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Abstract

There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious
at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a
potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically
programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a
molecularly cloned, ‘‘transgenic’’ human anti-HIV T cell receptor (TCR). Anti-HIV TCR transduction of human hematopoietic
stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing
and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of
human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases
that are characterized by the loss of immune control.
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Introduction

The human immune system is normally highly effective in

managing exposure to the constant array of environmental antigens

encountered. However, there are many instances where the immune

response is ineffective in clearing infection or tumors. T cell

responses, particularly cytotoxic T lymphocyte (CTL) responses, are

critical in controlling viral infection or abnormal cellular growth and

the failure of this response is a large factor in the inability to control

these conditions[1]. Many current approaches toward treating a

variety of diseases, particularly persistent diseases such as cancers or

chronic viral infections, focus on the correction of defects in cellular

function. Gene therapy approaches have been utilized to protect cells

from infection, correct genetic defects, and enhance immune

responses; however, gene-based approaches to directly enhance

human cellular immune responses are relatively unexplored.

Previous studies utilizing standard gene transfer technologies

have demonstrated that cloned, antigen–specific T cell receptors

(TCRs) can be used to target polyclonal mature peripheral blood

derived CD8+ T cells towards viral and cancer antigens [2–8].

This approach has been utilized in safely treating melanoma-

afflicted individuals by ‘‘redirecting’’ peripheral CD8+ T cells

following transduction with a vector containing an antigen specific

TCR against the MART-1 antigen [9,10]. The introduction of

tumor antigen-specific cells in this instance resulted in successful

tumor regression in some treated individuals [9]. However, while

cells carrying the transgene in this study appeared to be long-lived,

extensive ex vivo manipulation resulted in intrinsic functional

defects [9]. In addition, these transduced cells also expressed

endogenous TCRs and the introduction of a second TCR bypasses

thymic selection and could result in auto-reactivity through cross-

pairing of TCR chains or circumventing peripheral tolerance.

Thus, the use of a gene therapy approach utilizing hematopoietic

stem cells (HSCs) that produces functional, naive CD8+ T cells

carrying a single desired antigen-specific TCR, could allow long-

term engraftment, continuous generation of new effector cells, and

a more efficient response through natural immune mechanisms.

Transgenic mice carrying murine TCR transgenes for a variety

of antigens have been developed and are a common tool in

examining cellular differentiation and function[11,12]. Yang and

Baltimore recently showed that cloned mouse TCRs introduced

into murine HSCs can differentiate into antigen-specific T cells

[13,14]. Investigators have demonstrated the expression of

introduced TCRs following differentiation of human progenitor

cells on mouse stromal cell lines expressing the Delta-like 1

molecule [15,16]. However, the resultant TCR-expressing cells in
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these studies did not undergo normal positive and negative

selection events that a developing T cell would in the human

thymus. Furthermore these studies did not address whether a

disease fighting TCR can direct human T cell differentiation in vivo

following genetic modification of human HSCs.

In the current study, we examined genetic HSC modification to

produce antigen-specific T cell immunity. To determine if

functional human CD8+ T cells expressing a transgenic antigen-

specific human TCR can be derived from genetically modified

human HSC, we utilized a human leukocyte antigen (HLA)-

A*0201 restricted TCR specific for the highly conserved HIV p17

gag peptide SLYNTVATL (SL9) derived from CD8+ T cells from

an infected individual. In addition, we utilized the chimeric severe

combined immunodeficient mouse/human (SCID-hu) system in

which mice are transplanted with human fetal thymus and liver

under the renal capsule, forming a conjoint human organ that

phenotypically and functionally recapitulates human thymopoiesis

within the mouse [17,18]. This provides the optimal environment

for the study of human T cell differentiation within a surrogate

host without having to directly involve human subjects. We and

others have shown that injection of exogenous, allogeneic CD34+
HSC progenitors into sublethally irradiated SCID-hu mice results

in engraftment and de novo differentiation of the exogenous cells

into mature T lineage cells [19,20]. We now demonstrate the

ability to effectively transduce HSCs with an HIV-specific TCR,

leading to the development of a large population of mature,

functional human T cells able to specifically kill cells presenting

viral peptide. This establishes a unique system to examine human

TCR transgenic HSC development and facilitates the use of

antigen-specific TCRs to enhance human T cell immunity and

allows the close examination of the mechanisms of human T cell

development and thymic selection.

