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ABSTRACT 

 

Nuclear magnetic resonance (NMR) is a powerful chemometric method for any scientist because 

it is easily translated to a portable format. Recent advances have made portable NMR spectroscopy 

economically and practically feasible. Here, the foundational physics of spin dynamics is discussed as a 

bridge from the abstract theory of NMR to practical applications of low field relaxometry. Relaxometry can 

provide a window into the molecular dynamics of a system through measurement of spin relaxation rates, 

which directly relate to chemical interactions and mobility within a system. 

The ease with which it can be customized makes portable NMR an extremely desirable technique 

for non-destructive, quantitative chemical analysis. However, portable NMR obtains a weaker signal with 

decreased resolution compared to traditional NMR. This is because spin states are not strongly split in low 

magnetic fields and are therefore populated nearly equally at thermodynamic equilibrium, causing weak 

longitudinal magnetization. As such, one typically measures exponential decay constants at low field rather 

than frequencies. Filtering and data analysis are considered with the development of the matrix pencil 

method (or MPM, so named after the mathematical entity which it employs) as a tool to aid in studies of 

low signal-to-noise systems and complex materials. Here, the MPM is explored first as a filtering strategy, 

and second, as a stable, reproducible data processing method in low field NMR. Currently, the inverse 

Laplace transform (ILT) is the conventional method for processing data in low field NMR. However, the 

ILT is hindered by sensitivity to noise, poor resolution, and high computational requirements that make it 

difficult to apply in non-laboratory environments. Improving the efficiency of data processing could expand 

the applications of portable NMR and enhance the quality of information gained from correlation 

experiments. The MPM fits in a broad category of filter diagonalization methods for digital signal analysis, 

and was developed for use in radar, antenna, and acoustics technologies. The success of the MPM in other 

areas of signal processing makes its application to low field NMR promising. 
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The latter half of this dissertation describes some applications of portable NMR by coupling 

hardware innovations with a creative data processing strategy. First, a hospital-based measurement of blood 

plasma water content is developed. Next, factory-based analysis of rheological properties is presented. 

Finally, the use of portable high-field NMR is established for metabolomic-type assays in agricultural and 

environmental studies.  
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1. INTRODUCTION TO THE THEORY OF MAGNETIC 

RESONANCE 
 

 

Equipped with his five senses, man explores the universe around him and calls the adventure Science. 

– Edwin Powell Hubble, 1889 – 1953 

 

The study of magnetic resonance arises naturally from the quantum mechanical property of ‘spin,’ 

a phenomenon that remains as mysterious as it is fundamental to the order of the world as we know it.  As 

such, any systematic discussion of magnetic resonance must include a rigorous treatment of quantum 

mechanics, which will follow shortly.  However, since the quantities that we measure holistically relate to 

the behavior of large collections of spins, it is equally relevant to develop a classical treatment.  Of the two, 

this approach is perhaps the more physically intuitive, and is beneficial for providing a framework of 

relations and formulae from which to build a discussion of magnetic resonance. Ultimately, as mandated 

by the Correspondence Principle, there must be a bridge between the two approaches. Although a perfect 

unification is still lacking, the theoretical foundations discussed here will reflect both classical and quantum 

mechanics and attempt to highlight a necessary feature of the two approaches, which is their 

complementarity. 

 

 1.1  Classical Interactions of Nuclei with Electromagnetic Fields 

Unlike electrons, atomic nuclei experience minimal interactions with their physical environments. 

Nevertheless, nuclei with nonzero spin are highly sensitive to magnetic fields. As such, a collection of 

matter can be seen as a dynamic spin system in the (n,P,V) microcanonical ensemble that undergoes 
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evolution toward thermal equilibrium via the process of relaxation. The achievement of thermal equilibrium 

can be characterized by parallel or antiparallel alignment of the nuclear spins with an external magnetic 

field, B , as shown in Fig. 1.1. 

 

Figure 1.1. A depiction of nuclear spins randomly aligned without an external B  field (left), and aligned 

parallel and antiparallel with 0B , which is the z component of B  (right). 

 

The equations of motion that describe this process are known as the Bloch equations, which can be 

written in terms of a single magnetic dipole,  , or the bulk magnetism, M , which is the summation over 

all values of   in a system, as 

M
M B

t



= 


.            (1.1) 

When 0B B z= , and relaxation terms are included, this expression becomes 

0
0

2 1

( )x y z
M x M y M M zM

M B z
t T T


+ −

=  − −


.    (1.2) 
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The presence of linear gradients in the magnetic field for a given spatial dimension n , 0

0

( )n

n

dB
G t

dn =

= , 

causes the expression for B  to be modified to 0( ( ) ( ) ( ) )x y zB B G t x G t y G t z z= + + + . 

By probing matter with electromagnetic radiation, a great deal of chemically specific information 

can be learned. The energies associated with nuclear magnetic resonance (NMR) are much less than the 

typical thermal energy that is available to molecules; this is because the Zeeman splitting of spin energy 

levels that occur is in the radio frequency (rf) range. 

In general, there are three main experimental methods that incorporate NMR: spectroscopy, 

relaxometry, and imaging. NMR spectroscopy refers to high field experiments that utilize Fourier 

transforms to analyze chemical shifts and J couplings of functional groups for structure determination. On 

the other hand, NMR relaxometry typically involves low field, permanent magnets with lower resolution, 

and signals are typically analyzed in the time domain. The relaxation properties of a material depend on 

dynamic processes such as chemical exchange, inter- and intramolecular interactions, diffusion, flow, and 

Brownian motion that results in molecular tumbling. Imaging involves the use of magnetic field gradients 

in at least two dimensions to create spatially resolved graphs of proton density and relaxation rates. 

Broadly speaking, the signal recorded [1] in an experiment is 

0 0 0
( ) ( ( ) , ( ) , ( ) ) ( , , )

2 2 2

t t t

x y z x y zS t M G t dt G t dt G t dt M k k k
  

  
     = =   .  (1.3) 

 When placed in an external magnetic field, the energy levels of nuclei with I ≠ 0 split in an effect 

called Zeeman splitting. Application of rf pulses drives transitions between these spin-related energy levels, 

and the decay back to thermal equilibrium can be observed in a traditional way via spectroscopy and 

imaging (i.e., by Fourier transforming the time domain signals to analyze frequency spectra). However, the 

third implementation of NMR that exists in the form of relaxometry involves analysis of time domain 

signals to characterize samples through the dynamics of their spin relaxation [1].  In particular, NMR 
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relaxometry is useful for working at low magnetic fields, where signals are weaker and have decreased 

resolution in comparison to traditional, high field NMR.  Low field NMR setups can be advantageous, as 

they are typically smaller and more portable than their high field counterparts, due to the use of permanent, 

rather than superconducting, magnets. 

Recent technological advancements have made portable NMR economically and practically 

feasible. The ease with which it can be customized to address scientific and clinical problems makes 

portable NMR an extremely attractive technique. Nevertheless, there are consequences to working at the 

low magnetic fields common to portable NMR spectroscopy. Specifically, since there is insufficient 

resolution to measure chemical shifts and J-couplings in the frequency domain, the transverse and 

longitudinal relaxation rate constants (T2 and T1) are the relaxometry parameters typically measured at low 

field [2]. 

NMR relaxometry observes spin relaxation, which occurs predominantly through dipolar coupling 

brought about by locally fluctuating magnetic fields [1,3]. The chief effector of these field fluctuations is 

Brownian movement of molecules [4]. In addition to water, other molecules in a sample interact with water 

via the formation of hydrogen bonds. In turn, these interactions affect the spin relaxation properties of water 

by altering the rotational correlation time of the bound-state water, which is inversely proportional to T2 

and (to a point) T1, and is defined as the time required for a molecule or molecular complex to rotate by 

one radian. Since the correlation time increases with an increase in molecular size, as well as with an 

increase in viscosity or decrease in temperature as described by the generalized Stokes-Einstein-Debye 

equation [4,5], it is expected that samples with lower water content will have faster relaxation times. 

Moreover, rapid proton exchange occurs between free water and bound water in many materials. 

Since the exchange rate for these protons is fast in comparison to T2 and T1, with respective timescales of 

10-9 s for exchange versus 10-3 – 100 s for spin relaxation, this phenomenon results in a weighted averaging 

of T2 and T1 values for bound and unbound water. 
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 1.2 Quantum Mechanical Description of Spin Populations 

 The systems observed in NMR experiments are large collections of approximately 1023 spins or 

more; as such, their behavior must be described statistically. In addition, there are shortcomings to the 

classical picture of NMR that motivate a more precise quantum mechanical description. Namely, the Bloch 

equations are valid only for collections of non-interacting spins. Moreover, individual spins do not have 

associated T1 or T2 values. Therefore, a statistical description of nuclear spin relaxation must be developed 

on the basis of interactions between spins, including nuclear dipolar and J couplings, chemical exchange, 

and electron-nuclear interactions such as shielding, dipolar coupling, and J coupling. 

 

1.2.1 A Brief Overview: Quantum Mechanics in a Nutshell 

 Analogous to the classical trajectory, which describes the succession in time of the classical state 

of a particle, a wavefunction ( , )r t  completely describes the quantum state of a particle. The square 

modulus of the wavefunction is interpreted as a probability density of the presence of the particle in space, 

as  

2
3( , ) ( , )dP r t C r t d r=       (1.4) 

where C is the square of the normalization constant. Wavefunction normalization is a requirement to scale 

the total probability of existence to 1, such that ( , ) 1dP r t = . Each wavefunction eigenstate can be treated 

as an element in a linear vector space, written as a ket ( )r =   in Dirac notation. The elements of the 

dual vector space are indicated by the complex conjugate bra  . The scalar product    is used to 

generate a Hilbert space, which is a complete vector space occupied by all the available eigenstates of a 

system. 
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 The superposition principle states that a wavefunction,  , can be expressed as a linear 

combination of eigenvectors in a basis set, as given by 

1

n

i i

i

c 
=

 =  .         (1.5) 

A basis is an N-dimensional vector space that is constituted by linearly independent eigenvectors, where 

linear independence implies that no element in the set can be written as a linear combination of the other 

elements in the set. It is an equivalent statement that the only solution to the equation 

  0i i

i

c  =                         (1.6) 

is 0ic   for all i . In general, quantum mechanics deals with orthonormal bases: 

  
1

0
i j

i j

i j
 

=
= 


.                (1.7) 

Most quantum mechanical operators, Ô , are linear such that 1 1 2 2 1 1 2 2
ˆ ˆ ˆ( )O O O       + = +  

for 1 and 2 that are scalars. 

 It is useful to consider the matrix representations of wavefunctions and operators. For example, 

when a ket,  , is written as a linear combination of basis elements, 
1

n

i i

i

c 
=

 , it is natural to construct 

a column vector from a ket as 

1

2

n

c

c

c

 
 
  =  =
 
 
 

.                (1.8) 
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Likewise, the complex conjugate bra corresponds to a row vector as ( )
†

† † †

1 2 nc c c =  = . 

Operators can also be written as matrices, for instance when Ô   =  where  represents the 

eigenvalues of Ô , which is an n n  matrix with elements ˆ
ij i jO O = . Since the trace of a matrix is 

invariant in a change of basis, a useful metric is the trace of the operator, which corresponds to the sum of 

the diagonal eigenvalues ˆ( ) ii i

i i

Tr O O = =  . 

 The Schrödinger equation describes the evolution of a wavefunction in time as 

ˆ( ) ( ) ( )t iH t t
t


 = − 


     (1.9) 

where ˆ ( )H t  is the Hamiltonian, or the total energy operator. 

 

1.2.2 Liouville Space 

 To deal with interactions between particles or spins, it quickly becomes clear that it is helpful to 

move from an N-dimensional Hilbert space to an N2-dimensional vector space called Liouville space. 

Operators that are defined in Hilbert space are elements of Liouville space, and, unlike in Hilbert space, the 

product of two elements of Liouville space is defined as ( )†ˆ ˆˆ ˆ|Tr A B A B  =
 

. It is important to remember 

that, in general, ˆ ˆˆ ˆAB BA . 

 Superoperators are operators that work on elements of Liouville space, indicated by a double hat, 

and are defined through the commutator ) ) )ˆ̂ ˆ ˆ ˆˆ ˆ ˆ ˆ,A B A B AB BA  = −
 

 [6]. 
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1.2.3 Angular Momentum, Magnetic Moments, and Spin 

The deeply interconnected natures of angular momentum, the magnetic moment, and spin are 

demonstrated in the linear relationship between their corresponding quantum mechanical operators.  

, , , , , ,
ˆ ˆˆ

x y z x y z x y zL I  = =                  (1.10) 

where ̂  represents the magnetic moment, L̂  is orbital angular momentum, and Î  is the nuclear spin 

operator. Here, Î  is analogous to the more general spin angular momentum operator denoted as Ŝ . It is 

worth noting that the total angular momentum is ˆˆ ˆJ L S= + . The commutators of the x, y, and z 

components of each form of angular momentum can be described most simply by the rules for Levi-Civita 

tensor notation. For example, ˆ ˆ ˆ,i j kI I i I  =
 

, where 1 = for cyclic , , , ,i j k x y z=  and 1 = −  for 

anticyclic indexing. This relationship is also true for the Cartesian components of Ĵ , L̂ , and Ŝ . 

An expression for  , the gyromagnetic ratio, is developed naturally from a classical derivation of 

the magnetic moment that arises from current flowing through a loop as IA = . Here, the current is the 

charge per unit time, 
q

I
t

= , and the area as assumed for a symmetric or round particle or orbital is circular 

as 
2A r= . At this time, if we note that in general, velocity is the distance of displacement per time as 

x
v

t
= , we can rearrange to express time as 

2x r
t

v v


= =  for motion on a circular path. Thus, by 

substitution, our expression for magnetic moment becomes 
( )

2 2 2

qrv e r v eL
IA

m



= = = =  where we 

have taken advantage of the fact that the cross product sinr v rv rv = =  for 90 = , and this cross 

product is equivalent to the orbital angular momentum scaled by the mass, m . Additionally, we have used 

the fact that the charge here is the charge of the electron, e . As such, the gyromagnetic ratio of the so-
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called Bohr magneton is 
2

B

e

e

m
 = . To make this expression suitable for other nuclei, this expression is 

modified by the scaling nuclear g-factor as 
2

N
N

N

eg

m
 =  to account for the subtle complexities that slightly 

alter the charge to mass ratios of each respective nucleus beyond the other terms in this expression. 

In a magnetic field, 
0B , particles with a magnetic dipole moment align parallel or antiparallel and 

precess around the direction of the field – much like the wobble of a compass needle – with a frequency 

termed the Larmor frequency, 0L B  . 

If we shift back to a quantum mechanical viewpoint, we will find that the eigenvalues for a spin ½ 

particle are obtained by operating with ˆ
zI  on the up and down spin states (denoted + or  and – or ) as 

1ˆ
2

zI + = + +  and 
1ˆ
2

zI − = − − . The Pauli matrices are used to represent the x, y, and z spin 

components in the  ,+ −  basis as  

0 11ˆ
1 02

xI
 

=  
 

, 
01ˆ

02
y

i
I

i

− 
=  

 
, and 

1 01ˆ
0 12

zI
 

=  
− 

.      (1.11) 

The next objective is to consider how to find an appropriate form of a wavefunction, ( )t , to 

describe a nuclear system in a magnetic field, which we will initially assume is uniform in strength. The 

most simplistic procedure is to first find ˆ ( )H t , then to apply the Schrödinger equation in Eq. 1.9 to solve 

for ( )t . From this point, other quantities of interest may be calculated directly, such as the average 

components of the magnetic moment ˆ
x , ˆ

y , and ˆ
z , or their corresponding macroscopic 

quantities xM , yM , and zM . Unfortunately, this approach is rapidly met with pitfalls when extended to 

systems containing many nuclear spins. 
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1.2.4 Density Operator Representation and the Liouville-von Neumann Equation 

Realistic, measurable systems typically encompass a minimum of several moles of spins, which 

means that we must deal with more than 1023 spins at any given time. Immediately, this causes the 

Schrödinger equation approach to become intractable, as the expression for the pure state ( )t  will 

involve a summation over more than 1023 components as  

1

( ) ( )
n spins

i i

i

t c t u
=

 =                    (1.12) 

where the set  iu  forms an orthonormal basis. 

To move forward in this case, we will develop the idea of a spin density operator, which can be 

applied to our large system of spins in a pure state or a statistical mixture. Let us define the density operator 

as  

ˆ ( ) ( ) ( )t t t =                                  (1.13) 

while also noting a key property of this operator in terms of how it can be used to predict the expectation 

value of another observable, which we will denote here as Â : 

 
,

ˆ ˆ ˆˆ ˆ( ) ( ) ( )j i i j

i j

A t u t u u A u Tr t A = = .     (1.14) 

Next, by applying the Schrödinger equation, it can be shown that the time evolution of the density operator 

is  
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ˆ ( ) ( ) ( )

ˆ , ( ) ( )

ˆ ˆ,

ˆ̂
ˆ.

t t t
t t

i H t t

i H

iH







 
=      

 = −  
 

 = −
 

= −

      

This yields the familiar result that is known as the Liouville-von Neumann equation  

      ˆˆ ˆ( ) ,t i H
t
 


 = −
 

 or 
ˆ̂

ˆ ˆ) )iH
t

 


= −


.     (1.15) 

 Naturally, we must consider the case when our system no longer characterizes a pure state, but 

rather contains a statistical mixture of states, n . If the probabilities corresponding to each state are 

denoted np , the system’s density operator becomes ˆ ˆ
n n

n

p =  . Additionally, the ensemble average of 

the observable, Â , is 

 ˆ ˆˆA Tr A= .       (1.16) 

 

1.2.5 Independent Spin ½ Nuclear Systems 

Let us step back briefly and recapitulate the most important points that have been developed above. 

First, we decided that the most convenient basis set to use for a system of independent spins is the set of 

available eigenstates of 0Ĥ . The simplest set of eigenkets,  ,+ − , corresponds to spin ½ nuclei. Next, 

we developed the construct of spin density through a density operator to replace the idea of a wavefunction 

for a large, statistical system. Like a wavefunction, spin density can be written in matrix form in terms of 

the time dependent coefficients of each substate, which are here +  or − , as 
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2 *

2*

c c c

c c c


+ + −

+ − −

 
 =
 
 

.       (1.17) 

If we relabel this matrix in short form as  

Z T

T Z

+ −

+  
 

−  

        (1.18) 

we can conveniently express the longitudinal magnetization as “Z” and the transverse magnetization, or 

spin coherence, as “T”. For a single spin, we can write this in matrix form as  

11 22

1 0 0 1 0 0 0 0

0 0 0 0 1 0 0 1
Z T T Z + −

       
= + + +       

       
   (1.19) 

or, perhaps more conveniently, as  

          
1 1

2 2 2

1 1 1
2 2 2

1 0 0 0 0

0 1 0 0 0

i

x y zi
a a a a

−

−

       
= + + +       

       
.   (1.20) 

Alternatively, in operator form,   can be written as a vector in Liouville space (also referred to as 

coherence space for this purpose) as 

11

22

ˆ

Z

T

T

Z


+

−

 
 
 =
 
 
 

.       (1.21) 

The so-called “operator” basis set of ˆ ˆ ˆ ˆ{ , , , }x y zE I I I  can be developed when we consider another operator 

representation of   as  

1
ˆ ˆ ˆ ˆˆ

x x y y z za E a I a I a I = + + + .      (1.22) 
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We will see how a product of these operators, or “product operators”, become useful as we press onward 

to consider a coupled system of two spins next. 

