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Cystic Fibrosis-Associated Stenotrophomonas maltophilia
Strain-Specific Adaptations and Responses to pH

Tara Gallagher,a Joann Phan,a Andrew Oliver,a Alexander B. Chase,b Whitney E. England,a Stephen Wandro,a

Clark Hendrickson,a Stefan F. Riedel,a Katrine Whitesona

aDepartment of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
bDepartment of Ecology and Evolutionary Biology, University of California, Irvine, California, USA

ABSTRACT The airway fluids of cystic fibrosis (CF) patients contain local pH gradi-
ents and are more acidic than those of healthy individuals. pH is a critical factor that
is often overlooked in studies seeking to recapitulate the infection microenviron-
ment. We sought to determine the impact of pH on the physiology of a ubiqituous
yet understudied microbe, Stenotrophomonas maltophilia. Phylogenomics was first
used to reconstruct evolutionary relationships between 74 strains of S. maltophilia
(59 from CF patients). Neither the core genome (2,158 genes) nor the accessory ge-
nome (11,978 genes) distinguish the CF and non-CF isolates; however, strains from
similar isolation sources grouped into the same subclades. We grew two human and
six CF S. maltophilia isolates from different subclades at a range of pH values and
observed impaired growth and altered antibiotic tolerances at pH 5. Transcriptomes
revealed increased expression of both antibiotic resistance and DNA repair genes in
acidic conditions. Although the gene expression profiles of S. maltophilia in lab cul-
tures and CF sputum were distinct, we found that the same genes associated with
low pH were also expressed during infection, and the higher pH cultures were more
similar to sputum metatranscriptomes. Our findings suggest that S. maltophilia is not
well adapted to acidity and may cope with low pH by expressing stress response
genes and colonizing less acidic microenvironments. As a whole, our study under-
lines the impact of microenvironments on bacterial colonization and adaptation in
CF infections.

IMPORTANCE Understanding bacterial responses to physiological conditions is an
important priority for combating opportunistic infections. The majority of CF pa-
tients succumb to inflammation and necrosis in the airways, arising from chronic in-
fection due to ineffective mucociliary clearance. Steep pH gradients characterize the
CF airways but are not often incorporated in standard microbiology culture condi-
tions. Stenotrophomonas maltophilia is a prevalent CF opportunistic pathogen also
found in many disparate environments, yet this bacterium’s contribution to CF lung
damage and its response to changing environmental factors remain largely under-
studied. Here, we show that pH impacts the physiology and antibiotic susceptibility
of S. maltophilia, with implications for the development of relevant in vitro models
and assessment of antibiotic sensitivity.

KEYWORDS Stenotrophomonas, acidic, cystic fibrosis, pH, transcriptome

The ability of a microbe to successfully colonize and persist in a new environment
depends on its tolerance of various conditions. pH is a central environmental factor

that imposes selective pressure on bacterial phyla and species (1–4), drives shifts in
microbial metabolism (3, 5), and affects microbial interactions (3, 6). pH response is
considered a deeply conserved trait (4), where different bacteria have specific pH
ranges at which they reach dense growth. For example, Gram-negative opportunistic
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pathogens, including Pseudomonas aeruginosa, grow optimally at neutral pH, yet must
survive at growth-limiting pH in the environment and infections (7, 8).

One example of infection-relevant pH shifts concerns the airway secretions of cystic
fibrosis (CF) patients, which are characterized by steep pH gradients that can suppress
bacterial growth. The pH of CF sputum ranges from 2.9 to 6.5 (9), although transient
microenvironments of alkaline pH likely exist, arising from bacterial metabolism of
amino acids (10, 11). pH is decreased by the CFTR (cystic fibrosis transmembrane
conductance regulator) bicarbonate channel defect (12–14), and the pH can be further
reduced during periods of decline in CF lung function, known as pulmonary exacer-
bations (15–17), potentially due to both host and microbial production of acidic
molecules, such as lactic acid (16).

Chronic bacterial colonization in the airways can result in up to a 95% mortality rate
in CF patients (18); antibiotics are rarely capable of eradicating established bacterial
infections. To better inform treatment, it is imperative to understand the mechanisms
opportunistic pathogens use to persist in the airways. The effect of pH on CF bacteria
is vastly understudied despite its importance as a major environmental factor in
microbial communities. One such CF microbe is Stenotrophomonas maltophilia, which
is estimated to infect 10% to 18% of patients (19, 20) and is intrinsically resistant to
multiple antibiotic classes. S. maltophilia is unable to use nitrate as an alternative
electron acceptor (21), a trait that likely impacts its growth and colonization location in
the airways (22). One recent retrospective study found that baseline chronic S. malto-
philia infection is associated with a 3-fold increased risk of mortality or lung transplant
in CF patients (23). Two recent studies found that CF-associated S. maltophilia has a
wide pangenome (24), and human-associated S. maltophilia forms core genome clades
that are distinct from environmental strains (25). In both studies, there was little
correlation between genetic potential and observed phenotypes in S. maltophilia (24,
25), including antibiotic susceptibility, which further emphasizes a need to improve the
link between genetic information and bacterial physiology in the CF airways. Our
knowledge of how opportunistic pathogens behave in CF sputum is limited. To date,
only a few studies have looked at changes in CF bacterial gene expression in vivo
(26–28). The lack of overlap between experimental conditions and CF sputum is an
important factor in the observed differences in bacterial physiology in vitro versus
in vivo (27).

