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Correlated Spectroscopic Imaging of Calf Muscle in
Three Spatial Dimensions Using Group Sparse
Reconstruction of Undersampled Single and

Multichannel Data

Neil E. Wilson, Brian L. Burns, Zohaib Igbal, and M. Albert Thomas*

Purpose: To implement a 5D (three spatial + two spectral) cor-
related spectroscopic imaging sequence for application to
human calf.

Theory and Methods: Nonuniform sampling was applied
across the two phase encoded dimensions and the indirect
spectral dimension of an echo planar-correlated spectroscopic
imaging sequence. Reconstruction was applied that minimized
the group sparse mixed ¢»1-norm of the data. Multichannel
data were compressed using a sensitivity map-based
approach with a spatially dependent transform matrix and uti-
lized the self-sparsity of the individual coil images to simplify
the reconstruction.

Results: Single channel data with 8x and 16x undersampling
are shown in the calf of a diabetic patient. A 15-channel scan
with 12x undersampling of a healthy volunteer was recon-
structed using 5 virtual channels and compared to a fully
sampled single slice scan. Group sparse reconstruction faith-
fully reconstructs the lipid cross peaks much better than /¢4
minimization.

Conclusion: COSY spectra can be acquired over a 3D spatial
volume with scan time under 15 min using echo planar read-
out with highly undersampled data and group sparse recon-
struction. Magn Reson Med 000:000-000, 2015. © 2015
Wiley Periodicals, Inc.

Key words: EP-COSI; compressed sensing; nonuniform sam-
pling; group sparsity; calf muscle; 3D spectroscopic imaging

INTRODUCTION

Using the theory proposed by Jeener in 1971, Ernst and
coworkers showed the first two-dimensional (2D) NMR
spectra acquired using correlated spectroscopy (COSY)
(1). A COSY spectrum is characterized by the presence
of cross-peak multiplets indicating scalar coupling
between protons and is achieved following the applica-
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tion of a 90° coherence transfer pulse to single quantum
coherences and incrementing the echo time. Due to its
relative simplicity, COSY was also one of the first 2D
spectroscopy sequences successfully applied in vivo
(2,3). While the spectral resolution in vivo is T2 limited
and not high enough to fully resolve the individual
peaks that comprise each cross peak multiplet, the over-
all cross peaks showcase the clear presence of coupled
partners and where those partners resonate. Compared to
single-dimensional (1D) spectra, COSY spectra are less
dense with improved spectral dispersion. In skeletal
muscle, COSY has been used to separately quantify the
saturated and unsaturated fatty acid contributions to the
intramyocellular and extramyocellular lipid pools
(IMCL/EMCL), allowing more reliable calculation of the
unsaturation index (4).

However, applications of COSY as a single voxel tech-
nique are greatly limited by the lack of coverage and the
large voxel size. Spectroscopic imaging (SI) or chemical
shift imaging (5) solves these problems while acquiring
spectra from multiple locations simultaneously. Standard
chemical shift imaging techniques use phase-encoding in
each spatial direction and offer no improvement in scan
time efficiency compared to single voxel techniques,
making their combination with COSY prohibitively long
for applications to humans (6). By interleaving the acqui-
sition of an entire k-space line with the temporal or
spectral information in a single excitation, an echo pla-
nar readout (7) can reduce the scan time by at least an
order of magnitude. The remaining spatial dimension(s)
are phase encoded (8).

Recently, COSY has been combined with an echo pla-
nar readout for correlated SI (EP-COSI) in rat brain (9)
and in humans (10,11). These sequences have been lim-
ited in coverage to a single slice because of the scan
times required to incrementally acquire a phase-encoded
spatial direction (k,) and the indirect spectral dimension
(t1). A fully sampled 3D volume scan would take hours
even with the echo planar readout.

