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Abstract

Word frequencies in natural language follow a Zipfian dis-
tribution. Artificial language experiments that are meant to
simulate language acquisition generally use uniform word fre-
quency distributions, however. In the present study we exam-
ine whether a Zipfian frequency distribution influences adult
learners’ word segmentation performance. Using two exper-
imental paradigms (a forced choice task and an orthographic
segmentation task), we show that human statistical learning
abilities are robust enough to identify words from exposures
with widely varying frequency distributions. Additionally, we
report a facilitatory effect of Zipfian distributions on word seg-
mentation performance in the orthographic segmentation task,
both in segmenting trained material and in generalization to
novel material. Zipfian distributions increase the chances for
learners to apply their knowledge in processing a new speech
stream.
Keywords: Word segmentation; statistical learning; Zipfian
frequency distributions.

Introduction
Humans and other animals extract information from the en-
vironment and represent it so that they can later use these
representations for effective recognition and inference. One
striking example of this phenomenon is that adults, children,
and even members of other species can utilize statistical infor-
mation to segment an unbroken speech stream into individual
words after a short, ambiguous exposure (Saffran, Aslin, &
Newport, 1996; Saffran, Newport, & Aslin, 1996; Aslin, Saf-
fran, & Newport, 1998; Hauser, Newport, & Aslin, 2001).
In a now-classic segmentation paradigm, Saffran, Newport,
and Aslin (1996) played adults a continuous stream of synthe-
sized speech composed of uniformly-concatenated trisyllabic
words. After exposure to this stream, participants were able
to distinguish the original words from “part-words”—chunks
that had occurred with lower frequency and lower statisti-
cal consistency. This work, combined with demonstrations
with infants, suggested that statistical segmentation could be
a viable method for early language learners to learn the word
forms of their native language.

While the results of these experiments are impressive, the
ways in which these findings can be applied to understand
natural language learning are still unclear. Recent research
has begun to close this gap. The outputs of this statistical
segmentation process are now known to be good targets for
word-meaning mapping (Graf Estes, Evans, Alibali, & Saf-
fran, 2007), and experiments with natural language sample
suggest that the processes observed in artificial language ex-
periments generalize to highly-controlled natural language
samples (Pelucchi, Hay, & Saffran, 2009). In addition, sta-
tistical segmentation has been shown robust to variation in

sentence and word lengths (Frank, Goldwater, Griffiths, &
Tenenbaum, 2010). Nevertheless, there are many links be-
tween statistical segmentation and natural language learning
that still have not been made.

One key difference between standard segmentation
paradigms and natural language is the distribution of frequen-
cies. The empirical distribution of lexical items in natural
language follows a Zipfian distribution (Zipf, 1965), in which
relatively few words are used extensively (“the”) while most
words occur only rarely (“toaster”). In particular, the absolute
frequency of a word tends to be approximately inversely pro-
portional to its rank frequency. While Zipfian distributions
are ubiquitous across natural language, their consequences
for learning are only beginning to be explored (Goldwater,
Griffiths, & Johnson, 2006). The current paper investigates
the consequences of Zipfian frequency distributions for sta-
tistical word segmentation.

Saffran, Newport, and Aslin (1996) hypothesized that the
mechanism underlying statistical word segmentation was the
computation of syllable-syllable transitions. In a uniform dis-
tribution, nearly every word follows every other word, so
these transition matrices are quite well-populated, but in a
Zipfian language, they are very sparse. Some combinations of
frequent words will have high transition probability between
them (especially if they co-occur together frequently). If syl-
lables are used in multiple words, the within-word transition
probabilities for low-frequency words could be considerably
lower than the between-word transition probability for high
frequency words. This factor may have led to the low perfor-
mance of transition-based models in computational compar-
isons (Yang, 2004; Brent, 1999). Thus, the first question we
ask in the current study is whether human statistical learning
abilities can succeed in segmenting Zipfian-distributed input.

Examining the problem from another side, however, a Zip-
fian distribution might actually provide more information for
segmentation. Bannard and Lieven (2009) suggest that repet-
itive use of restricted types of words and word combinations
in input are a strong predictor of the order of acquisition. In
addition, six-month-olds can already exploit highly familiar
words to segment and recognize adjoining unfamiliar words
from fluent speech (Bortfeld, Morgan, Golinkoff, & Rathbun,
2005). Thus, our second question is whether (and under what
conditions) Zipfian input could facilitate word segmentation.

