
UC Berkeley
UC Berkeley Previously Published Works

Title
Directed Specifications and Assumption Mining for Monotone Dynamical Systems

Permalink
https://escholarship.org/uc/item/58g4p1dj

ISBN
9781450339551

Authors
Kim, Eric S
Arcak, Murat
Seshia, Sanjit A

Publication Date
2016-04-11

DOI
10.1145/2883817.2883833

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/58g4p1dj
https://escholarship.org
http://www.cdlib.org/

Directed Specifications and Assumption Mining for
Monotone Dynamical Systems ∗

Eric S. Kim, Murat Arcak, Sanjit A. Seshia
{eskim, arcak, sseshia}@eecs.berkeley.edu

University of California at Berkeley, Berkeley, CA, USA
Department of Electrical Engineering and Computer Sciences

ABSTRACT
Given a dynamical system and a specification, assumption
mining is the problem of identifying the set of admissible
disturbance signals and initial states that generate trajecto-
ries satisfying the specification. We first introduce the no-
tion of a directed specification, which describes either upper
or lower sets in a partially ordered signal space, and show
that this notion encompasses an expressive temporal logic
fragment. We next show that the order preserving nature
of monotone dynamical systems makes them amenable to a
systematic form of assumption mining that checks numerical
simulations of system trajectories against directed specifica-
tions. The assumption set is then located with a multidi-
mensional bisection method that converges to the boundary
from above and below. Typical objectives in vehicular traffic
control, such as avoiding or clearing congestion, are directed
specifications. In an application to a freeway flow model
with monotone dynamics, we identify the set of vehicular
demand profiles that satisfy a specification that congestion
be intermittent.

Keywords
Monotone Control Systems, Temporal Logic, Partially Or-
dered Sets, Assumption Mining

1. INTRODUCTION
Component-based design and analysis is a common paradigm
for managing complexity in large networked systems. Each
component is characterized by an input-output relationship,
such as a finite input-output gain in control theory or an
assume-guarantee contract in the formal methods literature,
enabling higher order reasoning about global behavior.

∗This work was supported in part by NSF grant CNS-
1446145, the NSF Graduate Research Fellowship Program,
NSF Expeditions grant CCF-1139138 and by STARnet, a
Semiconductor Research Corporation program, sponsored
by MARCO and DARPA.

Figure 1: Geometry of a lower set (green), an upper set (red) and

their boundary (dotted line). If a point (green dot) is in a lower

set, then we can extrapolate that all points below it (patterned

box) are also contained in that set.

To develop complex, yet robust, systems through intercon-
nections of simpler components, identifying failure modes
and determining the limits for safe system operation is of
utmost importance. Towards this end, we formulate an
assumption mining problem for dynamical systems where,
given a deterministic system and a specification encoded as
a set of acceptable state trajectories, we seek the largest set
of initial states and exogenous disturbances for which the
system satisfies the specification. Computing an exact rep-
resentation of the assumption set for arbitrary specifications
and dynamics is impossible. The next best option is to sys-
tematically and extensively test the system under a variety
of environmental disturbances to construct an approxima-
tion of the assumption set.

In this paper, we define directed specifications and show
that when paired with monotone dynamical systems, they
are well suited to a systematic form of assumption mining.
Directed specifications correspond to lower and upper sets
in a signal space and thus favor signals with low or high val-
ues respectively. For instance, in a traffic network where the
state represents number of vehicles, the specification “con-
gestion will never be present” is a directed specification be-
cause it encourages state signals with low vehicle counts. As
depicted in Fig. 1, lower and upper sets have a convenient
geometry that makes it possible to use individual samples to
extrapolate information about set membership. We provide
a set of syntactic rules that provide a sufficient condition for
a temporal logic specification to be directed. This condi-
tion is agnostic to timing semantics of the chosen temporal

logic specification language and encompasses linear temporal
logic [17] and signal temporal logic [12] as long as predicates
are over a partially ordered set.

Monotone dynamical systems exhibit order preserving dy-
namics and provide a clear functional relationship between
the space of initial states and disturbance signals with the
trajectories they generate. In particular, they preserve the
aforementioned directed property, and the assumption set
must be lower(upper) if the specification is lower(upper).

To construct a tight approximation of a directed set in Eu-
clidean space, it suffices to converge to its boundary from
below and above. We exploit the extrapolation property of
directed sets highlighted in Fig. 1 and utilize a variant of
multi-dimensional binary search for discrete time signals of
finite length and spaces of finite dimension to converge to the
boundary. Our solution uses simulation traces and harnesses
a satisfiability modulo theories (SMT) solver [3] to system-
atically explore the space of initial state and disturbance
signals until it provides a certificate that the assumption set
is approximated to a desired precision.

To summarize, we make two primary contributions about
mining assumptions for monotone control systems:

1. We define directed specifications and show that they
encompass an expressive temporal logic fragment.

2. Given a directed specification and a monotone system,
we characterize the set of admissible disturbance sig-
nals and show how a bisection algorithm exploits the
ordering present in the problem.

Section 3 first describes directed specifications geometrically
as a subset of the signal space and shows how to construct di-
rected temporal logic specifications, Section 4 reviews mono-
tone dynamical systems, and Section 5 explains how we can
exploit both the specification and dynamics via a generalized
bisection method.

Related Work
Assumption mining has previously been studied for the syn-
thesis of discrete controllers that realize a temporal logic
specification [1][4][16]. Our formulation of the assumption
mining problem resembles the problem of computing weak-
est preconditions but we also compute admissible distur-
bance profiles [10].