Nonuniform undersampling (NUS) with compressed
sensing (CS) reconstruction has been used to accelerate
the acquisition of these single-slice-correlated SI sequen-
ces by subsampling the plane spanned by the phase-
encoded direction (k,) and t; (12). Here we extend those
techniques to subsample and reconstruct the volume
spanned by two phase-encoded directions (k;, and k,) and
t; by utilizing prior knowledge that the COSY spectrum is



self-sparse (i.e. the 2D spectra are composed of relatively
few nonzero peaks surrounded by low-level noise). We
also utilize the broadness of the peaks in vivo to improve
the reconstruction by grouping coefficients that are in
close proximity in the spectral plane. Qualitative compari-
son is performed between a mixed-norm group sparse
(GS) reconstruction and a typical CS ¢;-norm reconstruc-
tion using different undersampling factors with single
channel and multichannel data. Reconstructions of pro-
spectively undersampled whole calf correlated SI data
with three spatial and two spectral dimensions are
compared.

THEORY

Previous implementations of CS to multidimensional SI
have been formulated based on the signal equation for a
single channel. Multicoil scans were reconstructed chan-
nel by channel and combined as a sum-of-squares (13,14).
This single-channel problem is formulated as a minimiza-
tion of an /;-norm term while maintaining data consis-
tency through an ¢;-norm term and can be written as

min,||b(u)]|, st ||[BFu-f|} <o? [1]
where u = u(x,y,z, F,,F;) is the reconstructed data, f
= f(ky, ky, ky, t;,11) is the undersampled data, o* is an
estimate of the noise variance of the sampled data, R is
the sampling mask, F is the Fourier transform, and ¢(u)
is a function that transforms u to a sparse domain. The
simplest choice is the identity transform ¢(u) = u, which
is applicable only when the reconstructed data are self
sparse. Alternatively, ¢ can be a wavelet transform or a
combination finite difference operator as in total varia-
tion &(u) = TV (u).

Unlike conventional ¢;-norm-based CS reconstruc-
tions that consider each transform coefficient independ-
ently, GS (15) exploits the tendency of large transform
coefficients to be clustered. In order to do this, certain
coefficients are grouped and reconstructed as a unit.
This grouping allows points in a group to influence
each other as a model of signal correlation and has been
shown to offer improved results compared to ¢; minimi-
zation in the context of MR (16-18).

Single Channel GS Reconstruction

The objective of a GS reconstruction problem is an /¢, ;
mixed-norm in which the ¢;-norm of the /;-norms of
each group is minimized.

1Gulls =) llugll, (2]

where G € R is the matrix operator that places N vec-
torized points of u into n different groups. There is a lot
of freedom in the choice of grouping. Groups can be
identically sized or varying, and they can partition the
entire region or overlap with each other.

In (18), the single channel GS problem
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min,||Gul|,, st |[RFu-f||; <o’ [3]
was solved using the split Bregman algorithm [19], and
similarly in (20), it was solved using the alternate direc-
tion method of multipliers (ADMM).

Multichannel GS Reconstruction

The multicoil CS problem can easily be formulated as a
regularized SENSE (21) reconstruction (22,23). If the coil
sensitivity profiles S are known, the multicoil GS prob-
lem is

min,||Gul|,, st ||RFSu-f|} < o? [4]

While Eq. [4] closely resembles Eq. [3], S prevents
direct solutions using either split Bregman or ADMM.
Both methods achieve their high efficiency because the
most expensive subproblem involves inverting a circu-
lant matrix with a Fourier transform to diagonalize it.
But once S is included, the matrix that must be inverted
(WS F'RRFS + \G'G) is no longer circulant. A few itera-
tions of the conjugate gradient method can be used to
approximate the noncirculant matrix inversion, but this
can be expensive even with preconditioning (19,24).
Alternatively, variable splitting can be applied to the
data fidelity term in the same way it is applied to the
objective term at the expense of an additional parameter
and without the same guarantees of convergence
(25,26).

