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Abstract

There are a large number of tests for instability or breaks in coefficients in regression

models designed for different possible departures from a stable regression. We make

two contributions to this literature. First, we provide conditions under which optimal

tests are asymptotically equivalent. Our conditions allow for models with many or

relatively few breaks, clustered breaks, regularly occurring breaks or smooth transitions

to changes in the regression coefficients. Thus we show nothing is gained asymptotically

by knowing the exact breaking process. Second, we provide a statistic that is simple

to compute, avoids any need for searching over high dimensions when there are many

breaks, is valid for a wide range of data generating processes and has high power for

many alternative models.
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1 Introduction

It is reasonable to expect that there is some instability in most econometric relationships,

across time or space. In cross sections, there is likely (as is typically found in longitudinal

data) some degree of heterogeneity amongst agents. In time series, changing market condi-

tions, rules and regulations etc. will also result in heterogeneity in the relationships. So long

as this heterogeneity is not ’too strong’, standard regression methods still have reasonable

properties with the replacement of ’true’ values of the coefficients with averages of the in-

dividual or intertemporal true values of coefficients (see White (2001) for precise results for

limit theory under heterogeneity). If the heterogeneity is of a stronger form, then inference

using standard methods will be misleading.

For this reason there is a large literature on testing for instability, or ’breaks’ in pa-

rameters in time series regressions (restrictions to time series reduce the dimension of the

problem since there is a natural ordering to the data). We consider linear models of the

form yt = X 0
t(β̄+βt)+Z

0
tδ+εt and consider the possibility of nonconstant βt. Numerous dif-

ficulties have arisen in testing this possibility. First and foremost is the problem that there are

many possible ways (i.e. models where) βt can be nonconstant. Tests developed for one model

of a nonconstant βt may not be useful for other possible alternative models. Compounding

this difficulty is that for time varying models, some nuisance parameters fail to be identified

under the null hypothesis of constant βt. This renders the typical intuitions of optimality

of general Likelihood Ratio, Lagrange Multiplier, and Wald tests and asymptotic normal-

ity inapplicable in general. So arriving at a good (i.e. optimal) test may both be involved

(deriving new distributions and requiring potentially novel asymptotic theory) and also may

depend quite strongly on the alternative model the researcher has in mind.

Because of these difficulties, research has concentrated on very specific breaking processes.

LaMotte and McWorther (1978), Franzini and Harvey (1983) and Shively (1988b), for in-

stance, consider models where βt is subject to Gaussian breaks of constant variance every

period. But even for this apparently simple model the test statistics become such complicated

functions of the observables that they are difficult to analyze in an asymptotic framework.

Andrews and Ploberger (1994) (denoted AP in the sequel) derive asymptotically optimal
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tests when βt is subject to a finite number of breaks by employing an average asymptotic

power criterion. Bai and Perron (1998) promote the maximum of a sequence of F-statistics

for this type of parameter variation. Even for a very moderate number of breaks, say, five,

the AP statistics and the maximal F-statistics become computationally extremely involved,

since they require searching over all possible combinations of the break dates. In a nutshell,

tests of parameter constancy are mostly based on highly complicated statistics tailor-made

for one specific breaking process, and little is known about their efficiency against other

processes.

This paper makes two contributions. First, we show that for a very general set of break-

ing processes and a normality assumption on the disturbances, optimal tests of coefficient

stability are asymptotically equivalent. The set of breaking processes includes breaks that

occur in a random fashion, serial correlation in the changes of the coefficients, a clustering of

break dates and so forth. Our results imply that any specific optimal test will have the same

asymptotic power against any other breaking process of the set. We hence show that leaving

the exact breaking process unspecified (apart from a scaling parameter) does not result in a

loss of power, at least asymptotically.

Second, we suggest an easy-to-compute statistic that is asymptotically optimal for this

set of breaking processes. Its computation requires no more than k + 1 OLS regressions,

where k is the dimension of the vector Xt. We investigate the local asymptotic power of the

statistic and compare it to other popular statistics for breaking models. Given the first result,

one would not expect great differences in performance, and we show that this is true even

when one steps out of the set of breaking models for which our statistic is optimal. At the

same time, the statistic suggested in this paper does have a somewhat superior performance

for many models. We also show that it remains asymptotically valid under very general

assumptions on the disturbances.

The following section examines the testing problem and describes the new test statistic.

In the third section we establish the asymptotic equivalence of optimal tests for a large class

of breaking processes. The construction of feasible tests with the same asymptotic power is

taken up in Section 4, and Section 5 evaluates the asymptotic and small sample power of
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a number of tests for time variation in βt and brings out the implications of the theory. A

final section concludes. Proofs are collected in an appendix.

2 The Model and Tests for Breaks

The model this paper is concerned with is

yt = X
0
t(β̄ + βt) + Z

0
tδ + εt t = 1, · · · , T (1)

where yt is a scalar, Xt, β̄ and βt are k × 1 vectors, Zt and δ are d × 1, {yt,Xt, Zt} are
observed, β̄, βt and δ are unknown and εt is a mean zero disturbance. As a normalization

we set β1 = 0. The hypotheses to be tested are

H0 : βt = 0 ∀t against H1 : βt 6= 0 for some t > 1. (2)

so that under the null hypothesis the model reduces to

yt = X
0
tβ̄ + Z

0
tδ + εt t = 1, · · · , T (3)

In words, we want to test whether the coefficient vector βt that links the observables Xt to yt

remains stable over time, while allowing for other stable links between yt and the observables

through Zt.

The hypothesis test (2) of model (1) has received a great deal of attention in both the

statistical and econometrics literature. The major reason why the literature has taken so

many different approaches to the problem is that the alternative of a nonconstant βt is so

general. Obviously there exists a very large variety of ways βt might evolve under the alter-

native, and any specific assumption leads to a different testing problem. The huge literature

on this problem might be organized into two strands: the ’structural break’ literature, which

views the path of βt under the alternative as unknown but fixed and described by vector of

unknown parameters, and the ’time varying parameter’ literature, which views {βt} under
the alternative as random with some distribution.

In the ’structural break’ literature, by far the most attention has been given to the single
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break model, in which

βt = 0 for t < τ (4)

βt = β̄1 for t ≥ τ

for some β̄1 6= 0. In this literature, β̄1 and τ are a fixed but unknown parameters. If

τ was known, then one can rely on the usual F -test to distinguish (4) from parameter

stability, an idea that goes back to Chow (1960). But in practice, τ is usually unknown,

making it a nuisance parameter in the testing problem. Quandt (1958, 1960) suggested using

the maximum F -statistic over all values of τ as a means to test the stability of βt. This

search over a set of dependent F -statistics affects the asymptotic distribution of the test,

which ceases to be χ2. Andrews (1993) explores the properties of such tests in a very general

setting. Brown, Durbin and Evans (1975) suggested testing the stability of βt by considering

the partial sums of the standardized forecast errors of rolling regressions of (3), leading to the

so called CUSUM test. Ploberger, Krämer and Kontrus (1989) and Ploberger and Krämer

(1992) propose tests that are functions of the partial sum of OLS residuals of regression (3).

These tests are straightforward to compute, but nothing is known about their optimality.

Conceptually it is also straightforward to extend Quandt’s idea to the case of multiple

breaks, where

βt = 0 for t < τ 1

βt = β̄1 for τ 1 ≤ t < τ 2
... (5)

βt = β̄N−1 for τN−1 ≤ t < τN

βt = β̄N for τN ≤ t ≤ T

Bai and Perron (1998), for instance, examine the maximum of the F -statistic over all com-

binations of (τ 1, · · · , τN).1 Because the number of break date combinations becomes huge
1In an asymptotic set-up, one must exclude breaking dates that are too close to the beginning and

end of the sample in order to obtain a stable asymptotic distribution. A similar caveat applies for some

circumstances if two break dates are too close to each other. See Bai and Perron (1998) for details.
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even for moderate N (with T = 100 and N = 5, there are
¡
100
5

¢
= 75, 287, 520 combinations),

they require some clever dynamic programming to implement such a test.

Although these maximum F -statistics can be naturally motivated as generalized likeli-

hood ratio tests, this does not necessarily make them desirable tests. The reason is that

under the null hypothesis, the break dates τ j are unidentified, which strips standard testing

procedures like the likelihood ratio, Wald or LM-tests of their usual asymptotic optimal-

ity properties.2 AP have devised an optimal method for dealing with testing problems of

this kind, which can also be applied to testing structural stability against (4) or (5). Their

procedure is (asymptotically) optimal in the sense of maximizing a weighted average power

criterion, where the weighting is both over the size of the breaks (β̄j − β̄j−1) and over the

combinations of the break dates under the alternative. Using the same criterion, Sowell

(1996) derives asymptotically optimal tests for the set of statistics that are continuous func-

tionals of the partial sums of the sample moment condition. By choosing the weighting

of the size of the breaks as a Gaussian distribution function, the expressions for these test

statistics become much more compact, but still involve a sum over all combinations of break

dates. While not posing any conceptual difficulties, even a moderate N thus leads to compu-

tationally very cumbersome test statistics. Andrews, Ploberger and Lee (1996) and Forchini

(2002) derive analogous small sample optimal statistics, but in none of these papers optimal

statistics are calculated for N > 1.

The ’time varying parameter’ literature approaches the problem from a seemingly very

different angle. There the nonconstant βt under the alternative is viewed as being random,

and contributions to this strand differ in the probability law they pose for βt. A number

of studies investigate models in which βt deviates only temporarily from zero, so that the

’long-run’ value remains β̄. Watson and Engle (1985) and Shively (1988a), for instance,

investigate the case of a stable autoregressive process for βt. Most Markov switching models

with recurring states and threshold autoregressive models are also closely related to this

class.

The majority of studies in the time varying parameter literature, however, have con-
2Andrews and Ploberger (1995) showed, however, that the maximum F -statistic does possess a weak

optimality property.

6



sidered the model where deviations of βt from zero are permanent. In these models the

alternative hypothesis is that βt follows a random walk. In the case where Xt = 1 this model

is the ’unobserved components’ model examined in Chernoff and Zacks (1964) and Nyblom

and Mäkeläinen (1983). For more general stationary Xt the model has been examined in

Garbade (1977), LaMotte and McWhorter (1978), Franzini and Harvey (1983), Nabeya and

Tanaka (1988), Shively (1988) and Leybourne and McCabe (1989) – see the annotated

bibliography by Hackl and Westlund (1989) for further references. By making distributional

assumptions for {εt} and {βt} the difficulty in this approach consists of analyzing the likeli-
hood of the model under both the null and alternative hypotheses – even for independent

Gaussian disturbances {εt} and a Gaussian Random Walk of {βt} under the alternative the
resulting expressions are so complicated functions of the observables that little is known

about the asymptotic properties of the tests these authors promote.

At least at first sight, the ’structural break’ and the ’time varying parameter’ literature

seem very distinct. And surely, the typical path of βt in a time varying parameter model

with βt =
Pt

s=1ws, ws independent zero mean Gaussian variates is quite different from a

model with N breaks such as (5). But it is, of course, perfectly possible to let wt have a

continuous distribution with probability p and wt = 0 with probability (1− p). The number
of breaks N in βt (i.e. the number∆βt which are nonzero) then follows a Poisson distribution

with E[N ] = (T−1)p. The outcome of such a model can hence be cast in terms of model (5),
with N and {β̄1, · · · , β̄N} being random variables. By allowing for a suitable dependence in
{wt}, a model with a fixed number of breaks can be written in the time varying parameter
form, too.

The relationship between these models does not stop there. Tests of model (5) that are

optimal in the weighted average power sense of AP and Andrews, Ploberger and Lee (1996)

will have to specify weight functions on (i) the number of breaks (ii) the distribution of

break dates given their number and (iii) the distribution of the breaks given their dates and

number. A reinterpretation of these weights as probability measures naturally leads to a

particular time varying parameter model. Thinking about the unobserved βt as fixed and

using weights for their outcomes under the alternative or treating them as random hence
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amounts to the same thing. These relationships are due to the close link between Bayesian

methods and optimal classical methods in general – see Berger (1985), for instance, for

more details on this point. The time varying parameter literature and the structural break

literature hence treat the exact same problem, albeit with a different emphasis on what the

typical alternative looks like.

But against what kind of alternatives the hypothesis test (2) should be most concerned

with? This obviously depends crucially on why we want to test for parameter constancy in

the first place. Three main motivations come to mind:

First, the stability of relationship (3) might be an important question in its own right.

A standard example is the stability of the link between monetary aggregates and output,

a crucial question for conducting appropriate monetary policy (see Clarida et al. (2000)

for a recent example). Also tests for the Lucas critique (which has been difficult to detect

in practice) arise directly as tests of parameter instability (Engle et al. (1983), Engle and

Hendry (1993), Linde (2001)). Typically, the alternative of interest here is absence of any

stable relationship, including long-term relations. Relevant alternatives are hence those in

which changes in βt are permanent.

