major difficulty in code constructions for DSNs is that while each node stores information

about its neighboring and some non-neighboring nodes due to higher-level cooperations, the

information should be strategically placed and combined such that each node is still able

to remove this information at lower-level cooperations. This challenge is easier to solve in

hierarchically centralized cloud networks due to their simple topologies. On the contrary,

this challenge becomes more difficult in DSNs given the complicated topologies that make

the nodes more intricately correlated.

3.2.2 Locality of Interleaved Cauchy Reed Solomon Codes

A code is systematic if the codeword contains a segment that is identical to the message

being encoded. For a linear block code, systematic encoding of messages with length k is

performed via a generator matrix containing a k × k submatrix being the identity matrix

Ik. Systematic codes are of interest because of their low complexity mapping from any valid

codeword to the message it represents, as well as their low encoding complexity due to the

fact that only parities need extra calculation steps. Based on the aforementioned notation,
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a systematic generator matrix of a code on G(V,E) has the following structure:

G =



Ik1 A1,1 0 A1,2 . . . 0 A1,p

0 A2,1 Ik2 A2,2 . . . 0 A2,p

... ... ... ... . . . ... ...

0 Ap,1 0 Ap,2 . . . Ikp Ap,p


, (3.1)

where all elements are from a Galois field GF(q), q = 2θ and θ ≥ 2.

Following the notation in the previous subsections, the codeword at node vi is ci =

(mi,
∑
j∈[p] mjAj,i), and it has two parts. We call mi the systematic part, and ∑j∈[p] mjAj,i

the local parities of ci. More specifically, we refer to ∑
j∈[p],j 6=i mjAj,i, miAi,i as the

additional local parities and the original local parities at vi, respectively. For any

j ∈ [p], j 6= i, symbols in miAi,j are referred to as the cross parities of vi from node vj.

Note that by saying “parities” we actually mean “parity symbols”. We use these two terms

interchangeably in the remaining text.

The submatrices {Ai,j}i,j∈[p] in our construction are either zero matrices, Cauchy ma-

trices, or products of Cauchy matrices. For this reason, we call codes represented by a

generator matrix in (3.1) as interleaved Cauchy Reed Solomon (CRS) codes. The

primary property of interleaved CRS codes is that each local message mi is to be obtained

locally by only accessing the codeword ci stored at vi if the number of erasures in ci does not

exceed an upper bound that is determined by some local parameters. We next provide an

exemplary construction, Construction 3, to illustrate the locality of interleaved CRS codes.

Construction 3. (Interleaved CRS codes) Let p ∈ N, k1, k2, . . . , kp ∈ N, n1, n2, . . . , np ∈ N,

δ1, δ2, . . . , δp ∈ N, with rx = nx − kx > 0 for all x ∈ [p]. Let P = ([p]× [p]) \ {(i, i)}i∈[p], and

I ⊆ P is such that for all (x, y) ∈ I, Ax,y is non-zero. Let Ix = {i : (x, i) ∈ I}, for each

x ∈ [p], and suppose Ix = {i1, i2, · · · , i|Ix|}. Let δ′x = ∑
y∈Ix δy, for all x ∈ [p]. Let GF(q) be

a Galois field such that q ≥ maxx∈[p]{nx + δ′x}.

For each x ∈ [p], let ax,i, i ∈ [kx + δx], and bx,j, j ∈ [rx − δx + δ′x], be distinct el-
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ements of GF(q). Consider the Cauchy matrix Tx ∈ GF(q)(kx+δx)×(rx−δx+δ′x) such that

Tx = Y(ax,1, . . . , ax,kx+δx ; bx,1, . . . , bx,rx−δx+δ′x). For each x ∈ [p], we obtain {Bx,i}i∈Ix, Ux,

Ax,x, according to the following partition of Tx:

Tx =

 Ax,x Bx,i1 . . . Bx,i|Ix|

Ux Zx

 , (3.2)

where Ax,x ∈ GF(q)kx×rx, Bx,i ∈ GF(q)kx×δi, Ux ∈ GF(q)δx×rx. Moreover, let Ax,y =

Bx,yUy, for (x, y) ∈ I; let Ax,y = 0kx×ry , for (x, y) ∈ P \ I.

Matrices Ax,x and Ax,y are substituted in G specified in (3.1), for all x, y ∈ [p]. Let C1

represent the code with the generator matrix G.

Following the notation in Subsection 3.2.1, suppose in a DSN that is implemented with a

code specified in Construction 3, all nodes are able to communicate with each other. For all

x ∈ [p], let dx,1, dx,2 represent the maximum number of erasures that node vx can tolerate with

local access to the codeword cx, and global access to all the codewords {cx}x∈[p], respectively.

Lemma 3 presents the value of the local and the global correction capabilities of codes

proposed in Construction 3. Note that even though mjAj,i = mjBj,iUi gives the explicit

cross parities, symbols resulting from mjBj,i can accurately be seen as the cross parities too

since they constitute a set of independent linear combinations of message symbols, and they

contain all the information node vj provides to node vi, for all vi, vj ∈ V, i 6= j. Therefore,

in the remainder of this chapter, we also refer to mjBj,i as the cross parities or the cross

parity symbols for simplicity.

Lemma 3. In code C1 specified in Construction 3, dx,1 = rx− δx, dx,2 = rx + δ′x, for x ∈ [p].

Proof. For each x ∈ [p], define yx = ∑
y∈Ix myBy,x. It follows from mG = c and (3.1) that

for x ∈ [p], cx = [mx,mxAx,x + yxUx]. Define the local parity-check matrix HL
x and the
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Table 3.1: Polynomial and binary representation of GF(24)
0 0000 β4 1100 β8 1010 β12 1111
β 0100 β5 0110 β9 0101 β13 1011
β2 0010 β6 0011 β10 1110 β14 1001
β3 0001 β7 1101 β11 0111 β15 = 1 1000

global parity-check matrix HG
x , for each x ∈ [p], as follows:

HG
x =

 Ax,x Bx,i1 . . . Bx,i|Ix|

−Irx 0rx×δ′x


T

, HL
x =


Ax,x

−Irx

Ux



T

.

We next prove the equations of the local correction capability dx,1 = rx − δx and the global

correction capability dx,2 = rx + δ′x using HL
x and HG

x , x ∈ [p].

To prove the equation of the local correction capability, let c̃x = [cx,yx]. Then, one can

show that c̃x belongs to a code CL
x with the local parity-check matrix HL

x . From Lemma 1,

CL
x is an (nx+δx, kx, rx+1)q-code. Therefore, any rx erasures in c̃x are correctable. Provided

that yx has length δx, we can consider the entries of yx as erasures, and thus any (rx − δx)

erasures in the remaining part of c̃x, i.e., cx, can be corrected. Therefore, dx,1 = rx − δx.

To prove the equation of the global correction capability, assume all the local codewords

except for cx are successfully decodable locally. For each x ∈ [p], let sx =
[
mxBx,i1 , . . . ,mxBx,i|Ix|

]
and c̄x = cx− [0kx ,yxUx]. Then, one can show that HG

x c̄T
x = [0rx , sx]

T. From Lemma 1 and

from the construction of HG
x , any (rx + δ′x) erasures in c̄x are correctable, and thus (rx + δ′x)

erasures in cx are also correctable. Therefore, dx,2 = rx + δ′x.

Note that Construction 3 is proposed based on the assumption that any node is able to

communicate with all the nodes in the network; namely, the underlying DSN has a specific

topology embodied in a complete graph. However, as discussed in Section 4.1 and shown

in Fig. 3.1, practical DSNs are not necessarily constrained into any specific structures. A

major reason is that nodes are typically scattered in geographically separated locations and
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Figure 3.3: EC hierarchy of node vi ∈ V . The values di,0 and di,`, 1 ≤ ` ≤ 3, represent
the maximum number of erasures vi can tolerate in the local decoding, and decoding with
the assistance of the 1-st to the `-th level cooperations of the codeword ci, i.e., cooperating
with nodes in A`i , respectively. However, even for a fixed A`i , different sets W of nodes that
are recovered in B`i may also result in different EC capabilities; we refer to them as (λi,`;W),
∅ ⊆ W ⊆ B`i .

communicate with only a few nodes nearby. Even if connections of nodes are not deter-

mined by physical locations, their logical connections can still be of any topology tailored

for particular requirements from users of the services those nodes provide. Therefore, it is

important to generalize our previous construction into one that fits into arbitrary topologies.

In the next section, we take network topology into account and focus on constructions that

are topology-adaptive.

3.3 Cooperative Data Protection

In this section, we first mathematically describe the EC hierarchy and its depth associated

with the given DSN. EC hierarchy specifies the EC capabilities of nodes while cooperating

with different sets of other nodes. We then propose a cooperation scheme where each node

only cooperates with its single-hop neighbors.
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3.3.1 EC Hierarchy

Denote the EC hierarchy of node vi ∈ V by a sequence di = (di,0, di,1, . . . , di,Li), where Li

is called the depth of di, and di,` represents the maximum number of erased symbols vi can

recover in its codeword ci from the `-th level cooperation, for all ` ∈ [Li]. The maximum

number of erased symbols vi can recover in ci locally, i.e., without communicating with

neighboring nodes, is di,0.

For each vi ∈ V such that Li > 0, there exist two series of sets of nodes, denoted by

∅ ⊂ A1
i ⊂ A2

i ⊂ · · · ⊂ A
Li
i ⊆ V and {B`i}Li`=1, where A`i ∩B`i = ∅ for all ` ∈ [Li], and a series

(λi,`;W)∅⊆W⊆B`i . In the `-th level cooperation, node vi ∈ V tolerates λi,`;W (∅ ⊆ W ⊆ B`i )

erasures if all nodes in A`i ∪W are able to decode their own messages, where the maximum

value is λi,`;B`i = di,` and is reached whenW = B`i ; the minimum value is λi,`;∅ and is reached

when W = ∅. See Fig. 3.3 for illustration.

We first take a look at the cooperation schemes with the EC hierarchy of depth 1. For

the EC hierarchy of depth 1, A1
i is always a subset of the neighbors of vi, while B1

i is the set

of all nodes in A1
j , for all j such that vj is in A1

i , except the ones in {vi} ∪ A1
i .

3.3.2 Single-Level Cooperation

We now discuss the case where each node only has cooperation of depth 1. Consider a

DSN represented by G(V,E) that is associated with parameters (n,k, r) and a class of sets

{Mi}vi∈V such that ∅ ⊂ Mi ⊆ Ni, for all vi ∈ V . In Construction 4, we present a joint

coding scheme where node vi only cooperates with nodes inMi, for all vi ∈ V . Heterogeneity

is obviously achieved since ni, ki, ri, are not required to be identical for all vi ∈ V .

Our result in previous chapter represents a special case of Construction 4, where the

motivating application was in centralized cloud storage. Construction 4 extends that work

to deal with arbitrary decentralized topologies, in contrast to the tree-like topology prevalent

in centralized networks. Example 3 and Example 4 illustrate the efficacy of the proposed
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construction in decentralized storage.

Construction 4. Let G(V,E) represent a DSN associated with parameters (n,k, r) and a

local EC parameter δ, where r � δ � 0. Let p = |V | and GF(q) be a Galois field of size q,

where q > max
vi∈V

(
ni + δi +∑

vj∈Mi
δj
)
.

For each i ∈ [p], let ai,x, x ∈ [ki + δi], and bi,y, y ∈
[
ri +∑

vj∈Mi
δj
]
, be distinct elements

of GF(q). Consider the Cauchy matrix Ti ∈ GF(q)(ki+δi)×(ri+
∑

vj∈Mi
δj) such that Ti =

Y(ai,1, . . . , ai,ki+δi ; bi,1, . . . , bi,ri+∑vj∈Mi
δj

). Matrix G in (3.1) is assembled as follows. For

each i ∈ [p], we obtain {Bi,j}vj∈Mi
, Ui, Ai,i, according to the following partition of Ti:

Ti =

 Ai,i Bi,j1 . . . Bi,j|Mi|

Ui Zi

 , (3.3)

where Mi = {vj1 , vj2 , . . . , vj|Mi|
}, Ai,i ∈ GF(q)ki×ri,Ui ∈ GF(q)δi×ri, Bi,j ∈ GF(q)ki×δj , for

vi ∈ V and vj ∈Mi. Let Ai,j = Bi,jUj if vj ∈Mi, otherwise let it be a zero matrix.

Denote the code with generator matrix G by C1.

Theorem 2. In a DSN with C1, di = (ri − δi, ri + ∑
vj∈Mi

δj), A1
i = Mi, and B1

i =⋃
vj∈Mi

(Mj \ ({vi} ∪Mi)), for all vi ∈ V . Furthermore, the EC hierarchy associated with

di,1 is (λi,1;W)∅⊆W⊆B1
i
, where

λi,1;W = ri +∑
j:vj∈Mi,(Mj\{vi})⊆(Mi∪W) δj.

Proof. It follows directly from Lemma 3 that for all i ∈ [p], the i-th entry of the EC hierarchy

at node vi is di = (ri − δi, ri + ∑
vj∈Mi

δj). The remaining task is to prove that λi,1;W =

ri +∑
j:vj∈Mi,(Mj\{vi})⊆(Mi∪W) δj.

For all vi ∈ V , let si = ∑
vj∈Mi

mjBj,i. We first notice that for any vi ∈ V , vj ∈ Mi,

if mj is recoverable, then the additional cross parities sjUj and the original cross parities

mjAj,j of vj can be computed. Therefore, sj can be computed, and if all the messages

{mj′}vj′∈Mj\{vi} are further recoverable, then the cross parities miBi,j of vi from vj can be

computed from miBi,j = sj −
∑
vj′∈Mj\{vi}mj′Bj′,j.
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Figure 3.4: DSN for Example 3. Nodes in A1
2 are neighbors of v2 and are required to be

locally-recoverable to remove cross parities from the parity part of c2. Nodes in B1
2 are

neighbors of nodes in A1
2 except for v2 and nodes in A1

2 themselves. For any node vj in A1
2,

only when all the neighbors of vj in B1
2 are recovered, vj can provide extra parity symbols

to v2.

Previous discussion implies that for any W , ∅ ⊆ W ⊆ B1
i , if (Mj \ {vi}) ⊆ (Mi ∪W),

then the additional δj cross parities miBi,j of mi can be obtained. Therefore, λi,1;W =

ri +∑
j:vj∈Mi,(Mj\{vi})⊆(Mi∪W) δj.

1 2 3 4 5 6 7 8 9 10 11 12

A1,1 B1,2U2 0 0 0 0 0 0 0 0 0 0

B2,1U1 A2,2 B2,3U3 0 B2,5U5 0 0 0 0 0 0 0

0 B3,2U2 A3,3 B3,4U4 0 0 0 0 0 0 0 0

0 0 B4,3U3 A4,4 B4,5U5 B4,6U6 0 0 0 0 0 0

0 B5,2U2 0 B5,4U4 A5,5 B5,6U6 0 B5,8U8 0 0 0 0

0 0 0 B6,4U4 B6,5U5 A6,6 B6,7U7 0 0 0 0 0

0 0 0 0 0 B7,6U6 A7,7 B7,8U8 B7,9U9 0 B7,11U11 0

0 0 0 0 B8,5U5 0 B8,7U7 A8,8 B8,9U9 0 0 0

0 0 0 0 0 0 B9,7U7 B9,8U8 A9,9 B9,10U10 0 0

0 0 0 0 0 0 0 0 B10,9U9 A10,10 B10,11U11 B10,12U12

0 0 0 0 0 0 B11,7U7 0 0 B11,10U10 A11,11 B11,12U12

0 0 0 0 0 0 0 0 0 B12,10U10 B12,11U11 A12,12

(3.4)

Example 3. Consider the DSN shown in Fig. 3.4. Let Mi = Ni in Construction 4, for
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all i ∈ [12]. The matrix in (3.4) is obtained by removing all the block columns of identity

surrounded by zero matrices from the generator matrix (3.1) of C1, and is referred to as the

non-systematic component of the generator matrix.

Take node v2 as an example. Observe that A1
2 = M2 = {v1, v3, v5}, A1

1 = M1 = {v2},

A1
3 = M3 = {v2, v4}, and A1

5 = M5 = {v2, v4, v6, v8}. Therefore, B1
2 = ⋃

j∈{1,3,5}Mj \

{v1, v2, v3, v5} = {v4, v6, v8}. Moreover, d2 = (r2 − δ2, r2 + ∑
j∈{1,3,5} δj), λ2,1;∅ = λ2,1;{v6} =

λ2,1;{v8} = λ2,1;{v6,v8} = r2 + δ1, λ2,1;{v4} = λ2,1;{v4,v6} = λ2,1;{v4,v8} = r2 + δ1 + δ3, and

λ2,1;{v4,v6,v8} = r2 + δ1 + δ3 + δ5.

Consider the case where the 1-st level cooperation of v2 is initiated, i.e., the number

of erasures lies within the interval [r2 − δ2 + 1, r2 + δ1 + δ3 + δ5]. Then, if m1,m3,m5 are

all locally-recoverable, the cross parities m1B1,2, m3B3,2, m5B5,2 computed from the non-

diagonal parts in the generator matrix can be subtracted from the parity part of c2 to get

m2A2,2. Moreover, the successful decoding of m1 makes m2B2,1 known to v2. This process

provides (r2 + δ1) parities for m2, and thus allows v2 to tolerate (r2 + δ1) erasures.

In order to correct more than (r2+δ1) erasures, we need extra cross parities generated from

B2,3U3 and B2,5U5. However, local decoding only allows v3, v5 to know m2B2,3 +m4B4,3 and

m2B2,5 + m4B4,5 + m6B6,5 + m8B8,5, respectively. Therefore, v3 needs m4 to be recoverable

to obtain the extra δ3 cross parities, and v5 needs m4, m6, m8 to be recoverable to obtain the

extra δ5 cross parities.

As shown in Example 3, instead of presenting a rigid EC capability, our proposed scheme

enables nodes to have correction of a growing number of erasures with bigger sets of neigh-

boring nodes recovering their messages. Therefore, nodes automatically choose the shortest

path to recover their messages, thus significantly increasing the average recovery speed, es-

pecially when the erasures are distributed non-uniformly and sparsely, which is important

for blockchain-based DSNs [21, 68]. Moreover, nodes with higher reliabilities are utilized to

help decode the data of less reliable nodes, enabling correction of erasure patterns that are

not recoverable in our previous work in [33]. We show these properties in Example 4 and
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Figure 3.5: The erasure pattern in Example 5. Red and non-red nodes refer to nodes where
the codewords stored at them are non-locally-recoverable and locally-recoverable, respec-
tively.

Example 5.

Example 4. (Faster Recovery Speed) Consider a DSN with the cooperation scheme

specified in Example 3. Suppose the time to be consumed on transferring information through

the communication link ei,j is ti,j ∈ R+, where ti,j = tj,i for all i, j ∈ [12], i 6= j, and

max{t1,2, t2,5} < (t2,3 + t3,4) < t2,5 + min{t4,5, t5,6, t5,8}.

Consider the case where c2 at node v2 has (r2 + 1) erasures, which implies that in addi-

tion to the case of m1, m3, m5 being obtained locally, recovering m4 is sufficient for v2 to

successfully obtain its message. The time consumed for decoding is (t2,3 + t3,4). Therefore,

any system using network coding with the property that a node failure is recovered through

accessing more than 4 other nodes will need longer processing time for this case.

Example 5. (Flexible Erasure Patterns) Consider the DSN with the cooperation scheme

specified in Example 3. Suppose {mi}i/∈{2,4,8,10} are all locally-recoverable. Then, consider

the case where mi has (ri + 1) erasures for i ∈ {2, 4, 8, 10}, which exemplifies a correctable

erasure pattern for our proposed codes.

The hierarchical coding scheme presented in [33] can recover from this erasure pattern

only if the code used adopts a partition of all nodes into 4 disjoint groups, each of which

contains exactly a node from {v2, v4, v8, v10}, as shown in Fig. 3.5. Moreover, the partition
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Figure 3.6: The DSN in Example 6.

of the code in [33] results in a reduction of the EC capability of the 1-st level cooperation

at every node except for v1, v12 because the additional information Construction 4 allows to

flow through the edges marked in blue no longer exists.

Example 6. We look at another example with DSN shown in Fig. 3.6. Suppose in our

construction, (ki, ri, δi) = (2, 2, 1), for 1 ≤ i ≤ 5. Then, di,0 = ri − δi = 2 − 1 = 1,

for all 1 ≤ i ≤ 5. Moreover, each node vi can correct ri = 2 erasures if all its neighbor

vi+1, vi−1 are recoverable; it could obtain additional 1 parity from vi+2, vi−2, respectively, if

they are recoverable. We next consider the total number of erasure patterns our method is

able to correct. Each erasure pattern is represented by e = (e1, e2, e3, e4, e5) ∈ N5, and can

be categorized as follows:

1. All nodes are locally recoverable: ei ≤ 1 for all 1 ≤ i ≤ 5. There are 25 = 32 such

cases.

2. Exactly one node is non-locally recoverable: 2 ≤ ei ≤ 4, ej ≤ 1, for all j 6= i. There

are 5× 24 × 3 = 240 such cases.

3. Exactly two nodes are non-locally recoverable, and all of them has at most 3 erasures:

2 ≤ ei, ei+2 ≤ 3, ej ≤ 1, for all j 6= i, i+ 2. There are 5× 23 × 22 = 160 such cases.

4. Exactly two nodes are non-locally recoverable, and one of them has exactly 4 erasures:
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ei = 4, 2 ≤ ei+2 ≤ 3, ej ≤ 1, for all j 6= i, i + 2. There are 5 × 2 × 23 × 2 × 1 = 160

such cases.

Therefore, there are 32 + 240 + 160 + 160 = 592 recoverable erasure patterns in total.

We next consider two other schemes utilizing standard MDS codes, where there exist

recoverable erasure patterns consisting of 10 erasures in total.

1. A case where each node only corrects 2 local erasures. Note that this method achieves

the fastest recovery at 2 local erasures, since our method can only correct 1 erasure

locally, and need to communicate with neighboring nodes in order to correct 2 erasures.

However, this method only corrects erasure patterns ei ≤ 2, for all 1 ≤ i ≤ 5: there

are 35 = 243 such cases in total. Our scheme tolerates a more abundant set of erasure

patterns and is able to tolerate up to 4 erasures at a single node with high probability.

2. A case where any erasure pattern with a total number of at most 10 erasures can be

recovered. This method has the largest set of recoverable erasure patterns, and can be

achieved if all the 10 message symbols are encoded by a (20, 10, 11) MDS code jointly

into the 20 encoded symbols stored among the nodes. However, by this method, even

a single erasure at a node needs to access 10 other symbols to recover it, which can

never be locally recoverable. Therefore, our scheme reaches faster recover speed than

this scheme.

We also consider the following case, where the additional cross parities of node vi are

placed on vi+2, vi−2 instead of vi+1, vi−1. Suppose communication delay on each edge is T ,

then in this case, correcting 2 erasures needs time 2T , and correcting 3, 4 erasures needs

time 3T . In the contrary, the original coding scheme needs time T for correcting 2 erasures

and 2T for 3, 4 erasures, respectively. Suppose time spent on local correction is negligible

compared with the communication time T . Suppose each symbol is erased independently with

probability p, where p < 1. Then, the topology-aware gain on this network is calculated as
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follows:

6p2(1− p)2T + 4p3(1− p)(2T ) + p4(2T )
6p2(1− p)2(2T ) + 4p3(1− p)(3T ) + p4(3T )

= 6(1− p)2 + 8p(1− p) + 2p2

12(1− p)2 + 12p(1− p) + 3p2

= 6− 4p
12− 12p+ 3p2 .

(3.5)

When p approaches 0, the gain approaches 1/2.

In summary, our scheme is not uniformly superior to existing schemes, but achieves a

customizable trade-off between the recovery speed and recoverable erasure patterns by hier-

archical coding tailored for any graph with a specific topology. Note that the gain is also

topology-dependent. For example, for a complete graph where each pair of nodes can com-

municate with identical time delay, the placement of the cross parities does not affect the

time consumed on decoding. However, for a sparse planar graph, different placement of the

cross parities can lead to time offsets that vary by a large scale. In future work, we expect to

investigate the average topology-agnostic gain by assuming random networks under specific

stochastic models such as Erdös Rényi models.

3.3.3 Recoverable Erasure Patterns

For a code specified for a DSN according to Construction 4, we next investigate the recov-

erable erasure patterns under the proposed EC solution. Throughout this chapter, for any

edge (i, j) from vi to vj in a directed graph G(V,E), we call vj a child of vi, and vi a parent

of vj.

In the DSN depicted in Fig. 3.7, suppose all codewords stored at black nodes are locally-

recoverable; those stored at green nodes, e.g., vi with i ∈ {6, 8, 12}, are recoverable by

accessing their neighboring nodes in A1
i only; and those in blue nodes, e.g., vi with i ∈

{0, 2, 3, 5, 10}, need some nodes in B1
i to be also recoverable since they need to obtain extra

cross parities from at least one of their neighboring nodes in A1
i . As an example, assume that
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node v0 needs to obtain extra parities from only one of its neighbors, say v1. This condition

requires codewords stored at v2, v3, v13, v14, v15 all being recoverable. Since codewords in

v13, v14, v15 are already locally-recoverable, this case essentially requires codewords in v2, v3

to be recovered. For simplicity, we just refer to this requirement as “v0 needs v2, v3”. Similarly,

v2 needs v5, v6, v3 needs v6, v10, v5 needs v6, v8, and v10 needs v6, v12. Given that codewords

in v6, v8, v12 are recoverable, all the blue nodes are recoverable following the order v5, v10,

v2, v3, v0.

Note that in this chapter, we suppose that in the protocol carrying out the decoding

algorithm, each node, when receiving a request, either replies back with the required mes-

sage, provided that the information gathered at this node suffices to provide the answer, or

broadcasts a request to all its neighbors to ask for the information it needs. For now, we

assume that nodes remain intact during decoding.

We next define the so-called decoding graph of each node where the codeword stored

there is recoverable in a DSN. For a given node, this graph describes the aforementioned

order of decoding non-locally-recoverable nodes involved in the process of decoding this

particular node. Observe that connections between any two nodes having their codewords

locally-recoverable are omitted for simplicity.

Definition 4. (Decoding Graph) Let G(V,E) represent a DSN with |V | = p and i ∈ [p].

Let T (V , E) denote a directed subgraph of G associated with vj. For all vi ∈ V, denote the

set containing all children of vi by VC
i , and that containing all parents of vi by VP

i . Suppose

vj ∈ V is the only node without parents. We call this node the root of T . We call any

node without children a leaf. Suppose then the codewords of all the leaves of T are not

locally-recoverable, and any other vi ∈ V satisfies one of the following conditions.

1. The codeword stored at vi is locally-recoverable; VP
i ∪ VC

i consists of all the nodes in

Mi such that codewords stored at them are not locally-recoverable and |VP
i | = 1.

2. The codeword stored at vi is not locally-recoverable; codewords stored at nodes in VP
i ∪VC

i
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Figure 3.7: Decoding graph in Definition 4. Black and non-black nodes refer to locally-
recoverable and non-locally-recoverable nodes, respectively, where green nodes are recover-
able without requiring any node that is not in their neighborhood to be recovered. The
subgraph marked in red is a decoding graph at root node v0. When there exists an edge
pointing from vi to vj, vi needs to obtain cross parities from vj while decoding v0, where the
edges are solid if and only if vi is non-locally-recoverable.

are all locally-recoverable.

We call T a decoding graph at its root node vj over G(V,E).

As shown in Fig. 3.7, the decoding graph T at node v0 is marked in red. Nodes marked

in green are leaves in T . Nodes v1, v4, v7, v9, v11 satisfy Condition 1. Take v1 as an exam-

ple, VP
1 = {v0}, and VC

1 = {v2, v3}. We know that M1 = {v0, v2, v3, v13, v14, v15}, where

codewords stored at nodes in VP
i ∪ VC

i = {v0, v2, v3} are not locally-recoverable. This local

constraint enforces the node in VP
1 , i.e., v0, to obtain the extra cross parities from v1 af-

ter codewords stored at nodes in VC
1 are recovered. Nodes v0, v2, v3, v5, v6, v10, v8, v12 satisfy

Condition 2, and they are the nodes that need to recover their codewords in order that v0

recovers its codeword.

Based on the definition of decoding graphs, Theorem 3 describes recoverable erasure

patterns in a DSN.

Theorem 3. Let C be a code with single-level cooperation on a DSN represented by G(V,E),

where C and all related parameters are specified according to Construction 4. Let u ∈ Np
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such that u � n. Suppose C and u satisfy the following conditions:

1. Let V NL represent the set that contains all the nodes vi, i ∈ [p] such that ui > ri − δi.

Let V L = V \ V NL. Then, for any vi ∈ V NL,Mi ⊂ V L.

2. For any vi ∈ V NL, there exists a decoding graph Ti(Vi, Ei) at root vi over G. Moreover,

for any leaf vj of Ti, uj ≤ rj; for any node vj ∈ Vi ∩ V NL, uj ≤ rj +∑
vk∈VC

j
δk.

Then, u is a recoverable erasure pattern of C over G(V,E).

Proof. For any node vi ∈ VNL, consider the decoding graph Ti(Vi, Ei) at root vi. Denote the

number of nodes contained in V L on the longest directed path connecting node vi with a leaf

in Ti by li, which is referred to as the decoding depth of vi. We prove the statement “any

node in G is recoverable” by mathematical induction on the decoding depth of the node.

The decoding graph of a node with decoding depth 0 contains only the node itself. The

first condition implies that all neighbors of any node that is not locally-recoverable (in VNL)

are locally-recoverable (in VL). Therefore, any node vi ∈ VNL tolerates at least ri erasures.

This means that nodes with decoding depth 0 are recoverable.

Suppose the statement is true for any node vj ∈ VNL with decoding depth less than or

equal to ` ∈ N. Then, for any node vi with decoding depth ` + 1, let Si denote the union

of all sets VC
j such that vj ∈ VC

i . Since the subgraph of Ti rooted at any node vj ∈ Si is a

decoding graph of vj with length at most `, vj is recoverable. Condition 1) in Definition 4

indicates that all neighbors of vj ∈ VC
i except for vi are recoverable and miBi,j is known,

which provides δj extra parities of mi. Therefore, node vi tolerates up to ri + ∑
vj∈VC

i
δj

erasures, thus is recoverable according to Condition 2). Consequently, the statement for

`+ 1 is also true.

By induction, the statement is true for all the nodes, and the theorem is true.

The following two examples illustrate Theorem 3. They follow the notation in Construc-

tion 4 and Theorem 3.
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v0

(a)

v0

(b)

Figure 3.8: DSN in Example 7. Black and non-black nodes refer to nodes that are locally-
recoverable and non-locally-recoverable, respectively. The decoding graphs at v0 are marked
with color red. Any solid blue line connects a black node vi and an non-black node vj, where
vi is a child of vj, and all neighbors of vi except for vj are children of vi, in the decoding
graph at root vj. The blue lines uniquely describe the decoding graphs at each non-black
node.
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Example 7. Fig. 3.8 presents two erasure patterns, u1 = (u1,1, u1,2, . . . , u1,p) (left) and

u2 = (u2,1, u2,2, . . . , u2,p) (right), on the same DSN denoted by G(V,E) with the EC solution

characterized by C specified in Construction 4. Suppose there exists δ ∈ N such that δi = δ

for all i ∈ [p].

For any i ∈ [p], vi is marked in black if uj,i ≤ ri− δ, in green if ri− δ < uj,i ≤ ri, and in

blue otherwise, where j ∈ {0, 1}. In the left panel, that specifies u1, any node vi marked in

blue satisfies ri < u1,i ≤ ri + δ. In the right panel, that specifies u2, any node vi marked in

blue satisfies ri < u2,i ≤ ri + 6δ.

Note that any non-black node is connected to exactly one black node by a blue edge, where

the non-black node is the only parent of the black node in Definition 4. Then, for any node

vi in G(V,E), there exists a decoding graph at vi, with the leaves being all marked in green.

In Fig. 3.8, the decoding graph at the node v0 is marked in red on each graph of the two. Let

di be the maximum number of erasures node vi tolerates, for all i ∈ [p], and ∆i = di − ri.

Suppose p→∞ in G(V,E). Denote the average of all ∆i’s by ∆.