The reconstructed data, u, must be self-sparse since
the problem seeks to minimize the /;;-norm of groups
with no additional transform. Therefore, individual coil
data Su must also be self-sparse. Instead of Eq. [4], the
SENSE-regularized multicoil GS problem can be formu-
lated as

min,||GSul|,; st ||[RFSu—f|; <o [5]

This problem is actually easier to solve than Eq. [4] as
it requires one less auxiliary variable to be iteratively
updated. Applying the substitution v= Su, gives

min,,||Gv]|,; st ||[RFv—fl5<¢® v=25Su [6]
where v=v(x,y,z F,,F;,c) is a 6D matrix with the
inclusion of the channel dimension c¢. Since u has been
completely decoupled from the rest of the optimization,
the problem can be solved iteratively for v first before
transforming back to u.

Ignoring the v= Su constraint, the remaining problem is
simply the single-channel GS formulation in Eq. [3] with
v replacing u. It is solved exactly as before by relaxing the
constraint, making the substitution z= Gv, using the Breg-
man formulation, and iteratively solving each subproblem
while holding the other variable constant. Bregman
updates are applied, including over an outer loop on f
until the problem is accurately solved for v. The interme-
diate solution v is practically equivalent to the recon-
structed coil images that would be calculated individually
in a channel-by-channel reconstruction except stacked as
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FIG. 1. 12x nonuniform sampling mask over the (ky,k,,t1) volume
used to acquire accelerated EP-COSI data in multichannel acquis-
itions. White squares indicate sampled points. The mask follows
the sampling density given in Eq. [9].

one large matrix, provided that the coils are each scaled
to the same noise level.
Next, u is calculated from v and S by

u=(38)"'Sv (7]

For maximal SNR, the reconstructed data can be whit-
ened in order to remove any noise correlations between
coils

u=(S¥1s) sV ly (8]

where V is the noise correlation matrix between the coils
described in detail in (21).

METHODS
Sequence

All scans were acquired on a Siemens 3T Trio scanner.
The fully sampled 5D (3 spatial+2 spectral) EP-COSI
sequence contained a k-space volume with 16 points in
the readout direction (k,) and 16 and 8 points in the two
phase-encoding directions (k, and k,, respectively). The
field of view (FOV) was 16 x 16 x 12 cm®. Each k, line
was repeatedly acquired for 256 complex f, points per
TR, and 64 t; points [echo time increments] were
acquired. The (ky, k;,t;) volume was prospectively non-
uniformly undersampled by a factor of 8, 12, or 16 as
described in the following section. The bandwidths in
the direct (F,) and indirect (F,) spectral dimensions were
1190 and 1250 Hz, respectively. The 8x and 12x under-
sampled scans were acquired with TR/minimum
TE =1200/30 ms for scan times of 20 and 14 min, respec-
tively. The 16 x undersampled scans were acquired with
TR/minimum TE =1500/30 ms for a scan time of 13 min.
Global water suppression was applied (27). Scans were
acquired on a single channel transmit/receive extremity
coil with 8x and 12x undersampling and on a 15-
channel knee coil with 12x undersampling. A separate
scan with full spatial sampling and a single TE was

acquired without water suppression before each EP-COSI
scan for reference to determine the complex coil sensitiv-
ities and took 2 min 28 s with TR=1200 ms and 3 min
18 s with TR=1500 ms. When time permitted, a fully
sampled, single-slice multiecho EP-COSI (MEEP-COSI)
(28) scan was also acquired through the central slice of
the 3D volume with slice thickness of 2 cm. The rest of
the applicable parameters were the same, and the single-
slice scan took 13 min with TR=1.5 s or 10 min with
TR=1.2 s. A fully sampled 5D EP-COSI phantom scan of
a 500-mL corn oil flask was acquired and retrospectively
undersampled for comparison.