Second, one might want to take advantage of relationship (3) for forecasting yt. But

if (3) turns out to be unstable, then the appropriate forecast will have to be modified in

at least two respects: On the one hand, a good forecast of yt will then be driven more by

the recent past than by the distant past, since recent observations of relationship (1) will be

closer to the (unknown) future relationship than past observations – see Chernoff and Zacks

(1964), Clements and Hendry (1999) and Stock and Watson (1996). On the other hand, the

perceived instability will evidently also affect the confidence in the accuracy of the forecast,

resulting in wider confidence intervals. From this perspective, the most ’damaging’ form of

a time varying {βt} is again one in which the true relationship has changed permanently
compared to the beginning of the sample, since ignoring the time variation will then lead to

biased forecasts, even at long horizons.

Third, the hypothesis test (2) is a crucial specification test when β̄ is to be interpreted as

a structural parameter. When Xt = 1 and there is no Zt, then model (1) with βt =
Pt

s=1ws
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is an unobserved components model where yt contains a unit root. While it is possible to

estimate the sample mean of yt for any realization, it is impossible to interpret it in any mean-

ingful way as a parameter of the model. More generally, whenever βt varies in a permanent

fashion (as, for instance, in (4)), ignoring its variation and computing averages makes little

sense – the computed average value has no interpretation as describing the effect on yt of a

marginal change Xt, since the true marginal effect depends on time t. Note that temporary

deviations of βt from zero do not necessarily lead to the same interpretational difficulties.

In the extreme temporary case of βt being independent and identically distributed, β
0
tXt

can usefully be thought of as part of a heteroskedastic disturbance. There is no problem in

interpreting β̄ as a meaningful and interesting parameter of the model. The more persistent

{βt} becomes, however, the more β̄ becomes an inadequate description of the time homoge-
nous marginal effect on yt of a marginal change in Xt. These interpretational difficulties are

reflected in the behavior of standard inference about β̄. Up to a certain degree, heterogeneity

of βt will not affect the asymptotic properties of F -tests on β̄ at all – see White (2001)

for a precise statement of such results. If βt contains a unit root, however, then the F−test
ceases to follow its standard distribution, even asymptotically.

All three motivations are hence more pervasive the more persistent the changes in βt.

At least when carried out for one of the three reasons discussed above, a useful test of

parameter stability should hence maximize its power against permanent changes of βt. While

this suggests a focus on alternatives with a permanently varying βt, the obvious problem

remains that there exist many different persistent breaking processes. Intuitively, it seems

that knowledge about the precise form of the variation in βt under the alternative is required

in order to carry out an efficient hypothesis test of parameter instability.

This paper shows that this intuition is largely mistaken. We will show that for a very

large class of breaking processes with persistently varying βt, and an assumption on the

distribution of the disturbances, the optimal small sample statistics will be asymptotically

equivalent. In other words, the precise form of the breaking process {βt} under the alterna-
tive is irrelevant for the asymptotic power of the tests. The one parameter that drives the

asymptotic power of the optimal statistics is the expected average size of the breaks. This
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result dramatically simplifies the practice of testing against parameter instability, because it

allows the applied researcher to leave the exact form of the alternative unspecified without

foregoing (asymptotic) power. Additionally, we derive an easy-to-compute test statistic that

shares this asymptotic optimality. The statistic is asymptotically valid under very general

assumptions on the disturbances and the regressors – see Section 4 for details.

Specifically, we will show in the next section that under some additional regularity con-

ditions concerning {Xt, Zt} and independent Gaussian disturbances {εt}, all optimal small
sample statistics for testing (2) are asymptotically equivalent as long as the alternative of a

time varying parameter satisfies the following Condition.

Condition 1 Let {∆βT,t} be a double array of k × 1 random vectors ∆βT,t,i. Assume

(i) {T∆βT,t} is uniform mixing with mixing coefficient of size −r/(2r− 2) or strong mixing
of size −r/(r − 2), r > 2
(ii) E[∆βT,t] = 0 and there exists K <∞ such that E[|T∆βT,t,i|r] < K for all T, t, i

(iii) {T∆βT,t} is globally covariance stationary with nonsingular long-run covariance matrix
Ω.

For notational simplicity, we will drop the dependence on T of all elements defined in

Condition 1 and subsequent similar conditions. The dependence of the scale of βt on T

is introduced because optimal tests in an asymptotic framework will have power in a local

neighborhood of the null hypothesis of parameter constancy. The appropriate neighborhood

of nontrivial power of optimal tests is where the global covariance matrix of {∆βt} is of
order T−2. Also recall from the discussion above that optimal tests against a random {βt}
as described in Condition 1 may equally be interpreted as optimal tests that maximize

weighted average power over alternatives with nonstochastic {βt}, where the weighting is
according to a distribution that satisfies Condition 1.

Condition 1 allows for a multitude of diverse breaking models, although scenarios in which

the number of breaks remains finite irrespective of the sample size are ruled out. For any finite

sample, however, even a model with a single break satisfies Condition 1. The asymptotic

thought experiment then entails that a larger sample from the same data generating process

will contain more breaks eventually. Furthermore, models which are subject to breaks every
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period with probability p and arbitrary mean zero distribution with covariance Ωp in case

of a break also satisfy the condition. In this case, Ω = pΩp. Thus Condition 1 spans a wide

range of specifications from models with rare large breaks to models with frequent small

breaks. This covers the economically interesting case of persistent stochastic shocks that

hit the economy infrequently but repeatedly. Autocorrelations in ∆βt allow the coefficient

vector to smoothly adjust to a new level after a break. The effect of an oil price shock,

for instance, might take several periods before it is fully felt in the economy. Furthermore,

mixing allows for variation in the variance of ∆βt, thus generating periods of fewer or more

changes. Similar to the randomly occurring breaks, the Condition covers the case of breaks

that occur with a certain regular pattern, say, every sixteen quarters. Such a set-up might

be motivated by policy changes following for example presidential elections. In essence,

virtually any persistent breaking process is captured by Condition 1.

The possibility of obtaining optimal statistics against a wide class of models has been

noted before by Nyblom (1989). He derives small sample locally optimal tests for model (1)

when βt follows a martingale, the disturbances {εt} have known density and E[∆βt∆β0t] is

known for all t. The locally optimal test (that is the test which maximizes power for very

small E[∆βt∆β0t]) is then independent of the exact distribution of ∆βt. Given that for any

fixed number of breaks N , {βt} is a martingale as long as breaks have (conditional) mean
zero, this result implies that the locally optimal test is independent of the number of breaks

N . Note that Nyblom’s assumption and Condition 1 are truly distinct: Not all martingales

satisfy Condition 1 (a counter example being {βt} with exactly one break for any sample
size), and Condition 1 covers assumptions on {βt} that fail to be a martingale.
The result of the next section implies that, at least for testing purposes, the precise form

of the time variation is of very little importance. The power of any tailor-made statistic

against a certain breaking process approaches the power of any other optimal statistic as

the sample size increases, as long as the breaking processes are such that Condition 1 holds.

Intuition suggests that this independence of optimal tests of the exact breaking process

might, at least qualitatively, extend to optimal tests for processes that are not covered by

Condition 1, but which are similar in nature. We will show in Section 5 that this intuition
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is correct for the statistics suggested by AP and others. This implies that in practice, tests

against time variation in the parameters can be carried out with any reasonable statistic.

In practice, we recommend basing inference on the test statistic Ĵ . For the special case

of Xt = 1 and serially uncorrelated {εt}, Ĵ is the Most Powerful Invariant (MPI) test in
a Gaussian unobserved component model, as analyzed by Franzini and Harvey (1983) and

Shively (1988). For more general assumptions on Xt and εt, Ĵ does not correspond to a test

previously suggested in the literature.

Ĵ can be computed in a few simple steps, involving only matrix manipulations and OLS

regressions:

• Step 1: Compute the OLS residuals {ε̂t} by regressing {yt} on {Xt, Zt}

• Step 2: Construct a consistent estimator V̂X of the k × k long-run covariance matrix
of {Xtεt}. When εt can be assumed uncorrelated, a natural choice is the heteroskedas-

ticity robust estimator V̂X = T−1
PT

t=1XtX
0
tε̂
2
t . For the more general case of possibly

autocorrelated εt, many such estimators have been suggested; see Newey and West

(1987) or Andrews (1991) and the discussion in Section 4.

• Step 3: Compute {Ût} = {V̂ −1/2X Xtε̂t} and denote the k elements of {Ût} by {Ût,i},
i = 1, · · · , k.

• Step 4: For each series {Ût,i}, compute a new series, {ŵt,i} via ŵt,i = r̄ŵt−1,i +∆Ût,i

and ŵ1,i = Û1,i, where r̄ = 1− 10/T .

• Step 5: Compute the squared residuals from OLS regressions of {ŵt,i} on {r̄t} individ-
ually, and sum all of those for i = 1, · · · , k.

• Step 6: Multiply this sum of sum of squared residuals by r̄ and subtractPk
i=1

PT
t=1(Ût,i)

2.

The null hypothesis of parameter stability is rejected for small values of Ĵ and asymptotic

critical values are given in Table 1 below for k = 1, · · · , 10.The critical values are independent
of the dimension of Zt.
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3 Asymptotically Optimal Tests for General Breaking

Processes

In this section we will show that under certain regularity conditions, any small sample

optimal test statistic of the hypothesis test (2) will be asymptotically equivalent if under the

alternative the breaking processes is as described in Condition 1. The focus of this enterprise

lies on establishing that knowledge about the breaking process over and above what is stated

in Condition 1 is not helpful for constructing a more powerful test, at least asymptotically. It

turns out, however, that optimal tests do depend on the average magnitude of the breaks, as

described by Ω of Condition 1. But with our focus on understanding the impact of breaking

processes of different form – rather than differences in breaking processes that simply arise

by some unknown scaling – we will treat Ω as known in this section. This will establish

the relevant benchmark case, in which additional knowledge about the exact form of the

breaking process is entirely without asymptotic value for the testing problem.

In order to be able to write the model in matrix form, define the T × k matrix X =

(X1, · · · ,XT )0, the T × d matrix Z = (Z1, · · · , ZT )0, the T × 1 vector ε = (ε1, · · · , εT )0, the

(kT ) × 1 vector β = (β01, · · · ,β0T )0 and the T × (kT ) matrix Ξ =


X 0
1 0 · · · 0

0 X 0
2 · · · 0

...
...

...

0 0 · · · X 0
T

,
and, for future reference, the T × (d + k) matrix Q = (X,Z), the T × (T − d − k) matrix
BQ that satisfies B0QBQ = IT−d−k and B

0
QQ = 0, and M = BQB

0
Q = I −Q(Q0Q)−1Q0.

With these definitions, model (1) can be rewritten as

y = Ξβ +Xβ̄ + Zδ + ε (6)

We will derive optimal statistics that are invariant to transformations of the data of the form

(y,Q)→ (y +Xb̄+ Zd̄,Q) for any b̄ and d̄ (7)

Note that all standard tests against structural breaks satisfy this property. In words the

invariance requirement means that the outcome of the test for parameter stability does not
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depend on how exactly the linear regression is formulated. For an autoregressive process of

order one, for instance, invariance to the group of transformations (7) implies that the test

of parameter stability comes to the same conclusion independent of whether {yt} is regressed
on {yt−1} or {∆yt} is regressed on {yt−1}.
From the theory of invariant tests as described in Lehmann (1986), pp. 282—364, any

invariant test can be written as a function of a maximal invariant of the group of transfor-

mations (7). One maximal invariant is given by

(h,Q) = (B0Qy,Q).

The small sample optimal statistic that is invariant to the group of transformations (7)

can now be computed by comparing the likelihood of (h,Q) under the null of no breaks

with the likelihood of (h,Q) under the alternative of a nonzero β. To be able to write down

the likelihood, we must make a distributional assumption for ε, which we will assume to be

multivariate Gaussian. Additionally, we impose some regularity conditions concerning {Qt}.

Condition 2 (i) yT,t = X 0
T,t(β̄ + βT,t) + Z

0
T,tδ + εt

(ii) {εt} is i.i.d. N (0,σ2) and {εt} is independent of {βT,t}
(iii) Q̂T,t = QT,t|{QT,t−1, QT,t−2, · · · , yT,t−1, yT,t−2, ...} is independent of {εt}, there exist mea-
sures ν̄Q̂,T,t such that Q̂T,t has density fQ̂,T,t with respect to ν̄Q̂,T,t, and {fQ̂,T,t, ν̄Q̂,T,t} do not
depend on β̄, δ and {βT,t}.
Furthermore, if βT,t = 0∀t, then additionally
(iv) {QT,t} is uniform mixing of size −r/(2r− 2) or strong mixing of size −r/(r− 2), r > 2
(v) E[QT,tQ0T,t] = ΣQ, T−1

P[sT ]
t=1 QT,tQ

0
T,t

p→ sΣQ uniformly in s, ΣQ and T−1
PT

t=1QT,tQ
0
T,t

are positive definite for all T and there exists K <∞ such that E[|QT,t,i|r] < K for all T, t, i.