 

1.2.6 Two Coupled Spins 

To address the case of two coupled spins, we must modify the basis set in which we are working 

to reflect the dependence of the overall states available to the system on the manner in which the individual 

states combine. The new set of available eigenstates of 0Ĥ , for spin ½ nuclei, is 

 , , ,+ + + − − + − − . Likewise, we can adjust the spin density matrix to clearly show the respective 

populations, P, of each of these states on the diagonal, and the mixtures – or coherences, C – on the off-

diagonal:  

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

P C C C

C P C C

C C P C

C C C P



+ + + − − + − −

+ +  
 

+ −  
 − +
  − −  

.   (1.23) 

Now we can use the product operators to handily write the complete, orthonormal basis set of 2
4
= 16 total 

states for this system in four parts as  

     

1
2

ˆ ˆ ˆˆ ˆ ˆ ˆ{ , , , , , , ;

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ2 , 2 , 2 , 2 ;

ˆˆ2 ;

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ2 , 2 , 2 , 2 }

x y z x y z

x z y z z x z y

z z

x x y y x y y x

E I I I S S S

I S I S I S I S

I S

I S I S I S I S

    (1.24) 

where Î  represents the first spin and Ŝ  represents the second spin. The states in the first group of product 

operators are in-phase single quantum coherences; in the second group, the anti-phase single quantum 
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coherences; while the third group corresponds to a longitudinal two-spin order; and the fourth group is 

made up of the remaining linear combinations of “forbidden” double and zero quantum coherences. 

 

1.2.7 Thermal Equilibrium 

Predictably, the remaining logical step is to return to the big picture and generalize these results for 

a system of n spins. We will find, unsurprisingly, that the spin density matrix in Eq. 1.23 becomes  

1,1 1,2 1,

2,1 2,2

1,

,1 , 1 ,

n

n n

n n n n n

P C C

C P

C

C C P


−

−

 
 
 =
 
  
 

.      (1.25) 

We can note that the off-diagonal coherences average to zero at thermal equilibrium (i.e., there is no 

transverse magnetization). To find the probability of occupying the various states available to a system, the 

Boltzmann distribution can be applied in the following manner:  

    0
ˆ /1ˆ H kT

Boltzmann Z
e −

=        (1.26) 

where the partition function is defined as  0
ˆ /

Tr
H kT

Z e
−

=  and 0
ˆ E

H = . It is generally reasonable to use 

the high temperature approximation by taking the first two terms in the Taylor expansion of the exponentials 

to simplify the expression for the Boltzmann equilibrium density matrix as  

    ( )1
02

ˆˆ
Boltzmann kT

E H −     (1.27) 

for spin ½ particles. 
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1.2.8 Rotations and Relaxation: the “Master Equation” for Spin Density 

The end goal of these gymnastics is to find an equation that can adequately describe and predict 

the behavior of a realistic spin system to connect with signals measured in laboratory experiments. This 

coupling of theory and experiment is the essence of physical chemistry. As such, we must add a final 

modification to the Liouville-von Neumann equation (Eq. 1.15) to describe spin relaxation, as well as the 

rotations generated by the Hamiltonian. Ultimately, we seek an equation of the form  

( )ˆ ˆˆ ˆˆ ˆ ˆ ˆ) ) ) )BoltzmanniH
t

   


= − −  −


                   (1.28) 

where 
ˆ̂
  is the relaxation superoperator [6,7]. Note the similarities in this equation to the Bloch equations, 

which also contain a rotation part – in the cross product – as well as relaxation terms. At this point, it also 

becomes clear that we must develop strategies to find the Hamiltonian if we wish to make any reasonable 

progress with applying this equation in a practical sense. 

 

1.2.9 The Nuclear Spin Hamiltonian 

In order to validate and predict magnetic resonance experiments, it is helpful to calculate the 

Hamiltonians of spin systems.  Since these Hamiltonians are generally time-dependent, the nature of this 

problem is inherently complex. Therefore, some strategic techniques to simplify or approximate the time 

dependent terms must be implemented. 

In magnetic resonance, it is common to transform into the rotating frame to simplify calculations 

or derivations.  In essence, the transformation into a rotating reference frame fixes the axes with respect to 

the precession about the z-axis at the Larmor frequency of the spins.  This approach proves useful for 

calculating Hamiltonians as well; in fact, one of the most common approximation techniques is based on 

this transformation. Once in the rotating frame, we can simply truncate the Hamiltonian to only include the 
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time-independent, or secular, terms.  Not surprisingly, this technique is called the Secular Approximation 

(or the Rotating Wave Approximation). 

In general, the energy describing the interaction between a magnetic dipole,  , and an external 

magnetic field, B , is a dot product of the two vector quantities, cosE B B  = −  = − . However, 

there are other interactions that contribute to the complete expression for energy, and as such, the total 

Hamiltonian operator that yields this energy is a sum of terms that describe each interaction. For example, 

if we assert that 1 2 3
ˆ ˆ ˆ ˆ ...H H H H= + + + , then we could ascribe the first term to the interaction of the spin 

in question with 0B , the second term to interactions with the magnetic dipole fields of surrounding nuclei, 

the third term to electron couplings, etc. If we think of a nuclear spin as a magnet, there is a term in the 

Hamiltonian that describes the orientation dependence of the spin with respect to an external 

electromagnetic field. This so-called “Zeeman” term corresponds to the classical dot product energy shown 

above as ˆ ˆ ˆ ˆˆ
extH B I B = −  = −  . In general, we can use ˆ

extH  to describe the static field and the rf field, 

and ˆ
intH  to describe internal interactions such as chemical shift, J-couplings (through bond), dipole-dipole 

couplings (through space), and quadrupolar couplings. 

 

1.2.10 Motional Averaging 

At this point, if we take molecular motion into account, we can simplify the possible time-

dependence of this term with motional averaging. This arises from a combination of translation, rotation, 

and internal molecular motions such as bond axis rotations. Note that these effects are reasonable to assume 

for liquids and gases, where molecules undergo relatively free movement, but not for solids, due to the 

fixed molecular positions in a crystal lattice [8]. The assumption of motional averaging of various molecular 

orientations over time can be used to write the secular Hamiltonian as  
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( )0 01
int int

0

ˆ ˆ ( )H H t dt




=          (1.29) 

where ( )t  represents a molecular orientation. Invoking the properties of ergodicity, we can rewrite this 

as an integral over a probability density, ( )p  , to eliminate the time dependence and equivalently state  

0 0

int int
ˆ ˆ ( ) ( )H H p d=     

or, with normalization,           

0 01
int int

ˆ ˆ ( )
N

H H d=   .           (1.30) 

  

1.2.11 The Rotating Frame Transformation 

As one might guess, the straightforward representation in Eq. 1.30 is oftentimes too simplified to 

adequately describe complex systems. Instead, the next reasonable approach is to analyze time variations 

as perturbations that show up in the transverse plane as  

( )0 1
ˆ ˆ ˆ ˆ( ) cos sinz x yH t I I t I t   = − − −     (1.31) 

for an rf pulse with frequency   and amplitude 1 , applied perpendicular to the DC field 0B  that defines 

0  and the z direction. Note that this form presumes that crossed rf coils are used to provide the circularly 

polarized rf field. 

However, managing multiple oscillatory components in the Hamiltonian can become unwieldy. It 

now becomes advantageous to describe a frame transformation from the laboratory to the rotating frame, 

which is a common tactic to simplify terms. We define the rotating frame Hamiltonian, Ĥ  , as          
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ˆ̂ ˆ ˆˆ ˆ ˆz z zi tI i tI i tI

rot labH e H e H e
  − − = = .       (1.32) 

The benefit of this is that we can drop the sines and cosines in Eq. 1.31 and transform into time independent 

terms, yielding a simpler, effective external Hamiltonian as  

( )0 1
ˆ ˆ ˆ

eff z xH I I  = − − −         (1.33) 

in the rotating frame. To be clear, this Hamiltonian is being developed to describe the external interactions 

with the static and rf fields, defined above as ˆ
extH . It is worth noting that the dominant component in the 

Hamiltonian is the interaction with the static field. 

 

1.2.12 Electronic Effects: Shielding and Chemical Shift 

 The magnetic field that is experienced by an atomic nucleus is modified by its surrounding 

electrons. As the electrons, which are effectively moving charges, move around a nucleus – or a network 

of nuclei in a molecule – they generate a smaller magnetic field in a direction opposing the external 

magnetic field. This effect is called shielding, and can be described by the shielding constant,  . The 

effective magnetic field becomes  

( )0 1effB B = − .           (1.34) 

The effect can also be generalized to describe the bulk magnetic susceptibility,  , of a material as  

( )0 1nucB B = −            (1.35) 

where nucB  is the magnetic field “felt” at the nuclei within the material. 

In practice, one of the most useful observations that arises from the phenomenon of shielding is 

chemical shift. As the electron cloud density varies locally within a molecule, due in part to the presence 
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of different functional groups, distinct nuclei experience varying degrees of shielding. This leads them to 

experience slightly different magnitudes of 
effB , which causes them to precess as frequencies that vary 

slightly depending on the local chemical environment. When measured spectroscopically, this effect 

manifests as peaks that are shifted in frequency depending on their molecular environment. Thus, the name 

“chemical shift” is an intuitive designation. 

 

1.2.13 Chemical Shielding Tensor and the Zeeman Hamiltonian 

The Zeeman Hamiltonian,  

ˆ ˆ ˆ
zeemanH I B= −  ,           (1.36) 

which describes the interaction energy between a magnetic moment and an external magnetic field, can 

now be modified to include the effects of chemical shielding as a 3 3  tensor,   (not to be confused with 

the spin density), in the following way:  

( )ˆ ˆ ˆ1zeemanH I B = − − .        (1.37) 

It is necessary to use a tensor to describe the orientation dependence of electron shielding in a molecule, 

i.e., anisotropy. This effect is particularly noticeable in solids and crystal lattices. A sum of three terms can 

be used to define the shielding tensor as  

(1) (2)

1 0 0

0 1 0

0 0 1

xx xy xz

yx yy yz isotropic

zx zy zz

  

      

  

   
   

= = + +   
  
  

.    (1.38) 

Here, the first and second order terms are time-varying, and 
(2)

  is the chief effector of a relaxation 

mechanism called chemical shift anisotropy, or CSA. It is worth noting that most terms in the Hamiltonian 
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also give rise to relaxation mechanisms, as they involve splitting of energy levels that can lead to transfers 

or exchanges of energy following rf excitation. 

In liquids, rapid molecular tumbling leads to motional averaging of anisotropic components, which 

simplifies the shielding tensor and allows it to collapse to a single, isotropic value as  

( )/ 3isotropic Tr = .           (1.39) 

Therefore, for an isotropic sample placed in a homogeneous magnetic field along z, the simplest Zeeman 

Hamiltonian is  

( ) 0
ˆ ˆ ˆ1zeeman zH I B = − − .        (1.40) 

 

1.2.14 J Coupling 

At close range, with distances on the order of a bond length, it is possible for nuclear spins to 

interact with each other directly as well as with their surrounding electrons. These “through-bond” 

interactions are isotropic, unlike the more general “through-space” dipolar interactions, and are described 

by scalar “J” values. Note that J coupling can also be called the Fermi contact interaction, spin-spin 

coupling, or scalar coupling. The J coupling Hamiltonian is  

ˆˆ ˆ2JH JI S=              (1.41) 

if the two interacting spins are denoted Î  and Ŝ . In most cases, J is independent of molecular orientation, 

and therefore does not typically contribute substantially to relaxation. The exceptions to this are cases when 

the J value appears to change over time, namely when (1) one of the spins takes part in chemical exchange, 

or (2) when the T1 of one of the spins is much less than 1/J. Relaxation in these cases is respectively called 

scalar relaxation of the first and second kind [7]. 
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1.2.15 Dipolar Coupling 

 As we have already discussed, any nucleus with nonzero spin behaves like a miniature magnetic 

dipole. The dipolar magnetic field generated by a nucleus in the xy plane can be described by a formula 

that is dependent on both radial distance and angular inclination, r  and  , from the nucleus as  

0

3
3sin cos

4
xB

r


 
 



  
=   

  
        (1.42) 

0yB =             (1.43) 

( )20

3
3cos 1

4
zB

r


 




  
= −  

  
       (1.44) 

where 0  is the permeability of free space. However, any realistic system is populated with many spins, 

and therefore, many miniature dipolar fields. Since these fields drop off very quickly, due to their 
3

1

r
 

dependence, the dipolar coupling effect is predominantly intramolecular. By nature, this coupling is time-

dependent. As a molecule tumbles within an external magnetic field, 0B , its nuclear spins remain in 

alignment with 0B  even as the molecule continually re-orients itself. The dipolar Hamiltonian is  

( )( )0

3 2

3ˆ ˆˆ ˆ ˆ
4

I S
dipolar IS IS

IS IS

H I S I r S r
r r

  



 
= −  −   

 
      (1.45) 

where ISr  is the internuclear distance. A secular approximation can somewhat simplify this expression by 

removing the dependence on ISr  as  

        ( )ˆ ˆˆ ˆ ˆ3dipolar z zH d I S I S= −  .           (1.46) 
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Here, the dipolar coupling constant is ( )20

3
3cos 1

4

I S
IS

IS

d
r

  


= −  −  and IS  is the angle between 

0B  

and the internuclear vector. While all of these constants can be rather unwieldy, we find a happy 

simplification in the case of time-averaged isotropic tumbling that the dipolar Hamiltonian goes to zero. 

Nonetheless, before we get too excited about this approximation and decide to make widespread use of it, 

we should note that the temporal variations of ˆ
dipolarH  are often the foremost cause of both T1 and T2 

relaxation, which will be discussed in the next chapter. 

 

1.2.16 Quadrupolar Coupling 

 It is important to mention the fact that many nuclei have spin values greater than ½. These nuclei 

possess nonuniform charge distributions that give rise to an electrical quadrupolar moment, which in turn 

interacts with local gradients in electric field. These dynamic interactions result in energy shifts that alter 

the resonance frequencies, as described by the quadrupolar coupling Hamiltonian. Within the secular 

approximation, this Hamiltonian appears to be an interaction of the spin with itself:  

        ( )2

0

3ˆ ˆ ˆ ˆ3
4 (2 1)

Q z

eQ
H V I I I

I I
= − 

−
       (1.47) 

where 0V  is the orientation-dependent electric field gradient andQ  is a quadrupolar coupling constant. 

 

1.2.17 rf Excitation Hamiltonian 

When we add an rf pulse at frequency 1  to perturb the spin system in an experiment, the term that 

describes the interaction is  

         1
ˆ ˆ

rf xH I= −                        (1.48) 
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or, for two distinct types of spins,  

             1 1
ˆˆ ˆ

rf x xH I S = − − .                       (1.49) 

Overall, we can summarize the total Hamiltonian at this point with each of the contributing terms 

that have been discussed so far (Zeeman and rf interactions, J coupling, dipolar coupling, quadrupolar) as   

( ) ( ) ( ) ( )

( )

0 0 1 1

2

0

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 1 2 3

3 ˆ ˆ ˆ3 .
4 (2 1)

I SI S x x z z

z

H I B S B I S J I S d I S I S

eQ
V I I I

I I

      = − − − − − − +  + − 

+ − 
−

   (1.50) 

  

1.2.18 Average Hamiltonian Theory 

It would be nice to have a method for evaluating some of the non-secular (or time-dependent) terms 

of the Hamiltonian [9-14].  Average Hamiltonian Theory (AHT) is one such method. A few other notable 

techniques are Floquet theory and Van Vleck transformations. To develop the framework of AHT, we must 

start with the time-dependent Schrodinger Equation (letting ħ➝1, shown in Eq. 1.9), which describes the 

time evolution of a wavefunction. We can relate the wavefunction at time “t” to the initial wavefunction 

through a time-dependent propagator, U(t), whose time evolution is given by  

               ( ) ( ) ( )U t iH t U t
t


= −


.           (1.51) 

Next, we must decide how to deal with this propagator.  It is clear that if we can solve Eq. 1.51 for 

H(t), which is the full, time-dependent Hamiltonian of the spin system, we will be able to find a form of 

U(t).  A logical next step might be to use perturbation theory to separate H(t) into time independent and 

time-dependent terms as  

               0( ) ( )H t H H t= +            (1.52) 
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where ( )H t  represents a time-dependent perturbation (i.e., an rf pulse) and 0H  represents the internal, 

time-independent terms (i.e., chemical shift, dipolar couplings, etc.).  Now, we might find it useful to 

separate the propagator into a product of two terms as well:  

               
†( ) ( ) ( )U t L t t= L .           (1.53) 

In this form, 
† ( )L t  represents solely the external perturbing Hamiltonian, while ( )tL  represents the 

summed interaction of the external Hamiltonian with the internal Hamiltonian of the system.  Since our 

goal is to solve for the propagator, it is useful to write ( )U t  in this form because we know that  

               0
( )

† ( )

t

i H t dt

L t e
  − = .           (1.54) 

Now, our goal is to find the appropriate form of ( )tL  such that the Schrodinger Equation is 

satisfied.  Once we know this, we will be able to directly calculate what are called “average Hamiltonians” 

by implementing a Magnus expansion of the propagator. This brilliant mathematical manipulation will yield 

( )nH , or the average Hamiltonians, as orders of the expansion when it is collapsed back into exponential 

form.  But first, let us solve for ( )tL . By using the product rule for derivatives and equating the results 

with Eq. 1.51, we may recognize that  

( )† † †

0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )U t L t t L t t i H H t L t t
t t t

  
= + = − +

  
L L L .      (1.55) 

Rearranging to solve for the time derivative of ( )tL , we find  

( ) † †

0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t iL t H H t L t t L t L t t
t t

 
= − + −

 
L L L .      (1.56) 

Noting that ( )L t  represents the complex conjugate of 
† ( )L t , and since 

†( ) ( ) ( )L t L t iH t
t


= −


, it follows 

that  
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†

0( ) ( ) ( ) ( )t iL t H L t t
t


= −


L L .          (1.57) 

If we define an interaction representation, or “toggling frame”, Hamiltonian as  

†

0( ) ( ) ( )H t L t H L t= ,          (1.58) 

then Eq. 1.57 simplifies to a form that yields a simple solution for ( )tL :  

             ( ) ( ) ( )t iH t t
t


= −


L L .          (1.59) 

And thus  

                0
( )

( )

t

i H t dt

t e
 − =L .        (1.60) 

Now, given the conditions that the perturbing Hamiltonian must be periodic and cyclic, we can assert that  

                ( ) ( )cH t N H t + =         (1.61) 

for an arbitrary cycle time, c . In the case of an rf pulse, 
2

10c





=  ms.  For magic angle sample 

rotation, 100c  μs.  We can note, furthermore, that the interaction representation Hamiltonian will also 

be periodic and cyclic:  

                ( ) ( )cH t N H t + = .        (1.62) 

Due to this periodicity, the perturbing Hamiltonian will average to zero over one cycle, which leads 

to the simplification  

               0
( )

† ( ) 1

N c
i H t dt

cL N e




− = = .        (1.63) 

Thus, if evaluated over the course of N  cycle repetitions, the propagator can also be simplified as  
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 †( ) ( ) ( ) ( ) ( )
N

c c c c cU N L N N N    = = =L L L .      (1.64) 

At this point, we have shown that for any periodic and cyclic perturbation, we can describe the system at 

any integer multiple of the cycle time by an arbitrary ( )cL  over the cycle length c .  We can rearrange 

( )cL  to see how it directly relates to the perturbing Hamiltonian  

      

( ) ( )

0 0
0

0 0
( )

( )

t t
i H t dt i H t dt

c c
i H t dt i e H e

c e e

 



   + − 

− − = =L .       (1.65) 

This form is now perfectly suited to apply a Magnus Expansion, which will collapse the nested exponential 

into a different power series  

       
(0) (1) ( 2)

( )
ci H H H

c e



 − + + +
 =L           (1.66) 

where the 
( )nH  are average Hamiltonians, with the first few given by 

(0)

0

1
( )

c

c

H H t dt



=   

1(1)

1 2 1 2
0 0

( ), ( )
2

c t

c

i
H dt dt H t H t




 =     

              1 2(2)

1 2 3 1 2 3 3 2 1
0 0 0

1
( ), ( ), ( ) ( ), ( ), ( )

6

c t t

c

H dt dt dt H t H t H t H t H t H t



      = − +         .   (1.67) 

Thus, knowledge of the toggling frame, or interaction representation Hamiltonian will yield straightforward 

calculation of the average Hamiltonian for a spin system. 