Apodization and NUS Masks

In an in vivo COSY spectrum, the cross-peak signal is up
to an order of magnitude lower than the diagonal peaks.
As the cross peaks are the most interesting and descrip-
tive signals, apodization is applied in f, and t; to
enhance them. The filters used were squared sine bells
in each dimension, and they were applied before recon-
struction to enhance the coherence transfer signal enve-
lope. The unapodized data has much higher diagonal
peak to cross peak dynamic range, and reconstruction
would therefore favor the diagonal peaks at the expense
of cross peaks. Post reconstruction apodization would
not be able to restore the cross peaks once the minimiza-
tion of the ¢, ;-norm has effectively denoised them.

Incoherent aliasing was achieved by randomly under-
sampling the (k,,k,,t;) volume. In Ref. 14, the nonuni-
form sampling density followed a decaying exponential
so that the highest SNR data points were adequately
sampled. Here, we follow the same philosophy except
that we wish to ensure the highest SNR data points after
apodization were subsampled. For that reason, the sam-
pling density function was given by

B ke kL) ()
P(ky»kz,tl)*exp{—n—y—n—z st ()T (9]

where p(ky,k,,t;) is the probability of sampling point
(ky,kz,11), sk=0.5 is the skew parameter, and n,, n,, and
n, give the number of points in the y, z, and t; dimen-
sions, respectively. The skewed squared sine bell density
function approximates the combined effect of squared
sine bell apodization on a decaying exponential curve.
The 12x nonuniform undersampling mask used in mul-
tichannel acquisition is shown in Figure 1; the 8x and
16x nonuniform undersampling masks used in single-
channel acquisitions are shown in Supporting Informa-
tion Figure S1.

Reconstruction

The coil sensitivities S were determined from the non
water-suppressed reference scan by taking the first time
point and dividing each channel by the sum-of-squares
from all channels in order to determine the proportional
contribution of each channel. This ensures that the prod-
uct 'S in Eq. [7] is invertible. The first time point was
chosen because each resonance is in phase at the echo
time. This is in contrast to methods that deconvolve the
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FIG. 2. (a) Metabolite map of the olefinic diagonal peak from a central slice of the fully sampled oil phantom scan. (b) Projection through
the slice in (a) for each reconstruction. (c) COSY spectrum from a central voxel of the fully sampled data. (d) Projection through the

COSY spectrum at F, = 5.5 ppm for each reconstruction.

phase at each time point that are applicable only when a
single, large- signal solvent is present (29,30). A region
of interest was also estimated from the reference sum-of-
squares image where the intensities were greater than
twice the mean.

As the v optimization in Eq. [6] is equivalent to the u
optimization in Eq. [3], it can similarly be solved for the
entire v matrix at once or channel-by-channel. Here, Eq.
[6] is solved channel-by-channel to reduce the dimen-
sionality of the problem and allow for parallelization of
the individual channel optimizations. If v is solved as a
6D matrix at once, each channel should first be scaled to
the same noise level so that a single value of ¢ is appro-
priate for the entire dataset. If channels are not properly
scaled, the reconstruction will be closest to the highest
intensity coil regardless of its SNR, whereas a proper
reconstruction should favor the highest SNR coils at
each point. The noise in each coil can be determined
from the standard deviation over a signal-free and
artifact-free region of the spectrum. Here, we have used
the region in (F,, F;) from (0,7) to (2,9) ppm.

Coefficients were grouped in the spectral plane (F,, F;)
with 50% overlap between adjacent groups in each

direction and with each group consisting of 8 x 4 points
(18). This grouping strategy is motivated by the sparsity
of the 2D COSY spectra-dominated by the presence of
large peaks and is illustrated in Supporting Information
Figure S2.