Here, we used a combination of core genome phylogenetics, pangenome analyses,
and CF sputum metatranscriptomics, along with transcriptomics, growth curves, and
antibiotic assays in a range of pH. We hypothesized that S. maltophilia responds to
acidic conditions in the CF airways by acquiring and expressing stress response genes.
Our phylogenomics analyses did not support that S. maltophilia CF strains acquire a
specific universal adaptation to acidic pH. Rather, our combined phylogenomic and
transcriptomic analyses indicate S. maltophilia utilizes both conserved and strain-
specific stress responses in lower pH. Furthermore, higher pH cultures had more similar
transcriptomes to those of sputum than those of acidic pH cultures, suggesting that S.
maltophilia may avoid or have limited growth in the lower-pH microenvironments in CF
sputum. Our study highlights a need for better in vitro systems, as well as showing the
impact of pH on the localization and adaptation of CF bacteria.

RESULTS
S. maltophilia core genome analyses. To determine the relationships among CF

strains, we conducted a phylogenomics analysis using all known S. maltophilia ge-
nomes (153 genomes [see Data Set S1 in the supplemental material]). This analysis
identified 74 closely related strains representing a diverse genome set, including
environmental and host-associated strains. For all downstream genomics analyses, we
grouped genes with a minimum 95% amino acid identity (AAI) into a cluster (here
designated “gene”). By concentrating on the core genome (n � 2,158), genes shared
among all analyzed genomes, we found that most of the CF isolates formed highly
similar phylogenetic subclusters (Fig. 1a). In general, clonal strains isolated from the
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same CF patient (24) were closely related and found in the same subclade. In contrast,
the environmental strains had larger differences in their core genomes, evidenced by
deeper branch lengths in the tree.

S. maltophilia cystic fibrosis accessory genes. In order to identify genes unique to
S. maltophilia FLR19 and/or other CF isolates, we analyzed the pangenome, genes that
make up the core and accessory genomes (Data Set S2). S. maltophilia has an open
pangenome consisting of 14,136 genes (Fig. 1b). The average number of genes in each
S. maltophilia genome was 4,285 (minimum � 3,908 genes in strain UBA905, maxi-
mum � 4,733 genes in strain GC 2009) (Fig. S1). The CF accessory genome (genes found

FIG 1 S. maltophilia core and pangenome analyses. (a) Phylogenetic tree for 74 S. maltophilia strains constructed using 2,158 genes conserved across all strains.
Information about the strains’ isolation source is represented by the colored blocks in the four columns next to the tree. The last column highlights clonal strains
isolated from the sputum of ten CF patients from Esposito et al.’s 2017 study (24), where each patient is designated by a different color and by the first portion
of the genome name. (b) S. maltophilia pangenome accumulation plot (14,136 gene clusters, n � 100 permutations). (c) The distribution of genes found only
in CF genomes (4,457 genes). No CF-specific genes were shared in all 59 CF isolates. In accordance with this, the accessory gene content (n � 11,978 genes)
did not strongly separate strains into CF and non-CF groups. (d) NMDS of Jaccard dissimilarity matrix of accessory genome content (n � 11,978 genes,
stress � 0.16), where the color indicates if strains were isolated from CF patients (n � 59) or were non-CF strains (n � 15). The shape indicates if a strain came
from a human (n � 70) or was environmental (n � 4) sample. An ANOSIM of the Jaccard dissimilarity matrix suggested that the accessory genome is not a strong
indicator of whether a strain is CF or non-CF (R � 0.55, P � 0.05). A nested PERMANOVA of the Jaccard dissimilarity matrix indicated that the patient from whom
a strain originates explains more of the variation (R2 � 37%) in accessory genome content than whether the strain originated from a CF patient (R2 � 5.5%)
(P � 0.001).
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only in the 59 CF strains) consisted of 4,457 genes, although no gene was found across
all 59 CF genomes. Only five of the CF-specific genes, which had no known function,
were shared in at least half of the CF isolates (Data Set S2; Fig. 1c). Our analyses suggest
that the genes comprising the CF accessory genome are strain specific, with nearly half
(n � 2,157 CF-specific accessory genes) being unique to one strain (Fig. 1c). Accessory
genome content was better explained by patient identifier (R2 � 37%) than CF status
(R2 � 5.5%) (nested permutational multivariate analysis of variance [PERMANOVA];
P � 0.001). In accordance with this, the accessory gene content (n � 11,978 genes)
moderately separated strains into CF and non-CF groups (analysis of similarity [ANO-
SIM]; R � 0.55, P � 0.05) (Fig. 1d).

We next examined whether the overall functional potential of CF strains differed
from that of non-CF strains. In particular, we hypothesized that CF strains of S.
maltophilia would be enriched for stress response genes to cope with acidic pH in the
CF airways. We grouped total (core and accessory) gene content into 26 functional
categories based on the combined Rapid Annotation using Subsystem Technology
(RAST) SEED annotations of a non-CF type strain (K279a) and a CF isolate (FLR19) (29)
(Data Set S3). CF strains did not contain significantly more genes in the “stress
response” category but did have greater proportions of genes in the “virulence” and
“cofactors” categories (Fig. S1B; Data Set S4) (two-sample t test; P � 0.05). The anno-
tated functions of genes in the virulence category included metal and antibiotic
resistance (Data Set S3).