This is a powerful technique that can be used to explain the Bloch Siegert Shift, which is a small 

shift in the resonant frequency that arises from the counter-rotating component in a driven oscillator (such 
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as a solenoid or coil which sends out the radio frequency pulse that is used to induce a changing magnetic 

field to perturb spin systems in magnetic resonance experiments).   

Average Hamiltonian Theory can also be used to predict ways to achieve homonuclear decoupling 

by averaging out dipolar interactions through some strategic experimental setups.  The first common 

example of this is magic angle spinning, which affects the real space component of the overall Hamiltonian.  

We can also design multi-pulse sequences to influence the spin space part of the Hamiltonian (which, recall, 

is a product of real and spin space components) – the WAHUHA experiment [11] is one such example. 

Ultimately, AHT is an important tool that should have a place in the “mathematical toolbox” of 

every quantum chemist. 
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2. NUCLEAR SPIN RELAXATION: FROM FUNDAMENTAL 

MECHANICS TO PRACTICAL APPLICATION 
 

 

We think there is color, we think there is sweet, we think there is bitter, but in reality there are atoms and 

a void. 

– DEMOCRITUS, C. 460 – C. 370 BC 

 

Relaxometry is a convenient way of obtaining distinctive chemical information with low-field, 

portable NMR. It is employed widely in areas such as medical imaging, process control, and security 

sensing. In particular, single-sided nuclear magnetic resonance (NMR) is a powerful experimental 

technique because it can non-invasively probe samples with unorthodox geometries and differentiate 

between components of mixtures. Furthermore, the low frequencies associated with permanent magnets 

can penetrate conductive layers covering a sample. Due to the low resolution associated with weak field 

strengths, the longitudinal and transverse relaxation rate constants (T1 and T2) and the diffusion coefficient 

(D) are the parameters typically extracted from this form of NMR, rather than chemical shifts and J-

couplings. This is because the T1, T2, and D parameters are easily obtained from an inhomogeneous magnet. 

In particular, 2D relaxometry is useful due to its ability to correlate measurables in a material, thereby 

giving insight to exchange processes. The mathematical functions that govern the observed signals are 

damped exponentials, and thus can be elucidated through data processing. The immediate usefulness of a 

measurement is largely influenced by the efficiency of the data processing technique that is implemented. 

Before discussing data analysis in further detail, let us first explore the mechanisms of spin relaxation on a 

fundamental level. 
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2.1 Relaxation Mechanisms 

In general, spin relaxation arises from temporal or spatial variations in the magnetic field in which 

a collection of spins exist [1-6]. One predominant effect that leads to these magnetic field fluctuations is 

the random dipolar interactions between nuclei, which occur naturally as a result of molecular motion. 

These dipolar interactions allow dissipation of the transition energy from an excited state to the ground state 

(i.e., a transition from nonequilibrium alignment with the static magnetic field following the cessation of a 

pulse to parallel or antiparallel alignment according to the Boltzmann distribution). 

Another way of saying this is that relaxation is facilitated by molecular tumbling or material 

structure that causes nuclei to exist in proximity to each other and, thereby increasing the probability and 

rate of dipolar interactions for cross-relaxation.  This can also be pictured as dissipation of energy to a 

surrounding spin bath. 

The timescale of molecular motion is important to predict its resulting physical effects, and can be 

correlated to the relative amount of energy needed for the resulting process that occurs. 

 

2.1.1 Longitudinal Magnetization and T1 

The time constant T1 characterizes the time it takes longitudinal relaxation to recover to thermal 

equilibrium alignment with the static magnetic field, B0. It is important to note that a signal directly 

associated with longitudinal magnetization, zM , is not directly measurable with a conventional single-

channel NMR setup; as such, saturation or inversion recovery experiments involve a final “read-out” pulse 

to tip the longitudinal magnetization into the transverse plane for detection. As shown in Fig. 2.1, it is also 

possible to calculate zM  as  ˆ ˆˆTrz z zM I I  = = . 
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Figure 2.1. Plot of the z component of magnetization over time as equilibrium is achieved. At time = 0, 

zM = 0 or 0M− , depending on whether a saturation recovery or inversion recovery pulse sequence 

is used. 

 

For an inversion recovery experiment, a diagrammatic representation of a pulse sequence is shown 

in Fig. 2.2. 

 

Figure 2.2. Inversion recovery pulse sequence diagram. 



32 

 

 

For a saturation recovery experiment, a pulse sequence is shown in Fig. 2.3. 

 

Figure 2.3. Saturation recovery pulse sequence diagram, where the first train of 
2

  pulses is repeated n  

times to achieve “saturation” of magnetization. 

 

2.1.2 Transverse Magnetization and T2 

The T2 relaxation rate constant relates to dephasing in the transverse plane, which can also be 

described as a loss of phase coherence within a spin system.  This is caused by precession at slightly varying 

rates due to local, fluctuating fields, as shown in Fig. 2.4. 

Figure 2.4. Dephasing of spins that results in loss of transverse magnetization over time. 
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T2 is often measured by a Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence involving a long 

train of echoes, shown diagrammatically in Fig. 2.5. 

 

Figure 2.5. Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence diagram. 

 

The intensity of the echoes in a CPMG experiment decays over time, as pictured in Fig. 2.6, and the 

envelope of their decay can be fit to extract T2. 
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Figure 2.6. Echo train signal following application of a CPMG pulse sequence. 

 

 The signals observable with rf coils are associated with transverse magnetization, such as

 ˆ ˆˆTrx x xM I I  = =  and  ˆ ˆˆTry y yM I I  = = . 

 

2.1.3 Relationships between T1, T2, and the Autocorrelation Time, 𝝉𝒄 

T1 and T2 are convenient parameters to describe the interactions between spins and locally 

fluctuating fields that are brought about by molecular motion, chemical exchange, thermal motion in the 

lattice, and nearby paramagnetic centers. The timescale of the interaction is ultimately one of the most 

important features that will dictate its relaxation effects. It can be seen in Eq. 2.1 that T1 is related to x and 

y fluctuations as 

       

2 2 2

2 2

1 0

1

1

x y c

c

B B

T

 

 

+
=

+
                (2.1) 
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and is most strongly influenced by fluctuations near the Larmor frequency, 
0B = . Here, c  represents 

the autocorrelation time, which is defined as the time it takes for a molecule to rotate one radian. 

Alternatively, the autocorrelation time can be expressed as a ratio of viscosity,  , and volume, V , to the 

thermal energy, kT , as 
c

V

kT


 = . 

Next, we will describe T2, noting that this parameter relates to fluctuations in the z direction as  

       

2 2

2 2

2 2

2 0

1
1 2

1

x y c

z c

c

B B

B
T


 

 

+

= +
+

.            (2.2) 

T2 is most sensitive to low frequency fluctuations, in which   approaches zero. The so-called “extreme 

narrowing limit” can be found by plotting T1 and T2 versus the autocorrelation time, as shown in Fig. 2.7.  
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Figure 2.7. Logarithmic plot showing the relationship between T1 and T2 and the autocorrelation time. 

 

 Now that we have a grasp of some theoretical essentials of magnetic resonance, we will turn our 

attention to the next chronological steps in an NMR experiment after the signal has been recorded. The 

development and implementation of the new data processing algorithms is motivated by the need for field-

based instruments that can be used in remote settings, such as field hospitals, factories, and geological sites 

for immediate analysis of noisy spectroscopic signals. Typically, filtering is an important step before fitting, 

and this is discussed in Ch. 3. Signal analysis is then completed with fitting the filtered signal and extracting 

the parameters of interest; this is discussed in Ch. 4. The coupling and automation of these strategies allows 
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us to tackle diverse and previously inaccessible problems, some examples of which are discussed in the 

remaining chapters. 
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3. THE MATRIX PENCIL AS A TUNABLE FILTER 
 

 

A peculiar beauty reigns in the realm of mathematics, a beauty which resembles not so much the beauty of 

art as the beauty of nature and which affects the reflective mind, which has acquired an appreciation of it, 

very much like the latter. 

– Ernst Eduard Kummer, 1810 – 1893 

 

Abstract 

The matrix pencil method (MPM) is developed as a tunable filtering and phasing tool for nuclear 

magnetic resonance (NMR) spectroscopy. The next chapter more rigorously and methodically describes 

the MPM and its use as a fitting tool in NMR is demonstrated. In this chapter, the ability of the MPM to 

precisely model noisy data is explored for the purposes of achieving a mathematical separation of the 

information-containing signal from the noise and promoting the usefulness of this approach. First, data 

from unilateral magnetic resonance experiments provides a framework for demonstration of the MPM 

filtering ability by modeling the damping components of a signal, and selectively reconstructing the low 

frequency decay without the risk of aliasing seen with Fourier filters. Next, a modulation in a steady state 

free precession experiment is removed to aid in analysis, which is useful for correcting field drifting from 

temperature variations in long measurements. Finally, for high field experiments, a pure phase correction 

is shown to aid with “untwisting” complex spectra in simulation as well as data resulting from a water 

suppression pulse sequence. The cases shown here suggest that the matrix pencil filter is a simple and 

versatile tool that can enhance the results obtained from both low and high field experiments. 
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3.1 Introduction 

As digital signal acquisition technology has progressed in NMR spectroscopy, multifarious filters 

have been developed for pre-processing data [1]. Filters are necessary for a myriad of reasons, with one of 

the most notable being the fact that NMR is a fundamentally insensitive measurement. The electrical signals 

detected in a receiver are typically on the order of µV, and therefore must be significantly amplified for 

substantive analysis to occur [2]. Application of a pass-band filter can considerably improve the sensitivity 

and signal to noise ratio. Other issues that may be encountered in pre-processing are the introduction of 

unwanted frequencies, sometimes arising from field drifting due to thermal instability or heteronuclear 

contamination, and phase twisting of complex spectra. Fourier transform windowing filters are one of the 

most widely used methods, but other techniques such as wavelet transforms have also been explored 

recently [3,4]. However, there is still room for improvement in the filters that exist to this date. In the 

standard approach, pass-band filters are implemented in the frequency domain. While this is strategy is 

natural in the case of high field spectroscopic and imaging applications, this method is less suited for low 

field NMR data that is typically analyzed in the time domain [2,5]. 

The matrix pencil method (MPM) has been established as an algorithm for parameter estimation of 

exponentially damped and undamped sinusoids in NMR relaxometry [6-9]. Indeed, the MPM is less 

susceptible to some of the difficulties associated with the gold standard inverse Laplace transform (ILT) 

[10-13] in low resolution cases that cause instability in integral transforms. To demonstrate the usefulness 

of the MPM in disentangling the components of complex materials and mixtures with a high degree of 

precision, a comparative analysis of crude oil is shown in Fig. 3.1 with the MPM and ILT. 
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Figure 3.1. In comparison to the ILT processing method in (a), the MPM offers superb resolution in (b), as 

demonstrated by a comparative analysis of a crude oil with five T2 components. 

 

The matrix pencil method can also be used as a tunable filtering and phasing tool for NMR 

spectroscopy. Here, the ability of the MPM to precisely model noisy data is explored for the purpose of 

achieving a mathematical separation of the meaningful signal from the noise. First, data from unilateral 

magnetic resonance experiments provides a framework for demonstration of the filtering ability by 

modeling the damping components of a signal, and selectively reconstructing the low frequency decay 

without the risk of aliasing seen with Fourier filters. Next, a modulation in a steady state free precession 

(SSFP) experiment [5] is removed to aid in analysis, which is useful for correcting field drifting from 

temperature variations in long measurements. Finally, for high field experiments, a pure phase correction 
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is shown to aid with “untwisting” complex spectra in simulation as well as data resulting from a water 

suppression pulse sequence. The cases shown here suggest that the matrix pencil filter is a simple and 

versatile tool that can enhance the results obtained from both low and high field experiments. 

 

3.2 Theory 

 The goal of this section is to describe the implementation of the MPM as a filter to remove noise 

and enhance the signal. One may proceed in essentially the same way as with a Fourier filter applied in a 

tunable low pass, high pass, or notch style. The critical difference with the MPM is that the eigenvalues 

yield a distribution of real and imaginary frequency components with resolution matching the number of 

data points, whereas a Fourier filter only obtains imaginary components. The matrix pencil filter (MPF) 

can therefore model and smooth the damping components of a signal with greater accuracy while 

simultaneously allowing the reconstruction of pure phased spectra, as demonstrated in Fig. 3.2. An 

additional benefit to this approach is that it is not susceptible to aliasing, due to its ability to also obtain the 

real components of an exponential signal, unlike Fourier filters which often cause a loss of the beginning 

and ending data points due to necessary truncation of aliased components. 
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Figure 3.2. A simulated noisy signal in (a) and corresponding spectrum in (b) is Fourier filtered with a 65 

kHz window in (d), yielding the inverse transformed signal in (c). In contrast, the MPM filtered 

spectrum is shown in (f), with the reconstructed signal in (e). The MPM was performed with 20 

components, and filtering was also accomplished with a 65 kHz bandwidth. 

 

The MPM can be used in a straightforward way to determine the number of decay constants present 

in a damped, transient 1D or 2D signal, as well as their relative contributions and values. At this point, 

knowledge of a set of decay constants and respective amplitudes allows reconstruction of the initially 

decomposed noisy signal. To filter this data, specific frequencies can be selectively removed, and a signal 

can be reconstructed with any subset of the originally decomposed data that is desired to preserve the 

meaningful components and discard the obfuscating noise or unwanted modulations or phase twisting. 
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3.3 Experimental 

To assess the widespread scope and utility of the MPF technique, a range of samples were analyzed 

with a variety of pulse sequences and magnets. Samples included crude oil, cod liver oil, mineral oil, a 

standardized equal volume mixture of olive oil and 3.12 mM CuSO4 in water, and a standardized mixture 

of 80% water and 20% ethyl alcohol by volume. All chemicals were obtained from Sigma-Aldrich except 

for olive oil, which was purchased from Trader Joe’s and used as received, and the crude oil and cod liver 

oil which were used as received. 

The first three oil samples were studied with a Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence 

for T2 measurement. The olive oil/water mixture was used with a steady state free precession (SSFP) pulse 

sequence [14]. The ethyl alcohol/water mixture was explored with a 1331 water suppression pulse sequence 

as described by P. J. Hore [15]. 

The crude oil sample was analyzed with a 0.55 T (23 MHz 1H Larmor frequency) Pure Devices 

benchtop magnet with a delay of 80 µs between the  radio frequency (rf) pulses of the CPMG and 32 scans 

for signal averaging. 

The cod liver oil was analyzed with 0.40 T and 0.47 T (17 MHz and 20 MHz 1H Larmor frequency) 

unilateral magnets constructed by Bruce Balcom, et al. at the University of New Brunswick [16]. A delay 

of 300 µs between the  rf pulses was used in CPMG experiments with 8 scans for signal averaging. 

The mineral oil was analyzed with a 0.11 T (4.5 MHz 11H Larmor frequency) unilateral magnet 

also built by Bruce Balcom et al., interfaced to a Tecmag Redstone spectrometer and a homebuilt rf coil 

with a delay of 400 µs between the CPMG  rf pulses and 8 scans for signal averaging. 

A 1.01 T (43.7 MHz 1H Larmor frequency) Aspect Imaging M100 magnet with a 60 mm bore was 

interfaced to a Tecmag Apollo spectrometer to provide a large volume, homogeneous region to explore the 

relaxometry properties of the olive oil/water mixture with SSFP experiments.  Typically, π/2 rf pulse lengths 
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of 30 µs with 7 W of applied rf power were used with a pulse spacing of 3 µs and a maximum delay time 

of 1.6 ms. 

An Aspect Imaging 1.4 T (60 MHz 1H Larmor frequency) cryogen-free, high-resolution benchtop 

spectrometer was interfaced to a Tecmag Apollo spectrometer and used with a 1331 pulse sequence to 

explore water suppression with the 80% water, 20% ethyl alcohol sample. Typical π/2 rf pulse lengths of 8 

µs with 2.4 W of applied rf power were used. 

All calculations and MPM data processing were accomplished with Matlab (Mathworks, Natick, 

MA).  All comparison ILT relaxometry results were generated using Prospa, the commercially available 

ILT software from Magritek (Malvern, PA.). 