The distributional assumption on εt is crucial for the development of an optimal statistic,

but our test will be valid under much less stringent conditions on εt – see Section 4 below.

Part (iii) of Condition 2 requires the conditional distribution of Qt given past values of Qt

and yt not to depend on β̄, δ and {βt}, which is the assumption of weak exogeneity as
described in detail by Engle, Hendry and Richard (1983). This assumption will allow a

factorization of the likelihood of (y,Q) into two pieces, one capturing the contribution to
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the likelihood of {εt = yt − X 0
t(β̄ + βt) − Z 0tδ} and the other the contribution of {Q̂t =

Qt|{Qt−1, Qt−2, · · · , yt−1, yt−2, ...}}. The independence of the latter piece of {βt} will ensure
that it cancels in the ratio of the likelihoods of the null and alternative hypothesis, making

the resulting optimal statistic independent of the exact form of either {fQ̂,t} or {ν̄Q̂,t}.
Further restrictions on {Qt} in parts (iv) and (v) are only required to hold under the null

hypothesis of βt = 0∀t. The assumptions are rather weak, allowing for stationary as well as
non-stationary behavior of the regressors. They do not, however, accommodate deterministic

or stochastic trends.

Under Condition 2, we find that for a given β, the density of the data is

fy,Q|β(y,Q) =
TY
t=1

(2π)−1/2σ−1 exp
£−1

2
ε2t/σ

2
¤
fQ̂,t

= (2πσ2)−T/2 exp
£−1

2
ε0ε/σ2

¤ TY
t=1

fQ̂,t

where ε = y − Xβ̄ − Ξβ − Zδ is to be interpreted as a function of β̄, δ and {βt} and the
data (y,Q), whereas {Q̂t} is a function of the data alone. The unconditional density may
hence be written as

f1y,Q(y,Q) = (2πσ
2)−T/2

Z
exp

£−1
2
ε0ε/σ2

¤
dνβ

TY
t=1

fQ̂,t (8)

where νβ is the measure of β.

Now h = B0Qy, so by standard calculations we find from (8) for the density of (h,Q)

under the alternative hypothesis

f1h,Q(h,Q) =

Z
(2πσ2)−(T−k−d)/2 exp

£−1
2
σ−2(h−B0QΞβ)0(h−B0QΞβ)

¤
dνβ

TY
t=1

fQ̂,t

and clearly, under the null hypothesis of h = B0Qε

f0h,Q(h,Q) = (2πσ
2)−(T−k−d)/2 exp

£−1
2
σ−2h0h

¤ TY
t=1

fQ̂,t.

We therefore find the likelihood ratio statistic of the maximal invariant (h,Q) to be

LRT =

Z
exp

£
σ−2h0B0QΞβ − 1

2
σ−2β0Ξ0MΞβ

¤
dνβ. (9)
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The essential problem for obtaining the optimal test for a particular break process (i.e. a

particular choice of νβ) revolves around the complexity of evaluating LRT . For any specific

choice of νβ, it is in principle possible to write LRT as an explicit function of y and Q. But

even for moderately complex breaking processes, the resulting function becomes analytically

intractable. The usual way of obtaining asymptotic optimality results – writing down the

small sample optimal statistic and taking limits – is thus not feasible here.

Rather, we will show that LRT converges in probability under both the null and al-

ternative hypothesis to another, much more tractable statistic fLRT , that depends on the
distribution of β only through Ω. On the one hand, this is will prove the claim that all

small sample optimal statistics for any breaking process that satisfies Condition 1 will be

asymptotically equivalent. On the other hand, we will choose fLRT in a way which makes
the actual computation of the statistic straightforward, thus making progress towards the

goal of deriving a simple statistic with good power for any of these breaking processes.

For the definition of fLRT and the subsequent proofs, we will need some additional nota-
tion and definitions. Let

Ω∗ = σ−2Σ1/2X ΩΣ
1/2
X ,

where E[XtX 0
t] = ΣX is the upper k × k block of ΣQ, and note that Ω∗ is the long-run

variance of {T∆β∗t} = {σ−1TΣ1/2X ∆βt}. Ω∗ is the average size of the breaks after having

normalized the model for the covariance of {Xt} and the variance of εt, a more appropriate
measure for the relative magnitude of the breaking process.

The spectral decomposition of Ω∗ will play a major role in the subsequent analysis. Let

P ∗ be the k × k orthonormal matrix of the eigenvectors of Ω∗ and let Λ = diag(a21, · · · , a2k)
be the diagonal matrix of the eigenvalues of Ω∗ (such that Ω∗ = P ∗ΛP ∗0), where we define

ai, i = 1, · · · , k, to be nonnegative. Furthermore, define the T ×1 vector e of ones,Me = I−
e(e0e)−1e0, the k×1 vector ιk,i with a one in the ith row and zeros elsewhere, the T×T matrix

F =


1 0 · · · 0

1 1 · · · 0
...
...

...

1 1 · · · 1

 , the T × T matrix Ga = H
−1
a −H−1

a e(e
0H−1

a e)
−1e0H−1

a , where Ha =
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r−1a FAaA
0
aF

0, Aa =


1 0 · · · 0 0

−ra 1 · · · 0 0
...

...
...

...

0 0 · · · −ra 1

 and ra =
1
2
(2+a2T−2−T−1√4a2 + a4T−2) =

1 − aT−1 + o(T−1). Further define the following random elements, that are needed for the

ensuing arguments: let T β̃ ∼ N (0, FF 0 ⊗ Ω), let γ̃ be a (Tk × 1) vector, and let {∆γT,t}
be a double array of k × 1 random vectors with elements ∆γT,t,i, where (i) γ̃ has the same

distribution as β̃ and {∆γT,t} has the same distribution as {∆βT,t} of Condition 1 and (ii)
β̃, γ̃ and {∆γT,t} are mutually independent and independent of {εt}, {QT,t} and {∆βT,t}.
We will show that LRT is asymptotically equivalent to the the statistic

fLRT = Z exp
h
σ−2h0B0QΞ[Me ⊗ Ik]β̃ − 1

2
σ−2β̃

0
[Me ⊗ ΣX ]β̃

i
dν β̃. (10)

Note that fLRT is not a feasible statistic, since it depends on the generally unknown pa-
rameters σ2 and ΣX . But Theorem 3 in Section 4 below establishes that it is possible to

construct a feasible statistic that does not depend on such knowledge, but that has the same

(nondegenerate) asymptotic distribution under both the null and alternative hypothesis.

We begin by considering the asymptotic behavior of fLRT , and will then show LRT −fLRT p→ 0. Because β̃ is multivariate normal, we can explicitly carry out the integration in

(10) by ’completing the square’. By some matrix manipulations detailed in the appendix,

we arrive at the following equality.

Lemma 1 fLRT = kY
i=1

·
1− r2Tai

T (1− r2ai)rT−1ai

¸−1/2
exp

£−1
2
v0i[Gai −Me]vi

¤
where the tth element of vi is the ((t − 1)k + i)th element of [I ⊗ P ∗0σ−1Σ−1/2X ]ΞMy or,

equivalently, vi = [I ⊗ ι0k,iP
∗0σ−1Σ−1/2X ]ΞMy.

A test based on the statistic

J(Ω∗) =
kX
i=1

v0i[Gai −Me]vi (11)
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will hence be exactly equivalent to a test based on fLRT , since J(Ω∗) is just a monotone
transformation of fLRT . Being an explicit function of observables, it is tedious but straight-
forward to derive the asymptotic distribution of J(Ω∗) under the null hypothesis, which is

an obvious special case of the following Lemma (the greater generality is needed for an ar-

gument in the proof of Theorem 1 below). Here and in subsequent derivations, the limits of

integration are understood to be zero and one, if not stated otherwise. Further,
R
G stands

for
R
G(s)ds an so forth.

Lemma 2 Under Condition 2 and the null hypothesis of h = B0Qε, for any positive c1, · · · , ck
kX
i=1

v0i[Gci −Me]vi

⇒
kX
i=1

·
−ciJi(1)2 − ci

R
J2i −

2ci
1− e−2ci

£
e−ciJi(1) + ci

R
e−cisJi

¤2
+ [Ji(1) + ci

R
Ji]

2

¸

where Ji(s) = Wε,i(s)−
R s
0
e−ci(s−λ)Wε,i(λ)dλ and Wε,i and Wβ,i are the ith elements of the

independent k × 1 standard Wiener processes Wε and Wβ.

We now turn to the argument that LRT − fLRT p→ 0. Given that it is not feasible to

compute the integral in the expression for LRT explicitly, we will take advantage of the

similarity of the expressions inside the integral in expressions (9) and (10). The strategy will

be to do the asymptotic reasoning ’inside the integration’.

Lemma 3 Under Conditions 1 and 2 the following weak convergences hold jointly with the

convergence in Lemma 2

(i) σ−2(ε0MΞβ, ε0MΞγ)⇒ (
R
W̄ 0

βΛ
1/2dWε,

R
W̄ 0

γΛ
1/2dWε)

(ii) σ−2(β0Ξ0MΞβ, γ0Ξ0MΞγ)⇒ (
R
W̄ 0

βΛW̄β,
R
W̄ 0

γΛW̄γ)

(iii) σ−2(ε0MΞ[Me ⊗ Ik]β̃, ε0MΞ[Me ⊗ Ik]γ̃)⇒ (
R
W̄ 0

β̃
Λ1/2dWε,

R
W̄ 0

γ̃Λ
1/2dWε)

(iv) σ−2(β̃
0
[Me ⊗ ΣX ]β̃, γ̃

0[Me ⊗ ΣX ]γ̃)⇒ (
R
W̄ 0

β̃
ΛW̄β̃,

R
W̄ 0

γ̃ΛW̄γ̃)

where Wβ, Wγ, Wβ̃, Wγ̃ and Wε are independent k × 1 standard Wiener processes and bars
denote demeaned Wiener processes.
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Parts (i) to (iv) of Lemma 3 imply that the integrands in expressions (9) and (10) converge

weakly to the same limit under the null hypothesis, where β and β̃ are interpreted as random

vectors with distriubtions νβ and ν β̃, respectively. While highly suggestive, this result in

itself is not enough for the convergence of LRT − fLRT p→ 0 because the convergence in

probability is a statement of the asymptotic behavior of the integrals (9) and (10).

To tackle this problem, it will be useful to note that LRT and fLRT can be alternatively
written as integrals with respect to the measures of γ and γ̃, respectively, since these measures

are identical to those of β and β̃

LRT =

Z
exp

£
σ−2h0B0QΞγ − 1

2
σ−2γΞ0MΞγ

¤
dνγ

fLRT =

Z
exp

£
σ−2h0B0QΞ[Me ⊗ Ik]γ̃ − 1

2
σ−2γ̃0[Me ⊗ ΣX ]γ̃

¤
dν γ̃

Letting

ξ(β) = exp
£
σ−2h0B0QΞβ − 1

2
σ−2β0Ξ0MΞβ

¤
ξ̃(β̃) = exp

h
σ−2h0B0QΞ[Me ⊗ Ik]β̃ − 1

2
σ−2β̃

0
[Me ⊗ ΣX ]β̃

i
allows us to write

E
h
(LRT − fLRT )2i = E

h³R
ξ(β)νβ −

R
ξ̃(β̃)ν β̃

´³R
ξ(γ)dνγ −

R
ξ̃(γ̃)dν γ̃

´i
= E

h
ξ(β)ξ(γ)− ξ(β)ξ̃(γ̃)− ξ̃(β̃)ξ(γ) + ξ̃(β̃)ξ̃(γ̃)

i
. (12)

Note that the interpretation of β, β̃, γ and γ̃ changes from dummy variables of integration

in the first line to random vectors in the second. Now all four terms inside the expectation

operator in (12) converge weakly to the same limit by the Continuous Mapping Theorem and

Lemma 3. But convergence in distribution implies convergence in expectation for uniformly

integrable random variables. So if the respective products of ξ(β), ξ(γ), ξ̃(β̃) and ξ̃(γ̃) could

be shown to be uniformly integrable, we would find that LRT − fLRT → 0 in mean square

under the null hypothesis, and the convergence in probability follows.

In the appendix we make a bounding argument for ξ(·) and ξ̃(·) to ensure the uniform
integrability, i.e. we show that replacing ξ(·) and ξ̃(·) by ξ(·)1[ξ(·) < K 0] and ξ̃(·)1[ξ̃(·) < K 0]

in the definition of LRT and fLRT , respectively, with 1 being the indicator function, is
innocuous when K 0 is chosen large enough.
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Theorem 1 Under Conditions 1 and 2, as T →∞,

LRT − fLRT p→ 0

under the null hypothesis of h = B0Qε.

In order to substantiate the claim of asymptotic equivalence of tests based on LRT andfLRT we still lack the crucial additional step of showing that the convergence in probability
of Theorem 1 also holds under the alternative hypothesis. A brute force approach of running

through the same arguments that led to Theorem 1 also for the alternative hypothesis is

extremely cumbersome and barely tractable, since a varying βt will lead to changes in yt that

in general will feed back to changes in Qt, given that Condition 2 allows weakly exogenous

regressors. Furthermore, the bounding argument referred to above is not easily implemented

under the alternative data generating process.

