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Abstract. The Community Earth System Model (CESM1)

CAM4-chem has been used to perform the Chemistry Cli-

mate Model Initiative (CCMI) reference and sensitivity sim-

ulations. In this model, the Community Atmospheric Model

version 4 (CAM4) is fully coupled to tropospheric and strato-

spheric chemistry. Details and specifics of each configu-

ration, including new developments and improvements are

described. CESM1 CAM4-chem is a low-top model that

reaches up to approximately 40 km and uses a horizontal

resolution of 1.9◦ latitude and 2.5◦ longitude. For the speci-

fied dynamics experiments, the model is nudged to Modern-

Era Retrospective Analysis for Research and Applications

(MERRA) reanalysis. We summarize the performance of the

three reference simulations suggested by CCMI, with a fo-

cus on the last 15 years of the simulation when most ob-

servations are available. Comparisons with selected data sets

are employed to demonstrate the general performance of the

model. We highlight new data sets that are suited for multi-

model evaluation studies. Most important improvements of

the model are the treatment of stratospheric aerosols and

the corresponding adjustments for radiation and optics, the

updated chemistry scheme including improved polar chem-

istry and stratospheric dynamics and improved dry deposi-

tion rates. These updates lead to a very good representa-

tion of tropospheric ozone within 20 % of values from avail-

able observations for most regions. In particular, the trend

and magnitude of surface ozone is much improved com-

pared to earlier versions of the model. Furthermore, strato-

spheric column ozone of the Southern Hemisphere in winter

and spring is reasonably well represented. All experiments

still underestimate CO most significantly in Northern Hemi-

sphere spring and show a significant underestimation of hy-

drocarbons based on surface observations.

1 Introduction

The Chemistry Climate Model Initiative (CCMI) coordi-

nates evaluation and modeling activities for both tropo-

spheric and stratospheric global chemistry–climate models.

The CCMI-1 model experiments include three reference and

several sensitivity experiments to evaluate the performance

of chemistry–climate models in the troposphere and strato-

sphere for past and present conditions between 1960 and

2010 (REFC1 and REFC1SD), and to identify future cli-

mate trends between 1960 and 2100 (REFC2) (Eyring et al.,

2013). The REFC1SD simulation differs from the REFC1

simulation in that the dynamics are specified from reanaly-

sis. Comprehensive tropospheric and stratospheric chemistry

has been integrated into the Community Atmospheric Model

version 4 (CAM4-chem) of the Community Earth System

Model (CESM1) and shows a reasonable representation

of present-day atmospheric composition in the troposphere

(Lamarque et al., 2012; Tilmes et al., 2015) and stratosphere
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(Lamarque et al., 2010). This model is therefore well suited

to participate in the CCMI model intercomparison project.

The purpose of this paper is to summarize the CESM1

CAM4-chem model configurations that were used to perform

the reference CCMI model experiments (Sect. 2) including

physics, dynamics, the chemical mechanism and aerosol de-

scription, as well as a summary of newly integrated diagnos-

tics. We also describe issues that have been identified after

the simulations were performed and their likely impacts. In

addition, we summarize the global performance of the model

in Sect. 3, and evaluate selected diagnostics based on obser-

vational data sets in Sect. 4. We employ existing and new data

sets to evaluate the general performance of the model. More

in-depth analysis and evaluations will follow in multi-model

comparison studies. Improvements in comparison to earlier

versions of the model are discussed in the Conclusions.

2 Model description

CESM is a fully coupled Earth System model, which in-

cludes atmosphere, land, ocean and sea-ice components. All

CCMI simulations are carried out with the same model code

that is based on CESM version 1.1.1 (CESM1) (Neale et al.,

2013), with modifications discussed below. The configura-

tion of the model used here fully couples the Community At-

mosphere Model version 4 (CAM4), the Community Land

model version 4.0 (CLM4.0), the Parallel Ocean Program

version 2 (POP2) and the Los Alamos sea ice model (CICE

version 4). The land model was run without an interactive

carbon or nitrogen cycle and only the atmospheric and land

components are coupled to the chemistry. The climatological

present-day land cover is used for all simulations.

2.1 The atmosphere model

Detailed information about the physics of the atmosphere

model used here are described in Neale et al. (2013) and

Richter and Rasch (2008), and also summarized in Lamarque

et al. (2012, and references therein). In summary, deep con-

vection is treated by Zhang and McFarlanle (1995) with im-

provements in the convective momentum transport (Richter

and Rasch, 2008), which improved surface winds, stresses

and tropical convection. At the same time, an entraining

plume was added to the convection parameterization, which

together with the momentum transport improved the repre-

sentation of El Niño–Southern Oscillation (ENSO) signifi-

cantly (Neale et al., 2008). The photolysis calculation uses

a look-up table between 200 and 750 nm and online calcula-

tions for wavelengths < 200 nm. Only changes in the ozone

column, but not in the aerosol burden, impact photolysis

rates. Attenuation of the spectral irradiance above the model

top is calculated using the approach of Kinnison et al. (2007)

and Lamarque et al. (2012).

Processes in the planetary boundary layer are represented

using the Holtslag and Boville (1993) parameterization. Wet

deposition of gas and aerosol compounds is based on Neu

and Prather (2012), as described in Lamarque et al. (2012).

In this version of CAM4-chem all aerosols in the cloudy

fraction of the grid cell are assumed to reside within cloud

droplets and are removed in proportion to the cloud water re-

moval rate. Aerosols directly impact the radiation and chem-

istry, but do not change the radiative properties of clouds (i.e.,

no representation of the aerosol indirect effects is included).

Lightning NOx is parameterized following Price and

Vaughan (1993) and Price et al. (1997). The global amount

of produced lightning NOx is scaled differently for the spec-

ified dynamics (SD) and the free-running (FR) experiments

due to differences in the meteorology to ensure values of ap-

proximately 3–5 Tg N year−1 for present-day conditions.

2.1.1 Model grid

For all CCMI reference simulations, CESM1 CAM4-chem

uses a horizontal grid with a resolution of 1.9◦× 2.5◦ (lat-

itude by longitude), and uses the finite volume dynami-

cal core. The top of the model is located at 3 hPa (about

40 km). The vertical coordinate is sigma (hybrid terrain-

following pressure) in the troposphere, switching over to iso-

baric at pressure levels less than 100 hPa; the vertical res-

olution of the model depends on the configuration of the

experiment. The atmosphere model, CAM4, makes use of

two different configurations, the FR (with 26 vertical levels)

and the SD(with 56 vertical levels adopted from the analy-

sis fields); see Lamarque et al. (2012). For the SD config-

uration, internally derived meteorological fields are nudged

every time step of 30 min by 1 % towards reanalysis fields

(equivalent to a 50 h Newtonian relaxation timescale for

nudging) from Modern-Era Retrospective Analysis for Re-

search and Applications (MERRA) reanalysis (http://gmao.

gsfc.nasa.gov/merra/) (Rienecker et al., 2011). Nudged me-

teorological fields include wind components, temperatures,

surface pressure, surface stress, latent and sensible heat flux.

The MERRA reanalysis fields are interpolated to the hori-

zontal resolution of the model prior to running the simula-

tion. The MERRA surface geopotential height is used for the

SD simulations to be consistent with the reanalysis fields.

2.1.2 Quasi-Biennial Oscillation

The SD configuration of the model incorporates the observed

quasi-biennial oscillation (QBO), which is present in the me-

teorological analysis fields. The limited vertical resolution

of the FR model configurations does not allow for the gen-

eration of an internal QBO in CAM4-chem. Therefore, for

the FR CCMI experiments, REFC1 and REFC2, the QBO

is imposed in the model by relaxing equatorial zonal winds

between 90 to 3 hPa to the observed interannual variability,

following the approach by Matthes et al. (2010). Here, we
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vary the QBO phase between eastward and westward phase

using an approximate 28-month period, similar to what was

done by Marsh et al. (2013).

2.1.3 Improved gravity wave representation

The representation of sub-grid-scale gravity waves (GW) in

CAM was formerly limited to orographic gravity waves us-

ing the parameterization adapted from McFarlane (1987).

In the present simulations, the parameterizations of non-

orographic gravity waves generated by convection (Beres

et al., 2005) and fronts (Richter et al., 2010), which were

developed for the Whole Atmosphere Community Climate

Model (WACCM), are also included.

In addition, we have added another gravity wave mod-

ule to represent the waves with large horizontal wavelengths

that are often observed in the stratosphere (e.g., Zink and

Vincent, 2001). The new GW module is adopted from the

inertia-gravity wave (IGW) parameterization developed by

Xue et al. (2012) for an interactive QBO. The formulation

includes the impact of the Coriolis force on gravity wave

propagation and breaking. Rather than applying it in the

equatorial region, as done by Xue et al. (2012), we use a

more general mechanism for determining sources; gravity

waves are triggered by the same frontal threshold used for

the mesoscale gravity waves (Richter et al., 2010). This has

the impact of shifting the bulk of the waves from the tropics

to middle and high latitudes. In the current implementation,

gravity waves have a narrow phase speed spectrum (−20 to

20 m s−1) and long horizontal wavelength (1000 km). The

momentum forcing associated with this module particularly

impacts the winter stratosphere. In the Southern Hemisphere

(SH), it enhances downwelling and increases the winter

stratospheric temperature, which in previous simulations was

substantially colder than observed.

However, it was found, that the version of the IGW param-

eterization used for the performed experiments has a narrow

IGW spectrum centered on zero phase velocity instead of be-

ing centered on the speed of the background wind at the GW

launch level, as in the standard GW parameterization. Even

with this shortcoming, the model produces a much improved

temperature evolution in the stratosphere, in particular in the

SH high latitudes compared to earlier versions. This results in

a well-resolved ozone hole in winter and spring over Antarc-

tica. No significant changes are expected from a corrected

IGW parameterization for the troposphere.

2.1.4 Tropospheric aerosols

CAM4-chem runs with the bulk aerosol model (BAM),

which simulates the distribution of externally mixed sulfate,

black carbon (BC), primary organic carbon (OC), sea-salt

and dust, as described in Lamarque et al. (2012). The dust

emissions are calibrated so that the global dust aerosol opti-

cal depth (AOD) is about 0.025 to 0.030 (Mahowald et al.,

2006). The distribution of sea-salt and dust are described

using four size bins. In CAM4-chem, the formation of sec-

ondary organic aerosols (SOA) is coupled to the chemistry

and biogenic emissions. SOA are derived using the two-

product model approach using laboratory determined yields

for SOA formation from monoterpene, isoprene and aromatic

photooxidation, as described in Heald et al. (2008). The ag-

ing process of BC and OC from hydrophobic to hydrophilic

is included through a specified conversion timescale. For

all aerosol species, the size distributions are specified as in

Lamarque et al. (2012). Aerosols interact with the gas-phase

chemistry through heterogeneous reactions that depend on

the available surface area density (SAD), as discussed below.

For the tropospheric SAD calculation, sulfate, hydrophilic

black carbon, primary organic carbon and nitrates are in-

cluded, where SOA has not been included. This may lead

to a significant underestimation of tropospheric SAD in the

experiments.

2.1.5 Representation of aerosols in the stratosphere

Aerosol mass, heating rates and SAD are revised in this ver-

sion compared to earlier configurations. Most significantly,

the model uses a new stratospheric aerosol and SAD data

set, derived based on observations, to force models partici-

pating in CCMI (Eyring et al., 2013). In addition, in order to

fully utilize the aerosol size information provided by the new

model input file, the optics in the radiative transfer code as-

sociated with CAM4 (i.e., CAMRT) (Neale et al., 2010) have

been modified to include a lookup table for aerosol effective

radius in the shortwave radiation scheme. The new descrip-

tion leads to an updated representation of volcanic heating for

REFC1 and REFC2, whereas in REFC1SD volcanic heating

is included through the nudged temperature fields. See Neely

et al. (2015) for a full description of changes to the strato-

spheric aerosol scheme. Tropospheric aerosols that enter the

stratosphere are promptly removed (as listed in Table A2)

since the aerosol burden in the stratosphere is prescribed.

2.1.6 Coupling to the land model

Dry deposition velocity for tracers in the atmosphere are cal-

culated online in CLM4.0. An updated calculation is used,

where leaf and stomatal resistances are coupled to the leaf

area index (LAI) and are also linked to the photosynthesis

provided by the land model, as described in Val Martin et al.

