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Abstract

Deermice of the genus Peromyscus are well suited for addressing several questions of biologist interest, including the genetic bases of lon-
gevity, behavior, physiology, adaptation, and their ability to serve as disease vectors. Here, we explore a diversity outbred approach for dis-
secting complex traits in Peromyscus leucopus, a nontraditional genetic model system. We take advantage of a closed colony of deer-mice
founded from 38 individuals and subsequently maintained for ~40-60 generations. From 405 low-pass short-read sequenced deermice
we accurate impute genotypes at 16 million single nucleotide polymorphisms. Conditional on observed genotypes simulations were con-
ducted in which three different sized quantitative trait loci contribute to a complex trait under three different genetic models. Using a strin-
gent significance threshold power was modest, largely a function of the percent variation attributable to the simulated quantitative trait
loci, with the underlying genetic model having only a subtle impact. We additionally simulated 2,000 pseudo-individuals, whose genotypes
were consistent with those observed in the genotyped cohort and carried out additional power simulations. In experiments employing
more than 1,000 mice power is high to detect quantitative trait loci contributing greater than 2.5% to a complex trait, with a localization
ability of ~100kb. We finally carried out a Genome-Wide Association Study on two demonstration traits, bleeding time and body weight,
and uncovered one significant region. Our work suggests that complex traits can be dissected in founders-unknown P. leucopus colony

mice and similar colonies in other systems using easily obtained genotypes from low-pass sequencing.

Keywords: multiparent panel; diversity outbred; heterogeneous stock; power; QTL mapping; peromyscus; genotyping; GWAS

Introduction

Variation in complex genetic traits is due to the action of many
genes as well as the environment. Despite complex genetic traits
(e.g. risk of certain mental disorders, heart disease, stroke, and di-
abetes) accounting for the bulk of US health spending, in most
cases we do not yet understand their precise genetic architecture.
Over the last decade, human geneticists have employed a
Genome-Wide Association Study (GWAS) approach to identify
over 70 thousand factors contributing to complex traits (Manolio
et al. 2009; Buniello et al. 2019), with the vast majority of identified
factors having extremely subtle phenotypic effects (Boyle et al.
2017). In contrast, in major genetic model systems a MultiParent
Population (MPP) approach has emerged, where quantitative trait
loci are mapped in panels derived from multigeneration crosses
between several inbred parental lines (de Koning and McIntyre
2017). In the classic MPP-approach to quantitative trait loci (QTL)
mapping, the MPP population is sampled at an advanced genera-
tion and fully genotyped Recombinant Inbred Lines (RILs) are de-
rived. MPP-RILs are available in mice, Drosophila, maize,
Arabidopsis, and so forth, and have been successfully used to
map hundreds of traits (Long et al. 2014; de Koning and McIntyre
2017). Despite the success of MPP-RIL approaches, the cost of

maintaining several hundred RILs can be high, and RILs are both
“lost” and accumulate deleterious mutations over time. In con-
trast, as the cost of genotyping via short read sequencing contin-
ues to plummet we are increasingly seeing the growth of a
“Diversity Outbred”/“Heterogeneous Stock” (DO/HS) paradigm
where advanced generation MPPs individuals are directly used to
map traits (Mott et al. 2000; Macdonald and Long 2007; Svenson
et al. 2012). Indeed there are now multiple HS populations main-
tained in mice (Svenson et al. 2012; Woods and Mott 2017) and
rats (Hansen and Spuhler 1984) used explicitly for this purpose.
Although mice and rats have excellent DO/HS populations
there are many complex traits appropriately studied in other ro-
dent systems. A rodent system of particular significance are
“mice” of the Peromyscus genus. Although called mice, Peromyscus
spp. are cricetine rodents, which include hamsters, and are only
distantly related to the major murid genetic model systems. We
henceforth refer to Peromyscus as “deermice” to avoid this poten-
tial confusion. Deermice are the one of the most abundant mam-
mals in North America, and have enjoyed success as a model
system for understanding the genetics of adaptation to high alti-
tude, changes in metabolism and immune function during adap-
tation to urban environments, the genetics of longevity and life
history, the genetics of behavioral traits (such as parental care
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and nest building), and adaptive spatial changes in coat colora-
tion to avoid predation among other traits (beautifully reviewed
in Bedford and Hoekstra 2015). Different deermice species are
also major reservoirs for several tick-borne diseases including
Lyme disease, Borrelia miyamotoi relapsing fever, the malaria-line
protozoan disease babesiosis, and hantavirus (Barbour 2017). The
role of Peromyscus leucopus as the likely primary reservoir for the
bacteria that causes Lyme disease (Borrelia burgdorferi) and several
other tick-borne diseases is analogous to that of bats as reservoirs
for SARS coronaviruses and Ebola virus. In fact, P. leucopus’s role
as the primary reservoir for the bacteria that causes Lyme disease
has led to proposals that it be the first mammal considered for
natural release gene drive experiments in North America (Najjar
etal 2017).

Our previous effort to create infrastructure to strengthen P.
leucopus’s role as an emerging model system for the study of in-
fectious and other diseases produced a chromosome-length scaf-
folded 2.45Gb genome assembly, demonstrated how this
annotated assembly can empower RNAseq experiments, and
identified ~42 million intermediate frequency single nucleotide
polymorphisms (SNPs) (Long et al. 2019). Despite having an anno-
tated University of California Santa Cruz (UCSC) browsable ge-
nome, P. leucopus does not have a purpose-constructed HS/DO
population that can be used for dissecting complex traits like
those available in mice and rats. Peromyscus leucopus does have a
closed breeding colony founded from 1982 to 1985 from 38 wild-
caught deermice (the “P. leucopus White-footed mouse LL Stock”)
that shows great potential for the dissection of complex traits.
We speculated that this colony, by virtue of its being closed for
~60 generations since founding, could have many of the proper-
ties of the MPPs widely used in model systems. Importantly, we
expect the colony to display increased levels of LD relative to nat-
ural populations, where useful LD only extends over a few hun-
dred base-pairs (Long et al. 2019), and decreased levels of
nucleotide variation. These features of the colony should allow
missing genotypes to be imputed from low pass sequencing data
and genome-wide association scans effectively carried out.
Unlike the mouse and rat HS/DO populations, but like other out-
bred stocks that may exist for other emerging model species, the
38 wild-caught deermice “founders” of the P. leucopus LL colony
are unknown. We show this lack of founder information may
minimally impact on our ability to impute SNP genotypes and
carry out a GWAS. Instead, the main limitation of having
“unknown founders” is a reduced ability to identify candidate
causative variants (based on the pattern of SNPs private to cer-
tain founders) after traits are mapped.