To address these two questions, we compared segmen-
tation performance in uniform and Zipfian contexts across
three different large-scale web-based segmentation experi-
ments. Since Frank, Arnon, Tily, and Goldwater (2010) pro-
vided evidence that crowd-sourcing platforms reliably repli-
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Figure 1: Word frequencies in uniform (top) and Zipfian con-
ditions of Experiment 1.

cate lab-based experiments, we use this method to gather data
across a wide range of experimental conditions. Experiment
1 tests participants in a standard 2-alternative forced-choice
(2AFC) paradigm and manipulates the number of tokens in
the languages used. Experiments 2 and 3 use an orthographic
segmentation task and ask whether training on and testing on
Zipfian-distributed materials lead to an advantage in segment-
ing previously heard and novel words.

Our results show that Zipfian distributions neither help
nor harm segmentation performance in a traditional 2AFC
paradigm (Experiment 1). In the orthographic paradigm,
however, the Zipfian word frequency benefitted learners by
providing them with more chances to segment familiar words
(Experiment 2), which in turn helped to individuate neighbor-
ing words in the speech stream (Experiment 3). These data
suggest that Zipfian frequency distributions have a scaffold-
ing effect on segmentation that manifests at the stage where
learners use acquired knowledge to segment new sentences.

Experiment 1
In Experiment 1, we use 2AFC test trials where participants
are asked to distinguish a word from a part-word to test
whether adult learners can learn words from input following
uniform and Zipfian distributions. One additional novel fea-
ture of this experiment is that we vary the number of word
types (distinct word forms) in the experiment from 6 all the
way to 36, far higher than previously tested (Frank, Gold-
water, et al., 2010). Thus, a subsidiary question is whether
participants are able to identify words at above-chance levels
in these more challenging environments.

Methods
Participants We posted 259 separate HIT (Human Intelli-
gence Taks: experimental tasks for participants to work on)
on Amazon’s Mechanical Turk. We received 246 HITs from
distinct individuals (a mean of 30 for each token frequency
and distribution condition).

Stimuli We constructed 8 language conditions by control-
ling patterns of frequency distribution (uniform vs. Zipfian)
and the numbers of word types contained in lexicon (6, 12,
24, 36 types). Within each language condition, we created
16 language variants with different phonetic material. This
diversity was necessary to ensure that results did not include
spurious phonological effects.

Words were created by randomly concatenating 2, 3, or
4 syllables (word lengths were evenly distributed across
each language). Stimuli were synthesized using MBROLA
(Dutoit, Pagel, Pierret, Bataille, & Van Der Vrecken, 1996) at
a constant pitch of 100Hz with 225ms vowels and 25ms cos-
nonants. Each syllable was used only once. Sentences were
generated by randomly concatenating words into strings of
four words. The total number of word tokens was 300 and
the number of sentences was 75 in all the languages. The
token frequencies of words in each language were either dis-
tributed uniformly according to the total type frequency (e.g.
50 tokens each for a language with 6 word types) or given
a Zipfian distribution such that frequency was inversely pro-
portional to rank ( f ∝ 1/r). Frequency distributions for each
language are shown in Figure 1.

For the test phase, “part-words” were created by concate-
nating the first syllable of each word with the remaining syl-
lable of another word. These part-words were used as dis-
tractors which appeared in the training input with lower fre-
quency than the target words.

Procedure Before the training phase began, participants
were instructed to listen to a simple English word and type it
in to ensure the sound is properly played and perceived. Par-
ticipants then moved to the training phase, where they were
instructed to listen to and learn a made-up language which
they would later be tested on. To ensure compliance with
the listening task for the duration of the training phase sub-
jects needed to click a button marked next to proceed though
the training sentences. In the test phase of the 2AFC condi-
tion, participants heard 24 pairs of words consisting of a tar-
get word and a length matched “part-word.” After listening to
each word once, they clicked a button to indicate which one
sounded more familiar (or “word-like”) given the language
they had learned.

Results and Discussion
Figure 2 illustrates accuracy of responses in the 4 types of
languages in the each of the uniform and Zipfian distribution
conditions. There was not a strong numerical effect of distri-
bution condition. Replicating previous results (Frank, Gold-
water, et al., 2010), performance decreased as the number
of types increased, but participants performed slightly above
chance even in the most difficult 36 type condition.