(2014).

Biogenic emissions are calculated online in CLM using

the Model of Emissions of Gases and Aerosols from Nature

(MEGAN), version 2.1 (Guenther et al., 2012). An erroneous

implementation of MEGAN in this version differs from the

description of Guenther et al. (2012) by using the LAI from

the previous model time step (30 min) instead of the aver-

age of the previous 10 days. In addition, in this version we

are using a fixed CO2 mixing ratio, instead of the simulated

www.geosci-model-dev.net/9/1853/2016/ Geosci. Model Dev., 9, 1853–1890, 2016
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atmospheric value, in the calculation of the CO2 inhibition

effect on isoprene emissions. The corrected implementation

is closer to the algorithm of Guenther et al. (2012).

2.2 Chemical mechanism

The chemical mechanism of CAM4-chem includes

169 species, listed in Table A1 in the Appendix. De-

pending on the chemical lifetime of each species, an explicit

or semi-implicit solver is used. Emissions of gas-phase and

aerosol species, as indicated in Table A1, are in general

distributed at the surface. Only aircraft emissions of BC

and nitrogen dioxide, and volcanic emissions of sulfur

and sulfate, are vertically distributed. Species with lower

boundary conditions, as indicated in Table A1, as discussed

in Sect. 2.3.2. Different species experience wet and/or

dry deposition, as also listed in Table A1. Furthermore,

14 artificial tracers are implemented as recommended by

CCMI (Eyring et al., 2013, Sect. 4.2.1): NH5, NH50, NH50W,

AOANH, ST8025, CO25, CO50, SO2t, SF6em, O3S, E90,

E90NH, E90SH. O3S is a stratospheric ozone tracer that

represents the amount of ozone in the troposphere with

its source in the stratosphere. O3S is set to stratospheric

values at the tropopause, and experiences the same loss

rates as ozone in the troposphere, as defined by CCMI. As

interpreted from the CCMI recommendation, dry deposition

is not included, which will lead to an overestimation of O3S

in the lower boundary layer when compared to ozone (which

is dry deposited).

The chemical mechanism, is based on the Model for

Ozone and Related chemical Tracers (MOZART), version 4

mechanism for the troposphere (Emmons et al., 2010). It

further includes extended stratospheric chemistry (Kinnison

et al., 2007) and updates, as described in Lamarque et al.

(2012) and Tilmes et al. (2015). The reactions include pho-

tolysis, gas-phase chemistry and heterogeneous chemistry,

in both troposphere and stratosphere. The complete chemi-

cal mechanism is listed in Table A2 and incorporates all the

latest updates. All aerosols and some gas-phase species, in-

cluding H2O, O2, CO2, O3, N2O, CH4, CFC11, CFC12, are

radiatively active.

Reaction rates are updated following JPL2010 recommen-

dations (Sander et al., 2011). Bromoform (CHBr3) and di-

bromomethane (CH2Br2) were added to the model to repre-

sent the stratospheric bromine loading from very short-lived

(VSL) species. The surface volume mixing ratio for these

two VSL species was set globally to 1.2 ppt (i.e., 6 ppt total

bromine). This approach adds an additional ≈ 5 ppt of inor-

ganic bromine to the stratosphere. The resulting stratospheric

total inorganic bromine abundance (for present-day condi-

tions) from both long-lived and VSL species is ≈ 21.5 ppt.

Besides the current lower boundary condition (LBC) ap-

proach for VSL species, CAM4-chem can be also config-

ured with a full-VSL mechanism, including detailed gas-

phase halogen chemistry mechanism, geographically and

time-dependent distributed sources of nine halocarbons and

improved representation of heterogeneous recycling and re-

moval rates in the troposphere (Fernandez et al., 2014; Saiz-

Lopez et al., 2014).

Details on updated reactions and processes for chemistry

in the polar stratosphere are described in Wegner et al. (2013)

and Solomon et al. (2015).

Diagnostics of the tropospheric ozone production and loss

rates are explicitly calculated; see Table A3, in adding the

listed reaction rates r of two species A and B, r(A−B), as

well as the photolysis reaction of ONITR (defined as lumped

organic nitrate species that includes nitrates derived from the

OH- and NO3-initiated oxidation of isoprene and terpenes,

and related species), called jonitr:

O3-Prod= r(NO−HO2)+ r(CH3O2−NO)

+ r(PO2−NO)+ r(CH3CO3−NO)

+ r(C2H5O2−NO)+ 0.92 · r(ISOPO2−NO)

+ r(MACRO2−NOa)+ r(MCO3−NO)

+ r(C3H7O2−NO)+ r(RO2−NO)

+ r(XO2−NO)+ 0.9 · r(TOLO2−NO)

+ r(TERPO2−NO)+ 0.9 · r(ALKO2−NO)

+ r(ENEO2−NO)+ r(EO2−NO)

+ r(MEKO2−NO)+ 0.4 · r(ONITR−OH)

+ jonitr

O3-Loss= r(O1D−H2O)+ r(OH−O3)

+ r(HO2−O3)+ r(C3H6−O3)

+ 0.9 · r(ISOP−O3)+ r(C2H4−O3)

+ 0.8 · r(MVK−O3)+ 0.8 · r(MACR−O3)

+ r(C10H16−O3).

These are defined based on the rate-limiting terms for the

gas-phase reactions of the Ox family (O3, O, O1D , NO2), not

including O2+hv→ 2O production, Ox , ClOx , and BrOx
losses, and are therefore not valid for the stratosphere. The

sum of those rates are very similar to the explicit calculation

of the net chemical change of ozone (as listed in Table A2).

2.3 Experimental Setup

The reference experiments are set up according to the CCMI

recommendation, including surface and altitude-dependent

emissions, and lower boundary conditions. The three ref-

erence experiments are performed with the recommended

emissions. REFC1 and REFC1SD (years 1960–2010) use

the same emissions, excluding biogenic emissions. Anthro-

pogenic and biomass burning emissions are from the Mon-

itoring Atmospheric Composition and Climate/CityZen in-

ventory (MAC City) emission data set and change every year

(Granier et al., 2011). For REFC2 (years 1960–2100), an-

thropogenic and biomass burning emissions are taken from

AR5 (Eyring et al., 2013) (see Fig. A1), which only vary ev-
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ery 5–10 years. All emissions include a seasonal cycle. Bio-

genic emissions are calculated every time step by MEGAN,

as described in Sect. 2.1.6.

The REFC1SD experiment is nudged to analyzed air tem-

peratures, winds, surface fluxes and surface pressure, and

uses the Hadley Centre Global Sea Ice and Sea Surface

Temperature version 2 (HadISST2) observed time-dependent

data set for sea surface temperatures (SSTs) and sea ice. The

REFC1 experiment also uses prescribed SSTs and sea ice,

while the REFC2 simulation calculates temperatures in the

ocean and atmosphere. We have carried out one simulation

for REFC1SD, and an ensemble of three members for each

REFC1 and REFC2.

The solar cycle is prescribed using observed daily fields

for the years until 2010. For the future period in REFC2,

we follow the CCMI recommendation and repeat a sequence

of the last four solar cycles (20–23), as defined in http:

//solarisheppa.geomar.de/ccmi.

2.3.1 Initial conditions and spin-up

CAM4-chem initial conditions for the three REFC1 and

REFC2 ensemble members are taken from 3 realizations

of CESM1-WACCM 20th Century ensemble for CMIP5

(Marsh et al., 2013). The spin-up period started in 1950 and

ran through 1959. The experiments simulated the years 1960

to 2010 (REFC1) and 1960 to 2100 (REFC2). Initial condi-

tions for the REFC1SD simulation are taken from the first

REFC1 ensemble member in 1975. The spin-up of this ex-

periment covered the years 1975 to 1979, repeating 1979

meteorological analysis for each year. The experiment was

performed between 1980 and 2010.

2.3.2 Lower boundary conditions

For all of the three reference experiments the same monthly

and annually varying lower boundary conditions are used

based on the Representation Concentration Pathway 6.0

(RCP6.0) Coupled Model Intercomparison Project Phase 5

(CMIP5) future projection (Taylor et al., 2012). We prescribe

CO2, N2O, CH4, as well as the following halogen species

based on the CCMI recommendations: CCl4, CF2ClBr,

CF3Br, CFC11, CFC113, CFC12, CH3Br, CH3CCl3, CH3Cl,

H2, HCFC22, CFC114, CFC115, HCFC141b, HCFC142b,

CH2Br2, CHBr3, H1202, H2402, SF6. A north–south

gradient was added for CH3Br, HCFC22, HCFC141b,

HCFC142b, based on the HIAPER (High-Performance In-

strumented Airborne Platform for Environmental Research)

Pole-to-Pole Observations (HIPPO) (Wofsy et al., 2011; Mi-

jeong Park, personal communication, 2015).

3 Model performance

3.1 Global diagnostics

The general state of the model is investigated by compar-

ing diagnostics of globally averaged values between different

model experiments that are averaged between 1995 and 2010

(Table 1). The global surface temperatures (TS) of all three

experiments are in agreement within 0.15 K for the observed

period (Table 1). REFC1SD land temperature (TS land) is

on average 0.25 K higher than for REFC1 and 0.15 K higher

than for the REFC2 experiments (Table 1). The largest devia-

tions occur over high latitudes (not shown). In the REFC1SD

experiment, low cloud fraction is significantly larger than in

the other experiments, which results in a much smaller short-

wave cloud forcing (SWCF) of −83 W m−2 compared the

other experiments that are with 54–56 W m−2 more in line

with observations.

Differences in clouds and land surface temperatures be-

tween the reference experiments result in different biogenic

emissions of volatile organic components (VOCs) (Fig. 1).

REFC1SD biogenic emissions are about 10 % lower than in

the REFC1 experiment and about 15 % lower than in the

REFC2 experiment. The emissions differ the most in sum-

mer during their peak (Fig. 1, bottom row). Despite the fact

that surface temperatures in REFC1SD are warmer than in

REFC1, more low cloud clouds and reduced solar radia-

tion (as evident in photolysis rates) near the surface may be

the important driver for the reduced biogenic emissions in

REFC1SD, which has to be further investigated. Other dif-

ferences in the REFC1 and REFC2 VOC emissions arise

from different anthropogenic and biomass burning emis-

sions, while biogenic emissions differ by less than 10 % (Ta-

ble 1). Despite the variation in the reference experiments,

biogenic emissions are in agreement with earlier estimates

(e.g., Young et al., 2013).

The performance of the model in simulating tropospheric

chemical variables (Table 1) is similar to earlier studies

(e.g., Tilmes et al., 2015). Methane lifetime is low com-

pared to observational estimates of 11.2 years (Prather et al.,

2012). Ozone budgets, including ozone burden, stratosphere–

troposphere exchange, and budgets of carbon monoxide

(CO), are in agreement with earlier model studies (Young

et al., 2013). Aerosol burdens of primary organic matter

(POM) and SOA are low, but within the spread of other

model results (Tsigaridis et al., 2014). The SO4 burden with

0.45 to 0.51 TgS and the lifetime of 3.0 to 3.5 days is some-

what low compared to the Aerocom multi-model mean of

0.66 TgS and 4.12 days, respectively (e.g., Liu et al., 2012).

The dust optical depth around 0.04 is somewhat higher than

suggested by Mahowald et al. (2006).

www.geosci-model-dev.net/9/1853/2016/ Geosci. Model Dev., 9, 1853–1890, 2016

http://solarisheppa.geomar.de/ccmi
http://solarisheppa.geomar.de/ccmi


1858 S. Tilmes et al.: Representation of CESM1 CAM4-chem within CCMI

Table 1. Overview of global diagnostics for different experiments, averaged between 1995 and 2010. Lifetimes and burdens are calculated

for the troposphere defined for regions where ozone is below 150 ppb.