For comparison, undersampled data were also recon-
structed with a self-sparse SENSE-based ¢;-norm
minimization
st. ||RFSu—f|5 < o?

min,||Sul|, [10]

This problem was also solved with the split Bregman
algorithm using similar auxiliary variable substitutions
as in Eq. [5]. The regularization parameters were set to
u=1 for both algorithms, N\ =1/2 for the CS problem,
and N =1/(2-32) for the GS problem, where p is the
parameter that relaxes the data consistency constraint
and / is the paramater that relaxes the variable substitu-
tion constraint. The solution from the split Bregman
algorithm 1is relatively insensitive to these parameter
choices (19), but the time to convergence can vary. The
CS problem had a maximum of 100 outer Bregman itera-
tions, the GS problem had a maximum of 50 outer
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FIG. 3. Metabolite maps and localization from an 8x under-
sampled scan of the calf of a diabetic patient. Shown are the
maps from the creatine and fat peak at 3.0 ppm (Cr3.0), the crea-
tine resonance at 3.9 ppm (Cr3.9), and the lower (Low) and upper
(Upp) IMCL and EMCL lipid cross peaks. Slices are stacked verti-
cally, and the readout direction is horizontal. Within each metabo-
lite group, the minimum energy reconstruction (MinEn) is shown
with the CS and GS reconstructions, respectively. MinEn is scaled
by the square root of the undersampling factor. Each metabolite is
normalized to roughly the same gray scale.

iterations, and each problem had 15 inner Bregman itera-
tions per outer iteration. The reconstructions were per-
formed on a 64-bit octa core 3.1 GHz Intel Xeon E5-
2687W processor with 128 GB RAM.

Coil Compression

Whether the multichannel data are reconstructed coil-by-
coil or as one large matrix, the reconstruction time is
longer than for a single coil. In order to reduce the
dimensionality of the problem and speed up the recon-
struction, the 15-channel coil array was compressed into
five virtual coils using a custom hybrid method based on
(31) and (32). Since we already require explicit coil sen-
sitivity maps and have a fully sampled spatial dimen-
sion, our method basically uses the transformation
described by Buehrer et. al. (31) with an A weighting
matrix that is x-dependent

[11]

where f(x), are the k data points at a given x location in
the original basis, and f(X)}( is in the virtual coil basis.
Original and transformed sensitivity maps are shown in
Supporting Information Figure S3.

RESULTS

A retrospectively undersampled phantom scan is shown
in Figure 2. A vertical projection through the central
slice is shown for each reconstruction and indicates that
there is the expected loss in signal intensity for higher
undersampling factors but that there is negligible differ-
ence in spatial resolution between the reconstructions
and the fully sampled data. From the projection along

the F, dimension, it is similarly shown that the spectral
resolution remains constant as well, though some resid-
ual aliasing artifact can be seen with the 16x CS recon-
struction around 1 ppm.

Figure 3 shows the 3D localization and metabolite
maps from an 8x undersampled scan of the calf of a 57-
year-old diabetic patient taken with a single channel
extremity coil. Metabolite maps were computed by inte-
grating over the regions around the creatine/lipid peak at
3.0 ppm, the creatine peak(s) at 3.9 ppm, the lower
EMCL and IMCL cross peaks, and the upper cross peaks,
respectively. Within each metabolite grouping, the mini-
mum energy reconstruction (missing data points filled in
with zeros), the CS reconstruction (using Eq. [10]), and
the GS reconstruction (using Eq. [5]) are shown. The
minimum energy reconstruction is scaled by the square
root of the undersampling factor to produce similar
intensities to the other reconstructions. Note the aliasing
in both phase-encoding directions in the minimum
energy reconstruction. The CS and GS maps look very
similar, with the GS maps appearing slightly noisier.

Figure 4 shows COSY spectra from the tibial bone
marrow and the soleus and tibialis anterior muscles.
From the full COSY spectra, the t; aliasing is apparent.
The CS reconstructions provide good denoising and
remove the aliasing of many of the peaks, but the alias-
ing due to the two dominant lipid peaks and residual
water remains. This aliasing nearly completely obscures
the lower EMCL/IMCL cross peaks, as only the GS
reconstruction faithfully shows the splitting of the
EMCL and IMCL components in the lower cross peaks
in both the soleus and tibialis anterior that are found in
diabetic patients.