Our analysis used mixed effects logistic regression
(Gelman & Hill, 2006) fit to the entire dataset. This model at-
tempted to predict performance on individual trials; we used
model comparison to find the appropriate predictors. Our first
model included effects of distribution and number of types;
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Figure 2: Average proportion correct trials by number of word types in the uniform and Zipfian distribution conditions. Dots
represent individual participants and are stacked to avoid overplotting. Solid line represents means, dashed lines represent
standard errors, and the dotted line represents chance (50%).

we found no effect of distribution (β = −.226, p = .12) but
a highly significant effect of number of types (β = −.021,
p < .0001). Further exploration revealed that better model fit
was given by the logarithm of number of types as a predic-
tor rather than raw number of types (χ2 = 9.49, p < .0001).
Thus, the log number of types was the only significant pre-
dictor of performance in this model.

In our second set of models, we introduced as additional
trial-level predictors the frequency of the target and distrac-
tors for each trial (calculated from the input corpus for each
language). In this model, we found that once these factors
were added, there was no gain in model fit from log number
of types (χ2(1) = .11, p = .74). Instead, the only significant
effects were a positive coefficient on log tokens (the more
times a word is heard, the better performance gets: β = .35,
p< .0001), a negative coefficient on log distractor tokens (the
more times a distractor is heard in the corpus, the worse per-
formance gets: β = −.51, p = .003) and a positive interac-
tion of the two (bad distractors are worse if the target is low
frequency: β = .14, p = .003). The general relation here is
plotted in Figure 3, showing mean proportion of accuracy ac-
cording to the input frequency of the target words. In this final
model, there was still no effect of distribution conditions (i.e.,
uniform vs. Zipf) (β = .05, p = .49).

To summarize: participants represented target words
equally well after being exposed to languages with radically
different frequency distributions and contingency statistics.
The only factors that mattered in 2AFC test trials were the log
frequency of targets and distractors, independent of what con-
text they were heard in. In a Zipfian condition, some words
have significantly higher and lower frequency than those in

a uniform condition, which could create a skewed distribu-
tion of transition probabilities between lexical items. How-
ever, our results indicate that 2AFC accuracy for a word is
predicted based predominantly on the (uni-gram) word fre-
quency in input, not on the distribution of the context.

Experiment 2
Experiment 2 tests our hypothesis about possible facilita-
tive effect of a Zipfian word distribution on segmentation of
a speech stream via a different method. Because a 2AFC
asks only about a comparison between a particular target-
distractor pair, we hypothesized that effects of distribution
might be more obvious in a paradigm where words were pre-
sented in context during testing. To test this hypothesis, we
use an orthographic segmentation task developed by Frank,
Goldwater, et al. (2010). In this task, participants were trained
on either a Zipfian or a uniform distributions and later asked
to give explicit judgments as to where in a sentence they
would place word boundaries. Based on the finding in Exper-
iment 1, we hypothesized that ease of identification of words
would be predicted by their input frequencies. This would
benefit those who are exposed to a Zipfian distribution during
test because a large portion of a sentence consists of words
that were highly frequent in the input.

Methods
Participants 281 separate HITs were posted on Mechani-
cal Turk. We received 250 complete HITs from distinct indi-
viduals. Participants were paid $0.50 for participation. Be-
cause of the increased complexity of the manual segmenta-
tion task, we applied an incentive payment system to ensure
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Figure 3: Probability of a correct 2AFC answer plotted by
binned token frequency. Filled circles indicate uniform con-
dition, while open circles indicate Zipfian condition. Dashed
line shows chance, while the dotted and alternating lines give
best fit lines for performance as a function of log token fre-
quency.

participants’ attention to the task. They were told they would
receive an additional $1.00 if they scored in the top quartile.
We excluded 1 participant for F-scores of exactly 0.