Out of these reasons we rather follow AP in taking the more indirect route of proving

that the density of (h,Q) under the alternative hypothesis is contiguous to the density of

(h,Q) under the null. Contiguity can be thought of as a generalization of the concept of

absolute continuity to sequences of densities; if a sequence of densities of a data generating

process can be shown to be contiguous to another sequence of densities, then all statements

of convergence in probability of the latter automatically also hold under the former data

generating process. The reader is referred to the excellent survey of Pollard (2001) for a

more detailed introduction to the concept.

Theorem 2 Under Conditions 1 and 2, the sequence of densities {f1h,Q(h,Q)}T are contigu-
ous to the densities {f0h,Q(h,Q)}T .

Corollary 1 Under Conditions 1 and 2 the convergence in probability of Theorem 1 also

holds under the alternative hypothesis of h = B0Q(ε+ Ξβ).

Since convergence in probability implies convergence in distribution, Theorem 1 and

Corollary 1 imply that the small sample optimal statistic LRT and the statistic fLRT have
the same asymptotic distributions under the null and alternative hypothesis, which in turn
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implies the same local power. As the sample size gets large, nothing is hence lost by relying

on fLRT rather than the tailor-made LRT for testing the stability of parameters. Or put
differently, the knowledge of the exact breaking process is not helpful for conducting a better

test.

Additionally, given that any specific LRT converges in probability to the same fLRT ,
any given pair of small sample optimal statistics for Condition 1 breaking processes also

converge in probability under the null hypothesis. Furthermore, the densities described by

these two breaking processes are both contiguous to the null density by Theorem 2, hence

the convergence in probability continues to hold under both these alternatives. Theorems 1

and 2 thus also imply that one can rely on any one specific small sample optimal statistic for

a breaking process that satisfies Condition 1 to obtain the same asymptotic power against

any breaking process that is covered in Condition 1.3 Each optimal test has asymptotically

the same ability to distinguish each possible alternative in our class of models.

4 Feasible asymptotically optimal test statistics

As shown in the last section, the statistic J(Ω∗) is asymptotically optimal for the testing

problem (2) under Conditions 1 and 2. J(Ω∗) is not a feasible statistic, however, since it

requires σ2 = E[ε2t ] and ΣX = E[XtX
0
t] to be known. This section is concerned with the

derivation of feasible statistics that share the asymptotic optimality property of J(Ω∗), but

that remain asymptotically valid under much wider assumptions concerning the disturbance

and its relationship to the regressors. Additionally, we motivate our implicit choice of Ω∗ =

σ−2Σ1/2X ΩΣ
1/2
X for the statistic Ĵ described at the end of Section 2.

We consider data generating processes for {εt} and {Qt = (X 0
t, Z

0
t)
0} of the following

form.

Condition 3 Let {QT,t} and {εT,t} be double arrays of (d + k) × 1 and 1 × 1 random
with elements QT,t,i and εT,t, respectively. With some K < ∞, assume that under the null

3This statement is not true for aribtrary sequences of processes that satisfy Conditon 1, though, since

the convergence statements are not shown to hold uniformly over all processes that satisfy Condition 1. In

fact, such a uniform convergence result does not hold.
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hypothesis h = B0Qε

(i) E[QT,tεT,t] = 0 for all T, t

(ii) {QT,t} and {εT,t} are either uniform mixing sequences of size −r/(r−1) or strong mixing
sequences of size −2r/(r − 2), r > 2
(iii) E[QT,tQ0T,t] = ΣQ, E[|QT,t,iεT,t|2r] < K, T−1

P[sT ]
t=1 QT,tQ

0
T,t

p→ sΣQ uniformly in s and

ΣQ and T−1
PT

t=1QT,tQ
0
T,t are positive definite for all T

(iv) {QT,tεT,t} is globally covariance stationary with nonsingular long-run covariance matrix
VQ.

In comparison to Condition 2 of Section 3, the assumptions on the disturbances of Con-

dition 3 are much weaker. Among the many possibilities are nonstationary, heteroskedastic

and autocorrelated {εt}, which are allowed to be correlated with lagged values of {Qt}. The
assumptions on the regressors {Qt} are similar to those of Condition 2, the moment and
memory conditions are strengthened to allow for a consistent estimator the long-run covari-

ance matrix VX of {Xtεt}. {Qt} is not required to be stationary, although only relatively
mild heterogeneity of {Qt} is allowed under Condition 3. See Hansen (2000) for a possible
approach to relaxing this assumption.

To obtain a valid test statistic under Condition 3, we will substitute the unknown quantity

σ−1Σ−1/2X in the definition (11) of J(Ω∗) by a consistent estimator V̂ −1/2X of V −1/2X , where VX is

long-run covariance matrix of {Xtεt}. If it is known that {εt} is not autocorrelated, a natural
estimator of VX is given by the heteroskedasticity robust estimator V̂X = T−1

PT
t=1XtX

0
tε̂
2
t .

In the more general case of possibly autocorrelated {εt}, one might employ estimators of the
form

V̂X = T
−1

TX
t=1

XtX
0
tε̂
2
t +

bTX
l=1

wT,lT
−1

TX
t=1+l

(XtX
0
t−l +Xt−lX

0
t)ε̂tε̂t−l. (13)

Theorem 6.21 of White (2001) establishes the consistency of V̂X in (13) under Condition 3

as long as bT →∞ as T →∞ such that bT = o(T 1/4), and 1 ≥ wT,l → 1 for all l as T →∞.
The feasible estimator Ĵ(Ω∗) is hence defined as

Ĵ(Ω∗) =
kX
i=1

v̂0i[Gai −Me]v̂i

v̂i = [I ⊗ ι0k,iP
∗0V̂ −1/2X ]ΞMy
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and its asymptotic properties are investigated in the following Theorem.

Theorem 3 If V̂X
p→ VX and Condition 3 holds, then

(i) the asymptotic distribution of Ĵ(Ω∗) under the null hypothesis of h = B0Qε is the same as

the asymptotic distribution of J(Ω∗)

(ii) if in addition Conditions 1 and 2 hold, then Ĵ(Ω∗)− J(Ω∗) p→ 0 under both the null and

alternative hypothesis.

The asymptotic distribution of Ĵ(Ω∗) under the null hypothesis of parameter stability in

(1) is identical for any data generating process covered by Condition 3. Tests based on this

statistic are hence asymptotically valid. In addition, part (ii) of Theorem 3 implies Ĵ(Ω∗)

shares the asymptotic optimality of J(Ω∗) under Conditions 1 and 2, as derived in the last

section. Asymptotically, nothing is lost by not knowing ΣX and σ2.

The discussion so far has concentrated on assessing the additional informational value of

knowing the exact form of a Condition 1 breaking process, and in conjunction Theorem 1,

Corollary 1 and Theorem 3 show that there is no asymptotic gain of such information for the

hypothesis test (2). As a by-product of our analysis, we have found a feasible statistic Ĵ(Ω∗).

Theorem 3 shows this statistic to be asymptotically optimal under Conditions 1 and 2, and

valid under a wide range of error distributions. These properties make Ĵ(Ω∗) a potentially

attractive choice for applied work.

The statistic Ĵ(Ω∗) maximizes power against breaking processes of relative magnitude

Ω∗. But Ω∗ is typically unknown in practice. One possibility is to draw on the ideas of King

(1988) and simply compute Ĵ(Ω̄∗) for some constant Ω̄∗, while being aware that Ω̄∗ and the

true Ω∗ will typically differ. Note that such a discrepancy does not affect the size properties

of the statistic, but it will affect its power under the alternative of a time-varying {βt}.
The asymptotic power of tests based on Ĵ(Ω̄∗) will be a continuous function of the true

value Ω∗. Small deviations between Ω̄∗ and Ω∗ will hence result in small losses of power only.

A good choice for Ω̄∗ should have the property of having close to optimal power over a wide

range of true values Ω∗. When Xt, βt and Ω
∗ are scalars, then a choice of Ω̄∗ = ā2 for ā = 10

will have this property as we will show in the next section. As long as the eigenvalues of Ω∗

are of similar magnitude, the same holds for a choice of Ω̄∗ = ā2Ik for k > 1. The eigenvalues
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of Ω∗ describe the average magnitude of the normalized breaking process {β∗t = σ−1Σ1/2X βt}
in the direction of the corresponding eigenvectors. But if, for instance, in truth there is only

one moderately sized break (so that only one eigenvalue of Ω∗ is positive), then a choice of

Ω̄∗ = ā2Ik for k > 1 will have less power than a test with Ω̄∗ = Ω∗. This simply reflects that

looking for breaks in all directions if in truth the breaks occur only in a specific direction

is suboptimal. But usually neither the number nor the direction of the breaks in {β∗t} are
known, so that setting Ω̄∗ = ā2Ik remains a reasonable choice.

There are alternative motivations for choosing Ω̄∗ = ā2Ik, some of them outlined in

Nyblom (1989). Note that only with a choice of Ω̄∗ proportional to Ik the outcome of tests

based on Ĵ(Ω̄∗) will become invariant to the group of transformations

X → XP̃ for any nonsingular k × k matrix P̃ (14)

A desire to be invariant to the transformations (14) may be reinterpreted as meaning that

the direction of breaks under the alternative should not affect the outcome of the test. The

supF test for any number of breaks, Nyblom’s (1989) statistic and both tests suggested by

AP are invariant to the transformations (14). And in fact, the power of these statistic and

of Ĵ(ā2Ik) under a Condition 1 alternative depends only on the eigenvalues of Ω∗, but not on

the eigenvectors P ∗.

With Ω̄∗ = ā2Ik, Ĵ(Ω̄∗) simplifies to

Ĵ(ā2Ik) =
kX
i=1

v̂0i[Gā −Me]v̂i

v̂i = [I ⊗ ι0k,iV̂
−1/2
X ]ΞMy

and the equivalence to the statistic described at the end of Section 2 follows with ā = 10

after straightforward manipulations from the definition of Gā. Table 1 contains asymptotic

critical values of Ĵ(ā2Ik) for ā = 10 for k = 1, · · · , 10.

5 Asymptotic and Small Sample Power

We now present evidence on the asymptotic and small sample power of the test derived in

this paper as well as other tests of parameter stability. This exercise serves several purposes:
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Table 1: Asymptotic Critical Values of Ĵ (reject for small values)

k 1 2 3 4 5 6 7 8 9 10

1% -11.05 -17.57 -23.42 -29.18 -35.09 -40.24 -45.85 -51.18 -56.46 -61.77

5% -8.36 -14.32 -19.84 -25.28 -30.60 -35.74 -40.80 -46.18 -51.10 -56.14

10% -7.14 -12.80 -18.07 -23.37 -28.55 -33.45 -38.49 -43.59 -48.48 -53.38

Note: Percentiles reported are calculated from 40000 draws from distributions of the

random variable reported in Lemma 2 with ci = 10 for all i using 2000 standard normal

steps to approximate Wiener Processes.

First, the results justify our choice of Ω∗ for Ĵ described in Section 4. Second, we show that

even for breaking processes not covered by Condition 1, the asymptotic power of Ĵ remains

comparable to tailor-made optimal statistics. At least qualitatively, the analytical result of

Section 3 that the exact specification of the breaking process does not matter for optimal

testing hence carries over to an even larger class of breaking processes than that desribed

in Condition 1. Third, we assess the relative asymptotic efficiency of Ĵ with other popular

tests for parameter constancy against a variety of alternatives. Finally, we demonstrate that

these asymptotic results are a very good guide to small sample behavior, at least for some

standard data generating processes.

In order to compute the local asymptotic power of J(Ω∗) and Ĵ under Conditions 1 and

2, note that these statistics can be written (up to an op(1) term) as a functional from the

k × 1 vector partial sum process

mT (s) = T
−1/2σ−1/2Σ−1/2X

[sT ]X
t=1

Xtε̂t.

The exact form of the functional is rather complicated; Lemma 6 in the appendix implies

that

J(Ω∗) =
kX
i=1

·
−aiJ̃i(1)2 − ai

R
J̃2i −

2ai
1− e−2ai

h
e−ai J̃i(1) + ai

R
e−aisJ̃i

i2
+ [J̃i(1) + ai

R
J̃i]

2

¸
+op(1)

where J̃i(s) = mT,i(s)−
R s
0
e−ai(s−λ)mT,i(λ)dλ and mT,i is the ith element of P ∗0mT (s). The

expression for Ĵ is a special case, because Ĵ = J(ā2Ik) + op(1).4

4In principle, these equalities could be used as an alternative way of computing a statistic that is asymp-

25



As long as the regressors (Xt, Zt) are strictly exogenous, under local alternatives mT (s)

will satisfy

mT (s)⇒W (s)− sW (1) + P ∗Λ1/2
Z s

0

(Wβ(λ)− λWβ(1)) dλ

whereW andWβ are independent k×1 vector Wiener processes. By simulating the resulting
asymptotic distributions of J(Ω∗) and Ĵ , we obtained Figure 1. It depicts the asymptotic

local power of Ĵ and the power envelope under Conditions 1 and 2 for strictly exogenous

regressors. Here and in the following figures we consider the power of 5 percent level tests.