S. maltophilia growth in acidic, neutral, and basic pH with antibiotics. Because
the pH of CF airways is acidic and further reduced during pulmonary exacerbations, we
wanted to determine how S. maltophilia responds to changes in pH. We grew six CF
isolates (from San Diego, CA, and from Italy) (24) and two non-CF strains in phosphate-
buffered pH 5, 7, and 9 Todd-Hewitt broth. All eight strains had impaired growth in
acidic pH relative to that in neutral pH (analysis of variance [ANOVA] with post hoc
pairwise comparisons; P � 0.05) (Fig. 2a). Similar results were obtained in nonbuffered
acidic media spiked with citric, lactic, or sulfuric acid (Fig. S2A). Cells recovered from a
medium at a specific pH were not more tolerant to growth at that pH, suggesting that
their growth was due to a physiological response rather than to mutational adaptation
to acidic tolerance (Fig. S2B). In addition, strain FLR19 increased its local pH in the pH
5 buffered Todd-Hewitt broth over a 24-h growth period (Fig. S2C). The growth of strain
FLR19 growth was also impaired in acidic artificial sputum media (ASM) (Fig. S2D).

Beyond observing pH-driven changes in growth, we assayed tolerance to antibiotics
prescribed to CF patients (gentamicin, tobramycin, and meropenem) across the pH
gradient (Fig. 2b). The bacterial susceptibility to meropenem and gentamicin in differ-
ent pH varied at the strain level (ANOVA with post hoc comparisons and Bonferroni
correction; P � 0.05, n � 6 to 9). Five of the CF strains (FLR19, FMa 2012, CV 2008, GC
2011, and ZC 2006) were more susceptible to meropenem in acidic pH than in neutral
pH (Fig. 2c) (t test with Bonferroni correction; P � 0.05, n � 6 to 9). The reverse pH effect
was observed with gentamicin for four strains (FLR19, GC 2011, ZC 2005, and K279a),
which were more susceptible in basic pH than in to neutral pH. Strain NCTC 10257 had
significantly increased tolerance of gentamicin, and strain FLR19 trended toward
increased tolerance of gentamicin in acidic conditions. These findings align with those
of previous antibiotic assays, which showed that �-lactams (meropenem) have in-
creased activity at lower pH, while aminoglycosides (gentamicin) show decreased
activity (30).

S. maltophilia FLR19 metabolome under acidic, neutral, and basic pH condi-
tions. We next wanted to determine how S. maltophilia responds metabolically and
transcriptionally to changes in pH. We chose FLR19 for the metabolomics and tran-
scriptomics because it is a CF strain not yet characterized but is still closely related
evolutionarily to 27 other CF strains from our core genome phylogenetics (Fig. 1a).
Metabolites that were produced or consumed in different conditions were identified
using untargeted metabolomics. The metabolomes had little separation based on pH
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but had distinct metabolic profiles from uninoculated media (Fig. 3a). S. maltophilia
FLR19 produced 226 metabolites in at least one of the experimental conditions; 40
metabolites were produced in all three conditions (Data Set S4).

S. maltophilia FLR19 produced 28 metabolites in acidic medium only. These included
hydroxyglutaric acid, a by-product of glutamate catabolism (31), and hydroquinone and
acetophenone, weak acids with high pKa. Notably, metabolites involved in polyamine
synthesis, N-acetylglutamate, putrescine, and spermidine, were consumed by FLR19 in
acidic conditions (Data Set S4). The acidic metabolome had significantly less putrescine
and more of a nonannotated metabolite (X129225) compared to the neutral metabo-
lome (Kruskal-Wallis ANOVA with post hoc Dunn comparisons; n � 3, P � 0.05, log2 fold
change [log2FC] � 1 or � �1) (Fig. 3b; Fig. S4). The production of polyamines via
decarboxylation of amino acids is a well-documented acidic stress response in bacteria
(32). The FLR19 strain’s consumption of N-acetylglutamate, spermidine, and putrescine
in acidic pH could be indicative of higher turnover of those intermediates in this
polyamine pathway.

Metabolites produced by S. maltophilia FLR19 in alkaline pH included weak acids,
such as ribonic acid, salicylic acid, urea, glycolic acid, glyceric acid, and isothreonic
acid. The basic metabolome had significantly less methionine and more organic
acids (Kruskal-Wallis ANOVA with post hoc Dunn comparisons; P � 0.05, n � 3,
log2FC � 1 or � �1) (Fig. 3c; Fig. S4).