Stimuli The process of generating stimuli was nearly iden-
tical to the 6 word condition in Experiment 1. Six words were
generated following either a uniform or Zipfian distribution.
Six hundred word tokens were presented in 150 sentences in
the training phase. For the test phase, 10 additional sentences
were created according to one of the two frequency distri-
butions; the same lexicon was used to generate the training
corpus. To examine the effects of frequency distribution at
the different stages of segmentation, we applied a 2x2 facto-
rial design. Subjects were divided into four groups according
to the frequency distributions at the training phase (uniform
vs. Zipfian training) and at the test phase (uniform vs. Zip-
fian test). In each case, sentences were generated by sampling
words from either a uniform frequency distribution or one that
was generated via the same classic Zipfian formulation given
above ( f ∝ 1/r).

Procedure The training section of this experiment was
identical to that of Experiment 1 (though twice as long; ap-
proximately 9 minutes). In the test phase, participants were
asked to click on the breaks between syllables to indicate
word boundaries. They were given one practice trial on an
English sentence presented in the same format and prevented
from continuing until they segment it correctly. At test, sen-
tences were presented visually, with each syllable separated
by a toggleable button. All the syllables were spelled with
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Figure 4: Token F-scores (a measure of segmentation per-
formance for individual words) plotted for each condition of
Experiment 2. Points represent individual participants, bars
show means, and dashed lines show a permutation baseline.

two letters representing a consonant and a vowel respectively
(e.g., ka, pi, ta). Each sentence was also played back at the
beginning of the trial.

Results and Discussion
To evaluate participants’ segmentation performance, we re-
lied on precision and recall, and their harmonic mean, F-
score. These same measures are used in computational stud-
ies of segmentation and in previous work (Goldwater, Grif-
fiths, & Johnson, 2009; Brent, 1999). We computed preci-
sion and recall for both boundaries and for word tokens.1 To-
ken F-scores in each condition are plotted in Figure 4. As
in Frank, Arnon, et al. (2010), we calculated an empirical
baseline for each measure via permutation. We repeatedly
shuffled boundary placement responses for each sentence and
computed the same measures (precision, recall, and F-score).
The mean values of baseline token F-scores in each condition
are indicated as dashed lines in Figure 4.

Because participant mean F-scores were normally dis-
tributed but trial-level F-scores were not, and because we had
no trial-level predictors in this experiment, we used a sim-
ple linear model to predict participants’ mean token F-scores.
We found a reliable main effect of the test condition (β = .10,
p < .02) and no significant effect of the training condition
(β = .03, p = .4) or interaction (β = .0005, p = .9). The
boundary scores exhibited the same patterns and the same
pattern of statistical significance (see Table 1 for means):

1In our example sentence (“indiangorrillaseatbananas”), we
compute these measures for a participant who gave the segmenta-
tion “indian|gorillas|eatbana|nas.” Computing word boundaries, the
participant would have 2 hits, 1 miss, and 1 false alarm, leading to
precision of .66 (hits / hits + false alarms), and recall of .66 (hits /
hits + misses), for an F-score of .66. On the other hand, for word
tokens, the participant would have 2 hits (“indian” and “gorillas”),
2 misses (“eat” and “bananas”) and 2 false alarms (“eatbana” and
“nas”), for prevision of .5, recall of .5, and F-score of .5.
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Table 1: Mean token F-scores and boundary F-scores for
overall segmentation performance in Experiment 2.

Input Test Token F Boundary F
Uniform Uniform 0.39 0.58

Zipf 0.49 0.65
Zipf Uniform 0.42 0.61

Zipf 0.53 0.67

main effect of the test (β = .07, p = .04) and no effect of
the training (β = .02, p = .4) and the interaction (β =−.009,
p = .85).

The critical finding in this experiment is that even when
participants were trained with Zipfian materials, where some
words were significantly rarer compared to the words in uni-
form distribution, people still performed better if they had
been tested on Zipfian-distributed items. What remains un-
clear is whether the high concentration of familiar items in
the Zipfian test condition helped the learners find less fre-
quent items. Due to the small number of word types in Ex-
periment 2, even the low frequency items were still heard 40
times. Thus, in Experiment 3 we test the hypothesis that Zip-
fian contexts support better segmentation of truly novel ma-
terial.

Experiment 3

Experiment 3 replicated Experiment 2, but for each test sen-
tence, we added a single novel item. If identification of fa-
miliar words improves segmentation accuracy of adjoining
words, we would expect better identification of novel words
when participants were both trained and tested using Zipfian
materials.