CESM1 CAM4chem REFC1SD REFC1.1 REFC1.2 REFC1.3 REFC2.1 REFC2.2 REFC2.3

Meteorology MERRA CAM4 CAM4 CAM4 CAM4 CAM4 CAM4

Vert. Res. 56L 26L 26L 26L 26L 26L 26L

TS Global 288.43 288.27 288.27 288.28 288.35 288.40 288.41

TS Land 282.37 282.10 282.12 282.17 282.23 282.20 282.23

SWCF −82.47 −55.96 −56.01 −55.97 −54.66 −54.65 −54.78

CH4 Burden (Tg) 3991.3 4100.5 4103.8 4099.3 4101.4 4105.0 4103.1

CH4 Lifet. (year) 7.6 8.0 8.1 8.1 8.2 8.2 8.2

CH3CCl3 Lifet. (year) 4.5 4.8 4.8 4.8 4.9 4.9 4.9

CO Burden (Tg) 289.6 303.6 305.3 305.7 315.4 316.7 315.3

CO Emis. (Tg year−1) 1114.8 1119.3 1126.5 1126.8 1170.1 1171.1 1169.9

CO Dep. (Tg year−1) 125.8 120.7 122.0 122.1 122.7 123.0 122.9

CO Chem. Loss (Tg year−1) 2264.1 2294.2 2295.3 2298.0 2348.4 2353.3 2345.5

CO Lifet. (days) 44.2 45.9 46.1 46.1 46.6 46.7 46.6

O3 Burden (Tg) 332.5 326.9 326.5 326.4 327.8 327.2 327.0

O3 Dep. (Tg year−1) 871.7 894.4 893.9 894.2 895.0 892.8 894.7

O3 Chem. Loss (Tg year−1) 4256.0 4268.3 4250.6 4259.0 4287.6 4293.5 4278.9

O3 Chem. Prod. (Tg year−1) 4693.8 4710.0 4706.5 4708.3 4747.2 4756.9 4744.1

O3 Net Chem.Change (Tg year−1) 392.9 420.9 430.5 426.0 432.5 436.5 438.2

O3 STE (Tg year−1) 478.8 473.4 463.4 468.2 462.5 456.4 456.5

Isop. Emis. (Tg year−1) 454.2 512.6 511.8 515.0 546.6 551.6 545.6

Monoterp. Emis. (Tg year−1) 138.9 150.0 150.0 150.3 155.4 156.4 155.0

Methanol Emis. (Tg year−1) 100.4 114.6 114.8 114.9 113.7 114.9 113.4

Aceton Emis. (Tg year−1) 41.6 44.3 44.3 44.3 47.8 48.1 47.7

Lightning Prod. (TgN year−1) 4.5 4.8 4.7 4.8 4.7 4.7 4.7

Total optical depth 0.107 0.119 0.119 0.119 0.118 0.118 0.118

Dust optical depth 0.041 0.043 0.043 0.043 0.040 0.041 0.040

POM Burden (TgC) 0.75 0.73 0.73 0.74 0.77 0.77 0.77

POM Emis. (TgC year−1) 48.38 47.99 48.38 48.38 51.23 51.23 51.23

POM Lifet. (days) 7.23 7.18 7.15 7.19 7.05 7.06 7.01

SOA Burden (TgC) 0.54 0.49 0.49 0.49 0.51 0.51 0.50

SOA Chem. Prod. (TgC year−1) 32.79 34.45 34.43 34.79 35.86 36.32 35.54

SOA Lifet. (days) 0.54 0.49 0.49 0.49 0.51 0.51 0.50

BC Burden (TgC) 0.12 0.12 0.12 0.12 0.12 0.12 0.12

BC Emis. (TgC year−1) 7.71 7.68 7.71 7.71 7.95 7.95 7.95

BC Lifet. (days) 7.44 7.48 7.46 7.49 5.88 5.89 5.86

DUST Burden (TgC) 43.87 45.04 45.03 45.20 42.60 42.75 42.31

SALT Burden (TgC) 6.02 10.88 10.88 10.87 11.14 11.10 11.11

SO4 Burden (TgS) 0.45 0.49 0.49 0.49 0.51 0.51 0.51

SO4 Emis. (TgS year−1) 0.25 0.25 0.25 0.25 0.25 0.25 0.25

SO4 Dry Dep. (TgS year−1) 5.29 5.76 5.78 5.77 5.94 6.00 5.99

SO4 Wet Dep. (TgS year−1) −49.93 −46.36 −46.28 −46.30 −46.36 −46.42 −46.49

SO4 Chem. Prod. (TgS year−1) 10.35 10.81 10.83 10.82 10.98 11.02 11.02

SO4 AQ. Prod. (TgS year−1) 44.95 41.41 41.34 41.35 41.44 41.53 41.58

SO4 Total Prod. (TgS year−1) 55.30 52.23 52.17 52.18 52.42 52.55 52.60

SO4 Lifet. (days) 2.97 3.41 3.42 3.41 3.52 3.54 3.53
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Figure 1. Global-averaged surface emissions of total volatile organic compounds (VOCs) (first column), biogenic VOCs (second column),

biogenic isoprene (third column), and biogenic terpenes (fourth column), for different experiments, REFC1SD (red), REFC1 (green), REFC2

(blue). The seasonal cycle of zonal averages between 1960 and 2010 are shown at the bottom row.

3.2 Trends of tropospheric components

Time-varying emissions of ozone precursors and aerosols

impact the oxidation capacity of the atmosphere. In the

following, we discuss the evolution of different chemical

species and surface area density in the tropical troposphere

between 30◦ S and 30◦ N, tropospheric methane lifetime

and stratospheric column ozone (Fig. 2), since methane is

mostly controlled by processes in the tropics. Increasing ni-

trogen dioxide (NO2), CO and VOC burdens between 1960

and 1990 result in increasing tropospheric ozone with the

strongest trend between 1960 and 1990. Increasing aerosols

between 1960 and 1990 result in an increase in SAD, with

little change after 1990. Together with the increase in CO

burden, this results in a decrease of OH. Other factors re-

sult in an increase in tropospheric OH, including decreasing

stratospheric column ozone between 1960 and 2010, increas-

ing tropospheric column ozone, increasing nitrogen dioxides

(NOx) burden, and decreasing methane emissions (e.g., Mur-

ray et al., 2014). Both counteracting effects on OH result in

little change in methane lifetime between 1960 and 1990. Af-

ter 1990, SAD, as well as CO and VOC, trends are leveling

off, but nitrogen dioxide and ozone burdens are still increas-

ing, partly due to increasing lightning NOx production (not

shown). This results in a decreasing trend in methane lifetime

after 1990 for all reference experiments.

The burden of chemical tracers differs between REFC1SD

and REFC1/REFC2 (Fig. 2). Variations in emissions and at-

mospheric dynamics, including surface temperature, clouds

and convection, influence the chemical composition of the

atmosphere. Exchange processes between the upper tro-

posphere and lower stratosphere are also different in the

model experiments and impact ozone. The shorter lifetime

of methane in REFC1SD compared to the other experiments

may be a result of a reduction in high clouds, and, to some

amount, the larger ozone mixing ratios in the tropical tropo-

sphere, which would increase the oxidation capacity in the

tropics. This has to be investigated in more detail in future

studies.

Besides a continuous decrease, the stratospheric ozone

column shows a significant drop after major volcanic erup-

tions (e.g., WMO, 2006). This is expected due to an increase

in stratospheric SAD after the eruption, which causes en-

hanced halogen activation, resulting in ozone depletion (see

Fig. 2).

4 Evaluation against selected diagnostics

The purpose of this section is to give an overview of selected

variables and diagnostics that summarize the performance of

the model, including some of its shortcomings, in compar-

ison to observations. Additional and more detailed investi-

gations are expected in future multi-model comparison stud-

ies. We only discuss the performance of the reference ex-

periments for past and present day. Model results from other

sensitivity studies are not analyzed and will be discussed in

future studies.
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Figure 2. Time series of annually averaged column integrated tropospheric and tropical nitrogen dioxide (in Tg N), tropospheric ozone

burden, and CO, in (30◦ S–30◦ N), tropical average of tropospheric surface area density, global stratospheric column ozone and tropospheric

methane lifetime.

4.1 Ozone

Ozone is an important atmospheric tracer in both the tropo-

sphere and the stratosphere. In the troposphere and at the

surface, ozone is an air pollutant and is impacted by vari-

ous precursors, most importantly CO and NOx . A reason-

able performance of tropospheric ozone is required for air

quality studies. In the stratosphere, ozone is strongly influ-

enced by dynamics, photo-chemistry and catalytic reactions

(e.g., WMO, 2011). The strength of the transport of strato-

spheric ozone into the troposphere follows a seasonal cycle

controlled by the Brewer–Dobson circulation (BDC). Short-

comings in the representation of the strength of the BDC and

mixing processes between stratosphere and troposphere in-

fluence the performance of tropospheric ozone, as discussed

below. In addition, ozone is an important greenhouse gas in

the upper troposphere and lower stratosphere (UTLS) and in-

fluences tropospheric climate (e.g., WMO, 2014).

4.1.1 Trends and seasonality of ozone

Ozone trends and seasonality in the reference experiments

are compared to ozonesonde observations (Tilmes et al.,

2012) in the free troposphere (at 500 hPa) and the bound-

ary layer (at 900 hPa). For Japan, we employ an additional

climatology derived by Tanimoto et al. (2015), which is

based on surface observations at five marine boundary layer

sites from the Acid Deposition Monitoring Network in East

Asia (EANET) for pressure levels larger than 900 hPa, and

a combination of the historical Measurements of OZone,

water vapor, carbon monoxide and nitrogen oxides by in-

service AIrbus airCraft (MOZAIC; URL: http://www.iagos.

fr/mozaic) data (over Narita airport) and ozonesonde obser-

vations (at Tateno/Tsukuba) for pressure levels between 472

and 616 hPa. We use an artificial stratospheric ozone tracer

(O3S) to identify differences in stratosphere–troposphere ex-

change (STE) between different model experiments for four

selected regions (see Figs. 3 and 4).

In high northern latitudes, REFC1SD reproduces the mag-

nitude and trend of ozone very well, including variability

within the standard deviation of the observations for all sea-

sons, as shown in the example of the Northern Hemisphere

(NH) polar west region (Fig. 3, first and second row). A

very good agreement between the model experiment and

ozonesondes also exists for western Europe, with the ex-

ception of the high bias between October and February at

500 hPa of 5–10 ppb (Fig. 3, third and fourth row).

Results from REFC1 and REFC2 show larger deviations

from the observations than REFC1SD over these two re-

gions. These are in part due to not only differences in the

amount of stratospheric ozone entering the troposphere for

the different experiments (see Fig. 3, right column, dashed

lines), but also changes in ozone loss and production. Dis-

crepancies in ozone between the experiments can be ex-
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Figure 3. Left and middle column: time evolution of seasonal averaged and regionally aggregated ozone mixing ratios derived from ozone

soundings (black diamonds) and model results (colored lines) at two different pressure levels, two different seasons (DJF: left, JJA: right)

and regions (NH polar west, and western Europe). Grey shading indicates the standard deviation of the observations that include at least 12

observed profiles per season in a year. Colored error bars indicate the standard deviation based on monthly averaged model output. Right

column: Regionally aggregated seasonal cycle comparisons of ozone soundings (black lines) and model simulations (colored lines), averaged

between 1995 and 2010. Dashed lines indicate mixing ratios of the stratospheric ozone tracer (see text for more details).

plained by differences in O3S for the whole year at 500 hPa

and for winter months at 900 hPa. During summer months,

differences in chemical production at the surface for the dif-

ferent experiments seem to play an additional role and ex-

plain about 5–10 ppb of the deviations for western Europe.

Selected ozonesondes over eastern USA and Japan are lo-

cated further south and are more strongly influenced by trop-

ical air masses and tropospheric intrusion in the lowermost

stratosphere in particular in winter, as discussed in Tilmes

et al. (2012). Each of the regions covers only two stations and

so uses fewer observations for the different years than other

regions, which increases the uncertainty of trends (Saunois

et al., 2012).

Comparisons for eastern USA and Japan are illustrated in

Fig. 4. For Japan, we are using two data sets to compare

to model results. Ozone mixing ratios and trends at 900 hPa

over Japan using ozonesondes, as compiled by Tilmes et al.

(2012), Fig. 4 (black diamonds), largely differ from the cli-

matology by Tanimoto et al. (2015), which is based on sur-

face observations (black triangles). This is due to uncertain-

ties in the ozonesonde observations at these altitudes, which

should be treated with caution. On the other hand, the two

climatologies agree well in the free troposphere at 500 hPa.

For eastern USA and Japan the REFC1SD model experi-

ment nicely reproduces the observed trend and magnitude of

ozone within the variability of the observations at 900 hPa.

The seasonal cycle for both regions are well reproduced.