Each reconstruction faithfully reconstructs the spatial
locations as can be seen by looking at the spectrum
around the 3.9 ppm diagonal, as creatine is absent in the
marrow, a strong singlet in the soleus, and a split dou-
blet in the tibialis anterior (33). For the reconstructions
shown in Figures 3 and 4, the GS converged after only
five outer iterations in about 15 minutes, while the CS
reconstruction did not fully converge in 100 outer itera-
tions and took almost an hour. The minimum energy
spectra from these locations are shown in Supporting
Information Figure S4.

Figures 5 and 6 show metabolite maps and full spectra
from a 16x prospectively undersampled scan of the
same 57-year-old diabetic adult taken on a different day
than the 8x scan. Aliasing is even more prevalent with
the higher undersampling factors. Again, GS reconstruc-
tion appears slightly noisier but has a much greater
reduction in aliasing compared to CS. In all cases, the
spectra are not quite as clean as the 8x undersampled,
with some smaller peaks and the separation between
EMCL and IMCL being difficult to resolve. Here, GS con-
verged after 16 outer iterations in about 45 min, while
CS again took 100 outer iterations and just under an
hour.

Contour plots of the creatine signal at 3.9 ppm are
shown for single-slice MEEP-COSI in Figure 7b and the
three central slices of a 12x undersampled 5D EP-COSI
in Figure 7c—e in a healthy 34-year-old calf. The MEEP-
COSI reconstruction used all 15 acquired channels,
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IMCL/EMCL

—

FIG. 4. COSY spectra from the highlighted voxels in a central slice (insert) of the same scan as Figure 3. CS-reconstructed spectra are
shown on the left, while GS-reconstructed are shown on the right. The red voxels are from the soleus muscle, blue are from the tibialis
anterior muscle, and yellow are from the marrow. Arrows highlight the splitting of the IMCL and EMCL cross peaks in both the soleus
and tibialis anterior seen in diabetic patients. Contour levels are the same for each reconstruction for a given voxel.

while the 5D EP-COSI reconstruction used only the first
five virtual channels. The CS reconstruction took an
average of 73 iterations and 47 min per coil (almost 4 h
total), and the GS reconstruction took an average of 15
iterations and 54 min per coil (about 4.5 h total). Each
shows similar localization with the single, strong peak in
the soleus, a split doublet in the tibialis anterior, and lit-
tle creatine signal in the marrow. The MEEP-COSI scan
has somewhat higher SNR and a cleaner profile, but the
thinner slices of the 5D EP-COSI better show the location
of the fibular marrow at the bottom right of the volume

of interest and the doublet splitting in the gastrocnemius
at the bottom left.

DISCUSSION

Comparing the contour plots in Figure 7 suggests that
reconstructed data have some residual in plane signal
bleed compared to the fully sampled single slice. This is
likely due to the small amount of blurring caused by
reconstruction, as it is also seen slightly in the indirect
spectral dimension. It may also be due to some residual
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Cr3.0/Lip

FIG. 5. Metabolite maps over the
central four slices from a 16x
undersampled scan. The top
slice was outside the VOI and
has no signal. Shown are the
maps from the creatine and fat
peak at 3.0 ppm (Cr3.0), the cre-
atine resonance at 3.9 ppm
(Cr3.9), and the lower (Lower)
and upper (Upper) IMCL and
EMCL lipid cross peaks. Slices
are stacked vertically, and the
readout direction is horizontal.
For each metabolite group, the
CS reconstruction is shown on
the left, and GS reconstruction is
shown on the right.

aliasing, but the COSY spectra in Figures 4 and 6 suggest
that spectral aliasing is removed by the GS reconstruction.