S. maltophilia FLR19 transcriptome in acidic, neutral, and basic pH. In order to
determine how our CF isolate responds transcriptionally to changes in pH, we se-
quenced ribosome-depleted RNA from FLR19 cultures grown in acidic (n � 2), neutral
(n � 3), or basic pH (n � 2). The numbers of quality-filtered reads that aligned to the
FLR19 genome were 2.2 to 5.1 million, with mean genome-wide coverages ranging
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from 27� to 67� (Fig. 4a; Data Set S6). The transcriptomes separated based on pH, and
the acidic transcriptomes are more distinct from the neutral than the basic transcrip-
tomes (axis 1) (Fig. 4b). The acidic transcriptome had 86 upregulated genes and 84
downregulated genes (negative binomial test; false-discovery rate [FDR] � 0.05,
log2FC � 1 or � �1) (Fig. 4c; Data Set S6). The basic transcriptome only had five
upregulated genes and two downregulated genes (Fig. 4d; Data Set S6). These results
suggest that S. maltophilia FLR19 is better suited to grow in basic pH than in acidic pH,
which is consistent with the growth curve data.

Comparison of S. maltophilia gene expression profiles in vitro and in CF sputum.
In order to identify genes actively transcribed by S. maltophilia in CF airways, we
mapped metatranscriptome reads from sputum (taken from 7 CF patients infected with
P. aeruginosa [27]) to the S. maltophilia pangenome (all coding sequences from 74
strains). Before aligning the metatranscriptome reads to the S. maltophilia pangenome,
the reads were mapped to a custom-made CF database consisting of 1,812 non-
Stenotrophomonas CF bacterial genomes from the Pathosystems Resource Integration
Center (PATRIC) (33). While this approach reduced the number of false-positive hits to
the S. maltophilia pangenome from other bacterial RNAs, it also omitted multispecies
genes. Two of the sputum samples (E and F) had reads that aligned to S. maltophilia
genes (3,403 and 28,992 reads, respectively) (Data Set S5).
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To compare transcription of S. maltophilia FLR19 grown in vitro to that of S.
maltophilia in sputum, we first processed the in vitro RNA sequencing reads through the
same pipeline as the metatranscriptome reads. Fewer genes were detected in the CF
metatranscriptomes than in the in vitro transcriptomes (Fig. 5a; Data Set S6). Since the
CF airways are primarily acidic (9), we hypothesized a priori that the acidic transcrip-
tomes would be similar to the sputum metatranscriptomes. However, the gene expres-
sion profiles of the acidic transcriptomes were least similar to the CF sputum meta-
transcriptomes (Fig. 5b). The source of the RNA (in vitro versus in vivo) explained more
variance in the gene expression profiles (R2 � 0.79) than did the experimental pH (R2 �

0.14) (nested PERMANOVA; P � 0.05).
Determining the proportion of metatranscriptome and transcriptome reads that

aligned to functional categories (29) showed that “protein metabolism” was the most
abundant category across all samples (Fig. 6a). Overall, there were few changes in the
rankings of the categories except for minor differences (Data Set S3; Fig. 6a). Notably,
the sputum metatranscriptomes had a higher proportion of reads that aligned to genes
involved in iron acquisition (sputum E � 1.2%, sputum F � 0.5%) than did the in vitro
transcriptomes (0.02% to 0.08%) (Data Set S3). Hierarchical clustering of the enriched
categories indicated that the sputum samples were functionally more similar to the
alkaline and neutral cultures than to the acidic cultures (Fig. 6b).
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log2FC of the acidic or basic CPM divided by neutral CPM (y axis). Colored dots indicate a log2FC of �1 or ��1
and an FDR of �0.05.
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Identification of pH response genes expressed in vitro and in CF sputum. By
combining our pangenome analyses and transcriptomics, we identified a DNA glyco-
sylase that was unique to FLR19 and upregulated in acidic pH (Fig. 7a), suggesting that
the expression of this DNA glycosylase may be a strain-specific response to low pH. This
gene was in a region containing additional genes that were also expressed at higher
levels in acidic pH than in neutral pH, but not at statistically significant levels. This
included a hypothetical protein and sulfoxide reductase (Fig. 7a).

Two additional accessory genes were upregulated by FLR19 in acidic conditions
(relative to neutral pH conditions). The first gene, which was also expressed in sputum
F (Fig. 7b, left), encodes a radical S-adenosyl-L-methoniine (SAM) domain protein. A
SmartBLAST search of the amino acid sequence indicated that this protein is closely
related to bacterial photolyases involved in DNA repair. The second gene, also ex-
pressed in CF sputum samples, was a multidrug efflux pump gene, cmeB (Fig. 7b, right).
The gene for the RND CmeB efflux pump was also found in S. maltophilia environmental
strains.

Twenty core genes were upregulated by strain FLR19 at low pH and expressed in
sputum, including the coding sequences for alkyl hydroperoxide reductases (AhpF and
AhpC), the SOS response regulator LexA, and the tripartite multidrug resistance system
(Fig. 7c and d; Data Set S7). In a similar study, the same stress response genes were also
expressed by P. aeruginosa at high levels in CF sputum (27). None of the seven
differentially expressed genes from when FLR19 was grown at basic pH were found to
be expressed by S. maltophilia in sputum.
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DISCUSSION

In order to improve treatment strategies, we need to better understand how
opportunistic pathogens are capable of living in the dynamic, stressful environments
found in the CF airways. The pH of CF sputum ranges from 2.9 to 6.5 (9), and further
drops during periods of pulmonary exacerbation (15). Interestingly, many of the
common Gram-negative opportunistic pathogens that persist in CF infections have
impaired growth at lower pH (7, 8), which motivated us to determine how S. maltophilia
copes in nonoptimal, acidic pH. We hypothesized that because the pH of the CF airways
is largely acidic, S. maltophilia copes by acquiring and prioritizing expression of stress
response genes.