This significant improvement compared to earlier versions

of the model is in part a result of the improved calculation of

dry deposition rates, as discussed in Val Martin et al. (2014)

over the USA. REFC1 and REFC2 experiments show slightly

larger values at 900 hPa in comparison to the REFC1SD ex-

periment particularly in winter, aligned with a larger O3 con-

tribution from the stratosphere, as determined by the O3S
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Figure 4. As Fig. 3, but for Eastern USA and Japan instead. For Japan, ozone time series compiled by Tanimoto et al. (2015) are added

(black triangles) (see text for more details) and used to compare with the seasonal cycle of the model for Japan.

tracer (see Fig. 4). At 500 hPa, ozone mixing ratios and

trends are well reproduced for all experiments in summer.

However, the model overestimates winter ozone mixing ra-

tios in the upper troposphere.

4.1.2 Present-day ozone

A comparison with ozonesonde observations over different

regions for simulated years between 1995 and 2010 is pre-

sented in Fig. 5. Besides some differences in ozone compared

to observations, as discussed above, all model experiments

reproduce observed tropospheric ozone within 25 % for most

of the regions. At 250 hPa, which is the UTLS at mid- and

high latitudes, REFC1SD overestimates ozone by up to 50 %,

particularly at mid-latitudes in both hemispheres. This could

be the result of strong mixing in the UTLS associated with

the use of the small nudging amount of 1 % in this study;

however, this needs to be investigated in more detail in fu-

ture studies. The other experiments show smaller deviations

from the observations of about 20 % or less. Tropical values

at 50 hPa are overestimated by no more than 20 % compared

to observations for all the experiments, while ozone in the

mid- and high latitudes in the stratosphere agrees within 10 %

with observations.

Model results further agree well with HIPPO aircraft ob-

servations for profiles sampled from 85◦ N to 65◦ S over

the Pacific Ocean between 2009 and 2011 (Fig. A2). In

REFC1SD, lower troposphere values (1–2 km) are within

the range of the observations, while for REFC1 and REFC2

ozone is overestimated by about 5 ppb in high northern lat-

itudes, in particular in winter and spring, which points to

a transport problem as discussed above. Some differences,

especially at higher altitudes (7–8 km) are likely caused by

the specific meteorological situation for the flight conditions

compared to the climatological model results.

The regional performance of tropospheric ozone in the

model is further illustrated in Fig. 6, comparing simulated

ozone mixing ratios with ozone sondes and various air-

craft observations at 3–7 km, as compiled in Tilmes et al.

(2015). Observed features, for example the summertime

maximum of ozone over eastern Mediterranean/Middle East
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Figure 5. Taylor-like diagram comparing the mean and correlation of the seasonal cycle between observations using a present-day

ozonesonde climatology between 1995 and 2011 and model results between 1995 and 2010, interpolated to the same locations as sam-

pled by the observations and for different pressure levels, 900 hPa (top panel), 500 hPa (second panel), 250 hPa (third panel) and 50 hPa

(bottom panel). Different numbers correspond to a specific region, as defined in Tilmes et al. (2012). Left panels: 1 – NH-subtropics; 2 –

W-Pacific/eastern Indian Ocean; 3 – equat. Americas; 4 – Atlantic/Africa. Middle panels: 1 – western Europe; 2 – eastern USA; 3 – Japan; 4

– SH mid-latitudes. Right panels: 1 – NH polar west; 2 – NH polar east; 3 – Canada; 4 – SH polar.

(Kalabokas et al., 2013; Zanis et al., 2014), are reproduced

by the REFC1 and REFC1SD experiments. The ozone gra-

dient between mid-latitudes and tropics is for the most part

well captured, for example over Japan in summer. The pole

to mid-latitude ozone gradient in the SD simulation showed

a larger southward ozone gradient than the REFC1 simula-

tion, which is more consistent with the measurements. Re-

gional differences in tropospheric ozone between the differ-

ent model experiments have to be investigated in future stud-

ies.

We further perform comparisons of model results to a

present-day ozone climatology based on Ozone Monitor-
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Figure 6. Comparison between model results in contours

(REFC1SD left and REFC1.1 right) and observations of ozone mix-

ing ratios, averaged over 3–7 km for December–January–February

(DJF), top, and June–July–August (JJA), bottom. The color of each

square represents the value of the observed ozonesonde measure-

ment for the same period and altitude interval, and the color of

framed regions corresponds to values derived from aircraft obser-

vations averaged over the particular region for each experiment

(Tilmes et al., 2015).

ing Instrument (OMI) and Microwave Limb Sounder (MLS)

satellite observations between 2004 and 2010, compiled by

Ziemke et al. (2011), in the troposphere (Fig. 7) and strato-

sphere (Fig. 8). The model tropopause for this diagnostic

is defined as the 150 ppb ozone level, which may lead to

small differences between observations and model simula-

tions, but not between model experiments themselves. The

comparisons reveal additional characteristics of the model

performance compared to observations. Tropospheric col-

umn ozone is reproduced within±10 DU of the observations,

with a close agreement to the satellite climatology within less

than ±5 DU in low and mid-latitudes in spring and summer

(Fig. 7). All model experiments show a low bias in mid-

latitudes in the SH and high bias by 10–15 DU in the NH

mid-latitudes in winter and fall. NH tropospheric ozone is

in general large in the REFC1 and REFC2 simulations com-

pared to the REFC1SD experiments, as discussed above.

Stratospheric ozone in all model experiments agree within

±30 DU in mid- and low latitudes compared to the satellite

climatology (Fig. 8). Larger deviations from the observations

occur in the NH mid- and high latitudes in winter and spring

with a high bias of up to 60 DU. Ozone in the SH is within

about 25 DU from the observations and is reasonably well

reproduced by all model experiments, especially for the free-

running experiments.

4.2 Carbon monoxide

Carbon monoxide, non-methane hydrocarbons and nitrogen

dioxides are the most important precursors to the formation

Figure 7. Monthly and zonally averaged tropospheric ozone col-

umn (in DU) comparison between OMI/MLS observations (black)

and different model experiments; see legend (for ozone < 150 ppb

in the model) for 4 months. Error bars describe the zonally aver-

aged 2 sigma 6-year root mean square standard error of the mean at

a giving grid point, derived from the 10◦ N to 10◦ S gridded prod-

uct (Ziemke et al., 2011). Model results are interpolated to the same

grid and error bars indicate the standard deviation of the interannual

variability per latitude interval.

of tropospheric ozone. Carbon monoxide also impacts the

oxidation capacity of the atmosphere and therefore methane

lifetime. We compare the CO burden from different experi-

ments to monthly and zonally averaged tropospheric column

carbon monoxide derived from Measurements of Pollution

in the Troposphere (MOPITT) version 6 level 3 satellite ob-

servations, as described in Tilmes et al. (2015) (see Fig. 9).

The climatological averaging kernel and a priori is applied to

both observations and model experiments in the same way.

The most obvious difference between observations and

model results occurs in NH winter and spring. All model ex-

periments are biased low by about one-third relative to ob-

servations, similar to results from the Atmospheric Chem-

istry and Climate Model Intercomparison Project (ACCMIP)

(Naik et al., 2013; Lamarque et al., 2012). In summer and

fall, the CO representation differs between different experi-

ments, in agreement with differences in biogenic emissions.

The lowest CO burden is simulated for the REFC1SD ex-

periment, which also shows the lowest emissions of VOCs

in summer (see Fig. 1). This may translate into lower CO

values in fall. Furthermore, the tropospheric OH burden is

significantly larger in REFC1SD compared to the other ex-
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Figure 8. As Fig. 7, but showing monthly and zonally averaged

stratospheric ozone column comparison between OMI/MLS obser-

vations (black) and different model experiments; see legend (for

ozone > 150 ppb in the model) for 4 months.

periments (not shown), which is consistent with more ozone

in the tropical troposphere (see Fig. 2).

The simulated CO column in the tropics agrees with the

satellite climatology within the interannual variability. How-

ever, the model underestimates CO column in the SH for all

the experiments, in particular in summer. In contrast, com-

parisons to HIPPO CO in situ observations indicate very

good agreement between CO mixing ratios in the SH over

the remote region of the Pacific Ocean for most of the sea-

sons (see Fig. A3). Furthermore, CO mixing ratios are largely

underestimated in March and April in comparison to the air-

craft observations, consistent with the satellite comparison.

Differences in CO will be investigated in more detail in fu-

ture studies.

4.3 Hydrocarbons

Hydrocarbons are important tropospheric compounds that

are emitted from vegetation, biomass burning and anthro-

pogenic sources, including oil and gas extraction activities.

They are important ozone precursors, influence the oxidation

capacity of the atmosphere, and eventually form CO.

Ethane and other hydrocarbons have been measured us-

ing canister samples along coastal and island sites in the Pa-

cific Ocean since 1984 typically every 3 months, December,

March, June and September (Simpson et al., 2012); data are

available at http://cdiac.ornl.gov/trends/otheratg/blake/blake.

html. We have compiled a climatology using ethane mixing

ratios between 1995 and 2010 that covers latitudes between

Figure 9. Monthly and zonally averaged tropospheric CO column

comparison (in molec. cm−2) between MOPITT satellite observa-

tions (black) and different model experiments; see legend (for ozone

< 150 ppb in the model) for 4 months. Error bars for observations

and model experiments show the standard deviation of the interan-

nual variability per latitude interval.

Figure 10. Comparison of observed and modeled surface ethane

(C2H6) mixing ratios in each season averaged over 1995–2010

along the length of the Pacific Ocean. Monthly mean CAM4-chem

ethane mixing ratios at 190◦ E are shown for the three model exper-

iments.
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Figure 11. Black carbon comparison between different HIPPO aircraft campaigns taken over the Pacific Ocean (black symbols) and results

from the reference simulations REFC1SD (red), REFC1 (green), REFC2 (blue), averaged over different altitude intervals. The sampled

aircraft profiles during different HIPPO campaigns were averaged over 5◦ latitude intervals along the flight path over the Pacific Ocean and

compared to model output averaged over the same grid points, as done in Tilmes et al. (2015). The average profiles are averaged over three

altitudes regions, 1–2, 4–5 and 7–8 km.
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50◦ S and 75◦ N (shown in Fig. 10). Comparisons to the three

model experiments reveal a very large underestimation of

ethane mixing ratios by up to 80 % in spring. The smallest

deviations occur in NH fall. These deviations are likely con-

tributing to the underestimation of CO and overestimation of

OH.

While there is significant uncertainty in the speciation

of VOC emissions (e.g., Li et al., 2014), which could lead

to this discrepancy, it is likely there is an underestimation

of all VOC emissions. Globally, ethane concentrations have

been declining since long-term global record keeping be-

gan. Simpson et al. (2012) reported a 21 % decline in global

ethane concentrations from 1984 to 2010, which is much

smaller than the discrepancy between the model and obser-

vations.

4.4 Aerosols

A reasonable description of aerosols in climate models, in-

cluding interactions with chemistry and clouds, is important

for the representation of radiative processes. The aerosol op-

tical depth, global aerosol burden of organic matter, black

carbon and sulfate aerosol are global diagnostics to evalu-

ate the general performance of aerosol processes (Table 1).

This version of CAM4-chem produces values for these di-

agnostics very similar to earlier model studies using CAM4-

chem (e.g., Tilmes et al., 2015). Here, we focus on the eval-

uation of background black carbon in comparison to HIPPO

observations. The HIPPO campaign between 2009 and 2011

provided a comprehensive data set of black carbon over the

remote region of the Pacific. Black carbon results from the

model are averaged over the same locations, and altitude lev-

els and compared to the observations, as described above.

All model simulations show a very similar distribution

(Fig. 11), with only a few deviations from each other mostly

in the SH. The model reproduces BC values in the SH and

NH mid-latitudes for most seasons within the range of uncer-

tainty. A significant high bias in BC occurs in the tropics for

all altitude levels and most seasons. Otherwise, in spring and

summer, the hemispheric gradient of BC is represented well,

following the observed larger burden in the NH compared

to the SH, with some overestimation in the SH. The largest

BC values in the NH spring are however underestimated. On

the other hand, BC values in August/September, and partly

November, are overestimated in the NH and in March/April

and June/July in the SH.