In the first subgraph, there will be approximately 2p/3 nodes with any vi of them satisfying

∆i = −δ, and approximately p/3 nodes with any vi of them satisfying ∆i = δ. Thus,

∆ = −δ/3. Similarly, in the second graph, there will be approximately 2p/3, 2p/9, and p/9

nodes with any vi of them satisfying ∆i = −δ, ∆i = 0, and ∆i = 6δ, respectively. Thus,

∆ = 0.

Example 8. Similar to Example 7, Fig. 3.9 also presents two erasure patterns on another

DSN with an EC solution characterized by C specified in Construction 4. Suppose there exists

δ ∈ N such that δi = δ for all i ∈ [p].

For any i ∈ [p], vi is marked in black if uj,i ≤ ri− δ, in green if ri− δ < uj,i ≤ ri, and in

blue otherwise, where j ∈ {0, 1}. In the left panel, that specifies u1, any node vi marked in

blue satisfies ri < u1,i ≤ ri + 3δ. In the right panel, that specifies u2, any node vi marked in

blue satisfies ri < u2,i ≤ ri + δ. In Fig. 3.9, the decoding graph at the node v0 is marked in

red on both graphs of the two.

50



v0

(a)

v0

(b)

Figure 3.9: DSN in Example 8. Meanings of the components of the graphs are identical to
those in Fig. 3.8.
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v1

v2

v3 v4

Figure 3.10: Information flow in cooperative data protection. As a neighbor of v2, v1 helps
in removing the cross parities from the parity part of c2. However, nodes v3 and v4 also
indirectly help v1 to provide extra cross parities to v2 if they are recovered. This can be
interpreted as information flow from v3 and v4 to v2 through v1.

We follow the definitions of ∆i’s, i ∈ [p], and ∆, stated in Example 7. In the left panel,

there will be approximately p/2 nodes with any vi of them satisfying ∆i = −δ, approximately

p/3 nodes with any vi of them satisfying ∆i = 0, and p/6 nodes with any vi of them satisfying

∆i = 3δ. Thus, ∆ = 0. Similarly, in the right panel, there will be approximately p/2 and

p/2 nodes with any vi of them satisfying ∆i = −δ and ∆i = δ, respectively. Thus, ∆ = 0.

Remark 2. (Information Flow in Coded DSN) Note that the values of ∆i’s, i ∈ [p],

in Example 7 and Example 8 imply the unbalanced reliabilities of nodes in the coded DSN.

In other words, any node (black) vi with ∆i < 0 is of higher reliability than any node (blue)

vi with ∆i > 0. Therefore, any blue node utilizes extra information from non-black nodes in

its neighborhood. The average ∆ being nonnegative can be interpreted as a higher level of

intrinsic information flow among nodes with different reliabilities in the coded DSN.

For example, as shown in Fig. 3.10, suppose v1 is a locally-recoverable node with neigh-

boring nodes v2, v3, and v4. If v3 and v4 are recoverable, then v1 provides δ1 extra parities to

node v2. Therefore, the information flows from v3 and v4 to v2 through v1, which is depicted

in the figure.
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3.4 Multi-Level Cooperation

In this section, we extend the construction presented in Subsection 3.3.2 to codes with EC

hierarchies of depth larger than 1. As is shown in schemes with single-level cooperation,

cooperation utilizes the redundant information from nodes with fewer erasures to help in de-

coding of nodes that cannot be decoded locally. However, each node only obtains additional

parities from its neighbors in the single-level cooperation, which immediately motivates us

to explore multi-level cooperation to further improve the global EC capability of each node.

Although multi-level cooperation inevitably degrades the local EC capability of each node,

it enables the DSN to tolerate erasure patterns where erasures are distributed non-uniformly

among the nodes, such as bursty erasures in few sparsely scattered nodes. In this section,

we investigate the EC hierarchy of multi-level cooperation schemes. We first define the

so-called cooperation graphs that describe how the nodes are coupled to cooperatively

transmit information, and then prove the existence of hierarchical codes over a special class

of cooperation graphs: the so-called compatible graphs.

1 2 3 4 5 6 7 8 9 10 11 12

A1,1 B1,2U2 0 0 0 0 0 0 0 0 0 0

B2,1U1 A2,2 B2,3U3 0 B2,5U5 0 0 BcV8;2 BcV9;2 BdV10;3 BdV11;3 0

0 B3,2U2 A3,3 B3,4U4 0 0 0 BeV8;2 BeV9;2 BfV10;3 BfV11;3 0

0 0 B4,3U3 A4,4 B4,5U5 B4,6U6 0 BαV8;2 BαV9;2 BgV10;2 BgV11;2 0

0 B5,2U2 0 B5,4U4 A5,5 B5,6U6 0 B5,8U8 0 0 BhV11;2 BhV12;2

0 0 0 B6,4U4 B6,5U5 A6,6 B6,7U7 BβV8;2 BβV9;2 BjV10;2 0 BjV12;2

0 0 0 0 0 B7,6U6 A7,7 B7,8U8 B7,9U9 BlV10;2 B7,11U11 BlV12;2

0 BmV2;2 BmV3;2 ByV4;2 B8,5U5 ByV6;2 B8,7U7 A8,8 B8,9U9 BnV10;2 BnV11;2 0

0 BoV2;2 BoV3;2 BzV4;2 0 BzV6;2 B9,7U7 B9,8U8 A9,9 B9,10U10 BpV11;2 BpV12;2

0 BqV2;3 BqV3;3 BrV4;2 0 BrV6;3 BsV7;3 BsV8;3 B10,9U9 A10,10 B10,11U11 B10,12U12

0 BxV2;3 BxV3;3 BtV4;2 BtV5;2 0 B11,7U7 BuV8;3 BuV9;3 B11,10U10 A11,11 B11,12U12

0 0 0 0 BvV5;2 BvV6;3 BwV7;3 0 BwV9;3 B12,10U10 B12,11U11 A12,12

(3.6)
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Figure 3.11: Matrices D (left) and X (right) in Example 9. A numerical entry ` at position
(i, j) in the left panel implies that vj is adjacent to vi in the `-th level cooperation of vi, while
symbolic entries (letters) in the right panel represent the indices of the component matrices
Ai,j.

3.4.1 Cooperation Graphs

Based on the aforementioned notation, for each vi ∈ V and ` ∈ [Li], let I`i = A`i \A`−1
i (with

A0
i = ∅) and refer to it as the `-th helper of vi. We next define the so-called cooperation

matrix.

Definition 5. For a joint coding scheme C for a DSN represented by G(V,E) with |V | = p,

the matrix D ∈ Np×p, in which Di,j equals to ` for all i, j ∈ [p] such that j ∈ I`i , ` ∈ [Li],

and zero otherwise, is called the cooperation matrix.

As an example, the cooperation matrix in Example 3 is exactly the adjacency matrix

of the graph in Fig. 3.4. Note that cooperation graphs corresponding to some joint coding

schemes must satisfy certain properties. In Subsection 3.4.2, we prove the existence of codes

if the cooperation matrix represents a so-called compatible graph. Before going into details

of the construction, we present an example to provide some intuition.
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Example 9. Recall the DSN in Example 3. We present a coding scheme with the cooperation

matrix specified in the left panel of Fig. 3.11. The non-systematic part of the generator matrix

is shown in (3.6), which is obtained through the following process:

1. Partition all the non-zero, non-one elements into structured groups, each of which

is marked in either a rectangle or a hexagon in D, as indicated in the left panel of

Fig. 3.11.

2. Replace the endpoints of each horizontal line segment in Step 1 with s ∈ S (S is a set

of symbols), as indicated in the right panel of Fig. 3.11; denote the new matrix by X.

3. Assign a parameter γs ∈ N to each s ∈ S, and a matrix B′s ∈ GFki×γs to any (i, j)

such that Xi,j = s.

4. For each i ∈ [p], ` ∈ [L], let ηi;` = maxs:k∈I`i ,Xk,i=s γs, assign Vi;` ∈ GF(q)ηi;`×ri to vi;

let Bs =
[
B′s,0ηi;`−γs

]
; compute Ai,j = BsVj;` for s = Xi,j, l = Di,j.

5. Compute Ai,j for Xi,j = 1 according to Construction 4.

Note that the colors of submatrices in (3.6) are consistent with the colors of cycles in

Fig. 3.11. Let us again focus on node v2. Let I1
2 = {v1, v3, v5}, I2

2 = {v8, v9}, I3
2 = {v10, v11}.

Then, B1
2 = {v4, v6, v8}, B2

2 = {v4, v6}, B3
2 = ∅, d2,0 = r2−δ2−ηi;2−ηi;3, d2,1 = r2+δ1+δ3+δ5,

d2,2 = d2,1 +γc, d2,3 = d2,2 +γd. Note that for each i ∈ [p], s = Xi,j, and l = Di,j, γs denotes

the maximum number of parity symbols vi can obtain from vj in the `-th level cooperation,

and ηi;` represents the reduction in the value of the local erasure correction capability needed

at vi because of its `-th level cooperation.

We first show that knowing {mj}vj∈A1
2
is sufficient for removing s2 = ∑

j∈I1
2
mjBj,2U2 +∑3

`=2
∑
j∈I`2

mjBXj,2V2;` from the parity part of c2. Note that if the rows of Ai,i, Ui, and

{Vi;`}`∈{2,3} are linearly independent, then for all `, ∑j∈I`i
mjBXj,i

is recoverable if mi is

recoverable. In our example, this means that {mjBj,2}j=1,3,5, m8Bm+m9Bo, m10Bo+m11Bx

are known, which means s2 is also known. Therefore, s2 is removed from the parity part of c2
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through the 1-st level cooperation. We next show that additional parities are obtained through

`-th level cooperations with ` ∈ {2, 3}.

In the 2-nd level cooperation, m8,m9 are known. Therefore, m2Bc + m3Be + m4Bα +

m6Bβ is also known. We remove m3Be, that is obtained via v3, from the parity part of c2.

In order to obtain the γc parities from m2Bc, one needs m4,m6 to be recoverable. Therefore,

B2
2 = {v4, v6}, d2,2 = d2,1 + γc, λ2,2;∅ = d2,1.

The cooperation matrix adopts a partition of non-zero, non-one elements into groups

where each of them forms a cycle (see Example 9). Suppose there are T cycles. Represent

each cycle with index t ∈ [T ] by a tuple Ct = (Xt, Yt, {Xt;j}j∈Yt , {Yt;i}i∈Xt , gt, (`t;j)j∈Yt),

where Xt and Yt denote the sets containing indices of the rows and the columns of the cycle,

respectively. Let Xt;j = {i1, i2} for j ∈ Yt, where (i1, j), (i2, j) are the vertices of the cycle Ct

with column index j. Let Yt;i = {j1, j2} for i ∈ Xt, where (i, j1), (i, j2) are the vertices of the

cycle Ct with row index i. Let gt denote a group number assigned to the cycle Ct, which will

be explained shortly. Observe that any two vertices of a cycle that share the same column

have the same cooperation level. Let `t;j denote the number representing the cooperation

level assigned to the vertices (i1, j), (i2, j) of the cycle Ct where Xt;j = {i1, i2}. Suppose

values in (gt)t∈[T ] span all the values in [A], for some A ∈ N. For any g ∈ [A], denote the set

containing all t such that gt = g by Tg.

For example, let t = 1 for the blue cycle at the bottom left panel of the matrices in

Fig. 3.11. Then, the cycle C1 is represented by ({10, 11, 12}, {4, 5, 6}, {X1;j}6
j=4, {Y1;i}12

i=10, 1,

(`1;j)6
j=4), where X1;4 = {10, 11}, X1;5 = {11, 12}, X1;6 = {10, 12}, Y1;10 = {4, 6}, Y1;11 =

{4, 5}, Y1;12 = {5, 6}, and `1;4 = `1;5 = `1;6 = 3.

Observe that cycle Ct, t ∈ [T ], in Fig. 3.11 essentially represents a cycle in the comple-

mentary graph1 Ḡ of G on V , since each vertex (i, j) on the cycle implies that Di,j 6= 1, i.e.,

there is no edge connecting vi and vj in G, and there is an edge (i, j) in the complementary

graph Ḡ. Cycle Ct can also be interpreted as a pair of non-adjacent edges or non-overlapping
1The complementary graph of a graph G(V,E) consists of all nodes in V and all edges that are not in E.
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Figure 3.12: Cooperation graph of Example 9. Dashed directed edges are used for coopera-
tion level 2, and dash-dotted directed edges are used for cooperation level 3.

triangles in G with vertices from Xt and Yt. We mark Xt, Yt, add an edge with arrow and

the label gt that points from Xt to Yt for each t ∈ [T ], and obtain the so-called cooperation

graph2. The cooperation graph for the coding scheme in Example 9 is shown in Fig. 3.12.

From the aforementioned description, a cooperation graph does not necessarily lead to a

unique cooperation matrix, since the latter requires not only to further specify the associated

set of cooperation levels, but also to identify the associated local matching graph, to be

defined soon, for each cycle Ct if Xt has more than two nodes. For example, Fig. 3.13

presents three out of a total of six possible ways to specify {Xt;j}j∈Yt and {Yt;i}i∈Xt for a

cooperation cycle Ct with Xt = {i1, i2, i3} and Yt = {j1, j2, j3}. As indicated by Fig. 3.13,

each specified cycle of the three is uniquely represented by the set {(i, j)}i∈Xt,Yt\Yt;i={j} of

edges that are not on the cycle. In these three graphs, if a double-dashed blue line with

bidirectional arrows connects node vix to node vjy , this means that vix cooperates with the

two nodes in Yt \ {vjy} in the cooperation involving vertices on the two triangles containing

vjx , viy , respectively. We refer to the resulting graph as a matching graph corresponding

to a cycle. If there is more than one cycle involved in the matching graph, we call that graph
2Note that there are two types of edges in the graph. The edges of one type connect nodes that are

directly connected in their 1-st level cooperation, and these are solid edges in the graph. The edges of the
other type point between two groups of nodes (edges or triangles) that are adjacent in their higher level
cooperation, and these are dashed arrows in the graph. For simplicity, “connected” here is used with the
meaning of “adjacent”.
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* 1 1 2 2
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1 1 * 2 2
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i1
i2
i3

j1 j2 j3

Figure 3.13: Possible local matching graphs and their corresponding local cooperation ma-
trices contained in a multi-level cooperation graph between 6 nodes.

a local matching graph. If cycles in the local matching graph are all the cycles of a cycle

group, we call that graph an isolated local matching graph and will discuss it in detail

in Subsection 3.4.2.

Observe that although in Example 9, the cooperation levels (`t;j)t∈[T ],j∈Yt specified for

all the nodes on any cycle Ct, t ∈ [T ], are identical, this case is not a necessary condition.

We present an example in Example 10, in which cooperation levels for nodes on the same

cycle can be different. This example provides intuition both in deciding conditions that

ensure a graph to be a cooperation graph, and in how to assign cooperation levels to such a

cooperation graph if it exists.

In Subsection 3.4.2, we introduce the method of assigning cooperation levels over a given

cooperation graph to obtain a so-called compatible graph. The algorithm to find a coop-

eration graph over a DSN G(V,E) with a given topology is described in Subsection 3.5.1.

Example 10. The left panel of Fig. 3.14 presents the cycle representation of a subgraph of a

compatible graph on a DSN. Denote nodes associated with the left-most column to the right-

most column by v1 to v28 in order, and let Fig. 3.15 represent the subgraph containing nodes

{vi}5≤i≤22 of the cooperation graph. The right panel of Fig. 3.14 denotes the cooperation

58



* 1 1
1 * 1
1 1 * 1 1

1 * 1
1 1 * 1 1 1

1 * 1 1 1
1 1 * 1 1
1 1 1 * 1 1

1 1 1 *

1 * 1 1 1
1 * 1 1
1 1 * 1 1 1
1 1 1 * 1 1

1 1 * 1 1
1 1 1 * 1

1 1 * 1 1
1 * 1
1 1 * 1 1 1

1 * 1 1 1
1 1 * 1 1
1 1 1 * 1

1 1 1 * 1 1
1 * 1
1 1 * 1

1 * 1 1 1
1 * 1 1
1 1 * 1
1 1 1 *

2 2 2 2 2 3
2 2 2 2 2 2 2 2
1 2 2 2 3 2 3 2 3
2 2 2 3 2 2

* 1 1 1 2 2 2 3
1 * 1 1 2 2 2 2 3 2
1 1 * 1 1 1 2 3 3
1 1 1 * 1 1 2 3 3 3 2
2 2 1 1 * 1 1 2 2 2 2
2 2 1 1 1 * 1 2 2 2 2

2 3 1 1 * 1 1 2 2 2 2
3 2 2 1 * 1 2 2
3 2 3 2 2 1 1 * 1 1 1

2 3 2 3 1 * 1 1 1
2 2 2 3 1 1 * 1 1
2 3 2 2 2 2 1 1 1 * 1

2 2 2 2 2 1 1 1 *

2 2 2 3 1
2 2 2 2 2 3 1

1 2 3 4 5 6 7 8 9 1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
2
3
2
4
2
5
2
6
2
7
2
8

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

10 11 12 13 14 15 16 17 18 19 20 21 22

1

2

3

4

5

6

7

8
9 10 11

Figure 3.14: Cycles and the assignment for part of the cooperation matrix on the compatible
graph of a symmetric cooperation.
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matrix of {vi}10≤i≤22.

Note that some sub-matrices of the cooperation matrix are marked in dashed colored

rectangles; these sub-matrices are all square matrices and have all non-diagonal entries being

ones. For any such rectangle, there are cycles marked in the same color (as the rectangle)

that are totally contained within the columns spanned by this rectangle; these cycles are

assigned a unique group number to form a group as specified in the previous subsection. In

Fig. 3.15, instead of writing the group number assigned to each cycle, we mark the arrow

connecting nodes representing the row and column indices of the cycle with a specified color

for simplicity. Moreover, each one of those dashed rectangles corresponds to a maximum

clique in G(V,E) that denotes the DSN.

One can easily observe that cooperation levels assigned to entries in different columns

within the same cycle are not always identical. Cooperation levels assigned to two nodes

within the same column are identical if and only if they are on the same cycle or they are

on different cycles from the same group.

Given all the aforementioned conditions, repeat steps 2)–5) specified in Example 9 to

obtain a generator matrix of a cooperative coding scheme on the DSN in this example (Ex-

ample 10). Then, for any node, the cross parities resulting from each cycle group can be

derived from accessing other nodes in the maximum clique that contains this group. That

is to say, by communicating with all the single-level neighbors, the cross parities for each

cooperation level of any node vi ∈ V are computable and can then be subtracted from the

parity part of codeword ci.

Take node v14 as an example. The column representing v14 intersects with green cycles

C1 and C3, and red cycles C4, C5, C6, and C7, corresponding to the 3-rd and the 2-nd level

cooperation, respectively. All the nodes in the green clique {v12, v13, v14, v15} except for v14

itself are locally-recoverable. Thus, their cross parities, resulting from the cooperation the

green cycles represent, are computable, and they sum up to the 3-rd level cross parity of c14.

Similarly, the 2-nd level cross parity of c14 can also be derived if the other two nodes in the
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Figure 3.15: Cooperation graph of Example 10. For each node, all maximum cliques con-
taining it are marked with different colors. For any dashed arrow pointing from an edge
(or a triangle) to another edge (or another triangle), with the color identical to that of the
maximum clique containing the latter one: it represents a cycle in the cooperation graph
that is contained in the columns spanned by this maximum clique.

red clique {v14, v15, v16} are locally-recoverable.

More details, including the code construction, are given in Subsection 3.4.2 and Subsec-

tion 3.5.1.

Moreover, although Example 9 has a topologically symmetric cooperation graph and also

a topologically symmetric compatible graph, it is not necessary in principle to constrain them

to be symmetric. In the case where asymmetric cooperation is allowed, the basic components

of the cooperation graph are edges instead of cycles, which allows more flexibility in choosing

the cooperation graph. However, this asymmetry increases the complexity of defining the

decoding graph for a node. Therefore, for simplicity, we only discuss topologically symmetric

cooperations in this chapter.

3.4.2 Construction over Compatible Graphs

We have defined the notion of cooperation graphs in Section 3.4.1. Observe that the coop-

eration graphs shown in Fig. 3.12 and Fig. 3.15 satisfy a set of conditions that define the

so-called compatible graph. We show in Theorem 4 the existence of a hierarchical coding
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scheme with cooperation graph G if G is a compatible graph. The coding scheme is presented

in Construction 5.

Definition 6. For any graph G(V,E) with |V | = p, a subgraph G′(V ′, E ′) is called a max-

imum clique of G if any two nodes in V ′ are connected, and there does not exist any node

in V \ V ′ that is connected to all nodes in V ′. The set of all maximum cliques of G is re-

ferred to as the collection of maximum cliques over G and is denoted by S(V,E). Each

maximum clique in S is represented by a subset S of [p], where S consists of the indices of

all nodes in the maximum clique.

Table 3.2 summarizes some notation associated with cooperation graphs that are used

throughout the remainder of the chapter. Take the DSN and its cooperation matrix shown

in Fig. 3.14 as an example. Observe that the green cycles in the columns spanned by the

maximum clique {12, 13, 14, 15} are indexed by 1, 2, and 3, and the red cycles in the columns

spanned by the maximum clique {14, 15, 16} are indexed by 4, 5, 6, and 7. These green and

red cycles have group numbers 1 and 2, respectively. Suppose those cycles corresponding to

the 2-nd level cooperation of v14 with top edges in the row representing v14 are labeled with 8,

9, 10, and 11. Note that these cycles and cycles C4, C5, C6, and C7 are symmetric with respect

to the diagonal. Then, T1 = {1, 2, 3}, T2 = {4, 5, 6, 7}; A14 = {1, 2}; S(1) = {12, 13, 14, 15},

S(2) = {14, 15, 16}; U14;1 = V14;3 = {3, 4, 8, 9}; U14;2 = V14;2 = {6, 7, 10, 11, 18, 20, 21, 22};

R14;2 = {4, 5, 6, 7}; T14;2 = {8, 9, 10, 11}; `5;14 = 2; M14 = N14 = {v12, v13, v15, v16}. Defini-

tion 7 formally defines the sufficient conditions that result in a compatible graph, which were

discussed informally in Example 10. Note that this definition of compatible graphs is more

general than that presented in the short version of the chapter [34], since the cooperation

levels of nodes on different columns of cycles are allowed to be different here.

Definition 7. Let G be a cooperation graph on G(V,E), where G is represented by {Ct =

(Xt, Yt, {Xt;j}j∈Yt , {Yt;i}i∈Xt , gt, (`t;j)j∈Yt)}t∈[T ]. Suppose node vi ∈ V has Li cooperation lev-

els. We call G a compatible graph on G if the following conditions are satisfied:
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Table 3.2: Notation associated with cooperation graphs.
Notation Physical Interpretation

A The total number of different cycle groups
T The total number of different cycles
Tg The set consisting of indices of cycles with group number g
Ai The set of group numbers of those cycle groups that

intersect with the column representing vi
S(g) The set consisting of vertices of the maximum clique that

contains all columns spanned by cycles in group g
Uj;g The intersection of all cycles contained in

group g with the column representing vj
Rj;` The set consisting of indices of cycles that intersect with

the column representing node vj at its `-th level cooperation
Vj;` The intersection of all cycles contained in Rj;`

with the column representing vj
Ti;` The set consisting of indices of cycles that intersect with the row

representing node vi at its `-th level cooperation (cycles with labels
in Rj;` and Ti;` are symmetric with respective to the diagonal)

`t;j The cooperation level of node vj in cycle Ct
γi;t The maximum number of parity symbols that

nodes in cycle Ct can provide to node vi
Mi The set of nodes in the 1-st level cooperation graph of vi
Ni The set of nodes in the neighborhood of vi
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1. For any vi ∈ V ,Mi ⊆ Ni.

2. All cycles Ct with t ∈ [T ] are disjoint.

3. For any g ∈ [A], there exists a maximum clique S(g) ∈ S(V,E) such that for all t ∈ Tg,

Yt ⊆ S(g).

4. For each vi ∈ V , ` ∈ [Li], there exists a unique g ∈ Ai, such that Vi;` = Ui;g; denote g

by g(i; `).

Construction 5. Let G(V,E) represent a DSN with parameters (n,k, r). Suppose G is a

compatible graph on G, with parameters {Ct = (Xt, Yt, {Xt;j}j∈Yt , {Yt;i}i∈Xt , gt, (`t;j)j∈Yt)}t∈[T ].

Suppose node vi ∈ V has Li cooperation levels.

Let δ be the 1-st level cooperation parameter. For any vi ∈ V and g ∈ Ti;`, assign a

cooperation parameter γi;t ∈ N to the cooperation between node vi and nodes in Yt;i. Let

ηj;` = maxi∈Vj;` γi;t, for ` ∈ [Li].

Let ui = ki + δi + ∑Li
`=2 ηi;`, vi = ri + ∑

vj∈Mi
δj + ∑

2≤`≤Li,t∈Ti;` γi;t, for i ∈ [p]. For

each i ∈ [p], let ai,s, s ∈ [ui], and bi,t, t ∈ [vi], be distinct elements of GF(q), where

q ≥ maxi∈[p]{ui + vi}.

Matrix G in (3.1) is assembled as follows. Consider the Cauchy matrix Ti on GF(q)ui×vi

such that Ti = Y(ai,1, . . . , ai,ui ; bi,1, . . . , bi,vi), for i ∈ [p]. Then, we obtain Ai,i, Bi,j, Ei;`,

Ui, Vi;`, for i ∈ [p], j ∈ [p] \ {i}, ` ∈ [Li], according to the following partition of Ti:

Ti =



Ai,i Bi Ei;2 . . . Ei;Li

Ui

Vi;2

...

Vi;Li

Zi


, (3.7)

where Bi =
[

Bi,j1 . . . Bi,j|Mi|

]
, (3.8)
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and Ei;` =
[

Ei;`;t1 . . . Ei;`;t|Bi;`|

]
, (3.9)

such that Mi = {vj1 , vj2 , . . . , vj|Mi|
}, Ti;` = {t1, t2, . . . , t|Ti;`|}, Ai,i ∈ GF(q)ki×ri, Ui ∈

GF(q)δi×ri, Vi;` ∈ GF(q)ηi;`×ri, Bi,j ∈ GF(q)ki×δj for all vj ∈ M1
i , and Ei;`;t ∈ GF(q)ki×γi;t.

Let Bi,j =
[
Ei;`;t,0ki×(ηj;`−γi;t)

]
, and Ai,j = Bi,jVj;`, for all j ∈ Yt;i, t ∈ Ti;`. Let Ai,j =

Bi,jUj, for vj ∈Mi; otherwise Ai,j = 0ki×ri. Substitute the components of G in (3.1).

Let C2 represent the code with generator matrix G.

Theorem 4. The code C2 has EC hierarchies di = (di,0, di,1, . . . , di,Li), for all vi ∈ V , where

di,0 = ri − δi −
∑Li
`=2 ηi;`, di,1 = ri +∑

vj∈Mi
δj, and di,` = ri +∑

vj∈Mi
δj +∑

2≤`′≤`,t∈Ti;`′ γi;t.

Moreover, I1
i = Mi, B1

i = ⋃
vj∈Mi

(Mj \ ({vi} ∪Mi)). For 2 ≤ ` ≤ Li, I`i = ⋃
t∈Ri;`{vj :

j ∈ Xt;i}= {vj : j ∈ Vi;`}, B`i = ⋃
vj∈I`i

(
I`j \ ({vi} ∪ A`i)

)
(recall A`i = ⋃

`′≤l I`
′
i ), λi,`;W =

ri +∑
j:vj∈Mi,(Mj\{vi})⊆(Mi∪W) δj +∑

(i,t):2≤`′≤`,t∈Ti;`,Yt;i={j,j′},

I
`t;j
j \A`′i ⊆({vi}∪W) or I

`t;j′
j′ \A

`′
i ⊆({vi}∪W)

γi;t, ∅ ⊆ W ⊆ B`i .

Proof. For any node vj ∈ V , denote the cross parities of vj due to cooperation with nodes

in I`j by sj;`, ` ∈ [Lj]. The cross parities are given by the following equation:

sj;` =


∑
vk∈Mj

mkBk,j, ` = 1,
∑
k∈Vj;` mkBk,j, 2 ≤ ` ≤ Lj.

(3.10)

Thus, the codeword stored at vj ∈ V can be expressed in the following form:

cj = mjAj,j +
∑

vk∈Mj

mkBk,jUj +
Lj∑
`=2

∑
k∈Vj;`

mkBk,jVj;`

= mjAj,j + sj;1Uj +
∑Lj

`=2 sj;`Vj;`.

(3.11)

Provided that the rows of Aj,j, Uj, and {Vj;`}
Lj
`=2 are linearly independent, mj and {sj;`}`∈[Lj ]

are all computable if cj is locally-recoverable.

We first show that by communicating with all the neighboring nodes in the 1-st level

cooperation, the cross parities {si;`}`∈[Li] of any node vi ∈ V can be computed and removed
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from the parity part of the codeword stored at this node if all its neighbors are locally-

recoverable. Under this condition on the neighbors of vi, calculating si;1 is trivial. Next, we

prove for 2 ≤ ` ≤ Li that {si;`} can also be computed.

Condition 4) in Definition 7 indicates that there exists a unique g = g(i; `) ∈ Ai, such

that the following equation holds:

si;` =
∑

j∈Ui;g
mjBj,i. (3.12)

Moreover, Condition 3) guarantees the existence of a maximum clique S(g) ∈ S(V,E) such

that for all t ∈ Tg, Yt ⊆ S(g). Let βi;g = max{(i,`):g(i;`)=g} ηi;`, and ui;` =
[
si;`,0βi;g−ηi;`

]
, for

all i ∈ [p], ` ∈ [Li]. We now consider:

∑
(i,`):g(i;`)=g

ui;` =
∑

t∈Tg ,i∈Xt,j∈Yt;i

[
miBi,j,0βi;g−ηi;`t;i

]

=
∑

t∈Tg ,i∈Xt,j∈Yt;i

[
miEi;`t;i;t,0βi;g−γi;t

]

=
∑

t∈Tg ,i∈Xt
0βi;g = 0βi;g .

It follows that si;` can be derived from ui;` if all sj;`′ such that g(j; `′) = g are known.

Condition 3) in Definition 7 implies that all these j’s belong to S(g), and the set of nodes

indexed by S(g) is a subset of Mi, which means that all the aforementioned sj;`′ ’s are

computable given that the neighbors of vi are locally-recoverable.

We have proved that all the `-th level cross parities, ` ∈ [Li], of any node vi ∈ V

can be computed if the neighboring nodes are locally-recoverable. Now, we move forward

to calculate the EC hierarchies of each node. Observe that the local and the 1-st level

cooperation erasure correction capabilities are proved the same way they are proved for

Theorem 2. Thus, we only consider cases where 2 ≤ ` ≤ Li in the following graph.

Moreover, for 2 ≤ ` ≤ Li, any cycle Ct with index t ∈ Ti;` has a potential to provide

additional γi;t in the `-th level cross parities to vi. Therefore, di,` = ri + ∑
vj∈Mi

δj +
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∑
2≤`′≤`,t∈Ti;`′ γi;t. The term γi;t is added to the EC capability if any one of the two nodes

vj and vj′ , Yt;i = {j, j′}, obtains its γi;t cross parities at vi through its `t;j-th or `t;j′-th level

cooperation. Namely, any one of miBi,j and miBi,j′ provides the value of miEi;`t;i,t, and thus

provides extra γi;t parity symbols to vi. Provided that sj;`t;j can be computed if vj is locally-

recoverable, one needs to know the cross parities from all the nodes in the set I`t;jj \ {vi} to

obtain those extra γi;t parity symbols, i.e., those nodes are locally-recoverable, which means

I`t;jj \ A`i ⊆ {vi} ∪W . Similarly, the condition of vj′ successfully calculating these γi;t cross

parities at vi is described as I`t;j′j′ \ A`i ⊆ {vi} ∪ W . Therefore, the overall requirement is

stated as “I`t;jj \ A`i ⊆ {vi} ∪ W or I`t;j′j′ \ A`i ⊆ {vi} ∪ W”. From this discussion, we reach

that B`i = ⋃
t∈Ti;`,j∈Yt;i(I

`t;j
j \ ({vi} ∪ A`i)) and λi,`;W = ri + ∑

j:vj∈Mi,(Mj\{vi})⊆(Mi∪W) δj +∑
(i,t):2≤`′≤`,t∈Ti;`′ ,Yt;i={j,j′},

I
`t;j
j \A`′i ⊆({vi}∪W) or I

`t;j′
j′ \A

`′
i ⊆({vi}∪W)

γi;t, for ∅ ⊆ W ⊆ B`i .