Methods

Ethics Statement
Peripheral blood from HIV+ and HIV- individuals was

obtained at the University of California, Los Angeles in

accordance with UCLA Institutional Review Board (IRB)

approved protocols under written informed consent (using an

IRB-approved written consent form) by Dr. Yang and the UCLA

Center for AIDS Research Virology Laboratory and was

distributed for this study without personal identifying information.

Resulting molecularly cloned TCRs were synthesized based on

sequence information from these samples, and subsequent use did

not require additional IRB approvals. Human fetal tissue was

purchased from Advanced Biosciences Resources and was

obtained without identifying information and thus did not require

IRB approval for its use. All of the animal research described in

this manuscript was performed under approval of the UCLA

Animal Research Committee in accordance to all federal, state,

and local guidelines.

Cloning of the HIV-1 Gag Protein, SL9 Epitope-Specific
TCR

The TCR was initially isolated from the SL9-specific CTL clone

1.9, which was obtained under a UCLA IRB approved protocol,

using the 59 rapid amplification of cDNA ends (RACE) method

[21]. Using overlapping PCR, the cloned TCRa and TCRb were

then joined by a picornavirus-like 2A ‘‘self-cleaving’’ peptide. The

short 18 amino acid 2A sequence which separates the TCRa and

TCRb results in equimolar expression of the TCRa and TCRb
via a? ‘‘ribosomal skip’’ mechanism [22]. The TCRa-2A-TCRb
gene was cloned into the pCCL.PPT.hPGK.tcr.IRES.eGFP

lentiviral vector under control of the human phosphoglycerate

kinase promoter (hPGK), followed by an internal ribosomal entry

site (IRES) upstream of the GFP gene [5]. The 1.9 TCR sequence

was then synthetically codon optimized using sequence informa-

tion based on the above clone for maximum expression in human

cells and was re-inserted into the pCCL.PPT.hPGK.tcr.IRE-

S.eGFP lentiviral vector [23].

Lentiviral Vector Production
Infectious, replication incompetent lentivirus was produced

using the Invitrogen ViraPower Lentiviral Expression System with

293FT cells and the Lipofectamine 2000 reagent (Invitrogen,

Carlsbad, CA). Briefly, 293FT cells were co-transfected simulta-

neously with the TCR containing pCCL.PPT.hPGK.1.9.IRE-

S.eGFP plasmid, the pCMV-DR8.2-Dvpr packaging construct,

and the pCMV-VSV-G vesicular stomatitis virus glycoprotein

(VSV-G) expressing plasmid. Control eGFP expressing vectors

were derived from the pCCL.PPT.hPGK.eGFP construct (in place

of the TCR containing construct) in a similar manner.

Supernatant was harvested from transfected 293FT cells 24 hours

following transfection, filtered using a 0.22 mm sterile filter, and

concentrated by centrifugation using a Beckman SW32 rotor at

30,000 rpm. Pellets were resuspended in phosphate buffered saline

overnight at 4uC and frozen in aliquots at 280uC until used.

Titration of the vector stocks and specificity of the TCR was

performed on Jurkat T cells by limiting dilution and flow

cytometry for eGFP and SL9-specific tetramer staining. Alterna-

tively, the pCCL.PPT.hPGK.1803.IRES.eGFP plasmid [5] con-

taining the 1803 TCR was used in some experiments in place of

the 1.9-containing plasmid.

TCR-Containing Vector Transduction of CD8+ PBMC
CD8+ T cells were purified from fresh human PBMC using the

EasySep CD8+ T cell enrichment Kit (StemCell Technologies)

and were stimulated with anti-CD3 and irradiated allogeneic

PBMCs for 4 days. Cells were then transduced with the lentiviral

vector overnight and incubated for 2 more days. IFN-c production

was then measured by enzyme-linked immunospot (ELISPOT)

using IFN-c specific capture and detection antibodies (Pharmin-

gen)[24] following incubation with irradiated (3,500 rads), peptide-

coated (0.1 mg/ml) 174xCEM.T1 (T1) cells (a professional antigen

presenting cell line that express high levels of HLA-A*0201) cells

or non-peptide coated cells. SL9 (SLYNTVATL) peptide was

purchased from Anaspec Inc. Results were read by an Immuno-

Spot Analyzer (Cellular Technology Ltd.).