The first panel is for k = 1, where Ĵ is asymptotically optimal only for the local alternative

(Ω∗)1/2 = ā = 10. But the asymptotic power of Ĵ remains extremely close to the power

envelope for all other alternatives, too. The second and third panel of Figure 1 examine the

k = 2 case. In the second panel, breaks of the same magnitude occur in both dimensions:

the eigenvalues of Ω∗ are equal and equal to the square of the value reported on the x-axis.

The power of Ĵ is again very close to the envelope for all alternatives. This substantiates the

claim of Section 4 that relying on Ĵ = Ĵ(ā2Ik) with ā = 10 leads to only very small losses

compared to the unfeasible optimal statistic Ĵ(Ω∗), at least when the eigenvalues of Ω∗ are

the same. In the third panel, one of the eigenvalues of Ω∗ is set to zero, such that only the

other one varies. This corresponds to the case where only one component of the 2×1 vector
βt breaks, but this is not known. Then Ĵ does lose power compared to the envelope, which

is the same as the envelope for the k = 1 case.

As second step in our analysis, we want to investigate the relative inefficiency of Ĵ when

the true breaking process does not satisfy Condition 1, i.e. when the asymptotic optimality of

Ĵ does not hold. Condition 1 entails that, as T →∞, there are an infinite number of breaks.
One might hence expect that Ĵ does poorest when the true alternative is such that there is

only a single break, even asymptotically. In order to assess the relative efficiency of Ĵ in this

case, we compare it to the asymptotic power of tests that have been specifically constructed

for a single break at an unknown date: the Quandt SupF statistic (Andrews, 1993) and the

Andrews and Ploberger (1996) Average LM (APav) and Exponential LM (APexp) statistics

totically equivalent to Ĵ . In practice, however, following the steps outlined at the end of Section 2 seems

much more straightforward.
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Figure 1: Asymptotic Local Power
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Table 2: Test Statistics for Structural Breaks

Test Statistic Functional

Nyblom
PR

mT,i(s)
2

APav
R 1−λ0
λ0

P mT,i(s)
2

s(1−s) ds

APexp
R 1−λ0
λ0

exp
h
1
2

P mT,i(s)
2

s(1−s)
i
ds

SupF supλ0<s<1−λ0
P mT,i(s)

2

s(1−s)

Sums are over i = 1, ..., k and λ0 is a ’trimming’ parameter

we have chosen to be 0.02 for the APexp and APav, as sug-

gested by Andrews and Ploberger (1996), and 0.05 for the

supF statistic, as suggested by Bai and Perron (1998).

for independent normal disturbances. The APav and APexp statistics maximize a weighted

average asymptotic power criterion against such alternatives, and also the supF statistic

satisfies an asymptotic optimality property (Andrews and Ploberger, 1995). For comparison

purposes, we also include the Nyblom (1989) statistic. Just like Ĵ , also these four statistics

can be written (up to op(1) terms) as continuous functionals of mT (s); see Table 2.

Figure 2 compares the local asymptotic power of these statistics when under the alter-

native, βt = cT
−1/21[t ≥ π0T ], i.e. there is a single break after 100π0 percent of the sample.

In panels one to three, π0 is set to 50%, 70% and 90%, respectively, whereas in panel four of

Figure 2 π0 is uniformly drawn from [0, 1].5 Despite the fact that the supF and AP statistics

have been specifically constructed for this alternative, the power of these tests is very much

comparable to Ĵ . The supF statistic does relatively better for a break close to the end of the

sample, while the Nyblom statistic does relatively better for π0 = 50%. Overall, one might

say that the APexp statistic does best, but the differences in power compared to Ĵ are very

modest.

We can hence conclude that at least qualitatively, the result of Section 3 remains valid:

using an optimal statistic for a breaking process different from the true one results in very

little loss in terms of power. Because a process with a single break asymptotically is ar-
5Power is symmetric around π0 = 50%, i.e. power for π0 = 30% is identical to power for π0 = 70%.
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Figure 2: Asymptotic Local Power
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Figure 3: Asymptotic Local Power
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Table 3: Overview of Small Sample Power

Fig. Breaking Process Xt Zt

1st 2nd 3rd

5 Break each Period 5 Expected Breaks 1 Random Break 1 —

6 1 Break at 50% 1 Break at 70% 1 Break at 90% 1 —

7 Break each Period 5 Expected Breaks 1 Random Break X̃t 1

8 1 Break at 50% 1 Break at 70% 1 Break at 90% X̃t 1

9 2-dim. Brk each Period 1-dim. Brk each Period (1, X̃t)
0 —

Notes: 1st, 2nd and 3rd refers to the first, second and third panel in each figure. X̃t is

independent Gaussian.

guably the most extreme deviation from a Condition 1 process in the class of all persistent

processes, this suggests this qualitative result holds over a very wide range of possible break-

ing processes.

Turning this argument on its head implies that the statistics of Table 2 also have power

against processes that satisfy Condition 1. This is examined in Figure 3 for k = 1 and

k = 2. Again, we do not find large differences in performance. Given its optimality, it is not

surprising that Ĵ does somewhat better than the other statistics, especially at more distant

alternatives. Indeed, this property along with the way in which the power curves flatten

out means that for alternatives that are not very close to the null hypothesis the Pitman

efficiencies of Ĵ over the other tests are not negligible (Ĵ is around 15—30% more efficient,

meaning that one needs a 15—30% larger sample size for the other tests to achieve the same

power as tests based on Ĵ). Of the other tests, APexp seem to be the best performer. For

k = 2, we again consider both the case that both eigenvalues of Ω∗ are equal and the case

that one eigenvalue is set to zero. While the former case does lead to considerable more

power, the rankings of the test are very much comparable to the results for k = 1.

In Figures 5—9 we examine whether the asymptotic theory presented so far can serve as

a reasonable guide for small samples. To this end we investigate the properties of the same

set of statistics for a sample size of T = 100 and iid Gaussian disturbances. We consider

31



Figure 4: Asymptotic Local Power
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breaking processes of a Gaussian break every period (βt =
PT

t=1∆βt, ∆βt ∼ iidN (0,Ω∗)),
of a break that may occur at any period with probability p = 5%, such that the expected

number of breaks in 100 observations is pT = 5 (βt =
PT

t=1∆βt, ∆βt is iid and with

probability p, ∆βt ∼ N (0,Ωp) and ∆βt = 0 otherwise, where Ω∗ = pΩp), and of a single

break (βt = cT
−1/21[t ≥ π0T ]). Table 3 shows the Monte Carlo designs for Figures 5—9. In

the first panel of Figure 9, (Ω∗)1/2 = aT−1I2, such that the coefficients on both regressors are

subject to independent Gaussian breaks every period of the same magnitude. In the second

panel of Figure 9, (Ω∗)1/2 = aT−1 diag(1, 0), such that only the coefficient on the constant

is subject to breaks every period. In all scenarios, we depict power using asymptotic critical

values. Size control of all tests is very reasonable: Ĵ has size of 5.5 to 6.5 percent, the APexp

statistic has size of 6 to 7 percent and the other statistics are within one percentage point

of the nominal level of 5 percent. Figures of size—adjusted power look almost identical and

are omitted. All scenarios map qualitatively and to a large extent even quantitatively very

closely to the predictions of the asymptotic theory.

6 Conclusions

Parameter instability of a permanent nature is interesting economically, causes problems for

forecasting and can invalidate inference in linear regression models. This has led researchers

to construct many different tests for the stability of regression parameters, almost all specific

to a particular breaking process under the alternative. Intuition suggests that reasonable

tests for a specific breaking process should have some power also against other breaking

processes. An optimal test for a break every other period, for instance, will have power also

against an alternative with a break every period. We show not only that this intuition is

correct, but a much stronger claim: The optimal test for a break every other period will do

just as well as the optimal test for breaks every period when in fact there is a break every

period, at least for a large enough sample size. This (asymptotic) equivalence extends over

a very large class of breaking processes.

The result has three implications. First, the exact breaking process under the alternative

is usually unknown to the applied researcher. But since power is similar over a wide range of
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Figure 5: Small Sample Power
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Figure 6: Small Sample Power
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Figure 7: Small Sample Power
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Figure 8: Small Sample Power
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Figure 9: Small Sample Power
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breaking processes for any reasonable test statistic, this ignorance does not matter for being

able to conduct a powerful test. The applied researcher is hence relieved of having to make

stark choices about the assumed breaking process under the alternative.

Second, under local alternatives standard tests for parameter instability contain very

little information about the exact form of the breaking process. This is simply the flip

side of all tests behaving roughly the same, no matter how the breaking process precisely

looks. If a test that has been designed against the alternative of a single break rejects, say,

then this does by no means imply that the true breaking process consists in fact of a single

break. While for nonlocal alternatives, i.e. for breaks that are large asymptotically, methods

have been developed to discern the number and location of breaks (Bai and Perron (1998)),

distinguishing local breaking processes requires a different approach.

Third, complicated tailor-made tests will not result in significant gains in power over

any other reasonable statistic. This considerably simplifies the practice of testing parameter

stability, because tailor-made tests have nonstandard distributions (so that one needs a set

of critical values for each special case) and many of them are very difficult to compute.

Our results suggest that one can choose any specific breaking process for which the optimal

statistic has a simple form. Very little power will be foregone by basing inference on this

simple statistic even if it is known that the true breaking process under the alternative is

not of the form the simple statistic has been constructed for.

We suggest such an easy-to-compute statistic that has an asymptotic optimality property

for the class of breaking processes we focus on. Unsurprisingly, given its optimality, the

statistic has superior asymptotic power against alternatives that fall into this class. But its

relative efficiency extends to other natural breaking processes not in the class, making the

statistic an appealing choice for applied work.

7 Appendix
Many subsequent results are easier to obtain by working with regressors having identity covariance
matrix. To this end, let C be the (k+d)× (k+d) matrix with (Σ−1/2X , 0k×d) in its upper k× (d+k)
block that satisfies CΣQC 0 = Ik+d. Denote Q∗ = QC 0, X∗ = XΣ

−1/2
X , let Ξ∗ be defined just as Ξ

with X∗t = Σ
−1/2
X Xt replacing Xt, and let ε∗t = σ−1εt, β∗ = [I⊗σ−1Σ1/2X ]β and β̃

∗
= [I⊗σ−1Σ1/2X ]β̃.
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Note that the long-run variance of {T∆β∗t} is given by σ−2Σ1/2X ΩΣ1/2X = Ω∗ = P ∗ΛP ∗0.
Further define Be to be the (T −1)×T matrix that satisfies B0eBe = IT−1 and B0ee = 0, so that

BeB
0
e =Me. Also let L = F−1.
We proceed by establishing several Lemmas that are needed in preparation for the proofs of

the Lemmas and Theorems in the main text.

Lemma 4 (i)
B0e(a

2T−2FF 0 + I)Be = B0eHaBe

(ii)
Be(B

0
eHaBe)

−1B0e = Ga

(iii)

|B0eHaBe| =
1− r2Ta

T (1− r2a)rT−1a

Proof. (i)

B0e(a
2T−2FF 0 + I)Be = B0e(a

2T−2FF 0 + I + (1− ra)ee0)Be
= B0eF (LL

0 + a2T−2I + (1− ra)ιT,1ι0T,1)F 0Be
Now from a direct calculation

LL0 + a2T−2I + (1− ra)ιT,1ι0T,1

=



a2T−2 + 2− ra −1 0 · · · 0 0
−1 a2T−2 + 2 −1 · · · 0 0
0 −1 a2T−2 + 2 · · · 0 0
...

...
...

...
...

0 0 0 · · · a2T−2 + 2 −1
0 0 0 · · · −1 a2T−2 + 2


and

r−1a AaA
0
a =



r−1a −1 0 · · · 0 0
−1 r−1a + ra −1 · · · 0 0
0 −1 r−1a + ra · · · 0 0
...

...
...

...
...