Note that although in a DSN represented by G(V,E), node vi ∈ V cooperates with all

nodes in I`i in the `-th level cooperation, 2 ≤ ` ≤ Li, it is not necessary that all codewords

stored in nodes from I`i need to be recovered. The reason is that these nodes are partitioned

into node pairs where the two nodes in the same pair provide exactly the same group of parity

symbols and only one of them needs to be recovered for node vi to recover its codeword, as

we discussed in Theorem 4.

For example, suppose Fig. 3.13 corresponds to a subgraph of a DSN with a recoverable

erasure pattern. The pink triangles and the dashed arrows represent the `-th level coopera-

tion at each node such that no other nodes are involved in the `-th level cooperation of these

nodes, i.e., Ct is the only cycle in the cycle group containing it. As discussed in Theorem 4,

to remove the local cross parities of each node, neighbors of any non-locally-recoverable node

should all be locally-recoverable. Therefore, there exists at most one non-locally-recoverable

node in each one of the two triangles. For any i ∈ Xt, previous conditions indicate that at

least one of the two nodes with indices in Yt;i is locally-recoverable; let it be node vj, where

j ∈ Yt;i. We know that Yt;j consists of i and i′ for some i′ ∈ Xt and i′ 6= i. Since the code-
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word stored at vj is locally-recoverable and Ct forms an isolated cycle group, the cross parity

miBi,j + mi′Bi′,j can be derived at node vj. Since the codeword at vi′ is locally-recoverable,

mi′Bi′,j can be further subtracted from the cross parity to obtain miBi,j. This observation

indicates that regardless of the way the matching graph is specified and the indices of the

nodes that are not recovered, the non-recovered nodes are able to obtain their `-th level

cross parities. For example, suppose then vi1 and vj1 in Fig. 3.13 are not locally-recoverable.

Since Vi1;` = {j1, j3} and I`i = {vj1 , vj3}, the aforementioned discussion demonstrates that

recovering vi1 does not require vj1 to be recovered.

In Fig. 3.13, the additional erasure correction capabilities offered to the nodes are identical

regardless of the structure of the local matching graph. However, this may not be true in

general, if more than one cycle gets involved. In general, different local matching graphs are

likely to result in non-identical erasure correction capabilities. In particular, although the

EC hierarchies are defined by (λi,l;W)∅⊂W⊂B`i for each individual node at each cooperation

level, this can be more elaborately defined since accessing a different subset of nodes in I li

may result in different EC capabilities even if W are the same, and λi,l;W only specifies the

largest one. We show it in details by Example 11.

Given an isolated matching graph G′, if none of the non-locally-recoverable nodes are

able to derive any additional cross parities solely from the local cooperation specified by G′,

i.e., all cycles in G′ constitute a cycle group, we call it an absorbing matching graph.

In Example 11, EC capabilities of compatible graphs resulting from the same cooperation

graph associated with different local matching graphs, as shown in Fig. 3.16, are discussed.

We prove that the left two panels are two absorbing matching graphs, while the right two

panels are not, which also demonstrates that the EC capability is not uniquely determined

by the cooperation graph. Instead, the local matching graph also matters.

We focus on the local cooperation graph between 9 nodes in a DSN G(V,E), where

V = {vi}i∈[9]. Let V1 = {v1, v4, v7}, V2 = {v2, v5, v8}, and V3 = {v3, v6, v9}, and suppose

nodes in each one of these sets mutually cooperate with nodes in each of the remaining two
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Figure 3.16: Possible local matching graphs contained in a multi-level cooperation graph
between 9 nodes. The nodes are partitioned into three groups, where nodes within each one
of them are pairwisely connected. Each dashed double-sided arrow represent a cycle.

sets. According to the definition of cooperation graphs, each one of the graphs represents 3

cycles, {Ci}i∈[3], where Xi = {3j + i}0≤j≤2, Yi = Xi+1, and X4 = X1. Suppose {Ci}i∈[3] form

an isolated cycle group in the cooperation graph on G. Represent each one of the cycles by

a specified matching graph and refer to the resulting local matching graph as an isolated

local matching graph. Fig. 3.16 presents four different isolated local matching graphs on

these nodes. Let colors blue and black refer to nodes that are non-locally-recoverable and

locally-recoverable nodes, respectively. Then, each Vi, i ∈ [3], contains at most one blue

node if it is contained in a recoverable erasure pattern.

Example 11. (Absorbing Matching Graphs) Consider the left-most local matching

graph in Fig. 3.16, we notice that v1, v2, v3 are mutually connected (and we will show

that the connections between the rest of the nodes actually do not matter, thus we omit them

in the figure). Without loss of generality, it is sufficient to prove that v1 is not able to ob-

tain any extra parity symbols from cycle C1. Since v1 and v2 are connected, we know that

Y1;1 = {5, 8}. Thus, v1 needs to either obtain m1B1,5 from v5 or m1B1,8 from v8. Since v2

and v3 are connected, both v5 and v8 have cross parities at node v3. Therefore, the parities

vi, i ∈ {5, 8}, are of the form si = m1B1,i + m3B3,i + mjBj,i + mj′Bj′,i, where j ∈ {4, 7},

j′ ∈ {6, 9}. If codewords stored at node vj and vj′ are all locally-recoverable, their parities

can be subtracted from si to obtain the remainder s′i = m1B1,i + m3B3,i. Observe that in
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order to obtain m1B1,i, m3B3,i needs to be obtained first. That is to say, v1 can only ob-

tain additional parities unless the message in v3 is recovered. However, following a similar

process, we will need v2 to be recovered for v3, and v1 to be recovered for v2. This cyclic

requirement indicates that v1, v2, and v3 are “absorbed” into a balanced situation where none

of them can be recovered first, which cannot be broken unless information from the rest of

the graphs is provided.

Similarly, we can prove that the second-to-the-left panel is also an absorbing matching

graph. Since the connections between the three triangles are symmetric, it is still sufficient

to prove that v1 is not able to obtain any extra parity symbols from cycle C1. Since v1 and v5

are connected, we know that Y1;1 = {2, 8}. Given that v2 is not locally-recoverable, the only

path for v1 to obtain extra parities is to obtain m1B1,8 from v8. Observe that v8 is connected

to v7 and v9 in the matching graph, which means that v8 has cross parities at v1, v3, v4,

and v6. Therefore, v8 needs v3, v4, and v6 to be all recovered in order to subtract m3B3,8,

m4B4,8 and m6B6,8 from m3B3,8 + m4B4,8 + m6B6,8 to obtain m1B1,8. This requires v3 to

be recovered. Following a similar argument to that of the left-most panel, this graph is also

an absorbing matching graph.

Moving on to the second-from-the-right panel, v5 has cross parities at v7, v6, v9, and

v1. Therefore, v1 is able to obtain the cross parities resulting from cooperation cycle C3

through v5. Similarly, v2 is able to obtain the cross parities resulting from cooperation cycle

C2 through v4. Finally, v3 is able to obtain its cross parities from C3 and C2.

Now we look at the right-most panel, v4 has cross parities at v5, v8, v9, and v3. Therefore,

v3 is able to obtain the cross parities resulting from cooperation cycle C3 through v4. Similarly,

v3 is also able to obtain the cross parities resulting from cooperation cycle C2 through v5. After

that, one of v1 and v2 is able to obtain additional parities from C1, and the other one can

obtain additional parities from both C1 and its cooperation with v6 and v9.

Note that the major difference between the second-to-the-right and the right-most panel

is that the decoding of v1 provides no additional parities on v2 and v3 in the third one.
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Therefore, if each cycle Ci, i ∈ [3], provides η cross parities at each of its nodes, the third

and the fourth graphs allow up to additional 4η and 5η cross parities, respectively.

We have shown in the previous example that the left-most two panels in Figure 3.13

are absorbing matching graphs, and they become non-absorbing matching graphs if any of

the blue nodes turns to be recovered from cooperation with the rest of the graph. In this

case, without loss of generality, suppose v3 is recovered, then v1 in these two graphs is also

recoverable according to discussion in Example 11. While in the left-most panel, nodes in

I l1 are indeed all locally recovered, those in the second graph from the left are not. We

also notice that in the right-most panel, nodes in I l1 are locally recovered to recover v1,

while those in the second-to-the right panel are not. Given that any isolated matching graph

corresponding to a λ1,l;W withW = ∅, this example also demonstrates that a different set Ali

will also provide different EC capabilities. While in Example 11 we already subtly discussed

such a scenario, we leave more detailed analysis for future work.

Moreover, we state without proof here that the left-most two panels of Fig. 3.16 discussed

in Example 11 are all the possible structures of an absorbing matching graph for this specified

local cooperation graph (subject to the graph isomorphism). Since these graphs also are all

the possible structures where the nine matching edges form disconnected cycles, those edges

in other matching graphs all form a cycle of length 9 and are mutually isomorphic according

to permutations of v1 to v9. However, different permutations of the nodes do result in different

erasure correction capabilities. For example, the second-to-the-right panel is isomorphic to

the right-most panel if v3, v5, v7 are blue instead, as shown in Figure 3.17. This has no

impact on the average erasure correction capability while looking into the local matching

graphs individually, but the permutation matters while taking the connection to the rest of

the graphs into consideration.

In Remark 2, we discuss the information flow between neighboring nodes, and the in-

formation flow between nodes with distance two through their common neighbors. Observe

that nodes cooperating with any given node in its higher-level cooperations are not neces-
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sarily all within its two-hop neighborhood. However, these nodes actually provide additional

parities to the original nodes. This scenario is not covered by the previous definition of in-

formation flow, instead of it, we proposed the notion of information coupling to describe

it, as discussed in Remark 3.

Remark 3. (Information Coupling in Multi-Level Coded DSN) Take the local

matching graph shown in the right-most panel in Fig. 3.13 as an example. Consider the case

where non-locally-recoverable nodes are v1, v2 and v3, as shown in the left panel in Fig. 3.17.

Node v3 is able to obtain additional parities from v4 since v5, v8 and v9 are locally-recoverable.

This case can be regarded as information flow from the cooperation between v4, v5 and v8 to

the cooperation between v4, v3 and v9 through v4.

Consider another case where the non-locally-recoverable nodes are v3, v5 and v7 instead,

as shown in the right panel in Fig. 3.17. Node v3 is no longer able to decode its codeword first.

Instead, node v7 is able to obtain additional parities from v2 since v1, v6 and v9 are locally-

recoverable. This case can be regarded as information flow from the cooperation between v1,

v2, and v7 to the cooperation between v2, v6, and v9 through v2.

The aforementioned cases indicate that for any node, nodes cooperating with it in its

higher-level cooperation do not have impact on it individually, but rather collectively. More-

over, as discussed in Example 11, this impact is not only dependent on the local matching

graphs, but also dependent on the erasure patterns. Therefore, instead of discussing informa-

tion flow between two cycles, it is more appropriate to treat all the cycles contained in any

cycle group collaboratively. This can be interpreted as information coupling resulted from the

cooperation between {v1, v4, v7}, {v2, v5, v8}, and {v3, v6, v9}, as an analogy to information

coupling in network navigation.

3.4.3 Recoverable Erasure Patterns

Recall the notion of “decoding graph” in Definition 4, under which recoverable erasure pat-

terns of the single-level cooperative codes are described. However, in cases where higher-level
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Figure 3.17: Information coupling. The two graphs represent two different erasure patterns
for the non-absorbing local matching graphs in Fig. 3.13. While the information flow depicts
the communication between any two nodes separated by a distance of 1 or 2 in their 1-st
level cooperation, it is not able to fully describe higher level cooperations. Two cycles in a
local matching graph also help the decoding of nodes on each other through their shared
nodes, and we call this “information coupling”.

cooperations are involved, Definition 4 is not enough to define and enumerate all associated

recoverable erasure patterns. In this section, we extend Definition 4 into Definition 8 to

allow for the multi-level cooperation. Recoverable erasure patterns of hierarchical codes are

specified in Theorem 5.

Definition 8. (Decoding Graph in Multi-Level Cooperation) Let G(V,E) represent

a DSN with |V | = p. Let T (V , E) denote a directed subgraph of G. For all vi ∈ V, denote

the set containing the children of vi by VC
i , and the set containing all parents of vi by VP

i .

Suppose vj is the only node without parents, we call it the root of T . We call any node

without children a leaf. Suppose that all the leaves of T are not locally-recoverable, and any

other vi ∈ V satisfies either one of the following conditions.

1. The codeword stored at vi is locally-recoverable: there exists a set L ⊆ {2, . . . , Li}, with

|VP
i ∩Mi| ∈ {0, 1}, |VP

i ∩Vi;`| = 1, and VP
i ∪VC

i , that consists of all nodes with indices

in Vi;` for ` ∈ L (and Mi if |VP
i ∩Mi| = 1), where codewords stored at them are not

locally-recoverable.

2. The codeword stored at vi is not locally-recoverable: codewords stored at nodes from

73



VP
i ∪ VC

i are locally-recoverable.

We call T a decoding graph at its root node vj over G(V,E).

Theorem 5. (Flexible Erasure Patterns) Let C be a code with hierarchical cooperation

on a DSN represented by G(V,E), where C and all related parameters are specified according

to Construction 5. Let u ∈ Np such that u � n. Suppose C and u satisfy the following

conditions:

1. Let V NL represent the set contains all the nodes vi, i ∈ [p] such that ui > ri − δi. Let

V L = V \ V NL. Then, for any vi ∈ V NL,Mi ⊂ V L.

2. For any vi ∈ V NL, there exists a decoding graph Ti(Vi, Ei) at root vi over G. Moreover,

for any leaf vj of Ti, uj ≤ rj; for any node vj ∈ Vi ∩ V NL, uj ≤ rj + ∑
vk∈Mi∩VC

j
δk +∑Li

`=2
∑
k∈Vj;`∩Xt;j ,vk∈VC

j
γk;t.

Then, u is a recoverable erasure pattern of C over G(V,E).

Consider the DSN with the 1-st level cooperation graph presented in Example 7. We add

the 2-nd level and the 3-rd level cooperation graphs to the DSN and mark them in pink and

olive, respectively, as shown in Example 12 and Figure 3.19. Black and blue/green still re-

fer to nodes where the stored codewords are locally-recoverable and non-locally-recoverable,

respectively. Components marked in red represent local decoding graphs, which is the sub-

graph of the decoding graph corresponding to the local matching graph.

Example 12. Fig. 3.18 has five graphs. The left-most panel describes the cooperation graph

resulting from adding the 2-nd level cooperation among nodes to the DSN in Example 7, where

there exist two possible local matching graphs that are specified by the two graphs in the center

(in the central panel). The right-most two panels present the subgraphs in local decoding

graphs corresponding to the two possible local matching graphs. Let u = (u1, u2, . . . , up) be

an erasure pattern on this DSN. Under the EC solution specified in Theorem 4, suppose there

exists γ ∈ N such that γi;t = γ, for all t ∈ [T ], and i ∈ Xt.
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Figure 3.18: DSN (a) and the local matching graph (b) specified for 2-nd level cooperation
in Example 12.
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In the specified cooperation graph, for i ∈ [p], if vi is black, then 0 ≤ ui ≤ ri− δ− γ; else

if vi is green, then ri−δ−γ ≤ ui ≤ ri+γ; otherwise ri+γ < u1,i ≤ ri+δ+γ. Since each blue

node is contained in an isolated local matching graph, it can obtain additional γ cross parity

symbols from its 2-nd level cooperation according to the previous discussion about Fig. 3.13.

Therefore, all the non-locally-recoverable nodes are able to tolerate extra γ erasures, which

means that u is a recoverable erasure pattern of this graph but not a recoverable pattern of

the left panel in Fig. 3.8.

Example 13. Fig. 3.19 has three graphs. The left-most one describes the cooperation graph

resulting from adding the 2-nd and the 3-rd level cooperations among nodes to the DSN

in Example 7. We adopt the right-most local matching graph in Fig. 3.16 to specify local

matching graphs in this example, and it is shown in the central panel. Note that we have

exchanged the indices of v4 and v7, and those of v5 and v8 in the original graph to obtain

the graph in the center. The right-most panel presents the subgraph in local decoding graphs

corresponding to the local matching graph. Let u = (u1, u2, . . . , up) be an erasure pattern on

this DSN. Under the EC solution specified in Theorem 4, suppose there exists γ ∈ N such

that γi;t = γ, for all t ∈ [T ], and i ∈ Xt.

In the specified cooperation graph, for i ∈ [p], if vi is black and is connected to two

triangles, then 0 ≤ ui ≤ ri − δ − 2γ; else if vi is black and is connected to only one triangle,

then 0 ≤ ui ≤ ri − δ − γ; else if vi is blue and is connected to only one triangle, ri −

δ − γ < u1,i ≤ ri + 2γ; else if vi is green, then ri − δ − 2γ < ui ≤ ri + 2γ; otherwise

ri − δ − 2γ < u1,i ≤ ri + 3γ. Since each non-locally-recoverable node, e.g., v1, v2, and v4,

is contained in an isolated local matching graph, i.e., a triangle, laying at the bottom of this

triangle, it can obtain additional 2γ cross parity symbols from it according to the previous

discussion in Example 11. Then, v3 and v5 can also obtain extra 2γ parity symbols, where γ

of them are from the 2-nd level cooperation, and the remaining γ of them are from the 3-rd

level cooperation, respectively, according to Example 11. After that v0 is able to obtain 2γ

cross parity symbols from the 2-nd level cooperation (the pink triangle), and γ cross parity
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Figure 3.19: DSN (a) and the local matching graph (b) specified for 2-nd and 3-rd level
cooperation in Example 13.

77



symbols from the 3-rd level cooperation (the olive triangle). Following a similar logic, all

codewords in the non-locally-recoverable nodes are able to be recovered, which means that u

is a recoverable erasure pattern of this graph but not a recoverable pattern of any of the graphs

in Fig. 3.8.

3.5 Topology Adaptivity, Scalability, and Flexibility

In Section 3.4, we have presented a construction of codes with hierarchical locality for a DSN

with a given cooperation graph, which enables the system to offer multi-level access at each

node while simultaneously reducing the latency by taking into account the communication

cost between different nodes. However, multi-level accessibility is not the only property that

is desirable in practical cloud storage applications. In this section, we therefore discuss topol-

ogy adaptivity, scalability, and flexibility of our construction, which are especially critical in

dynamic cloud storage.

3.5.1 Topology Adaptivity

As discussed in Section 4.1, varying topology is a critical property of DSNs because of the

dynamic nature of practical networks. While discussing EC solutions for DSNs with a specific

topology, the time cost in each communication link and the erasure statistics of each node

should also be taken into consideration to have a good trade-off between low latency and high

EC capability. Although hierarchical coding schemes over a DSN with a specified cooperation

graph has been discussed in Subsection 3.4.1, the method of finding a cooperation graph

over DSNs with arbitrary topology has not yet been discussed. Algorithm 1 searches for a

cooperation graph over a given network; the existence of such a graph is implicitly proved in

the algorithm. Here G(V,E) denotes a DSN with the collection S(V,E) of maximum cliques.

The complexity of Algorithm 1 is roughly calculated as follows. Suppose the maximum

degree of each node is D, and the maximum size of a clique is bounded by some constant
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(which is true in sparse graphs), then the complexity of finding all the cliques is O(|V |D).

Moreover, the algorithm needs additional O
(∑

g∈a(S) b(g)
)
operations to set the indices of all

the cycles. Therefore, the overall complexity is O
(
|V |D +∑

g∈a(S) b(g)
)
, which is approxi-

mately linear in the network size when the network graph is sparse.

Remark 4. (Latency Optimization in Cooperation Graphs) One might observe that although

Algorithm 1 presents a general method to search for a cooperation graph over a given DSN

described by G(V,E), the resulting code is not guaranteed to possess optimized latency. Op-

timization of the construction with the lowest latency is left for future work.

3.5.2 Scalability

As discussed in Section 4.1, scalability refers to the capability of expanding the backbone

network to accommodate additional workload without rebuilding the entire infrastructure.

More specifically, when a new cloud is added to the existing configuration, computing a com-

pletely different generator matrix results in changing all the encoding-decoding components

in the system, and is very costly. The preferred scenario is that adding a new cloud does not

change the encoding-decoding components of the existing clouds.
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Figure 3.20: Scalability: Add a node to existing DSN.

We show that our construction naturally achieves this goal. For simplicity, we only

discuss the scalability over constructions with single-level cooperation here. Observe that in
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Algorithm 1 Cooperation Graph Search
Inputs:

G(V,E): existing DSN;
a(S): the number of different cycle groups associated with the maximum clique S ∈
S(V,E);
b(g): the number of cycles within the cycle group g;

Outputs:
G(V , E): a cooperation graph over G;
//Find a cooperation graph

1: V ← V , E ← ∅;
2: for vi ∈ V do
3: Assign a subset of Ni toMi;
4: E ← E ∪ {ei,j : vj ∈Mi};
5: end for
6: Find the collection S(V , E) of maximum cliques over G;
7: t← 1, g ← 1;
8: for S ∈ S(V , E) do
9: for 1 ≤ i ≤ a(S) do
10: for 1 ≤ b ≤ b(g) do
11: Find an edge or a triangle contained in S and denote the set consisting of

indices of its vertices by Yt;
12: Find another edge in G if |Yt| = 2; else find a triangle such that there exists a

bijection f from Xt to Yt and {ei,j}(i,j)∈Xt×Yt\{(i,f(i)):i∈Xt} ⊆ Ē , where Xt denotes the set
consisting of indices of its vertices;

13: E ← E ∪ {ei,j}(i,j)∈Xt×Yt\{(i,f(i)):i∈Xt};
14: Xt;j ← Xt \ {f−1(j)}, Yt;i ← Yt \ {f(i)}, gt ← g, lt;i ← 0, for i ∈ Xt, j ∈ Yt;
15: Add Ct(Xt, Yt, {Xt;j}j∈Yt , {Yt;i}i∈Xt , gt, (lt;j)j∈Yt) to G;
16: t← t+ 1;
17: end for
18: g ← g + 1;
19: end for
20: end for

//Assign associated cooperation levels to G, following the notation specified in Table 3.2
21: for vi ∈ V do
22: Find the set Ai consisting of group numbers of those cycle groups that contain at

least a cycle Ct with i ∈ Yt;
23: for g ∈ Ai do
24: Find the set Ri;g consisting of all cycles Ct such that gt = g and i ∈ Yt;
25: Denote the average distance of all nodes vj, j ∈ Xt;i, t ∈ Ri;g, by zi;
26: end for
27: Order (zi)i∈[a(S)] from the smallest to the largest, and obtain (zπ′(i))i∈[a(S)], where π′(i)

is a permutation of elements from [a(S)];
28: for g ∈ Ai and t ∈ Ri;g do
29: lt;j ← π′(i) + 1, for j ∈ Xt;i;
30: end for
31: end for
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Construction 3, the components Ax,x, Ux, and Bx,i, i ∈ [p] \ {x}, are built locally. Suppose

cloud p+ 1 is added into a double-level configuration adopting Construction 3. Algorithm 2

presents a procedure for adding this cloud, which only results in adding some columns and

rows to the original generator matrix without changing the existing ones. Thus, the existing

infrastructure does not need to be changed; each node only needs to add cross parities it

receives from the newly added node to its current parities. Moreover, with this algorithm,

the erasure correction capabilities {d1,i}vi∈Np+1 of neighboring nodes of vp+1 are increased by

δp+1.

The complexity of Algorithm 2 is roughly calculated as follows. Steps 1 and 2 need no cal-

culations. Step 3 needs O
(∑

vi∈Np+1 δikp+1
)
operations at node vp+1. Step 4 needs O (δp+1ki)

operations at node vi, vi ∈ Np+1. Step 5 needs O (kp+1rp+1 + |Np+1|δp+1 + δp+1rp+1) oper-

ations (since all miBi,p+1 are computed in step 4, here we just need to compute the sum

of them). Step 6 needs O (δiri) operations at node vi, vi ∈ Np+1 (since all mp+1Bp+1,i are

computed in step 3). Therefore, node vp+1 needs O (kp+1(q − kp+1) + |Np+1|δp+1 + δp+1rp+1)

operations overall, and each node vi needs O(δp+1ni) operations overall, vi ∈ Np+1.

Algorithm 2 Node Addition
Inputs:

G(V,E): existing DSN;
p: number of nodes in G(V,E);
vp+1: the newly added node;
rp+1: the message length of vp+1;
kp+1: the number of parity symbols of the vp+1;
δp+1: the number of additional parities vp+1 provides globally to the DSN;
Np+1: the set of nodes to be connected to vp+1;
G: the original generator matrix;

Outputs:
G: the updated generator matrix;

1: Node vp+1 chooses its local parameters Ap+1,p+1, Up+1, and Bp+1,i, vi ∈ Np+1;
2: Node vi chooses additional cross parity matrices Bi,p+1, vi ∈ Np+1;
3: Node vp+1 sends mp+1Bp+1,i to node vi, vi ∈ Np+1;
4: Node vi sends miBi,p+1 to vp+1, vi ∈ Np+1;
5: Node vp+1 computes the stored codeword cp+1 = mp+1Ap+1,p+1 +∑

i∈N miBi,p+1Up+1;
6: Node vi adds mp+1Bp+1,i to its current parity symbols, vi ∈ Np+1;
7: Update G accordingly;
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Example 14. Consider again the set up in Example 3. Suppose a node v13 is to be added

to the existing DSN and is to be connected to nodes v9, v10, and v12, as shown in Fig. 3.20.

The messages near the edges marked in red are sent from v13, while those marked in blue

are sent from the neighboring nodes v9, v10, and v12, to v13. Note that the new node v13

has coding parameters chosen independently from the existing nodes according to Theorem 2,

which means that it naturally achieves scalability.

Remark 5. Note that provided the constraint on the lower bound of the field size at each

node q ≥ (ni + δ′i) (see Construction 1), the Galois field might need an update if the existing

field size no longer satisfies the requirement. There are two possible ways to update the Galois

field.

1. Use the smallest extension field of the current field. This way requires recalculation of

only few existing entries in the parity check matrices since the base field is a subfield

of the extension field. However, the smallest extension field of GF(2θ) is GF(22θ).

Nonetheless, the scaling of the network is still efficient for the following reasons:

• The quadratic field growth is an upper bound and only happens at the boundary,

i.e., for any node addition such that the required field size is between 2θ and 22θ,

the field GF(22θ) always accommodates the network scaling.

• In this case, it is not necessary for all the symbols at all the nodes to use the same

Galois field. Instead, different nodes can use different fields provided that any two

different fields used by two nodes are such that one is an extension field of the

other. Moreover, the systematic part at each node can always remain unchanged.

Therefore, not all the nodes need a larger field; at most only the new nodes and

their neighboring nodes do.

2. Linearly scale the field to some predicted size. This way requires recalculation of all

the existing entries, since the new field is not an extension field of the old one.
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The first way is more efficient when the current field size is relatively small and is typically

applicable in sparse networks (which should be the case in practical applications). The second

way is more efficient when the current field size approaches a prespecified upper bound on

the network size, i.e., the required field size will never exceed some upper bound M , where

M is large, while the current field size is closer to M than it is to
√
M .

3.5.3 Flexibility

The concept of flexibility was proposed and investigated for dynamic cloud storage in [22].

In a dynamic cloud storage system, the rate of which a given piece of data is accessed is likely

to change. When the data stored at a cloud become hot, i.e., of higher demand, splitting the

cloud into two smaller clouds effectively reduces the latency. However, this action should be

done without reducing the erasure correction capability of the rest of the system or changing

the remaining components.

Specifically, if the data stored at a cloud vi ∈ V become unexpectedly hot, the DSN needs

to split vi into two separate smaller clouds via and vib to maintain relatively low latency;

Algorithm 3 presents the procedure to do this. For simplicity, we focus here on the case

where only the 1-st level cooperation is involved in, as presented in Construction 4.

The complexity of Algorithm 3 is calculated as follows. Steps 1–4 are direct splitting of

the component matrices and no calculations are needed. Step 5 needs local decoding of ci to

obtain si and mi, which requires inverting a Cauchy matrix with size not exceeding (ri− δi),

which in turn typically requires O ((ri − δi)2) operations provided the explicit formula of the

inverse of a Cauchy matrix. There also exist methods that require O
(
(ri − δi) (log(ri − δi))2

)
operations only to obtain the inverse. Step 6 needs O (δia(kib + ria)) operations. Therefore,

the overall complexity is

O
(
δia(kib + ria) + (ri − δi) (log(ri − δi))2

)
.
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Figure 3.21: Flexibility: Split a node to two nodes in a DSN when it gets hot such that
accessing the codeword stored at each one of them achieves low latency.

Note that the matrix Bi,j is vertically split into Bia,j and Bib,j, while Bj,i is horizontally

split into Bj,ia and Bj,ib , for all vj that are neighboring nodes of vi. Therefore, it is obvious

that miBi,j = miaBia,j + mibBib,j and one can prove that the local codeword cj doesn’t

change for vj that is a neighboring node of vi. Moreover, since both the local and the global

parity-check matrices for each non-split cloud remain unchanged, the local and global erasure

capabilities of them are not affected according to Lemma 3. Furthermore, one can prove that

the local codewords stored at the new clouds ia and ib tolerate (ria− δia) and (rib− δib) local

erasures, respectively.

Example 15. Consider again Example 3. If the data stored at node v10 become unexpectedly

hot, then we split v10 into two separate nodes v10a and v10b following Algorithm 3, as shown

in Fig. 3.21.

Originally, node v10 needs to access all n10 = k10 + r10 symbols to obtain message m10,

which results in high latency when one has to access any set of symbols from m10 frequently.

This operation results in unnecessary cost in terms of data processing times, which can

be solved by splitting v10 into two nodes v10a and v10b that store n10a = k10a + r10a and

n10b = k10b + r10b symbols, which contain the information of m10a and m10b, respectively.

Local access to each one of the two nodes will require significantly lower latency compared

with a full access of the original node v10. This approach improves the latency especially if
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Algorithm 3 Node Splitting
Inputs:

G(V,E): existing DSN;
vi: the node to be split in G(V,E);
Ni: the set of neighboring nodes of vi;
via , vib : nodes vi is split into;
ki, kia , kib : the message lengths of vi, via , vib , respectively; ki = kia + kib ;
ri, ria , rib : the number of parity symbols of vi, via , vib , respectively; ri = ria + rib ;
δi, δia , δib : the number of additional parities vi, via , vib provides globally to the DSN,
respectively; δi = δia + δib ;
G: the original generator matrix;

Outputs:
G: the updated generator matrix;

1: Node vi splits Ai,i into Aia,ia , Bib,ia , Aib,ib , Bia,ib as follows:
Aia,ia = Ai,i [1 : kia , 1 : ria ],
Bib,ia = Ai,i [kia + 1 : ki, 1 : δia ],
Aib,ib = Ai,i [kia + 1 : ki, ria + 1 : ri],
Bia,ib = Ai,i [1 : kia , ria + 1 : ria + δib ];

2: Node vi splits Bi,j, ∀vj ∈ Ni, into Bia,j and Bib,j as follows:
Bia,j = Bi,j [1 : kia , 1 : δj],
Bib,j = Bi,j [kia + 1 : ki, 1 : δj];

3: Node vj, ∀vj ∈ Ni, splits Bj,i into Bj,ia and Bj,ib as follows:
Bj,ia = Bj,i [1 : kj, 1 : δia ],
Bj,ib = Bj,i [1 : kj, δia + 1 : δi], ∀vj ∈ Ni;

4: Node vi splits Ui into Uia and Ub
i as follows:

Uia = Ui [1 : δia , 1 : ria ],
Uib = Ui [δia + 1 : δ1, ria + 1 : rib ];

5: Compute the additional cross parities si’s by solving the equation siUi = ci −miAi,i,
where i ∈ [p]. Find sia ∈ GF(q)δia , sib ∈ GF(q)δ1b such that si = [sia , sib ];

6: Compute the message stored at the node via and via as follows:
cia =

[
mia ,miaAia,ia +

(
mibBib,ia + yia

)
Uia

]
,

cib =
[
mib ,mibAib,ib +

(
miaBia,ib + yib

)
Uib

]
;

7: Update G accordingly;

85



the erasures are bursty, i.e., concentrated within any one of c10a or c10b. Even if the erasures

are distributed more evenly among c10a and c10b, the total processing time to obtain m10 will

be the maximum of their individual processing times, which is still much shorter than the

original time.