CF strains of S. maltophilia adapt to patient-specific factors and are not better
adapted to low pH. We first analyzed all publicly available S. maltophilia genomes,
along with a clinically relevant isolate unique to this study. For the phylogenomics
analysis, we used a 95% AAI cutoff, which allowed us to look at finer-scale relationships
between closely related strains but which also potentially overestimated the number of
genes in the pangenome. Most of the S. maltophilia CF strains were part of four tight
subclades on the phylogenetic tree. Steinmann et al. found that core single-nucleotide
polymorphism (SNP) phylogenomics separated Stenotrophomonas spp. into human-
associated and environmental clades (25). However, we cannot confirm this trend due
to the limited number of environmental genomes that made it through our initial
genome-filtering step. The open pangenome of S. maltophilia suggests that this species
has diverse capabilities. This is in accordance with results of another study, which
looked at the longitudinal phenotypic and genotypic heterogeneity of 91 S. maltophilia
isolates from 10 CF patients, where the CF strains had a narrow core genome that made
up a fraction of a large pangenome (1,911 core genes out of a total 16,486 genes) (24).

We hypothesized a priori one mechanism that S. maltophilia uses to survive low pH
is acquiring stress response genes in the CF airways. However, we were unable to
identify a CF-specific signal of adaptation to low pH. Our phylogenomics analyses
suggest that S. maltophilia adapts to specific niches within a patient’s airways. As such,
a single strain cannot be considered representative of the entire CF population for a
species. The lack of clonal epidemiology in isolates among CF patients is also seen in
P. aeruginosa (34, 35). CF opportunistic pathogens are thought to be acquired from the
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environment and to colonize the airways of a patient throughout the patient’s life,
driving patient-specific adaptation (34–37). Only when analyzing the accessory genome
at the functional level (achieved by binning genes into cellular categories) were we able
to find that nonessential genes, including those canonically defined as virulence genes,
were enriched in CF strains. Furthermore, there was no significant increase in stress
response genes in CF isolates. While we did not find a universal genomic adaptation to
acidic pH stress in CF strains, the data from the in vitro growth experiments suggest that
acidic conditions are stressful for S. maltophilia. All eight strains, including six CF isolates
and two human strains, had impaired growth at lower pH.

S. maltophilia can cope with low pH by expressing both strain-specific and
conserved stress response genes. Based on our transcriptomics and metatranscrip-
tomics analyses, S. maltophilia copes with acidic pH by utilizing both universal re-
sponses (expression of core genes) and strain-specific responses. One possible mech-
anism is by increasing transcription of DNA repair genes, as we observed from our
transcriptomics analysis. Strain FLR19 contained both strain-specific and core repair
genes. The expression of DNA repair genes has been previously identified in sputum
metatranscriptomes and likely reflects bacterial response to stressful conditions in the

FIG 7 Examples of genes expressed in acidic pH and CF sputum. The black bars in the plots depict the lengths of genes. CPM, counts per million. (a) Coverage
of S. maltophilia FLR19 transcriptome reads across a 58,000-bp region which contained some genes unique to our strain. The labels indicate genes with higher
expression in acidic pH. The DNA glycosylase was significantly upregulated in acidic pH compared to neutral pH. (b) FLR19 transcriptome reads and sputum
metatranscriptome reads across a radical SAM domain protein (left panel) closely related to a DNA lyase and found in six S. maltophilia CF isolates and across
the RND efflux pump CmeB (right panel). (c) FLR19 transcriptome reads and sputum metatranscriptome reads aligned to the genes for alkyl hydroperoxide
reductases (AhpF and AhpC) and the SOS response repressor LexA, genes that were conserved across all 74 S. maltophilia strains. (d) FLR19 transcriptomes and
sputum metatranscriptomes across three components of the tripartite multidrug efflux system.
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cystic fibrosis airways that can damage DNA, including the presence of reactive oxygen
species and antibiotics (5). Consistent with this was FLR19’s increased transcription of
alkyl hydroperoxide reductase genes and the stress response gene lexA. In a similar
study, these stress response genes were upregulated by P. aeruginosa in sputum and
conferred resistance to antibiotics that included gentamicin (27). Taken together, the
findings of Cornforth et al. and our own findings suggest that CF strains survive in
CF-relevant conditions, including acidic pH, with both conserved and adaptive traits.

Transcriptomics suggest that S. maltophilia may avoid lower pH. We used a
conservative approach to align the sputum metatranscriptomes to the pangenome to
ensure that we only included S. maltophilia RNA in our study, which may have resulted
in the loss of multispecies signals. We also recognize that the differences in sequencing
depth between the in vitro transcriptomes and sputum metatranscriptomes bias the
identification and quantification of gene expression, and we sought to reduce this bias
by calculating the proportion of reads that mapped to functional annotation categories.
Overall, the gene expression profiles of the in vitro FLR19 cultures were distinct from the
S. maltophilia transcriptomes in CF sputum.