Isolation of CD34+ HSCs
Fresh human fetal liver was obtained by Advanced Biosciences

Resources Inc. or at local sties under appropriate UCLA internal

review board guidelines (Alameda, CA) and homogenized by

slicing the tissue into pieces with a scalpel and passing it into a

12 ml syringe fitted with a 16 gauge blunt needle several times.

The tissue was then digested with collagenase, hyaluronidase,

DNase in Iscoves Modified Dulbeccos Medium (IMDM) for 90

minutes at 37u. Cells were then underlayed by Ficoll and spun

24006g for 20 minutes and the interface was collected. Cells were

repeatedly washed and placed into culture overnight at a con-

centration of 46106 cell/ml of RPMI 10% FCS and 0.44 mg/ml

Piptazo (Piperacillin and Tazobactam). CD34+ cells were then

isolated utilizing direct human CD34+ cell isolation Kit (Miltenyi)

followed by magnetic activated cell sorting by an AutoMACS

(Miltenyi) apparatus. Purified cells were then immediately viably

frozen in 90% FCS, 10% DMSO and kept in liquid nitrogen

storage until use.

Engineering Antiviral Immunity
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Transduction of CD34+ HSCs
Purified CD34+ cells were thawed from liquid nitrogen storage,

washed and resuspended in 2% human serum albumin (HSA)

containing Yssel’s medium and placed into a 6-well plate coated

with 20 mg/ml retronectin (Takara Bio, Inc.) with the lentiviral

vector at a multiplicity of infection (MOI) of 1 overnight at 37uC.

Cells were then washed, placed in plain minimal essential medium,

and then injected into human thymic implants in SCID-hu mice.

To determine transduction efficiency, 16105 cells were removed

prior to injection and cultured in IMDM containing 20%FCS,

50 ng/ml of IL-3, IL-6, and SCF for 3 days. eGFP expression was

then assessed by flow cytometry.

SCID-hu Mice
Human fetal liver and thymus SCID-hu mice were constructed

as previously described [18,25]. Mice were irradiated with 300

rads from a colbalt-60 source to clear endogenous thymocytes

from transplanted human tissue prior to implantation of 16106

human HSCs per implant. To assess human tissue, mice were

surgically biopsied utilizing survival surgical techniques as

described [25].

Flow Cytometry
Cells were phenotypically analyzed using monoclonal antibodies

specific for human CD3, CD45, CD4, CD8 (Coulter) and CD27,

CD45RA, CCR7, and HLA-DR (eBioscience) conjugated to

phycoerythrin (PE), electron coupled dye (ECD), allophycocyanin,

PE-cychrome5 (PC5), or PE-cychrome 7 (PC7). Tetramer express-

ing cells were identified utilizing MHC Class I tetramer containing

the SL9 peptide conjugated to PE (Coulter). Cells were assessed

either by a Coulter FC500 instrument or a Becton Dickinson

LSR2 instrument and results were analyzed FlowJo software.

Measurement of Functional Transgenic SL-9 Specific TCR
Activity

To assess the ability of thymocytes containing the transgenic

TCR to express IFN-c in response to peptide specific stimulation,

following biopsy and homogenization of thymic tissue, cells were

placed in culture at a concentration of 16106/ml in the pre-

sence of irradiated (3,500 rads) human T1 cells pretreated with

0.1 mg/ml SL9 peptide and 20 units/ml of IL-2 in RPMI 10%

FCS. Cells were then examined for IFN-c production by

ELISPOT as described above.

CTL lytic ability was assessed by stimulating biopsied thymocytes

with 26106/ml irradiated B (Patient 1, HLA-A*0201+) cells pre-

coated with SL9 peptide (1.0 mg/ml) and 26106/ml irradiated

allogeneic PBMC for 1 week in the presence of 50 units/ml of IL-2

(Roche). A fraction of cells was removed and analyzed by

polychromatic flow cytometry. The remainder of cells were then

placed in a standard 51chromium release assay at an effector to

target cell ratio of 10:1 for 5 hours using irradiated (3,500 rads)

174xCEM.T2 (T2) cells (which are also HLA-A*0201+) coated with

SL9 peptide (1.0 mg/ml) as targets.