3.6 Conclusion

Hierarchical locally accessible codes in the context of centralized cloud networks have been

discussed in various prior works, whereas those of DSNs (no prespecified topology) have not

been explored. In this chapter, we proposed a topology-adaptive cooperative data protection

scheme for DSNs, which significantly extends our previous work on hierarchical coding for

centralized distributed storage. We discussed the recoverable erasure patterns of our pro-

posed scheme, demonstrating that our scheme corrects patterns pertaining to dynamic DSNs.

Our scheme achieves faster recovery speed compared with existing network coding methods,

and enables an intrinsic information flow from nodes with higher reliability to nodes with

lower reliability that are close to them on the network. Moreover, our constructions are also

proved to be scalable and flexible, making them a construction with great potential to be

employed in dynamic DSNs.

86



CHAPTER 4

Spatially-Coupled Codes with High Memories

4.1 Introduction

Spatially-coupled (SC) codes, also known as low-density parity-check (LDPC) codes with

convolutional structures, are an ideal choice for streaming applications and data storage

devices thanks to their threshold saturation phenomenon [37, 38, 39, 3, 4] and amenability

to low-latency windowed decoding [69]. SC codes are constructed by partitioning the parity-

check matrix of an underlying block code, followed by rearranging the component matrices in

a convolutional manner. In particular, component matrices are vertically concatenated into

a replica, and then multiple replicas are horizontally placed together, resulting in a coupled

code. The number of component matrices minus one is referred to as the memory of the SC

code [70, 40, 41, 71].

It is known that the performance of an SC code improves as its memory increases. This

is a byproduct of improved node expansion and additional degrees of freedom that can be

utilized to decrease the number of short cycles and detrimental objects [40, 41, 42, 43, 44].

A plethora of existing works [40, 41, 45, 47] focus on minimizing the number of short cycles

in the graph of the SC code. Although the optimization problem of designing SC codes with

memory less than 4 has been efficiently solved [40, 41], there is still an absence of efficient

algorithms that construct good enough SC codes with high memories systematically. Esfaha-

nizadeh et al. [40] proposed a combinatorial framework to develop optimal quasi-cyclic (QC)
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SC codes, comprising so-called optimal overlap (OO) to search for the optimal partitioning

matrices, and circulant power optimization (CPO) to optimize the lifting parameters, which

was extended by Hareedy et al. [41]. However, this method is hard to execute in practice

for high-memory codes due to the increasing computational complexity. Heuristic methods

that search for good SC codes with high memories are derived in [45, 46, 47, 44]. However,

high-memory codes designed by purely heuristic methods are unable to reach the potential

performance gain that can be achieved through high memories due to lack of theoretical

properties; several of these codes can even be beat by optimally designed QC-SC codes with

lower memories under the same constraint length [47]. Therefore, a method that theoreti-

cally identifies an avenue to a near-optimal construction of SC codes with high memories is

of significant interest.

Inspired by the excellent performance and the low computational complexity offered by

approaches comprising theoretical analysis guiding heuristic methods, we propose a two-step

hybrid optimization framework that has these advantages. The framework first specifies a

search subspace that is theoretically proved to be locally optimal, followed by a semi-greedy

algorithm within this targeted search space. By analogy with threshold optimization ap-

proaches that search for LDPC ensembles with the optimal degree distribution, our first

step is to obtain an SC ensemble with the optimal edge distribution (i.e., density distri-

bution of component matrices). The associated metric is the expected number of targeted

detrimental objects in the protograph of the code. Having reached a locally optimal edge

distribution through gradient descent, we then apply a semi-greedy algorithm to search for

a locally optimal partitioning matrix that satisfies this edge distribution. Our probabilis-

tic framework is referred to as gradient-descent distributor, algorithmic optimizer

(GRADE-AO).

Preliminary version of this work was presented in [57], where we focused only on the

minimization of the number of short cycles. In this work, we develop a general framework

that handles arbitrary objects. While cycles are detrimental in codes with low variable node
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(VN) degrees, such as regular codes with VN degree 2 or 3, objects that dominate the error

profiles in higher-degree codes and irregular codes are typically more advanced. In particular,

we focus on the concatenation of two short cycles in this chapter. These concatenated cycles

are common subgraphs of the detrimental objects, which are absorbing sets (ASs) [42]), that

govern the performance of LDPC codes with VN degree ≥ 3 in error floor region. These

detrimental objects are also the major source of undesirable dependencies that undermine

the performance in the waterfall region. While focusing on cycles for simplicity, which is the

case for the majority of existing works, unnecessary degrees of freedom could be exhausted

on isolated cycles that are much less problematic. To the best of our knowledge, we are the

first to provide a framework that systematically eliminates objects other than cycles from

the Tanner graph of an SC code with mathematical guarantees, which is important for a

variety of applications including storage systems. Hareedy et al. [72, 73] proposed the so-

called weight consistency matrix (WCM) framework to search for edge-weight assignments

that minimize the number of ASs in non-binary (NB) LDPC codes with a given underlying

topology, and demonstrated performance gains in data storage systems. Simulation results

show that our framework leads to codes with excellent performance in flash memory and

magnetic recording systems. The proposed GRADE-AO framework not only opens a door

to fine-grained optimization over detrimental objects in SC codes, but also can be applied

in optimizing the unweighted graphs of non-binary (NB) SC codes, which can lead to ex-

cellent NB-SC codes when combined with the WCM framework. Because of the improved

threshold and waterfall performance, GRADE-AO has potential to produce SC codes for

communication systems as well.

In this chapter, we propose a probabilistic framework that efficiently searches for near-

optimal SC codes with high memories. In Section 4.2, we introduce preliminaries of SC

codes and the performance-related metrics. In Section 4.3, we develop the theoretical basis

of GRADE, which derives an edge distribution that determines a locally optimal SC ensem-

ble. In Section 4.4, we introduce the theoretical details of how GRADE is generalized to
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more sophisticated objects. The distribution obtained through GRADE leads to effective

initialization and specifies the search space of the semi-greedy algorithm adopted in AO after-

wards. In Section 4.5, we introduce two examples of GRADE-AO that result in near-optimal

SC codes: the so-called gradient-descent (GD) codes and topologically-coupled (TC)

codes. In summary, we generalize GRADE to a rich class of relevant objects and present

examples of GRADE-AO that focus on concatenated cycles. Our proposed framework is

supported in Section 4.6 by simulation results of seven groups of codes, with the best code

in each obtained from GRADE-AO. Finally, we make concluding remarks and introduce

possible future work in Section 4.7.

4.2 Preliminaries

In this section, we recall the typical construction of SC codes with quasi-cyclic (QC) struc-

ture. Any QC code with a parity-check matrix H is obtained by replacing each nonzero

(zero) entry of some binary matrix HP with a circulant (zero) matrix of size z, z ∈ N.

The matrix HP and z are referred to as the protograph and the circulant size of the code,

respectively. In particular, the protograph HP
SC of an SC code has a convolutional structure

composed of L replicas, as presented in Fig. 4.1. Each replica is obtained by stacking the

disjoint component matrices {HP
i }mi=0, where m is the memory and Π = HP

0 +HP
1 + · · ·+HP

m

is the protograph of the underlying block code.

In this chapter, we constrain Π to be an all-one matrix of size γ × κ, γ, κ ∈ N. An SC

code is then uniquely represented by its partitioning matrix P and lifting matrix L, where

P and L are all γ × κ matrices. The matrix P has (P)i,j = a if (HP
a )i,j = 1. The matrix

L is determined by replacing each circulant matrix by its associated exponent. Here, this

exponent represents the power to which the matrix σ defined by (σ)i,i+1 = 1 is raised, where

(σ)z,z+1 = (σ)z,1.

The performance of finite-length LDPC codes is strongly affected by the number of

detrimental objects that are subgraphs with certain structures in the Tanner graphs of those
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Figure 4.1: Cycles in the protograph (right panel) and their corresponding structures in the
partitioning matrices (left panel).

codes. Two major classes of detrimental objects are trapping sets and absorbing sets. Since

enumerating and minimizing the number of detrimental objects is complicated, existing work

typically focuses on common substructures of these objects: the short cycles [40, 41, 45]. A

cycle-2g candidate in HP
SC (Π) is a path of traversing a structure to generate cycles of length

2g after lifting (partitioning) [41]. In an SC code, each cycle in the Tanner graph corresponds

to a cycle candidate in the protograph HP
SC, and each cycle candidate in HP

SC corresponds

to a cycle candidate C in the base matrix Π. Lemma 4 specifies a necessary and sufficient

condition for a cycle candidate in Π to become a cycle candidate in the protograph and then

a cycle in the final Tanner graph.

Lemma 4. Let C be a cycle-2g candidate in the base matrix, where g ∈ N, g ≥ 2. Denote

C by (j1, i1, j2, i2, . . . , jg, ig), where (ik, jk), (ik, jk+1), 1 ≤ k ≤ g, jg+1 = j1, are nodes of

C in Π, P, and L. Then C becomes a cycle candidate in the protograph if and only if the

following condition follows [45]:

∑g

k=1 P(ik, jk) =
∑g

k=1 P(ik, jk+1). (4.1)
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This cycle candidate becomes a cycle in the Tanner graph if and only if [74]:

∑g

k=1 L(ik, jk) ≡
∑g

k=1 L(ik, jk+1) mod z. (4.2)

As shown in Fig. 4.1, a cycle-6 candidate and a cycle-8 candidate in the partitioning

matrix with assignments satisfying condition (5.9), and their corresponding cycle candidates

in the protograph are marked by red and blue, respectively. An optimization of a QC-SC

code is typically divided into two major steps: optimizing P to minimize the number of cycle

candidates in the protograph, and optimizing L to further reduce that number in the Tanner

graph given the optimized P [40, 41]. The latter goal has been achieved in [40] and [41],

using an algorithmic method called circulant power optimization (CPO), while the former

goal is yet to be achieved for large m. We note that the step separation highlighted above

notably reduces the overall optimization complexity.

In the remainder of this chapter, we first focus on QC-SC codes for the additive white

Gaussian noise (AWGN) channel, where the most detrimental objects are the low weight

absorbing sets (ASs) [40]. The ASs are defined in Definition 9.

Definition 9. (Absorbing Sets) Consider a subgraph induced by a subset V of VNs in the

Tanner graph of a code. Set all the VNs in V to values in GF(q)\{0} and set all other VNs

to 0. The set V is said to be an (a, b) absorbing set (AS) over GF(q) if the size of V is

a, the number of unsatisfied neighboring CNs of V is b, and each VN in V is connected to

strictly more satisfied than unsatisfied neighboring CNs, for some set of VN values.

An (a, b) elementary AS V over GF(q) is an (a, b) AS with the additional property that

all the satisfied (resp., unsatisfied (if any)) neighboring CNs of V have degree 2 (resp., degree

1); otherwise the AS is referred to as an (a, b) non-elementary AS.

Consider a subgraph induced by a subset V of VNs in the Tanner graph of a binary code.

The set V is said to be an (a, b) binary AS if the size of V is a, the number of odd-degree

neighboring CNs of V is b, and each VN in V is connected to strictly more even-degree than
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odd-degree neighboring CNs.

Observe that the unlabeled configuration (all edge weights set to 1) underlying an (a, b)

non-binary elementary AS is itself an (a, b) binary elementary AS.

Consequently, a simplified optimization focuses on cycle candidates of lengths 4, 6, and

8 [40, 41]. Existing literature shows that the optimal P for an SC code with m ≤ 2 typically

has a balanced (uniform) edge distribution among component matrices [40]. However, in the

remaining sections, we show that the edge distribution for optimal SC codes with large m

is not uniform, and we propose the GRADE-AO framework that explores a locally optimal

solution. With the success in cycle optimization, we step forward to a finer-grained optimiza-

tion over more advanced objects, which can be applied in higher degree codes and irregular

codes. While GRADE can be generalized for arbitrary objects, we present constructions

obtained though GRADE-AO focusing on concatenated cycles. Simulation results show that

our proposed codes have excellent performance on practical channel models derived from

flash memories and magnetic recording (MR), in both waterfall and error floor region.

4.3 A Probabilistic Optimization Framework

In this section, we present a probabilistic framework that searches for a locally optimal

edge distribution for the partitioning matrices of SC codes with given memories through the

gradient-descent algorithm.

Definition 10. Let γ, κ,m,mt ∈ N and a = (a0, a1, . . . , amt), where 0 = a0 < a1 < · · · <

amt = m. A (γ, κ) SC code with memory m is said to have coupling pattern a if and

only if HP
i 6= 0γ×κ, for all i ∈ {a0, a1, . . . , amt}, and HP

i = 0γ×κ, otherwise. The value mt is

called the pseudo-memory of the SC code.
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4.3.1 Probabilistic Metric

In this subsection, we define metrics relating the edge distribution to the expected number

of cycle candidates in the protograph in Theorem 6 and Theorem 7. While Schmalen et al.

have shown in [75] that nonuniform coupling (nonuniform edge distribution in this chapter)

yields an improved threshold, our work differs in two areas: 1) Explicit optimal coupling

graphs were exhaustively searched and were restricted to small memories in [75], whereas our

method produces near-optimal SC protographs for arbitrary memories. 2) Work [75] focused

on the asymptotic analysis for the threshold region, while our framework is dedicated to the

finite-length construction and has additional demonstrable gains in the error floor region.

Definition 11. Let m,mt ∈ N and a = (a0, a1, . . . , amt), where 0 = a0 < a1 < · · · < amt =

m. Let p = (p0, p1 . . . , pmt), where 0 < pi ≤ 1, p0 + p1 + · · · + pmt = 1: each pi specifies

the probability of a ‘1’ in Π going to the component matrix HP
ai
, thus p is referred to as

edge distribution under random partition later on. Then, the following f(X; a,p), which

is abbreviated to f(X) when the context is clear, is called the coupling polynomial of an

SC code with coupling pattern a, associated with probability distribution p:

f(X; a,p) ,
∑

0≤i≤mt
piX

ai . (4.3)

Theorem 6. Let [·]i denote the coefficient of X i of a polynomial. Denote by P6(a,p) the

probability of a cycle-6 candidate in the base matrix becoming a cycle-6 candidate in the

protograph under random partitioning with edge distribution p. Then,

P6(a,p) =
[
f 3(X)f 3(X−1)

]
0
. (4.4)

Proof. According to Lemma 4, suppose the cycle-6 candidate in the base matrix is repre-
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sented by C(j1, i1, j2, i2, j3, i3). Then,

P6(a,p) = P
[∑3

k=1 P(ik, jk) =
∑3

k=1 P(ik, jk+1)
]

=
∑∑3

k=1 xk=
∑3

k=1 yk

3∏
k=1

P [P(ik, jk) = xk,P(ik, jk+1) = yk]

=
∑∑3

k=1 xk=
∑3

k=1 yk

px1px2px3py1py2py3

=
 ∑
xk,yk∈vals(a)

px1px2px3py1py2py3X
x1+x2+x3−y1−y2−y3


0

=
[
f 3(X)f 3(X−1)

]
0
,

where vals(a) is the set {a0, a1, . . . , amt}. Thus, the theorem is proved.

Example 16. Consider SC codes with full memories and uniform partition, i.e., a =

(0, 1, . . . ,m) and p = 1
m+11m+1. When m = 2, P6(a,p) = 0.1934; when m = 4, P6(a,p) =

0.1121.

Example 17. First, consider SC codes with m = mt = 2. Let a1 = (0, 1, 2) and p1 =

(2/5, 1/5, 2/5). According to Theorem 6, f(X) = (2 + X + 2X2)/5, f 3(X)f 3(X−1) =

0.0041(X6 +X−6)+0.0123(X5 +X−5)+0.0399(X4 +X−4)+0.0717(X3 +X−3)+0.1267(X2 +

X−2)+0.1544(X+X−1)+0.1818. Therefore, P6(a1,p1) = 0.1818. Second, consider SC codes

with m = mt = 4. Let a2 = (0, 1, 2, 3, 4) and p2 = (0.31, 0.13, 0.12, 0.13, 0.31). According to

Theorem 6, P6(a2,p2) = 0.0986.

After we have derived the metric for cycle-6 candidates in the protograph, we now turn to

the case of cycle-8 candidates. As shown in Fig. 4.2, cycle candidates in the base matrix that

result in cycle-8 candidates in the protograph can be categorized into 6 different structures,

labeled S1, . . . , S6. Different cases are differentiated by the number of rows and columns

(without order) the structures span in the partitioning matrix [41]. Specifically, S1, . . . , S6

denote the structures that span submatrices of size 2× 2, 2× 3 or 3× 2, 3× 3, 2× 4 or 4× 2,

3× 4 or 4× 3, and 4× 4, respectively. Any structure that belongs to S2, S4, S5 has multiple
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Figure 4.2: Structures and cycle candidates for cycle-8.

cycle-8 candidates, and these distinct candidates are marked by blue in Fig. 4.2.

Lemma 5. Let P8;i(a,p), 1 ≤ i ≤ 6, denote the probability of a cycle-8 candidate of structure

Si in the base matrix becoming a cycle-8 candidate in the protograph, under random partition

with edge distribution p. Then,

P8;1(a,p) =
[
f 2(X)f 2(X−1)

]
0
,

P8;2(a,p) =
[
f(X2)f(X−2)f 2(X)f 2(X−1)

]
0
,

P8;3(a,p) =
[
f(X2)f 2(X)f 4(X−1)

]
0
, and

P8;4(a,p) = P8;5(a,p) = P8;6(a,p) =
[
f 4(X)f 4(X−1)

]
0
.

Proof. For structures where the nodes of the cycle-8 candidates are pairwise different, namely,

S4, S5, S6, the result can be derived by following the logic in the proof of Theorem 6.

For S1, suppose the indices of the rows and columns are i1, i2, and j1, j2, respectively.

Then, the cycle condition in Lemma 4 is P(i1, j1) + P(i2, j2) = P(i1, j2) + P(i2, j1).

For S2, suppose the indices of the rows and columns are i1, i2, and j1, j2, j3, respectively.

Then, the cycle condition in Lemma 4 is 2P(i1, j1) − 2P(i2, j1) + P(i2, j2) + P(i2, j3) −

P(i1, j2)−P(i1, j3) = 0.

For S3, suppose the indices of the rows and columns are i1, i2, i3, and j1, j2, j3, respectively.
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Then, the cycle condition in Lemma 4 is 2P(i1, j1)+P(i2, j2)+P(i3, j3)−P(i1, j2)−P(i2, j1)−

P(i1, j3)−P(i3, j1) = 0.

Following the logic in the proof of Theorem 6, the case for S1, S2, S3 can be proved.

Theorem 7. Denote N8(a,p) as the expectation of the number of cycle-8 candidates in the

protograph. Then,

N8(a,p) = w1
[
f 2(X)f 2(X−1)

]
0

+ w2
[
f(X2)f(X−2)f 2(X)f 2(X−1)

]
0

+ w3
[
f(X2)f 2(X)f 4(X−1)

]
0

+ w4
[
f 4(X)f 4(X−1)

]
0
,

(4.5)

where w1 =
(
γ
2

)(
κ
2

)
, w2 = 3

(
γ
2

)(
κ
3

)
+ 3

(
γ
3

)(
κ
2

)
, w3 = 18

(
γ
3

)(
κ
3

)
, w4 = 6

(
γ
2

)(
κ
4

)
+ 6

(
γ
4

)(
κ
2

)
+

36
(
γ
3

)(
κ
4

)
+ 36

(
γ
4

)(
κ
3

)
+ 24

(
γ
4

)(
κ
4

)
.

Proof. Provided the results in Lemma 5, we just need to prove that the numbers of cycle

candidates of structures S1, S2, . . . , S6 in a γ× κ base matrix are
(
γ
2

)(
κ
2

)
, 3
(
γ
2

)(
κ
3

)
+ 3

(
γ
3

)(
κ
2

)
,

18
(
γ
3

)(
κ
3

)
, 6
(
γ
2

)(
κ
4

)
+ 6

(
γ
4

)(
κ
2

)
, 36

(
γ
3

)(
κ
4

)
+ 36

(
γ
4

)(
κ
3

)
, and 24

(
γ
4

)(
κ
4

)
, respectively.

Take i = 5 as an example. The number of cycle candidates of structure S5 in any 3× 4

or 4 × 3 matrix is 3 ·
(

4
2

)
· 2 = 36. The total number of 3 × 4 or 4 × 3 matrices in a γ × κ

base matrix is
(
γ
3

)(
κ
4

)
+
(
γ
4

)(
κ
3

)
. Therefore, the total number of cycle candidates of structure

S5 is 36
(
γ
3

)(
κ
4

)
+ 36

(
γ
4

)(
κ
3

)
. By a similar logic, we can prove the result for the remaining

structures.

Remark 6. Note that each cycle candidate satisfying the cycle condition in the partitioning

matrix can result in multiple cycle candidates in the protograph; the multiplicity is deter-

mined by its width, i.e., the number of replicas each resultant cycle candidate spans in the

protograph. We ignore the number of replicas a cycle candidate spans in HP
SC. We address

this number in the CPO stage.
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4.3.2 Gradient-Descent Distributor

By contrasting Examples 16 and 17 it is clear that for a given coupling pattern, an optimal

edge distribution is not necessarily reached by a uniform partition. In this subsection, we

develop an algorithm that obtains a locally optimal distribution by gradient descent.

Lemma 6. Given mt ∈ N and a = (a0, a1, . . . , amt), a necessary condition for P6(a,p) to

reach its minimum value is that the following equation holds for some c0 ∈ R:

[
f 3(X)f 2(X−1)

]
ai

= c0, ∀i, 0 ≤ i ≤ mt. (4.6)

Proof. Consider the gradient of L6(a,p) = P6(a,p) + c(1− p0 − p1 − · · · − pmt).

∇pL6(a,p)

=∇p (P6(a,p) + c(1− p0 − p1 − · · · − pmt))

=∇p
[
f 3(X)f 3(X−1)

]
0
− c1mt+1

=
[
∇p

(
f 3(X)f 3(X−1)

)]
0
− c1mt+1

=3
[
f 2(X)f 2(X−1)f(X)∇pf(X−1)

]
0

+ 3
[
f 2(X)f 2(X−1)f(X−1)∇pf(X)

]
0
− c1mt+1

=6
[
f 3(X)f 2(X−1)

(
X−a0 , X−a1 , . . . , X−amt

)]
0
− c1mt+1.

(4.7)

When P8(a,p) reaches its minimum, ∇p [L(a,p)] = 0mt+1, which is equivalent to (4.6) by

defining c0 = c/6.

Lemma 7. Given γ, κ,mt ∈ N and a = (a0, a1, . . . , amt), a necessary condition for N8(a,p)

to reach its minimum value is that the following equation holds for some c0 ∈ R:

[
4f 2(X)f(X−1)

]
)ai + w̄2

[
2f(X2)f 2(X)f 2(X−1)

]
2ai

+ w̄2
[
4f(X2)f(X−2)f 2(X)f(X−1)

]
ai

+w̄3
[
f 2(X)f 4(X−1)

]
−2ai

+ w̄3
[
2f(X2)f(X)f 4(X−1)

]
−ai

+ w̄3
[
4f(X2)f 2(X)f 3(X−1)

]
ai

+w̄4
[
8f 4(X)f 3(X−1)

]
ai

= c0, ∀i, 0 ≤ i ≤ mt,
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where w̄2 = γ + κ− 4, w̄3 = 2(γ − 2)(κ− 2), and w̄4 = 1
2 [(γ − 2)(γ − 3) + (κ− 2)(κ− 3)] +

(γ − 2)(κ− 2)(γ + κ− 6) + 1
6(γ − 2)(γ − 3)(κ− 2)(κ− 3).

Proof. Consider the gradient of L8(a,p) = N8(a,p) + c(1− p0 − p1 − · · · − pmt).

∇pL8(a,p)

=∇p (N8(a,p) + c(1− p0 − p1 − · · · − pmt))

=w1
[
∇p

(
f 2(X)f 2(X−1)

)]
0

+ w2
[
∇p

(
f(X2)f(X−2)f 2(X)f 2(X−1)

)]
0

+ w3
[
∇p

(
f(X2)f 2(X)f 4(X−1)

)]
0

+ w4
[
∇p

(
f 4(X)f 4(X−1)

)]
0
− c1mt+1

=w1{
[
4f 2(X)f(X−1)(X−a0 , X−a1 , . . . , X−amt )

]
)0

+ w̄2
[
2f(X2)f 2(X)f 2(X−1)(X−2a0 , . . . , X−2amt )

]
0

+ w̄2
[
4f(X2)f(X−2)f 2(X)f(X−1)(X−a0 , . . . , X−amt )

]
0

+ w̄3
[
f 2(X)f 4(X−1)(X2a0 , X2a1 , . . . , X2amt )

]
0

+ w̄3
[
2f(X2)f(X)f 4(X−1)(Xa0 , Xa1 , . . . , Xamt )

]
0

+ w̄3
[
4f(X2)f 2(X)f 3(X−1)(X−a0 , X−a1 , . . . , X−amt )

]
0

+ w̄4
[
8f 4(X)f 3(X−1)(X−a0 , X−a1 , . . . , X−amt )

]
0
} − c1mt+1.

(4.8)

When P8(a,p) reaches its minimum, ∇p [L(a,p)] = 0mt+1, which is equivalent to (7) by

defining c0 = c/w1.

Based on Lemma 6 and Lemma 7, we adopt the gradient-descent algorithm to obtain a

locally optimal edge distribution for SC codes with coupling pattern a, starting from the

uniform distribution inside P as presented in Algorithm 4. Note that conv(·) and flip(·) refer

to convolution and reverse of vectors, respectively.

4.4 Generalization of GRADE

We have explained the basic idea of GRADE in optimizing the edge distribution of SC

code ensembles with respect to the expected number of cycles. Cycles have been studied
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Algorithm 4 Gradient-Descent Distributor (GRADE) for Cycle Optimization
Inputs:

γ, κ,mt,m, a: parameters of the SC code;
w: weight of each cycle-6 candidate;
ε, α: accuracy and step size of gradient descent;

Outputs:
p: a locally optimal edge distribution over vals(a);

1: w̄1 ← 2w
3 (γ − 2)(κ− 2), obtain {w̄i}4

i=2 in Lemma 7;
2: vprev = 1; vcur = 1;
3: p,g← 0mt+1, f , f̄ ← 0m+1, f2, f̄2 ← 02m+1;
4: p← 1

mt+11mt+1;
5: f [a0, . . . , amt ]← p, f̄ ← flip(f);
6: f2 [1, 3, . . . , 2m+ 1]← f , f̄2 ← flip(f2);
7: q1 ← w̄1conv(f , f , f , f̄ , f̄ , f̄), q2 ← conv(f , f , f̄ , f̄);
8: q3 ← w̄2conv(f2, f̄2, f , f , f̄ , f̄) + w̄3conv(f2, f , f , f̄ , f̄ , f̄ , f̄) + w̄4conv(f , f , f , f , f̄ , f̄ , f̄ , f̄);
9: vprev = vcur, vcur = q1 [3m] + q2 [2m] + q3 [4m];
10: g1 ← 6w̄1conv(f , f , f , f̄ , f̄), g2 ← 4conv(f , f , f̄);
11: g3 ← 4w̄2conv(f2, f̄2, f , f , f̄) + 2w̄3conv(f̄2, f , f , f , f , f̄) + 4w̄3conv(f2, f , f , f̄ , f̄ , f̄) +

8w̄4conv(f , f , f , f , f̄ , f̄ , f̄);
12: g4 ← 2w̄2conv(f2, f , f , f̄ , f̄) + w̄3conv(f , f , f , f , f̄ , f̄);
13: g← g1 [2m+ a] + g2 [m+ a] + g3 [3m+ a] + g4 [2m+ 2a], g← g−mean(g);
14: if |vprev − vcur| > ε then
15: p← p− α g

||g|| ;
16: goto step 5;
17: end if
18: return p;
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extensively in related literature (see e.g., [76, 77, 78]) due to their simplicity and presence

in problematic objects. However, cycles alone do not always account for typical decoding

failures; for example, isolated cycles are not as harmful as concentrated cycles in codes with

VN degree 4 since single cycles on their own do not lead to decoding failures (as captured

by e.g., ASs [41]), rather concatenated cycles do. An excessive focus on the removal of

isolated cycles can lead to remarkably less degrees of freedom for the removal of dominant

problematic objects. In this section, we therefore extend the theory of GRADE to arbitrary

subgraphs.

4.4.1 Probabilistic Metric

In this subsection, we generalize the results presented in Section 4.3.1 to obtain closed-form

representations of the expected number of objects with arbitrary topologies. The key idea

is that the dependency among nodes within each object can be fully described by a minimal

set of fundamental cycles (or basic cycles), which is referred to as the cycle basis of the

object (see Definition 12) [79, 80, 81].

Definition 12. (Cycle Basis) A cycle basis of an object is a minimum-cardinality set

of cycles using disjunctive unions of which, each cycle in the object can be obtained; we call

the cycles in this set fundamental cycles.

In the remainder of this chapter, we define a prototype of an object, for simplicity, as

an assignment of the indices of its variable nodes (VNs) and its check nodes (CNs) in the

base matrix. Prototype is a natural extension of pattern, i.e., a prototype of an object is

exactly a pattern (discussed in [41]) when the object is a cycle. According to [81], we call

a prototype active if all the fundamental cycles satisfy the cycle condition simultaneously,

which means the detrimental object will be created in the protograph after partitioning the

base matrix. The probability of a prototype becoming active under a random partition is

proved to be represented by the constant term of a multi-variate polynomial, where each
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Figure 4.3: The cycle basis of a typical (6, 0) ((6, 6))-AS in SC codes with γ = 3 (γ = 4) and
their corresponding cycle candidates while pulled back to the base matrix. The cycle basis
has 4 fundamental cycles as shown in the top 4 panels; each cycle decides a cycle candidate
in the base matrix and an independent variable in the characteristic polynomial, as shown
in the bottom panels.

variable is associated with a cycle in the cycle basis: we refer to this polynomial as the

characteristic polynomial of the object associated with fixed prototype. The overall

characteristic polynomial of the object without specifying the prototype is then obtained as

an average over the characteristic polynomials associated with all possible prototypes.

We start with a motivating example.

Example 18. Take the object (AS) with the node assignment shown in the top panel of

Fig. 4.3 as an example.1 Consider the cycle basis consisting of the 4 cycles highlighted in

Fig. 4.3 and their associated variables Xi, 1 ≤ i ≤ 4. We refer to the cycle associated with

Xi, 1 ≤ i ≤ 4, as cycle i. In the bottom panel of Fig. 4.3, the labels Xi and X−1
i are placed

alternately on the cycle candidate corresponding to cycle i in the base matrix.
1Note that we only keep nodes with intrinsic connections, i.e., we ignored the degree 1 CNs as they are

not involved in any cycles and thus do not affect the probability of a prototype becoming active.
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Figure 4.4: The matrix representation of the characteristic polynomial of the AS in Fig. 4.3.
The monomial in each entry corresponds to a factor in the characteristic polynomial in (4.9).

We next briefly and intuitively explain how the characteristic polynomial of the object is

specified as follows:

h(X) =f(X−1
2 X2

3X
−1
4 )f(X1X2X

−1
3 )f(X1X

−1
3 X4)f(X−1

1 X3X4)

f(X1X
−1
2 )f(X−1

1 X2)f 2(X−1
1 X3)f(X1X

−1
4 )f(X−1

2 X−1
4 )f(X−1

3 X4)

f(X−1
1 )f(X2)f(X−1

3 ),

(4.9)

where f(·) is the coupling polynomial of a cycle as specified in Definition 11.

As shown in Fig. 4.4, we place the labels on all the cycle candidates (see Fig. 4.3) alto-

gether in the base matrix. Then, each entry of the matrix becomes associated with the product

of all the labels contained in it. Take the entry at the intersection of row c3 and column v2

as an example. This entry is labeled with X1, X−1
3 , X4 on the cycle candidates for cycles

1, 3, and 4, respectively. Therefore, the entry is associated with X1X
−1
3 X4. Each product

is the monomial corresponding to the matrix entry. The characteristic polynomial in (4.9)

is exactly the product of all the factors obtained by replacing the variable in the coupling

polynomial by the monomials corresponding to each entry.