5 Conclusions

The CESM1 CAM4-chem model has been used to perform

the CCMI reference and sensitivity simulations. This paper

provides an overview of the model setup of the reference ex-

periments, including a detailed description of new develop-

ments. The most important improvements of the model be-

yond what has been discussed in earlier studies (Lamarque

et al., 2012; Tilmes et al., 2015) are the treatment of strato-

spheric aerosols and the corresponding radiation and optics,

which is important for the free-running experiments (Neely

et al., 2015). Further, the chemistry scheme has been updated

to reaction rates of JPL 2010, and improved polar chemistry

has been implemented (Wegner et al., 2013; Solomon et al.,

2015). A new gravity wave description, while implemented

incorrectly in the code, led to an improved representation of

the evolution of polar stratospheric ozone in the SH. The up-

dated dry deposition scheme by Val Martin et al. (2014) re-

sulted in a much improved ozone near the surface, as also

shown in Tilmes et al. (2015), and leads to a very good repre-

sentation of ozone mixing ratios and trends in the REFC1SD

simulation.

Global model diagnostics are investigated and a selected

evaluation of key chemical species, including ozone, carbon

monoxide, hydrocarbons and black carbon is performed. We

limit our evaluation to present-day results of the REFC1SD,

REFC1 and REFC2 experiments. Comparisons to observa-

tions are focused mostly on the troposphere. Nevertheless,

stratospheric column ozone reproduces observed values, in

particular in SH winter and spring, but overestimates values

in the NH high latitudes.

For the troposphere, near-surface ozone mixing ratios and

trends are very well reproduced and within 25 % of the values

from ozonesonde and satellite observations throughout the

troposphere. A high bias in mid- and high northern latitudes

for the REFC1 and REFC2 experiments can be explained by

a stronger influence of stratospheric air masses compared to

the REFC1SD simulation. This points to shortcomings in the

stratosphere–troposphere exchange in the free-running simu-

lations. On the other hand, the specified dynamics model ex-

periment shows an overestimation of ozone in mid-latitude

UTLS, as well as enhanced ozone in the upper tropical tro-

posphere compared to the free-running experiments. The im-

pact of shortcomings in the dynamical description of the

model needs to be investigated in multi-model comparison

studies.

Some biases in the model have not been resolved com-

pared to earlier versions of the model (e.g., Tilmes et al.,

2015). CO is still biased low in all model experiments in the

NH, especially in spring. Some differences between the ex-

periments may be attributed to differences in biogenic emis-

sions. Correspondingly, methane lifetime is low compared to

observational estimates, which is likely related not only to

shortcomings in emissions, but also to too large an oxidation

capacity of the atmosphere. Significant shortcomings of hy-

drocarbons (shown for ethane) are identified in particular in

the NH. The hemispheric gradient of BC in the model is re-

produced well in most seasons, while the fall and winter val-

ues in mid-latitudes are often overestimated in mid-latitudes.

BC in the tropics is largely overestimated for most seasons.

This points to potential shortcomings in emissions, but also

loss processes in the model.
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Code and data availability

The model code of the documented simulations is based

on the Community Earth System Model, CESM ver-

sion 1.1.1 (CESM1); http://www.cesm.ucar.edu/models/

cesm1.1/index.html. Modifications to the model code

will be documented at http://www2.cesm.ucar.edu/models/

scientifically-supported. The data of the simulations are

available for download at the NCAR Earth System Grid

(ESG) (https://www.earthsystemgrid.org/home.html) and are

submitted to the British Atmospheric Data Center (BADC)

database for the CCMI project.
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Appendix A

Figure A1. Selected surface emissions used for the different reference experiments.
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Figure A2. O3 comparison between different HIPPO aircraft campaigns taken over the Pacific Ocean (black symbols) and results from

the reference simulations REFC1SD (red), REFC1 (green), REFC2 (blue), averaged over different altitude intervals. The sampled aircraft

profiles during different HIPPO campaigns were averaged over 5◦ latitude intervals along the flight path over the Pacific Ocean and compared

to model output averaged over the same grid points, as done in Tilmes et al. (2015). The average profiles are averaged over three altitudes

regions, 1–2, 4–5 and 7–8 km.
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Figure A3. As Fig. A2, but for carbon monoxide.
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Table A1. Chemical species in CAM4-chem, chemical formula, solver (either explicit (E) or semi-implicit (I)), lower boundary conditions

(LBC), and wet and dry deposition of species.

No. Species Formula Solver Emis. LBC Wet dep. Dry dep.

1 ALKO2 (C5H11O2) I

2 ALKOOH (C5H12O2) I X X

3 BENO2 (C6H7O3) I

4 BENOOH (C6H8O3) I

5 BENZENE (C6H6) I X

6 BIGALD (C5H6O2) I X

7 BIGALK (C5H12) I X

8 BIGENE (C4H8) I X

9 BR (Br) I

10 BRCL (BrCl) I

11 BRO (BrO) I

12 BRONO2 (BrONO2) I X

13 BRY E

14 C10H16 I X

15 C2H2 I X

16 C2H4 I X

17 C2H5O2 I

18 C2H5OH I X X X

19 C2H5OOH I X X

20 C2H6 I X

21 C3H6 I X

22 C3H7O2 I

23 C3H7OOH I X X

24 C3H8 I X

25 CCL4 (CCl4) E X

26 CF2CLBR (CF2ClBr) E X

27 CF3BR (CF3Br) E X

28 CFC11 (CFCl3) E X

29 CFC113 (CCl2FCClF2) E X

30 CFC114 (CClF2CClF2) E X

31 CFC115 (CClF2CF3) E X

32 CFC12 (CF2Cl2) E X

33 CH2BR2 (CH2Br2) E X

34 CH2O I X X X

35 CH3BR (CH3Br) E X

36 CH3CCL3 (CH3CCl3) E X

37 CH3CHO I X X X

38 CH3CL (CH3Cl) E X

39 CH3CN I X X X

40 CH3CO3 I

41 CH3COCH3 I X X X

42 CH3COCHO I X X

43 CH3COOH I X X

44 CH3COOOH I X X

45 CH3O2 I

46 CH3OH I X X X

47 CH3OOH I X X

48 CH4 E X

49 CHBR3 (CHBr3) E X

50 CL (Cl) I
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Table A1. Continued.

No. Species Formula Solver Emis. LBC Wet dep. Dry dep.

51 CL2 (Cl2) I

52 CL2O2 (Cl2O2) I

53 CLO (ClO) I

54 CLONO2 (ClONO2) I X

55 CLY E

56 CO I X X

57 CO2 E X

58 CRESOL (C7H8O) I

59 DMS (CH3SCH3) I X

60 ENEO2 (C4H9O3) I

61 EO (HOCH2CH2O) I

62 EO2 (HOCH2CH2O2) I

63 EOOH (HOCH2CH2OOH) I X X

64 GLYALD (HOCH2CHO) I X X

65 GLYOXAL (C2H2O2) I

66 H I

67 H1202 (CBr2F2) E X

68 H2 I X

69 H2402 (CBrF2CBrF2) E X

70 H2O I

71 H2O2 I X X

72 HBR (HBr) I X

73 HCFC141B (CH3CCl2F) E X

74 HCFC142B (CH3CClF2) E X

75 HCFC22 (CHF2Cl) E X

76 HCL (HCl) I X

77 HCN I X X X

78 HCOOH I X X X

79 HNO3 I X X

80 HO2 I

81 HO2NO2 I X X

82 HOBR (HOBr) I X

83 HOCH2OO I

84 HOCL (HOCl) I X

85 HYAC (CH3COCH2OH) I X X

86 HYDRALD (HOCH2CCH3CHCHO) I X X

87 ISOP (C5H8) I X

88 ISOPNO3 (CH2CHCCH3OOCH2ONO2) I X

89 ISOPO2 (HOCH2COOCH3CHCH2) I

90 ISOPOOH (HOCH2COOHCH3CHCH2) I X X

91 MACR (CH2CCH3CHO) I X

92 MACRO2 (CH3COCHO2CH2OH) I

93 MACROOH (CH3COCHOOHCH2OH) I X X

94 MCO3 (CH2CCH3CO3) I

95 MEK (C4H8O) I X

96 MEKO2 (C4H7O3) I

97 MEKOOH (C4H8O3) I X X

98 MPAN (CH2CCH3CO3NO2) I X

99 MVK (CH2CHCOCH3) I X

100 N I
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Table A1. Continued.

No. Species Formula Solver Emis. LBC Wet dep. Dry dep.

101 N2O E X

102 N2O5 I

103 NH3 I X X X

104 NO I X X

105 NO2 I X

106 NO3 I

107 O I

108 O1D (O) I

109 O3 I X

110 OCLO (OClO) I

111 OH I

112 ONIT (CH3COCH2ONO2) I X X

113 ONITR (CH2CCH3CHONO2CH2OH) I X X

114 PAN (CH3CO3NO2) I X

115 PO2 (C3H6OHO2) I

116 POOH (C3H6OHOOH) I X X

117 RO2 (CH3COCH2O2) I

118 ROOH (CH3COCH2OOH) I X X

119 SF6 E X

120 SO2 I X X X

121 SOGB (C6H7O3) I X X

122 SOGI (CH3C4H9O4) I X X

123 SOGM (C10H16O4) I X X

124 SOGT (C7H9O3) I X X

125 SOGX (C8H11O3) I X X

126 TERPO2 (C10H17O3) I

127 TERPOOH (C10H18O3) I X X

128 TOLO2 (C7H9O5) I

129 TOLOOH (C7H10O5) I X X

130 TOLUENE (C7H8) I X

131 XO2 (HOCH2COOCH3CHOHCHO) I

132 XOH (C7H10O6) I

133 XOOH (HOCH2COOHCH3CHOHCHO) I X X

134 XYLENE (C8H10) I

135 XYLO2 (C8H11O3) I

136 XYLOOH (C8H12O3) I
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Table A1. Continued.

No. Aerosols Formula Solver Emis. LBC Wet dep. Dry dep.

1 CB1 (C), hydrophobic BC I X X

2 CB2 (C) hydrophilic BC I X X

3 NH4 I NH4

4 NH4NO3 I X

5 OC1 (C), hydrophobic OC I X X

6 OC2 (C) hydrophilic OC I X X

7 DST01 (AlSiO5) I

8 DST02 (AlSiO5) I

9 DST03 (AlSiO5) I

10 DST04 (AlSiO5) I

11 SO4 I X

12 SOAB (C6H7O3) I X

13 SOAI (CH3C4H9O4) I X

14 SOAM (C10H16O4) I X

15 SOAT (C7H9O3) I X

16 SOAX (C8H11O3) I X

17 SSLT01 (NaCl) I

18 SSLT02 (NaCl) I

19 SSLT03 (NaCl) I

20 SSLT04 (NaCl) I

No. Artificial tracers Formula Solver Emis. LBC Wet dep. Dry dep.

1 AOANH (H) E

2 CO25 (CO) E X

3 CO50 (CO) E X

4 E90 (CO) E X

5 E90NH (CO) E X

6 E90SH (CO) E X

7 NH5 (H) E

8 NH50 (H) E

9 NH50W (H) E X

10 O3S (O3) E

11 SF6em (SF6) E X

12 SO2t (SO2) E X

13 ST8025 (H) E
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Table A2. Chemical reactions in CAM4-chem.

Photolysis

O2 + hv→ 2*O

O3 + hv→ O1D + O2

O3 + hv→ O + O2

N2O + hv→ O1D + N2

NO + hv→ N + O

NO2 + hv→ NO + O

N2O5 + hv→ NO2 + NO3

N2O5 + hv→ NO + O + NO3

HNO3 + hv→ NO2 + OH

NO3 + hv→ NO2 + O

NO3 + hv→ NO + O2

HO2NO2 + hv→ OH + NO3

HO2NO2 + hv→ NO2 + HO2

CH3OOH + hv→ CH2O + H + OH

CH2O + hv→ CO + 2*H

CH2O + hv→ CO + H2

H2O + hv→ OH + H

H2O + hv→ H2 + O1D

H2O + hv→ 2*H + O

H2O2 + hv→ 2*OH

CL2 + hv→ 2*CL

CLO + hv→ CL + O

OCLO + hv→ O + CLO

CL2O2 + hv→ 2*CL

HOCL + hv→ OH + CL

HCL + hv→ H + CL

CLONO2 + hv→ CL + NO3

CLONO2 + hv→ CLO + NO2

BRCL + hv→ BR + CL

BRO + hv→ BR + O

HOBR + hv→ BR + OH

HBR + hv→ BR + H

BRONO2 + hv→ BR + NO3

BRONO2 + hv→ BRO + NO2

CH3CL + hv→ CL + CH3O2

CCL4 + hv→ 4*CL

CH3CCL3 + hv→ 3*CL

CFC11 + hv→ 3*CL

CFC12 + hv→ 2*CL

CFC113 + hv→ 3*CL

HCFC22 + hv→ CL

CFC114 + hv→ 2*CL

CFC115 + hv→ CL
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Table A2. Continued.