Here, we carry out ~1X per animal low pass sequencing on
405 P. leucopus LL colony deermice and use Stitch (Davies et al.
2016) to impute SNPs (and haplotypes) for each individual. We
validate imputed genotypes using RNAseq data obtained from a
subset of 5 genotyped deermice and show imputed SNP geno-
types are generally of high quality. We then simulate QTL con-
tributing 1%, 2.5%, or 5% to variation in a complex trait under 3
different genetic models and examine the power of both a
marker- and haplotype-based test to detect phenotype-genotype
associations. Using a threshold for genome-wide testing that
holds the false positive rate at less than 5% per genome scan and
a study employing 348 deermice we show that the power to de-
tect a simulated QTL is ~1-50% largely irrespective of the under-
lying genetic model simulated, but dependent on the statistical
test and the contribution of the simulated QTL to total pheno-
typic variation. Despite modest power at this sample size, we
consistently observe a strong linkage signal and localized peaks

at the locations of simulated QTL, suggesting larger sample sizes
will greatly increase power, in a manner consistent with that ob-
served in mouse and rat HS/DO studies (c.f. Gatti et al. 2014). We
modify the stitch machinery to simulate up to 2,000 pseudo-
individuals whose genomes are conditional on the genotyped ani-
mals, show the power to map QTL can be high given a study con-
sisting of >1,000 colony deermice, and further show that
localization ability can exceed 100kb. We finally carry out a
GWAS study for 2 demonstration traits: the time between when a
tail is clipped to obtain a small amount of tissue for genotyping
and the associated wound cauterizes and log transformed body
weight. We observe a single region exceeding the threshold for
significance for body weight.

Materials and methods

Animals

Adult female and male outbred P. leucopus of the LL stock were
obtained from the Peromyscus Genetic Stock Center (PGSC) of the
University of South Carolina (Peromyscus Genetic Stock Center,
2017). The LL stock colony was founded with 38 animals captured
near Linville, NC between 1982 and 1985 and has been closed
since 1985. Sib-matings are proscribed, and complete pedigree
records are kept. Animals of the LL stock have mitochondria with
the same genome sequence (Barbour et al. 2019). The gastrointes-
tinal microbiota of the colony animals have been characterized
(Milovic et al. 2020). Animals were maintained in the AAALAC-
accredited U.C. Irvine vivarium with 2-5 animals per cage accord-
ing to sex and on 12 h light-12 h dark lighting schedule, tempera-
ture of 21-23°C, humidity of 30-70%, water ad libitum, and a diet
of 8604 Teklad Rodent (Harlan Laboratories). The study was car-
ried out in accordance with the recommendations in the Guide
for the Care and Use of Laboratory Animals of the National
Institutes of Health. University of California Irvine protocol AUP-
18-020 was approved by the Institutional Animal Care and Use
Committee (IACUC).

Bleeding time assay

The method was a modification of that of Broze et al. (2001). The
animals were lightly anesthetized with 3% isoflurane by inhala-
tion with 2 L/min flow of oxygen in a small animal veterinary in-
duction chamber. A sterilized, small animal nail clipper (Conair
PRO small; item PGRDNCS) equipped with a guard set at 2mm
was used to sever the tail’s tip, and the timer was started. The ex-
posed tissue was briefly touched every 0.5min with Whatman
No. 2 filter paper. The recorded bleeding time was the number of
minutes in half minute intervals until further bleeding of the ex-
posed tail tip ceased for at least 0.5min after the last touch of fil-
ter paper. To prevent further bleeding after the animal was
returned to its cage Blood Stop Powder (Durvet) was applied.
Bleeding times of less than 1.0 min were not observed. The range
of bleeding times was 1.0 to 13.0min. For 103 animals for which
the bleeding time was repeated 2-4 days later the coefficient of
determination (R?) was 0.87. Of the 103, for only 5 (4.9%) was the
difference between the 2 bleeding determinations more than
1.0min.

DNA extractions and short read libraries

The 2mm sample of the excised terminal tail tissue was sub-
jected to extraction with Qiagen’s DNeasy Blood and Tissue Kit.
The tissue was first placed in a 2ml microcentrifuge tube, to
which were then added 180 ul of the kit’s Buffer ATL and 30 ul of
Proteinase K (Qiagen) at 20mg/ml. The tube was vortexed and
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then placed on a shaker at 56°C at 200-220 rpm for up to 12h un-
til the skin tissue had dissolved. Following this step, the proce-
dure then followed the manufacturer’s instructions. DNA
concentration was determined using a Qubit 2.0 fluorometer
with the Qubit dsDNA HS Assay Kit. Short read libraries were pre-
pared in 96-well plates using 1/5th size Illumina Nextera FLEX
chemistry reactions, 50 ng of gDNA per mouse, and a custom set
of 96 unique barcode pairs. We follow the Illumina protocol
through the 12-cycle PCR amplification of tagged products, but
then post PCR proteinase-K treat each of the 96 samples (to re-
move polymerase activity), create a 96-plex pool using 2ul of
each sample, and then clean-up a 45 ul aliquot of the 96-plex re-
action following the FLEX protocol. Each 96-plex reaction was run
as a PE100 over 3 HiSEQ4000 lanes, and deplexed using the
[llumina software.

Processing of raw sequencing data

Raw fastq files for 405 animals were aligned to the reference ge-
nome using bwa mem v.0.7.8 (Li 2013) and default settings, with
PCR duplicates removed and individuals having less than 0.1X
coverage excluded from further consideration. We then used
Stitchv.1.6.6 (Davies et al. 2016) to impute genotypes for each of
the animals with default settings, and “-K=8 -nGen=60 -
output_haplotype dosages=TRUE.” Stitch takes asinput the
bam files from the alignment step and a list of SNPs at which im-
putation takes place, here 17.75M biallelic nonrepeat-overlap-
ping SNPs, identified from a previous study that carried out
sequencing of 36 colony individuals (Long et al. 2019). Only SNPs
seen in at least 2 of the 36 colony animals were considered, thus
the SNPs of this study are a subset of all SNPs in the colony, with
a bias toward more common variants. The nGen parameter
reflects the number of generations since colony founding (impu-
tation does not seem very sensitive to this parameter). K is the
number of founder haplotypes in the population. Although the
number of founder haplotypes in the colony is 76, which is much
greater than the employed k=38, increasing (or decreasing) K
greatly beyond 8 seems to result in poorer quality imputations,
so we adopted this number. We further show in the results that
very few regions of the genome appear to segregate more than 8
common haplotypes. Stitch was initially run on all 405 low-pass
sequenced individuals (to increase imputation accuracy), al-
though the simulations of this work focus on a subset of 348 ani-
mals for which we measured a quantitative trait. Stitch outputs
imputed genotypes and haplotype dosages as a vcf file. Genotype
and haplotype dosages were extracted per chromosome using
the following bcftools v.1.10.2 (Danecek et al. 2021) queries:
“%P0OS [%Ds{0}]\n" for genotypes and “%POS [%HD{0} %HD{1}
%HD{2} %HD{3} %HD{4} %HD{5} %HD{6} %HD{7}]\n” for haplo-
types, and wrangled into alternate formats using custom python
scripts (see software). We finally excluded SNPs having a MAF
<1% or an info score <0.4 in the 348 deermice.

Validation of Stitch genotype calls

Stitch outputs a “dosage” for each imputed SNP, where dosage
is a number between 0 and 2 that estimates the number of nonre-
ference alleles per individual. To validate stitch dosage calls,
we took advantage of 5 animals for which RNAseq data from
spleens was available. RNAseq data from these animals was
aligned to the genome using hisat2 v.2.2.1 (Kim et al. 2019) and
SNPs were called using GATK (version 4.1.9.0; McKenna et al.
2010). SNPs in the vcf file were filtered using the following
veftools v.1.10.2 (Danecek et al. 2011) switches “*-min-alleles
2 -max-alleles 2 -min-meanDP 20 -max-missing 1 -maf 0.15

-remove-indels -minQ 30” which resulted in 110,188 SNP calls.
These SNPs have an average coverage of 93X and as a result we
expect the calls to be quite accurate in most cases. Although fac-
tors such as allelic imbalance or read mapping biases could result
in a small fraction of the high-quality SNP calls obtained from
RNAseq being incorrect, such errors will result in under-estimates
of the accuracy of our SNP imputation approach. We compared the
high-quality SNP calls from RNAseq to imputed Stitch dosages to
calculate either the per SNP absolute error or the squared correla-
tion coefficient (R?) between estimates as a function of per sample
gDNA short-read low-pass sequence coverage.