In a way similar to the process described in the proof of Theorem 6, expanding the right-
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hand side (RHS) of (4.9) results in terms of the form qiX
k1
1 X

k2
2 X

k3
3 X

k4
4 for each, where qi

is the probability of a unique assignment to vertices, i.e., matrix entries, on the prototype of

the AS such that the alternating sum of entries on cycle i associated with Xi in the cycle

basis is ki, 1 ≤ i ≤ 4. Therefore, the constant term is exactly the sum of the probabilities

of all possible assignments (of the partitioning matrix) such that the cycle candidates of all

the fundamental cycles satisfy their cycle conditions (all ki’s are zeros). In other words, the

constant term is exactly the probability of the prototype becoming active in the Tanner graph.

In Example 18, we have briefly introduced the idea of how we define the characteristic

polynomial of an object associated with a fixed prototype. However, as shown in the case of

cycle-8 candidates, an object is typically associated with multiple prototypes (referred to as

cycle candidates when the object is a cycle). We next present an efficient method to obtain

the expected number of all possible prototypes corresponding to an object.

The major idea is described as follows. Each prototype of an object leads to an equivalence

relation on the CNs and VNs of the object, in which nodes with identical indices are regarded

as being equivalent. The set consisting of all the prototypes describing the same equivalence

relation is referred to as a prototype class. The characteristic polynomials of the prototypes

belonging to the same prototype class are identical, and the cardinality of each prototype

class is determined by their associated equivalence relation. Therefore, the key steps to obtain

the characteristic polynomial of an object are: 1) to enumerate all the possible prototype

classes of (or non-isomorphic equivalence relations on) a given object, and then 2) to obtain

their associated characteristic polynomials and cardinalities.

For example, consider the prototype class described by the graph in the left panel of

Fig. 4.5. Throughout this chapter, we use [n] to represent the set {1, 2, . . . , n} for any

n ∈ N. Any assignment of c1, c2, c3, c4 ∈ [γ] and v1, v2, v3, v4 ∈ [κ] such that c1, c2, c3, c4 are

mutually different, v1, v2, v3, v4 are also mutually different belongs to a unique prototype in

the prototype class described by the graph. Note that the uniqueness follows from the fact

that the automorphism group of the prototype class has only the identity element, thus

104



the cardinality of this prototype class is 4!
(
γ
4

)
4!
(
κ
4

)
. The automorphism group of a prototype

is defined later in Definition 14; however, the aforementioned cardinality intuitively implies

that each row/column permutation results in a unique prototype. We then move on to obtain

the characteristic polynomial directly through the prototype class. The equivalence relation

on CNs and VNs induces an equivalence relation on edges, in which edges with VNs and

CNs all from the same equivalence class are referred to as being equivalent. As shown in

Fig. 4.5, edges from the same equivalence class are highlighted by identical markers.

Note that each equivalence class on edges corresponds to a unique entry in the base

matrix. Recall that each entry is associated with the product of all labels contained in it,

which corresponds to a separate factor in the characteristic polynomial. In a similar way, if

we represent each equivalence class by the product of all labels on all edges contained in it,

the resultant product will be exactly the monomial associated with the entry corresponding

to this equivalence class. Therefore, each factor of the characteristic polynomial in (4.9)

is associated with an equivalence class on edges. For example, in Fig. 4.5, the two edges

highlighted by red triangles belong to the same equivalence class and are labeled with X1

and X2X
−1
3 , respectively; and they altogether correspond to the factor f(X1X2X

−1
3 ) in the

characteristic polynomial.

In the remaining text, we represent the equivalence relation by ∼.

Definition 13. (Prototype Class) Let γ, κ ∈ N. Consider an object represented by the

bipartite graph G(V,C,E), where V and C denote the set of VNs and CNs, respectively. The

set E is the set of all edges, where each edge is represented by ei,j, for some i ∈ V , j ∈ C,

connecting nodes i and j. Let V , C represent equivalence classes on V and C, respectively.

A prototype is an assignment P = (f, g), where f : V → [κ], g : C → [γ] such that:

1. For any c ∈ C and v1, v2 ∈ V such that ev1,c, ev2,c ∈ E, f(v1) 6= f(v2);

2. For any v ∈ V and c1, c2 ∈ C such that ev,c1 , ev,c2 ∈ E, g(c1) 6= g(c2).

The set consisting of all the prototypes P = (f, g) that satisfy the following conditions is
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Figure 4.5: The graph representation of the characteristic polynomial of the AS in Fig. 4.3

referred to as the prototype class associated with (V , C), denoted by P(V , C):

1. For any v1, v2 ∈ V , f(v1) = f(v2) iff. v1 ∼ v2 in V (same column in the matrix);

2. For any c1, c2 ∈ C, g(c1) = g(c2) iff. c1 ∼ c2 in C (same row in the matrix).

Denote the equivalence class induced by the relation: ev1,c1 ∼ ev2,c2 iff. v1 ∼ v2 and

c1 ∼ c2, for all v1, v2 ∈ V and c1, c2 ∈ C, by E(V , C), which is referred to as the equivalence

class induced by V and C.

Lemma 8. (Characteristic Polynomial of Prototypes) Consider the bipartite graph

G(V,C,E) of an object and the prototype class P(V , C). Suppose E(V , C) is the equivalence

class on edges induced by V and C.

Let S denote the cycle basis of G. Define δ : E × S → {−1, 0, 1} as follows: for any

s ∈ S, s = (v1, c1, v2, c2, . . . , vg, cg), and e ∈ E, δe,s = 1 if e = evi,ci for some i ∈ [g],

δe,s = −1 if e = evi+1,ci for some i ∈ [g], otherwise δe,s = 0.

Define h(X;G|V , C) as a polynomial of G associated with P(V , C) and given by:

h(X;G|V , C) =
∏

ē∈E(V,C)
f

(∏
e∈ē

∏
s∈S

Xδe,s
s

)
. (4.10)
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Then, the constant term of h(X;G|V , C) is the probability that a prototype belonging to the

class P(V , C) is active in the Tanner graph after partitioning.

Proof. For simplicity, we write E instead of E(V , C) in the proof. Any assignment on the

set of edges E can be represented by x ∈ (x1, x2, . . . , x|E|) ∈ vals(a)|E| (vals(a) is defined in

Theorem 6 as the set {a0, a1, . . . , amt}), where xe denotes the assignment on edge e for any e ∈

E. Consider that all the edges belonging to the same equivalence class in E correspond to the

same entry in the base matrix (and the partitioning matrix); these edges need to be assigned

with an identical number in the partitioning matrix. Therefore, the assignment on the set of

edges is essentially an assignment on the equivalence classes. Let i ∈ {0, 1, . . . ,mt}|E| denote

an assignment on the equivalence classes E , where each element of i is represented by iē for

some ē ∈ E ; all the edges in the equivalence class ē are assigned with aiē in the partitioning

matrix, for any ē ∈ E .

We know that

h(X;G|V , C) =
∏
ē∈E

f

(∏
e∈ē

∏
s∈S

Xδe,s
s

)

=
∑

i∈{0,1,...,mt}|E|

∏
ē∈E

[
piē
∏
e∈ē

∏
s∈S

Xδe,saiē
s

]

=
∑

i∈{0,1,...,mt}|E|

(∏
ē∈E

piē

)∏
ē∈E

∏
e∈ē

∏
s∈S

Xδe,saiē
s

=
∑

i∈{0,1,...,mt}|E|

(∏
ē∈E

piē

) ∏
s∈S

X

∑
ē∈E aiē

∑
e∈ē δe,s

s

=
∑

i∈{0,1,...,mt}|E|

(∏
ē∈E

piē

) ∏
s∈S

X ls(i)
s ,

(4.11)

where ls(i) = ∑
ē∈E aiē

∑
e∈ē δe,s = ∑

e∈s,e∈ē δe,saiē is exactly the alternating sum of the assign-

ment i on cycle s.

Denote by Z(G) the set of assignments of the prototype in the partitioning matrix such

that this prototype becomes active in the Tanner graph of the code after partitioning. Then,
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Figure 4.6: The matrix representation of the characteristic polynomial of the AS in Remark 7.

[h(X;G|V , C)]0 =
∑

i∈{0,1,...,mt}|E|:ls(i)=0,∀s∈S

∏
ē∈E

piē

=
∑

i∈{0,1,...,mt}|E|:ls(i)=0,∀s∈S
P [xe = aiē , ∀ē ∈ E , e ∈ ē]

=P [Z(G)] ,

(4.12)

which indicates that the constant term of h(X;G|V , C) is the probability we are seeking.

In fact, the coefficients of other terms of h(X;G|V , C) also specify the probabilities of

partitioning assignments other than Z(G). Consequently, h(X;G|V , C) in (4.10) represents

the characteristic polynomial of G associated with P(V , C).

While elementary objects (absorbing sets in particular) dominate the error floor of binary

LDPC codes and NB-LDPC codes over the AWGN channel, non-elementary objects are

observed to notably contribute to the error floor of NB-LDPC codes over non-canonical

channels, e.g., practical magnetic recording and Flash channels [82, 72, 73].

Remark 7. (Non-Elementary Objects) Note that Lemma 8 extends beyond elementary

objects. Fig. 4.6 shows a prototype of a non-elementary object. This prototype can still be

described by a set of 3 elementary cycles, as shown in Fig. 4.6 via colors. According to
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Lemma 8, the characteristic polynomial of the prototype is:

h(X;G|V , C) =f(X1X
−1
2 )f(X2X

−1
3 )f(X3X

−1
1 )f(X1X3)f(X−1

1 X2)f(X−1
2 X−1

3 )

f(X1)f(X−1
1 )f(X2)f(X−1

2 )f(X3)f(X−1
3 ).

(4.13)

In combination with the WCM framework proposed in [73] that optimizes the edge weights

of NB-LDPC codes on fixed unweighted graphs, our method can open a door to systematically

optimizing NB-SC codes with high memories, which have potential to be adopted in storage

systems among other applications.

After obtaining the characteristic polynomial of any object associated with a fixed pro-

totype class, we proceed to obtain the expectation of the number of active prototypes over

all prototype classes. The essential step here is to calculate the cardinality of each prototype

class. A natural property here is that each prototype from a specific class corresponds to

assigning non-repeated elements with order from [κ] and [γ] to the equivalence classes in V

and C, respectively. However, specific permutations of values assigned to the nodes can lead

to some other assignments that are isomorphic to each other because of the intrinsic sym-

metry of the prototypes. For example, in Fig. 4.7(a), the assignment that exchanges values

v1 and v2 while keeping values on remaining VNs as they are is equivalent to the original

assignment. We call this exchange operation an automorphism over G under P(V , C) and

denote it by (v1v2). The automorphisms over G under each prototype class form a group,

which is defined in Definition 14.

Definition 14. (Automorphism Group of an Object Under a Prototype Class)

For any object represented by a bipartite graph G(V,C,E), let P(V , C) be a prototype class

of G. An automorphism over G under P(V , C) is a pair of bijections (πV , πC) written as

πV πC, where πV : V → V and πC : C → C are bijections such that

1. ∀v ∈ V , c ∈ C, ev,c ∈ E iff. eπV (v),πC(c) ∈ E;

2. ∀v1, v2 ∈ V , v1 ∼ v2 iff. πV (v1) ∼ πV (v2);

109



3. ∀c1, c2 ∈ C, c1 ∼ c2 iff. πC(c1) ∼ πC(c2).

The set containing all automorphisms over G under P(V , C) is referred to as the automor-

phism group of G under P(V , C).

Remark 8. From Definition 14, we know that any automorphism over G under P(V , C)

preserves the equivalence relation specified by (V , C), i.e., {πV (v̄),∀v̄ ∈ V} = V, {πC(c̄),∀c̄ ∈

C} = C. Therefore, each automorphism can be simply represented as a pair of permutations

over V and C.

Lemma 9. Given the bipartite graph G(V,C,E) of an object, let B(G) denote the set con-

sisting of all prototype classes of G. Define the characteristic polynomial h(X;G) of object

G as follows:

h(X;G) =
∑

P(V,C)∈B(G)

|V|!|C|!
|Aut(G|V , C)|

(
κ

|V|

)(
γ

|C|

)
h(X;G|V , C), (4.14)

where Aut(G|V , C) denotes the automorphism group of the bipartite graph G under prototype

class P(V , C). Then, [h(X;G)]0 is exactly the expected number of active prototype of object

G.

Proof. There are |V|!|C|!
(
κ
|V|

)(
γ
|C|

)
assignments on indices of nodes in G in the base matrix

that satisfy the equivalence relation specified by (V , C). Among these assignments, each one

has been counted exactly |Aut(G|V , C)| times. Therefore, the cardinality of the prototype

class P(V , C) is exactly |V|!|C|!
|Aut(G|V,C)|

(
κ
|V|

)(
γ
|C|

)
.

For any prototype P of G, define a Bernoulli random variable XP , where P [XP = 1] =

P [P is active], P [XP = 0] = P [P is not active]. Let X = ∑
P XP denotes the summation of

XP over all possible prototypes of G. Then,
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(a) Prototype class 1. (b) Prototype class 2. (c) Prototype class 3. (d) Prototype class 4.

Figure 4.7: The 4 prototype classes of 2 concatenated cycles-6 and their corresponding
topologies.

E [X] =
∑
P

E [XP ]

=
∑

P(V,C)∈B(G)

∑
P∈P(V,C)

E [XP ]

=
∑

P(V,C)∈B(G)

∑
P∈P(V,C)

P [XP = 1]

=
∑

P(V,C)∈B(G)

∑
P∈P(V,C)

[h(X;G|V , C)]0

=
∑

P(V,C)∈B(G)

|V|!|C|!
|Aut(G|V , C)|

(
κ

|V|

)(
γ

|C|

)
[h(X;G|V , C)]0

= [h(X;G)]0 .

(4.15)

Thus, the lemma is proved.

Example 19. Suppose γ ∈ {3, 4}. Take the graph G of two concatenated cycles-6 as an

example; there are 4 different possible prototype classes (Vi, Ci), 1 ≤ i ≤ 4, as shown in

Fig. 4.7. The automorphism groups corresponding to the 4 prototype classes, denote by
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|Aut(G|Vi, Ci)|, 1 ≤ i ≤ 4, respectively, are:

Aut(G|V1, C1) = {e, (v1v2), (c2c3), (v1v2)(c1c3)},

Aut(G|V2, C2) = {e, (v1v2)(c2c3), (v3v4)(c2c3), (v1v2)(v3v4)},

Aut(G|V3, C3) = {e, (v1v2)(c2c4)},

Aut(G|V4, C4) = {e, (v1v2)(v3v4)(c2c4)},

(4.16)

where the element e in these groups is the identity element (no permutations). Therefore,

the cardinality of the automorphism groups corresponding to the 4 prototype classes are

|Aut(G|V1, C1)| = 4, |Aut(G|V2, C2)| = 4, |Aut(G|V3, C3)| = 2, and |Aut(G|V4, C4)| = 2,

respectively. Moreover, the characteristic polynomials for G corresponding to each prototype

class are:

h(X;G|V1, C1) =f(X1X2)f(X−1
1 X−1

2 )f(X1X
−1
2 )f(X−1

1 X2)f(X1)f(X−1
1 )f(X2)f(X−1

2 ),

h(X;G|V3, C3) =f(X1X2)f(X−1
1 X−1

2 )f(X−1
1 X2)f 2(X1)f(X−1

1 )f(X2)f 2(X−1
2 ),

h(X;G|V2, C2) =h(X;G|V4, C4) = f(X1X2)f(X−1
1 X−1

2 )f 2(X1)f 2(X−1
1 )f 2(X2)f 2(X−1

2 ).

(4.17)

According to Lemma 9, when γ = 3, the characteristic polynomial h(X;G) is derived as

follows:

h(X;G)

= κ!γ!
4(κ− 3)!(γ − 3)!f(X1X2)f(X−1

1 X−1
2 )f(X1X

−1
2 )f(X−1

1 X2)f(X1)f(X−1
1 )f(X2)f(X−1

2 )

+ κ!γ!
4(κ− 4)!(γ − 3)!f(X1X2)f(X−1

1 X−1
2 )f 2(X1)f 2(X−1

1 )f 2(X2)f 2(X−1
2 )

= 3κ!
2(κ− 4)!

(
f(X1X2)f(X−1

1 X−1
2 )f 2(X1)f 2(X−1

1 )f 2(X2)f 2(X−1
2 )

+ 1
κ− 3f(X1X2)f(X−1

1 X−1
2 )f(X1X

−1
2 )f(X−1

1 X2)f(X1)f(X−1
1 )f(X2)f(X−1

2 )
)
.

(4.18)
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When γ = 4, the characteristic polynomial h(X;G) is derived as follows:

h(X;G)

= κ!γ!
4(κ− 3)!(γ − 3)!f(X1X2)f(X−1

1 X−1
2 )f(X1X

−1
2 )f(X−1

1 X2)f(X1)f(X−1
1 )f(X2)f(X−1

2 )

+ κ!γ!
2(κ− 3)!(γ − 4)!f(X1X2)f(X−1

1 X−1
2 )f(X−1

1 X2)f 2(X1)f(X−1
1 )f(X2)f 2(X−1

2 )

+ κ!γ!
4(κ− 4)!(γ − 3)!f(X1X2)f(X−1

1 X−1
2 )f 2(X1)f 2(X−1

1 )f 2(X2)f 2(X−1
2 )

+ κ!γ!
2(κ− 4)!(γ − 4)!f(X1X2)f(X−1

1 X−1
2 )f 2(X1)f 2(X−1

1 )f 2(X2)f 2(X−1
2 )

= 18κ!
(κ− 4)!

(
f(X1X2)f(X−1

1 X−1
2 )f 2(X1)f 2(X−1

1 )f 2(X2)f 2(X−1
2 )

+ 2
3(κ− 3)f(X1X2)f(X−1

1 X−1
2 )f(X−1

1 X2)f 2(X1)f(X−1
1 )f(X2)f 2(X−1

2 )

+ 1
3(κ− 3)f(X1X2)f(X−1

1 X−1
2 )f(X1X

−1
2 )f(X−1

1 X2)f(X1)f(X−1
1 )f(X2)f(X−1

2 )
)
.

(4.19)

Remark 9. Observe that in Example 19, the number of assignments such that all edges are

distinct dominates among all the cases, especially when κ is large enough; we refer to such

dominant assignments as the typical assignments. Therefore, it is normally sufficiently

accurate to optimize over the characteristic polynomial corresponding to the typical assign-

ments only. Specifically, for 2 concatenated cycles of length 2i and 2j, suppose the number

of edges in common is 2k. Then, the characteristic polynomial can be well approximated

by h̃(X;G) = Cfk(X1X2)fk(X−1
1 X−1

2 )f i−k(X1)f i−k(X−1
1 )f j−k(X2)f j−k(X−1

2 ) for some con-

stant C ∈ N.

4.4.2 Gradient-Descent Distributor

Theorem 8. Given the bipartite graph G(V,C,E) of an object and the prototype class

P(V , C). Suppose E(V , C) is the equivalence class induced by V and C. Let (v)t be the t-

th entry of the vector v. Following the notation in Lemma 8, the gradient of [h(X;G|V , C)]0
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with respect to p is given by:

(∇p [h(X;G|V , C)]0)t =
∑
ē∈E

∏
s∈S

X
at
∑

e∈ē δe,s
s

∏
ē′∈E\{ē}

f

∏
e∈ē′

∏
s∈S

Xδe,s
s


0

. (4.20)

Proof. We obtain the gradient with respect to p as follows:

(∇ph(X;G|V , C))t

=
∑
ē∈E

(
∇pf

(∏
e∈ē

∏
s∈S

Xδe,s
s

))
t

∏
ē′∈E\{ē}

f

∏
e∈ē′

∏
s∈S

Xδe,s
s


=
∑
ē∈E

(
∇pf

(∏
s∈S

∏
e∈ē

Xδe,s
s

))
t

∏
ē′∈E\{ē}

f

∏
e∈ē′

∏
s∈S

Xδe,s
s


=
∑
ē∈E

(
∇pf

(∏
s∈S

X

∑
e∈ē δe,s

s

))
t

∏
ē′∈E\{ē}

f

∏
e∈ē′

∏
s∈S

Xδe,s
s


=
∑
ē∈E

∏
s∈S

X
at
∑

e∈ē δe,s
s

∏
ē′∈E\{ē}

f

∏
e∈ē′

∏
s∈S

Xδe,s
s

 .

(4.21)

Therefore,

(∇p [h(X;G|V , C)]0)t =
[
(∇ph(X;G|V , C))t

]
0

=
∑
ē∈E

∏
s∈S

X
at
∑

e∈ē δe,s
s

∏
ē′∈E\{ē}

f

∏
e∈ē′

∏
s∈S

Xδe,s
s


0

.
(4.22)

Provided the explicit expression of h(X;G) and its gradient, one can easily apply the

gradient-descent algorithm to obtain an edge distribution that locally minimizes the expected

number of active prototypes of the object specified by G. In Example 20 and Example 21,

we apply GRADE to two concatenated cycles-8 as shown in Fig. 4.8, under any prototype

class P(V , C) such that V and C induce no equivalent edges in E. Denote by P8−8(a,p|V , C)

the probability that a prototype of this object becomes active after partitioning in an SC
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Figure 4.8: The targeted object consisting of two concatenated cycle-8 in Example 20 and
Example 21.

ensemble with coupling pattern a and edge distribution p.

Example 20. Consider the following three cases of SC ensembles with m = 6:

1. Full-memory codes with uniform edge distribution: mt = m = 6, a = (0, 1, . . . , 6) and

p = 1
717. Then, P8−8(a,p|V , C) = 0.0049;

2. Full-memory codes with distribution obtained from GRADE: mt = m = 6, a =

(0, 1, . . . , 6) and p = (0.2991, 0.0899, 0.0749, 0.0733, 0.0749, 0.0896, 0.2984). Then,

P8−8(a,p|V , C) = 0.0032;

3. Non-full-memory codes with distribution obtained from GRADE:mt = 3, a = (0, 1, 4, 6)

and p = (0.2604, 0.2063, 0.2219, 0.3114). Then, P8−8(a,p|V , C) = 0.0035.

Example 21. Consider the following three cases of SC ensembles with m = 9:

1. Full-memory codes with uniform edge distribution: mt = m = 9, a = (0, 1, . . . , 9) and

p = 1
10110. Then, P8−8(a,p|V , C) = 0.0024;

2. Full-memory codes with distribution obtained from GRADE: mt = m = 9, a =

(0, 1, . . . , 9) and p = (0.2648, 0.0803, 0.0509, 0.0526, 0.0519, 0.0519, 0.0525, 0.0508, 0.0801,

0.2644). Then, P8−8(a,p|V , C) = 0.0015;

3. Non-full-memory codes with distribution obtained from GRADE:mt = 4, a = (0, 1, 4, 7,

9) and p = (0.2479, 0.1799, 0.1262, 0.1645, 0.2814). Then, P8−8(a,p|V , C) = 0.0016.
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Remark 10. In contrast to what we have shown regarding applying GRADE to single cycles,

the gains obtained from applying GRADE to concatenated cycles are much more evident. As

shown in Example 20 and Example 21, for m = 6 and m = 9, the local minima obtained

for full memory codes are quite close to the gains obtained for codes with coupling patterns

(0, 1, 4, 6) and (0, 1, 4, 7, 9), respectively (referred to as topologically-coupled (TC) codes

later on). We show next in Section 4.5 and Section 4.6 that TC codes have close performance

to GD codes with full-memories, where both are obtained from applying GRADE-AO followed

by CPO to concatenated cycles.

Remark 11. Note that although we focus on non-tail-biting SC codes throughout this chapter,

this condition is by no means necessary. To extend our method to tail-biting codes, one just

needs to change the cycle condition in (5.9) from “∑g
k=1 P(ik, jk) = ∑g

k=1 P(ik, jk+1)” to

“∑g
k=1 P(ik, jk) ≡

∑g
k=1 P(ik, jk+1) mod L”. If L > m + 1, which is the typical case, the

resultant optimal distribution is still very likely to be nonuniform because of the asymmetry

among components indexed by {0, 1, . . . ,m}. This fact is important since while constructing

non-tail-biting codes with large κ and m, a large L is typically desired due to the notable rate

loss resulting from a small L. However, in certain practical applications, codes are typically

of moderate length, which implies that a moderate L is desirable. In such situations where

κ and m are large, tail-biting codes do not suffer the same rate loss, and they can offer high

error floor performance despite limiting the gain obtained from threshold saturation.

4.5 Algorithmic Optimization

We have developed the theory and the algorithm to obtain edge distributions that locally

minimize the number of short cycles in Section 4.3.2 and generalized the results from cycles

to arbitrary objects in Section 4.4.2. In this section, we investigate algorithmic optimizers

(AO) that search for excellent partitioning matrices under the guidance of GRADE. In

particular, the edge distribution popt obtained through GRADE confines the search space to
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only contain matrices that have edge distributions near popt.

We discuss both heuristic AOs based on semi-greedy algorithms and globally-optimal AOs

based on variations of the OO technique proposed in [40, 41]. The heuristic AOs require low

computational complexity and are applicable to arbitrary objects and any code parameters,

but are only locally optimal. The OO-based AOs obtain the globally-optimal solutions, but

currently only work on short cycles in SC codes with small pseudo-memories; we refer to

these codes as topologically-coupled (TC) codes. The reason behind the nomenclature

“TC codes” is the topological degrees of freedom they offer the code designer via the selection

of the non-zero component matrices.

4.5.1 Heuristic AO

In this subsection, we consider AOs that are based on heuristic methods. In this case, our

proposed GRADE algorithm obtains an edge distribution to guide the AO. Starting from a

random partitioning matrix P with the derived distribution, one can perform a semi-greedy

algorithm that searches for partitioning matrix near the initial P that locally minimizes

the number of targeted objects. Constraining the search space to contain P’s that have

distributions within small L1 and L∞ distances from that of the original P, and adopting the

CPO next, significantly reduces the computational complexity to find a strong high-memory

code. GRADE-guided heuristic AO has advantages in two aspects: 1) low complexity by

reduced search space, and 2) higher probability of arriving at superior solution by providing

a good enough initialization to AO that can avoid undesirable local minima.

Cycle-Based Optimization

Based on the GRADE specified in Algorithm 4, we first present in Algorithm 5 a corre-

sponding AO that focuses on minimizing the weighted sum of the number of cycles-6 and

cycles-8. We refer to codes obtained from GRADE-AO as gradient-descent (GD) codes.

By replacing the initial distribution p with the uniform distribution, we obtain the so-called
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Algorithm 5 Cycle-Based GRADE-A Optimizer (AO)
Inputs:

γ, κ,m,mt, a: parameters of an SC ensemble;
p: edge distribution obtained from Algorithm 4;
w: weight of each cycle-6 assuming that of a cycle-8 is 1;
d1, d2: parameters indicating the size of the search space;

Outputs:
P: a locally optimal partitioning matrix;

1: Obtain the lists L6(i, j), L8(i, j) of cycles-6 candidates and cycle-8 candidates in the base
matrix that contain node (i, j), 1 ≤ i ≤ γ, 1 ≤ j ≤ κ;

2: Obtain u = arg minx∈{0,1,...,γκ}m+1,||x||1=γκ || 1
γκ

x− p||2;
3: for i ∈ {0, 1, . . . ,m} do
4: Place u [i+ 1] i’s into P randomly;
5: end for
6: d← 0m+1;
7: noptimal← False;
8: for i ∈ {1, 2, . . . , γ}, j ∈ {1, 2, . . . , κ} do
9: n6 ← |L6(i, j)|, n8 ← |L8(i, j)|, n← wn6 + n8;
10: for v ∈ {0, 1, . . . ,m} do
11: d′ = d, d′ [v + 1]← d′ [v + 1] + 1, p← P(i, j);
12: if ||d′||1 ≤ d1 and ||d′||∞ ≤ d2 then
13: P(i, j)← v;
14: t6 ← |L6(i, j)|, t8 ← |L8(i, j)|, t← wt6 + t8;
15: if t < n then
16: noptimal← True, n← t, d← d′, P(i, j)← v;
17: end if
18: end if
19: end for
20: end for
21: if noptimal then
22: goto step 6;
23: end if
24: return P;
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Figure 4.9: Type 1–3 paths mentioned in Algorithm 6: L1(i, j1, j2), L2(i1, i2, j1, j2), and
L3(i3, i4, j1, j2), 1 ≤ j1 < j2 ≤ κ, 1 ≤ i, i1, i2, i3, i4 ≤ γ, i1 6= i2.

uniform (UNF) codes. In the special cases where the SC codes are not of full memory,

i.e., the pseudo-memory is not identical with the memory, we refer to the codes obtained

from GRADE-AO as topologically-coupled (TC) codes. We show in Section 4.6 by sim-

ulation that the distribution obtained by GRADE results in constructions that are better

than those adopting uniform distribution and in existing literature.

Finer-Grained Optimization

We next develop a finer-grained optimizer in Algorithm 6, in which the targeted objects are

two concatenated cycles where each of them is a cycle-6 or a cycle-8, as discussed in the

examples of Section 4.4.2. The critical part of the algorithm is enumerating all the objects

of interest efficiently. Since we focus on concatenated cycles of length 6 or 8, the key idea is

to characterize concatenated cycles by the positions of the two degree 3 VNs and the three

paths connecting them. Here, we only consider objects that are elementary ASs. We call a

path P = v1-c1-v2-· · · -cl-vl+1 a type-l path connecting (c1, v1) and (cl, vl+1) and denote it by

L(P) = l. Paths of type-1, type-2, and type-3 are shown in Fig. 4.9. Each concatenation

of two cycles can be referred to as an i-j-k object, where i, j, k are the types of the three

paths connecting the degree 3 nodes in this object. Our targeted objects, where each of the

two cycles is either a cycle-6 or a cycle-8, can only be 2-1-2, 2-1-3, 2-2-2, or 3-1-3 objects.

Steps 1-5 in Algorithm 6 are aimed at listing the paths of type 1–3, and all the possible
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combinations of indices of the beginning and the ending CNs on each path.

Remark 12. Note that in the finer-grained optimization, the condition of a concatenated-

cycle pair in the protograph becoming a pair of concatenated cycles in the Tanner graph after

lifting is that the two cycle candidates contained in this prototype all satisfy the cycle condi-

tion on lifting parameters specified in Lemma 4. Therefore, after applying AO to minimize

the number of concatenated-cycle pairs, instead of using the original CPO designed for cycle

optimization in [81], we adopt a modified version that is tailored for optimization over the

number of pairs of concatenated cycles accordingly.

In a way similar to what we have done with approaches eliminating cycles, we define GD

codes, UNF codes, and TC codes here. Moreover, as shown in Section 4.4.2, the expected

number of concatenated-cycle pairs in GD codes (with full memories) is close to that of

GD-TC codes with carefully chosen pseudo-memories and coupling patterns.2 In particular,

memory 6 GD ensembles can be approximated by GD-TC ensembles with pseudo-memory 3

and coupling pattern (0, 1, 4, 6); memory 9 GD ensembles can be approximated by GD-TC

ensembles with pseudo-memory 4 and coupling pattern (0, 1, 4, 7, 9). This leads to the con-

jecture that the performance of GD-TC codes and the performance of GD codes are quite

close, which is somewhat surprising provided that they differ a lot in edge distribution, and

the impact of concatenated cycles on waterfall performance is not strictly characterized. In

Section 4.6.2, Monte-Carlo simulations support our conjecture, which enables more possi-

bilities in TC codes. For example, TC codes can be globally-optimized given that their

pseudo-memories are low; details will be discussed later on in Section 4.5.2.