0 0 0 · · · r−1a + ra −1
0 0 0 · · · −1 r−1a + ra


so that

B0e(a
2T−2FF 0 + I)Be = B0eF (r

−1
a AaA

0
a)F

0Be
= B0eHaBe

(ii) see Rao (1973), p. 77.
(iii) From (ii)

Be(B
0
eHaBe)

−1B0e = Ga

(B0eHaBe)
−1 = B0eGaBe
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yielding |B0eHaBe| = |B0eGaBe|−1. Now note that (T−1/2e,Be)0(T−1/2e,Be) = I, so that

|H−1a | =
¯̄̄¡
T−1/2e Be

¢0
H−1a

¡
T−1/2e Be

¢¯̄̄
=

¯̄̄̄µ
T−1e0H−1a e T−1/2e0H−1a Be
T−1/2B0eH−1a e B0eH−1a Be

¶¯̄̄̄
= |T−1e0H−1a e||B0eH−1a Be −B0eH−1a e(e0H−1a e)−1e0H−1a Be|
= |T−1e0H−1a e||B0eGaBe|
= |T−1e0H−1a e||B0eHaBe|−1

But |Ha| = |r−1a FAaA0aF 0| = r−Ta and

|e0H−1a e| = raι
0
T,1A

0−1
a A−1a ιT,1

= ra

T−1X
j=0

r2ja = ra
1− r2Ta
1− r2a

and we find

|B0eHaBe| =
1− r2Ta

T (1− r2a)rT−1a

Proof of Lemma 1:
Let β̃e = [B

0
e⊗Ik]β̃ and νβ̃e its measure, and let Ka = T

−2a2B0eFF 0Be, KΩ = T
−2B0eFF 0Be⊗Ω

and KΛ = T
−2B0eFF 0Be ⊗ Λ. Recall that Ω = σ2Σ

−1/2
X P ∗ΛP ∗0Σ−1/2X . We compute

gLRT =

Z
exp

h
σ−2h0B0QΞ[Me ⊗ Ik]β̃ − 1

2σ
−2β̃0[Me ⊗ΣX ]β̃

i
dνβ̃

=

Z
exp

h
σ−2h0B0QΞ[Be ⊗ Ik]β̃e − 1

2 β̃
0
e[IT−1 ⊗ σ−2ΣX ]β̃e

i
dνβ̃e

=

Z
(2π)−k(T−1)/2|KΩ|−1/2 exp

h
σ−2h0B0QΞ[Be ⊗ Ik]β̃e − 1

2 β̃
0
e[K

−1
Ω + IT−1 ⊗ σ−2ΣX ]β̃e

i
dβ̃e

= |KΩ|−1/2|K−1Ω + IT−1 ⊗ σ−2ΣX |−1/2
exp

£
1
2σ
−4h0B0QΞ[Be ⊗ Ik][K−1Ω + IT−1 ⊗ σ−2ΣX ]−1[B0e ⊗ Ik]Ξ0BQh

¤
= |IT−1 ⊗ Ik +KΛ|−1/2

exp
h
1
2σ
−2h0B0QΞ[Be ⊗Σ−1/2X P ∗][K−1Λ + IT−1 ⊗ Ik]−1[B0e ⊗ P ∗0Σ−1/2X ]Ξ0BQh

i
Now

[K−1Λ + IT−1 ⊗ Ik]−1 = KΛ [KΛ + IT−1 ⊗ Ik]−1
= IT−1 ⊗ Ik − [KΛ + IT−1 ⊗ Ik]−1
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and

[KΛ + IT−1 ⊗ Ik]−1 =

"
kX
i=1

Kai ⊗ (ιk,iι0k,i) + IT−1 ⊗ Ik
#−1

=

"
kX
i=1

(Kai + IT−1)⊗ (ιk,iι0k,i)
#−1

=
kX
i=1

[Kai + IT−1]
−1 ⊗ (ιk,iι0k,i)

so that

[Be ⊗ Ik][K−1Λ + IT−1 ⊗ Ik]−1[B0e ⊗ Ik]

=
kX
i=1

Be(IT−1 − [Kai + IT−1]−1)B0e ⊗ (ιk,iι0k,i)

=
kX
i=1

(Me −Gai)⊗ (ιk,iι0k,i)

where the last line relies on Lemma 4 above. Furthermore, again relying on Lemma 4, we find

|KΛ + IT−1 ⊗ Ik| =
kY
i=1

|a2iT−2B0eFF 0Be + IT−1|

=
kY
i=1

|B0e(a2iT−2FF 0 + I)Be| =
kY
i=1

"
1− r2Tai

T (1− r2ai)rT−1ai

#

Therefore gLRT = kY
i=1

"
1− r2Tai

T (1− r2ai)rT−1ai

#−1/2
exp

£−12v0i[Gai −Me]vi
¤

with vi = [I ⊗ ι0k,iP
∗0σ−1Σ−1/2X ]ΞMy.

Lemma 5 Let {Qt} satisfy Condition 2 and assume that {υt} is independent of {Qt} and satisfies
υ[Ts] ⇒ AυWυ(s), where Aυ is a (d+ k)× (d+ k) nonstochastic, possibly singular matrix and Wυ

is a (d+ k)× 1 Wiener process. Then
(i) T−1

PT
t=1(Q

∗
tQ

∗0
t − Ik+d)υt p→ 0

(ii) T−1
PT
t=1(Q

∗
tQ

∗0
t − Ik+d)υtυ0t p→ 0

Proof. (i) We will show convergence in probability of

T−1
X
(Q∗t,iQ

∗
t,j − δi,j)υt,j

for any i, j ∈ {1, · · · , d + k}, where δi,j = 1 if i = j and zero otherwise and here and in the
following computations sums are taken from t = 1 to T if not stated otherwise. The proof relies
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on a truncation argument with respect to υt,j . For all t and T , define υ̃t,j = υt,j if |υt,j | < Kυ and
υ̃t,j = 0 otherwise. Then

P [∃t : υ̃t,j 6= υt,j ] = P [max
t
|υt,j | > Kυ]

→ P [sup
s
|Aυ,jWυ(s)| > Kυ] (15)

where Aυ,j is the jth row of Aυ and the last line follows from the CMT and the definition of weak
convergence.

We will first show that (Q∗t,iQ
∗
t,j−δi,j)υ̃t,j is a L1 adapted mixingale with respect to the σ-field F∗t

generated by {Qt, Qt−1, · · · , υT , υT−1, · · · }. Apart from the presence of υ̃t,j , the reasoning is similar
to Example 16.4 of Davidson (1994), p. 249. From E[Q∗T,tQ

∗0
T,t] = Ik+d and the independence of

{Q∗t } from {υt}, E[(Q∗t,iQ∗t,j−δi,j)υ̃t,j ] = 0. Since {Q∗t,i} and {Q∗t,j} are Lr-bounded and |υ̃t,j | ≤ Kυ,
{(Q∗t,iQ∗t,j − δi,j)υ̃t,j} is Lr/2-bounded

k(Q∗t,iQ∗t,j − Ik+d)υ̃t,jkr/2 ≤ Kυ(kQ∗t,ikrkQ∗t,jkr + δi,j)

≤ K 0
υ + δi,j

for some K 0
υ < ∞ for all t and T, where the first inequality follows from the Cauchy-Schwarz

inequality. Furthermore, because r > 2, this implies that {(Q∗t,iQ∗t,j − δi,j)υ̃t,j} is uniformly inte-
grable. For the L1 mixingale property, we need to bound |E[(Q∗t,iQ∗t,j − δi,j)υ̃t,j |F∗t−m]|. Note that
the mixing properties of {Qt} extend to {(CQtQ0tC − δi,j)} with C defined at the beginning of the
appendix (cf. Theorem 3.49 of White, 2001).

Now under strong mixing, Theorem 14.2 of Davidson (1994) is applicable and we find

|E[(Q∗t,iQ∗t,j − δi,j)υ̃t,j |F∗t−m]| ≤ Kυ|E[(Q∗t,iQ∗t,j − δi,j)|F∗t−m]|
≤ 6Kυα

1−2/r
m k(Q∗t,iQ∗t,j − δi,j)kr/2

≤ 6Kυα
1−2/r
m (K 0

υ + δi,j)

with αm the mth strong mixing coefficient. Since αm = O(m−r/(r−2)−²) for some ² > 0, we find
that α1−2/rm = O(m−1−²0) for some ²0 > 0, so that under strong mixing, {(Q∗tQ∗0t − Ik+d)υ̃t,F∗t } is a
L1 mixingale of size −1 (with constants that do not depend on t).

Under uniform mixing, we can apply Theorem 14.4 of Davidson (1994) to find

|E[(Q∗t,iQ∗t,j − δi,j)υ̃t,j |F∗t−m]| ≤ 2Kυφ
1−2/r
m (K 0

υ + δi,j)

with φm the mth uniform mixing coefficient. Since φm = O(m
−r/(2r−2)−²) for some ² > 0, we find

φ
1−2/r
m = O(m−1/2−²0) for some ²0 > 0, so that {(Q∗t,iQ∗t,j − δi,j)υ̃t,j ,F

∗
t } becomes a L1 mixingale of

size −1/2 with constants that do not depend on t when {Qt} is uniform mixing.
But Theorem 19.11 of Davidson (1994), p. 302, shows that the mean of a uniformly integrable

L1 mixingale of any size with respect to constants that do not depend on t converges to zero in the
L1-norm. Since convergence in L1 implies convergence in probability, for any ², η > 0 there exists
a T ∗ such that for all T > T ∗

P
h
|T−1

X
(Q∗t,iQ

∗
t,j − δi,j)υ̃t,j | > ²

i
< η

Furthermore, from (15) there exists a T ∗∗ such that for all T > T ∗∗

P [∃t : υ̃t,j 6= υt,j ] ≤ P [sup
s
|Aυ,jWυ(s)| > Kυ] + η
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Therefore, for all T > T ∗ ∨ T ∗∗, we find

P
h
|T−1

X
(Q∗t,iQ

∗
t,j − δi,j)υt,j | > ²

i
= P

h
|T−1

X
(Q∗t,iQ

∗
t,j − δi,j)υ̃t,j | > ²|υ̃t = υt∀t

i
(1− P [∃t : υ̃t,j 6= υt,j ])

+P
h
|T−1

X
(Q∗t,iQ

∗
t,j − δi,j)υt,j | > ²|∃t : υ̃t,j 6= υt,j

i
P [∃t : υ̃t,j 6= υt,j ]

≤ P
h
|T−1

X
(Q∗t,iQ

∗
t,j − δi,j)υ̃t,j | > ²

i
+ P [∃t : υ̃t,j 6= υt,j ]

≤ 2η + P [sup
s
|Aυ,jWυ(s)| > Kυ]

By choosingKυ large, P [sups |Aυ,jWυ(s)| > Kυ] can be made arbitrarily small, and η was arbitrary,
which concludes the proof.

(ii) The proof is analogous to part (i), the only difference is that now the j, lth element of υtυ0t
is truncated. The probability of such of a truncation taking place is then

P [max
t
|[υtυ0t]j,l| > Kυ]→ P [sup

s
|[AυWυ(s)Wυ(s)

0A0υ]j,l| > Kυ]

which can also be made arbitrarily small by choosing Kυ large.

Lemma 6 Let Bu(s) be a stochastic process on the unit interval that has bounded uniformly contin-
uous sample paths with probability one. Let u = (u1, · · · , uT )0 be such that T−1/2

P[T ·]
t=1 ut ⇒ Bu(·).

Then

u0[Gc −Me]u = gJ(T
−1/2

[T ·]X
t=1

ut) + op(1)

where gJ is

gJ

T−1/2 [T ·]X
t=1

ut

 = −cJu(1)2 − c2
R
J2u −

2c

1− e−2c
£
e−cJu(1) + c

R
e−csJu

¤2
+ [Ju(1) + c

R
Ju]

2

and Ju(s) = T−1/2
P[Ts]
t=1 ut −

R s
0 e

−c(s−λ)
³
T−1/2

P[Tλ]
t=1 ut

´
dλ. Furthermore, gJ(a(s) + κs) =

gJ(a(s)) for any κ.

Proof. Write u0[Gc−Me]u = u
0(H−1c − I)u− u0H−1c e(e0H−1c e)−1e0H−1c u+ (T−1/2e0u)2. Define

B = A−1c u, so that the tth element ofB satisfiesBt =
Pt
s=1 r

t−s
c us, and letB−1 = (0, B1, · · · , BT−1)0.

Also note that A−1c LAc = L. Then

u0(H−1c − I)u = u0(rcL0A−10c A−1c L− I)u
= rcB

0L0LB − u0u
= rc(u+ (rc − 1)B−1)0(u+ (rc − 1)B−1)− u0u
= (rc − 1)u0u+ rc(rc − 1)2B0−1B−1 + 2rc(rc − 1)B0−1u

Now from u+ rcB−1 = B, we find u0u+ 2rcB0−1u+ r2cB0−1B−1 = B0B, yielding

B0−1u = (2rc)
−1 £B2T + (1− r2c )B0−1B−1 − u0u¤
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so after rearranging we have

u0(H−1c − I)u = (rc − 1)B2T − (1− rc)2B0−1B−1.