Genetic models

To assess the power and localization ability of experiments treat-
ing Peromyscus colony deermice like DO/HS mice or rats we simu-
lated mapping experiments where a SNP or SNPs contributed to
variation in a complex trait. As we do not know the true genetic
architecture of complex traits, we explore 3 alternative models to
ensure any statistical test is robust to model assumptions. Under
all models a single “gene” contributed 1%, 2.5%, or 5% to variation
in a complex trait, random Gaussian environmental variation
contributed 50%, and polygenic background variance contributed
49%, 47.5%, or 45% to a complex trait. The first model assumes
single causative SNP, the second assumes 10 SNPs in a 100kb
window are causative, and the third assumes all SNPs in a 100kb
window are causative. The latter 2 models attempt to simulate a
causative “gene” contributing a significant proportion of variation
to a complex trait, with variation at that gene due to several
causative mutations. These multiple causative variants in a sin-
gle gene simulations are consistent with models of mutation se-
lection balance maintaining variation in complex traits (Pritchard
and Cox 2002; Thornton et al. 2013). Polygenic background was
simulated by randomly choosing every 400th SNP in the genome,
adding dosage values within individuals, and re-scaling the
resulting sums to their target variances. We simulated 2X250 dif-
ferent causative “genes,” with each gene centered on the uniform
random location of 250 SNPs (minor allele count greater than
two) located on either Chromosome 23 or 19. Conditioning on a
minor allele count of greater than 2 avoids studying private
alleles of large effect whose imputation might be suspect. In the
case of the single SNP causative model, the dosage associated
with each causative SNP was rescaled to account for 1%, 2.5%, or
5% of variation in a complex trait. For the 10 and all SNP models,
we defined a 100kb region centered on each of the 250 SNPs (or
“gene midpoints”) and further considered 10 randomly chosen
SNPs or all SNPs in the region. In the case of the 10 SNP model,
we added the dosages and rescaled so that they accounted for
1%, 2.5%, or 5% of variation. In the case of the all SNP model, we
scaled the dosages to have unit variance before adding them, and
then rescaled so that they accounted for 1%, 2.5%, or 5% of varia-
tion in the trait. Thus, under the all SNP model, rare SNPs effec-
tively have larger effect sizes, whereas under the 10-SNP model,
intermediate frequency alleles had larger effects. We simulate
the single SNP causative model for historical reasons (this model
has been widely simulated), although hundreds of human GWAS
studies suggest that single intermediate frequency SNPs account-
ing for more than 1% of the variation in a complex trait are ex-
tremely uncommon.

We simulate causative loci on either Chromosome 23 or 19,
but we carry out genome-wide scans excluding markers on
Chromosome 19. In the case of a causative “gene” or locus on
Chromosome 23 and a genome-wide (less Chromosome 19) scan,
hits are used to estimate the true positive rate of an experiment.
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Whereas for causative loci on Chromosome 19 and the same
genome-wide scan hits are used to estimate the false-positive
rate and establish a threshold for statistical significance.

Kinship matrix

The individuals of this study are from a closed colony. Although
the colony employs a breeding design to minimize inbreeding,
mice can be closely related and the genetic constitution of the
colony is slowly changing over time. It is common in such situa-
tions to employ a kinship matrix and mixed statistical models
that incorporate a kinship matrix. We explored several methods
for estimating a kinship matrix, including methods employing
SNPs vs founder haplotype dosages. Different methods tend to
produce similar, but not identical relatedness matrices, as
assessed by examining the correlation between off-diagonal ele-
ments of the matrix. The kinship matrix we ultimately employed
chose every 631st imputed SNP in the genome (with 631 chosen
so SNPs used to construct the kinship matrix are “out of phase”
with those used to simulate background polygenic variation),
hard-encoded the dosage estimates to a genotype by rounding to
the nearest whole number, and then using the popkin library in
R (Ochoa and Storey 2021). We made no attempt to obtain a col-
lection of kinship matrices each associated with “leaving a single
chromosome out”; the computational details of the power simu-
lations means that “leave one out” scans would have greatly in-
creased the total computational burden.

Statistical tests for genotype/phenotype
associations

We considered 2 tests for phenotype-genotype association: a
marker- and a haplotype-based test. The marker-based test
employs estimated dosages at single SNPs that take on values be-
tween 0 and 2 as predictors. In contrast, the haplotype-based test
employs a vector of 8 dosages that sum to 2, with each element
of the vector being the dosage of that particular haplotype (as
returned from Stitch). A genome-wide marker-based scan ex-
amining 16,087,368 markers is time-consuming to carry out in
the context of a power simulation. To carry out a genomewide
scan without pruning SNPs, we implemented the “fast GWAS” ap-
proach of Ziyatdinov (Ziyatdinov et al. 2018) that is part of the
lme4qgtl package in R (https:/github.com/variani/lme4qtl/blob/
master/demo/gwas.R). The scan employs an EVD composition of
the “null” model and kinship matrix to enable multiple SNPs to
be tested for association in parallel, making the tests very fast. To
avoid memory overflows we carried out the scan using the
blocksize option, with resulting P-values transformed to
—logo(P-values). Ziyatdinov’'s approach approximates fitting the
following model with or without the effect of the SNP marker:

relmatLmer(formula =Y ~ (1 |ID) + SNP, relmat(ID = K),
REML = TRUE).

(using relmatLmer from the lme4gtl package). We compared
—logio(P-values) scores from the approximation relative to the
full model and they were very similar.

We could not employ Ziyatdinov's approach for haplotype-
based scans, as methods for speeding up GWAS scans assume
biallelic single locus predictors, but haplotype tests have 8 predic-
tors. We obtained a 10X speed-up by only carrying out a test at
every tenth marker. The top 2 panels of Supplementary Fig. 1 de-
pict haplotype scores over Chromosome 23 for 2 individuals. The
figure shows that haplotype scores change slowly over megabase
scales, and thus testing at every tenth marker is a reasonable

compromise. We avoid fitting a full mixed model by creating a
new phenotypic variable Y’ as our dependent variable. Y’ is de-
rived by carrying out a principal component analysis on the kin-
ship matrix, regressing the 15 largest principal component scores
on Y (the actual phenotype), and retaining the residuals. Finally
to avoid problems with co-linear predictors, we carried out a prin-
cipal component analysis on the NX8 matrix (H) of haplotype
scores per locus, and retained only principal components scores
accounting for greater than 5% of the total variation in the raw
haplotype predictor matrix to create a new set of {independent}
predictors (H’). We define df as the number of columns in H’ (df <
8). We then obtain the residual sum of squares (RSS) from fits of 2
simple linear models: Y’ ~ H and Y’ ~ 1. An F-statistic is obtained
by contrasting the RSS in the standard manner:

F = ((RSSput — RSSun)/df )/ (RSSguar /(N — df — 1)).