4.5.2 Globally-Optimal AO

In this subsection, we explore globally-optimal constructions of TC codes with small pseudo-

memories. The motivation behind this task is to construct an SC code with memory m

2We refer to the prototype of a pair of concatenated cycles as a concatenated-cycle pair.
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Algorithm 6 Fine-Grained GRADE-A Optimizer (AO)
Inputs:

γ, κ,m,mt, a: parameters of an SC code with full memory;
p: edge distribution obtained from Algorithm 4;
w = (w1, w2, w3, w4): the weights of 2-1-2, 2-1-3, 2-2-2, 3-1-3 objects, respectively.
d1, d2: parameters indicating the size of the search space;

Outputs:
P: a locally optimal partitioning matrix;

1: Obtain the lists L1(i, j1, j2), L2(i1, i2, j1, j2), and L3(i3, i4, j1, j2), 1 ≤ j1 < j2 ≤ κ,
1 ≤ i, i1, i2, i3, i4 ≤ γ, i1 6= i2, where the lists are specified as follows:
a) L1(i, j1, j2): all type-1 paths connecting (i, j1) and (i, j2) in the base matrix;
b) L2(i1, i2, j1, j2): all type-2 paths connecting (i1, j1) and (i2, j2) in the base matrix;
c) L3(i3, i4, j1, j2): all type-3 paths connecting (i3, j1) and (i4, j2) in the base matrix;

2: I212 ← {(i, i1, i2, i3, i4) : 1 ≤ i, i1, i2, i3, i4 ≤ γ, i1 < i3, i1 6= i2, i3 6= i4};
3: I213 ← {(i, i1, i2, i3, i4) : 1 ≤ i, i1, i2, i3, i4 ≤ γ, i1 6= i2};
4: I222 ← {(i1, i2, i3, i4, i5, i6) : 1 ≤ i1, i2, i3, i4, i5, i6 ≤ γ, i1 < i3 < i5, i1 6= i2, i3 6= i4, i5 6=
i6};

5: I313 ← {(i, i1, i2, i3, i4) : 1 ≤ i, i1, i2, i3, i4 ≤ γ, i1 < i3};
6: Obtain u = arg minx∈{0,1,2,...,γκ}m+1,||x||1=γκ || 1

γκ
x− p||2;

7: for i ∈ {0, 1, . . . ,m} do
8: Place u [i+ 1] i’s into P randomly;
9: end for
10: d← 0m+1;
11: n←M ; //M is some very large constant
12: noptimal← False;
13: for i ∈ {1, 2, . . . , γ}, j ∈ {1, 2, . . . , κ} do
14: for v ∈ {0, 1, . . . ,m} do
15: d′ = d, d′ [v + 1]← d′ [v + 1] + 1, p← P(i, j);
16: if ||d′||1 ≤ d1 and ||d′||∞ ≤ d2 then
17: P(i, j)← v;
18: for 1 ≤ j1 < j2 ≤ κ, 1 ≤ i0, i1, i2, i3, i4 ≤ γ, i1 6= i2 do
19: v1,l(i0, j1, j2)← |{P|L(P ; P) = l,P ∈ L1(i0, j1, j2)}|, −m ≤ l ≤ m;
20: v2,l(i1, i2, j1, j2)← |{P|L(P ; P) = l,P ∈ L2(i1, i2, j1, j2)}|, −2m ≤ l ≤ 2m;
21: v3,l(i3, i4, j1, j2)← |{P|L(P ; P) = l,P ∈ L3(i3, i4, j1, j2)}|, −m ≤ l ≤ m;
22: end for
23: t212 ←

∑
1≤j1<j2≤κ

∑
(i0,i1,i2,i3,i4)∈I212

∑
−m≤l≤m

v1,l(i0, j1, j2)v2,l(i1, i2, j1, j2)v2,l(i3, i4, j1, j2);
24: t213 ←

∑
1≤j1<j2≤κ

∑
(i0,i1,i2,i3,i4)∈I213

∑
−m≤l≤m

v1,l(i0, j1, j2)v2,l(i1, i2, j1, j2)v3,l(i3, i4, j1, j2);
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25: t222 ←
∑

1≤j1<j2≤κ
∑

(i1,i2,i3,i4,i5,i6)∈I222

∑
−2m≤l≤2m

v2,l(i1, i2, j1, j2)v2,l(i3, i4, j1, j2)v2,l(i5, i6, j1, j2);
26: t313 ←

∑
1≤j1<j2≤κ

∑
(i0,i1,i2,i3,i4)∈I313

∑
−m≤l≤m

v1,l(i0, j1, j2)v3,l(i1, i2, j1, j2)v3,l(i3, i4, j1, j2);
27: t← w1t212 + w2t213 + w3t222 + w4t313;
28: if t < n then
29: noptimal← True, n← t, d← d′, P(i, j)← v;
30: end if
31: end if
32: end for
33: end for
34: if noptimal then
35: goto step 11;
36: end if
37: return P;

under the same computational complexity needed to construct a full memory mt code, where

mt < m. Given mt and m, we first find the optimal a, in terms of the minimum number

of prototypes of interest, with length mt + 1 in a brute-force manner. Taking m = 4 and

mt = 2 as an example, the optimal coupling pattern with respect to the number of cycles

is a = (0, 1, 4) and the corresponding optimal distribution is almost uniform. Moreover, we

already know from Section 4.4.2 that regarding the optimal coupling pattern with respect to

the number of concatenated-cycle pairs, a = (0, 1, 4, 6) and a = (0, 1, 4, 7, 9) are not only the

optimal coupling patterns for (m,mt) = (6, 3) and (m,mt) = (9, 4), respectively, but also

approximate the optimal full memory GD ensembles quite closely in terms of performance.

Given the optimal coupling pattern a, we then obtain an optimal partitioning matrix by

the OO method proposed in [40] and [41]. We extend the OO method for memory m0 SC

codes to any TC code with pseudo-memorymt = m0, which does not increase the complexity

of the approach. Note that despite the current OO works only on cycles, future steps can

be taken towards the extension of OO into concatenated cycles, which has potential to lead

to TC codes with excellent performance that is even better than the GD codes with full

memories, provided that it is much harder to obtain globally-optimal solutions for GD codes

with full memories.
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Optimal TC codes with pseudo-memory mt have strictly fewer cycle candidates in their

protographs than optimal SC codes with full memory m = mt. Take m = 4 and mt = 2 as

an example. Suppose the optimal SC code has the partition Π = HP
0 + HP

1 + HP
2 . Consider

the TC code with partition Π = HP
0 + HP

1 + HP
4 such that HP

2 = HP
4 . Then, any cycle-6

candidate resulting from a cycle candidate in the base matrix assigned with 0-1-0-1-2-0, 1-2-

1-2-2-0, or 0-1-2-1-x-x, x ∈ {0, 1, 2}, in P no longer has a counterpart in the TC code, since

by replacing 2’s with 4’s, assignments 0-1-0-1-4-0, 1-4-1-4-4-0, and 0-1-4-1-x-x, x ∈ {0, 1, 4},

no longer satisfy the cycle condition in Lemma 4. Moreover, there exists a bijection between

the remaining candidates in the SC code and all candidates in the TC code through the

replacement of 2’s with 4’s.

Fig. 4.10 presents part of the protograph of a TC code with coupling pattern (0, 1, 4)

and that of its corresponding SC code with full memory 2. The cycle-6 candidate colored

by blue is assigned with 0-1-2-1-1-1 in the SC code, which satisfies the cycle condition cycle

candidates are generated in the protograph. However, the assignment becomes 0-1-4-1-1-1

in the TC code, which no longer satisfies the cycle condition and no cycle candidates are

generated in the protograph. The cycle-6 candidate colored by green corresponds to one

that results in cycle-6 candidates in both the SC and the TC codes shown in the figure. We

also marked out a cycle-8 candidate (colored by red) that only leads to cycle candidates in

the SC code.

According to the aforementioned discussion, TC codes are better (have less cycles) than

SC codes with the same circulant size and m = mt. In Section 4.6, we present simulation

results of such codes and show that they can also outperform SC codes with the same

constraint length (larger circulant size) and m = mt.

4.6 Simulation Results

In this section, we show the frame error rate/uncorrectable bit error rate (FER/UBER)

curves of seven groups of SC codes designed by the GRADE-AO methods presented in Sec-
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Figure 4.10: The first 5 replicas of the protograph of a TC code with coupling pattern
(0, 1, 4) (the right panel), and the first 3 replicas of the protograph of its corresponding SC
code with memomry 2 (the left panel). Three cycle candidates (colored by green, blue, and
red, respectively) in the base matrix and their corresponding paths in the two protographs
are marked out.

tion 4.5, with respect to raw bit error rate/signal-to-noise ratio (RBER/SNR). We demon-

strate that codes constructed by the GRADE-AO methods offer significant performance

gains compared with codes with uniform edge distributions and codes constructed through

purely algorithmic methods.

4.6.1 Optimization over Cycles

In this subsection, we simulate codes constructed based on optimizing the number of cycles

using GRADE-AO specified in Section 4.3 on the AWGN channel. Out of these three plots,

Fig. 4.11 and Fig. 4.12 compare GD codes with UNF codes designed as in Section 4.5.1.

Fig. 4.13 compares a TC code designed as in Section 4.5.2 with optimal SC codes con-

structed through the OO-CPO method proposed in [40]. The GD/UNF codes have param-

eters (γ, κ,m, z, L) = (3, 7, 5, 13, 100), (3, 17, 9, 7, 100), and (4, 29, 19, 29, 20), respectively.

The TC code has parameters (γ, κ,mt, z, L) = (4, 17, 2, 17, 50) with the coupling pattern

a = (0, 1, 4). For a fair comparison, we have selected two SC codes: one with a similar
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Table 4.1: Statistics of the Number of Cycles
(γ, κ) Code Cycles-6 Cycles-8

(3, 7) GD 0 0
UNF 0 6,292

(3, 17)
GD 0 397,880
UNF 0 559,902

Battaglioni et al.[45] 0 451,337

(4, 29) GD 0 528,090
UNF 0 1,087,268

(4, 17)
TC 15,436 -

SC (matched constraint length) 19,180 -
SC (matched circulant size) 74,579 -

constraint length (m + 1)z and the other with an identical circulant power z. To ensure

that the SC codes and the TC code have close rates and codelengths, the two SC codes have

parameters (γ, κ,m, z, L) = (4, 17, 2, 28, 30) and (4, 17, 2, 17, 50), respectively. The statistics

regarding the number of cycles of each code are presented in Table 4.1.

Fig. 4.11 shows FER curves of our GD/UNF comparisons with (γ, κ) = (3, 7) and (3, 17).

The partitioning matrices and the lifting matrices of the codes are specified in Section 4.6.3.

When γ = 3, cycles-6 are easily removed by the CPO. Therefore, we perform joint optimiza-

tion on the number of cycles-6 and cycles-8 candidates by assigning different weights to cycle

candidates in Algorithm 5. We observe a performance gain for the GD code with respect to

the UNF code in both the waterfall region and the error floor region. Moreover, the number

of cycles-8 in the (3, 17) GD code is reduced by 29% and 12% compared with the UNF code

and the code constructed by Battaglioni et al. in [45], respectively. In addition, the (3, 17)

GD code has no weight-6 absorbing sets (ASs) and 133 weight-7 ASs, whereas the UNF code

has 6 weight-6 ASs and 361 weight-7 ASs. As for the (3, 7) codes, all cycles-6 and cycles-8

are removed. Thus, the gain of the GD code compared with the UNF code exceeds the gain

observed in the (3, 17) codes.

Fig. 4.12 shows FER curves of the GD/UNF comparison with (γ, κ) = (4, 29). The

partitioning matrices and the lifting matrices of the codes are specified in Section 4.6.3.
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Figure 4.11: FER curves of GD/UNF codes with γ = 3 in the AWGN channel.

Cycles-6 in the GD code and the UNF code are both removed, and the number of cycles-8

in the GD code demonstrates a 51.4% reduction from the count observed in the UNF code.

It is worth mentioning that both codes have no ASs of weights up to 8, which is reflected

in their FER curves via the sharp waterfall regions and the non-existing error floor regions.

The FER of the GD/UNF codes decreases with a rate exceeding 12 orders of magnitude per

0.5 dB signal-to-noise ratio (SNR) increase. Moreover, the GD code has a significant gain

of about 0.25 dB over the UNF code.

Fig. 4.13 shows the FER curves of the TC/SC codes with (γ, κ) = (4, 17). The partition-

ing matrices and the lifting matrices of the codes are specified in Section 4.6.3. The number

of cycles-6 in the (4, 17) TC code demonstrates a 79% and a 20% reduction from the counts

observed in the SC codes with a matched constraint length and a matched circulant size,

respectively. Moreover, the TC code has no weight-6 nor weight-8 ASs. It is shown that the

TC code outperforms the optimal SC code with a matched constraint length, and that the

gain is of greater magnitude when compared with the SC code of identical circulant size.
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Figure 4.12: FER curves of GD/UNF codes with (γ, κ) = (4, 29) in the AWGN channel.

Remark 13. Note that although TC codes have higher memories and thus larger constraint

lengths than SC codes of matched circulant sizes, they possess the same number of nonzero

component matrices, and thus the same degrees of freedom in construction. This fact makes

TC codes even more promising if we can devise for them windowed decoding algorithms with

window sizes that are comparable to the corresponding SC codes of matched circulant sizes.

4.6.2 Optimization over Concatenated Cycles

In this subsection, we simulate codes constructed based on minimizing the number of concatenated-

cycle pairs using the GRADE-AO specified in Section 4.4 and Section 4.5.1. We compare

GD/UNF codes with m = 6 in addition to TC codes with mt = 3 and a = (0, 1, 4, 6) on the

binary symmetric channel (BSC), Flash channel, and magnetic recording channel. There

are two groups of GD/TC/UNF codes that have parameters (γ, κ,m, z, L) = (4, 24, 6, 17, 40)

and (4, 20, 6, 13, 20), respectively. The statistics regarding the number of cycles of each code

are presented in Table 4.2.
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Figure 4.13: FER curves of TC/SC codes with (γ, κ) = (4, 17) in the AWGN channel.

Table 4.2: Statistics of the Number of Concatenated Cycles
(γ, κ) Code Cycles-6 2-1-2 2-2-2 2-1-3 3-1-3

Objects Objects Objects Objects

(4, 24) (NLM)
GD 4,794 1,751 807,534 1,162,035 125,869,717
TC 4,352 4,301 816,816 1,125,400 126,903,436
UNF 11,713 7,293 1,308,762 2,615,297 208,425,933

(4, 24) (BSC)
GD 4,794 1,802 822,120 1,212,100 126,514,918
TC 4,403 4,097 807,534 1,139,000 126,434,525
UNF 11,713 7,293 1,308,762 2,615,297 208,425,933

(4, 20)
GD 2,171 338 178,334 238,160 19,638,372
TC 2,665 1,404 178,828 262,509 20,571,499
UNF 2,444 2,860 287,014 540,865 34,362,393
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Figure 4.14: UBER curves of GD/TC/UNF codes with (γ, κ) = (4, 24) in the NLM channel.

Fig. 4.14 shows UBER curves of the GD/TC/UNF codes with (γ, κ) = (4, 24) on a Flash

channel.3 The Flash channel used in this section is a practical, asymmetric Flash channel,

which is the normal-Laplace mixture (NLM) Flash channel [84]. In the NLM channel, the

threshold voltage distribution of sub-20nm multi-level cell (MLC) Flash memories is carefully

modeled. The four levels are modeled as different NLM distributions, incorporating several

sources of error due to wear-out effects, e.g., programming/erasing problems, thereby re-

sulting in significant asymmetry. Furthermore, the authors of [84] provided accurate fitting

results of their model for program/erase (P/E) cycles up to 10 times the manufacturer’s

endurance specification (up to 30,000 P/E cycles). We implemented the NLM channel based

on the parameters described in [84]. Here, we use 3 threshold voltage reads, and the sector

size is 512 bytes. For decoding, we use a finite-precision (FP) fast Fourier transform based

q-ary sum-product algorithm (FFT-QSPA) LDPC decoder [85]. The decoder performs a
3Note that although we only provide simulation results on some typical channels for brevity in this chapter,

our approach is generally applicable to many other channels, such as the ones underlying three-dimensional
cross point (3D XPoint) [36] and two-dimensional magnetic recording (TDMR) [83] systems.

129



maximum of 50 iterations, and it stops if a codeword is reached sooner.

The partitioning matrices and the lifting matrices of the codes are specified in Sec-

tion 4.6.3. The non-binary edge weights are set as in [86] and [87]. The codes can be further

optimized by applying the more advanced WCM framework presented in [72] and [73]. The

first row of Table 4.2 shows the statistics of unlabeled cycles and concatenated cycles in each

code. The number of objects in GD/TC codes are reduced by around 40% compared with

the UNF code. No error floors are observed in any one of the UBER curves. The UBER of

the GD/TC codes decreases with a rate exceeding 14 orders of magnitude per 0.01 RBER

decrease. Moreover, the GD/TC codes have a significant gain of about 2 orders of magnitude

over the UNF code at RBER 0.0235. It worths mentioning that the UBER curves of the

GD/TC codes nearly overlap, which is in accordance with the closeness of the statistics of

objects in them.

While NB codes are adopted in the simulations over the NLM channel, independent

coding are more widely applied in practical Flash solutions in order to preserve high access

speed. Therefore, we next present in Fig. 4.15 the UBER curves of the GD/TC/UNF codes

with (γ, κ) = (4, 24) on the BSC, as a simplified model of single-level cell (SLC) channel

with 1 threshold voltage read.

While partitioning matrices of the (4, 24) NB codes constructed for the NLM channels

are adopted as they are here, we have modified the lifting parameters slightly in order to

remove all unlabeled ASs with weights less than or equal to 7 in the GD/TC codes: this

is achieved by changing one entry in each lifting matrix. The new lifting matrices of the

GD/TC codes are specified in Section 4.6.3. According to Table 4.2, the number of objects in

the GD/TC codes has not changed dramatically, and they still demonstrate a 40% reduction

compared with the count observed in the UNF code. As shown in Fig. 4.15, the UBER

curves of GD/TC codes are still close in the early waterfall region like they are in the NLM

channel simulations; however, they start to deviate at RBER less than 0.014. The TC code

has no observed error floor in its performance curve as expected, and it has a 2 orders of
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Figure 4.15: UBER curves of GD/TC/UNF codes with (γ, κ) = (4, 24) in the BSC.

magnitude gain over the UNF code at RBER 0.013. The GD code curve surprisingly floors

despite that there are no ASs with weight less than 8 in it: error profile analysis shows that

the error floor at RBER 0.013 results from only 2 different large weight errors (one of weight

78 and another of weight 168) instead of structured small weight errors.

Remark 14. While the reason why the large weight errors observed in the error profile of

the GD code are detrimental in the BSC simulations remains unexplored and is left for future

investigation, the TC code is observed to be robust against these errors, which is specifically

intriguing. Moreover, the fact that the waterfall performance of GD/TC codes is remarkably

superior to that of UNF codes calls for an asymptotic analysis that takes edge distribution

into consideration. The significant gain achieved by TC codes substantiates the potential of

TC codes in Flash memories.

Fig. 4.16 shows FER curves of the GD/TC/UNF codes with (γ, κ) = (4, 20) on the MR

channel. The MR system adopts the partial-response (PR) channel presented in [82] and

sequence detection. This PR channel incorporates the MR channel effects: inter-symbol
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Figure 4.16: FER curves of GD/TC/UNF codes with (γ, κ) = (4, 20) in the MR channel.

interference (intrinsic memory), jitter, and electronic noise. The normalized channel density

[88, 82] is 1.4, and the PR equalization target is (8, 14, 2). The filtering units are followed

by a Bahl-Cocke-Jelinek-Raviv (BCJR) detector [89], which is based on pattern-dependent

noise prediction (PDNP) [90], and again an FP FFT-QSPA (q = 2) LDPC decoder [74]. The

number of global (detect-decoder) iterations is 10, and the number of local (decoder only)

iterations is 20. Unless a codeword is reached, the decoder performs its prescribed number

of local iterations for each global iteration. More details can be found in [82].

The partitioning matrices and the lifting matrices of the codes are specified in Sec-

tion 4.6.3. The number of targeted objects (concatenated-cycle pairs) observed in the GD

code demonstrates an approximate 40% reduction from the count observed in the UNF code.

The FER of the GD/TC codes decreases with a rate that is approximately 13 orders of mag-

nitude per 1 dB SNR increase. Moreover, the GD code has a significant gain of about 1 dB

over the UNF code at SNR 13.375 dB. These results substantiate the remarkable impact

of the GRADE-AO method in constructing SC codes with superior performance for stor-
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age devices, with potential usage in further applications including wireless communication

systems.

4.6.3 List of Partitioning Matrices and Lifting Matrices

Codes Simulated on the AWGN Channel (Fig. 4.11)

In this subsection, we specify partitioning matrices and lifting matrices for codes with γ = 3

simulated on the AWGN channel.

PGD =


2 0 5 5 0 0 4

5 5 0 0 1 1 0

0 2 4 5 5 5 0

 , LGD =


3 12 3 2 0 4 9

5 2 4 6 8 10 12

0 8 3 11 6 1 9

 . (4.23)

PUNF =


1 3 0 3 2 5 5

4 0 2 0 5 3 1

0 4 2 1 4 2 1

 , LUNF =


2 5 6 4 0 3 0

9 2 8 11 5 10 12

0 8 3 11 1 1 9

 . (4.24)

PGD =


7 8 0 9 9 9 7 0 0 2 9 9 0 3 3 7 3

9 5 9 1 0 0 9 6 4 7 2 2 4 0 0 9 8

1 1 8 0 8 8 0 9 9 6 0 0 9 9 9 0 0

 .

LGD =


0 6 0 3 0 6 0 6 6 6 4 2 0 0 6 0 0

3 2 2 6 2 3 4 0 0 0 6 1 2 5 0 1 4

5 1 0 3 6 6 6 0 1 2 3 4 5 6 0 1 2

 .
(4.25)
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PUNF =


9 2 9 4 8 8 4 6 0 3 9 3 1 2 5 8 3

3 9 8 1 0 8 4 0 5 7 7 0 4 9 5 0 3

5 6 2 9 1 0 7 2 7 1 2 7 6 0 8 1 6

 .

LUNF =


0 3 2 2 2 0 3 0 2 1 0 1 2 0 0 0 0

4 2 4 6 1 1 2 1 0 6 1 1 3 3 0 1 4

4 1 2 1 4 5 6 0 1 2 3 4 5 6 0 1 2

 .
(4.26)

Codes Simulated on the AWGN Channel (Fig. 4.12)

In this subsection, we specify partitioning matrices and lifting matrices for codes with

(γ, κ,m, z, L) = (4, 29, 19, 29, 20) simulated on the AWGN channel.

PGD =

0 0 0 19 17 17 1 11 13 5 18 10 19 13 1 6 19 8 19 0 19 0 0 0 2 17 6 19 4

19 18 18 2 0 19 19 5 3 19 9 2 9 9 3 17 6 0 2 16 12 13 8 18 16 0 17 10 0

1 14 3 16 7 1 4 19 5 0 0 16 0 0 7 19 10 19 16 18 3 18 15 3 19 8 19 1 15

16 0 14 1 11 2 15 2 19 16 18 0 19 19 19 0 0 5 1 0 9 4 19 14 7 12 0 19 1


.

LGD =

7 1 18 21 5 4 17 0 6 16 26 8 13 7 5 6 9 2 0 0 0 0 0 5 0 4 19 0 0

3 15 4 1 5 3 12 19 10 21 19 3 4 19 28 1 3 5 12 18 11 10 15 17 19 21 18 25 27

0 8 16 24 3 11 20 20 6 14 22 1 9 2 25 21 12 7 28 6 15 23 19 10 0 1 4 13 21

0 18 7 25 1 3 21 10 28 17 6 24 13 2 20 9 27 16 5 23 12 1 19 8 26 15 4 22 11


.

(4.27)
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PUNF =

0 17 3 13 1 14 4 12 4 15 10 2 17 2 18 11 17 15 11 3 13 12 13 6 2 5 14 13 14

8 0 19 19 18 8 5 18 13 6 11 3 2 4 11 3 9 15 16 7 7 12 19 16 4 9 0 13 3

14 6 12 10 12 1 17 9 7 5 16 19 1 15 5 19 6 5 15 7 0 2 3 10 15 9 6 7 11

17 14 0 2 9 18 12 1 8 11 4 4 7 10 1 8 14 8 0 16 17 16 1 0 10 18 18 10 8


.

LUNF =

12 1 1 7 14 27 4 26 25 2 0 6 15 7 24 1 1 6 17 5 13 19 2 0 11 0 0 0 1

5 2 4 22 8 5 23 1 4 18 28 1 19 17 22 6 3 3 14 9 11 13 15 3 0 2 3 25 27

23 8 2 24 3 7 1 27 6 14 21 12 9 17 5 4 12 20 28 7 7 13 2 25 18 26 5 13 21

28 18 7 4 14 3 21 10 28 17 6 24 13 2 9 8 1 26 5 23 12 1 19 8 26 15 4 22 11


.

(4.28)

Codes Simulated on the AWGN Channel (Fig. 4.13)

In this subsection, we specify partitioning matrices and lifting matrices for codes with

(γ, κ) = (4, 17) simulated on the AWGN channel.

PTC =



4 4 4 4 4 0 0 0 1 1 4 1 1 1 0 0 0

1 1 0 0 0 1 1 1 0 0 0 4 4 4 4 4 1

0 0 1 1 1 4 4 4 4 4 1 0 0 0 1 1 4

1 1 1 1 1 0 0 0 0 0 0 4 4 4 4 4 4


.

LTC =



16 7 5 15 0 2 9 2 1 3 2 7 0 12 7 13 13

0 6 4 0 10 10 12 14 9 1 11 2 7 1 16 4 13

1 8 16 7 15 6 14 5 13 3 5 3 9 11 7 0 11

0 1 2 3 4 5 6 7 8 9 1 11 9 5 4 15 16


.

(4.29)
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PSC =



2 2 2 2 2 0 0 0 1 1 2 1 1 1 0 0 0

1 1 0 0 0 1 1 1 0 0 0 2 2 2 2 2 2

0 0 1 1 1 2 2 2 2 2 1 0 0 0 1 1 1

1 1 1 1 1 0 0 0 0 0 0 2 2 2 2 2 2


.

LSC,z=17 =



5 5 12 1 7 16 10 0 0 0 14 15 1 10 7 0 10

0 2 15 0 2 9 12 14 16 1 3 5 7 9 11 13 15

1 8 16 7 15 6 16 5 13 4 12 3 12 2 10 1 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16


.

LSC,z=28 =



21 27 3 13 1 5 27 16 21 4 0 15 26 2 11 8 0

15 11 1 20 22 11 21 20 3 0 22 22 24 26 0 2 4

25 13 22 24 9 12 15 0 18 16 24 21 12 20 0 8 18

0 18 8 26 16 17 24 14 1 22 12 2 11 10 0 18 8


.

(4.30)

Codes Simulated on the NLM Channel

In this subsection, we specify partitioning matrices and lifting matrices for codes with

(γ, κ,m, z, L) = (4, 24, 6, 17, 40) simulated on the NLM channel.

PGD =



0 6 2 0 6 1 0 1 6 6 6 6 0 0 0 4 5 4 5 0 0 5 0 1

0 0 6 2 6 6 6 0 1 1 5 6 4 6 0 0 1 6 6 0 6 1 4 0

3 3 6 6 0 6 1 5 3 0 0 1 2 6 6 6 2 0 0 6 4 6 0 6

6 5 1 5 2 0 3 5 0 3 0 0 6 0 6 3 6 2 0 6 0 0 6 4


.

LGD =



16 15 1 7 8 11 14 1 5 6 16 9 12 0 5 13 1 0 3 5 15 0 0 1

9 2 8 6 8 10 10 3 5 8 5 5 7 12 9 14 15 0 2 4 6 8 10 12

0 2 6 7 15 12 4 5 13 4 7 8 11 2 1 1 8 0 8 16 9 15 11 5

0 1 2 3 3 5 6 7 14 8 14 11 12 13 14 15 16 0 1 2 3 4 11 6


.

(4.31)
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PTC =



0 1 4 6 6 1 0 1 4 6 4 6 6 6 0 6 1 1 1 0 4 0 1 0

1 6 0 6 4 6 6 0 1 6 1 6 0 0 6 0 0 6 6 4 0 1 0 4

6 6 6 0 0 0 1 4 0 0 6 1 1 4 6 4 6 4 0 4 6 6 4 0

4 0 1 1 1 6 4 6 6 0 0 1 4 4 0 1 6 0 4 6 4 4 6 6


.

LTC =



13 4 1 7 1 11 3 6 6 6 1 12 15 14 5 4 0 12 0 0 0 0 0 0

5 11 4 9 13 15 0 14 11 1 7 8 7 9 9 12 2 0 2 4 6 14 4 16

0 8 16 1 15 6 14 5 14 4 9 3 11 2 10 1 9 0 8 13 12 15 6 11

0 5 2 3 4 5 6 2 8 9 8 4 12 13 14 15 0 9 15 13 3 2 8 4


.

(4.32)

PUNF =



0 5 6 5 0 6 2 2 5 1 2 6 2 0 6 2 2 3 2 3 0 3 1 1

5 4 0 5 0 2 3 1 0 0 4 0 1 4 3 6 2 4 6 4 6 6 4 3

1 1 5 0 6 4 6 5 1 5 1 4 2 5 0 3 1 3 2 1 5 3 4 3

6 1 2 2 4 4 1 5 6 6 3 1 5 0 0 4 5 1 4 3 0 0 3 6


.

LUNF =



8 16 7 7 0 9 6 14 6 14 1 13 14 8 0 0 4 6 0 0 0 0 3 16

3 2 6 6 13 10 12 14 10 3 3 11 7 9 11 7 15 0 13 4 4 8 10 12

2 8 16 1 15 6 14 5 13 2 12 3 11 2 13 1 9 0 8 16 7 15 6 14

1 1 2 3 13 5 11 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 5 6


.

(4.33)

Codes Simulated on the BSC

In this subsection, we specify the new lifting matrices adopted for GD/TC codes with

(γ, κ,m, z, L) = (4, 24, 6, 17, 40) simulated on the BSC.
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LGD =



11 15 1 7 8 11 14 1 5 6 16 9 12 0 5 13 1 0 3 5 15 0 0 1

9 2 8 6 8 10 10 3 5 8 5 5 7 12 9 14 15 0 2 4 6 8 10 12

0 2 6 7 15 12 4 5 13 4 7 8 11 2 1 1 8 0 8 16 9 15 11 5

0 1 2 3 3 5 6 7 14 8 14 11 12 13 14 15 16 0 1 2 3 4 11 6


.

(4.34)

LTC =



13 4 1 7 1 11 3 6 6 6 1 12 15 14 5 4 0 12 0 0 0 0 0 0

5 11 4 9 13 15 0 14 11 1 7 8 7 9 9 12 2 0 2 4 6 14 4 16

0 8 16 1 15 6 14 5 14 4 9 3 11 2 10 1 9 0 8 13 12 15 6 11

0 9 2 3 4 5 6 2 8 9 8 4 12 13 14 15 0 9 15 13 3 2 8 4


.

(4.35)

Codes Simulated on the MR channel

In this subsection, we specify partitioning matrices and lifting matrices for codes with

(γ, κ,m, z, L) = (4, 20, 6, 13, 20) simulated on the MR channel.

PGD =



0 0 3 6 0 1 2 2 0 6 6 0 6 5 6 0 6 0 5 6

3 0 1 0 5 0 6 3 2 0 6 3 1 6 6 6 0 6 6 5

6 6 0 1 1 6 1 6 5 0 0 4 5 0 0 4 0 5 2 3

1 6 6 4 6 4 6 0 6 4 0 6 0 1 0 0 6 2 0 0


.

LGD =



3 5 4 8 3 11 0 2 0 1 0 9 6 9 0 0 2 2 1 1

7 2 6 6 8 4 8 1 2 6 6 4 6 7 7 7 6 8 5 10

0 7 3 11 0 7 9 1 12 0 2 10 5 0 8 3 11 7 1 9

0 5 10 2 7 12 4 11 1 6 11 5 8 7 5 10 2 7 12 4


.

(4.36)
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PTC =



6 0 0 6 0 0 4 6 0 1 6 6 6 1 6 6 0 0 1 1

1 6 4 4 4 1 1 6 4 6 0 0 0 6 0 4 6 0 4 6

4 0 6 4 1 6 1 1 4 4 4 6 0 0 1 0 1 6 6 4

0 6 4 0 6 4 6 0 6 0 1 1 4 4 6 1 6 6 0 0


.