 

3.4 Results and Discussion 

In the limit of zero noise, the MPM provides an analytically exact, closed-form solution to the 

problem of multi-exponential decomposition. This ability of the MPM to precisely model diverse arrays of 

data also enables it to handle noisy relaxometry signals by acting as a robust filter similar to singular value 

decomposition. 

 Figure 3.3 illustrates a typical workflow for the bandpass filtering process with the MPM by first 

modeling the data, and then incrementally narrowing the bandpass region until all apparent noise has been 

removed, but the specific signature of the decay rate has not been altered in the signal. 
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Figure 3.3. Standard CPMG data of cod liver oil at 17 MHz (left) and 20 MHz (right) with incrementally 

increasing filtering. The plots in (a) and (b) show the raw data in grayscale overlaid with MPM 

models of the data created by reconstructing the data as a sum of damped exponentials; the residuals 

in each case are shown as a dotted line to demonstrate the ability to model the noisy data precisely. 

This ability to model the noise allows for incremental elimination of the higher frequency 

exponential components attributed to noise by systematic reduction of bandwidth, as shown in the 

process from (a) to (c) to (e) to (g) for 17 MHz data in the left column, and from (b) to (d) to (f) to 

(h) for 20 MHz data in the right column. 
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Next, a test sample composed of mineral oil was chosen to study the performance of the MPF in 

much noisier data with a standard CPMG relaxometry experiment. A comparison of ILT analysis of the 

raw signal and the MPM filtered signal is shown in Fig. 3.4(a) and (b) to demonstrate how filtering can 

improve the ILT analysis on data that may otherwise not be reasonably processed with the ILT. The ILT 

initially produced a reasonable, single-component distribution, but fragmented when the limits were 

narrowed due to instability of the posed mathematical problem. 

 

Figure 3.4. Standard CPMG of a mineral oil sample with a 4 MHz unilateral magnet. The raw data shown 

in (a) is unfit for Laplace inversion, shown in (b) which yielded only edge artifacts when the fitting 
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window was narrowed. The MPM filtered signal shown in (c) yielded a much more stable ILT, 

shown in (d). 

 

To explore additional uses of the MPF, a steady state free precession experiment was considered 

next. Here, an additional modulation in the exponential decay of the signal to a steady state inhibits 

straightforward fitting and analysis of the data. Figure 3.5 illustrates the raw data and the data following 

removal of the modulation with the MPF. The demodulation enables direct analysis of the decay with any 

processing method desired, such as the ILT, nonlinear least squares fitting, or MPM.  
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Figure 3.5. Demodulation of the signal from a steady state free precession experiment with a standardized 

sample composed of equal volumes of olive oil and 3.12 mM CuSO4-doped water. 

 

The next example in Fig. 3.6 demonstrates filtering the imaginary part of the signal, rather than the 

real. To explore ability of the MPM to produce pure absorption phased spectra, a simulated spectrum in 

Matlab was generated and analyzed with the MPF to reconstruct a spectrum with zero and first order phase 

corrections, i.e., with phase distortions removed, but no other alterations. 
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Figure 3.6. Simulated data created in Matlab depicted in (a) was analyzed with the MPF for pure absorption 

phase correction shown in (b).  
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To apply the MPM as a pure phasing tool on experimental data, a sample of wet ethyl alcohol was 

studied at a 60 MHz 1H Larmor frequency with the benchtop, cryogen-free Aspect magnet. The initial 

spectrum without water suppression is shown alongside the resulting phase distorted spectrum after a 1331 

water suppression pulse sequence was applied in Fig. 3.7 (a-b), as well as the MPM phase corrected 

spectrum in Fig. 3.7 (c). 
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Figure 3.7. (a) 1H spectrum from AI60 of 80% water, 20% ethyl alcohol sample, where (b) shows water 

suppression of the same sample with a 1331 pulse sequence with resulting phase twisting and (c) 

shows the MPM reconstruction of the pure phased spectrum from (b). 
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Ultimately, the usefulness of NMR is limited by the ability of an algorithm to extract information 

from a recorded signal. Based on its performance here, the MPM appears to enhance the ability of other 

algorithms to extract information when used as a filter. 

 

3.5 Conclusion 

The ability of the MPM to function as both a filtering tool and as a fitting tool allow it to perform 

at the interface between low S/N input and high resolution output. The broad canvas of samples, pulse 

sequences, and magnets considered in this study demonstrate the versatility and robustness of the MPM. 

This suggests that the use of matrix pencil-based techniques will facilitate the analysis of systems and 

samples that have previously been inaccessible to NMR spectroscopy. 
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4. DATA PROCESSING IN NMR RELAXOMETRY USING 

THE MATRIX PENCIL 

 

Reproduced in part with permission from “S.N. Fricke, J.D. Seymour, M.D. Battistel, D.I. 

Freedberg, C.D. Eads, M.P. Augustine, Data processing in NMR relaxometry using the matrix 

pencil, J. Magn. Reson., 313 (2020) 106704.” 

 

Abstract 

The matrix pencil method (MPM) is explored for stable, reproducible data processing in nuclear 

magnetic resonance (NMR) relaxometry.  Data from one-dimensional and two-dimensional relaxometry 

experiments designed to measure transverse relaxation T2, longitudinal relaxation T1, diffusion coefficient 

D values, and their correlations in a standard olive oil/water mixture serve as a platform available to any 

NMR spectroscopist to compare the performance of the MPM to the benchmark inverse Laplace transform 

(ILT).  The data from two practical examples, including the drying of a solvent polymer system and the 

enzymatic digestion of polysialic acid, were also explored with the MPM and ILT.  In the cases considered 

here, the MPM appears to outperform the ILT in terms of resolution and stability in the determination of 

fundamental constants for complex materials and mixtures. 

 

4.1 Introduction  

The translation of a time-dependent signal into values for meaningful parameters is central to a 

successful nuclear magnetic resonance (NMR) experiment.  In the case of high resolution, high field NMR, 

the fast Fourier transform (FFT) is used to convert a time domain, oscillatory signal into a more readily 

interpreted spectrum of frequency versus amplitude.  This spectrum communicates the fractional 
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contribution of each frequency component to the change in the signal over time.  At low field strengths, 

where both signal-to-noise (S/N) and frequency resolution are poor, NMR relaxometry has emerged as a 

powerful tool to characterize complex materials and mixtures.[1,2]  In NMR relaxometry, the measured 

non-oscillatory time domain signals damp or decay as a function of time.  Non-linear least squares (NLLS) 

regression to a defined set of damped exponential functions, as well as the inverse Laplace transform (ILT) 

with variable regularization criteria, have been used in an effort to make relaxation “spectra” of relaxation 

times.[3]  These graphs of decay time constant versus amplitude are used to characterize mixtures at low 

field, much like frequency resolved NMR spectra are used at high field to infer chemical structure. 

The matrix pencil method (MPM) [4-6] provides an alternative way to estimate the decay constants 

for multi-exponential NMR relaxometry signals produced by complex mixtures.  The MPM is rapid, 

accurate, and well suited to operate in the low S/N regime.  Unlike the ILT, this implementation of the 

MPM produces delta function-like peaks that can be used to construct distributions where the peak width 

unambiguously communicates uncertainty in the central values of the measured constants.  Rather than 

using NLLS to fit a set of a pre-supposed number of exponentials or an integral transformation like the ILT, 

the MPM relies on an interesting property of a uniformly sampled exponential decay that can be extended 

to multi-exponential signals with linear algebra.  To appreciate this property, consider a simple single 

exponential signal f(t) = exp(-Rt) that decays at the rate, R, as a function of the time, t.  The MPM begins 

by separating the data, sampled at intervals t, into two point-shifted arrays f1((i-1)t) = f((i-1)t) and 

f2((i-1)t) = f(it).  The two point-shifted arrays are equated in a so-called “matrix pencil” as f2 = zf1 and 

the scaling factor z is determined.  Since the uniformly sampled data in this example corresponds to a single 

exponential f((i-1)t) = (exp(-Rt))i-1, z = exp(-Rt) solves the generalized eigenvalue problem f2 = zf1 at 

each point and provides the decay rate R = -log(z)/t.  This manuscript considers the extension of this basic 

idea to damped multi-exponential signals using linear algebra powered by singular value decomposition 

(SVD). 
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NMR relaxometry signals establish a platform for testing the performance of the MPM in a variety 

of magnetic field environments and with an array of samples, from simple to complex.  This performance 

is corroborated in all cases by direct comparison to results obtained from the benchmark relaxometry data 

processing standard, the ILT.  Ultimately, these results provide an avenue to explore the usefulness of the 

MPM in NMR relaxometry and the role of a suite of inversion modalities in quantifying complex system 

dynamics. 

 

4.2 Theory 

 The goal of this section is to provide the reader with a working knowledge of the MPM approach, 

how to use it to obtain fundamental constants from relaxation data, and how it differs from – and in many 

cases is more useful than – the ILT.  For a more intimate mathematical understanding of the MPM and 

SVD, the reader may consult refs. 4 and 5. 

 

4.2.1 The Inverse Laplace Transform 

Currently, the benchmark standard signal processing technique for exponentially decaying NMR 

relaxometry data is the Fredholm integral approach [7], broadly referred to as the ILT.  In this method, the 

measured one-dimensional (1D) data array, f(t), is viewed as the Laplace transform of a distribution of 

relaxation rates P(R) as  

  . (4.1) 

Therefore, performing the inverse transform yields P(R) as the distribution function of sample relaxation 

rates. 

A great deal of superb work has been devoted to establishing ways of applying the ILT to NMR 

relaxometry.[7-9]  Unfortunately, though, this approach remains a mathematically ill-posed problem.  The 

problem is ill-posed because the sets of closely related exponential curves used in the ILT are nearly linearly 
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dependent, so many highly disparate, but equally valid distributions solve Eq. (4.1).  In order to convert to 

a well-posed inverse problem, ILT algorithms impose regularization constraints, which limit the space of 

acceptable solutions. Because these regularization constraints are mathematically convenient but not 

physically or statistically meaningful, they introduce ambiguities into the meaning of the computed result.  

Moreover, the ILT is computationally expensive, as the matrix regularization generally needed to 

successfully invert the data array requires a considerable amount of time. 

 

4.2.2 The Matrix Pencil 

The goal of the MPM is to formulate a generalized eigenvalue problem from an array of data that 

displays first order relaxation.  To apply this approach, the NMR data must be sampled or resampled at 

regular intervals, t, and expressed as an n x m two-dimensional (2D) array or matrix, Y .  The matrix 

elements of Y , Y[i,j] = f((i-1)t1,(j-1)t2), are simply elements of the measured data matrix f(t1,t2) at the 

times t1 = (i-1)t1 and t2 = (j-1)t2 in a 2D experiment.  For a 1D experiment, the matrix Y  is a 

symmetrically incremented Hankel or Toeplitz matrix formed from the measured data vector f((i-1)t).  

When written in this manner, it should be clear that Y[1,i] = Y[i,1] = f((i-1)t).  The elements of successive 

rows and columns in this type of matrix are shifted from each preceding row and column.  A consequence 

of constructing Y  in this way is that the elements in the rows and columns in the 1D case are indexed to 

the same t value, whereas in the 2D case, the same elements can be indexed to different values, t1 and 

t2, as determined by experimental parameters. 

In order to create the eigenstructure necessary for the MPM, a matrix pencil is formed by 

windowing Y  in each dimension to construct submatrices 1Y  and 2Y .  The pair of matrices that appear 

together in a generalized eigenvalue problem is defined as a matrix pencil.  These submatrices are 

constructed by removing either the last column and row or the first column and row of the n x m matrix Y

as 
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 
 

=  
 
 

1

Y[1,1] Y[1,m-1]

Y

Y[n -1,1] Y[n -1,m-1]

 (4.2) 

and 

 

 

 
 

=  
 
 

2

Y[2,2] Y[2,m]

Y

Y[n,2] Y[n,m]

. (4.3) 

It can be noted that, for the 1D case, n = m.  The 1Y and 2Y submatrices are used to construct a matrix pencil 

 

 i i i2 1Y p - zY p = 0 , (4.4) 

 

where pi is an eigenvector and zi is the corresponding eigenvalue.  This equation can be rearranged to 

 

 i i
-1
1 2(Y Y - z E)p = 0  (4.5) 

using the inverse -1
1Y  and the identity matrix E . 

 Provided that -1
1Y  can be defined in the 1D case, zi immediately reports the decay rates Ri of the 

measured decay transient as zi = exp(-Rit).  Thus, for spin lattice, longitudinal T1 or spin-spin, transverse 

T2 relaxation, T1
(i) = t/log(zi) and T2

(i) = t/log(zi).  For diffusion measured with a pulsed gradient spin 

echo (PGSE) pulse sequence, Di = log(zi)/[22( – /3)G2], where Di is the diffusion coefficient for the 

ith component,  is the gyromagnetic ratio,  is the time delay between gradient pulses,  is the gradient 

pulse length and G2 is the incremental change in gradient strength squared that is used in the MPM in 

direct analogy to t.[10] 
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 In most cases, the inverse matrix  -1
1Y  cannot be calculated because it may not be square with  n ≠ 

m, and because the number of physically justified components will usually be less than the number of rows 

or columns.  The pseudoinverse of 1Y  can be defined as 

 

 =† -1 T
1Y V S U  (4.6) 

where the matrix of right singular vectors V , the transposed matrix of left singular vectors TU , and the 

diagonal inverse spectral matrix -1S  are invertible and directly obtained from the SVD of the matrix 1Y  as 

 = T
1Y U S V . (4.7) 

Since 1Y  is an (n-1) x (m-1) dimensional matrix where n and m are set by the dimensionality of the original 

data matrix Y , the unitary matrices of left and right singular vectors U  and TV  are (n-1) x p and p x (m-

1) dimensional with p being the reduced dimensionality of the diagonal spectral matrix S  of singular values.  

The dimensionality p represents the number of significant singular values found with SVD and also the 

number of unique eigenvalues zi determined from Eq. (4.5) by using Eq. (4.6) with the solutions for U , 

TV , and S  obtained from Eq. (4.7). 

 The p x p dimensional signal amplitude matrix A  can be obtained in two ways.  The first uses the 

solutions for U  and TV  from Eq. (4.7) along with the submatrix 2Y  to provide 

 

 = T
2A U Y V . (4.8) 

The second approach applies a similar transformation of 2Y  but instead constructs a pair of left and right 

Vandermonde matrices element-wise by taking powers of the eigenvalues determined from Eq. (4.5) as 

 

 -1 T
L kZ [k, ] = (z ) U [k, ]       and      -1

R kZ [ ,k] = (z ) V[ ,k]  (4.9) 
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where the subscripted L and R denote usage for left and right multiplication on 2Y , respectively.  The 

damped form for the n x m MPM-developed data matrix MPMY  becomes clear when it is formulated 

directly from the Vandermonde matrices.  In terms of the matrix elements of A , the 2D matrix elements of 

MPMY  are 

 

 
p

MPM i-1 j-1
k q

k,q=1

Y [i, j] = A[k,q] z z . (4.10) 

In the case where Y  is derived from 1D data, this equation can be used to construct the elements for a 

comparative MPM solution as 

 

 
p

MPM i-1
k

k,q=1

f ((i - 1)Δt) = A[k,q] z . (4.11) 

 

4.2.3 MPM Implementation 

The MPM can be used in a straightforward way to determine the number of decay constants present 

in a damped, transient 1D or 2D signal, as well as their relative contributions and values.  The practical 

application of the algorithm involves four steps, namely: 1) construction of data matrices and sub-matrices; 

2) application of SVD to the created matrices; 3) obtention of the optimal number of components that 

adequately represent the data and reduction of dimensionality, and 4) MPM calculation to obtain 

eigenvalues and amplitudes.  Each step is explained in detail below.   

First, the data matrix Y  and the submatrices 1Y  and 2Y  are constructed from the measured data.  

Second, SVD is performed on 1Y  to obtain U , TV , and the p x p dimensional spectral matrix S .  Singular 

value matrix decomposition of a raw signal is a robust tool for isolation of the spectral components of 
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mixtures. The MPM employs this procedure to detect the optimal number of unique components in a signal 

by reconstructing a decay curve with a varying number of SVD components. 

The optimal number of components is chosen in the third step, in which the dimensionality of S  is 

reduced by finding a subset of the p components of S  that adequately describe 1Y .  This involves removing 

elements of the diagonal spectral matrix S  while concomitantly removing the appropriate rows and columns 

of U and TV  to insure that the matrix product in Eq. (4.7), with a reduced dimensionality spectral matrix 

S , can be performed to yield an estimated spectral matrix est
1Y .  The elements of S  that are removed are 

either complex numbers or are so small that there is little effect on est
1Y , as verified by calculating the chi-

squared statistic 

 

  
n-1m-1

2 est 2
1 1 1

i=1 j=1

1
χ = (Y [i, j] -Y [i, j])

(n -1)(m-1)
 (4.12) 

for the residuals between the reconstructed curve and the raw signal.  Error analysis can also be 

accomplished by reconstruction of a signal based on amplitudes and relaxation rate constants estimated by 

the MPM.  Typically, the elements removed from S  do not contribute to the damping behavior of the signal 

in any significant way and correspond largely to noise.  The truncation of S  is facilitated by knowledge that 

the desired components must be real-valued and cannot reasonably decay much faster than 1/t.  Removal 

of the components that fail to meet these criteria tends to yield the best set of components, and the criteria 

can be imposed automatically in software.  Typically, the largest number of singular values that does not 

yield unphysical components is the best choice; however, for precious or singular samples, or in the 

presence of legitimate decay envelope modulations, this step must be more closely supervised.  An essential 

feature of the MPM is that it provides a list of intensities (and phases) and decay rates (and frequencies).  

With this list, the user may pick any features to keep or reject, and this choice is imposed in the third step. 
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For the fourth step, the reduced dimensionality of S , U  and TV  propagates through the MPM 

calculation in Eqs. (4.5) and (4.8), and yields a similarly reduced number of eigenvalues zi and signal 

amplitudes A[k,q].  If the original data is 2D, the data matrix Y  is transposed and these four steps are 

repeated to analyze the indirect dimension.  Depending on the pulse sequence, the eigenvalues are directly 

related to T1, T2 and Di as described above, and the A[k,q] report the fractional contribution of the given 

decay components to the overall measured signal. 