Results

Isolation and Cloning of HIV-Specific TCR
To test the feasibility of directed T cell development following

transduction of HSC with a human TCR, we utilized a human

leukocyte antigen (HLA)-A*0201 restricted TCR specific for the

highly conserved HIV p17 gag peptide SLYNTVATL (SL9)

derived from CD8+ T cells from an infected individual. To isolate

this TCR, peripheral blood mononuclear cells (PBMCs) from an

HIV infected individual were selected by culturing cells in the

presence of the SL9 peptide [26–28]. Full-length a and b TCR

genes from a CTL clone (termed 1.9) specific for SL9 were

amplified using reverse transcriptase polymerase chain reaction

(PCR). The sequence was then optimized for expression and

subsequently cloned into a lentiviral vector under the control of a

human phosphoglycerate kinase (hPGK) promoter element. The

unique TCR a and b genes, specific for viral antigen, were placed

into this vector separated with a 2A self-cleaving peptide (or ‘‘skip’’

peptide) where the two chains are expressed together with high

efficiency [29](Figure 1A). This vector further contains an internal

ribosomal entry site (IRES) to allow expression of the enhanced

green fluorescent protein (eGFP) marker gene. To initially assess

the antigen specificity and expression of the 1.9 TCR, we

transduced Jurkat T cells and observed efficient and linked

expression of the 1.9 TCR and eGFP (Figure 1B). To assess the

functional competence of this TCR to induce cytokine responses,

mature human peripheral blood mononuclear cell (PBMC)-

derived CD8+ T cells were transduced and stimulated with an

irradiated SL9 peptide-pulsed HLA-A*0201+ professional antigen

presenting cell line. This effectively induced IFN-c production and

demonstrates that the expression of this TCR in CD8+ T cells can

allow antigen-specific functional responses (Figure 1C). In all, this

demonstrates the isolation of a functional, SL9 reactive TCR and

provided the impetus towards further examination of transgenic

TCR expression in a hematopoietic differentiation system.

Differentiation of Human TCR Transgenic Cells In Vivo
To determine if functional antigen-specific T cells can be

derived from human TCR -transduced HSCs, CD34+ HSCs were

purified from fetal liver and transduced with the cloned anti-HIV

1.9 human TCR. Transduction efficiency was typically 60–80%

of CD34+ cells (data not shown). These cells (16106 HSCs per

mouse) were then injected directly into HLA-A*0201+ human

thymic implants in sub-lethally irradiated SCID-hu mice. The

irradiation was performed to deplete endogenous thymocytes to

clear space within the thymic tissue for the newly implanted cells.

Thymocytes were allowed to develop from transduced CD34+
HSCs following implantation into the human tissue and cells

containing the transgenic TCR were analyzed following biopsy of

the thymic tissue (Figure 2A). In the thymus, from CD34+ HSCs it

typically take 1–3 weeks to begin the development of immature

CD34-CD4+CD8+ thymocytes and an additional 2–4 weeks to

begin to see the appearance of mature CD34-CD4-CD8+ or

CD34-CD4+CD8- T cells. In these studies, within 4 weeks

following transplantation of the transduced hematopoietic pro-

genitor cells, a distinct population of immature CD4+CD8+
thymocytes expressing the transgenic SL9-specific TCR was

observed (Figure 2B). Interestingly, even at this early time point

mature CD4-CD8+ cells were beginning to emerge, indicating

that differentiation into HIV specific cells can occur relatively

rapidly following transplantation of TCR transduced cells. Within

7 weeks following implantation of 1.9 TCR transduced HSCs, a

substantial frequency of thymocytes expressed the transgenic TCR

and the majority of these cells were mature CD4-CD8+
thymocytes (Figure 2C) indicating that these cells were undergoing

appropriate lineage commitment. Importantly, we further ob-

served that these transgenic SL9-specific TCR-containing T cells

were found in the spleens of reconstituted mice (Figure 3A),

indicating that cells expressing the transgenic TCR can progress

through thymic differentiation and home to peripheral lymphoid

tissues. In subsequent studies, we also observed similar results

utilizing a different, previously characterized TCR (the 1803 clone

[5]) specific to the SL9 peptide, indicating that cells containing a

Engineering Antiviral Immunity
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different TCR derived from a different patient and using different

TCR alpha and beta genes differentiated into thymocytes in a

similar manner (data not shown).