We finally derive a —log;o(P-value) for each F. The computa-
tional advantage of this approach is that Y’ need not be a vector
of length N, but can instead be an NXS matrix consisting of S
(where S is potentially >1,000) different simulated phenotypes.
This strategy is efficient since much of the computational effort
is inverting H'. This entire approach is meant to approximate fit-
ting the full mixed model:

relmatLmer(formula =Y ~ (1]ID)+H',
relmat = list(ID = K), REML = FALSE)

using stats::pchisq and the number of columns in H' to compare
the mixed model with and without the effect of H’ to derive a
—logyo(P-value). Examining the —logio(P-value)’s from the full
model compared to our approximation suggests that the approxi-
mation is valid.

Using false positives to set a significance
threshold

For each % variation attributable to the QTL, genetic model, and
statistical test we carried out 250 genome-wide scans (excluding
Chromosome 19 markers), in which a causative “gene” was lo-
cated on either Chromosome 23 or Chromosome 19. Thus, for
any given candidate —log;o(P-value) cutoff threshold, the number
of hits associated with a causative locus on Chromosome 19 can
be used to estimate the false-positive rate. We established
thresholds of 6 and 7.5 respectively for the haplotype- and
marker-based tests, these thresholds hold the genome-wide false
positive rate at less than 5% (with some potential caveats dis-
cussed in results).

Power and localization

Given a threshold that controls the genome-wide false positive
rate, we define a true positive hit as a replicate genome-wide
scan in which at least 1 test statistic exceeds the significance
threshold and is located on Chromosome 23. Power is then sim-
ply the percentage of true positive scans over the 250 replicate
simulations carried out for any parameter combination. For each
hit, we further calculate the distance between the most signifi-
cant marker (MSM) and the causative SNP (or midpoint of the ge-
netic interval defining a “gene”) as a measure of localization.

Simulating pseudo-individuals

A reviewer of this manuscript provided code during the review
process that allowed us to use the * .EM.all.RData files gener-
ated as part of the Stitch-based SNP imputation to simulate
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pseudo-individuals consistent with observed genotypes and re-
combination rates. We implement this idea in the sample one -
haplotype function in the sim.geno.R script in the git. We used
this approach to simulate 2,000 diploid Chromosome 23s.
Haploid pseudo-individuals are created by recombining haploid
alleles between randomly chosen individuals consistent with the
rate at which those haplotypes break down in the observed data-
set (and combining them at random to create diploids), thus any
population structure (due to non random mating) present in the
colony will tend to be eroded. Despite the potential shortcomings
of this approach, allele frequencies and haplotype block lengths
are effectively mimicked, so this strategy is an excellent starting
point for simulating populations conditional on genotypes ob-
served in an ascertained set of individuals. We suspect the result-
ing individuals are likely much more representative of an actual
sample than would be obtained from a pure Monte Carlo ap-
proach. We used the simulated individuals to carry out
Chromosome 23 only scans under all 3 genetic models with QTLs
contributing 1%, 2.5%, or 5% to a complex trait. We do not simu-
late QTL on Chromosome 19, and instead employ the same
—logjo(P-value) thresholds as those used in the genome-wide
scans described above. Focusing on a single chromosome allowed
us to explore a range of population sizes via down-sampling (100,
250, 348, 500, 750, 1,000, 1,500, and 2,000) and estimate the im-
pact of population size on power with a reasonable computa-
tional effort. Since we only explored Chromosome 23 and the
pseudo-individuals likely do not model population structure pre-
sent in the colony, we do not include background genetic varia-
tion when simulating phenotypes, nor do we generate or utilize
kinship matrices in the model fitting.

Two demonstration traits

We measured “bleeding time” on 348 of the deermice employed
in the above simulations. Each deermouse was also measured for
several potential covariates, including: Sex, Age at time of assay,
Weight at time of assay, and date of birth (DOB; in months from
an arbitrary time in the past). Bleeding time is highly skewed
with a long tail toward longer times, so the trait was quantile nor-
malized to be normal (qn_Bleed). The model:

ANpleed ~ Sex + Age + Weight + DOB

showed Sex, Age, and DOB, but not Weight to be predictive of
quantile normalized bleeding time, so we carry out all subse-
quent analyses on the residuals after Sex, Age, and DOB were re-
moved. Visual examination of plots suggested that Age and DOB
affect the trait as first order polynomials. Although bleeding time
was measured in colony animals over 6 years, 75% of the animals
were assayed over less than 2 years, but we do not know if our as-
say was changing slowly over time or the colony itself was chang-
ing. We similarly chose to examine the residuals obtained after
modeling log transformed weight as a function of Sex, Age and a
Sex by Age interaction. All 3 of these factors are strongly
predictive of log(weight), although DOB is not.

We estimate the heritability of the residual quantile normal-
ized bleeding phenotype or residual log(weight) and the earlier
estimated kinship matrix using:

relmatLmer(formula =Y ~ (1 |IND), data = phen,
relmat = list(IND = K), REML = TRUE).

The heritability of the bleeding time phenotype was 6.5% and
weight 62%. Although heritability estimates can be inaccurate
given the N =348 of this study, our estimates do suggest the heri-
tability of bleeding time is low.

We carried out genome wide marker- and haplotype-based
scans on quantile normalized bleeding time after Sex, Weight,
and DOB were removed as well as residual log(Weight) using the
significance threshold obtained from the simulations, created
Manhattan plots and extracted the top 2 hits per character as evi-
denced from haplotype- and marker-based scores. We further-
more shuffled the phenotypes with respect to genotypes, carried
out a second scan, created Manhattan plots, and created quan-
tile-quantitative (QQ)-plots of the shuffled LOD scores vs actual
LOD scores.

Platelet function candidate genes

We did an Ensembl Biomart query to extract the house mouse
protein sequences associated with the 2 GO terms associated
with platelet function (GO:0030168 and GO:0070527), retained the
longest amino acid sequence per gene, blatted those proteins to
the P. leucopus reference genome, and took the highest scoring hit
per gene to obtain the locations of the 83 P. leucopus orthologous
genes. We consider these platelet function genes to be candidate
genes for a GWAS hit if they are within 2Mb of the most-
significant marker defining the top 4 hits. We additionally consid-
ered VKORC1 (@chrl:76732685-76735060) and its paralog
VKORC1L1 (@chr23:21130849-21176651) as candidate genes.
VKORC1 is associated with warfarin resistance in wild rodent
populations. Given the 85 candidate genes, the loose 2 Mb criteria
for a match, and 4 hits tested, we expect ~1 such hit by chance
alone. Thus, the observation of a candidate gene within 2Mb of a
hit in and of itself is thus not strong evidence that that gene is
causative. We did not attempt to identify an a priori set of candi-
date genes for log(weight), as the literature suggests several hun-
dred such genes.