In contrast to our gene level analysis, the functional profiles of S. maltophilia in
sputum and under the different pH conditions were similar. A couple of categories were
more enriched in the sputum transcriptomes than in the in vitro transcriptomes,
including iron acquistion. While ferritin is abundant in CF sputum, free iron may be
scarce, and bacteria utilize scavengers to obtain iron (38, 39). Although expression of
iron uptake genes appears to be a priority for S. maltophilia in sputum, we did not see
significant enrichment of iron genes from our pangenome analyses in the CF strains,
suggesting that S. maltophilia utilizes core genes to acquire iron. The acidic transcrip-
tomes had expressed more stress response genes, indicating that the experimental
acidic conditions were stressful for FLR19. Perhaps the pH 5 buffered medium was more
stressful for strain FLR19 than sputum, in which S. maltophilia may be capable of
increasing local pH and colonizing the higher-pH regions (reported to be as high as 6.5
in pediatric sputum) (9).

We originally hypothesized that the acidic transcriptome would be more similar
than the neutral and alkaline transcriptomes to that of S. maltophilia in sputum,
because the pH of CF sputum is acidic (with gradients of 2.9 to 6.5) (9). However,
clustering the samples by their functional categories indicated that the basic and
neutral transcriptomes were more closely related than the acidic transcriptome to that
of sputum. The lack of similarities in functional activity between the acidic and sputum
transcriptomes, in addition to dissimilar gene expression profile in sputum compared to
all in vitro conditions, emphasizes our need to better understand how the local
environment impacts S. maltophilia colonization. Perhaps the neutral and alkaline
transcriptomes were more similar to CF metatranscriptomes because S. maltophilia
avoids lower pH microenvironments in CF sputum. In accordance with this, we did not
find a strong signal of CF-specific or low-pH adaptations from our phylogenomics
analysis. As S. maltophilia is unable to undergo nitrate respiration (21), oxygen is
another factor that can determine the success and location of S. maltophilia coloniza-
tion in the CF airways. In anaerobic environments, bacterial and host cells undergo
fermentation, further decreasing the local pH. Cowley et al. reported drops in oxygen
and pH with sputum plug depth (9). A recent study finding that Gram-negative
opportunistic pathogens prefer regions with higher pH and oxygen levels in sputum
mesocosm supports our idea that S. maltophilia colonizes microenviornments that are
less acidic and more aerobic (8).

Another possibility for the differences in gene expression in sputum compared to
that in vitro is the lack of overlap in bacterial behavioral studies in vitro versus in
sputum. Cornforth et al. highlighted this need, finding a discordance in the expression
of gene classes when P. aeruginosa is grown in vitro in comparison to that of P.
aeruginosa found in human samples, including the same CF sputum samples used in
this study (27).
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pH affects S. maltophilia antibiotic tolerances. One of very few studies that have
looked at the effect of pH on cystic fibrosis strains showed that reductions in the pH of
airway secretions inhibited its antibacterial function (12). We saw changes in expression
of antibiotic resistance genes by strain FLR19 and in antibiotic susceptibility depending
on the strain, antibiotic used, and pH. Both CF and non-CF strains were more sensitive
to meropenem in acidic conditions. One non-CF strain (NCTC 10257) and on CF strain
(FLR19) had higher tolerance of gentamicin at low pH. We also saw increased expres-
sion of antibiotic resistance genes (both core and accessory) when FLR19 was grown at
low pH. The same antibiotic resistance genes were expressed by S. maltophilia in CF
sputum. As CF patients take antibiotics throughout their lives, it is not surprising that
a CF isolate expresses antibiotic resistance genes in sputum. While it is known that pH
affects antibacterial activity (30), our findings have clinical implications for the treat-
ment of CF infections, especially during pulmonary exacerbations, when the pH of CF
airways becomes more acidified (15).

Conclusion. Our results suggest that S. maltophilia is not well-adapted to low pH
and uses stress response mechanisms and location to cope with pH gradients charac-
teristic of the CF airways (Fig. 8). Tools that spatially resolve bacteria in vivo will be
indispensable in understanding where and how bacteria adapt to clinical infections
(40).

MATERIALS AND METHODS
S. maltophilia FLR19 genome. S. maltophilia FLR19 was isolated from the sputum of an adult CF

patient. The genome was sequenced on an Illumina MiSeq instrument and assembled using A5
(06-04-2016 version) with default parameters. Short scaffolds (�5,000 bp) containing repeated nucleic
acid sequences were removed from the genome for downstream analyses.

Phylogenetic analyses. To examine the phylogenetic relatedness of our isolate, we constructed
an initial S. maltophilia phylogeny using 21 conserved single-copy marker genes. Specifically, we
downloaded 153 strains designated S. maltophilia from the PATRIC genome database that contained
corresponding metadata (see Data Set S1 in the supplemental material) (33). Next, we screened each
downloaded genome for the presence of 21 marker genes with HMMER (41) and built the initial
phylogenetic tree with FastTree2 (the Interactive Tree Of Life [iTOL] input for which can be