For a hematopoietic cell to successfully become a mature,

functional antigen-specific CD8+ T cell, the TCR bearing cell

must undergo positive and negative selection in the thymus in the

context of specific HLA Class I molecules. In the absence of the

proper signal from the appropriate restricting molecule, the

developing T cell will fail to become a mature CD8+ T cell. To

examine the ability of these TCR transgenic cells to develop in the

presence or absence of the exact SL9 peptide restricted HLA

molecule (HLA-A*0201), we injected SL9-specific TCR-transduced

CD34+ cells into mice implanted either with HLA-A*0201+ or

HLA-A*0201- thymic tissue. Mice implanted with HLA-A*0201+
thymic tissue displayed differentiation of transduced HSCs into

mature CD4-CD8+ T cells that expressed the transgenic SL9

Figure 1. Cloning and functional expression of an HIV gag SL9 epitope specific TCR. (A). Diagram of the pCCL.PPT.hPGK.tcr1.9.IRES.eGFP
lentiviral vector expressing the SL9 specific TCR utilized to genetically manipulate CD34+ cells. LTR, long terminal repeat; hPGK, human
phosphoglycerate kinase promoter element; TCRa, alpha chain; 2A peptide, picornavirus 2A self cleaving peptide; TCRb, beta chain; IRES, internal
ribosomal entry site; eGFP, enhanced green fluorescent protein. (B). Transduced Jurkat T cells were analyzed by flow cytometry for expression eGFP
and SL9-specific TCR by SL9 tetramer staining 2 days following transduction with the TCR containing lentiviral vector. The numbers represent the
frequency of cells expressing the transgenic TCR and eGFP. (C). Purified CD8+ T cells were transduced with the lentiviral vector containing the SL9-
specific TCR and assessed by ELISPOT analysis for their ability to express IFN-c in response to peptide specific stimulation (left) or no peptide
treatment (right). The numbers indicate the average number of cells expressing IFN-c per 10,000 total cells (n = 7 total replicate cultures).
doi:10.1371/journal.pone.0008208.g001
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Figure 2. Genetic manipulation of HSCs and generation of thymocytes. (A). Schematic illustrating the isolation of CD34+ cells from fetal liver
by cell sorting (1), transduction of progenitor cells with lentiviral vector containing the SL9-specific TCR (2), and implantation of these cells in the
thymic tissue implanted in sub-lethally irradiated SCID-hu mice. Following 3–12 weeks to allow T cell development to occur from HSCs, TCR
expression was analyzed and functional assays performed (3). At four (B) and seven (C) weeks following implantation with TCR transduced HSCs,
human thymic tissue was biopsied and cells were analyzed by flow cytometry for cell size (forward scatter—denoted ‘‘Size’’) and SL9 specific tetramer
staining. Mock treated mice (top panels) and mice receiving TCR transduced cells (bottom panels) are indicated. The numbers on the left panels
illustrate total SL9 tetramer staining cells. SL9-tetramer+ cells were gated and the frequency of cells expressing CD4 and/or CD8 are provided in the
right panels.
doi:10.1371/journal.pone.0008208.g002
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Figure 3. Characterization of SL9-specific TCR transduced HSC development into T cells. (A) Mock treated mice (upper row) and mice
receiving HSCs transduced with the HIV SL9-specific TCR (lower row) were analyzed 7 weeks following transplantation for CD3 and SL9-specific TCR
expression by tetramer staining of cells from the thymus (left panels) or spleen (right panels). The frequency of CD3+ and SL9-tetramer+ cells is
provided and the values inside the parentheses correspond to the percentage of tetramer positive cells in the human T cell (CD3+) populations. (B)
Fetal liver derived CD34+ HSCs transduced with the SL9-TCR containing lentiviral vector were implanted into mice containing either HLA-A*0201+
thymic tissue (top panels) or into mice containing HLA-A*0201- thymic tissue (bottom panels) and the frequency of SL-9 tetramer+ cells assessed 6
weeks following implantation. Size (forward scatter) versus tetramer staining is presented in the left panels and the values inside the parentheses
correspond to the percentage of tetramer positive cells. Tetramer expressing cells in the indicated gate were assessed for CD4 and CD8 expression
(right panels) and the frequencies of cells expressing each marker are provided.
doi:10.1371/journal.pone.0008208.g003
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specific TCR whereas mice implanted with HLA-A*0201- thymic

tissue initially developed immature CD4dimCD8- and CD4+CD8+
thymocytes[30], but no mature CD4-CD8+ cells were observed