LTC =



1 2 8 5 11 3 0 1 10 4 1 12 10 0 10 3 0 6 0 0

8 7 4 12 5 10 12 1 3 5 10 10 4 8 2 7 6 12 10 12

0 11 3 11 0 1 9 4 12 7 8 4 9 10 8 3 11 2 1 10

0 12 10 2 7 12 4 9 1 6 4 10 11 0 5 9 2 7 12 4


.

(4.37)

PUNF =



0 0 6 5 5 1 5 1 6 3 3 2 2 3 2 6 0 3 0 2

5 5 2 1 1 2 5 2 0 3 5 3 5 5 1 6 6 1 2 2

6 0 1 5 2 4 1 4 4 0 4 4 6 0 2 0 6 3 4 4

0 4 0 3 4 5 1 5 1 6 1 0 1 4 6 3 0 6 3 6


.

LUNF =



6 11 1 1 4 9 11 0 3 11 12 0 0 1 0 9 2 0 10 1

10 3 4 5 9 2 2 3 8 5 7 9 5 12 0 4 6 8 10 12

12 0 3 11 5 1 9 12 12 7 4 4 5 12 3 7 11 6 0 9

9 5 10 2 7 10 4 9 1 6 11 5 8 5 5 11 9 7 12 4


.

(4.38)

4.7 Conclusion

Discrete optimization of the constructions of spatially-coupled (SC) codes with high mem-

ories is known to be computationally expensive. Heuristic algorithms are efficient, but can

hardly guarantee the performance because of the lack of theoretical guidance. In this chap-

ter, we proposed the so-called GRADE-AO method, a probabilistic framework that efficiently

searches for locally optimal QC-SC codes with arbitrary memories. We obtained a locally

optimal edge distribution that minimizes the expected number of the most detrimental ob-

jects via gradient descent. Starting from a random partitioning matrix with the derived edge

distribution, we then applied a semi-greedy algorithm to find a locally optimal partitioning
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matrix near it. While the application of GRADE-AO in optimizing the number of short

cycles has shown noticeable gains, we focused in this chapter on minimizing the number of

more detrimental objects, the concatenated cycles. This finer-grained optimization avoids

unnecessary attention on individual cycles which are typically not problematic on their own,

especially in codes with high VN degrees and irregular codes. Simulation results show that

our proposed constructions have a significant performance gain over state-of-the-art codes;

this gain is shown to be universal in both waterfall and error floor regions, as well as on chan-

nels underlying various practical systems. Future work includes extending the framework to

other classes of underlying block codes.
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CHAPTER 5

SC-IRA Codes for Quantum Key Distribution

5.1 Introduction

Quantum key distribution (QKD), known for offering a physically secure way to effectively

share private keys that are physically random over a quantum communication channel ob-

served by an eavesdropper, has been intensely investigated [48, 49, 50, 51, 52, 53, 91, 92].

The ultimate goal of QKD is to achieve a high secure key rate (SKR) within the repeaterless

limit, namely, to extract the highest number of bits per generated entangled photon pairs [93].

Entanglement-based protocols have thus received significant attention due to their ability to

enable dense communications in high-noise environments. Furthermore, they have a tremen-

dous potential to be scaled up to multi-party networks with high security [91, 92, 54, 55].

Various entanglement bases can be adopted, including orbital angular momentum, spatial

and polarization, and energy-time basis. Energy-time entanglement-based protocols are of

particular interest owing to their ability to deliver high key rates through high-dimensional

Hilbert space [91, 94, 95] and for offering provable security. While finite key effects and se-

curity proofs against collective attacks on energy-time protocols have been well established

[96, 97, 98, 99], the energy-time entanglement based protocols are potentially able to further

achieve unconditional security through non-local Franson and conjugate-Franson interferom-

etry [92], which is critical in secure communications. Despite all their advantages, photonic

quantum communication inevitably happens under “photon-starved” conditions due to low

141



Figure 5.1: Block diagram of a time-bin QKD protocol. There are 3 steps: 1) Entangled
photon pairs are generated and sent to Alice and Bob; 2) Timestamps of the sequences are
quantized and post-selected into multi-bit data streams; 3) Error correction codes (ECCs)
are adopted to extract a common sequence from the post-selected data streams; this sequence
is used as the private key for the secure quantum communication.

state-of-the-art source/detector rates, high photon losses, noise, and lack of quantum re-

peater devices that could extend the range of coherent qubit transfer [50, 93]. The benefits

of moving towards high-dimensionality also come at the cost of increased probability of

symbol errors, resultant in a potential degradation of photon utilization.

Fig. 5.1 presents a block diagram of the major steps in an energy-time QKD protocol.

The entangled photon streams received by Alice and Bob are inevitably nonidentical due

to a variety of practical issues, including timing jitters, photon losses, and dark counts,

all of which reduce the secure key rate communicated over entangled photon pairs. Error

correction coding (ECC) has been the major mathematical tool [91, 92, 54, 55] for information

reconciliation to overcome the aforementioned transmission noise and extract the mutual

information (private key) to be shared by Alice and Bob. There are two central parameters

associated with the SKR. The first parameter is the fraction of the selected photon pairs out

of the total number of generated photon pairs. This fraction is referred to as the raw photon

efficiency (RPE), which is dependent on the modulation scheme. Second parameter is the

number of qubits carried per selected photon pairs after the encoding and decoding. This

number is referred to as the photon information efficiency (PIE), which is dependent on the

channel and the adopted ECC scheme. Strategically tuning the discretization bin widths to

include more frames containing accidental concurrent detections effectively leads to desirable
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higher RPE [91]. The adaptive modulation scheme proposed in [100] can further increase

the RPE through adaptive frame sizes (number of bins per frame). However, the gain in

RPE can be compromised by the resultant worsening channel, as it has a higher fraction of

uniformly distributed errors. The presence of a large fraction of such errors prevents existing

coding schemes such as the MLC scheme presented in [5] from sustaining a high reconciliation

efficiency achieved in the low RPE scenario. In this work, we propose ECC solutions that are

exceedingly more robust than existing schemes in combating uniform errors in the context

of the energy-time QKD transmissions.

One major coding framework considered for time-bin protocols is the “multi-level coding,

multi-stage decoding” scheme proposed by Zhou et al. [5], referred to later as the MLC

scheme. MLC encodes and decodes the bitstream at each bit layer serially and utilizes

the dependencies between bits from different layers in the same symbol. MLC scheme has

been considered for multiple works [91, 101]. Advanced coding schemes including SC codes,

IRA codes, and the more general class of multi-edge-type (MET) codes that subsumes IRA

codes have been investigated in the continuous variable (CV) QKD setting [54, 55]. SC-IRA

codes have also been studied in [56], also under the CVQKD setting. However, codes for

CVQKD are discussed under the binary input additive white Gaussian noise (BIAWGN)

channel, which is completely different from the (non-binary) channel observed in the time-

bin protocols. Therefore, coding solutions designed for CVQKD are not able to be used in

time-bin protocols focused in this paper.

While the MLC framework is effective in combating highly asymmetric errors resultant

from jitter errors, the framework is highly reliant on the dependency between the bit layers.

It is thus vulnerable to uniformly distributed errors resultant from accidental coincidences.

Unfortunately, modulation schemes with higher RPE inevitably lead to a larger number of

accidental coincidences after post-selection, which calls for ECCs that are more robust to

uniformly distributed errors to reach a better photon utilization. Unlike the MLC coding,

which is by design binary, non-binary (NB) low-density-parity-check (LDPC) codes are not
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Figure 5.2: Photon arrival time at Alice and Bob. Arrival timestamps of photons are quan-
tized into bins with a bin width 400ps and consecutive 256 (can be any other powers of 2)
bins are grouped into frames. Frames containing multi-pairs and losses are discarded such
that each selected frame has exactly one photon from Alice and from Bob. Carefully tuning
the bin width to include more accidental concurrent detections effectively leads to higher
RPE, which is nonetheless at the cost of having more uniformly distributed errors, resulting
in a lower PIE.

reliant on the dependencies between different bit layers. In this work, we develop NB-

LDPC codes tailored to be more robust than the state-of-the-art MLC scheme against errors

incurred by modulations with high RPE.

In particular, we propose non-binary spatially-coupled irregular-repeat-accumulate

(SC-IRA) codes. SC-IRA codes are high-performance codes that strategically combine two

advanced LDPC codes, the spatially-coupled (SC) codes and the irregular-repeat-accumulate

(IRA) codes. Building upon the optimization method proposed in [57], we further present

a framework that systematically constructs high-performance finite-length SC-IRA codes.

Our work Simulation results on experimental data demonstrate the superiority of our codes

relative to the MLC coding scheme, especially in the regime where RPE is higher.

5.2 System Model
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5.2.1 Major Steps and Related Measures

In this section, we first briefly introduce the QKD protocols of interest, the time-bin pro-

tocols, and the mathematical definitions of the related measures. In the modulation step

shown in Fig. 5.1, the time domain is divided into non-overlapping frames, and each frame

consists of 2M , M ≥ 1, bins of an identical length. Thus each arrival timestamp can be

represented by an M -bit symbol from the Galois field GF(2M). All the frames are subject

to post-selection. In particular, only the frames where both Alice and Bob have exactly

one detection are regarded as selected, and others are discarded. A raw data stream from

our testbed is shown in Fig. 5.2, where various cases affecting reliable communications are

annotated. The associated measure is the raw photon efficiency (RPE):

RPE = Number of selected frames
Total number of generated photon pairs . (5.1)

Photons in a selected frame are not necessarily from an entangled photon pair but might

also be two non-entangled photons that accidentally fall into the same frame. Different

modulation schemes lead to a different number of accidental concurrent pairs, resulting in

different RPEs. Fig. 5.3 presents the RPE under different combinations of bin widths and

frame sizes.

In practical implementations, the two symbols carried by photons in a selected frame can

be different due to timing jitters between entangled photons and the random offsets between

accidental concurrent photon pairs. The sequences received by Alice and Bob are divided

into groups (referred to as blocks) such that each of them consists of N (referred to as the

blocksize or as codelength) symbols. Let X, Y ∈ GF(2M)N , denote blocks recorded by Alice

and Bob, respectively. Then, Y is a noisy version of X. Bob is able to retrieve X from Y

and a parity sequence HX sent from Alice through ECCs by regarding H ∈ GF(2M)K×N

as a parity check matrix of some linear block code. The rate R = M ×K/N (bits/photon)

affects the PIE.
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Figure 5.3: Raw photon efficiencies at different bin widths and frame sizes. The number
of post-selected photon pairs increases with respect to the bin width, which results in an
increased fraction of global errors due to the inclusion of background-related accidental
concurrent detections.

In particular, PIE and SKR are defined as follows. The Holevo information γBE measures

the amount of information an eavesdropper, commonly referred to as Eve, has on the secret

keys. The reconciliation efficiency β = R
IAB

, where IAB is the channel capacity of the QKD

channel, specifies the theoretical upper limit of R. The number of photons being generated

per second is denoted by N0,

PIE = βIAB − γBE,

SKR = PIE ×RPE ×N0.

(5.2)

When γBE is fixed, PIE is determined by the rate R. Considering the wasted frames due

to frame errors, measured by frame error rate (FER), we use the normalized rate (NR) to

measure the PIE, which is specified as follows:

NR = (1− FER)×R. (5.3)

Note that the codes being constructed and compared with in this paper all result in FERs
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that are small (< 0.04%), thus NR is very close to FER in the codes mentioned here. The

relation between SKR and NR is therefore stated as follows:

SKR ≈ RPE × (NR− γBE)×N0. (5.4)

While it is easy to compute and measure NPE and NR, we next consider the normalized

photon efficiency (NPE), i.e., the number of bits carried per generated photon pairs, as an

alternative measure of SKR. Quantity NPE is defined as follows and it is demonstrated later

on that the gain in NPE is a legitimate lower bound of the gain in SKR,

NPE = RPE ×NR. (5.5)

Fix N0. Consider two ECCs, referred to scheme 1 with NR1, RPE1, and SKR1, and scheme

2 with NR2, RPE2, and SKR2 (NR1 < NR2). Then, the gain of scheme 2 over scheme 1 is(
RPE2(NR2−γBE)
RPE1(NR1−γBE) − 1

)
. This gain is strictly greater than the gain of NPE,

(
RPE2×NR2
RPE1×NR1

− 1
)
.

5.2.2 Channel Model

In this section, we describe the QKD channel in the time-bin protocols. A closer inspection

of errors suggests that the QKD channel is composed of a local channel and a global channel,

that are governed by different error sources, referred to as the local errors and the global

errors, respectively. Local errors originate from timing jitters and synchronization errors in

entangled photon detection. Under local errors, the two photons from the same pair fall into

different but close enough bins within the same frame. The offset delay between photons can

be well-fitted by a Gaussian distribution, as shown in Fig. 5.4. Global errors are caused by

accidental concurrent detections of stray photons not associated with any entangled photon

pairs. The intra-frame time offset between the photons caused by global errors is close to a

uniform distribution on [0, T ], where T refers to the frame size. Experimental results show

a nontrivial dependency between the bin widths/frame sizes vs. the fraction of global errors
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Figure 5.4: Distribution of the time offset caused by jitter errors.

out of the total number of selected frames.

Based on the aforementioned discussion, the QKD channel can be approximated by

the transition probabilities P(Y = y|X = x), x, y ∈ GF(2M) in (5.6). The channel is

approximated by the mixture of a uniform distribution and a mixture of two Gaussian

distributions,

P(Y = y|Y = x) = α1e
− |y−x|

2

σ2
1 + α2e

− |y−x|
2

σ2
2 + µ. (5.6)

The quantities α1, α2 ,and µ are parameters determining the strength of the local Gaussian

channel, the global Gaussian component, and the uniform component of the global channel,

respectively. The only difference between this model and the local-global channel described

in [5] is that the global channel in the current model also includes a Gaussian component

instead of being a purely uniform channel as in [5]. The Gaussian-like distribution in the

global channel is observed from the raw data obtained from our testbed and becomes more

evident when the frame size increases. Moreover, in the raw data obtained from our testbed,

we observe that the channel induces a very high raw symbol error rate, and the raw symbol

error rate keeps increasing when M increases [95, 94, 102, 103]. We also observe a notable

asymmetry between P(Y = x+i|Y = x) and P(Y = x−i|Y = x), 1 ≤ i ≤ min{x, 2M−x−1}.
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Figure 5.5: Tanner graph (left panel) and parity check matrix (right panel) of a IRA code.

This asymmetry is resultant from a misalignment of the center of the bins with the real arrival

time of photons generated at Alice’s side.

5.3 SC-Irregular-Repeat-Accumulate (SC-IRA) Codes

In this section, we present the SC-IRA codes proposed in this work. In this work, we aim at

minimizing the number of short cycles in the unlabelled graph, and the non-zero non-binary

entries are randomly assigned. LDPC codes designed for the waterfall region (with the error

rate of > 0.001) are typically optimized through degree distribution [104, 105], while finite-

length optimization typically only improves the low FER region (referred to as the error-floor

region) [3]. While the GRADE-AO methods were observed to have a universal gain over the

whole range of FER for high rate codes used in data storage and memories, their potential

in optimizing low rate codes (for high FER region) has not been discussed. In this work, we

generalize the framework for arbitrary underlying block codes. In particular, we propose to

use IRA codes as the underlying block codes to harness the full power of SC-IRA codes in

QKD applications.

In the low FER region, the coexistence of CNs of low degrees and VNs of moderate/high

degrees are critical for successful decoding, which requires an adequate placement of a large

number of degree 2 VNs [105]. Performance of randomly constructed LDPC codes can be far
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away from the theoretical limit because of a casual placement of degree 2 VNs. IRA codes, in

which most of the degree 2 VNs are placed on a long ring, are known to be capacity-achieving

for various channels [106, 107, 108], and are ideal for QKD channels, as we show next.

Π =



1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1

0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0

0 1 0 0 1 1 0 0 0 0 0 1 1 0 0 0

1 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0

1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1



. (5.7)

As shown in Fig. 5.5, an IRA code is composed of two parts: the irregular part consisting of

VNs v1, v2, . . . , vn, all the CNs and the edges connecting them, the other part being a large

ring of length 2γ containing VNs u1, u2, . . . , um and all the CNs. The parity check matrix Π

in (5.7) specifies an IRA code with m = 6, n = 10. This systematic placement of degree 2

VNs exploits the benefits of having such nodes, and enables them to be much more reliable

than degree 2 VNs in randomly constructed LDPC codes.

Fig. 5.6 shows an SC-IRA code with the underlying block code specified in (5.7) and

(γ, κ,m,L) = (10, 16, 3, 5). The unlabelled graph of a non-binary (NB) SC code can be repre-

sented by its partitioning matrix P ∈ {∗, 0, 1, . . . ,m}γ×κ, where P(i, j) = k iff. Πk(i, j) = 1,

and P(i, j) = ∗ iff. Π(i, j) = 0. The partitioning matrix of the SC code in FIG. 5.6 is
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Figure 5.6: A memory 3 SC-IRA code with the underlying IRA code specified as in FIG. 5.5.
The cycle-4 highlighted in the base matrix on the top-right panel results in cycles-4 in the
SC-IRA codes, whereas the cycle-6 in the base matrix on the bottom-left panel does not lead
to any cycles in the SC-IRA code.
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specified in (5.8),

P =



1 ∗ 2 ∗ 3 ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 3

∗ 3 ∗ ∗ 2 0 1 2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2 ∗ ∗ 1 ∗ ∗ ∗ 3 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ 1 3 ∗ 0 ∗ ∗ ∗ 1 2 ∗ ∗ ∗ ∗ ∗ ∗

∗ 0 ∗ 2 ∗ 1 ∗ ∗ ∗ 3 0 ∗ ∗ ∗ ∗ ∗

3 ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 2 ∗ ∗ ∗ ∗

∗ 2 ∗ ∗ 1 2 ∗ ∗ ∗ ∗ ∗ 3 0 ∗ ∗ ∗

0 ∗ 1 ∗ ∗ 3 ∗ ∗ ∗ ∗ ∗ ∗ 1 2 ∗ ∗

∗ 2 ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 3 0 ∗

1 ∗ ∗ 0 ∗ 3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 2



. (5.8)

GRADE-AO is a joint probabilistic-combinatorial optimization framework that mini-

mizes the number of detrimental objects, i.e., the dominating sources of decoding failures,

in SC codes with moderate/high memories. Unlike previous methods that primarily focus

on the degree distribution, GRADE-AO considers a code design parameter that is more

relevant for the design of SC codes. In particular, GRADE-AO effectively exploits the im-

pact of edge density distribution (among the component matrices) on the performance of

SC codes. GRADE-AO framework explores an edge density distribution that locally mini-

mizes the expected number of targeted short cycles in the resultant SC codes, followed by

an algorithmic optimization that further reduces the number of detrimental objects without

a dramatic change in the targeted distribution. Monte-Carlo simulations show a significant

performance gain of SC codes with the skewed edge distribution obtained from GRADE over

codes with the uniform edge distribution. Asymptotic analysis also demonstrated benefits of

nonuniform edge distribution [75]. We next introduce the details of the GRADE-AO scheme

for SC-IRA codes.

We refer to a cycle of length 2g in the Tanner graph of the code as a cycle-2g. A cycle-2g
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in an SC code is associated with a closed path of length 2g on the nonzero entries in its

partitioning matrix, referred to as a closed length-2g path. A closed length-2g path, g ∈ N,

g ≥ 2 is denoted by C(j1, i1, j2, i2, . . . , jg, ig), where (ik, jk), (ik, jk+1), 1 ≤ k ≤ g, jg+1 = j1.

A closed length-2g path leads to cycles-2g in the SC code iff. the following cycle condition

follows [45]: ∑g

k=1 P(ik, jk) =
∑g

k=1 P(ik, jk+1). (5.9)

Definition 15. Assign a weight w(d) to each degree d VN, and let the weight of a cycle be the

summation of the weights of all the VNs on it; w : N→ R is a strictly decreasing function,

e.g., w(d) = 1/d. Let Λ ∈ R [x], where Λi denotes the fraction of degree i VNs out of all

the VNs in an irregular base matrix Π. Let m ∈ N. Let pd = (p(0|d), p(1|d) . . . , p(m|d)),

where d ∈ N, d ≤ deg Λ, 0 < p(i|d) ≤ 1, p(0|d) + p(1|d) + c · · · + p(m|d) = 1: each

p(i|d) specifies the probability of a ‘1’ in a column with weight d in Π going to the component

matrix Πi; p is referred to as edge distribution under random partition later on. Then, the

following f(X, Y ; {pd}deg Λ
d=1 ,Λ, w), which is abbreviated to f(X, Y ) when the context is clear,

is called the coupling polynomial of an SC code with the coupling pattern a, associated

with probability distribution p:

f(X, Y ; p,Λ, w) = ∑
d

ΛdY
w(d)

(
m∑
i=0

p(i|d)X i

)(
m∑
i=0

p(i|d)X−i
)
. (5.10)

Based on the new definition of the coupling polynomial, we derive the expected weight

of a cycle-2g in the base matrix when it is expanded to the Tanner graph. We denote this

weight by W2g(p; Λ, w), g ∈ N. We also specify the gradient of W2g(p; Λ, w). Given Λ

and w(d), a locally-optimal set of conditional edge distributions {p(i|d)}mi=0, d ∈ N, can be

derived by applying a gradient descent algorithm to minimize W2g(p; Λ, w).

Theorem 9. For g ∈ N, g ≥ 2, denote by W2g(p,Λ, w) the expected weight of a cycle-2g in

the base matrix when they are expanded to the Tanner graph under random partitioning with
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edge distribution p. Then,

W2g(p; Λ, w) = [∂Y f g(X, Y )|Y=1]X0 ,

∇pW2g(p; Λ, w) = [∂Y∇pf
g(X, Y )|Y=1]X0 ,

(5.11)

where [g(X)]X0 denotes the constant term of g(X).

Proof. While the formula of the gradient ∇pW2g(p; Λ, w) is obviously true, we only need

to prove the formula obtaining the expected weight of a cycle-2g. Suppose a cycle-2g in

the base matrix is represented by C(j1, i1, j2, i2, . . . , j2g, i2g). Let I(·) denotes the indicator

function, i.e., I(S) = 1 iff. the expression S is true, otherwise I(S) = 0. Then, the weight

W (C) of the cycle C(j1, i1, j2, i2, . . . , j2g, i2g) in the Tanner graph can be represented by the

following function:

W (C) =
( g∑
k=1

w(djk)
)
I
(∑g

k=1 P(ik, jk) =
∑g

k=1 P(ik+1, jk)
)
, (5.12)

where djk denotes the node degree of the VN corresponding to the jk’th column in the base

matrix. Then, the expected weight W2g(p; Λ, w) for each cycle is the expectation value of

W (C) over all possible realizations of P and the set of VN degrees {djk}
g
k=1. That is to say,

W2g(p; Λ, w)

=E{djk}gk=1,P [W (C)]

=E{djk}gk=1,P

[( g∑
k=1

w(djk)
)
I
(∑g

k=1 P(ik, jk) =
∑g

k=1 P(ik+1, jk)
)]

=E{djk}gk=1

[( g∑
k=1

w(djk)
)
P
[∑g

k=1 P(ik, jk) =
∑g

k=1 P(ik+1, jk)
]]

=E{djk}gk=1

( g∑
k=1

w(djk)
) ∑∑g

k=1 xk=
∑g

k=1 yk

g∏
k=1

P [P(ik, jk) = xk,P(ik+1, jk) = yk]


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=
∑
{dk}gk=1

( g∑
k=1

w(dk)
) ∑∑g

k=1 xk=
∑g

k=1 yk

g∏
k=1

P [P(ik, jk) = xk,P(ik+1, jk) = yk|djk = dk]P [djk = dk]

=
∑

{dk}gk=1,
∑g

k=1 xk=
∑g

k=1 yk

( g∑
k=1

w(dk)
) g∏
k=1

[p(xk|dk)p(yk|dk)Λdk ]

=

 ∑
{dk}gk=1,0≤xk,yk≤m

( g∑
k=1

w(dk)
) g∏
k=1

[p(xk|dk)p(yk|dk)Λdk ]X
∑g

k=1(xk−yk)


0

=

∂Y
 ∑
{dk}gk=1,0≤xk,yk≤m

g∏
k=1

[p(xk|dk)p(yk|dk)Λdk ]X
∑g

k=1(xk−yk)Y
∑g

k=1 w(dk)

|Y=1


0

=

∂Y
 ∑
{dk}gk=1,0≤xk,yk≤m

g∏
k=1

[
p(xk|dk)Xxkp(yk|dk)X−ykΛdkY

w(dk)
]|Y=1


0

= [∂Y f g(X, Y )|Y=1]X0 .

The theorem is proved.

Remark 15. Note that the nonzero elements of GF(2M) form a cyclic group of order (2M −

1), and each of them can be represented by a unique power ai, i ∈ {1, 2, . . . , 2M − 1}, of a

primitive element a ∈ GF(2M)×. Suppose an active cycle-2g in the unlabelled Tanner graph

is assigned with edge weights ai1 , ai2 , . . . , ai2g . Then, the unlabelled cycle becomes a cycle in

the NB code iff. (5.13) is satisfied.

∑g

k=1 i2k−1 ≡
∑g

k=1 i2k mod (2M − 1). (5.13)

Then, the edge weights can be jointly optimized with the partitioning matrix in the AO step.

5.4 Experimental Results

In this section, we present the simulation results that demonstrate the superiority of our

proposed codes over the existing works. We compare our proposed NB-SC-IRA codes with

the MLC codes of length 2000 and 2500. Fig. 5.7 and Fig. 5.8 present the best normalized
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Figure 5.7: Comparison of normalized rates at blocklength 2000.

Figure 5.8: Comparison of normalized rates at blocklength 2500.
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Figure 5.9: Comparison of normalized photon efficiencies at blocklength 2000.

Figure 5.10: Comparison of normalized photon efficiencies at blocklength 2500.
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rates achieved by our SC-IRA scheme and the MLC scheme at blocksize near 2000 and 2500,

bin widths from {100, 200, . . . , 700}, and bit number M ∈ {2, 3, . . . , 7}, respectively. We

observe a significant gain in the normalized rates of SC-IRA codes over that of MLC codes,

especially when the bin width is greater than 100ps. The normalized rates of SC-IRA codes

are shown to be much more stable against the change of the bin widths, i.e., they are more

robust against global errors. This is a desirable outcome since the RPE increases when the

bin width increases from 100ps to 700ps. Fig. 5.9 and Fig. 5.10 present the normalized

photon efficiencies corresponding to the SC-IRA scheme and the MLC scheme shown in

Fig. 5.7 and Fig. 5.8, respectively. We observe a significant gain of 19.67% and 20.62% of

SC-IRA codes over that of MLC codes, in NPE. Note that as discussed previously, the gain

in SKR is strictly larger than NPE, which further improves our gain in the low rate region.

The overall experimental setup is shown in Fig. 8. We use a fiber-coupled, periodically-

poled KTiOPO4 (ppKTP) waveguide for type-II spontaneous parametric downconversion

(SPDC) generation [109, 94, 95]. The waveguide is pumped by a 658.288nm, ∼ 6.3mW Fabry-

Perot laser diode stabilized by self-injection locking [94, 95]. As a result, the source can pro-

vide up to 100k pairs/s with 5% coincidences to singles ratio. The type-II generated SPDC

pairs are orthogonally polarized frequency-degenerate signal and idler photons that are cen-

tered around 1316.628nm over a 245GHz (∼ 1.4nm) full-width-to-half-maximum (FWHM)

phase-matching bandwidth [110, 95]. Bandpass filters (BPF) with 1.3nm FWHM linewidth

are used to filter residual pump photons and ppKTP out-of-band fluorescence. The ppKTP

source and BPF are synchronized and stabilized, benefiting from second-harmonic generation

to coincide the central bin to the SPDC spectral maximum. Orthogonally-polarized signal

and idler photons are separated using a cube polarizing beamsplitter and sent to Alice and

Bob’s channels. The time synchronization between Alice and Bob is achieved using temporal

correlation measurements between signal and idler photons. In order to read the information,

superconducting nanowire single-photon detectors (SNSPD) with 85% detection efficiency

and 70–80ps timing jitter are used. The measured uncertainty of coincidence between signal
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Figure 5.11: The time-bin encoding testbed for SC-IRA codes. The pump laser is stabilized
and laser polarization is optimized using half-wave plate (HWP). The pump laser passed
through spontaneous parametric down-conversion (SPDC) source for biphoton generation,
while the residual pump laser is filtered using long-pass filter (LPF). The biphoton stream is
further isolated using a bandpass filter (BPF) and its polarization axis is optimized against
drifts using a fiber polarization controller (FPC). The orthogonally polarized signal and idler
photons are separated using fiber polarizing beamsplitter(FPBS). The distributed signal and
idler photons are detected by Alice and Bob using superconducting nanowire single-photon
detectors (SNSPD) and converted to symbols using time-to-digital converter (TDC).

and idler photons is 210.2ps [102, 103].

We construct the underlying IRA codes with blocksizes κ = k + i, k ∈ {40, 50}, i ∈

{0, 1, . . . , 4}, and the corresponding SC-IRA codes with m = 5, L = 50 + k − κ: this

set-up allows us to have a pool of SC-IRA codes with sufficiently small stepsizes in rates,

from which we select the candidate that reaches the best normalized rate. The SC-IRA

codes are of lengths N ∈ {(k + i)(L − i) = KL + (L − k − i)i|i = 0, 1, . . . , 4}, i.e.,

N ∈ {2000, 2009, 2016, 2024, 2025} and N ∈ {2500, 2499, 2496, 2491, 2484, 2475}, respec-

tively. The SC-IRA codes are optimized with respect to the number of short cycles; most of

the code candidates are free of cycles up to length 8, and the number of cycles-10 and cycles-

12 are also jointly minimized, resulting in SC-IRA codes with large minimum distances. The

irregular part of the underlying IRA codes are randomly constructed near-regular LDPC

codes with VNs of degrees 4 and 5, and CNs of degrees 2 and 3, resulting in an average

VN degree of around 4.2. We use a near-regular IRA code as the underlying block code

in our simulations for simplicity and fair comparison; the performance can be further im-

proved by optimizing the degree distribution of the underlying IRA codes for the QKD
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channel. The codes are decoded by floating-point SPA, in which Fast Fourier Transform

(FFT) over GF(2M) has been applied in updating the CN messages to improve the decoding

complexity in large alphabets [85].

Note that existing protocols using SC codes [54, 56] typically overlooked the finite-length

optimization since the degree distribution has been considered as the major parameter that

determines the performance in waterfall region. In this work, we exploit another degree of

freedom appeared in SC codes, the edge density distribution, that also significantly affects

the waterfall performance. Despite we have not optimized the degree distribution of the

underlying IRA codes in this paper, our framework can be applied in conjunction with

degree distribution optimization to further improve the SKR.

5.5 Conclusion

In this work, we study ECC solutions that are appropriate for energy-time entanglement

based photonic QKD protocols. In particular, we have taken into account the effects of

modulation schemes on the QKD channels into consideration while designing ECC codes,

which have been overlooked in existing literature. In order to achieve high secure key rate

(SKR), which is critical in photon-starved scenarios, modulation schemes that result in a

larger number of selected photon pairs and of higher dimension are desired. However, these

modulation schemes lead to a larger fraction of global errors, which are nearly uniformly

distributed over the alphabet. While existing solutions stemmed from the MLC scheme have

done a great job in combating local errors caused by timing jitters, they are unable to sustain

a high reconciliation efficiency when combined with modulation schemes with higher raw key

rates, due to being highly reliant on the dependencies between bit layers. In the contrary,

we propose a class of non-binary LDPC codes, the SC-IRA codes, which is more robust than

the MLC scheme in combating uniform errors, and leads to higher SKR.