Although the additional computation of grouping and
taking the /,-norm over each group prolongs each itera-
tion of GS, the algorithm converged for each dataset and
did so with far fewer iterations than CS. This is because
the ¢, mixed-norm regularizer promotes global sparsity
while allowing local curvature and is therefore a much
better model for in vivo COSY spectra compared to the
¢,-norm regularizer which promotes sparsity both locally
and globally. This allows the algorithm to take larger
steps toward convergence.

The number of outer iterations in the CS problem was
chosen such that most reconstructions would converge
or be close to convergence and that each coil reconstruc-
tion would take under an hour. Nevertheless, when the
number of outer iterations was not restricted, some of
the CS reconstructions took much longer before finally
converging, yet visual inspection of the data did not
show much, if any, improvement beyond the first 100
iterations. Therefore, the limit of 100 outer iterations is
justified and is already more than in previous implemen-
tations (14,18). With those limits, each method seems to
take about 45-55 min per coil, though some are signifi-
cantly shorter. We have favored using constant values of
the regularization parameters for ease of implementation
and reproducibility, but a more adaptive choice could
affect the convergence rates of the algorithms and the
total reconstruction time. Choice of regularization param-
eters is an active area of research in CS (34,35).

It is well known that SENSE acceleration comes with
an added SNR expense known as the g-factor (21), while
CS reconstruction offers SNR enhancement (36). That is
one reason why these techniques are so complementary,
but it also means there is ambiguity in how the recon-
structed SNR compares to the true SNR of fully sampled
data. For instance, the reconstructed SNR is dependent
moreso on the parameter ¢ than on the acquired data and
is not a good measure of data quality on its own. There-
fore, it is best to use a conservative estimate of ¢ that

Cr3.9 Low Upp

favors data fidelity to prevent the reconstruction from
becoming overly denoised. In such cases, the quality of
the reconstructed data is dependent on the SNR of the
acquired data (which is typically high for COSY spectra
in skeletal muscle) and the magnitude of the artifacts
(which depends on the degree of undersampling). This
article shows that the GS reconstruction performs better
than conventional CS reconstruction when the undersam-
pling artifacts are large. It is expected that similar results
would be obtained for inherently low SNR acquisitions.

Previous work with 3D volumetric J-resolved SI sug-
gests that minimizing the TV performs somewhat better
than the CS reconstruction presented here (14). The dif-
ference was not overwhelming, though, and work with
single-slice localized EP-COSI shows GS performing
much better than either CS or TV (18). Incorporating a
third spatial dimension increases the self-sparsity of the
data relative to single slice, so this suggests that applying
a sparsifying transform, such as TV, to the 3D-COSI
problem would not yield significantly better results than
GS. Including grouping with a TV regularizer could offer
improved performance and is an area of active research.

The methods presented here used Fourier encoding for all
three spatial dimensions. As in (14), this allows us to under-
sample across the entire (ky, k;, t;) volume. Undersampling
across higher-dimensional space produces more incoherent
artifacts and is a requisite for the large acceleration factors
presented here. Alternatively, 3D spatial encoding can also
be achieved using a multislice acquisition with Fourier
encoding in the other spatial dimensions. In that case, each
slice could be undersampled differently in (k,,,), enhanc-
ing the incoherence compared to a single slice but not pro-
ducing the incoherence of the 3D Fourier method (37). In
Hadamard encoding, each slice is encoded simultaneously,
so there is no incoherence enhancement due to the slice
dimension.

In the reconstruction method applied here, grouping
was done across the two dimensions of the spectral
plane as in (18) to take advantage of the bunching of
large coefficients in a highly sparse COSY spectrum.
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FIG. 6. COSY spectra from the highlighted voxels in a central slice (insert) of the same scan as Figure 5. CS-reconstructed spectra are
on the left, GS-reconstructed are shown on the right. Red voxels are from the soleus muscle, blue are from the tibialis anterior muscle,
and yellow are from the marrow. The splitting of the IMCL and EMCL cross peaks in the soleus and tibialis anterior is indicated. Contour

levels are the same for each reconstruction for a given voxel.