(Figure 3B). These results indicate that the appropriate restricting

elements of the recipient tissue are required for the proper

development of human transgenic antiviral specific TCR-contain-

ing cells into mature thymocytes and T cells. We noted development

of CD8+ tetramer+ cells in the thymic tissues derived from 6 out

of 7 HLA-A*0201+ fetal donors, which would express a variety of

other MHC Class I molecules. This suggests that the developing

cells that express this particular TCR, and are positively selected on

HLA-A*0201, survive the negative selection process in the context

of a wide array of other HLA molecules.

HSC-Derived Virus-Specific T Cells Are Functional and
Possess Antiviral Activity

To determine the functional capacity of the newly developed viral

antigen-specific TCR-containing T cells, thymic tissue from SCID-

hu mice receiving the SL9 specific TCR transduced HSCs was

biopsied 7 weeks after injection. Since these antigen-naı̈ve cells lack

functional activity prior to cellular activation, the naı̈ve cells were

stimulated with SL9 peptide-pulsed, irradiated HLA-A*0201+ cells.

Peptide-specific stimulation of naı̈ve, transgenic SL9-specific TCR

expressing cells resulted in the normal phenotypic differentiation

into cells possessing an effector phenotype [31,32](CD8+CD45RA-

CD27+CCR7-)(Figure 4). In addition, these previously naı̈ve, SL9-

antigen specific cells induced the expression of the CD4 molecule

following cellular activation, similar to that described by our

laboratory and others’ [33-37]. Following 1 week in culture, these

effector SL-9 specific T cells produced significant levels of IFN-c in

response to peptide-specific stimulation (Figure 5A). To assess the

cytolytic capacity of genetically engineered SL9-specific T cells,

SL9-specific TCR-transduced T cells were examined for their

ability to lyse peptide labeled HLA-A*0201+ target cells following

peptide-specific activation. These stimulated T cells significantly

lysed peptide-labeled target cells in an antigen-specific manner

(Figure 5B). Thus, thymocytes expressing the transgenic, SL9-

specific TCR are functional in their ability to differentiate into

effector T cells, release antiviral cytokines and kill antigen-

expressing target cells. This demonstrates that this system can be

utilized to closely examine human antigen-specific, naı̈ve cellular

responses.

Discussion

The development of vaccine strategies, particularly therapeutic

vaccine strategies, against many viruses that produce chronic

infections in humans has proven to be difficult. In HIV-1 infection,

the CD8+ T cell CTL response plays a crucial role in controlling

Figure 4. Phenotypic CD8+ T cell differentiation following SL-9 peptide-specific stimulation of transgenic TCR expressing
thymocytes. Thy/Liv implants from mice receiving transduced CD34+ cells were biopsied following development of mature TCR expressing cells
and isolated thymocytes cultured in the presence of irradiated feeder cells, an irradiated HLA-A*0201+ B cell line and without (top row) or with
(bottom row) the SL9 peptide for one week. Cells were removed and analyzed utilizing polychromatic flow cytometry for the indicated markers. Due
to down regulation of TCR following peptide-specific stimulation, lentiviral vector expressing cells were identified by expression of eGFP and were
gated and analyzed for CD4 versus CD8 expression (left panels). CD8 T cells were then examined using the indicated gate for expression of
differentiation markers (middle and right panels). Percentages indicate cells staining in each quadrant and the numbers in parenthesis indicate the
percentage of cells within the CD8+ gate.
doi:10.1371/journal.pone.0008208.g004
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viral replication in the infected individual [38,39]. Inevitably, the