By direct calculation T−1e0H−1c e = rc
1−r2Tc
T (1−r2c ) =

1−e−2c
2c + o(1). Also

T−1/2e0H−1c u = rcT
−1/2e0L0A−10c A−1c LAcA

−1
c u

= rcT
−1/2ι0T,1A

−10
c LB

= T (1− rc)T−3/2
T−1X
t=1

rtcBt + r
T
c T

−1/2BT

For the final term T−1/2e0u = T−1/2e0AcB = T−1/2BT + T (1 − rc)T−3/2e0B−1. The first claim of
the Lemma now follows after noting that T−1/2BT = Ju(1)+ op(1), T−2

PT
t=1B

2
t−1 =

R
J2u+ op(1),

T−1
PT
t=1 r

t−1
c Bt−1 =

R
e−csJu + op(1), T−1

PT
t=1Bt−1 =

R
Ju + op(1), and rTc = e

−c + o(1).
For the second part of the Lemma, simply note that Gc −Me = Me(Gc −Me)Me, such that

u0 [Gc −Me]u is invariant to transformations of u of the form u→ u+κe, which implies the claimed
invariance of gJ .

Proof of Lemma 2:
We have

kX
i=1

v0i[Gci −Me]vi = σ−2ε0MΞ[I ⊗ Σ−1/2X P ∗]

"
kX
i=1

(Gci −Me)⊗ (ιk,iι0k,i)
#
[I ⊗ P ∗0Σ−1/2X ]Ξ0Mε

as defined in the main text. Noting that {Q∗t ε∗t } is a mixing sequence with the same mixing
coefficient as {Qt}, we find that the sum of the first [sT ] k× 1 vectors of σ−1[Me ⊗P ∗0Σ−1/2X ]ΞMε
satisfies

T−1/2
h
(e0[sT ], 0

0
T−[sT ])I ⊗ Ik

i
[I ⊗ P ∗0Σ−1/2X ]Ξ0Mε∗

= T−1/2P ∗0
[sT ]X
t=1

X∗t ε
∗
t

− P ∗0
T−1 [sT ]X

t=1

X∗tQ
∗0
t

 (T−1Q∗0Q∗)−1T−1/2 TX
t=1

Q∗t ε
∗
t

⇒ P ∗0P ∗Wε(s)− sP ∗0P ∗Wε(1) =Wε(s)− sWε(1)

from a FCLT for mixing sequences as inWhite (2001), p. 189 and
³
T−1

P[sT ]
t=1 X

∗
tQ

∗0
t − sT−1

PT
t=1X

∗
tQ

∗0
t

´
p→

0 from the uniform convergence of T−1
P[sT ]
t=1 QtQ

0
t
p→ sΣQ in s. We hence have

T−1/2(e0[sT ], 0
0
T−[sT ])vi = T−1/2(e0[sT ], 0

0
T−[sT ])[I ⊗ ι0k,iP

∗0Σ−1/2X ]Ξ0Mε

= ι0k,iT
−1/2(e0[sT ], 0

0
T−[sT ])[I ⊗ P ∗0Σ−1/2X ]Ξ0Mε

⇒ Wε,i(s)− sWε,i(1)

An application of Lemma 6 to each vi (with Bu =Wε,i) now yields the result.

Proof of Lemma 3:
We rely on a weak convergence result for mixing sequences as described in Theorem 7.45

of White (2001), p. 201 for the following computations concerning the weak convergence of
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{Qtεt, T∆βt, T∆γt, T∆β̃t, T∆γ̃t}. Furthermore, we make repeated use of parts (i) and (ii) of
Lemma 5 above.

(i) We treat β only, since the identical distribution of γ obviously leads to the same result. Now

σ−2ε0MΞβ = ε∗0MΞ∗β∗

= ε∗0Ξ∗β∗ − ε∗0Q∗(Q∗0Q∗)−1Q∗0Ξ∗β∗

The long-run variance of {Q∗t ε∗t } is given by E[Q∗tQ∗0t (ε∗t )2] = σ−2E[CQtQ0tC 0ε2t ] = Ik+d, and
E[|Q∗t ε∗t |] = E[|Q∗t |]E[|ε∗t |] <∞ uniformly in T from the moment restriction on Qt. HenceX

β∗0t X
∗
t ε
∗
t = tr

h
P ∗Λ1/2

³X
Λ−1/2P ∗0β∗tX

∗0
t ε
∗
t

´i
⇒ tr

h
P ∗Λ1/2

R
WβdW̃

0
ε

i
=

R
W 0

βΛ
1/2dWε

where W̃ε is a k × 1 Wiener process and Wε = P
∗W̃ε. Note that since P ∗ is orthonormal, Wε is a

Wiener process, too. Furthermore

T−1/2
X

Q∗t ε
∗
t ⇒

µ
P ∗Wε(1)
WZε(1)

¶
where WZε is a d× 1 Wiener process independent of Wε, and from Lemma 5 above

T−1/2
X

Q∗tX
∗0
t β

∗
t = T

−1/2XQ∗tQ
∗0
t

µ
β∗t
0

¶
⇒
µ
P ∗Λ1/2

R
Wβ

0

¶
so that

T−1/2
³X

Q∗t ε
∗
t

´0
(T−1Q∗0Q∗)−1T−1/2

X
Q∗tX

∗0
t β

∗
t ⇒

µ
P ∗Wε(1)
WZε(1)

¶0µ
P ∗Λ1/2

R
Wβ

0

¶
= (

R
Wβ)

0Λ1/2Wε(1)

We hence find

σ−2ε0MΞβ ⇒ R
W 0

βΛ
1/2dWε − (

R
Wβ)

0Λ1/2Wε(1) =
R
W̄ 0

βΛ
1/2dWε.

(ii)

σ−2β0Ξ0MΞβ = β∗0Ξ∗0MΞ∗β∗

= β∗0Ξ∗0Ξ∗β∗ − β∗0Ξ∗0Q∗(Q∗0Q∗)−1Q∗0Ξ∗β∗

Now

β∗0Ξ∗0Ξ∗β∗ =
X

β∗0t X
∗
tX

∗0
t β

∗
t

= tr
hX

X∗tX
∗0
t β

∗
tβ
∗0
t

i
⇒ tr

h
P ∗Λ1/2

¡R
WβW

0
β

¢
Λ1/2P ∗0

i
=
R
W 0

βΛWβ

using part (ii) of Lemma 5, and

T−1/2Q∗0Ξ∗β∗ ⇒
µ
P ∗Λ1/2

R
Wβ

0

¶
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as in part (i), so that

σ−2β0Ξ0MΞβ ⇒ R
W 0

βΛWβ − (
R
Wβ)

0Λ(
R
Wβ) =

R
W̄ 0

βΛW̄β

(iii) We treat β̃, which implies the result for γ̃ since β̃ and γ̃ have the same distribution.

σ−2ε0MΞ[Me ⊗ Ik]β̃ = ε∗0MΞ∗[Me ⊗ Ik]β̃∗
= ε∗0MΞ∗β̃

∗ − ε∗0MΞ∗[e(e0e)−1e0 ⊗ Ik]β̃∗
= ε∗0MΞ∗β̃

∗ − ε∗0Ξ∗[e(e0e)−1e0 ⊗ Ik]β̃∗ + ε∗0Q∗(Q∗0Q∗)−1Q∗0Ξ∗[e(e0e)−1e0 ⊗ Ik]β̃∗

The first term will converge to ε∗0MΞ∗β̃
∗ ⇒ R

W̄ 0
β̃
Λ1/2dWε from the same reasoning as in part (i)

of the proof. For the remaining terms, we find

ε∗0Ξ∗[e(e0e)−1e0 ⊗ Ik]β̃∗ =
³
T−1/2

X
X∗t ε

∗
t

´0 ³
T−1/2

X
β̃
∗
t

´
⇒ Wε(1)

0P ∗P ∗0Λ1/2
R
Wβ̃

T−1/2Q∗0Ξ∗[e(e0e)−1e0 ⊗ Ik]β̃∗ =
³
T−1

X
Q∗tX

∗0
t

´³
T−1/2

X
β̃
∗
t

´
⇒
µ
P ∗Λ1/2

R
Wβ̃

0

¶
T 1/2ε∗0Q∗(Q∗0Q∗)−1 =

³
T−1/2

X
Q∗t ε

∗
t

´0
(T−1Q∗0Q∗)−1 ⇒

µ
P ∗Wε(1)
WZε(1)

¶0
yielding the result.

(iv)

σ−2β̃
0
[Me ⊗ ΣX ]β̃ = β̃

∗0
[Me ⊗ Ik]β̃∗

=
X

β̃
∗0
t β̃

∗
t − β̃

∗0
[e(e0e)−1e0 ⊗ Ik]β̃∗

where X
β̃
∗0
t β̃

∗
t = tr

hX
β̃
∗
t β̃
∗0
t

i
⇒ R

W 0
β̃
ΛWβ̃

and

β̃
∗0
[e(e0e)−1e0 ⊗ Ik]β̃∗ = T−1β̃

∗0
[(e⊗ Ik)(e0 ⊗ Ik)]β̃∗

=
³
T−1/2

X
β̃
∗0
t

´³
T−1/2

X
β̃
∗
t

´
⇒ (

R
Wβ̃)

0Λ(
R
Wβ̃)

so that
σ−2β̃0[Me ⊗ ΣX ]β̃ ⇒

R
W̄ 0

β̃
ΛW̄β̃

The joint convergence is an immediate consequence of the independence of β, β̃, γ and γ̃.

Proof of Theorem 1:
All computations in the proof are made underH0, i.e. under the assumption of h = B0Qε. Specifi-

cally, νh will denote the measure associated with h = B0Qε. Furthermore, let dνQ̂ denote integrations
with respect to the measure of the conditional distributions Q̂t = Qt|{Qt−1, Qt−2, · · · , yt−1, yt−2, ...},
i.e. a shortcut for

QT
t=1 fQ̂,tdν̄Q̂,t.
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Let φ =
Pk
i=1 v

0
i[G

√
2ai
−Me]vi and recall that LRT = νβξ(β) andgLRT = νβ̃ ξ̃(β̃), where νβ̃ ξ̃(β̃)

is short-hand notation for
R
ξ̃(β̃)dνβ̃ and so forth. Further define

gLR0T = 1[φ ≤ K0]νβ̃ ξ̃(β̃)gLR0T (K 0) = 1[φ ≤ K0]νβ̃ ξ̃(β̃)1[ξ̃(β̃) ≤ K 0]

LR0T = 1[φ ≤ K0]νβξ(β)
LR0T (K

0) = 1[φ ≤ K0]νβξ(β)1[ξ(β) ≤ K 0]

Note that

P (|LRT −gLRT | > 5²) ≤ P (|LRT − LR0T | > ²) + P (|LR0T − LR0T (K 0)| > ²)
+ P (|LR0T (K 0)−gLR0T (K 0)| > ²) + P (|gLR0T −gLR0T (K 0)| > ²) + P (|gLRT −gLR0T | > ²)

We hence need to show: (i) for any η > 0 there exists T ∗, K 0 and K0 such that for all T ≥ T ∗,
P (|LRT − LR0T | > ²) < η, P (|LR0T − LR0T (K 0)| > ²) < η, P (|gLR0T −gLR0T (K 0)| > ²) < η and

P (|gLRT −gLR0T | > ²) < η and (ii) for all K 0 and K0, LR0T (K
0)−gLR0T (K 0) p→ 0.

We show (i) first. Under H0

P (|gLRT −gLR0T | > ²) ≤ P (φ > K0)
P (|LRT − LR0T | > ²) ≤ P (φ > K0)

But by Lemma 2

φ⇒
kX
i=1

·
−ciJi(1)2 − c2i

R
J2i −

2ci
1− e−2ci

£
e−ciJi(1) + ci

R
e−cisJi

¤2
+ [Ji(1) + ci

R
Ji]

2

¸

where ci =
√
2ai, so that by choosing K0 large enough, P (φ > K0) can be made arbitrarily small

for sufficiently large T .