 

4.2.4 Error Analysis 

 The MPM analysis described above provides a list of eigenvalues z  and amplitudes A  that are 

used in Eq. (10) to construct an estimate of the full data matrix MPMY .  A graph of decay constant versus 

amplitude can be created by taking the decay constants calculated from zk and zq as the center of a 

multidimensional Gaussian peak with amplitude A[k,q].  The width of this Gaussian peak is calculated from 

the appropriate diagonal elements of the covariance matrix Σ of decay rates and signal amplitudes.  The 

matrix elements of the Hessian matrix  

 

 


 

2
2

k q

H[k,q] = χ
ξ ξ

 (4.13) 

are used to calculate the covariance matrix in the usual way as 2 -1Σ = χ H [11].  The k and q parameters 

refer to either the decay constants T1, T2 and Di or the amplitudes A[k,q].  The chi-squared statistic is 

calculated from the matrix elements of Y  and MPMY  in Eq. (4.10) as 

 

 
n m

2 MPM 2

i=1 j=1

1
χ = (Y[i, j] -Y [i, j])

nxm
 (4.14) 
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where n and m pertain to the original size of the data matrix.  By treating the MPM results in this way, the 

constructed Gaussian peak not only communicates the MPM-determined decay constant value from the 

location of the peak maximum but also the uncertainty in that decay constant via the peak width. 

 It is worth noting that this approach only works under the assumption of Gaussian uncertainties.  

Monte Carlo simulations and additional statistical testing, which will be included in a future publication, 

demonstrate that the uncertainties are quite markedly Gaussian, as long as the uncertainties are less than 

the distances separating the rate constants.  However, when the uncertainties are greater than or equal to 

the resolution of the rate constants, the shapes become associated with each other and lose their Gaussian 

character.  For a generalized approach to parameter estimation, in these challenging cases, the MPM results 

may be used as an initial guess in subsequent least-squares fitting.  This approach consistently yields the 

best estimate of the interdependent parameter set that describes the signal. 

 

4.3 Experimental 

All chemicals were obtained from Sigma-Aldrich with the exception of olive oil, which was 

purchased from Trader Joe’s and used as received.  A standardized equal volume mixture of olive oil and 

3.12 mM CuSO4 in water was prepared. 

A 43.7 MHz 1H Larmor frequency, 1.01 Tesla Aspect Imaging M100 magnet interfaced to a 

Tecmag Apollo spectrometer with a maximum gradient strength of 0.24 T/m was used to explore the 

relaxometry properties of the olive oil/water mixture.  The 60 mm diameter radio frequency (rf) coil inside 

of the NMR probe allowed large sample volumes to be studied.  Typically, π/2 rf pulse lengths of 30 µs 

with 7 W of applied rf power were used.  A saturation recovery pulse sequence with 100 indirect dimension 

time points and a maximum delay time of 2.5 s was used to measure T1.  For T2 measurement, a Carr-

Purcell-Meiboom-Gill (CPMG) pulse sequence was used with 1500 echoes and a delay of t = 1 ms 

between the  rf pulses. A pulsed gradient spin echo (PGSE) pulse sequence with  = 16 ms field gradient 
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pulses separated by  = 35 ms was used to measure diffusion coefficients Di in 140 diffusion gradient steps.  

Two-dimensional T1T2 and T2T2 correlations were performed with saturation recovery–CPMG and 

CPMG–CPMG pulse sequences [12] using the same parameters applied in the 1D cases.  The mixing time 

in the T2T2 experiment was set to 37 ms. 

All calculations and MPM data processing were accomplished with Matlab (Mathworks, Natick, 

MA).  All comparison ILT relaxometry results were generated using Prospa, the commercially available 

ILT software from Magritek (Malvern, PA.). 

 

4.4 Results and Discussion 

In the limit of zero noise, the MPM provides an analytically exact, closed-form solution to the 

problem of multi-exponential decomposition. This is demonstrated in Fig. 4.1 with model data in (a) 

simulated using  

 
1 2

1 2

Δt Δt
p - -

T [k] T [q]i-1 j-1
1 2

k,q=1

f((i - 1)Δt ,(j - 1)Δt ) = A[k,q](e ) (e )  (4.15) 

where A[k,q] represents the peak amplitudes and allows for exchange between populations. In the limit of 

no exchange, A  is diagonal with p positive, non-zero elements.  For fast exchange, or when the exchange 

rate exceeds the difference between spin relaxation rates, A  has just one positive, non-zero element located 

on the diagonal.  Slow to intermediate exchange introduces k ≠ q non-zero elements in A .  As evidenced 

in Fig. 4.1(b), the MPM processed result reproduces the input parameters exactly, including the exchange 

between relaxation modes.  This ability of the MPM to precisely model diverse arrays of data also enables 

it to handle noisy relaxometry signals by acting as a robust filter similar to SVD. 
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Figure 4.1.  (a) Noise-free data surface calculated from Eq. (15) with T1[1] = 3 s, T1[2] = 0.2 s, T2[1] = 2 

s, T2[2] = 0.1 s, A[1,1] = A[2,2] = A[1,2] = A[2,1] = 1.  (b) The plot produced from MPM processing 

that reproduces the T1, T2, and A[k,q] values exactly.  The 2D contour peak width in this plot is artificial.  

The width is included to represent the data in a 2D graph and is 0.06 % of the full bandwidth. 

 

  



68 

 

A test sample composed of equal volumes of olive oil and 3.12 mM CuSO4-doped water was 

chosen to study the initial performance of the MPM in standard 1D and 2D relaxometry experiments.  The 

T1, T2, and D values were 198 ms, 84 ms, and 1.2 x 10-10 m2/s for the olive oil, while for the CuSO4-doped 

water sample they were 515 ms, 198 ms, and 5.3 x 10-8 m2/s, respectively.  A mixture of the two substances 

was used because they are readily obtained, allowing anyone with an NMR instrument to accomplish 

similar benchmark comparisons.  Moreover, the two-layered sample is easy to prepare because the oil and 

water are not miscible, and therefore provide two distinct values each for T1, T2, and D to challenge the 

resolution of data processing techniques in the limit that these values become similar.  In the case of spin 

relaxation, this can be regulated by controlling the concentration of CuSO4 in water. 

 Figure 4.2 compares the performance of the MPM and ILT data processing approaches for the 

measurement of T2, T1 and D values in (a), (b) and (c) respectively, for the oil and CuSO4-water system.  

The data that generated the plots in Fig. 4.2(a) – (c) were obtained from the respective CPMG, saturation 

recovery, and PGSE pulse sequences.  Two facts emerge from a comparison of the MPM (left) to the ILT 

(right) results in Fig. 4.2.  First, the MPM provides better resolution than the ILT.  This observation is not 

due to any artificial data handling, as the peak width obtained by MPM reflects the true error in the 

parameter estimate calculated by the Hessian analysis described in Sec. 4.2.4.  For example, the T2 values 

shown in Fig. 4.2(a) are 198±24 ms and 115±3 ms from the MPM and 190±45 ms and 98±39 ms for the 

ILT.  The greater uncertainty in the ILT-derived T2 values leads to the broader responses in the figure and, 

thus, decreased resolution in comparison to the MPM.  It is true that the broad ILT lines can be artificially 

narrowed with an alternative choice for the regularization parameter .  However, this risks introducing 

computational instability and often relies on prior knowledge of the sample.  In all ILT results reported 

here, the value of  was selected by optimization of the 2 statistic for the fit parameters with respect to the 

data, as described in [13].  In all of the cases considered here, this procedure produced an  value slightly 
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greater than, slightly less than or equal to 1010.  Therefore, to remain consistent amongst all of the ILT 

results presented here,  = 1010 was used. 

The second fact that emerges from Fig. 4.2 is that the MPM analysis of the saturation recovery data 

shown in Fig. 4.2(b) produces two peaks appropriately labelling the distinct T1 values for the separate 

substances while the ILT yields just one.  Changes to  in the ILT analysis of this data set does not 

reintroduce these two peaks.  To evaluate the accuracy of MPM and ILT results, NLLS fitting was applied 

to all benchmark and exploratory 1D studies performed to date.  The MPM treatment typically produces 

constants within 5 % of the NLLS value, while the ILT values may differ by up to an order of magnitude. 
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Figure 4.2. Standard 1D graphs of processed decay constants versus amplitude obtained from the olive 

oil/water mixture.  The CPMG, saturation recovery, and PGSE pulse sequences were used to create 

data that produced the graphs in (a), (b), and (c), respectively.  The left column summarizes the MPM 

performance, while the right column shows the ILT results. 
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A comparison of the MPM and ILT approaches to processing typical multidimensional relaxometry 

data is shown in Fig. 4.3(a) and (b) for data obtained from T2T2 and T1T2 correlations respectively.  Similar 

contrasts emerge from this comparison, specifically related to linewidth and the appearance of artifacts in 

the 2D relaxometry correlation plots.  The linewidth, judged from the size of the similarly plotted contours, 

from maximum intensity to half intensity in ten increments, is always significantly less in the MPM cases.  

This suggests that error was correctly included in the MPM estimates, as this approach has inherently higher 

resolution than the ILT.  However, this immediate conclusion is based on the flawed interpretation that 

broad ILT linewidths solely reflect parameter uncertainty.  Such an interpretation is not precisely true, as 

the ILT also reports a physical distribution of time constants by inverting Eq. (4.1) to solve for P(R).  

Moreover, as mentioned above, the linewidth of the ILT is also influenced by the  smoothing parameter.  

This demonstrates the difficulty associated with disentangling true parameter error in an ILT analysis from 

the actual distribution of relaxation rates across a range of parameter values [8].  This issue is relevant in 

low-field NMR, particularly given the greater field inhomogeneity encountered when using single sided 

magnets equipped with surface coils. 
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Figure 4.3. Standard 2D contour plots correlating measured decay constants obtained from the olive 

oil/water mixture 2D relaxometry signals.  The CPMG-CPMG T2T2 and the CPMG-saturation 

recovery T1T2 pulse sequences were used to create the data that produced the contour plots in (a) and 

(b), respectively.  Again, the left column summarizes the MPM performance while the right column 

shows the ILT results. 
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It is worth commenting on the fact that the MPM does not handle truly continuous distributions of 

relaxation rates gracefully.  It automatically, by prior assumption, models the data as a discrete sum.  For 

continuous distributions, the MPM finds a parsimonious set of discrete components that best models the 

distribution.  Nonetheless, a continuous distribution can be modeled to high precision with a very small 

number of discrete components.  This approach may be useful in the measurement of pure systems as well 

as systems with high heterogeneity, such as biological tissues [3,14-18], whose continuous spectra are 

informative yet difficult to interpret as they often lack sharp and clear separation of spectral components.  

However, this specific application of the MPM is yet untested.  Ultimately, any fitting approach like the 

MPM or L1 regularization that models the data as a sum of discrete exponentials is limited in its ability to 

describe truly heterogeneous systems such as biomaterials.  The discrete nature of this sum leads to a delta 

function-like appearance of the corresponding component distribution.  Conversely, it is often difficult to 

interpret the linewidth in a continuous distribution spectrum obtained by complementary inversion 

approaches, as the linewidth reflects a combination of error and underlying system heterogeneity whose 

deconvolution is problematic.  Without prior knowledge of a system, it is impossible to conclude directly 

that any one fitted distribution is superior.  Rather, the most useful conclusions may be drawn by 

comparison of the results from many techniques, through which their complementarity may be leveraged 

to enhance the statistical rigor of data analysis.  In this way, it is possible to not only provide a robust and 

compelling evaluation of data, but also to maximize the system-specific information that is extracted from 

the raw signal. 

The ILT linewidth is also closely tied to the choice of the  regularization parameter. For noisy 

data, it is often necessary to choose a large  value to allow data matrix inversion.  This choice causes the 

results to appear as classic “oversmoothed” spectra, where the peak width is primarily associated with error 

introduced in the algorithm.  It is this oversmoothing effect that leads to the broad ILT results shown in 

Figs. 4.2 and 4.3.  The ILT results in Fig. 4.3 also have off-diagonal correlation responses or artifacts that 

are not present in the MPM analysis.  In this case, exchange peaks are not expected as the two sample 
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components are immiscible.  Additionally, the center positions of the contours in both Figs. 4.3(a) and (b) 

are slightly different in the two data processing approaches.  As in the case of the benchmark 1D study 

described above, an NLLS analysis of the raw 2D data produced time constant values within 5 % of the 

MPM results. 

For the ILT, L2 regularization is often used to invert the Fredholm equation, generally implemented 

with Tikhonov regularization and/or ridge regression models that add a squared magnitude coefficient 

penalty term to scale solutions that do not fit given constraints.  Another approach using L1 regularization 

is commonly implemented by Least Absolute Shrinkage and Selection Operator (Lasso) regression or the 

fast iterative shrinkage-thresholding algorithm (FISTA) [13,19,20].  Here an absolute value magnitude 

coefficient penalty term is used.  The Lasso or FISTA approach shrinks the coefficients of the less 

significant features to zero, thus removing some spectral features entirely resulting in delta function-like 

results similar to the MPM.  However, the outcome of this approach can be a loss of information relating 

to the system heterogeneity that cannot be accessed for comparison to the MPM.  For this reason and 

because L1 regularization methods are not widely available, the L2 regularization approach used in Prospa 

was chosen to perform benchmark comparisons with the MPM.  One major benefit of the MPM in 

comparison to inversion methods based on regularization – either L1 or L2 – is computational ease.  As can 

be seen in the MPM algorithm included in the Appendix, the steps required to perform the MPM are brief 

(i.e., formation of element-shifted submatrices from the data array, and then finding eigenvalues), and use 

standard algorithms in Matlab and Python. 

The 1D and 2D relaxometry results in Figs. 4.2 and 4.3 suggest that the MPM produces fewer 

artifacts and narrower lines than the ILT, as well as accurate peak positions with widths that directly 

communicate parameter uncertainty.  In order to explore whether these data processing improvements were 

merely the result of choosing a well-behaved benchmark sample with high S/N, two additional real-world 

examples from entirely different scientific applications in two dramatically different magnets were 

considered. 
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 The first example involves using NMR relaxometry at a 250 MHz 1H Larmor frequency to study 

the dynamic nanoscale heterogeneity of a physically cross-linked solvent-polymer system near the glass 

transition temperature.[21]  This example has application in many industrial, biomedical, and 

environmental systems, as the drying of solvent-polymer solutions is a key process undergone by paints, 

dyes, and spray drying materials in food and pharmaceutical processing [22-24], and is important in energy 

materials [25] and many biomedical systems such as wound healing and drug delivery.[26]  The ability to 

resolve the components from multidimensional relaxometry experiments enables the elucidation of 

rotational and translational dynamics of a system.  An experimental understanding of rotational and 

translational dynamics yields information about domains associated with regions of solid-like and liquid-

like character and the cross-link density of a polymer network respectively.  This information is used to 

report quantitative length and timescales of nanoscale heterogeneity in the drying solvent polymer system. 

The results shown in Fig. 4.4(a) repeat the ILT analysis of raw data obtained for a drying solvent polymer 

system originally shown in Fig. 4.2(a) of ref. 21.  The MPM analysis of the same data set produces Fig. 

4.4(b), which is more resolved and with contour maxima in slightly different positions in comparison to 

Fig. 4.4(a).  Neither the increased resolution, nor the slight peak shifts, change the interpretation of the 

relaxation results and their relevance towards characterizing the drying solvent polymer system.  Rather, 

the increased resolution will allow a more straightforward characterization of challenging samples, while 

at the same time enabling more accurate time constants to be obtained. 
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Figure 4.4. Comparison of ILT (a) and MPM (b) treated T2T2 correlation data obtained from an extensive 

data set studying glass drying dynamics in a solvent-polymer weak gel.  The sample composition is 

7% wt acetone and 93% wt hydroxypropyl methylcellulose acetate succinate.  A 5 mm diameter rf 

coil with 3.5 – 7 s /2 rf pulses using 100 W of applied rf power was mounted inside of a 5.88 T 

magnet interfaced to a Bruker Avance III 250.12 MHz 1H Larmor frequency spectrometer and used 

to generate the raw T2T2 data.  The mixing time was 1 ms and a Diff30 coil was used to establish a 

17.82 T/m field gradient.  Further sample and pulse sequence details can be found in ref. 21. 
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The second example considers the application of chemical shift resolved PGSE pulse sequences, 

or diffusion ordered spectroscopy [27], at a 700 MHz 1H Larmor frequency in the characterization of the 

dynamics of a mixture resulting from the enzymatic digestion of (2-8) polysialic acid.  Such mixtures are 

relevant to the study and development of polysaccharide-based vaccines.  Characterization of vaccine 

components, present as mixtures, is critical and is currently difficult to accomplish. The determination of 

the Di values for these components can be related to molecular size and used to simplify complex, 

overlapping 1D spectra by extracting subspectra of conjugate vaccines, as a function of D.  Thus, NMR-

based diffusion measurements can be used to characterize glycan structure of different vaccine components. 

This characterization is crucial, as the structures of glycans are immediately tied to their function and ability 

to interact with antibodies and their size may be tied to immunogenicity.[28-31]  A typical NMR spectrum 

is shown at the top of Fig. 4.5.  This spectrum was divided into seven regions, from high to low 1H chemical 

shift, and the integrated area of these regions was tracked in the PGSE experiment as a function of the 

pulsed field gradient strength.  The MPM and ILT analysis of the integrated signal decays in those seven 

separate regions is respectively shown on the left and right in Figs. 4.5(a) – (g).  The MPM analysis (left), 

once again, provides narrower and in some cases slightly shifted responses in comparison to the ILT (right).  

The discrepancy between peak positions provided by the MPM and ILT processing is particularly notable 

in Fig. 4.5(d), where the ILT result differs from the MPM value by almost an order of magnitude.  Again, 

NLLS treatment of the data yields constants within 5 % of the MPM values reported on the left in Figs. 

4.5(a) – (g), suggesting a higher level of accuracy in the MPM results. 
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Figure 4.5. Comparison of MPM (left) to ILT (right) treated high resolution PGSE data obtained from a 

mixture produced from an enzymatic hydrolysis of 2-8-linked polysialic acid (pSia).  The mixture 

contains different oligomers of digested pSia, tris buffer and other small molecules as evidenced by 

the high resolution 1H NMR spectrum shown at the top, which corresponds to the first transient of a 

diffusion ordered 2D experiment.  A 16.45 T, 700 MHz 1H Larmor frequency Bruker AV III HD 

NMR instrument equipped with an XYZ-gradient CryoProbe™ was used to generate the raw PGSE 

data at 283 K with a 0.524 T/m maximum pulsed field gradient.  The hydrolysis reaction buffer 

contained 50 mM Tris and 100 mM PBS at pH 8.  The signals at 2.0 ppm correspond to the sialic acid 

methyl proton from the N-Acetyl group, at 2.2 ppm and 2.6 ppm to the equatorial H3 proton, and at 

1.6 ppm to the axial H3 protons of sialic acid.  Further details can be found in ref. 28. 
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Ultimately, the usefulness of NMR is limited by the ability of an algorithm to extract information 

from a recorded signal.  Therefore, it is essential to develop data processing methods that produce narrow 

lines, minimal error, and accurate and reliable results in systems that are currently challenging to study.  

Based on the performance here, the MPM appears to possess all of these characteristics.  Since the MPM 

is purely linear algebra-based, in the case with no noise shown in Fig. 4.1, the MPM has no error. In 

comparison to the ILT, the MPM displayed narrower lines in the standard relaxometry experiments in Figs. 