Results

Diploid genotypes can be accurately imputed in
colony animals from low pass sequencing data

We carried out low coverage sequencing of 405 colony mice and
aligned reads to the P. leucopus reference genome (Long et al.
2019). The upper panel of Fig. 1 is a histogram of raw sequence
coverage obtained for the 348 individuals we study in depth in
this work. Roughly 95% of the individuals have coverages be-
tween ~0.5X-2.5X; clearly such coverages are insufficient for di-
rectly calling diploid genotypes from raw reads. We used the
program Stitch (Davies et al. 2016) to impute genotypes (and 8
pseudo-haplotypes) at 16,087,368 previously identified SNPs after
filtering. To validate the genotype calls from Stitch we took ad-
vantage of 5 deermice for which we additionally obtained
RNAseq data from the spleen. We aligned the RNAseq data to the
genome, called genotypes, identified a set of 110,188 high-
confidence genotypes at exonic SNPs, and compared these calls
to dosage estimates at the same set of SNPs imputed from the
low coverage data. The middle panel of Fig. 1 shows that only
~3-4% of SNPs are associated with an absolute error of greater
than 0.10. The lower panel of Fig. 1 shows the value of the
squared correlation coefficient (R?) as a function of minor allele
frequency. For SNPs with a minor allele frequency of greater than
5% imputation is excellent, even for the deermouse (ID=20694)
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Fig. 1. Validation of genotype calls based on 5 individuals with high
coverage RNAseq data. Top, histogram of raw sequence coverage for 348
individuals. Middle, % of SNPs with an absolute error >0.10 as a function
of raw sequence coverage for the 5 validated samples. Bottom, R? as a
function of minor allele frequency, colored by the 5 validation
individuals.

sequenced to ~0.25X. For rarer alleles the quality of imputation is
poorer and there is some evidence that the lowest coverage indi-
vidual is associated with the poorest imputation. The perfor-
mance of Stitch is largely consistent with the description of the
algorithm (Davies et al. 2016), given the relatively modest sized
panel we employ and K =8 haplotypes. We attempted to compen-
sate for our modest sample size by obtaining more coverage than
recommended per individual, but accurate imputation of rarer
alleles will generally require larger panels. Unlike a large study
using Stitch to impute genotypes in outbred Swiss Webster
(CFW) mice from Charles laboratory where K=4 was sufficient
for imputation and large genomic regions lack much variation
(Nicod et al. 2016) (presumably due to a small number of founders
and/or bottleneck), imputation in Peromyscus colony mice seems
to benefit from a greater number of founder haplotypes. We ex-
plored different values of K, with K=8 resulting in the best SNP
imputation. Despite the colony being founded from 32 individu-
als, plots of founder haplotype frequencies among the 348 deer-
mice examined here for Chromosome 23 (third panel of
Supplementary Fig. 1) suggests much of that chromosome is seg-
regating multiple common haplotypes. We further counted the
number of haplotypes at a frequency of greater than 5% at every
imputed position in the genome and observe the plurality of

positions segregating 3 or 4 common variants, with roughly 5%
segregating 6 or more founder alleles (bottom panel of
Supplementary Fig. 1). It is perhaps counter-intuitive that high-
quality diploid genotypes can be obtained routinely from animals
sequenced to <1X, but imputation from low-pass sequencing
data appears to be routine in P. leucopus closed colony deermice,
as there is likely extensive linkage disequilibrium in the colony.

We estimated a kinship matrix from an evenly spaced subset
of imputed and then hard-encored genome-wide SNPs
(Supplementary Fig. 2). Although there is the potential for relat-
edness in the P. leucopus colony animals of our study, the kinship
matrix of the subset 348 individuals we examine suggests that
mating between closely related animals is somewhat avoided in
the colony. Although some colony deermice appeared related to
one another, and 2 known mother/pup pairs (indicated with the
red arrow in Supplementary Fig. 2) were related at less than their
expected 0.5. We did not attempt to remove these individuals
from the study, nor did we rescale the kinship matrix to map
QTL.

Simulations of the power to detect genes
contributing to a complex trait in P. leucopus
colony animals

To examine the power of different strategies to detect genes con-
tributing to a complex trait in 348 colony animals, we simulated
replicate scans using a set ~16M genome-wide (less
Chromosome 19) imputed SNPs or 1/10th the number of imputed
haplotypes to detect a causative QTL on either Chromosome 23
or Chromosome 19. Each replicate simulation defined a 100kb
“gene region” on either Chromosome 19 or 23 contributing to vari-
ation in a complex trait. For that region, we then considered 3 dif-
ferent genetic models per scan, which briefly included one with a
single causative SNP, another with 10 causative SNPs in a 100kb
“gene,” and a third in which all SNPs in a 100kb “gene” are causa-
tive. Under all models, the causative gene contributed either 1%,
2.5%, or 5% to variation in a complex trait with trait a heritability
of 50% and the remainder of the variation being modeled as poly-
genic genome-wide background genetic variation. A hit from a
genome-wide scan where the causative gene is on Chromosome
19, but the scan lacks Chromosome 19 markers, allows us to esti-
mate the false-positive rate. Whereas a hit from a genome-wide
scan that localizes to Chromosome 23, where the causative QTL
is also on Chromosome 23, allows us to estimate the true positive
rate. Within each of the above combinatoric treatments (QTL on
19 vs 23; 3 genetic models; 3 QTL heritabilities) we simulated 250
replicate QTL locations. A genetic association with the complex
trait was detected using a mixed model approach that leveraged
the kinship matrix to control for population structure-based false
positives, or a haplotype-based test that employed the set of 8
founder haplotypes generated by stitch and controlled for relat-
edness by regressing out the first 15 principal components from
the relatedness matrix on the simulated phenotype.

Figure 2 depicts QQ plots integrated over the 4,500 simulated
genome-wide scans. Quantiles for QTL on Chromosome 19 repre-
sent a null distribution of —log;o(P-values) each paired with a
quantile for a QTL on Chromosome 23. In each panel, a departure
from the line with a slope of 1 represents the “signal” in the ex-
periment. It is apparent that there is considerably more signal as
the % variation due to the causative QTL increases. In contrast,
the particular genetic model simulated does not have a large im-
pact on this power, which suggests genetic dissection of complex
traits in this panel of deermice is somewhat robust to the genetic
details of trait architecture. The observation that marker-based
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Fig. 2. QQ plots of —log;o(P-values) over 250 genome-wide scans with a QTL located on either Chromosome 23 or 19 (control). Left to right considers 3
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Table 1. Properties of simulated genome scans to detect complex trait genes conditional on 348 genotyped deermice.

Percent variation Causative Loci per gene Test FPR (%)* TPR (%)° Mean distance (kb)°
1.0 Single SNP 0.8 0.8 11,750
1.0 Ten SNP 0.0 1.2 959
1.0 All SNP 1.2 0.8 640
25 Single SNP 1.6 9.6 905
25 Ten SNP 1.2 7.2 3,090
25 All SNP 3.6 14.4 1,102
5.0 Single SNP 9.2 50.8 918
5.0 Ten SNP 6.0 48.0 1,118
5.0 All SNP 8.4 50.0 969
AVG 3.6
1.0 Single HAP? 2.0 0.0 NA
1.0 Ten HAP 0.8 0.4 3,957
1.0 All HAP 0.8 0.8 563
25 Single HAP 2.0 3.2 2,383
2.5 Ten HAP 2.0 3.2 4,161
25 All HAP 1.6 7.6 2,305
5.0 Single HAP 2.0 29.2 819
5.0 Ten HAP 1.6 29.2 1,451
5.0 All HAP 3.2 28.4 1,353
AVG 1.8

& False Positive Rate (FPR) is a Hit @ LOD > 6|7.5 (QTL on Chr19).

® True Positive Rate (TPR) is a Hit @ LOD > 6|7.5 (QTL on Chr23) and hit on Chr23.
¢ Mean distance between center of causative gene and MSM conditional on a hit.

¢ Haplotype-based.

tests generate larger —log;o(P-values) than haplotype-based tests
for QTL on either Chromosome 19 or 23 is not surprising. We
carry out more marker- than haplotype-based tests and SNPs
close to one another can often show less linkage disequilibrium
than haplotype values.