To show that P (|gLR0T −gLR0T (K 0)| > ²) can be made arbitrarily small by choosing K 0 large, we
will show that 1[φ ≤ K0]ξ̃(β̃) is uniformly integrable. By the definition of uniform integrability,
this implies that E[1[φ ≤ K0]ξ̃(β̃)1[1[φ ≤ K0]ξ̃(β̃) > K 0]] can be made arbitrarily small uniformly
over T by choosing K 0 large. Since

P (|gLR0T −gLR0T (K 0)| > ²) ≤ ²−1E|gLR0T −gLR0T (K 0)|
= ²−1E[1[φ ≤ K0]ξ̃(β̃)1[ξ̃(β̃) > K 0]]
= ²−1E[1[φ ≤ K0]ξ̃(β̃)1[1[φ ≤ K0]ξ̃(β̃) > K 0]]

this is sufficient for the claim. For the uniform integrability of 1[φ ≤ K0]ξ̃(β̃), we will show that
the second moment of 1[φ ≤ K0]ξ̃(β̃) is bounded uniformly over T (the ’Crystal Ball’ condition for
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uniform integrability). Letting β̃e, HΩ and HΛ as in the proof of Lemma 1, we find

E[(1[φ ≤ K0]ξ̃(β̃))
2] = E[1[φ ≤ K0](ξ̃(β̃))2]

=

Z Z Z
1[φ ≤ K0] exp

h
2σ−2h0B0QΞ[Me ⊗ Ik]β̃ − σ−2β̃

0
[Me ⊗ ΣX ]β̃

i
dνβ̃dνhdνQ̂

=

Z Z
1[φ ≤ K0]

Z
exp

h
2σ−2h0B0QΞ[Be ⊗ Ik]β̃e − β̃

0
e[IT−1 ⊗ σ−2ΣX ]β̃e

i
dνβ̃e

dνhdνQ̂

=

Z Z
1[φ ≤ K0]

Z
(2π)−k(T−1)/2|KΩ|−1/2

exp
h
2σ−2h0B0QΞ[Be ⊗ Ik]β̃e − 1

2 β̃
0
e[K

−1
Ω + 2IT−1 ⊗ σ−2ΣX ]β̃e

i
dβ̃edνhdνQ̂

=

Z Z
1[φ ≤ K0]|KΩ|−1/2|K−1Ω + 2IT−1 ⊗ σ−2ΣX |−1/2

exp
£
2σ−4h0B0QΞ[Be ⊗ Ik][K−1Ω + 2IT−1 ⊗ σ−2ΣX ]−1[B0e ⊗ Ik]Ξ0BQh

¤
dνhdνQ̂

=

Z Z
1[φ ≤ K0]|IT−1 ⊗ Ik +K2Λ|−1/2

exp
h
σ−2h0B0QΞ[Be ⊗ Σ−1/2X P ∗][K−12Λ + IT−1 ⊗ Ik]−1[B0e ⊗ P ∗0Σ−1/2X ]Ξ0BQh

i
dνhdνQ̂

=

Z Z
1[φ ≤ K0] [expφ] dνhdνQ̂

kY
i=1

"
1− r2T√

2ai

T (1− r2√
2ai
)rT−1√

2ai

#−1/2

≤ expK0

kY
i=1

"
1− r2T√

2ai

T (1− r2√
2ai
)rT−1√

2ai

#−1/2

the computation of the integral follows closely the computations in Lemma 1. From the last line,
we conclude supT E[(1[φ ≤ K0]ξ̃(β̃))2] <∞, so that the ’Crystal Ball’ condition holds.
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The final piece for (i) is the term P (|LR0T − LR0T (K 0)| > ²). We have

P (|LR0T − LR0T (K 0)| > ²) ≤ ²−1E|LR0T − LR0T (K 0)|
= ²−1

Z Z
|LR0T − LR0T (K 0)|dνhdνQ̂

= ²−1
Z Z Z

1[φ ≤ K0]1[ξ(β) > K 0]ξ(β)dνβdνhdνQ̂

≤ ²−1
Z Z Z

1[ξ(β) > K 0]ξ(β)dνhdνβdνQ̂

= ²−1
Z Z Z

(2πσ2)−(T−k−d)/21[ξ(β) > K 0]

exp
£−12σ−2(h0h− 2h0B0QΞβ + β0Ξ0MΞβ)

¤
dhdνβdνQ̂

= ²−1
Z Z Z

(2πσ2)−(T−k−d)/21[σ−2h0B0QΞβ − 1
2σ
−2β0Ξ0MΞβ > lnK 0]

exp
£−12σ−2(h−B0QΞβ)0(h−B0QΞβ)¤ dhdνβdνQ̂

= ²−1
Z Z Z

(2πσ2)−(T−k−d)/21[σ−2h0B0QΞβ + 1
2σ
−2β0Ξ0MΞβ > lnK 0]

exp
£−12σ−2h0h¤ dhdνβdνQ̂

= ²−1
Z Z Z

1[σ−2h0B0QΞβ + 1
2σ
−2β0Ξ0MΞβ > lnK 0]dνhdνβdνQ̂

= ²−1P (σ−2h0B0QΞβ +
1
2σ
−2β0Ξ0MΞβ > lnK 0)

= ²−1P (σ−2ε0MΞβ + 1
2σ
−2β0Ξ0MΞβ > lnK 0)

But
σ−2ε0MΞβ + 1

2σ
−2β0Ξ0MΞβ ⇒ R

W̄ 0
βΛ

1/2dWε +
1
2

R
W̄ 0

βΛW̄β

from Lemma 3, so that by making K 0 sufficiently large, P (σ−2ε0MΞβ + 1
2σ
−2β0Ξ0MΞβ > lnK 0)

can be made arbitrarily small for sufficiently large T .

We are hence left to show (ii), i.e. that LR0T (K
0) −gLR0T (K 0) p→ 0 for all 0 < K 0 < ∞ and

0 < K0 <∞. Introducing the notation ψ̃(β̃) = ξ̃(β̃)1[ξ̃(β̃) ≤ K 0] and ψ(β) = ξ(β)1[ξ(β) ≤ K 0] we
find

LR0T (K
0) = 1[φ ≤ K0]νβψ(β)

= 1[φ ≤ K0]νγψ(γ)

and

gLR0T (K 0) = 1[φ ≤ K0]νβ̃ψ̃(β̃)
= 1[φ ≤ K0]ν γ̃ψ̃(γ̃)
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so that we can write

E

·³
LR0T (K

0)−gLR0T (K 0)
´2¸

= νQ̂νh

³
LR0T (K

0)−gLR0T (K 0)
´2

= νQ̂νh[1[φ ≤ K0][νβψ(β)νγψ(γ)− νβψ(β)ν γ̃ψ̃(γ̃)

− νβ̃ψ̃(β̃)νγψ(γ) + νβ̃ψ̃(β̃)νγ̃ψ̃(γ̃)]]

= E[1[φ ≤ K0]ψ(β)ψ(γ)]−E[1[φ ≤ K0]ψ(β)ψ̃(γ̃)]
−E[1[φ ≤ K0]ψ̃(β̃)ψ(γ)] +E[1[φ ≤ K0]ψ̃(β̃)ψ̃(γ̃)]

Now Lemmas 2 and 3 and the CMT imply that 1[φ ≤ K0]ψ(β)ψ(γ), 1[φ ≤ K0]ψ(β)ψ̃(γ̃), 1[φ ≤
K0]ψ̃(β̃)ψ(γ) and 1[φ ≤ K0]ψ̃(β̃)ψ̃(γ̃) have the same asymptotic distribution, which is given by

1[
kX
i=1

·
−ciJi(1)2 − c2i

R
J2i −

2ci
1− e−2ci

£
e−ciJi(1) + ci

R
e−cisJi

¤2
+ [Ji(1) + ci

R
Ji]

2

¸
≤ K0]×

1[exp
hR
W̄ 0
0Λ

1/2dWε − 1
2

R
W̄ 0
0ΛW̄0

i
≤ K 0] exp

hR
W̄ 0
0Λ

1/2dWε − 1
2

R
W̄ 0
0ΛW̄0

i
×

1[exp
hR
W̄ 0
1Λ

1/2dWε − 1
2

R
W̄ 0
1ΛW̄1

i
≤ K 0] exp

hR
W̄ 0
1Λ

1/2dWε − 1
2

R
W̄ 0
1ΛW̄1

i
where W̄0 and W̄1 are mutually independent k×1 demeaned standard Wiener processes independent
of Wε, ci =

√
2ai and Ji (which are continuous functionals of Wε(·)) are defined as in Lemma 2.

But weak convergence together with the boundedness of ψ̃(·) and ψ(·) by K 0 implies convergence
in expectation, so that

E

·³
LRT (K

0)−gLRT (K 0)
´2¸→ 0

LRT (K
0)−gLRT (K 0) hence converge in mean square, which implies convergence in probability.

Proof of Theorem 2:
In order to establish contiguity, we need to show that (i) LRT converges weakly to some random

variablegLR under the null hypothesis of h = B0Qε and (ii) E[gLR] = 1.
For (i), first note that by Theorem 1, LRT −gLRT p→ 0 under the null hypothesis. But conver-

gence in probality implies convergence in distribution, after noting that·
1− r2Ta

T (1− r2a)rT−1a

¸−1
→ 2ae−a

1− e−2a

as T →∞ the result is immediate from the CMT and and Lemma 2, withgLR =Qk
i=1
gLRi where

gLRi = · 2aie−ai
1− e−2ai

¸1/2
exp

·
−12

·
−aiJi(1)2 − a2i

R
J2i −

2ai
1− e−2ai

£
e−aiJi(1) + ai

R
e−aisJi

¤2
+ [Ji(1) + ai

R
Ji]

2

¸¸
and Ji is defined in Lemma 2.
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Turning to (ii), from the independence of the processes Ji(·) we find

E[gLR] = kY
i=1

E[gLRi]
so that it is clearly sufficient to show that

E[gLRi] = 1.
Now from Girsanov’s (1960) Theorem as described in Tanaka (1996), p. 109, a change of measure
yields

E[gLRi] = · 2aie−ai
1− e−2ai

¸1/2
E

·
exp

·
−12

·
−ai − 2ai

1− e−2ai
£
e−aiWi(1) + ai

R
e−aisWi(s)ds

¤2
+ [Wi(1) + ai

R
Wi(s)ds]

2

¸¸¸
where Wi is a Wiener process. Define

ZW =

µ
Wi(1) + ai

R
Wi(s)ds

Wi(1) + ai
R
eai(1−s)Wi(s)ds

¶
and

ΛW =

µ
1 0
0 −2aie−2ai/(1− e−2ai)

¶
=

µ
1 0
0 2ai/(1− e2ai)

¶
so that

E[gLRi] = · 2ai
1− e−2ai

¸1/2
E
£
exp[−12Z 0WΛWZW ]

¤
With

ZW =

Z µ
1 + ai(1− s)
eai(1−s)

¶
dWi(s)

we find ZW ∼ N (0, VW ), where

VW = E[ZWZ
0
W ] =

µ
1 + ai + a

2
i /3 eai

eai (e2ai − 1)/(2ai)
¶
.

By completing the square we compute

E[gLRi] =

·
2ai

1− e−2ai
¸1/2 Z

(2π)−1|VW |−1/2 exp
£−12Z 0W £ΛW + V −1W

¤
ZW

¤
dZW

=

·
2ai

1− e−2ai
¸1/2

|(ΛW + V −1W )VW |−1/2

=

·
2ai

1− e−2ai |ΛWVW + I2|−1
¸1/2

and a direct calculation shows

ΛWVW + I2 =

µ
2 + ai + a

2
i /3 eai

−2aieai/(e2ai − 1) 0

¶
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so that |ΛWVW + I2| = 2aie2ai/(e2ai − 1), yielding the desired result.

Proof of Theorem 3:
(i) Noting that {X∗t ε∗t} = {σ−1Σ−1/2X Xtεt}, Condition 3 implies that the long-run covariance of

{X∗t ε∗t } is given by σ−2Σ−1/2X VXΣ
−1/2
X , so that

T−1/2
h
(e0[sT ], 0

0
T−[sT ])⊗ Ik

i
[I ⊗ P ∗0V̂ −1/2X ]Ξ0Mε

= T−1/2P ∗0V̂ −1/2X σΣ
1/2
X

[sT ]X
t=1

X∗t ε
∗
t

−P ∗0V̂ −1/2X σΣ
1/2
X

T−1 [sT ]X
t=1

X∗tQ
∗0
t

 (T−1Q∗0Q∗)−1T−1/2 TX
t=1

Q∗t ε
∗
t

⇒ P ∗0V −1/2X V
1/2
X P ∗Wε(s)− sP ∗0V −1/2X V

1/2
X P ∗Wε(1)

= Wε(s)− sWε(1)

where the weak convergence follows from the uniform convergence of T−1
P[sT ]
t=1 Q

∗
tQ

∗0
t

p→ sIk+d,
the consistency of V̂X , the CMT and the FCLT for mixing series as in the proof of Lemma 3.

(ii) We first prove the convergence in probability under the null hypothesis. By definition

Ĵ(Ω∗) =
kX
i=1

v̂0i[Gai −Me]v̂i

J(Ω∗) =
kX
i=1

v0i[Gai −Me]vi

v̂i = [I ⊗ ι0k,iP
∗0V̂ −1/2X ]ΞMy

vi = [I ⊗ ι0k,iP
∗0σ−1Σ−1/2X ]ΞMy

From an application of Lemma 6,

v0i[Gai −Me]vi − v̂0i[Gai −Me]v̂i = gJ

T−1/2 [·T ]X
t=1

vi,t

− gJ
T−1/2 [·T ]X

t=1

v̂i,t

+ op(1)
But with {ε̂t} the residuals of a OLS regression of {εt} on {Qt}, we have

sup
s
T−1/2|

[sT ]X
t=1

v̂i,t −
[sT ]X
t=1

vi,t| ≤ |ι0k,iP ∗0V̂ −1/2X − ι0k,iP
∗0σ−1Σ−1/2X | sup

s
|T−1/2

[sT ]X
t=1

Xtε̂t|
p→ 0

since sups |T−1/2
P[sT ]
t=1 Xtε̂t| = Op(1), and by the continuity of gJ in the sup-norm the result is

established. Convergence under the alternative follows immediately from Theorem 2, since V̂X and
{ε̂t} are functions of (h,Q).
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