Photolysis

HCFC141B + hv→ 2*CL

HCFC142B + hv→ CL

CH3BR + hv→ BR + CH3O2

CF3BR + hv→ BR

H1202 + hv→ 2*BR

H2402 + hv→ 2*BR

CF2CLBR + hv→ BR + CL

CHBR3 + hv→ 3*BR

CH2BR2 + hv→ 2*BR

CO2 + hv→ CO + O

CH4 + hv→ H + CH3O2

CH4 + hv→ 1.44*H2 + 0.18*CH2O + 0.18*O + 0.33*OH + 0.33*H

+ 0.44*CO2 + 0.38*CO + 0.05*H2O

CH3CHO + hv→ CH3O2 + CO + HO2

POOH + hv→ CH3CHO + CH2O + HO2 + OH

CH3COOOH + hv→ CH3O2 + OH + CO2

PAN + hv→ .6*CH3CO3 + .6*NO2 + .4*CH3O2 + .4*NO3 + .4*CO2

MPAN + hv→MCO3 + NO2

MACR + hv→ 1.34*HO2 + .66*MCO3 + 1.34*CH2O + 1.34*CH3CO3

MACR + hv→ .66*HO2 + 1.34*CO

MVK + hv→ .7*C3H6 + .7*CO + .3*CH3O2 + .3*CH3CO3

C2H5OOH + hv→ CH3CHO + HO2 + OH

EOOH + hv→ EO + OH

C3H7OOH + hv→ 0.82*CH3COCH3 + OH + HO2

ROOH + hv→ CH3CO3 + CH2O + OH

CH3COCH3 + hv→ CH3CO3 + CH3O2

CH3COCHO + hv→ CH3CO3 + CO + HO2

XOOH + hv→ OH

ONITR + hv→ HO2 + CO + NO2 + CH2O

ISOPOOH + hv→ .402*MVK + .288*MACR + .69*CH2O + HO2

HYAC + hv→ CH3CO3 + HO2 + CH2O

GLYALD + hv→ 2*HO2 + CO + CH2O

MEK + hv→ CH3CO3 + C2H5O2

BIGALD + hv→ .45*CO + .13*GLYOXAL + .56*HO2 + .13*CH3CO3

+ .18*CH3COCHO

GLYOXAL + hv→ 2*CO + 2*HO2

ALKOOH + hv→ .4*CH3CHO + .1*CH2O + .25*CH3COCH3 + .9*HO2 + .8*MEK

+ OH

MEKOOH + hv→ OH + CH3CO3 + CH3CHO

TOLOOH + hv→ OH + .45*GLYOXAL + .45*CH3COCHO + .9*BIGALD

TERPOOH + hv→ OH + .1*CH3COCH3 + HO2 + MVK + MACR

SF6 + hv→ sink

SF6em + hv→ sink
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Table A2. Continued.

Odd oxygen reactions Rate

O + O2 + M→ O3 + M 6.E-34*(300/T)**2.4

O + O3→ 2*O2 8.00E-12*exp( -2060./t)

O + O + M→ O2 + M 2.76E-34*exp( 720./t)

Odd oxygen reactions (O1D only)

O1D + N2→ O + N2 2.15E-11*exp( 110./t)

O1D + O2→ O + O2 3.30E-11*exp( 55./t)

O1D + H2O→ 2*OH 1.63E-10*exp( 60./t)

O1D + N2O→ 2*NO 7.25E-11*exp( 20./t)

O1D + N2O→ N2 + O2 4.63E-11*exp( 20./t)

O1D + O3→ O2 + O2 1.20E-10

O1D + CFC11→ 3*CL 2.02E-10

O1D + CFC12→ 2*CL 1.20E-10

O1D + CFC113→ 3*CL 1.50E-10

O1D + CFC114→ 2*CL 9.75E-11

O1D + CFC115→ CL 1.50E-11

O1D + HCFC22→ CL 7.20E-11

O1D + HCFC141B→ 2*CL 1.79E-10

O1D + HCFC142B→ CL 1.63E-10

O1D + CCL4→ 4*CL 2.84E-10

O1D + CH3BR→ BR 1.67E-10

O1D + CF2CLBR→ CL + BR 9.60E-11

O1D + CF3BR→ BR 4.10E-11

O1D + H1202→ 2*BR 1.01E-10

O1D + H2402→ 2*BR 1.20E-10

O1D + CHBR3→ 3*BR 4.49E-10

O1D + CH2BR2→ 2*BR 2.57E-10

O1D + CH4→ CH3O2 + OH 1.31E-10

O1D + CH4→ CH2O + H + HO2 3.50E-11

O1D + CH4→ CH2O + H2 9.00E-12

O1D + H2→ H + OH 1.20E-10

O1D + HCL→ CL + OH 1.50E-10

O1D + HBR→ BR + OH 1.20E-10

O1D + HCN→ OH 7.70E-11*exp( 100./t)

Odd hydrogen reactions

H + O2 + M→ HO2 + M ko=4.40E-32*(300/t)**1.30

ki=7.50E-11*(300/t)**-0.20

f=0.60

H + O3→ OH + O2 1.40E-10*exp( -470./t)

H + HO2→ 2*OH 7.20E-11

H + HO2→ H2 + O2 6.90E-12

H + HO2→ H2O + O 1.60E-12

OH + O→ H + O2 1.80E-11*exp( 180./t)

OH + O3→ HO2 + O2 1.70E-12*exp( -940./t)

OH + HO2→ H2O + O2 4.80E-11*exp( 250./t)

OH + OH→ H2O + O 1.80E-12

OH + OH + M→ H2O2 + M ko=6.90E-31*(300/t)**1.00

ki=2.60E-11

f=0.60
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Table A2. Continued.

Odd hydrogen reactions

OH + H2→ H2O + H 2.80E-12*exp( -1800./t)

OH + H2O2→ H2O + HO2 1.80E-12

H2 + O→ OH + H 1.60E-11*exp( -4570./t)

HO2 + O→ OH + O2 3.00E-11*exp( 200./t)

HO2 + O3→ OH + 2*O2 1.00E-14*exp( -490./t)

HO2 + HO2→ H2O2 + O2 3.0E-13*exp(460/t)

+ 2.1E-33 * [M] * exp (920/t))

* (1 + 1.4E-21 * [H2O] exp (2200/t))

H2O2 + O→ OH + HO2 1.40E-12*exp( -2000./t)

HCN + OH + M→ HO2 + M ko=4.28E-33

ki=9.30E-15*(300/t)**-4.42

f=0.80

CH3CN + OH→ HO2 7.80E-13*exp( -1050./t)

Odd nitrogen reactions

N + O2→ NO + O 1.50E-11*exp( -3600./t)

N + NO→ N2 + O 2.10E-11*exp( 100./t)

N + NO2→ N2O + O 2.90E-12*exp( 220./t)

N + NO2→ 2*NO 1.45E-12*exp( 220./t)

N + NO2→ N2 + O2 1.45E-12*exp( 220./t)

NO + O + M→ NO2 + M ko=9.00E-32*(300/t)**1.50

ki=3.00E-11

f=0.60

NO + HO2→ NO2 + OH 3.30E-12*exp( 270./t)

NO + O3→ NO2 + O2 3.00E-12*exp( -1500./t)

NO2 + O→ NO + O2 5.10E-12*exp( 210./t)

NO2 + O + M→ NO3 + M ko=2.50E-31*(300/t)**1.80

ki=2.20E-11*(300/t)**0.70

f=0.60

NO2 + O3→ NO3 + O2 1.20E-13*exp( -2450./t)

NO2 + NO3 + M→ N2O5 + M ko=2.00E-30*(300/t)**4.40

ki=1.40E-12*(300/t)**0.70

f=0.60

N2O5 + M→ NO2 + NO3 + M k(NO2 + NO3 + M)

* 3.704E26 * exp(-11000./t)

NO2 + OH + M→ HNO3 + M ko=1.80E-30*(300/t)**3.00

ki=2.80E-11

f=0.60

HNO3 + OH→ NO3 + H2O k0 + k3[M]/(1 + k3[M]/k2)

k0 = 2.4E-14*exp(460/t)

k2 = 2.7E-17*exp(2199/t)

k3 = 6.5E-34*exp(1335/t)

NO3 + NO→ 2*NO2 1.50E-11*exp( 170./t)

NO3 + O→ NO2 + O2 1.00E-11

NO3 + OH→ HO2 + NO2 2.20E-11

NO3 + HO2→ OH + NO2 + O2 3.50E-12

NO2 + HO2 + M→ HO2NO2 + M ko=2.00E-31*(300/t)**3.40

ki=2.90E-12*(300/t)**1.10

f=0.60

HO2NO2 + OH→ H2O + NO2 + O2 1.30E-12*exp( 380./t)

HO2NO2 + M→ HO2 + NO2 + M k(NO2+HO2+M)

* exp(-10900/t)/2.1E-27
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Table A2. Continued.

Odd chlorine reactions

CL + O3→ CLO + O2 2.30E-11*exp( -200./t)

CL + H2→ HCL + H 3.05E-11*exp( -2270./t)

CL + H2O2→ HCL + HO2 1.10E-11*exp( -980./t)

CL + HO2→ HCL + O2 1.40E-11*exp( 270./t)

CL + HO2→ OH + CLO 3.60E-11*exp( -375./t)

CL + CH2O→ HCL + HO2 + CO 8.10E-11*exp( -30./t)

CL + CH4→ CH3O2 + HCL 7.30E-12*exp( -1280./t)

CLO + O→ CL + O2 2.80E-11*exp( 85./t)

CLO + OH→ CL + HO2 7.40E-12*exp( 270./t)

CLO + OH→ HCL + O2 6.00E-13*exp( 230./t)

CLO + HO2→ O2 + HOCL 2.60E-12*exp( 290./t)

CLO + CH3O2→ CL + HO2 + CH2O 3.30E-12*exp( -115./t)

CLO + NO→ NO2 + CL 6.40E-12*exp( 290./t)

CLO + NO2 + M→ CLONO2 + M ko=1.80E-31*(300/t)**3.40

ki=1.50E-11*(300/t)**1.90

f=0.60

CLO + CLO→ 2*CL + O2 3.00E-11*exp( -2450./t)

CLO + CLO→ CL2 + O2 1.00E-12*exp( -1590./t)

CLO + CLO→ CL + OCLO 3.50E-13*exp( -1370./t)

CLO + CLO + M→ CL2O2 + M ko=1.60E-32*(300/t)**4.50

ki=3.00E-12*(300/t)**2.00

f=0.60

CL2O2 + M→ CLO + CLO + M k(CLO+CLO+M) / (1.72E-27*exp(8649./t))

HCL + OH→ H2O + CL 1.80E-12*exp( -250./t)

HCL + O→ CL + OH 1.00E-11*exp( -3300./t)

HOCL + O→ CLO + OH 1.70E-13

HOCL + CL→ HCL + CLO 3.40E-12*exp( -130./t)

HOCL + OH→ H2O + CLO 3.00E-12*exp( -500./t)

CLONO2 + O→ CLO + NO3 3.60E-12*exp( -840./t)

CLONO2 + OH→ HOCL + NO3 1.20E-12*exp( -330./t)

CLONO2 + CL→ CL2 + NO3 6.50E-12*exp( 135./t)

Odd bromine reactions

BR + O3→ BRO + O2 1.60E-11*exp( -780./t)

BR + HO2→ HBR + O2 4.80E-12*exp( -310./t)

BR + CH2O→ HBR + HO2 + CO 1.70E-11*exp( -800./t)

BRO + O→ BR + O2 1.90E-11*exp( 230./t)

BRO + OH→ BR + HO2 1.70E-11*exp( 250./t)

BRO + HO2→ HOBR + O2 4.50E-12*exp( 460./t)

BRO + NO→ BR + NO2 8.80E-12*exp( 260./t)

BRO + NO2 + M→ BRONO2 + M ko=5.20E-31*(300/t)**3.20

ki=6.90E-12*(300/t)**2.90

f=0.60

BRO + CLO→ BR + OCLO 9.50E-13*exp( 550./t)

BRO + CLO→ BR + CL + O2 2.30E-12*exp( 260./t)

BRO + CLO→ BRCL + O2 4.10E-13*exp( 290./t)

BRO + BRO→ 2*BR + O2 1.50E-12*exp( 230./t)

HBR + OH→ BR + H2O 5.50E-12*exp( 200./t)

HBR + O→ BR + OH 5.80E-12*exp( -1500./t)

HOBR + O→ BRO + OH 1.20E-10*exp( -430./t)

BRONO2 + O→ BRO + NO3 1.90E-11*exp( 215./t)
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Table A2. Continued.