Based on the QQ plots of Fig. 2, we defined —log;o(P-value)
thresholds for statistical significance for the marker- and
haplotype-based tests as 7.5 and 6.0, respectively. Table 1 uses
these thresholds to estimate both the true- and false-positive
rates (FPR) as a function of the % variation due to the simulated
QTL, the genetic model contributing to variation, or the test
employed. For the marker-based tests the FPR appears constant

among models if the % variation attributable to the QTL is held
constant, but these data also suggest the FPR is an increasing
function of the % variation at the causative SNP. The false-posi-
tive rate appears to be held below 5% per genome scan under a
marker-based scan as long as there are not causative genes con-
tributing >5% to complex trait variation (if such genes exist, they
seem capable of generating false positive hits). In contrast, the
threshold employed for the haplotype-based tests holds the false
positive rate lower than 5% per genome scan irrespective of ge-
netic model or the % variation due to the trait. We similarly esti-
mated the true positive rate or power for a genome-wide scan as
the proportion of scans with a causative gene on Chromosome 23
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and a hit on the same chromosome. Irrespective of genetic model
or statistical test the true positive rate is roughly equal to the
false positive rate for QTL contributing 1% to trait variation.
Power rises to perhaps 5-10% dependent on the statistical test for
a QTL contributing 2.5% to trait variation and is considerably
higher for a 5% QTL. To compare the statistical tests, while trying
to account for the apparent elevated false-positive rate for the
marker-based tests for large effect QTL, we calculate a false dis-
covery rate averaged over genetic models as a function of statisti-
cal test for QTL contributing 2.5% or 5% to trait variation as
approximately 25% and 10% respectively, with some indication
false positive rates are lower for marker-based tests.

For simulation replicates with at least 1 marker exceeding the
threshold and QTL explaining 2.5% or 5% of variation in a com-
plex trait, we quantified localization ability. For a sample size of
348 deermice the distance between the causative site and the
MSM is roughly 1-2.5 Mb. The average distance between the MSM
and the causative site appears less for marker- than haplotype-
based tests, and resolution seems to improve for QTL accounting
for a greater fraction of phenotypic variation (Table 1). It also
appears that the resolution is greater for genetic models in cases
where a single locus is causative. The resolution does not appear
to be a function of the observed —log;o(P-value) for either statisti-
cal test over all genetic models within % variation attributed to
the causative QTL (Supplementary Fig. 4). Localization ability in a
GWAS on 348 colony deermice is at least an order of magnitude
better than what could be achieved in a single generation QTL
mapping experiment using a comparable number of animals
(Lander and Botstein 1989).

Figure 3 depicts the 2 different statistical tests for 4 realiza-
tions of the simulation for causative “genes” on Chromosome 23
(and Supplementary Fig. 3 is a comparable plot for a control scan
with the causative gene on Chromosome 19). Although very few
replicate simulations exceeded the significance threshold for a
QTL explaining 1% of phenotypic variation, the 2 such cases plot-
ted seem to be detecting the simulated QTL. In the top panel de-
spite the scan not being significant for the haplotype-based test
there is a clear signal that just fails to reach the threshold cen-
tered on the location of the simulated QTL. We see similar pat-
terns for 2 hits explaining 2.5% of phenotypic variation, with
peaks in —logjo(P-values) that seem to include the simulated
causative variant. In all cases hits display 2-10Mb “block-like”
patterns of association, this is typical of many other examples
(not shown). It is noteworthy, and perhaps counter-intuitive, that
the marker-based test seems to be similarly powered to detect
QTL whose underlying genetics is NOT a single causative site
(Table 1). We suspect both tests are really detecting haplotypes
or markers that happen to efficiently tag a large region, with the
marker-based test not necessarily tagging the causative SNPs
themselves. This is almost certainly true in the cases where the
marker-based test has a hit under the all-SNPs model where the
effects at individual SNPs are vanishingly small.

Since the examples of Fig. 3 were chosen from a much larger
set of simulations to illustrate the power of this approach, we
also attempted to show examples where the method fails or is
misleading. Figure 4 depicts 2 examples of mis-mapped QTL in
simulations where the QTL explains 5% of total variation. The
top panel shows a QTL mapped to the left end of Chromosome
11, despite the simulated QTL being on Chromosome 23. This
“hit” was significant using both the marker- and haplotype-based
statistical test and exhibits the same block-like patterns of signif-
icance we expect of actual hits. One could not tell this is a false
positive by simply examining Manhattan plots. The lower panel
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depicts a similar situation where both tests detect a QTL toward
the left end of Chromosome 23 that is not the location of the sim-
ulated QTL. It is interesting that in this case there is also consid-
erable signal at the true location of the QTL, but the MSM marker
is located ~20Mb from the causative site. Figure 4 illustrates a
curious and more general observation—significant false positives
tend to occur near the ends of chromosomes. We do not have an
explanation for why this occurs.

Simulating pseudo-individuals to examine the
power and resolution of larger sized experiments
The simulated power of GWAS using 348 individuals is consistent
with similar estimates associated with diversity outbred mice
(Gatti et al. 2014), but is clearly modest. Despite many strengths, a
weakness of power simulations conditional on a set of genotyped
animals is that it is difficult to examine power at sample sizes
greater than that of the ascertained population. We exploited
haplotype and recombination rate information in Stitch output
files to simulate 2,000 pseudo-individuals. The pseudo-
individuals likely reproduce per region haplotype diversity and
SNP site frequency spectrum, although they may not faithfully
reproduce relatedness among individuals. Nonetheless, this
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Fig. 4. Two scans demonstrating unusual results. Left, haplotype-based
scans; right, marker-based scans. Top, the MSM is located on
Chromosome 11, which is not the same chromosome as the causative
gene (Chromosome 19), so this is a clear false positive hit. Bottom, the
MSM is located at great distance (>16.8 Mb) from the causative gene
location (indicated with a blue vertical line), that is the hit is on the
correct chromosome but poorly localized.

method of simulating pseudo-individuals is promising enough
that we carried out additional power simulations using these
individuals using the same genetic models described above. To
limit our computational burden, we only simulated QTL on
Chromosome 23 and only carried out the scan using
Chromosome 23 markers. Furthermore, we did not carry out the
mixed model testing, nor did we simulate background genetic
variation since the way individuals are created does not hold re-
latedness constant. Figure 5 depicts the power of GWAS experi-
ments in our deermouse colony as a function of the underlying
genetic model, variation contributed by the simulated QTL, and
statistical test employed as a function of panel size using the sig-
nificance threshold derived above. Power is largely determined by
the number of individuals examined and the % variation attribut-
able to the simulated QTL. For a QTL contributing 5% to variation
in a complex trait power is quite good at N=1,000 individuals,
while for a more modest QTL contributing only 2.5% power
approaches a reasonable 75% by 1,500 individuals and exceeds
90% by N=2,000. These power profiles are consistent with mouse
diversity outbred population simulations (Gatti et al. 2014). The
power based on N =348 pseudo-individuals appears to be slightly

lower than those estimates obtained from simulations condi-
tional on the actual 348 individuals genotyped under the
haplotype-based test, and considerably lower than under the
marker-based test, especially for QTL contributing 5% to varia-
tion in a complex trait.