4.2 and 4.3.  This superb resolution was also present in the case studies of complex materials shown in Figs. 

4.4 and 4.5.  Additionally, the positions of the peaks reported by the MPM displayed a high degree of 

accuracy, as confirmed by agreement with NLLS analyses for all cases.  The MPM is inherently less prone 

to artifacts, a feature which is perhaps most evident in the multidimensional data shown in Figs. 4.3 and 

4.4.  Moreover, the MPM algorithm is typically a factor of 20 times faster than the ILT.  The amount of 

data required to detect a unique decay component with the MPM in comparison to traditional transform 

methods is useful to consider.  For the Fourier transform applied to noise-free data, the Nyquist limit dictates 

that three points are required to define an exponential or oscillatory curve.  Throughout this study, 

experiment suggests that approximately 10 equally spaced points sampling the fast decay component that 

uniformly continue until the signal has disappeared into noise are needed for the MPM to reliably detect 

each component.  Finally, the MPM is free and easy to use.  A simple Matlab script that creates an 

exponential decay without noise, applies the MPM, and reports the decay time is provided in the Appendix. 

 

4.5 Conclusion 

The power of the MPM is linked to the efficiency of the eigenstructure formulation of an array of 

data.  The time required for MPM data analysis is inconsequential in comparison to the data acquisition 

time because well-refined linear algebra is implemented in the algorithm in a non-iterative fashion.  The 

size reduction offered by the SVD truncates the data to a dimensionality matching the number of significant 

components, which also improves algorithm speed.  The complexity of the problem framed by the MPM is 
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further reduced by using unitary matrix transformation when solving for eigenvalues.  Moreover, there is 

no further processing needed after the completion of the MPM algorithm, as the spectral parameters of 

interest are directly output as an ordered array of scalars and can be immediately used to construct a high 

resolution spectrum.  In contrast, since integral transform techniques yield distribution functions as outputs, 

they require further processing in the form of peak searching, curve fitting, and intensity integration in order 

to produce quantitative information.  To integrate the MPM with compressed sensing or constrained 

optimization techniques, non-uniformly sampled data must be linearly resampled to create a constant, 

uniform time interval increment.  This is straightforward and can be accomplished by a wide variety of 

interpolation algorithms, thus extending the applicability of the MPM to data that has been sampled in any 

way. 

One of the greatest strengths of the MPM in comparison to integral transform techniques is its 

enhanced resolution in the presence of substantial noise.  Resolution is improved because the output 

parameters are scalars, rather than distributions, and are thus unrelated to spectral bandwidths.  While suited 

to a wide variety of applications, the MPM is perhaps most notably useful for situations with intrinsically 

low S/N.  Indeed, the MPM itself can be used as a noise filter in the style of SVD-based signal 

reconstruction.  The key for widespread future implementation and automation of the MPM is to use it first 

a noise filter and second as a parameter estimation tool. 

The ability of the MPM to function as both a fitting tool, as demonstrated here, and as a filter, as 

discussed in a future publication, allow it to perform at the interface between low S/N input and high 

resolution output.  This suggests that the MPM will facilitate the analysis of systems and samples that have 

previously been inaccessible to NMR relaxometry. 
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Appendix 

The following Matlab script creates a 200-point single exponential signal array.  The data sampling 

dwell time is t = 100 s and the exponential decay constant is T2 = 1 ms.  The script outputs a plot of the 

exponential decay and numerical values for the MPM determined signal amplitude and decay constant. 

 

%%% Create a noiseless single exponential signal 

clear all 

timepoints = 200; 

T2 = 1e-3; % seconds 

dt = 1e-4; % seconds 

amp = 1; 

data = amp*exp(-(0:timepoints-1)*dt/T2); 

plot(data) 

  

%%% Make the input matrix and reduce size with SVD %%% 

ncomp = 1; 

datamatrix = hankel(data); 

[u,s,v] = svd(datamatrix); 

  

for ii = 1:ncomp; 

    decaymatrix_svd = u(:,ii)*s(ii,ii)*v(:,ii)'; 

end 

  

%%% Matrix Pencil estimates of decay constants and amplitudes 

for ii = 1:(length(data) - 1);    

    d1(ii,:) = decaymatrix_svd(ii,1:(length(data) - 1)); 

    d2(ii,:) = decaymatrix_svd(ii,2:length(data));    
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end 

  

eigs = eig(pinv(d1)*d2); 

  

for jj = 1:ncomp; 

    for ii = 1:(length(data)-1);             

        eigvec_left(ii,jj) = real(eigs(jj))^(ii - 1); 

        eigvec_right(jj,ii) = real(eigs(jj))^(ii - 1); 

    end    

    T_mpm(jj) = -dt/log(real(eigs(jj))) 

     

end 

  

Amplitude_mpm = pinv(eigvec_left)*decaymatrix_svd(1:(length(data)-

1),1:(length(data)-1))*pinv(eigvec_right) 
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5. ESTIMATES OF BLOOD PLASMA WATER CONTENT 

USING PORTABLE NMR RELAXOMETRY 
 

Reproduced in part with permission from “S.N. Fricke, J. Pourtabib, J. Madsen, S. Chizari, J. Phan, 

N.K. Tran, M.P. Augustine, Estimates of blood plasma water content using portable NMR 

relaxometry, Meas. Sci. Technol., 31 (2020) 035701 (9pp).” 

 

Abstract 

Although blood plasma water content (PWC) is a relevant metric for many medical diagnostic 

procedures, the routine clinical measurement of PWC has remained elusive.  Portable nuclear magnetic 

resonance (NMR) offers one way to nondestructively and quickly measure PWC.  Contrived pseudoplasma 

samples that mimic blood plasma while also allowing rigorous control over water content are used to 

demonstrate the role of NMR in this work.  Calibration curves relating measured NMR relaxation time 

constants (T2 and T1) to gravimetric PWC values for a set of human lyophilized plasma samples are used 

to predict the PWC in porcine and model human blood plasma from respective NMR T2 and T1 values.  It 

is shown that the T2 and T1 decay constants measured with low field NMR relaxometry correlate with the 

PWC values for pseudoplasma and human lyophilized plasma samples.  Statistical testing of the NMR-

PWC correlation model demonstrated a prediction accuracy exceeding 98%.  The PWC obtained in this 

way was used to correct sodium cation concentrations reported from direct ion-selective electrode tests.  

The accuracy of PWC determination with NMR is comparable to that of the gravimetric method that 

requires sample lyophilization.  The rapid turnaround time, non-destructive nature, and portable footprint 

of the NMR-PWC measurement makes rapid, point-of-care clinical electrolyte estimates possible. 
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5.1 Introduction 

Sixty percent of the human body is water. Water serves as an important constituent for many 

biochemical pathways and homeostatic processes. Interestingly, the human plasma water content (PWC) 

also influences many fundamental medical tests like those used for measuring electrolyte and metabolite 

concentrations [1–5]. Despite the importance of water, the routine clinical measurement of the amount of 

this simple molecule in various organs, muscles and bodily fluids has remained elusive. Although 

gravimetric methods involving sample lyophilization have been used to determine PWC, they are not 

practical in a high throughput clinical laboratory where speed is critical for patient care [6]. Estimates of 

PWC have been accomplished by accounting for all of the non-water protein and lipid sample components 

and by comparing electrolyte concentrations obtained with direct and indirect ion selective electrodes 

(ISEs). These approaches are less accurate than the gravimetric approach and also consume the patient 

sample. Due to these limitations, medical practitioners are forced to make generalized assumptions for 

PWC, if at all, which can result in substantial risk to patient care. 

The development and clinical implementation of both ISE and substrate specific electrodes (SSEs) 

for respective electrolyte and metabolite measurements revolutionized clinical chemistry in the 1980s. Early 

ISEs were “indirect ISEs” (I-ISEs) that required pre-analytical dilution to achieve sufficient volume to 

cover the sensor electrodes. Unfortunately, I-ISE specimen dilution assumed a normal PWC of 93%. It was 

quickly recognized that this PWC assumption was false since samples containing excess protein and/or 

lipids create a water exclusion effect that significantly alters the PWC [1,5,7]. Since the I-ISE dilution 

volume is unchanged, the exclusion effect introduces an additional dilution factor that falsely lowers 

measured electrolyte concentrations. Today, I-ISEs continue to be used in mainframe laboratory analyzers 

due to their longevity and cost-effectiveness, while direct ISEs (D-ISEs) not requiring pre-analytical 

dilution have been developed for point-of-care applications. 

In contrast to ISEs, SSEs measure the molality of metabolites such as glucose and creatinine. As 

before, it was assumed that PWC remained unchanged. Fogh-Andersen et al. in the early 1990’s proposed 
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a whole blood–to–plasma glucose conversion factor of 1.11 based on the 93% PWC assumption [3,4]. This 

conversion factor was adopted by the International Federation for Clinical Chemistry (IFCC) in 2008 [8]. 

However, subsequent studies showed that whole blood glucose and creatinine measurements change during 

critical illness where PWC may also significantly change [2,9]. To this end, a rapid and accurate method 

for measuring PWC is currently an unmet need in human medicine.    

Portable nuclear magnetic resonance (NMR) offers a way to quickly measure PWC without altering 

the specimen. In brief, portable NMR is a powerful analytical technique that can non-invasively probe 

samples with unorthodox geometries and differentiate between components of chemical mixtures [10].  

When placed in a static external magnetic field, B0, a sample like water will magnetize. The size of 

magnetization is related to the nuclear spins in the proton nuclei, 1H, residing in the hydrogen atoms. This 

magnetization is typically measured by applying a pulsed radio frequency (rf) magnetic field, B1, directed 

perpendicular to B0 at the Larmor frequency, a value that depends on the size of B0 and the structure of the 

1H nucleus [11,12]. In the experiments reported here, B0 = 0.367 T and the Larmor frequency used for the 

rf pulses is 15.63 MHz. The time constant for a sample to magnetize when placed in a magnet is called T1, 

while the time constant for the signal to decay to zero, or equivalently, the time constant for magnetization 

created perpendicular to B0 with an rf pulse to decay to zero is T2. Recent technological advancements have 

made portable NMR economically and practically feasible. The ease with which it can be customized to 

address specific, scientific and clinical problems makes portable NMR an extremely attractive technique. 

NMR relaxometry has already been successfully applied to the study of blood plasma [13]. It is 

well known that the dominant proton NMR signal in blood plasma is attributed to water, because water 

generally accounts for >80% of blood and >90% of blood plasma or serum by mass, as shown in Fig. 2B 

of ref. 13. Spin relaxation occurs predominantly through dipolar coupling brought about by locally 

fluctuating magnetic fields [11,12]. The chief effector of these field fluctuations is the Brownian movement 

of molecules [14]. In addition to water, a myriad of proteins, lipoproteins, and metabolites are also present 

in blood, and these molecules interact with water molecules via the formation of hydrogen bonds. In turn, 
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these interactions affect the spin relaxation properties of water by altering the rotational correlation time of 

the bound-state water, which is inversely proportional to T2 and T1, and is defined as the time required for 

a molecule or molecular complex to rotate by one radian. Since the correlation time increases with an 

increase in molecular size (i.e., in the addition of blood components to pure water), as well as with an 

increase in viscosity or decrease in temperature as described by the generalized Stokes-Einstein-Debye 

equation [14,15], it is expected that plasma samples with lower water content will have faster relaxation 

times. 

Moreover, rapid proton exchange occurs between free water, protein-bound water, and other 

hydrogen atoms on proteins [16]. Since the exchange time for these protons is short in comparison to T2 

and T1, with respective timescales of 10-9 s for exchange versus 10-3 – 100 s for spin relaxation, this 

phenomenon results in a weighted averaging of T2 and T1 values for bound and unbound water. 

Over 90% of the total protein concentration in blood can be attributed to the following most 

abundant proteins, which are albumin, immunoglobins, transferrin, fibrinogen, a2-macroglobulin, a1-

antitrypsin, C3 complement, and haptoglobin. Moreover, >80% of this total concentration corresponds to 

the first two respective proteins [17]. This means that, in effect, only a few different proteins have a 

significant influence on the nuclear spin relaxation of plasma water. It is therefore not surprising that the 

relaxation rate of plasma water correlates linearly with the net concentration of proteins in the blood [18-

21]. 

The approach pioneered by Cistola and Robinson [13] is to use the relaxation properties of water 

to monitor the type and relative quantities of blood proteins and lipoproteins. This provides information 

relating to global biomarkers that can be used as early indicators of disease. The premise of this study is to 

take a complementary approach that uses the proton NMR signal to characterize the percentage of water, 

rather than the blood components, present in a plasma sample. 
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The preliminary goal of this study is to demonstrate the analytical performance of low field NMR 

relaxometry in PWC measurements. The approach takes advantage of a correlation between PWC and 

measured T2 and T1 values. By constructing models from the correlation of PWC to T2 and T1 values 

obtained from measurements on standard samples, the T2 and T1 values from similar substances like porcine 

and model human blood plasma are used to predict an appropriate PWC value. After describing the NMR 

experiments used to obtain the T2 and T1 values below, the accuracy of the approach is tested using 

contrived pseudoplasma matrices. The real value of the NMR-based PWC estimate is then framed by an 

application of the approach to porcine and model human blood plasma samples. In the latter model human 

blood plasma sample set, the NMR PWC measurement is used to correct clinical I-ISE sodium cation (Na+) 

concentration estimates. 

  



93 

 

Table 5.1.  Summary of best fit parameters for the shifted log function PWC = A log(Tn) + B for n = 1, 2 

 

 

sample 

T2 T1 

Aa Ba Aa Ba 

pseudoplasma 11.61 12.66 38.02 -221.50 

human lyophilized plasma 8.00 40.29 32.66 -175.78 

aAll error is within 1.8%. 
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5.2 Methods 

5.2.1 Plasma Standards 

Two separate liquids were used for standard materials and all chemicals were purchased from 

Sigma Aldrich, Lee Biosolutions, or similar vendors. The first standard referred to here as “pseudoplasma” 

was prepared by mixing bovine serum albumin, intralipid, sodium chloride, and urea with water to produce 

PWC percentages ranging from 70 – 98%, in increments of 2%. Normal saline water was used, since it is 

relatively (albeit not completely) isotonic to normal plasma. No special precautions were taken to de-

oxygenate the water, in order to mimic the properties of clinical blood plasma samples and the fact that 

normal saline is dosed in the same manner in live patients. The partial pressure of oxygen (pO2) in these 

samples would be comparable to what is present in atmospheric pressure (~160 mmHg). The pO2 was 

constant throughout all of the samples. 

In an effort to better simulate real world samples, the second standard, referred to here as “human 

lyophilized plasma,” or “model human blood plasma,” was purchased from a commercial vendor and 

diluted in the same way as the first standard. The correlation of NMR and gravimetric data for the human 

lyophilized plasma sample set was used to estimate the PWC in a test sample set of commercially available 

porcine blood plasma purchased from the UC Davis Meat Lab. The sample sets considered in this study are 

blood plasma or designed to simulate blood plasma.  It is important to note that complications arising from 

the presence of paramagnetic deoxy-hemoglobin in whole blood that dramatically shorten the spin 

relaxation times [22] are avoided here, as the actual samples of interest are blood plasma, not whole blood. 

 

5.2.2 Standard PWC and Na+ Concentration Measurements 

At present, there is no method to measure PWC in patient care.  This is the chief motivation for this 

work. The time-intensive, laboratory based analytical technique currently used to measure the water content 

of blood plasma is gravimetric [6].  Specifically, the mass of a plasma sample is recorded before and after 
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a 24-hour lyophilization procedure. The mass difference is assumed to be water and can be converted into 

a percentage of the initial sample mass. 

All Na+ concentrations reported here were estimated from clinical lab I-ISEs. These values were 

corrected by multiplication with a ratio of 93% to the PWC determined from the human lyophilized plasma 

NMR model shown in Table 5.1. 

 

5.2.3 NMR Testing 

All 1H NMR experiments at a 15.63 MHz Larmor frequency were performed at B0 = 0.367 T using 

a Model 4S SpinCore opposing pole face magnet. Free precession signals were obtained from a Tecmag 

Apollo LF1 spectrometer and ENI 250 kHz – 110 MHz rf amplifier connected to a tuned solenoid coil 

wrapped around a 1.8 mL tube that holds the plasma sample in the center of the magnet. Operation in this 

way typically yields an 8.5 s, /2 rf pulse with 56 W of applied rf power. The Carr–Purcell–Meiboom–

Gill (CPMG) [23], spin-spin T2 time constant value and the saturation recovery, spin-lattice T1 time constant 

value were measured in triplicate at a controlled temperature of 23 ˚C for each sample. 

For CPMG experiments used to measure T2, the delay between  rf pulses was 3 ms, 1600 spin 

echoes were obtained, and the repetition time for signal averaging was 13 s. To cancel artifacts arising from 

pulse imperfections, the initial /2 rf pulse and the receiver were cycled between +x and -x phase while 

holding the  rf pulse phase constant at +y. In all cases, signal averaging summed 12 CPMG transient 

signals. The effect of diffusion on T2 measurements was inconsequential given the 3 ms  pulse spacing 

and the <0.5 G/cm field gradient presented by the permanent magnet. For further details on pulse sequences 

and phase-sensitive detection, the reader may consult refs. [11,12,24,25]. 

For T1 measurement, a saturation recovery experiment was preferred because it is faster than an 

inversion recovery pulse sequence [11,12].  A comparison between the two pulse sequences yielded T1 

values within a few ms of each other for the entire range of pseudoplasma samples considered. As such, it 
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was determined that the reduced sampling window of the saturation recovery experiment did not 

appreciably sacrifice measurement precision. The number of free induction decays recorded for the 

saturation recovery experiments was 80, the repetition time was 13 s, and no signal averaging was required. 

The signal–to–noise (S/N) of the raw NMR data was improved with a digital signal filter written 

in Matlab (Mathworks, Natick, MA). 

 

5.3 Results 

5.3.1 T2 and T1 Analysis 

 In order to determine if NMR T2 and T1 values correlate with PWC, a 15–sample set of 

pseudoplasma was prepared with 70% < PWC < 98%. Both NMR T2 and T1 values, in addition to 

gravimetric estimates of PWC, were obtained for each of these samples and are reported in Supplemental 

Table 5.1. Figure 1(a) shows the raw CPMG transient signal obtained from the PWC = 84% pseudoplasma 

sample. The individual spin echoes that cause the shaded area beneath the exponential envelope disappear 

upon post data acquisition signal processing to yield the transient in Fig. 5.1(b). A similar improvement in 

S/N is obtained for the saturation recovery transient signal for the same sample as shown in Fig. 5.2. 
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Figure 5.1.  (a) An example of the raw, transient relaxation data generated by applying the CPMG pulse 

sequence to the PWC = 84% pseudoplasma sample. The shaded area corresponds to the 1,600 

slightly overlapping spin echoes observed during the 68 s long experiment. Application of a Fourier 

transform based filter to this data yields the transient in (b). 
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Figure 5.2.  (a) An example of the raw, transient relaxation data generated by applying the saturation 

recovery pulse sequence to the PWC = 84% pseudoplasma sample. Application of a Fourier 

transform based filter to this data yields the transient in (b). 
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Analysis of transient signals like those in Figs. 5.1 and 5.2 for all of the pseudoplasma and human 

lyophilized plasma standards led to the T2 and T1 time constant values shown in the second and third 

columns in Supplemental Tables 1 and 2 respectively. The PWC values obtained from gravimetric analysis 

of these same samples are shown in the fourth column of these tables. 