FIG 8 Conceptual overview of study. S. maltophilia is a ubiquitous organism, found in aquatic and soil environ-
ments and in cystic fibrosis (CF) infections. Because CF sputum is characterized by gradients of pH (reported to
range from 2.9 to 6.5) and oxygen (9), we wanted to determine how S. maltophilia survives under low-pH
conditions. Growth assays indicate that low pH is stressful for both CF and non-CF strains. While S. maltophilia can
cope with low pH by expressing conserved and adapted stress response genes, our in vitro and in vivo
transcriptomics analyses suggest that S. maltophilia may survive in the airways by avoiding lower-pH microenvi-
ronments. Taken together, the results of our study highlight that pH can drive S. maltophilia physiology by inducing
stress response mechanisms and controlling the physical colonization of S. maltophilia.
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downloaded from the following GitHub repository: https://github.com/tgallagh/Stenotrophomonas)
(42). Based on the robustness of the resulting phylogeny, we calculated whole-genome pairwise
comparisons (both nucleotide and amino acid identity [AAI]) across all genomes and selected a subset
of strains (n � 74) that were closely related to our strain (�97% AAI) for downstream analysis. Coding
regions from the resulting 74 genomes were translated using Prodigal (43) with predicted functional
annotation assigned by Prokka (44). We assigned orthologous protein groups (orthologs) based on a
reciprocal protein BLAST search using Roary and clustered orthologs at 95% AAI (45). Single-copy
orthologs conserved across all isolates (n � 2,158) were used to build a core genome phylogeny.
Specifically, each core ortholog was independently aligned using Clustal Omega v1.2.0 (46) and used to
create a concatenated core genome alignment (714,427 amino acids). Finally, we constructed a maxi-
mum likelihood phylogenetic tree using RAxML v8.0.0 (47) under the “PROTGAMMWAG” model for 100
replicates. We mapped all isolation source data retrieved from the PATRIC metadata onto the tree using
iTOL (48). To identify genes unique to S. maltophilia FLR19 and other CF isolates, we compared total gene
profiles across the 74 closely related genomes. Geneparser was used to determine the presence or
absence of genes within the pangenome for each genome. These pangenome data were visualized using
a script developed for the Roary pipeline (45). A cumulative gene plot was made using the “specaccum”
function from the R package “vegan.” To determine if accessory gene content is a strong predictor of a
strain’s isolation environment, a Jaccard dissimilarity matrix of the accessory genome presence-absence
matrix was calculated with the “vegdist” function from the R package “vegan.” The dissimilarity matrix
was visualized with a nonmetric multidimensional scaling (NMDS) plot constructed with the “metaMDS”
function from “vegan.” An ANOSIM and nested PERMANOVA of the Jaccard dissimilatory matrix were
conducted using the “anosim” and “adonis” functions from “vegan.”

S. maltophilia culture conditions. Strain FLR19 was isolated from the sputum of an adult CF patient
in San Diego, CA. Strains CV 2008, FMa 2012, GC 2011, ZC 2005, and ZC 2006 were isolated from the
sputum of four adult CF patients in Italy (24). Strains K279a and NCTC 10257 were also included to
represent non-CF human isolates. For the growth curves, all eight strains of S. maltophilia were grown
in pH 5, 7, and 9 phosphate-buffered Todd-Hewitt broth (THB). The strains were also grown in pH 5 THB
spiked with citric acid, lactic acid, or sulfuric acid. In order to determine how pH affects antibiotic
resistance, we also grew S. maltophilia cultures under the same conditions but with a concentration
gradient of gentamicin (200, 400, or 800 mg/liter), meropenem (64, 128, or 256 mg/liter), and tobramycin
(16, 32, or 64 mg/liter) for 24 h. An ANOVA with post hoc pairwise comparisons and Bonferroni corrections
was conducted in R to compare growth in pH 5 or pH 9 to that in pH 7 medium with and without
antibiotics. The fold change in S. maltophilia growth with antibiotics compared to growth without
antibiotics was calculated, and a two-sample t test with Bonferroni corrections was used to identify
significant changes in the fold change values of acidic and basic pH relative to neutral pH. Growth curves
were collected using a SpectraMax 190 spectrometer from Molecular Devices. All three antibiotics were
purchased from Fisher Scientific. For the transcriptomics and metabolomics experiments, S. maltophilia
FLR19 was grown in pH 5, pH 7, or pH 9 phosphate-buffered THB for 24 h. For the FLR19 experiments,
culture pH was measured with colorPhast pH strips from EMD Millipore. FLR19 was also grown in
phosphate-buffered pH 5, 7, and 9 artificial sputum media (ASM) based on a recipe from Palmer et al. (49,
50). For the ASM growth curves, colony counts of spot dilution plates were used to calculate FLR19
concentration.

Preparation of S. maltophilia FLR19 transcriptomes and metabolomes. The cells were centri-
fuged and pellets were stored in TRIzol at �80˚C for RNA sequencing. RNA was extracted using the Zymo
Direct-zol miniprep kit and concentrated with the Zymo RNA Clean and Concentrate kit. An Illumina
Ribo-Zero rRNA removal kit was used to remove rRNA. The RNA libraries were prepared for sequencing
with the TruSeq RNA sample preparation kit. Paired-end reads (250 bp) were sequenced on an Illumina
HiSeq instrument. For metabolomics analysis, the supernatant was stored at �80˚C (51). Triplicates of the
uninoculated media and supernatants of acidic, neutral, and basic FLR19 cultures were sent to the West
Coast Metabolomics Center for untargeted metabolomics analysis performed with gas chromatography-
time of flight mass spectrometry (GC-TOF-MS). Metabolites were extracted from the bacterial superna-
tants with a 3:3:2 mixture of isopropanol, acetonitrile, and water. The GC-MS analysis followed Fiehn lab
standard operating procedures (52).