Organic halogens reactions with Cl, OH Rate

CH3CL + CL→ HO2 + CO + 2*HCL 2.17E-11*exp( -1130./t)

CH3CL + OH→ CL + H2O + HO2 2.40E-12*exp( -1250./t)

CH3CCL3 + OH→ H2O + 3*CL 1.64E-12*exp( -1520./t)

HCFC22 + OH→ H2O + CL 1.05E-12*exp( -1600./t)

CH3BR + OH→ BR + H2O + HO2 2.35E-12*exp( -1300./t)

CH3BR + CL→ HCL + HO2 + BR 1.40E-11*exp( -1030./t)

HCFC141B + OH→ 2*CL 1.25E-12*exp( -1600./t)

HCFC142B + OH→ CL 1.30E-12*exp( -1770./t)

CH2BR2 + OH→ 2*BR + H2O 2.00E-12*exp( -840./t)

CHBR3 + OH→ 3*BR 1.35E-12*exp( -600./t)

CH2BR2 + CL→ 2*BR + HCL 6.30E-12*exp( -800./t)

CHBR3 + CL→ 3*BR + HCL 4.85E-12*exp( -850./t)

C-1 degradation (Methane, CO, CH2O and derivatives)

CH4 + OH→ CH3O2 + H2O 2.45E-12*exp( -1775./t)

CO + OH→ CO2 + H ki = 2.1E09 * (t/300)**6.1

ko = 1.5E-13 * (t/300)**0.6

rate=ko/(1+ko/(ki/M))

*0.6**(1/(1+log10(ko/(ki/M)**2)))

CO + OH + M→ CO2 + HO2 + M ko=5.90E-33*(300/t)**1.40

ki=1.10E-12*(300/t)**-1.30

f=0.60

CH2O + NO3→ CO + HO2 + HNO3 6.00E-13*exp( -2058./t)

CH2O + OH→ CO + H2O + H 5.50E-12*exp( 125./t)

CH2O + O→ HO2 + OH + CO 3.40E-11*exp( -1600./t)

CH2O + HO2→ HOCH2OO 9.70E-15*exp( 625./t)

CH3O2 + NO→ CH2O + NO2 + HO2 2.80E-12*exp( 300./t)

CH3O2 + HO2→ CH3OOH + O2 4.10E-13*exp( 750./t)

CH3O2 + CH3O2→ 2*CH2O + 2*HO2 5.00E-13*exp( -424./t)

CH3O2 + CH3O2→ CH2O + CH3OH 1.90E-14*exp( 706./t)

CH3OH + OH→ HO2 + CH2O 2.90E-12*exp( -345./t)

CH3OOH + OH→ .7*CH3O2 + .3*OH + .3*CH2O + H2O 3.80E-12*exp( 200./t)

HCOOH + OH→ HO2 + CO2 + H2O 4.50E-13

HOCH2OO→ CH2O + HO2 2.40E+12*exp( -7000./t)

HOCH2OO + NO→ HCOOH + NO2 + HO2 2.60E-12*exp( 265./t)

HOCH2OO + HO2→ HCOOH 7.50E-13*exp( 700./t)

C-2 degradation

C2H2 + CL + M→ CL + M ko=5.20E-30*(300/t)**2.40

ki=2.20E-10*(300/t)**0.70

f=0.60

C2H4 + CL + M→ CL + M ko=1.60E-29*(300/t)**3.30

ki=3.10E-10*(300/t)

f=0.60

C2H6 + CL→ HCL + C2H5O2 7.20E-11*exp( -70./t)

C2H2 + OH + M→ .65*GLYOXAL + .65*OH + .35*HCOOH + .35*HO2 ko=5.50E-30

+ .35*CO + M ki=8.30E-13*(300/t)**-2.00

f=0.60

C2H6 + OH→ C2H5O2 + H2O 7.66E-12*exp( -1020./t)

C2H4 + OH + M→ EO2 + M ko=8.60E-29*(300/t)**3.10

ki=9.00E-12*(300/t)**0.85

f=0.48
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Table A2. Continued.

C-2 degradation

EO2 + NO→ 0.5*CH2O + 0.25*HO2 + 0.75*EO + NO2 4.20E-12*exp( 180./t)

EO2 + HO2→ EOOH 7.50E-13*exp( 700./t)

EO + O2→ GLYALD + HO2 1.00E-14

EO→ 2*CH2O + HO2 1.60E+11*exp( -4150./t)

C2H4 + O3→ CH2O + .12*HO2 + .5*CO + .12*OH + .5*HCOOH 1.20E-14*exp( -2630./t)

CH3COOH + OH→ CH3O2 + CO2 + H2O 7.00E-13

C2H5O2 + NO→ CH3CHO + HO2 + NO2 2.60E-12*exp( 365./t)

C2H5O2 + HO2→ C2H5OOH + O2 7.50E-13*exp( 700./t)

C2H5O2 + CH3O2→ .7*CH2O + .8*CH3CHO + HO2 + .3*CH3OH 2.00E-13

+ .2*C2H5OH

C2H5O2 + C2H5O2→ 1.6*CH3CHO + 1.2*HO2 + .4*C2H5OH 6.80E-14

C2H5OOH + OH→ .5*C2H5O2 + .5*CH3CHO + .5*OH 3.80E-12*exp( 200./t)

CH3CHO + OH→ CH3CO3 + H2O 4.63E-12*exp( 350./t)

CH3CHO + NO3→ CH3CO3 + HNO3 1.40E-12*exp( -1900./t)

CH3CO3 + NO→ CH3O2 + CO2 + NO2 8.10E-12*exp( 270./t)

CH3CO3 + NO2 + M→ PAN + M ko=9.70E-29*(300/t)**5.60

ki=9.30E-12*(300/t)**1.50

f=0.60

CH3CO3 + HO2→ .75*CH3COOOH + .25*CH3COOH + .25*O3 4.30E-13*exp( 1040./t)

CH3CO3 + CH3O2→ .9*CH3O2 + CH2O + .9*HO2 + .9*CO2 2.00E-12*exp( 500./t)

+ .1*CH3COOH

CH3CO3 + CH3CO3→ 2*CH3O2 + 2*CO2 2.50E-12*exp( 500./t)

CH3COOOH + OH→ .5*CH3CO3 + .5*CH2O + .5*CO2 + H2O 1.00E-12

GLYALD + OH→ HO2 + .2*GLYOXAL + .8*CH2O + .8*CO2 1.00E-11

GLYOXAL + OH→ HO2 + CO + CO2 1.15E-11

C2H5OH + OH→ HO2 + CH3CHO 6.90E-12*exp( -230./t)

PAN + M→ CH3CO3 + NO2 + M k(CH3CO3+NO2+M)

*1.111E28 * exp(-14000/t)

PAN + OH→ CH2O + NO3 4.00E-14

C-3 degradation Rate

C3H6 + OH + M→ PO2 + M ko=8.00E-27*(300/t)**3.50

ki=3.00E-11

f=0.50

C3H6 + O3→ .54*CH2O + .19*HO2 + .33*OH + .08*CH4 + .56*CO 6.50E-15*exp( -1900./t)

+ .5*CH3CHO + .31*CH3O2 + .25*CH3COOH

C3H6 + NO3→ ONIT 4.60E-13*exp( -1156./t)

C3H7O2 + NO→ .82*CH3COCH3 + NO2 + HO2 + .27*CH3CHO 4.20E-12*exp( 180./t)

C3H7O2 + HO2→ C3H7OOH + O2 7.50E-13*exp( 700./t)

C3H7O2 + CH3O2→ CH2O + HO2 + .82*CH3COCH3 3.75E-13*exp( -40./t)

C3H7OOH + OH→ H2O + C3H7O2 3.80E-12*exp( 200./t)

C3H8 + OH→ C3H7O2 + H2O 8.70E-12*exp( -615./t)

PO2 + NO→ CH3CHO + CH2O + HO2 + NO2 4.20E-12*exp( 180./t)

PO2 + HO2→ POOH + O2 7.50E-13*exp( 700./t)

POOH + OH→ .5*PO2 + .5*OH + .5*HYAC + H2O 3.80E-12*exp( 200./t)

CH3COCH3 + OH→ RO2 + H2O 3.82E-11*exp(-2000/t)

+ .33E-13

RO2 + NO→ CH3CO3 + CH2O + NO2 2.90E-12*exp( 300./t)

RO2 + HO2→ ROOH + O2 8.60E-13*exp( 700./t)

RO2 + CH3O2→ .3*CH3CO3 + .8*CH2O + .3*HO2 + .2*HYAC 7.10E-13*exp( 500./t)

+ .5*CH3COCHO + .5*CH3OH
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Table A2. Continued.

C-3 degradation Rate

ROOH + OH→ RO2 + H2O 3.80E-12*exp( 200./t)

HYAC + OH→ CH3COCHO + HO2 3.00E-12

CH3COCHO + OH→ CH3CO3 + CO + H2O 8.40E-13*exp( 830./t)

CH3COCHO + NO3→ HNO3 + CO + CH3CO3 1.40E-12*exp( -1860./t)

ONIT + OH→ NO2 + CH3COCHO 6.80E-13

C-4 degradation

BIGENE + OH→ ENEO2 5.40E-11

ENEO2 + NO→ CH3CHO + .5*CH2O + .5*CH3COCH3 + HO2 + NO2 4.20E-12*exp( 180./t)

MVK + OH→MACRO2 4.13E-12*exp( 452./t)

MVK + O3→ .8*CH2O + .95*CH3COCHO + .08*OH + .2*O3 + .06*HO2 7.52E-16*exp( -1521./t)

+ .05*CO + .04*CH3CHO

MEK + OH→MEKO2 2.30E-12*exp( -170./t)

MEKO2 + NO→ CH3CO3 + CH3CHO + NO2 4.20E-12*exp( 180./t)

MEKO2 + HO2→MEKOOH 7.50E-13*exp( 700./t)

MEKOOH + OH→MEKO2 3.80E-12*exp( 200./t)

MACR + OH→ .5*MACRO2 + .5*H2O + .5*MCO3 1.86E-11*exp( 175./t)

MACR + O3→ .8*CH3COCHO + .275*HO2 + .2*CO + .2*O3 + .7*CH2O 4.40E-15*exp( -2500./t)

+ .215*OH

MACRO2 + NO→ NO2 + .47*HO2 + .25*CH2O + .53*GLYALD 2.70E-12*exp( 360./t)

+ .25*CH3COCHO + .53*CH3CO3 + .22*HYAC + .22*CO

MACRO2 + NO→ 0.8*ONITR 1.30E-13*exp( 360./t)

MACRO2 + NO3→ NO2 + .47*HO2 + .25*CH2O + .25*CH3COCHO 2.40E-12

+ .22*CO + .53*GLYALD + .22*HYAC + .53*CH3CO3

MACRO2 + HO2→MACROOH 8.00E-13*exp( 700./t)

MACRO2 + CH3O2→ .73*HO2 + .88*CH2O + .11*CO + .24*CH3COCHO 5.00E-13*exp( 400./t)

+ .26*GLYALD + .26*CH3CO3 + .25*CH3OH + .23*HYAC

MACRO2 + CH3CO3→ .25*CH3COCHO + CH3O2 + .22*CO + .47*HO2 1.40E-11

+ .53*GLYALD + .22*HYAC + .25*CH2O + .53*CH3CO3

MACROOH + OH→ .5*MCO3 + .2*MACRO2 + .1*OH + .2*HO2 2.30E-11*exp( 200./t)

MCO3 + NO→ NO2 + CH2O + CH3CO3 5.30E-12*exp( 360./t)

MCO3 + NO3→ NO2 + CH2O + CH3CO3 5.00E-12

MCO3 + HO2→ .25*O3 + .25*CH3COOH + .75*CH3COOOH + .75*O2 4.30E-13*exp( 1040./t)

MCO3 + CH3O2→ 2*CH2O + HO2 + CO2 + CH3CO3 2.00E-12*exp( 500./t)

MCO3 + CH3CO3→ 2*CO2 + CH3O2 + CH2O + CH3CO3 4.60E-12*exp( 530./t)

MCO3 + MCO3→ 2*CO2 + 2*CH2O + 2*CH3CO3 2.30E-12*exp( 530./t)

MCO3 + NO2 + M→MPAN + M 1.1E-11*300./t/[M]

MPAN + M→MCO3 + NO2 + M k(MCO3 + NO2 + M)

* 1.111E28 * exp(-14000/t)

MPAN + OH + M→ .5*HYAC + .5*NO3 + .5*CH2O + .5*HO2 ko=8.00E-27*(300/t)**3.50

+ 0.5*CO2 + M ki=3.00E-11

f=0.50
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Table A2. Continued.