Our SC-IRA codes are with high memories and have been carefully optimized through

the GRADE-AO framework proposed in [57] with respect to the number of short cycles up
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to length 12 in their Tanner graphs. GRADE-AO is an efficient optimization framework that

constructs high performance SC codes with high memories. When comparing our codes with

the MLC scheme in the short codelength regime, which is desired for low latency decoding

and is especially important in quantum networks, it is apparent that the reconciliation

efficiencies of the SC-IRA codes deteriorate much slower compared with the MLC schemes

with respect to the bin widths. We adopt a measure NPE to estimate the lower bound on the

gain between the SKR of protocols with identical photon generation rate. The improvement

in the raw key rate, accompanied by the gain in the reconciliation efficiency, leads to a

significant 20% gain in the NPE over the MLC scheme. Our work applies to the scenarios

where accidental photon pairs are desired to increase the raw key rate, which is especially

true in high-dimensional cases. Future work includes combining our work with the adaptive

modulation scheme proposed in [100] and degree distribution optimization to further improve

the SKR.
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CHAPTER 6

Conclusion

6.1 Summary of Contributions

The primary goal of this dissertation was to devise advanced error correction coding solutions

for modern data storage and communication systems, in order to reach desirable properties

like high reliability, low latency and scalability. In particular, the dissertation consists of two

major coding schemes for three different practical data-driven applications. The first problem

focused on hierarchical codes, a class of locally recoverable codes that are appropriate for

cloud storage due to their ability of achieving low latency in reading data. We developed

hierarchical codes for both centralized and decentralized cloud storage. The second problem

was about overcoming the computational challenge in optimizing SC-LDPC codes with high

memories. Built upon our proposed framework, we constructed state-of-the-art SC codes

tailored for memory devices and quantum key distributions, respectively.

In the line of hierarchical coding for modern cloud storage, we developed a new class of

hierarchical codes based on Cauchy matrices. Our proposed codes were able to seamlessly

adapt to dynamic changes of usage rates in different components in heterogeneous cloud

storage. In addition, the Galois field size of this scheme grows linearly with the maximum

local block length. We proposed a double-level construction first, followed by a triple-level

construction based on it; this construction can be generalized into any hierarchical structure

with a larger number of layers.
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While our proposed codes have been proved efficient in centralized cloud storage, we

then moved on to decentralized storage networks (DSNs), inspired by the prevalence of

decentralized systems under the recent rise of the blockchain technology. We proposed a joint

coding scheme that enables neighboring nodes to cooperatively protect and validate their

stored data, which improves the reliability collectively due to propagation of information

from more reliable nodes to less reliable ones. While our proposed constructions obviously

preserve scalability and flexibility that are critical in dynamic networks, they also adapt to

arbitrary topologies, a property that is especially important in DSNs but has been overlooked

in existing works.

In the other line of SC-LPDC codes, we overcame the computational challenges in dis-

crete optimization on finite-length high-performance SC codes with high memories. We

investigated the relation between the edge distribution and the expected number of targeted

objects in the SC ensembles, based on which we obtained a locally optimal edge distribution

by gradient descent. The edge distribution identified a search subspace that is much smaller

than the original space, thus reduces the complexity of the algorithmic optimizer in the next

step significantly without unbearable loss in performance. Our framework, referred to as

GRADE-AO, is generally applicable to a large variety of targeted objects. In particular, we

applied GRADE-AO to optimize the number of pairs of concatenated cycles, by which we

managed to construct codes with excellent performance on NLM channels and MR channels.

With the success of GRADE-AO in constructing high rate codes that are appropriate for

memory devices and hard disk drives, we built upon it low rate SC codes in combination with

IRA codes such that they can be applied to QKD. In particular, We extended our GRADE-

AO framework to be applicable in irregular underlying codes, by which we developed SC-

IRA codes with moderate lengths and large girth. Our proposed codes were demonstrated

to outperform MLC/MSD schemes by experiment results.

6.2 Future Directions
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Regarding hierarchical coding for cloud storage, a major bottleneck of our codes is that for

each targeted node, at most one out of its neighboring nodes is allowed to have a number

erasures that exceeds the associated local erasure-correction capability. Devising component

codes where multiple neighboring nodes are allowed to be non-locally recoverable simulta-

neously is therefore one of the most important future directions.

For the SC codes for data storage, while we have observed the nontrivial performance gain

of codes with nonuniform edge distribution over their uniform counterparts in the waterfall

region, there still lacks a theoretical explanation to this phenomenon. Therefore, the next

step will be the asymptotic analysis on SC ensembles with edge distribution being taken into

consideration. As discussed previously, global algorithmic optimizers of TC codes and the

associated low latency decoders are also of interests.

For SC codes tailored for QKD, one major appealing direction is the combination of SC-

IRA codes with the adaptive modulation scheme that is aimed at increasing the raw key rate.

In particular, the adaptive modulation scheme utilizes the multi-detection frames that are

discarded in traditional protocols, by strategically changing the frame size. This adaptation

requires manipulating input symbols from different alphabet sizes, in which a hybrid coding

solution will be appropriate. Having said that, symbols generated from photon pairs in

frames with different sizes visualize different channels, thus naturally calls for a solution

that adapts to channel variation accordingly.

164



References

[1] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran, “Net-

work coding for distributed storage systems,” IEEE Trans. Inf. Theory, vol. 56, no. 9,

pp. 4539–4551, Sept 2010.

[2] I. Tamo and A. Barg, “A family of optimal locally recoverable codes,” IEEE Trans.

Inf. Theory, vol. 60, no. 8, pp. 4661–4676, Aug. 2014.

[3] A. Hareedy, H. Esfahanizadeh, and L. Dolecek, “High performance non-binary

spatially-coupled codes for flash memories,” in 2017 IEEE Information Theory Work-

shop (ITW), Nov. 2017, pp. 229–233.

[4] M. Lentmaier, A. Sridharan, D. J. Costello, and K. S. Zigangirov, “Iterative decoding

threshold analysis for LDPC convolutional codes,” IEEE Trans. Information Theory,

vol. 56, no. 10, pp. 5274–5289, Oct. 2010.

[5] H. Zhou, L. Wang, and G. Wornell, “Layered schemes for large-alphabet secret key

distribution,” in 2013 Information Theory and Applications Workshop (ITA). IEEE,

2013, pp. 1–10.

[6] R. Gabrys, E. Yaakobi, and O. Milenkovic, “Codes in the Damerau distance for deletion

and adjacent transposition correction,” IEEE Trans. Inf. Theory, vol. 64, no. 4, pp.

2550–2570, April 2018.

165



[7] S. Yang, C. Schoeny, and L. Dolecek, “Theoretical bounds and constructions of codes

in the generalized cayley metric,” IEEE Transactions on Information Theory, vol. 65,

no. 8, pp. 4746–4763, Aug. 2019.

[8] ——, “Order-optimal permutation codes in the generalized cayley metric,” in 2017

IEEE Information Theory Workshop (ITW), Nov. 2017, pp. 234–238.

[9] M. Hassner, K. Abdel-Ghaffar, A. Patel, R. Koetter, and B. Trager, “Integrated

interleaving-a novel ECC architecture,” IEEE Transactions on Magnetics, vol. 37,

no. 2, pp. 773–775, 2001.

[10] P. Huang, E. Yaakobi, and P. H. Siegel, “Multi-erasure locally recoverable codes over

small fields,” in 2017 55th Annual Allerton Conference on Communication, Control,

and Computing (Allerton), 2017, pp. 1123–1130.

[11] Y. Cassuto, E. Hemo, S. Puchinger, and M. Bossert, “Multi-block interleaved codes

for local and global read access,” in Proc. IEEE Int. Symp. Inf. Theory, 2017, pp.

1758–1762.

[12] Y. Wu, “Generalized integrated interleaved codes,” IEEE Transactions on Information

Theory, vol. 63, no. 2, pp. 1102–1119, Nov. 2017.

[13] S. Ballentine, A. Barg, and S. Vladuts, “Codes with hierarchical locality from covering

maps of curves,” arXiv preprint arXiv:1807.05473, 2018.

[14] X. Zhang, “Generalized three-layer integrated interleaved codes,” IEEE Communica-

tions Letters, vol. 22, no. 3, pp. 442–445, 2018.

[15] M. Blaum and S. R. Hetzler, “Extended product and integrated interleaved codes,”

IEEE Trans. Inf. Theory, vol. 64, no. 3, pp. 1497–1513, Mar. 2018.

[16] S. B. Balaji, G. R. Kini, and P. V. Kumar, “A tight rate bound and matching construc-

tion for locally recoverable codes with sequential recovery from any number of multiple

166



erasures,” IEEE Transactions on Information Theory, vol. 66, no. 2, pp. 1023–1052,

2020.

[17] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud computing

systems,” in INC, IMS and IDC, 2009. NCM’09. Fifth International Joint Conference

on, 2009, pp. 44–51.

[18] “Storj: A decentralized cloud storage network framework,” Oct. 2018. [Online].

Available: https://storj.io/storjv3.pdf

[19] H. Shafagh, L. Burkhalter, A. Hithnawi, and S. Duquennoy, “Towards blockchain-

based auditable storage and sharing of IoT data,” in Proceedings of the 2017 on Cloud

Computing Security Workshop, Nov., pp. 45–50.

[20] G. Zyskind, O. Nathan et al., “Decentralizing privacy: Using blockchain to protect

personal data,” in IEEE Security and Privacy Workshops, May 2015, pp. 180–184.

[21] Y. Zhu, C. Lv, Z. Zeng, J. Wang, and B. Pei, “Blockchain-based decentralized storage

scheme,” in Journal of Physics: Conference Series, vol. 1237, no. 4, Apr. 2019, p.

042008.

[22] U. Martnez-Penas and F. R. Kschischang, “Universal and dynamic locally repairable

codes with maximal recoverability via sum-rank codes,” in 2018 56th Annual Allerton

Conference on Communication, Control, and Computing (Allerton). IEEE, 2018, pp.

792–799.

[23] J. Pernas, C. Yuen, B. Gastón, and J. Pujol, “Non-homogeneous two-rack model for

distributed storage systems,” in IEEE International Symposium on Information The-

ory, Jun. 2013, pp. 1237–1241.

167

https://storj.io/storjv3.pdf


[24] Y. Wang, D. Wei, X. Yin, and X. Wang, “Heterogeneity-aware data regeneration in

distributed storage systems,” in Proceedings of 2010 IEEE INFOCOM, 2014, pp. 1878–

1886.

[25] A. M. Ibrahim, A. A. Zewail, and A. Yener, “Green distributed storage using energy

harvesting nodes,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 5,

pp. 1590–1603, May 2016.

[26] M. Sipos, J. Gahm, N. Venkat, and D. Oran, “Network-aware feasible repairs for

erasure-coded storage,” IEEE/ACM Transactions on Networking, vol. 26, no. 3, pp.

1404–1417, Mar. 2018.

[27] ——, “Erasure coded storage on a changing network: The untold story,” in IEEE

Global Communications Conference (GLOBECOM), Dec. 2016, pp. 1–6.

[28] J. Li, S. Yang, X. Wang, and B. Li, “Tree-structured data regeneration in distributed

storage systems with regenerating codes,” in Proceedings of 2010 IEEE INFOCOM,

2010, pp. 1–9.

[29] A. Tebbi, T. H. Chan, and C. W. Sung, “Multi-rack distributed data storage networks,”

IEEE Transactions on Information Theory, vol. 65, no. 10, pp. 6072–6088, Oct. 2019.

[30] H. Hou, P. P. C. Lee, K. W. Shum, and Y. Hu, “Rack-aware regenerating codes for

data centers,” IEEE Transactions on Information Theory, vol. 65, no. 8, pp. 4730–

4745, Aug. 2019.

[31] Z. Chen and A. Barg, “Explicit constructions of MSR codes for clustered

distributed storage: The rack-aware storage model,” 2019. [Online]. Available:

https://arxiv.org/abs/1901.04419

168

https://arxiv.org/abs/1901.04419


[32] N. Prakash, V. Abdrashitov, and M. Médard, “The storage versus repair-bandwidth

trade-off for clustered storage systems,” IEEE Transactions on Information Theory,

vol. 64, no. 8, pp. 5783–5805, Aug. 2018.

[33] S. Yang, A. Hareedy, R. Calderbank, and L. Dolecek, “Hierarchical coding to enable

scalability and flexibility in heterogeneous cloud storage,” in IEEE Global Communi-

cations Conference (GLOBECOM), Dec. 2019.

[34] ——, “Topology-aware cooperative data protection in blockchain-based decentralized

storage networks,” in 2020 IEEE International Symposium on Information Theory

(ISIT), Jul. 2020, pp. 622–627.

[35] ——, “Hierarchical coding for cloud storage: Topology-adaptivity, scalability, and flex-

ibility,” arXiv preprint arXiv:2009.09146, 2020.

[36] F. T. Hady, A. Foong, B. Veal, and D. Williams, “Platform storage performance with

3D XPoint technology,” Proceedings of the IEEE, vol. 105, no. 9, pp. 1822–1833, Sep.

2017.

[37] S. Kudekar, T. J. Richardson, and R. L. Urbanke, “Threshold saturation via spatial

coupling: Why convolutional LDPC ensembles perform so well over the BEC,” IEEE

Trans. Information Theory, vol. 57, no. 2, pp. 803–834, Feb. 2011.

[38] S. Kumar, A. J. Young, N. Macris, and H. D. Pfister, “Threshold saturation for spa-

tially coupled LDPC and LDGM codes on BMS channels,” IEEE Trans. Information

Theory, vol. 60, no. 12, pp. 7389–7415, Dec. 2014.

[39] P. M. Olmos and R. L. Urbanke, “A scaling law to predict the finite-length performance

of spatially-coupled LDPC codes,” IEEE Trans. Information Theory, vol. 61, no. 6,

pp. 3164–3184, 2015.

169



[40] H. Esfahanizadeh, A. Hareedy, and L. Dolecek, “Finite-length construction of high per-

formance spatially-coupled codes via optimized partitioning and lifting,” IEEE Trans.

Communications, vol. 67, no. 1, pp. 3–16, Jan. 2018.

[41] A. Hareedy, R. Wu, and L. Dolecek, “A channel-aware combinatorial approach to

design high performance spatially-coupled codes,” IEEE Trans. Information Theory,

vol. 66, no. 8, pp. 4834–4852, Aug. 2020.

[42] L. Dolecek, Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolic, “Analysis

of absorbing sets and fully absorbing sets of array-based LDPC codes,” IEEE Trans.

Information Theory, vol. 56, no. 1, pp. 181–201, Jan. 2010.

[43] S. Naseri and A. H. Banihashemi, “Spatially coupled LDPC codes with small constraint

length and low error floor,” IEEE Communications Letters, vol. 24, no. 2, pp. 254–258,

Feb. 2020.

[44] S. Naseri and A. H. Banihashemi, “Construction of time invariant spatially coupled

ldpc codes free of small trapping sets,” IEEE Transactions on Communications, vol. 69,

no. 6, pp. 3485–3501, Jun. 2021.

[45] M. Battaglioni, A. Tasdighi, G. Cancellieri, F. Chiaraluce, and M. Baldi, “Design and

analysis of time-invariant SC-LDPC convolutional codes with small constraint length,”

IEEE Trans. Communications, vol. 66, no. 3, pp. 918–931, Mar. 2018.

[46] A. Beemer, S. Habib, C. A. Kelley, and J. Kliewer, “A generalized algebraic approach

to optimizing SC-LDPC codes,” in 2017 55th Annual Allerton Conference on Commu-

nication, Control, and Computing (Allerton), 2017, pp. 672–679.

[47] S. Mo, L. Chen, D. J. Costello, D. G. M. Mitchell, R. Smarandache, and J. Qiu,

“Designing protograph-based quasi-cyclic spatially coupled LDPC codes with large

girth,” IEEE Transactions on Communications, vol. 68, no. 9, pp. 5326–5337, 2020.

170



[48] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution

and coin tossing,” in Proceedings of IEEE International Conference on Computers,

Systems, and Signal Processing, 1984, p. 175.

[49] H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nature Pho-

tonics, vol. 8, no. 8, p. 595, 2014.

[50] E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, “Practical challenges in quantum key

distribution,” npj Quantum Information, vol. 2, p. 16025, 2016.

[51] Q. Zhuang, Z. Zhang, J. Dove, F. N. Wong, and J. H. Shapiro, “Floodlight quantum

key distribution: A practical route to gigabit-per-second secret-key rates,” Physical

Review A, vol. 94, no. 1, p. 012322, 2016.

[52] Z. Zhang, Q. Zhuang, F. N. Wong, and J. H. Shapiro, “Floodlight quantum key dis-

tribution: Demonstrating a framework for high-rate secure communication,” Physical

Review A, vol. 95, no. 1, p. 012332, 2017.

[53] Z. Zhang, C. Chen, Q. Zhuang, F. N. Wong, and J. H. Shapiro, “Experimental quantum

key distribution at 1.3 gigabit-per-second secret-key rate over a 10 db loss channel,”

Quantum Science and Technology, vol. 3, no. 2, p. 025007, 2018.

[54] X.-Q. Jiang, S. Yang, P. Huang, and G. Zeng, “High-speed reconciliation for CVQKD

based on spatially coupled LDPC codes,” IEEE Photonics Journal, vol. 10, no. 4, pp.

1–10, 2018.

[55] S. J. Johnson, V. A. Chandrasetty, and A. M. Lance, “Repeat-accumulate codes for

reconciliation in continuous variable quantum key distribution,” in 2016 Australian

Communications Theory Workshop (AusCTW). IEEE, 2016, pp. 18–23.

171



[56] K. Zhang, X.-Q. Jiang, Y. Feng, R. Qiu, and E. Bai, “High efficiency continuous-

variable quantum key distribution based on atsc 3.0 ldpc codes,” Entropy, vol. 22,

no. 10, 2020.

[57] S. Yang, A. Hareedy, S. Venkatasubramanian, R. Calderbank, and L. Dolecek,

“GRADE-AO: Towards near-optimal spatially-coupled codes with high memories,”

in 2021 IEEE International Symposium on Information Theory (ISIT), Jul. 2021, pp.

587–592.

[58] S. Yang, A. Hareedy, R. Calderbank, and L. Dolecek, “Breaking the computational bot-

tleneck: Design of near-optimal high-memory spatially-coupled codes,” arXiv preprint

arXiv:2109.08978, 2021.

[59] S. Yang, M. C. Sarihan, K.-C. Chang, C. W. Wong, and L. Dolecek, “Efficient in-

formation reconciliation for energy-time entanglement quantum key distribution,” in

2019 53rd Asilomar Conference on Signals, Systems, and Computers, Nov. 2019, pp.

1364–1368.

[60] B. Mao, S. Wu, and H. Jiang, “Improving storage availability in cloud-of-clouds with

hybrid redundant data distribution,” in 2015 IEEE International Parallel and Dis-

tributed Processing Symposium. IEEE, 2015, pp. 633–642.

[61] J. Van Lint and R. Wilson, “On the minimum distance of cyclic codes,” IEEE Trans-

actions on Information Theory, vol. 32, no. 1, pp. 23–40, Jan. 1986.

[62] J. Bloemer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and D. Zuckerman, “An

XOR-based erasure-resilient coding scheme,” 1995.

[63] J. S. Plank and L. Xu, “Optimizing Cauchy Reed-Solomon codes for fault-tolerant net-

work storage applications,” in 5th IEEE International Symposium on Network Com-

puting and Applications (NCA’06), Jul. 2006, pp. 173–180.

172



[64] S. Wu, Y. Xu, Y. Li, and Z. Yang, “I/O-efficient scaling schemes for distributed storage

systems with CRS codes,” IEEE Transactions on Parallel and Distributed Systems,

vol. 27, no. 9, pp. 2639–2652, Sep. 2015.

[65] Z. Kong, S. A. Aly, and E. Soljanin, “Decentralized coding algorithms for distributed

storage in wireless sensor networks,” IEEE Journal on Selected Areas in Communica-

tions, vol. 28, no. 2, pp. 261–267, Feb. 2010.

[66] M. Ye and A. Barg, “Cooperative repair: Constructions of optimal MDS codes for all

admissible parameters,” IEEE Transactions on Information Theory, vol. 65, no. 3, pp.

1639–1656, Mar. 2018.

[67] “PixelExperience scales up software distribution with storj DCS.” [Online]. Available:

https://storj.io/documents/storj-case-study-pixel-experience.pdf

[68] S. Underwood, “Blockchain beyond bitcoin,” Communications of the ACM, no. 11,

Nov. 2016.

[69] A. R. Iyengar, P. H. Siegel, R. L. Urbanke, and J. K. Wolf, “Windowed decoding of

spatially coupled codes,” IEEE Trans. Information Theory, vol. 59, no. 4, pp. 2277–

2292, Apr. 2013.

[70] D. G. M. Mitchell, M. Lentmaier, and D. J. Costello, “Spatially coupled LDPC codes

constructed from protographs,” IEEE Trans. Information Theory, vol. 61, no. 9, pp.

4866–4889, Sep. 2015.

[71] A. E. Pusane, R. Smarandache, P. O. Vontobel, and D. J. Costello, “Deriving good

LDPC convolutional codes from LDPC block codes,” IEEE Trans. Information Theory,

vol. 57, no. 2, pp. 835–857, Feb. 2011.

173

https://storj.io/documents/storj-case-study-pixel-experience.pdf


[72] A. Hareedy, C. Lanka, and L. Dolecek, “A general non-binary LDPC code optimization

framework suitable for dense flash memory and magnetic storage,” IEEE Journal on

Selected Areas in Communications, vol. 34, no. 9, pp. 2402–2415, Sep. 2016.

[73] A. Hareedy, C. Lanka, N. Guo, and L. Dolecek, “A combinatorial methodology for

optimizing non-binary graph-based codes: Theoretical analysis and applications in

data storage,” IEEE Transactions on Information Theory, vol. 65, no. 4, pp. 2128–

2154, Apr. 2019.

[74] M. P. C. Fossorier, “Quasicyclic low-density parity-check codes from circulant permu-

tation matrices,” IEEE Trans. Information Theory, vol. 50, no. 8, pp. 1788–1793, Aug.

2004.

[75] L. Schmalen, V. Aref, and F. Jardel, “Non-uniformly coupled LDPC codes: Better

thresholds, smaller rate-loss, and less complexity,” in 2017 IEEE International Sym-

posium on Information Theory (ISIT), Jun. 2017, pp. 376–380.

[76] Y. Wang, J. Yedidia, and S. Draper, “Construction of high-girth QC-LDPC codes,” in

2008 5th International Symposium on Turbo Codes and Related Topics, Sep. 2008, pp.

180–185.

[77] I. E. Bocharova, F. Hug, R. Johannesson, B. D. Kudryashov, and R. V. Satyukov,

“Searching for voltage graph-based LDPC tailbiting codes with large girth,” IEEE

Transactions on Information Theory, vol. 58, no. 4, pp. 2265–2279, Apr. 2012.

[78] A. Tasdighi, A. H. Banihashemi, and M.-R. Sadeghi, “Efficient search of girth-optimal

QC-LDPC codes,” IEEE Transactions on Information Theory, vol. 62, no. 4, pp. 1552–

1564, Apr. 2016.

[79] J. Wang, L. Dolecek, and R. D. Wesel, “The cycle consistency matrix approach to

absorbing sets in separable circulant-based LDPC codes,” IEEE Transactions on In-

formation Theory, vol. 59, no. 4, pp. 2293–2314, Apr. 2013.

174



[80] B. Amiri, J. Kliewer, and L. Dolecek, “Analysis and enumeration of absorbing sets for

non-binary graph-based codes,” IEEE transactions on communications, vol. 62, no. 2,

pp. 398–409, Feb. 2014.

[81] A. Hareedy, R. Kuditipudi, and R. Calderbank, “Minimizing the number of detrimental

objects in multi-dimensional graph-based codes,” IEEE Transactions on Communica-

tions, vol. 68, no. 9, pp. 5299–5312, Sep. 2020.

[82] A. Hareedy, B. Amiri, R. Galbraith, and L. Dolecek, “Non-binary LDPC codes for

magnetic recording channels: Error floor analysis and optimized code design,” IEEE

Transactions on Communications, vol. 64, no. 8, pp. 3194–3207, Aug. 2016.

[83] R. Wood, M. Williams, A. Kavcic, and J. Miles, “The feasibility of magnetic recording

at 10 terabits per square inch on conventional media,” IEEE Transactions on Magnet-

ics, vol. 45, no. 2, pp. 917–923, Feb. 2009.

[84] T. Parnell, N. Papandreou, T. Mittelholzer, and H. Pozidis, “Modelling of the thresh-

old voltage distributions of sub-20nm NAND flash memory,” in 2014 IEEE Global

Communications Conference, 2014, pp. 2351–2356.

[85] D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary LDPC codes over

GF(q),” IEEE Transactions on Communications, vol. 55, no. 4, pp. 633–643, Apr.

2007.

[86] L. Dolecek, D. Divsalar, Y. Sun, and B. Amiri, “Non-binary protograph-based ldpc

codes: Enumerators, analysis, and designs,” IEEE transactions on information theory,

vol. 60, no. 7, pp. 3913–3941, Jul. 2014.

[87] A. Bazarsky, N. Presman, and S. Litsyn, “Design of non-binary quasi-cyclic LDPC

codes by ACE optimization,” in 2013 IEEE Information Theory Workshop (ITW),

Aug. 2013, pp. 1–5.

175



[88] S. G. Srinivasa, Y. Chen, and S. Dahandeh, “A communication-theoretic framework

for 2-D MR channel modeling: Performance evaluation of coding and signal processing

methods,” IEEE Transactions on Magnetics, vol. 50, no. 3, pp. 6–12, Mar. 2014.

[89] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for

minimizing symbol error rate (corresp.),” IEEE Transactions on Information Theory,

vol. 20, no. 2, pp. 284–287, Feb. 1974.

[90] J. Moon and J. Park, “Pattern-dependent noise prediction in signal-dependent noise,”

IEEE Journal on Selected Areas in Communications, vol. 19, no. 4, pp. 730–743, Apr.

2001.

[91] T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli,

J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw,

Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong,

“Photon-efficient quantum key distribution using time–energy entanglement with high-

dimensional encoding,” New Journal of Physics, vol. 17, no. 2, p. 022002, 2015.

[92] Z. Zhang, J. Mower, D. Englund, F. N. C. Wong, and J. H. Shapiro, “Unconditional

Security of Time-Energy Entanglement Quantum Key Distribution Using Dual-Basis

Interferometry,” Physical Review Letters, vol. 112, no. 12, p. 120506, 2014.

[93] S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, “Fundamental limits of re-

peaterless quantum communications,” Nature Communications, vol. 8, p. 15043, 2017.

[94] Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang, A. Restelli,

J. H. Shapiro, F. N. Wong, and C. W. Wong, “Harnessing high-dimensional hyper-

entanglement through a biphoton frequency comb,” Nature Photonics, vol. 9, no. 8, p.

536, 2015.

[95] K.-C. Chang, X. Cheng, M. C. Sarihan, A. K. Vinod, Y. S. Lee, T. Zhong, Y.-X. Gong,

Z. Xie, J. H. Shapiro, F. N. Wong et al., “648 hilbert-space dimensionality in a biphoton

176



frequency comb: entanglement of formation and schmidt mode decomposition,” npj

Quantum Information, vol. 7, no. 1, pp. 1–11, 2021.

[96] I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key

distribution using energy-time entangled bipartite states,” Phys. Rev. Lett., vol. 98, p.

060503, Feb 2007. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.

98.060503

[97] N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key

distribution using d-level systems,” Physical Review Letters, vol. 88, no. 12, p. 127902,

2002.

[98] L. Sheridan and V. Scarani, “Security proof for quantum key distribution using qudit

systems,” Physical Review A, vol. 82, no. 3, p. 030301, 2010.

[99] C. Lee, J. Mower, Z. Zhang, J. H. Shapiro, and D. Englund, “Finite-key analysis of

high-dimensional time–energy entanglement-based quantum key distribution,” Quan-

tum Information Processing, vol. 14, no. 3, pp. 1005–1015, 2015.

[100] E. Karimi, E. Soljanin, and P. Whiting, “Increasing the raw key rate in energy-time

entanglement based quantum key distribution,” in 2020 54th Asilomar Conference on

Signals, Systems, and Computers, 2020, pp. 433–438.

[101] C. Lee, D. Bunandar, Z. Zhang, G. R. Steinbrecher, P. B. Dixon, F. N. Wong, J. H.

Shapiro, S. A. Hamilton, and D. Englund, “Large-alphabet encoding for higher-rate

quantum key distribution,” Optics express, vol. 27, no. 13, pp. 17 539–17 549, 2019.

[102] M. C. Sarihan, K.-C. Chang, X. Cheng, Y. S. Lee, C. Chen, T. Zhong, H. Zhou,

Z. Zhang, F. N. Wong, J. H. Shapiro et al., “Frequency-multiplexed rate-adaptive quan-

tum key distribution with high-dimensional encoding,” in CLEO: QELS_Fundamental

Science. Optical Society of America, 2020, pp. FF3C–3.

177

https://link.aps.org/doi/10.1103/PhysRevLett.98.060503
https://link.aps.org/doi/10.1103/PhysRevLett.98.060503


[103] M. C. Sarihan, K.-C. Chang, X. Cheng, H. Tsuda, and C. W. Wong, “Proof-of-principle

frequency-bin quantum key distribution with biphoton frequency combs,” in CLEO:

Applications and Technology. Optical Society of America, 2021, pp. ATu1S–6.

[104] T. Richardson, R. Urbanke et al., “Multi-edge type ldpc codes,” in Workshop honoring

Prof. Bob McEliece on his 60th birthday, California Institute of Technology, Pasadena,

California, 2002, pp. 24–25.

[105] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity-

approaching irregular low-density parity-check codes,” IEEE Trans. Information The-

ory, vol. 47, no. 2, pp. 619–637, 2001.

[106] H. Jin, A. Khandekar, R. McEliece et al., “Irregular repeat-accumulate codes,” in Proc.

2nd Int. Symp. Turbo codes and related topics. Citeseer, 2000, pp. 1–8.

[107] A. Roumy, S. Guemghar, G. Caire, and S. Verdú, “Design methods for irregular repeat-

accumulate codes,” IEEE Transactions on Information Theory, vol. 50, no. 8, pp.

1711–1727, 2004.

[108] G. Yue, X. Wang, and M. Madihian, “Design of rate-compatible irregular repeat accu-

mulate codes,” IEEE Transactions on Communications, vol. 55, no. 6, pp. 1153–1163,

2007.

[109] T. Zhong, F. N. Wong, T. D. Roberts, and P. Battle, “High performance photon-pair

source based on a fiber-coupled periodically poled ktiopo 4 waveguide,” Optics express,

vol. 17, no. 14, pp. 12 019–12 030, 2009.

[110] T. Zhong, X. Hu, F. N. Wong, K. K. Berggren, T. D. Roberts, and P. Battle, “High-

quality fiber-optic polarization entanglement distribution at 1.3 µm telecom wave-

length,” Optics Letters, vol. 35, no. 9, pp. 1392–1394, 2010.

178


	List of Figures
	List of Tables
	Introduction
	Outline of Contributions

	Hierarchical Coding for Centralized Cloud Storage
	Introduction
	Notation and Preliminaries
	Notation and Definitions
	Cauchy Matrices

	Codes for Multi-Level Access
	Codes with Double-Level Access
	Codes with Hierarchical Locality

	Scalability, Heterogeneity, and Flexibility
	Scalability
	Heterogeneity
	Flexibility

	Conclusion

	Hierarchical Coding for Decentralized Cloud Storage
	Introduction
	Notation and Model
	Decentralized Storage Network
	Locality of Interleaved Cauchy Reed Solomon Codes

	Cooperative Data Protection
	EC Hierarchy
	Single-Level Cooperation
	Recoverable Erasure Patterns

	Multi-Level Cooperation
	Cooperation Graphs
	Construction over Compatible Graphs
	Recoverable Erasure Patterns

	Topology Adaptivity, Scalability, and Flexibility
	Topology Adaptivity
	Scalability
	Flexibility

	Conclusion

	Spatially-Coupled Codes with High Memories
	Introduction
	Preliminaries
	A Probabilistic Optimization Framework
	Probabilistic Metric
	Gradient-Descent Distributor

	Generalization of GRADE
	Probabilistic Metric
	Gradient-Descent Distributor

	Algorithmic Optimization
	Heuristic AO
	Globally-Optimal AO

	Simulation Results
	Optimization over Cycles
	Optimization over Concatenated Cycles
	List of Partitioning Matrices and Lifting Matrices

	Conclusion

	SC-IRA Codes for Quantum Key Distribution
	Introduction
	System Model
	Major Steps and Related Measures
	Channel Model

	SC-Irregular-Repeat-Accumulate (SC-IRA) Codes
	Experimental Results
	Conclusion

	Conclusion
	Summary of Contributions
	Future Directions

	References