If we condition on replicate simulations having significant hits
the localization ability is potentially high in colony deermice. For
a QTL contributing 2.5% to variation in a complex trait and
N=1,000, 1,500, or 2,000 individuals the average distance be-
tween the MSM and the causative site (or gene mid-point) was
200, 80, and 60kb. These represent averages over the haplotype-
and marker-based statistical tests and the all- and 10-SNP
genetic models as they tended to perform similarly at a given
sample size. Under the single causative SNP model and marker-
based test the MSM was often the causative site, although we
argue earlier that this situation is likely biologically not very
plausible. For a QTL contributing 5% to variation in a complex
trait the average distance between the MSM and the causative
site was 50kb averaged over the 2 multicausative site QTL mod-
els and appears independent of the number of animals exam-
ined. This suggests 50kb is approximating the limits of resolution
of experiments carried out in this colony.

Two demonstration traits

Three hundred and forty-eight of the genotyped animals were
assayed for bleeding time and body weight. Bleeding time itself is
not of great scientific interest, and does not appear to be highly
heritable, but was easily measured on each animal at the same
time a tail clip was carried out to obtain DNA for genotyping.
Similarly, all animals were weighed before we obtained the tail
clip. We transformed highly skewed raw bleeding times to be nor-
mally distributed and further removed the effects of sex, age (at
time of assay), and date of birth from the trait before QTL map-
ping. We log transformed weight in grams and similarly removed
the effects of sex, age (at time of assay), and their interaction. We
carried out both a marker- and haplotype-based genome scan on
the transformed traits, as well as a shuffled set of the same phe-
notypes, and employed thresholds for statistical significance de-
rived above.

Supplementary Fig. 5 are QQ-plots of genome-wide —log10(P-
values) for bleeding time or log(weight) against permuted values
of the same traits to mimic a null distribution. There appears to
be only a small amount of signal for the bleeding time trait.
Oddly log(weight) shows little signal under the marker-based
test, but considerable signal under the haplotype-based test. The
haplotype-based test further shows some evidence for genome-
wide inflation for log(weight), but not for bleeding time, suggest-
ing the first 15 principal components of the relatedness matrix
are an effective control for structure for bleeding time, but not
weight. Figure 6 shows Manhattan plots for the 2 demonstration
traits under the 2 statistical tests. No hits exceed our significance
thresholds apart from one region for log(weight) on Chromosome
3. It is of interest in the Manhattan plots that we see a few sug-
gestive peaks, including some near the ends of chromosomes
(which we believe are prone to false-positive hits). Finally,
Supplementary Fig. 6 is a similar Manhattan plot of GWAS
results, except carried out on permuted bleeding time or log(-
weight), which serve as a negative control. These permuted scans
generate several suggestive peaks (highlighting their danger), al-
though no tests exceed the threshold for significance for either
test and those suggestive peaks tend to be associated with chro-
mosome ends.
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Fig. 5. Power of GWAS based on simulating 2000 pseudo-individuals
down-sampled to examine smaller-sized experiments. The causative QTL
is located on Chromosome 23 and the scan is carried out only for
Chromosome 23. Dotted and solid lines are for marker- and haplotype-
based tests using —log;o(P-value) significance thresholds of 7.5 and 6.0,
respectively. Blue, green, and red are for QTL accounting for 5%, 2.5%,
and 1% of total variation, with all other variation being environmental.
Panels from top to bottom are for causative genes with a single, 10, or all
sites in a 100kb region being causative.
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The hits we identify in this study should only be considered
suggestive [the haplotype-based test is significant for log(weight)
but the statistic shows evidence for inflation]. Nonetheless, we
more fully characterize the top 2 hits for each trait and test com-
bination (Table 2). Figure 7 depicts Manhattan plots of a roughly
10Mb region including the suggestive hit for each candidate, and
Supplementary Fig. 7 are similar Manhattan plots except the en-
tire chromosome harboring a hit is depicted. The haplotype-
based test for log(weight) on Chromosome 17 and marker-based
test for bleeding time on Chromosome 7 are uncharacteristic in
displaying strong highly localized peaks without any flanking
block-like signatures, and we suspect that, at least at this sample
size, this methodology is perhaps prone to these artifacts. The
other peaks are more typical and suggest some signal that is part
of a larger block. The haplotype-based test hit on Chromosome 3
for log(weight) is interesting as there is an excellent candidate
gene, NPY, only 2 Mb to its left at 67.9 Mb. Despite the strength of
this candidate, the —log;o(P-value) score falls off rapidly to the
left of ~69.5Mb, the score at the location of NPY is quite modest,
and thus the details of linkage disequilibrium in this region seem
to exclude this candidate. The marker-based hit for bleeding time
on Chromosome 22 has a candidate gene (from an a priori set of
83 genes whose GO term matched platelet function), Pip5K1c, al-
most 5Mb to the left of the MSM. Based on our simulations 5Mb
would be considered too far from the MSM to be considered a
good candidate gene, except there is a secondary block of signifi-
cance very close to Pip5K1c’s location (Fig. 7), so it is possible vari-
ation at PipSKlc explains this peak. Given the modest support
associated with these suggestive hits, carrying out a more highly
powered experiment before any sort of functional characteriza-
tion of these hits would seem prudent, and we view these candi-
date regions as illustrative of the approach and properties of
colony deermice.
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Fig. 6. Manhattan plots of genome-wide scans for the bleeding time and log(weight). Upper, bleeding time; lower, log(weight); left, haplotype-based
scans; right, marker- based scans. Red line indicates the significance threshold.
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Table 2. Genome scans to detect bleeding time or log(weight) causative regions.

Discovery test” Alternate test”
Test Phenotype Chr MSM® —log10(p) MSM® —log10(p)
Haplotype BT 9 43.348460 3.94 43.690184 2.98
Haplotype BT 14 24.630059 3.63 29.097697 2.38
Haplotype log(W) 3 69.841667 6.21 69.841637 5.17
Haplotype log(W) 17 17.476222 4.40 17.478520 3.99
Marker BT 4 49.414518 4.67 48.682012 2.27
Marker BT 22 6.602023 5.53 6.477305 3.43
Marker log(W) 7 45.898804 5.43 44.093750 2.11
Marker log(W) 22 2.283682 6.17 2.283693 3.96

& Summary associated with test (column 1) used to detect the hit.
® Summary at the same location as test but for nondiscovery statistical test.
€ MSM in Mb (digits after decimal define the bp).
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Fig. 7. Ten Mb regions centered around notable peaks from the genome-wide scans for the bleeding time and log(weight). Scans for bleeding time above
and log(weight) below depict the regions with the 2 MSMs for either the haplotype- or marker-based test. A red line indicates the significance threshold.

Discussion

Here, we explore a diversity outbred approach for dissecting com-
plex traits in P. leucopus, a nontraditional genetic model system.
We take advantage of a colony of deer-mice founded from 38
individuals between 1982 and 1985 and subsequently maintained
as a closed colony for 35+ years (~40-60 generations). We specu-
late that this P. leucopus colony shares many genetic features with
DO/HS mice and rat populations. Most importantly, by virtue of
its large number of founders we hypothesized the colony segre-
gates many alleles per gene and given the many generations of
colony maintenance initial linkage disequilibrium associated
with the colony founding will be somewhat eroded. Unlike DO/HS
mice and rats, where the strains used to found the panel are both
known and highly characterized, the P. leucopus colony founders
are both unknown and tissues were never archived. As a result,

the DO mapping strategy of inferring known diploid founder hap-
lotypes from marker data, and regressing on estimated haplotype
dosages cannot be employed. Instead, phenotypes must be
regressed onto a set of genome-wide imputed SNPs or local hap-
lotypes inferred directly from the sample of genotyped individu-
als. Despite these potential shortcomings, we show that founder-
unknown closed colonies harbor considerable mapping informa-
tion that can be exploited to dissect complex traits.