Methods

Participants 158 separate HITs were posted on Amazon’s
Mechanical Turk. We received 121 complete HITs from dis-
tinct individuals. Participants were paid $0.50 for their partic-
ipation and we again added bonus payments for participants
in the top quartile.
Stimuli Sentences for training phase were created identi-
cally to Experiment 2. At test, we generated 10 new words of
varying length (2, 3, and 4 syllables) based on syllables that
appeared in the training corpus. To ensure each syllable was
used only once in the lexicon despite the enlarged lexicon (6
training items + 10 novel test items), an additional vowel was
added to the phonemic inventory. We added one new word
in a sentence-internal position in each test sentence. With the
additional word, there were 5 test sentences of length 4 and 5
test sentences of length 5.
Procedures Procedures were identical to Experiment 2.
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Figure 5: Proportion correct for the identification of new
words in Experiment 3; plotting conventions are as in Figure
4.

Results and Discussion
Token and boundary F-scores for overall segmentation perfor-
mance are shown in Table 2. We again fit linear models to the
token and boundary F-score data. In token F-score, we again
found the main effect of test condition (β = .13, p = .005),
and there was still no effect of the training (β = .08, p = .07)
or an interaction term between them, though there was a neg-
ative coefficient value, indicating some sub-additivity (β =
−.07, p = .29). The test effect (β = .089, p = .03) was still
significant in boundary F-score data and there was an effect
of the training (β = .10, p = .02), but no significant interac-
tion, though the coefficient was again negative (β = −.047,
p = .42).

We next analysed generalization data: we coded each of
the ten generalization trials (one novel word per sentence) as
a binary variable: 1 if the word was segmented correctly, 0
otherwise. Participant means are plotted in Figure 5. We then
used a mixed logistic model to predict this variable on the
basis of training and test condition, including a random ef-
fect of participant. (We chose a mixed model here in order to
avoid the issue of computing a linear regression over a non-
normally distributed DV). As in the overall test (and Experi-
ment 2), we found main effects of training (β = .61, p < .02)
and test (β= .57, p= .03), with a negative but non-significant
interaction term (β =−.52, p = .15).

To corroborate the effects of neighboring items, another
mixed logistic regression model was constructed where all the
words in the test sentences were coded as a binary variable: 1
if the word was segmented correctly, 0 otherwise. Log input
frequency of the preceding word was a significant predictor
of correct segmentation of the current word (β = .07, p <
.02), along with other factors like input frequency (β = .12,
p < .01) and length (β =−1.03, p < .01) of the target word.
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Table 2: Mean token F-scores and boundary F-scores for
overall segmentation performance in Experiment 3.

Input Test Token F Boundary F
Uniform Uniform 0.26 0.47

Zipf 0.39 0.56
Zipf Uniform 0.35 0.57

Zipf 0.41 0.61

On the other hand, log input frequency of the following word
did not show such an effect (β = .04, p = .2). These results
suggest that participants generally moved from left to right to
segment a sentence into words incrementally.

To summarize: Experiment 3 replicates the findings from
Experiment 2 and highlights a benefit of segmentation within
a Zipfian language: if a learner hears a novel word, that word
is much more likely to be flanked by known words.

General Discussion
The results of three experiments indicate that a Zipfian distri-
bution of word frequency supports statistical word segmen-
tation by scaffolding learners’ active use of acquired knowl-
edge. In Experiment 1, we found that learning performance
in a 2AFC task was neither helped nor hurt by a Zipfian fre-
quency distribution. The only factor that predicted learning
was a word’s log frequency.

In contrast, in Experiments 2 and 3, when target words
were presented in a sentential context in our orthographic seg-
mentation paradigm, we saw reliable effects of Zipfian testing
materials. Crucially, regardless of whether participants were
trained on a Zipfian or uniform distribution, they performed
better at test when they had received a repetitive exposure to a
few items in the test contexts. We also found that the reliable
identification of high frequency items effectively restricted
hypotheses about novel words at test (Experiment 3). In other
words, correctly setting boundaries around known words pro-
vide extra leverage in segmenting the entire sentence. In the
word/part-word comparison paradigms that have traditionally
been used to evaluate segmentation accuracy, this benefit was
absent.

Our results provide evidence that the frequency structure
of natural language input provides a natural scaffolding for
statistical word segmentation. We hope that future research
continues to investigate aspects of artificial languages in order
to explore the interaction of human cognition and the natural
language learning environment.
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