S. maltophilia FLR19 metabolomics analysis. The Bray-Curtis distances of the metabolite intensities
for all samples were calculated using the “vegdist” function from the R package vegan and visualized
with a principal coordinate analysis (PCoA) plot using the “pcoa” function from the R package “ape.” In
order to identify metabolites that were shared among or unique to the S. maltophilia FLR19 acidic,
neutral, and basic metabolomes, the average normalized intensity for the metabolites in the three
uninoculated replicates was calculated. The uninoculated media averages were subtracted from the
metabolite intensities from the acidic, neutral, and basic metabolomes. A metabolite was considered to
be produced in a certain condition if the blank-subtracted metabolite intensity was positive for all three
replicates and consumed if the blank-subtracted metabolite intensity was negative for all three repli-
cates. Metabolites with significantly different levels in the acidic or basic metabolomes, compared to the
neutral metabolome, were identified with a Kruskal-Wallis ANOVA and post hoc Dunn comparisons in R.
Volcano plots were made in R to depict the fold change in metabolite abundances and P values of the
post hoc Dunn comparisons of the metabolites considered to be significant from the Kruskal-Wallis
ANOVA.

Transcriptomic analysis. All RNA sequencing preprocessing was performed on the UC Irvine High
Performance Computer Cluster in a Linux environment. Reads were quality-filtered using Trimmomatic
version 0.35. (53). Specifically, adaptors were trimmed from the ends of reads, and the parameters used
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for filtering were as follows: minimum read length of 50 bp and a 4-bp sliding window average Phred
quality score of 20. Overlapping reads were combined using Paired-End reAd mergeR (PEAR) and
processed as single-end reads, separate from the remaining paired-end reads (54). The preprocessed
reads were then aligned to the S. maltophilia FLR19 genome using Bowtie 2 in single-end or paired-end
mode (55). In order to identify differentially expressed genes in the acidic versus basic transcriptomes
(using the neutral transcriptome as a reference), HTSeq-Count (56) and the R package edgeR (57) were
used to count the number of reads aligned to a gene. The sum counts of the overlapping reads
processed as single-end reads and paired-end reads were calculated for each gene. Genes with log2 fold
changes greater than 1 or less than �1 and FDR values of �0.05 were considered to be differentially
expressed.

S. maltophilia metatranscriptome and transcriptome comparison. In order to identify genes that
were expressed by S. maltophilia in cystic fibrosis sputum, seven cystic fibrosis metatranscriptomes (27)
were quality filtered using Trimmomatic version 0.35 with the following parameters: minimum read
length of 35 and a 4-bp sliding window with an average Phred score of 20 (53). The metatranscriptome
reads were then dereplicated with Prinseq-lite version 0.20.4 (58). To ensure that stringent alignment
parameters were used, the quality filtered metatranscriptome reads were first aligned using Bowtie 2 (55)
to a custom-made database consisting of all non-S. maltophilia bacterial genomes associated with cystic
fibrosis patients from PATRIC (1,812 genomes) (33). Reads that did not align to the CF bacterial database
were then mapped to the S. maltophilia pangenome consisting of all the coding sequences from the 74
strains from our phylogenomics with Bowtie 1.

In order to compare gene expression of the in vitro S. maltophilia FLR19 transcriptomes to that of the
metatranscriptomes, we processed the in vitro reads using a similar pipeline as that for the metatran-
scriptomes. Briefly, overlapping paired-end reads from the transcriptomes were aligned to the pange-
nome as a single read. The number of reads that aligned to a gene was then counted in R and the RPKM
(reads per kilobase of transcript per million mapped reads) values were calculated. Reads that mapped
to multiple genes were included in the quantification, since the same read often mapped to core genes
across multiple genomes. The RPKM values from genes expressed in all nine samples were used to build
a Euclidean distance matrix with the “vegdist” function from the R package vegan. The distance matrix
coordinates were plotted on a principal-coordinate analysis (PCoA) plot. A nested PERMANOVA was used
to compare the gene RPKM values using the “adonis” function in vegan. For the PERMANOVA, the design
structure nested experimental condition (acidic, basic, or neutral pH or sputum) in the source of the
sample (in vitro versus in vivo). The proportion of CF database-filtered reads that aligned to a functional
category was determined by counting the reads that mapped to genes found in the RAST SEED cellular
categories (29). The in vitro FLR19 transcriptome reads were filtered using the same pipeline to compare
the proportion of reads that mapped to the SEED categories in vitro to CF sputum.

Data availability. The assembled FLR19 genome is publicly available on the PATRIC website under
accession number 40324.190 (33). The metabolomics data are available in Data Set S4. The RNA
sequencing reads are deposited in the NCBI GEO database under accession number GSE121347, and the
analyses can be found in Data Sets S5 to S7. The metatranscriptome reads can be found in the Sequence
Read Archive under accession number SRP135669 (27).
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