While the transient relaxation signals obtained in this study could be analyzed with the inverse 

Laplace transform (ILT) or other multiexponential decomposition signal processing algorithms to reveal 

multiple T2 and T1 components, a stronger correlation was mapped more easily to PWC using the more 

simplistic single component exponential fitting with non–linear least squares regression. Previous studies 

reported in depth analyses of the factors that change the distribution of T2 in blood [13]. However, it is more 

convenient from a clinical standpoint to pursue the single exponential approach for three reasons. First, a 

regression–type analysis is more stable than the ILT and less computationally expensive because it is non-

iterative.  Second, and unlike the ILT, single exponential fitting is readily automated to yield fast and 

consistent results, which makes it easier to use in a large-scale hospital setting. Finally, a single T2 or T1 

value from a blood plasma sample can be directly mapped to a standard curve with no ambiguity, which 

makes the approach attractive from a practical standpoint. 

Although one would expect two-to-three exponential decay components for blood plasma, that 

relate in a physical sense to water, lipid, and protein components, with the largest of these being water, it 

was found that even in the lowest PWC case analyzed (70%), a mono-exponential fit provided an R2 value 

of 0.9998 in the worst case.  When compared to a three component multi-exponential fit, the R2 value for 

the same sample was 0.9998.  Therefore, without sacrificing the goodness of fit of the CPMG data, least 

squares fitting can rapidly extract a single decay constant. This constant is essentially a weighted average 

of the multiple T2 values described in detail by Cistola and Robinson [13], that is simply obtained without 

any of the computational instability introduced by fixed component ILT.  A modeling routine can be 

automated much more readily by fitting to a mono-exponential, as the correlation map is much simpler 

between a single decay constant and PWC. In practice, this simplicity makes the model less prone to error. 
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Since the goal of the NMR experiment in this work is to obtain estimates of T2 and T1 values, or 

the time constants of the transient relaxation signals, any data processing that sacrifices some amplitude but 

offers significant reduction in noise is attractive. All raw time–dependent transient relaxation signals were 

Fourier transformed and multiplied by a Gaussian peak in the frequency domain. The improved transient 

signal is then obtained from an inverse Fourier transform. Operation in this way significantly improves the 

S/N in both the CPMG and saturation recovery experiments as shown in Figs. 5.1 and 5.2, respectively. 

The bandwidth of the Gaussian apodization function used to multiply the data in the frequency domain was 

100 Hz, a value large enough not to skew the measured T2 and T1 values. 

 

5.3.2 T2 and T1 Correlation to PWC 

Plots of the gravimetric PWC as a function of T2 and T1 value are provided in Figs. 5.3 and 5.4 

respectively. The solid squares and diamonds in these plots pertain to the respective pseudoplasma and 

human lyophilized plasma samples. In both Figs. 5.3 and 5.4, the solid and dashed lines correspond to fits 

of the measured respective pseudoplasma and human lyophilized plasma data to the log-linear model 

function PWC = A log(Tn) + B for n = 1, 2. A summary of the A and B values for the two separate time 

constants and the two separate samples is shown in Table 5.1. It is clear from these two plots that both the 

NMR T2 and T1 values correlate well with gravimetric PWC for the pseudoplasma sample set. In all fits, 

the R2 value was greater than 0.97. 
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Figure 5.3.  Plot showing the correlation of gravimetric PWC with NMR determined T2 value for the 

pseudoplasma and human lyophilized plasma sample sets as solid squares and diamonds 

respectively. The solid and dashed lines for the respective pseudoplasma and human lyophilized 

plasma samples were calculated from the appropriate A and B values in Table 5.1. The error bars 

largely obscured by the data markers indicate 95% confidence.  
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Figure 5.4.  Plot showing the correlation of gravimetric PWC with NMR determined T1 value for the 

pseudoplasma and human lyophilized plasma sample sets as solid squares and diamonds 

respectively. The solid and dashed lines for the respective pseudoplasma and human lyophilized 

plasma samples were calculated from the appropriate A and B values in Table 5.1. The error bars 

indicate 95% confidence. 
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To create models between non-linearly related variables, a log-linear function is typically the first 

choice, due to its flexibility and generalizability [26,27].   Log-linear models are one of the most prevalent 

types of statistical models, and they are known by many names, such as Gibbs distributions, undirected 

graphical models, Markov random fields or conditional random fields, exponential models, and 

(regularized) maximum entropy models. Logistic regression and Boltzmann machines are special types of 

log-linear models.  Occam's razor, or the principle of parsimony, dictates that the least complex model with 

the smallest number of parameters to adequately map a relationship between variables is the best choice for 

a predictive model.  This is because overfitting can lead to a loss of generality [28].  Despite creating a very 

good description of training data, overfit models may not generalize well to unknown "test" data, and 

therefore have poor predictive power. 

The solid lines in Figs. 5.3 and 5.4 represent the shifted log function calculated from the appropriate 

parameters in Table 5.1. The parameterized log function allows a PWC to be calculated from the NMR 

relaxation time constant value. Such NMR estimates of PWC from T2 and T1 are also provided in 

Supplemental Table 5.1. The ability of NMR to estimate PWC in this way can be tested by exploring the 

percent difference between the NMR and gravimetric PWC measurements reported in Supplemental Table 

5.1. This accuracy is also shown in Supplemental Table 5.1. Averages of these T2 and T1 respective 

accuracies of 98.8% and 98.2% suggest that T2 measurements are slightly better at reproducing gravimetric 

PWC estimates in the pseudoplasma sample set. 

 The ability of the NMR T2 and T1 values to report the PWC with greater than 98% accuracy simply 

means that a correlation between T2, T1 and PWC has been exploited, S/N was adequately improved, and a 

reasonable function that relates T2 or T1 values to PWC in an experimentally relevant range was identified. 

To make this approach useful, a set of human lyophilized plasma samples in the same 70% < PWC < 98% 

range was prepared to serve as a real sample standard. Construction of the gravimetric PWC value versus 

NMR T2 and T1 curves for these samples was then used to determine PWC in porcine and model human 

blood plasma samples from respective NMR relaxation time values. 
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The solid diamonds in Figs. 5.3 and 5.4 relate gravimetric PWC to the respective T2 and T1 values 

for the human lyophilized plasma sample set. Like Supplemental Table 5.1, Supplemental Table 5.2 for the 

human lyophilized plasma sample set reports these NMR T2 and T1 and gravimetric PWC values. The 

dashed lines in Figs. 5.3 and 5.4 correspond to a shifted log function calculated from the appropriate 

parameters in Table 5.1. These parameterized log functions are used to estimate PWC from the NMR T2 

and T1 values, and the results of this calculation are also shown in Supplemental Table 5.2. Again, as was 

accomplished for the pseudoplasma sample set above, the accuracy of the NMR PWC estimate was 

calculated by comparison to the gravimetric PWC value. A summary of these accuracies for each of the 

human lyophilized plasma samples is shown in Supplemental Table 5.2. Averages of these T2 and T1 PWC 

estimate accuracies of 98.2% and 98.5% suggest that the NMR relaxation time constants faithfully 

reproduce gravimetric PWC values. Consideration of the T2 and T1 data simultaneously using a 

multidimensional regression does not improve the accuracy. The average accuracy in this mixed situation 

is midway between the accuracies for the separate one–dimensional cases. To evaluate the repeatability of 

the NMR testing, each sample was analyzed in triplicate. The standard error between trials is plotted in 

Figs. 5.3 and 5.4, and was much greater for T1 measurements than for T2. In fact, the error in T2 

measurements is smaller than the data markers and is therefore not graphically visible in Fig. 5.3.  This was 

one factor that suggested that the predictive model be based on T2, rather than T1, NMR measurements. 
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Table 5.2.  Summary of NMR and gravimetric data obtained from the porcine blood plasma sample set 

 

 

sample T2 (ms)a 
PWC (%) 

prediction accuracy (%)d 
 NMRb grav.c 

1 554 90.8 91.6 99.2 

2 451 89.2 91.3 97.7 

3 434 88.9 90.6 98.1 

4 406 88.3 90.1 98.0 

5 372 87.6 89.2 98.2 

6 399 88.2 88.9 99.3 

7 303 86.0 86.8 99.1 

8 259 84.8 85.1 99.6 

9 248 84.4 85.0 99.3 

  aAll error is within 2.8%. 

  bAll error is within 0.006%. 

  cAll error is within 0.002%. 

  d Accuracy = (1 - |NMR – grav.|/grav.)x100. All error is within 1.7%. 
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It can be noted in Figs. 5.3 and 5.4 that the T2 and T1 values for human lyophilized plasma samples 

are slightly shorter than those for the pseudoplasma samples at the same PWC. It is possible that the 

separation of red blood cells from the plasma was not perfect. These residual red blood cells could lyse to 

release hemoglobin or paramagnetic deoxy-hemoglobin, which would shorten the spin relaxation times in 

a consistent way across all samples. Another possibility is that the subjects who provided the samples had 

some trace amounts of free hemoglobin, which was not measurable by spectrophometry (or by eye), but 

was enough to impact the T2 and T1 values. Blood collection itself could also cause some hemolysis. 

 

5.3.3 PWC Model Testing 

In order to determine whether portable NMR relaxometry can estimate the PWC in real blood 

plasma samples, the shifted log function with the parameters reported in Table 1 for the human lyophilized 

plasma data relating T2 value to gravimetric PWC in Fig. 5.3 and Supplemental Table 5.2 was used. Since 

the T2 and T1 measurements report a PWC value equally well, and because T2 measurements demonstrated 

higher repeatability, only T2 data was obtained for the porcine and model human blood plasma samples. 

Moreover, the CPMG experiment for estimating T2 is significantly less time consuming than the saturation 

recovery pulse sequence used to determine T1. It should be clear that, since NMR relaxation times can be 

magnetic field–and temperature–dependent, corresponding fit parameters from a model cannot be 

employed on NMR systems operating at different static field strengths and temperatures. The model 

parameters reported here only apply for this specific magnet at the reported 23 ˚C temperature. To 

accomplish this work with other magnets or at other temperatures, calibrations like those reported here must 

be completed. 

Table 5.2 reports the NMR T2 value for a porcine blood plasma sample set and the PWC value 

determined from that T2 value and the human lyophilized plasma parameterized, shifted log function. A 

gravimetric analysis of these same samples produced the PWC values shown in the fourth column in Table 
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5.2. Table 5.2 also reports the accuracy of the NMR–determined PWC for each sample in reference to the 

gravimetric PWC value in that same sample. This accuracy is a true representation of the performance of 

the NMR based PWC estimation method. The accuracies reported in Supplemental Tables 5.1 and 5.2 

communicate self-consistency within each individual model. Here the NMR PWC estimate in porcine blood 

plasma is based on a gravimetric PWC measurement in human lyophilized plasma via the parameterized, 

shifted log function determined from human lyophilized plasma. It is this PWC estimate, based on a 

gravimetric PWC value from human lyophilized plasma, that is compared to the gravimetric PWC 

measurement for porcine blood plasma in Table 5.2. The 98.7% average prediction accuracy over all 

samples shown in Table 5.2 is surprisingly as good as the self-consistency checks for all of the relaxation 

models considered in Supplemental Tables 5.1 and 5.2. 

 

5.3.4 Electrolyte Test Correction 

The real value in rapid, non-destructive PWC estimates is in improving clinical measurements. One 

such measurement is the clinical monitoring of electrolyte concentrations in blood plasma using both D-

ISE and I-ISE based devices. It is well known that electrolyte concentrations derived from D-ISE and I-ISE 

as [D-ISE] and [I-ISE] respectively, differ by a scaling factor as [D-ISE] = [I-ISE]. The reason that the 

two ISE derived concentrations differ is that the algorithm relating the electrochemical response to the 

electrolyte concentration in the I-ISE device assumes a 93% PWC. As mentioned above, a constant  = 

1.11 value was proposed by Fogh-Andersen et al. and was ultimately adopted by the IFCC [3,4,8], although 

there are many cases during critical illness where  ≠ 1.11 and thus I-ISE measurements fail to report 

accurate blood and blood plasma electrolyte concentrations. In these cases, where the actual PWC differs 

from 93%, better estimates of  are required. 

The calculations summarized in Table 3 examine the consequence of correcting the I-ISE 

measurement by choosing  = 93%/PWC where PWC is the NMR–determined value. Table 5.3 reports the 
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NMR T2 values obtained from a model human blood plasma sample set along with the NMR–determined 

PWC value calculated from the parameterized, shifted log function for the human lyophilized plasma 

sample set. The laboratory D-ISE and clinical I-ISE estimates for the Na+ concentration in these same 

samples is also reported in Table 5.3, along with two separate I-ISE corrections where  was calculated 

using both NMR and gravimetric values for PWC. The accuracies of these two separate corrections were 

also probed by comparison to the D-ISE Na+ concentration values. The results of this exercise are also 

shown in Table 5.3. The slightly better 98.1% average accuracy of the NMR based I-ISE Na+ concentration 

correction in comparison to the 97.8% average value for the gravimetric measurement is a useful result. 

This result suggests that once calibrated, a simple, non-destructive, rapid NMR estimate of blood PWC can 

be used in tandem with clinical I-ISE measurements to faithfully produce equivalent results to the more 

lengthy and destructive D-ISE tests and sample lyophilization. 
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Table 5.3.  Summary of NMR, gravimetric, D-ISE Na+ concentration, and I-ISE Na+ concentration results 

from model human blood plasma samples 

 

 

sample  
NMR [D-ISE] 

(mmol/L)d 

[I-ISE] (mmol/L) 
prediction accuracy 

(%)a 

T2(ms)b PWC(%)c clinice NMRf grav.g NMRh grav.h 

1 332 80.1 173.0 151 175.7 175.5 98.5 98.6 

2 329 80.0 171.4 150 175.8 174.0 97.5 98.5 

3 695 88.6 149.7 141 147.5 145.5 98.5 97.2 

4 690 88.6 151.4 142 148.5 146.8 98.1 97.0 
aAccuracy = (1 - |[I-ISE] – [D-ISE]|/[D-ISE])x100  

bAll error is within 1.5%  

cAll error is within 0.004%  

dAll error is within 0.5%  

eAll error is within 1%  

fAll error is within 0.01%  

gAll error is within 0.002%  

hAll error is within 0.9% 
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5.4 Discussion 

 Plasma water content affects the accuracy of routine laboratory measurements. Altered PWC in 

vivo is also attributed to disease [29]. Until this study, the routine measurement of PWC in clinical 

specimens was not feasible. The ability of NMR spectroscopy to quickly and inexpensively detect the water 

content of blood plasma relies on the experimental observation that the two NMR relaxation time constants 

T2 and T1 appear to correlate with water content or PWC at low magnetic field.  

This work provides no information regarding the underlying, molecular-level mechanisms that 

govern nuclear spin relaxation in serum samples. Sample viscosity, temperature, dissolved salts, proteins, 

and metabolites all contribute to the observed T2 and T1 values. A correlation of T2 and T1 values with PWC 

does not mean that water concentration dictates or directly controls the observed relaxation times. In 

contrast to assays that detect the concentrations of individual metabolites and biomarkers directly, 

measurement of plasma T2 and T1 values can provide information about the bulk, macroscopic properties 

of a plasma sample. This type of analysis, in conjunction with parameters obtained from traditional 

laboratory testing, offers a way to monitor net changes in blood plasma that have the potential to inform 

clinicians about the overall health of a patient. 

The central idea behind the NMR method presented here is simplicity. This measurement is not 

intended to be the sole technique implemented for clinical analysis of a sample, rather, it is meant to be 

used together with the host of other laboratory techniques that provide accurate measurements of other 

blood components.  The speed with which this method provides results might be beneficial in time-sensitive 

cases as well, since PWC is not yet routinely measured, despite the fact that knowledge of PWC would 

better inform clinicians about a patient’s health. 
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5.5 Conclusion 

A significant percentage of medical decisions are based on laboratory tests, many of which are 

blood chemistry assays [30–35]. However, the accuracy of certain blood tests depends on PWC, which is 

not typically measured in clinical laboratories. This is because the current gold standard method for 

measuring PWC is lyophilization, which is a time–intensive process that requires about a day. The delays 

from this procedure are prohibitive in a clinical laboratory that must process thousands of samples daily, 

and are unacceptable in situations that require urgent treatment decisions. Consequently, blood test results 

are based on the assumption of a standard value of PWC = 93%. However, variance in PWC between 

patients can influence many test results, with blood electrolyte and metabolite measurements being perhaps 

the most notable. Without knowledge of the patient PWC, clinicians are unable to correct for possible 

inaccuracies and patients are thus more subject to misdiagnosis and suboptimal care. 

It has been estimated that at least $200 billion are wasted annually on unnecessary testing and 

treatment in the United States alone [36,37]. Development of a rapid test to measure PWC provides 

clinicians with a means to improve the accuracy of blood chemistry assays and diagnostic tests, which 

improves patient care and reduces waste. 

This study uses portable NMR relaxometry to estimate PWC. Since NMR is non–destructive to the 

sample and testing can be accomplished in a matter of minutes, it is an ideal tool for the clinical laboratory. 