We carried out low-pass sequencing on 405 mice (averaging
~1X per animal) and used stitch (Davies et al. 2016) to impute
diploid high-quality genotypes at ~16 million SNPs. We took ad-
vantage of 5 deer-mice also characterized via RNAseq to validate
Stitch-based imputations and show that imputed genotypes are
accurate. Our assumptions about the population structure of the
deermouse colony were largely validated as much of the genome
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appears to segregate 4 or more founder alleles. We carried out
simulations to assess the ability to map QTL using deermice sam-
pled from the colony under 3 different genetic models and for 3
different effect sizes at a causative QTL. The simulations made a
single imputed SNP (or SNPs) in a 100kb candidate gene region
causative and then quantified the rate at which simulated genes
could be detected via a genome-wide scan employing either a
marker- or a novel haplotype-based statistical test. This is a clas-
sic simulation approach that has been widely used in several
other contexts (c.f. McMullen et al. 2009; Aylor et al. 2011; King
et al. 2012; Gatti et al. 2014). This simulation strategy has the at-
tractive advantage of grounding the patterns of genetic variation,
linkage disequilibrium, and relatedness between individuals.
Conditional on the 348 deermice examined, the power to detect a
QTL contributing to a complex trait was ~1-40%, largely depen-
dent on the variation attributed to the simulated QTL, using a
threshold that holds the false positive rate at less than 5% per ge-
nome scan. For the subset of simulation realizations with a sig-
nificant hit, we were able to localize the causative site to ~2 Mb-
sized windows. Although power and localization ability differed
among the 2 tests utilized and the 3 genetic models, it did so only
subtly. Despite the power of our approach being modest at 348
deermice, it appears to be comparable to those seen in diversity
outbred mice and rats conditional on sample size. In fact, a study of
power in DO mice populations shows almost identical power to
the estimates of this paper (cf. Fig. 4 of Gatti et al. 2014), suggest-
ing that like DO mice on the order of 500-1,000 mice are likely
necessary to routinely map QTL contributing 5% to variation in
the complex trait (Chitre et al. 2020).

A clear shortcoming of the simulation approach employed, is
that it is not simple to simulate additional individuals from the
colony to examine power and localization in a larger experiment.
It is perhaps obvious that increasing the number of deermice ex-
amined will increase both power and localization ability. We
used summary information generated as part of the stitch im-
putation to generate 2,000 pseudo-individuals whose genotypes
were consistent with the sample of deermice for which genotypes
were obtained. Although the simulation approach does not per-
fectly model the colony, as it tends to create individuals equally
related to one another, it likely does an excellent job of mimick-
ing haplotype- and marker- frequency distributions and regional
variation in these distributions. A pure Monte Carlo approach to
simulating colony animals from first principles could be
attempted, but simulations might not fully encapsulate variation
in (unknown) founder haplotype frequencies nor longer range
within chromosome patterns of LD, so would undoubtedly be a
poorer representation. Using the 2,000 pseudo-individuals we
carried out Chromosome 23 only scans to estimate the power of
QTL mapping given increased sampling of deermice from the col-
ony. There is considerable power to map QTL contributing 5% to
variation in a complex trait given N=1,000 deermice, or 2.5% to
trait variation given N=1,500-2,000 deermice. Furthermore, for
experiments employing upwards of 1,000 deermice QTL were po-
tentially localized to sub-megabase-sized regions. It is even con-
ceivable the resolving ability of experiments carried out using P.
leucopus colonies animals is higher than in more recently founded
mouse or rat DO/HS populations.

We explored 3 genetic models and 2 statistical tests. Although
one of our models simulates the customary single SNP contribut-
ing ~5% to variation in a complex trait, in light of human GWAS
studies generally failing to identify intermediate frequency
alleles of large effect (Manolio et al. 2009), this model is almost
certainly wrong much of the time. We thus chose to simulate 2

additional models in which variation at a gene contributing to a
complex trait was due to 10 or potentially hundreds of causative
SNPs in that gene. Such models are broadly consistent with the
idea of mutation selection balance maintaining variation at com-
plex trait genes (Pritchard 2001; Thornton et al. 2013). Although
our simulations are undoubtedly an over-simplification of such
multiple causative site models, they may be useful for comparing
marker- vs haplotype-based tests. We hypothesized that single
marker tests would perform well under the single causative site
model (but not necessarily multisite models), whereas haplotype-
based tests would perform well under multiple causative site
models. Instead, we observe that both marker- and haplotype-
based statistical tests performed similarly irrespective of the un-
derlying genetic model. The megabase-sized blocks of elevated
marker-based LOD scores associated with the location of simu-
lated QTL suggests that LD is extensive enough in colony mice
that any given causative region is tagged by several hundred
SNPs.

We finally carried out a GWAS on 2 demonstration traits,
bleeding time following a small tail clip and log-transformed
body weight. We detected a single significant region under the
haplotype-based test and log(weight). Despite being significant,
we only consider this hit as suggestive, as the log(weight) trait for
the haplotype-based test showed some inflation of —log;o(P-
value) test statistics. We more carefully examined the 2 highest
scoring regions for each statistical test and trait and identified a
candidate gene, Pip5Klc, consistent with the —log;o(P-value) test
statistic for the marker-based test on Chromosome 22 for bleed-
ing time and the only a priori candidate gene co-localizing with
our suggestive hits.

Although Peromyscus is not considered a genetic model system,
the genus is well suited for addressing several questions of biolo-
gist interest including the genetic bases of longevity, behavior,
physiology, adaptation, and a deermouse’s ability to serve as a
disease vector. Each of these phenotypes are associated with
clear scientific and/or human disease questions where the ability
to dissect complex traits in Peromyscus would be of great value.
Our results suggest that individuals from a long-maintained col-
ony of P. leucopus deermice can be utilized in a manner very simi-
lar to DO/HS mice and rats for dissecting complex traits.
Although >1,000 deermice should be measured to consistently
dissect typical complex traits.

The results of this study are not only of interest to Peromyscus
researchers. The simulations of this work show that virtually any
closed colony of animals derived from a limited number of
founders and maintained for several dozen generations can be
used to dissect complex traits using a DO/HS-style approach.
This can be accomplished cost effectively using low-pass short-
read sequencing and genotype imputation, as suggested by Nicod
et al. (2016), provided the species exhibits high levels of nucleotide
diversity and has a reference genome. Colonies derived from un-
known founders clearly have some disadvantages but having
unknown-founders is not a complete impediment. Given an an-
notated genome and a GWAS scan, candidate genes can be iden-
tified, and the genetic structure of the colony characterized with
respect to founder haplotypes for small regions of interest. It is
also possible sophisticated extensions to Stitch (Davies et al.
2016) will eventually allow for phased haplotype estimates from
large samples from closed colonies. Our work should further mo-
tivate a founder unknown DO/HS-strategy for other species for
which closed colonies exist.
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Data availability

Raw sequencing reads have been uploaded to the SRA under proj-
ect PRJNA751054 and accessions SAMN20504476 through
SAMN20504850 plus a blank (SAMN20504851). We host the fil-
tered genotype calls (SNP and haplotype calls, and IDs) at: http://
wfitch.bio.uci.edu/tdlong/sandvox/publications.html. There is a
github archive with code to reproduce analyses: https://github.
com/tdlong/Pero_power_revise.git.
Supplemental material is available at GENETICS online.
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