CTL response fails and this loss is associated with an increase in

viral load and a more rapid progression to AIDS [40,41]. One

method of augmenting CTL responses is to expand autologous

antigen-specific CTLs ex vivo followed by the return of these cells

into the affected individual. This has been shown to be effective in

immunodeficient patients for the generation and enhancement of

immunity to infection and control with cytomegalovirus (CMV)

and Epstein-Barr virus (EBV)[42,43]. While autologous HIV-

specific CTLs placed in infected individuals have been shown to

migrate to sites in the body of viral replication and retain some

of their ability to respond to virally infected cells, this has not

been shown to be effective in treating HIV infected individuals

[5,44–46]. In these HIV infected individuals, these adoptively

transferred CTL persisted in the body for only a relatively short

period of time and did not have a significant impact on viral

replication[44–46]. These cells likely lack complete functional

competence and the ability to properly respond to antigen and

expand as a direct result of the effects of ongoing HIV infection and

CTL clonal exhaustion prior to and following ex vivo expansion. Ex

vivo expansion of these dysfunctional T cells is therefore insufficient

to improve the antiviral CTL response. Thus, an alternative strategy

to generate naı̈ve antigen specific CTLs that would reconstitute

immune function would be beneficial to controlling viral replication.

Therefore, augmenting these CTL responses with virus-specific

CTL could result in better immune control of viral replication and

delay or prevent disease progression.

Generation of antigen-specific T cells from hematopoietic

progenitor cells has the potential to generate long-term engraftment

of specific immune cells through two different mechanisms: 1) the

engraftment of hematopoietic stem cells and the production of

progeny cells for extended periods of time, 2) the expansion of antigen

reactive cells in the periphery and the differentiation of these cells into

long-term memory cells. Our results indicate that introduction of a

functional TCR into a hematopoietic progenitor cell can lead to the

efficient generation of antigen-specific T cells with cytotoxic capabi-

lities. This suggests that this approach could be useful clinically.

The ability of HIV to rapidly escape immune pressure would

mandate the need for several TCRs specific for multiple viral

epitopes. In the current studies, rather than seeing continuous

production of immature thymocytes, we observed an extended

wave of thymopoiesis culminating in the appearance of mature

CD8+ thymocytes. This lack of long-term engraftment may reflect

transduction of a more mature progenitor cell incapable of

continuous self-renewal. Alternatively, these results may reflect the

inability of these transduced stem cells to locate the correct

hematopoietic niche in the SCID-hu model. Consistent with either

of these mechanisms, we also observed transient reconstitution in

this model using HSCs derived from embryonic sources [47].

Nonetheless, our studies provide proof of principle that this

approach has strong merit.

Human stem cell gene therapy is a relatively new technology.

While its use clinically at the current time is limited to a subset of

diseases, its potential in treating multiple human diseases is immense.

A relatively new approach is to genetically manipulate hematopoietic

stem cells followed by re-infusion of these cells back into the patient.

Our previous SCID-hu studies demonstrated that in the context of

severe HIV-induced thymocyte depletion, human HSCs can

properly differentiate into normal mature thymocytes provided that

HIV replication is halted by antiretroviral therapy[48–50]. Gene

therapy trials have effectively demonstrated that human stem cells

can be transduced with a retroviral vector and subsequently form

mature human T cells in adult subjects [51]. The recent completion

of a large-scale phase 2 clinical gene therapy trial highlights the fact

that this type of treatment can be used as a conventional therapeutic

approach for people with HIV or a variety of diseases [52]. In all, our

data demonstrate that HSC transduction with a human viral

antigen-specific TCR can be utilized to generate antigen-specific

CTL. Our data strongly suggest that this strategy should be pursued

as an effective therapy to combat viral infection in humans.
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Figure 5. Functional responses of HIV-specific TCR transgenic T
cells. (A) Thymic tissues from 2 mice receiving SL9-specific TCR
transduced HSCs and 1 mock-treated mouse were biopsied 7 weeks
following introduction of HSCs and placed into culture with SL9 peptide
coated antigen presenting cells for 1 week to allow differentiation from
antigen naı̈ve to effector cells. Effector cells were then stimulated with
SL9 peptide or medium alone (no peptide) and IFN-c production was
measured by ELISPOT. (B) Cells from SCID-hu mice receiving SL9-specific
TCR transduced HSCs were obtained by biopsy following differentiation
into thymocytes and activated in culture in the presence of an
irradiated SL9-peptide coated HLA-A*0201+ B cell line and allogeneic
PBMC feeder cells. Cells from mouse numbers Y09-13 and Y17-7 were
then placed in a standard 51chromium release assay utilizing SL9
peptide coated T2 cells or untreated T2 cells as a control. Graph shows
the specific lytic activity of cells at an effector to target cell ratio of 10:1.
doi:10.1371/journal.pone.0008208.g005
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