The accuracy of PWC determination with NMR is comparable to the gravimetric method that requires 

sample lyophilization. The rapid turnaround time and non–destructive nature of the NMR approach is a 

significant advantage in comparison to lyophilization to determine PWC. Given that it takes about one 

minute to run a CPMG experiment on a plasma sample, the delay will have a negligible effect on the 

throughput of a modern clinical laboratory. In fact, this time is comparable to the time required to perform 

a hemolysis index to evaluate specimen integrity. This test can be implemented immediately to run on all 

plasma samples intended to measure electrolytes and metabolites such as glucose. The NMR instrument 

can be configured to run automatically and does not disrupt the workflow in any foreseeable way. 
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While most tests require a considerable volume of blood, there is an added benefit since NMR only 

requires a small amount of sample (ca. 1 mL). NMR is also non-destructive, meaning that the same sample 

can be used for other laboratory tests. Altogether, this is helpful for patients because it reduces the amount 

of blood that has to be drawn, and yields faster and more accurate blood test results and diagnoses. Future 

studies are needed to determine the clinical significance of PWC in human health, as well as to study the 

use of NMR in the non–invasive evaluation of the quality of biological products such as donated blood. It 

is clear that clotting processes used in hemostasis testing can also be studied. The clinical implementation 

of portable NMR instruments is currently being explored for immediate application to burn patient 

hydration treatments at the Regional Burn Center at the UC Davis Medical School. 
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Supplemental Table 5.1.  Summary of NMR and gravimetric data obtained from the pseudoplasma 

sample set 

 

 

sample 

NMR time constants (ms) PWC (%) prediction accuracy 

(%)a 

T2
b
  T1

c grav.d  T2 calc.d T1 calc.d T2
e  T1

f 

1 172 2360 70.2  72.4 73.8    96.8  94.8 

2 201 2444 72.0  74.2 75.1    97.0  95.8 

3 220 2196 74.0  75.3 71.0    98.3  95.9 

4 263 2561 75.9  77.3 76.9    98.2  98.7 

5 302 2619 78.0  78.9 77.7    98.8  99.6 

6 351 2671 79.8  80.7 78.5    98.9  98.4 

7 404 2840 81.7  82.3 80.8    99.3  98.9 

8 475 3046 83.5  84.2 83.5    99.2  100.0 

9 547 3307 85.9  85.8 86.6    99.9  99.1 

10 633 3292 87.8  87.5 86.4    99.6  98.4 

11 740 3501 89.7  89.3 88.8    99.6  99.0 

12 869 3686 91.7  91.2 90.7    99.5  99.0 

13 1012 3930 95.1  93.0 93.2    97.8  98.0 

14 1302 4218 95.7  95.9 95.9    99.8  99.8 

15 1700 4788 98.0  99.0 100.7    99.0  97.2 

aAccuracy = (1 - |NMR – grav.|/grav.)x100  
bAll error is within 1.5%. 
cAll error is within 12%. 
dAll error is within 0.002%. 
eAll error is within .05%. 
fAll error is within 0.1%. 
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Supplemental Table 5.2. Summary of NMR and gravimetric data obtained from the human lyophilized 

plasma sample set 

 

 

sample 
NMR time constants (ms)   PWC (%)  

prediction accuracy 

(%)a 

T2
b T1

c grav.d  T2 calc.e T1 calc.f T2
g T1

h 

1 71 1802 70.2  74.3 69.1    94.1    98.5 

2 80 1945 72.0  75.3 71.5    95.5    99.3 

3 98 2096 74.0  77.0 74.0    96.0    100.0 

4 98 2095 75.9  77.0 74.0    98.6    97.5 

5 140 2782 78.0  79.8 83.2    97.7    93.3 

6 184 2598 79.8  82.0 81.0    97.3    98.5 

7 211 2691 81.7  83.1 82.2    98.3    99.4 

8 258 2814 83.5  84.7 83.6    98.6    99.9 

9 304 2906 85.9  86.0 84.7    99.8    98.7 

10 385 3049 87.8  87.9 86.2    99.9    98.2 

11 455 3243 89.7  89.3 88.2    99.6    98.4 

12 603 3488 91.7  91.5 90.6    99.8    98.9 

13 800 3911 95.1  93.8 94.4    98.7    99.3 

14 1023 4200 95.7  95.7 96.7    100.0    99.0 

15 1453 4503 98.0  98.5 99.0    99.5    99.0 

aAccuracy = (1 - |NMR – grav.|/grav.)x100 
bAll error is within 1.4%. 
cAll error is within 11%. 
dAll error is within 0.002%. 
eAll error is within 0.07%. 
fAll error is within 0.001%. 
gAll error is within 0.04%. 
hAll error is within 0.1%. 
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6. REAL-TIME SENSOR FOR IN-LINE ANALYSIS OF 

MATERIAL RHEOLOGY 
 

6.1 Introduction 

Any discussion of relaxometry measurements that relate to rheology, or flow, begs the question of: 

how one can perform measurements on a sample when it is literally leaving as soon as it is magnetized? 

Essentially, there is now a moving target. The first observation one will notice after starting a flow pump 

and beginning a CPMG experiment with a magnet placed next to a liquid-containing pipe, is that the T2 

shortens. T1 measurement is out of the question because it takes too long, and detection of a free induction 

decay is nearly impossible. Additionally, the phase of the signal changes as a sample moves through the 

coil because rf induction of magnetization occurs at a different location than the relaxation that induces the 

detected signal. As the flow velocity increases, the apparent T2 also shortens. Because T2 is difficult to 

detect in a robust way with a standard CPMG, it is necessary to explore alternative pulse sequence strategies 

for T2 measurement. 

The pseudoecho experiment described by Ferrari et al. [1] is useful for situations where the T2 is 

too short to measure traditionally. In essence, a weak lock rf field is implemented before and after  pulses 

of a standard spin echo experiment to negate the distributive effects of diffusion and to slow down the loss 

of coherence. This, in turn, introduces a frequency-dependent phase shift that can be noted in a process of 

even echo rephasing and odd echo dephasing. A final /2 readout pulse is optional. This weak lock rf field 

strategy is also effective between  pulses in an echo train to create a “pseudo-CPMG”. Figure 6.1 depicts 

a pulse sequence for the pseudoecho experiment. 
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Figure 6.1. Pulse sequence diagram for a pseudoecho experiment, shown with a weak lock rf field, (B1)x, 

sandwiching the  pulse in a spin echo experiment. The final /2 readout pulse is optional – with 

it, the signal appears like a nutation signal decaying from an initial positive amplitude. Without the 

readout pulse, the signal exhibits decaying oscillations from an initial amplitude of zero. 

 

The phase shift due to diffusion or flow that is experienced by a moving spin is proportional to its 

velocity, v, the strength of the applied gradient, G, and the square of the length of time it moves within that 

gradient, t2, as 

 21
θ(t) γGvt

2
= . (6.1) 

Additionally, gradients can be controlled by coil designs in the probe. Hence, it would be 

advantageous to build a coil that could be tuned to take advantage of gradient effects to control the 

modulation evident in the signal that results from the phase shift. 
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6.2 Methods and Results 

Here, two coils were built to measure flowing samples. The geometry of the first coil is shown 

diagrammatically in Fig. 6.2 – it is a classic solenoid wrapped around a pipe, which allows a liquid to flow 

through it. 

 

 

Figure 6.2. Diagram of a classic solenoid coil that was wrapped around a pipe, which allows a liquid to 

flow through it. 

 

The second coil that was built is called a split solenoid, shown in Fig. 6.3. Simply put, it is a 

solenoid that reverses direction in the middle to change the direction of the applied rf field. This generates 

a gradient in induced rf magnetic field (B1). 
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Figure 6.3. Diagram of a split solenoid coil that was wrapped around a pipe, which allows a liquid to flow 

through it. The solenoid that reverses direction in the middle to change the direction of the applied 

rf field. 

 

Next, to visualize the magnetic flux lines and B1 fields generated by each coil, Biot-Savart modeling 

was performed in Matlab to create B1 heat maps and flux line plots for the simple and split solenoids. The 

results are shown in Figs. 6.4 – 6.7. It is particularly helpful to note the field reversal in the upper section 

of the split solenoid in Figs. 6.5 and 6.7. 
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Figure 6.4. Biot-Savart modeling of B1 fields generated by original solenoid inductor. Modeling B1 fields 

generated by coils such as this is useful in probe design. 

 

 

Figure 6.5. Biot-Savart modeling of B1 fields generated by split solenoid inductor. 
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Figure 6.6. Magnetic flux lines created from Biot-Savart modeling of the simple solenoid. 

 

 

 

Figure 6.7. Magnetic flux lines created from Biot-Savart modeling of the split solenoid, showing a field 

reversal at the directional change at the coil midpoint. 
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The split solenoid, or gradient coil, accentuates the modulation effect of the weak spin-lock field 

on flowing samples in the pseudoecho experiment. Figure 6.8 demonstrates the heightened signal 

modulation in the split solenoid compared to the original solenoid with a static sample, using a 4 MHz 1H 

frequency single sided magnet [2]. 

 

 

Figure 6.8. Signal from a pseudoecho experiment using the split solenoid (shown in red) and original 

solenoid (shown in green). Note the enhancement in modulation frequency with the split solenoid. 

The sample was CoffeeMate coffee creamer. 

 

Additionally, varying the strength of the locking rf field can control the frequency of the signal modulation. 

This is shown in Fig. 6.9, which illustrates that stronger lock fields cause a higher modulation frequency in 

the signal. 
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Figure 6.9. Variation in lock rf field strength affects the frequency of the signal modulation from a static 

sample of coffee creamer. The red signal represents the weakest locking field used, at one quarter 

the strength of the rf pulse. The green signal was from an intermediate locking field that was one 

third the strength of the rf pulse. The blue signal was from the strongest locking field that was half 

the strength of the rf pulse. 

 

The modulation amplitude can be used to correlate to and predict Reynolds number, i.e., the 

relationship between inertial and viscous forces in a fluid, as shown in Figs. 6.10 – 6.13 for a slightly 

viscous flowing sample of coffee creamer. 
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Figure 6.10. Real signal amplitude vs. lock pulse time in units of 500 microseconds for four different flow 

rates of 0.56 cm/s in green, 0.22 cm/s in blue, 0.11 cm/s in purple, and static 0 cm/s in red with the 

original solenoid. The modulations occur on too long of a scale to measure accurately. 

 

 

Figure 6.11. Real signal amplitude vs. lock pulse time in units of 500 microseconds for four different flow 

rates of 0.56 cm/s in blue, 0.13 cm/s in green, 0.075 cm/s in purple, and static 0 cm/s in red with 

the split solenoid. The modulations occur on a shortened time scale due to the B1 field gradient. 
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Figure 6.12. Real signal amplitude vs. lock pulse time in units of 500 microseconds for four different flow 

rates of 0.56 cm/s in blue, 0.13 cm/s in green, 0.075 cm/s in purple, and static 0 cm/s in red with 

the original solenoid. The modulations occur on a shortened time scale due to the B1 field gradient. 

A final  pulse was used before readout to demonstrate a phase shift in the modulations such that 

they would start at zero. 

 

 

Figure 6.13. Real signal amplitude vs. lock pulse time in units of 500 microseconds for four different flow 

rates of 0.56 cm/s in red, 0.37 cm/s in green, 0.073 cm/s in purple, and static 0 cm/s in blue with 
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the split solenoid. The modulations occur on a shortened time scale due to the B1 field gradient. A 

final  pulse was used before readout to demonstrate a phase shift in the modulations such that they 

would start at zero. 

 

The results shown in Figs. 6.10 – 6.13 were measured at four different flow rates with a slightly 

viscous sample of coffee creamer. The flow setup was a homebuilt mini loop on a laser table that passed 

through a pump, and pipe segments with coils wrapped around them were incorporated above 4 MHz single 

sided magnets. The plots in Figs. 6.8 and 6.10 show the pseudoecho signal with the classic solenoid – the 

modulations are present, but too long to fully capture. The enhanced phase effects from the split solenoid 

in Figs. 6.9 and 6.11 better capture the modulations, and, interestingly, allow them to be correlated with the 

flow rate and Reynolds number. 

 

6.3 Discussion and Future Work 

The Reynolds number, eR , is the ratio of inertial forces to viscous forces within a fluid that is 

subjected to relative internal movement due to different fluid velocities [3,4] as 

 

 e
ρuL uL

μ v
R = = . (6.2) 

 

In Eq. 6.2, ρ  is the density, u  is flow speed, L  is a linear dimension, μ  is the dynamic viscosity, and v  

is the kinematic viscosity. Reynolds numbers are an important dimensionless quantity in fluid mechanics. 

In a practical sense, the Reynolds number helps to predict flow patterns in different fluid flow situations. 

At low Reynolds numbers, flows are predominantly laminar, or sheet-like, while at high Reynolds numbers, 

flows are typically more turbulent. The turbulence results from differences in the fluid's speed and direction, 
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which may sometimes intersect or even move counter to the overall direction of the flow, leading to eddy 

currents. These eddy currents begin to churn the flow, using up energy in the process, which increases the 

chances of cavitation for liquids.  

Since the Reynolds number is a key metric for many rheological materials, it is worth pursuing the 

correlation with pseudoecho signal modulation with the gradient coil in greater detail in the future, and 

exploring a greater range of fluid velocities and viscosities.  
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7.   PORTABLE HIGH RESOLUTION NMR FOR 

AGRICULTURAL AND ENVIRONMENTAL PURPOSES 
 

7.1 Field-based Agricultural Plant Screening for Citrus Greening Disease 

Recently, there has been growing interest in using high field NMR as a screening tool for 

performing metabolomic analysis in agricultural industries. One of the biggest problems in the California 

citrus industry is a greening disease that not only kills trees and destroys crops, but is also highly contagious 

[1]. Early detection is an issue, and NMR has emerged as one of the most sensitive chemometric tools for 

early detection. Previous studies [1] have focused on testing extractions from symptomatic and 

asymptomatic leaves, and using principal component analysis to create models from the resulting spectra. 

 The greening disease is transmitted by citrus psyllids, which are insects that feed from the sap of 

citrus trees, and, in doing so, spread the disease. Here, the presence of these insects was used as confirmation 

of infection in some lemon trees that were screened at UC Davis. 

 

Figure 7.1. Altered NMR profile of symptomatic versus asymptomatic lemon tree leaf extraction in CDCl3 

taken at 60 MHz 1H frequency. 
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The goal of this study was to reproduce published spectra [1] from a 300 MHz spectrometer that 

could differentiate between symptomatic and asymptomatic trees with a cryogen-free, benchtop 60 MHz 

Aspect Imaging instrument that has been optimized for portable, high-field use. The results in Fig. 7.1 

suggest that a difference was detected that could be used for earlier detection and rapid screening of the 

disease in the future. 

 

7.2 Tracking Wildfire Forest Recovery through Terpene Analysis of Pine Resin 

Another example that motivates the goal of making high field NMR portable is to monitor forest 

recovery after wildfires. Recently, wildfires have been devasting a variety of ecosystems in California with 

unprecedented magnitude. As this problem has emerged, there is a growing need to scientifically track the 

impact and recovery of burn scar areas, and this can now be accomplished in the field through terpene 

profiling of pine resin. Figure 7.2 shows some burned and unburned trees that have been tested in the Sierra, 

and the altered profile from the NMR spectrum from burned area. 
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Figure 7.2. NMR spectrum of healthy and burned coniferous tree resins in CDCl3. 

 

7.3 Multiple Quantum Coherence Experiments: Detection of J-Coupling at Low 

Fields 

Unfortunately, not all samples can be easily dissolved and placed into a 5 mm glass tube to measure 

with a high field spectrometer, even if the spectrometer is portable. This motivates a return to single sided, 

low field magnets that can accommodate a much wider variety of samples. The challenge of resolution 

remains the foremost issue to tackle to enable structural specificity from low field measurements. However, 

different chemical information can be gained depending on the nature of the pulse sequence that is 

implemented. By selecting for specific quantum states that evolve during the delays with techniques such 

as a multiple quantum filter (MQF), it is possible to gain information other than T1, T2, and D from low-

field experiments, such as J-coupling [2]. With mobile instruments, these couplings are generally 

inaccessible via the traditional method of resolving the hyperfine structure of a frequency spectrum. An 
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MQF can selectively generate a signal from “forbidden” double quantum transitions, which reveal the J-

couplings of a chemical structure through spin echo modulation. Moreover, the width of this J modulation 

yields information relating to the network size or polymer length of a material. Additionally, singlet states 

can be generated by a mixture of zero and double quantum coherences; they have relaxation times about 

one order of magnitude longer than the typically observed triplet states, and can be used to study slow 

dynamic processes. 

This approach is worth keeping in mind for future field-based measurements of porous media and 

heterogeneous, macroscopic systems that are more accessible with single sided magnets (geological 

sediment sampling, biofilms in thermal springs, industrial “vats”, etc.). Field measurements of this nature 

could be enabled by combining the MQF filter with alternative sensor designs, involving a flat coil snapped 

into place on top of a magnet. 
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8. CONCLUSION 
 

 

I was taught that the way of progress was neither swift nor easy. 

– Marie Curie, 1867 – 1934 

 

This dissertation primarily focused on the diverse applications of portable nuclear magnetic 

resonance. It opened with a brief discussion of the theory of magnetic resonance in Ch. 1, with a 

consideration of both classical and quantum mechanical descriptions of dynamic spin systems. This was 

followed in Ch. 2 by an overview of nuclear spin relaxation, from the foundational mechanics to the 

experimental measurement of this phenomenon.  

Next, due to the growing need to operate in the low signal-to-noise regime to obtain portable 

measurements at low field strengths, filtering was developed in Ch. 3 as a way to essentially make “poor 

signals good” for experiments performed in compromising environments, of complex materials, or 

otherwise inhomogeneous or difficult systems. The matrix pencil method (MPM) was presented as a tool 

that can be used for both filtering and subsequent data analysis and parameter estimation. 

The MPM is described as an alternative to the ILT for data processing, due to its low noise 

sensitivity, high resolution, and minimal computational requirements in Ch. 4. This advantage is gained 

primarily by exploiting the eigenstructure of a matrix pencil, which can be formulated directly from 

discretely sampled data, thereby avoiding integral transforms. In the cases presented here, the MPM 

outperforms the ILT in speed, resolution, and accuracy, suggesting that the MPM is better suited for rapid 

analysis of data in low-field settings. In the limit of zero noise, the MPM provides an analytically exact, 

closed-form solution to the problem of multi-exponential decomposition. The key for widespread future 
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implementation and automation of the MPM is to combine it with effective noise filters, such as MPM 

reconstruction itself, or, alternatively, singular value decomposition, multi-point moving averaging, 

integration smoothing methods, wavelet transforms, and sliding Fourier transform apodization. This will 

ultimately enable measurements of systems that have previously been inaccessible with portable NMR. 

The final chapters demonstrate useful applications of NMR in field-based settings. First, Ch. 5 

shows a clinical study of blood plasma to demonstrate a field application of portable NMR. Here, a rapid 

correlation of blood sample T2 with water content was used to improve upon the accuracy of current 

methods of plasma water measurement. Next, the measurement of rheological properties in an in-line, 

factory-type setting is explored in Ch. 6. Finally, Ch. 7 opens the discussion of portable, high field structure 

analysis for agricultural and environmental purposes. The goal of these sections is to illustrate the diverse 

and creative possibilities for using portable NMR to solve emerging problems in the world today. 

The theory, applications, and results presented here demonstrate that portable NMR is a technology 

of the future. By taking an interdisciplinary approach to couple new data analysis techniques with creative 

hardware design, the reach of magnetic resonance can be extended to address new problems and, ultimately, 

to push forward this field in ways that would have seemed unrealistic ten years ago. 