C-5 degradation

ISOP + OH→ ISOPO2 2.54E-11*exp( 410./t)

ISOP + O3→ .4*MACR + .2*MVK + .07*C3H6 + .27*OH + .06*HO2 1.05E-14*exp( -2000./t)

+ .6*CH2O + .3*CO + .1*O3 + .2*MCO3 + .2*CH3COOH

ISOP + NO3→ ISOPNO3 3.03E-12*exp( -446./t)

ISOPO2 + NO→ .08*ONITR + .92*NO2 + .23*MACR + .32*MVK 4.40E-12*exp( 180./t)

+ .33*HYDRALD + .02*GLYOXAL + .02*GLYALD

+ .02*CH3COCHO + .02*HYAC + .55*CH2O + .92*HO2

ISOPO2 + NO3→ HO2 + NO2 + .6*CH2O + .25*MACR + .35*MVK 2.40E-12

+ .4*HYDRALD

ISOPO2 + HO2→ ISOPOOH 8.00E-13*exp( 700./t)

ISOPOOH + OH→ .8*XO2 + .2*ISOPO2 1.52E-11*exp( 200./t)

ISOPO2 + CH3O2→ .25*CH3OH + HO2 + 1.2*CH2O + .19*MACR 5.00E-13*exp( 400./t)

+ .26*MVK + .3*HYDRALD

ISOPO2 + CH3CO3→ CH3O2 + HO2 + .6*CH2O + .25*MACR 1.40E-11

+ .35*MVK + .4*HYDRALD

ISOPNO3 + NO→ 1.206*NO2 + .794*HO2 + .072*CH2O + .167*MACR 2.70E-12*exp( 360./t)

+ .039*MVK + .794*ONITR

ISOPNO3 + NO3→ 1.206*NO2 + .072*CH2O + .167*MACR 2.40E-12

+ .039*MVK + .794*ONITR + .794*HO2

ISOPNO3 + HO2→ .206*NO2 + .206*CH2O + .206*OH + .167*MACR 8.00E-13*exp( 700./t)

+ .039*MVK + .794*ONITR

BIGALK + OH→ ALKO2 3.50E-12

ONITR + OH→ HYDRALD + .4*NO2 + HO2 4.50E-11

ONITR + NO3→ HO2 + NO2 + HYDRALD 1.40E-12*exp( -1860./t)

HYDRALD + OH→ XO2 1.86E-11*exp( 175./t)

ALKO2 + NO→ .4*CH3CHO + .1*CH2O + .25*CH3COCH3 + .9*HO2 4.20E-12*exp( 180./t)

+ .8*MEK + .9*NO2 + .1*ONIT

ALKO2 + HO2→ ALKOOH 7.50E-13*exp( 700./t)

ALKOOH + OH→ ALKO2 3.80E-12*exp( 200./t)

XO2 + NO→ NO2 + HO2 + .25*CO + .25*CH2O 2.70E-12*exp( 360./t)

+ .25*GLYOXAL + .25*CH3COCHO + .25*HYAC + .25*GLYALD

XO2 + NO3→ NO2 + HO2 + 0.5*CO + .25*HYAC + 0.25*GLYOXAL 2.40E-12

+ .25*CH3COCHO + .25*GLYALD

XO2 + HO2→ XOOH 8.00E-13*exp( 700./t)

XO2 + CH3O2→ .3*CH3OH + .8*HO2 + .8*CH2O + .2*CO 5.00E-13*exp( 400./t)

+ .1*GLYOXAL + .1*CH3COCHO + .1*HYAC + .1*GLYALD

XO2 + CH3CO3→ .25*CO + .25*CH2O + .25*GLYOXAL + CH3O2 1.30E-12*exp( 640./t)

+ HO2 + .25*CH3COCHO + .25*HYAC + .25*GLYALD + CO2

XOOH + OH→ H2O + XO2 1.90E-12*exp( 190./t)

XOOH + OH→ H2O + OH T**2 * 7.69E-17 * exp(253./t)
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Table A2. Continued.

C-7 degradation Rate

TOLUENE + OH→ .25*CRESOL + .25*HO2 + .7*TOLO2 1.70E-12*exp( 352./t)

TOLO2 + NO→ .45*GLYOXAL + .45*CH3COCHO + .9*BIGALD 4.20E-12*exp( 180./t)

+ .9*NO2 + .9*HO2

TOLO2 + HO2→ TOLOOH 7.50E-13*exp( 700./t)

TOLOOH + OH→ TOLO2 3.80E-12*exp( 200./t)

CRESOL + OH→ XOH 3.00E-12

XOH + NO2→ .7*NO2 + .7*BIGALD + .7*HO2 1.00E-11

BENZENE + OH→ BENO2 2.30E-12*exp( -193./t)

BENO2 + HO2→ BENOOH 1.40E-12*exp( 700./t)

BENO2 + NO→ 0.9*GLYOXAL + 0.9*BIGALD + 0.9*NO2 + 0.9*HO2 2.60E-12*exp( 350./t)

XYLENE + OH→ XYLO2 2.30E-11

XYLO2 + HO2→ XYLOOH 1.40E-12*exp( 700./t)

XYLO2 + NO→ 0.62*BIGALD + 0.34*GLYOXAL + 0.54*CH3COCHO 2.60E-12*exp( 350./t)

+ 0.9*NO2 + 0.9*HO2

C-10 degradation

C10H16 + OH→ TERPO2 1.20E-11*exp( 444./t)

C10H16 + O3→ .7*OH + MVK + MACR + HO2 1.00E-15*exp( -732./t)

C10H16 + NO3→ TERPO2 + NO2 1.20E-12*exp( 490./t)

TERPO2 + NO→ .1*CH3COCH3 + HO2 + MVK + MACR + NO2 4.20E-12*exp( 180./t)

TERPO2 + HO2→ TERPOOH 7.50E-13*exp( 700./t)

TERPOOH + OH→ TERPO2 3.80E-12*exp( 200./t)

Tropospheric heterogeneous reactions

N2O5→ 2*HNO3

NO3→ HNO3

NO2→ 0.5*OH + 0.5*NO + 0.5*HNO3

CB1→ CB2 7.10E-06

SO2 + OH→ SO4

DMS + OH→ SO2 9.60E-12*exp( -234./t)

DMS + OH→ .5*SO2 + .5*HO2

DMS + NO3→ SO2 + HNO3 1.90E-13*exp( 520./t)

NH3 + OH→ H2O 1.70E-12*exp( -710./t)

OC1→ OC2 7.10E-06

HO2→ 0.5*H2O2

Stratospheric removal rates for BAM aerosols

CB1→ (No products) 6.34E-08

CB2→ (No products) 6.34E-08

OC1→ (No products) 6.34E-08

OC2→ (No products) 6.34E-08

SO4→ (No products) 6.34E-08
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Table A2. Continued.

Stratospheric removal rates for BAM aerosols

SOAM→ (No products) 6.34E-08

SOAI→ (No products) 6.34E-08

SOAB→ (No products) 6.34E-08

SOAT→ (No products) 6.34E-08

SOAX→ (No products) 6.34E-08

NH4→ (No products) 6.34E-08

NH4NO3→ (No products) 6.34E-08

SSLT01→ (No products) 6.34E-08

SSLT02→ (No products) 6.34E-08

SSLT03→ (No products) 6.34E-08

SSLT04→ (No products) 6.34E-08

DST01→ (No products) 6.34E-08

DST02→ (No products) 6.34E-08

DST03→ (No products) 6.34E-08

DST04→ (No products) 6.34E-08

SO2t→ (No products) 6.34E-08

Sulfate aerosol reactions

N2O5→ 2*HNO3 f (sulfuric acid wt%)

CLONO2→ HOCL + HNO3 f (T,P,HCl,H2O,r)

BRONO2→ HOBR + HNO3 f (T,P,H2O,r)

CLONO2 + HCL→ CL2 + HNO3 f (T,P,HCl,H2O,r)

HOCL + HCL→ CL2 + H2O f (T,P,HCl,HOCl,H2O,r)

HOBR + HCL→ BRCL + H2O f (T,P,HCl,HOBr,H2O,r)

Nitric acid Di-hydrate reactions

N2O5→ 2*HNO3 γ = 0.0004

CLONO2→ HOCL + HNO3 γ = 0.004

CLONO2 + HCL→ CL2 + HNO3 γ = 0.2

HOCL + HCL→ CL2 + H2O γ = 0.1

BRONO2→ HOBR + HNO3 γ = 0.3

Ice aerosol reactions

N2O5→ 2*HNO3 γ = 0.02

CLONO2→ HOCL + HNO3 γ = 0.3

BRONO2→ HOBR + HNO3 γ = 0.3

CLONO2 + HCL→ CL2 + HNO3 γ = 0.3

HOCL + HCL→ CL2 + H2O γ = 0.2

HOBR + HCL→ BRCL + H2O γ = 0.3

Synthetic tracer reactions

NH5→ (No products) 2.31E-06

NH50→ (No products) 2.31E-07

NH50W → (No products) 2.31E-07

ST8025→ (No products) 4.63E-07

CO25→ (No products) 4.63E-07

CO50→ (No products) 2.31E-07

E90→ (No products) 1.29E-07

E90NH→ (No products) 1.29E-07

E90SH→ (No products) 1.29E-07
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Table A3. Tropospheric ozone production and loss rates calculated for explicit reaction rates, O3-Prod and O3-Loss are the sum of the

specific reaction rates.

Production/loss (Tg year−1) REFC1SD REFC1 REFC2

O3-Prod 4701.1 4716.5 4758.0

NO-HO2 3032.2 3017.3 3051.7

CH3O2-NO 1102.1 1078.6 1072.2

PO2-NO 19.8 20.9 21.1

CH3CO3-NO 159.6 168.8 172.3

C2H5O2-NO 8.2 8.1 7.5

0.92*ISOPO2-NO 113.0 131.8 136.1

MACRO2-NOa 60.9 68.3 69.9

MCO3-NO 25.6 28.9 29.8

C3H7O2-NO n.a. n.a. n.a.

RO2-NO 10.6 11.2 11.6

XO2-NO 53.6 62.4 64.1

0.9*TOLO2-NO 2.7 2.8 3.8

TERPO2-NO 15.2 16.7 16.8

0.9*ALKO2-NO 21.6 21.3 21.7

ENEO2-NO 12.0 12.4 12.5

EO2-NO 34.9 37.2 37.0

MEKO2-NO 16.4 16.1 16.7

0.4*ONITR-OH 6.0 6.8 7.1

jonitr 1.1 1.2 1.3

O3-Loss 4118.0 4128.9 4157.6

O1D-H2O 2217.8 2295.8 2290.2

OH-O3 582.2 537.6 536.7

HO2-O3 1203.5 1179.0 1202.4

C3H6-O3 11.9 11.0 12.0

0.9*ISOP-O3 51.3 51.9 59.4

C2H4-O3 7.9 8.0 8.1

0.8*MVK-O3 12.9 13.5 14.8

0.8*MACR-O3 2.4 2.4 2.7

C10H16-O3 28.2 29.6 31.4
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