However, grouping does not need to be restricted to the
spectral plane and could take advantage of the proximity
of large coefficients in the spatial dimensions as well.
The algorithm simply requires the number of points in
each group to be the same. Joint sparsity is a form of
group sparsity in which grouping is done over the coil
dimension and could also be applied here (38,39), except
in that case, the ability to reconstruct channels individu-
ally is precluded. Mild improvement in reconstruction
quality has been shown using joint sparsity compared to
channel-by-channel reconstructions (40,41).

The EP-COSI and MEEP-COSI sequences both used a
PRESS volumetric slice selection module in which each
of the three pulses selects an orthogonal slice (42), and
the intersection of the slices is the VOIL This method
results in a clean, box-like profile in each dimension and
lends itself to region of interest definition in the coil com-
pression matrix of Eq. [11]. A shorter version of the
sequence similar to the original COSY can be constructed
using two 90 pulses that select a single slice only. The
two-pulse sequence would have a shorter minimum echo
time and reduced SAR, but excitation cannot be limited
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FIG. 7. Axial localization with 15-channel knee coil (a). Contour plot of the distribution of the peaks at 3.9 ppm for a single slice MEEP-
COSI scan (b) and the central three slices from 12x undersampled 5D EP-COSI (c-e) in the same healthy volunteer. The undersampled
5D EP-COSI scan took 14 min, and the MEEP-COSI scan took 13 min.

to a VOI. Even using PRESS localization, a small amount
of the marrow was included. Although the calf muscles
have a large of amount of lipid signal, the marrow has
more, which results in signal bleed as seen in Figures 3
and 5. Also, many muscle spectroscopy studies look at
overweight and obese patients whose calves often have a
large amount of subcutaneous EMCL. Unlike techniques
in slice-based SI in brain that use inversion recovery to
selectively suppress the lipid signal (43), the lipid signal
is often of primary interest in the muscle, and it has been
shown that the IMCL peak has longer T2 and is better
resolved at long TE (44). Outer volume suppression is an
alternative that can be used to ensure proper VOI excita-
tion (45) but is limited by the number of saturation bands
that can be applied.

CONCLUSION

A 5D correlated SI sequence with echo planar readout is
presented here that is achievable only by highly under-
sampling the volume of the two phase-encoding dimen-
sions and one indirect spectral dimension.
Reconstruction of the data using group sparsity mini-
mizes the mixed ¢;,-norm of the data and takes advant-
age of the proximity of high amplitude coefficients
found in spectroscopy peaks. Group sparsity reconstructs
much better than a standard ¢;-norm minimization algo-
rithm without significant time penalty.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article.

Supporting Figure S1: 8x (a) and 16x (b) NUS masks over the (ky; kz; t1)
volume used to acquire accelerated EP-COSI data in the single channel
acquisitions. White squares indicate sampled points. Each mask follows
the sampling density given in Eq. (9) in the manuscript.

Supporting Figure S2: lllustration of the dierence between two dimen-
sional groups that are non-overlapping and those with 50% overlap. The
overlapping groups were used to combine coecients in the spectral plane
(F2, F1).

Supporting Figure S3: Magnitude of sensitivity maps from 15-channel
data taken directly from a water reference scan (a), after using an x-
dependent geometric transformation matrix A(x) (Eq. (11)) (b), and after coil
compression using a single transformation matrix A (c). Maps were masked
to the ROL.

Supporting Figure S4: Minimum energy reconstruction of voxels shown in
Fig. 4 (top row) and 6 (bottom row). Contours are scaled by the square root
of the undersampling factor to show similar signal magnitudes to the
reconstructed data. Aliasing is prevalent in the F1 dimension in each case,
regardless of the SNR.
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