Our work contains a number of parallels to prior work on re-
quirement mining by Jin, Donze, Deshmukh, and Seshia [14]
and robust controller synthesis by Topcu, Ozay, Liu, and
Murray [19]. Both make use of partial orderings and al-
lude to similar bisection search heuristics, but neither utilize
properties of directed sets and their orderings are over differ-
ent sets than those found in this paper. Jin et al. use mono-
tonicity of a parametric signal temporal logic (pSTL) tem-
plate to prune regions of the parameter space and find a tight
overapproximation of the system’s possible state trajecto-
ries. Fundamentally, monotonicity with respect to pSTL
parameters is about comparing two different specifications
and checking if one implies the other. Directedness, in con-
trast, is a property that is intrinsic to a single specification.

In addition, in our work monotonicity is a dynamical sys-
tem property and should not be confused with monotonicity
with respect to specification parameters. Topcu et al. seek
to synthesize a controller that is robust to the presence of
an environmental adversary with varying levels of strength,
where a stronger adversary has more available moves in the
synthesis game. Our problem is formulated in a way that
stronger environments are encoded directly in the partial or-
dering on disturbance signals, instead of as a larger set of
available environment disturbances.

2. PRELIMINARIES
2.1 Notation and Terminology
For a given set P we let PC and P ×Q respectively denote
its complement(with respect to some universal set) and its
Cartesian product with Q. The empty set is ∅. The sym-
bol ⇒ represents the Boolean implication operator while
the symbol 7→ represents a map between a domain and
codomain. The image f(M) of a setM⊆ P under function
f : P 7→ Q is the set of points {f(x) : x ∈ M} and the
preimage f−1(N) of the set N ⊆ Q is {x ∈ P : f(x) ∈ N}.

The sets R≥0 and Z≥0 are the sets of non-negative real num-
bers and integers with Rn≥0 representing the non-negative
orthant. A discrete time interval I = [a, b] is a contiguous
subset of Z≥0 where a, b ∈ Z≥0 ∪ {∞} and a ≤ b. The
Boolean domain is denoted B = {⊥,>} where > is true and
⊥ is false.

The sets X ⊂ Rn, D ⊂ Rm and Y ⊂ Rp represent state, dis-
turbance, and output spaces for appropriate positive integers
n,m, p and let x[k], d[k], y[k] respectively denote variables in
these spaces at time k. When clear from context, the time
index is dropped. For a set P and an interval I, the space
of signals, P[·], is given by a Cartesian product indexed by
elements of I:

P[·] =
∏
k∈I

P. (1)

For instance, a discrete-time real signal of length N can be
thought of as a point in RN . In this paper, the terms signal,
trace, and trajectory are synonyms. For notational brevity,
the interval I is typically omitted and only specified when
necessary. The sets X [·],D[·],Y[·] are the set of state signals,
disturbance signals, and output signals.

A specification φ can be viewed as the subset of the sig-
nal space for which it is true. We signify that a signal x[·]
satisfies a specification φ by x[·] |= φ. One can switch be-
tween set theoretic and Boolean views of φ by the definition
φ = {x[·] ∈ X [·] : x[·] |= φ} and the identity x[·] |= φ if and
only if x[·] ∈ φ (using the set theoretic definition of φ).

2.2 Assumption Mining
A deterministic dynamical system Σ : X × D[·] 7→ X [·] is a
map from an initial state and disturbance pair to a state tra-
jectory. We formulate assumption mining as the problem of
determining which exogenous disturbances and initial con-
ditions are permitted for a system to satisfy a specification.

Problem 1 (Assumption Mining). Given a determin-
istic system Σ : X ×D[·] 7→ X [·] and a specification φ ⊆ X [·],

L
x

M

Figure 2: A lower set in L ⊂ R2
≥0 with the standard ordering.

Lower sets are not necessarily convex, open, or closed. The prin-

cipal lower set M with associated point x is a subset of L.

what is the subset of initial states and disturbance signals,
Σ−1(φ) ⊆ X ×D[·] , that ensures satisfaction of φ?

By viewing a dynamical system Σ as a mapping Σ : X ×
D[·] 7→ X [·], the solution to the assumption mining problem
is found by computing the pre-image Σ−1(φ) of specification
φ. Computation of pre-images is typically intractable for ar-
bitrary specifications φ and non-linear dynamics for Σ. We
focus on monotone dynamical systems and directed specifi-
cations and show that this pair is particularly amenable to
assumption mining.

2.3 Partially Ordered Sets and Signals
A partially ordered set P has an associated binary relation
≤P if all p1, p2, p3 ∈ P satisfy 1) p1 ≤P p1, 2) if p1 ≤P p2

and p2 ≤P p1 then p1 = p2 and, 3) if p1 ≤P p2 and p2 ≤P p3

then p1 ≤P p3. We define ≥P so that p1 ≥P p2 holds if and
only if p2 ≤P p1. If neither p1 ≤P p2 nor p1 ≥P p2 hold, we
say that p1 and p2 are incomparable.

Given a collection of partially ordered sets Pi and relations
≤Pi indexed by A, let P =

∏
i∈A Pi, and πi(p) : P 7→ Pi

map p ∈ P to its i-th component. For p1, p2 ∈ P, the
product ordering relation p1 ≤P p2 holds if and only if
πi(p1) ≤Pi πi(p2) for all i ∈ A. Time will frequently play
the role of the index set as it does in (1).

In this paper, all sets X , D, and Y are equipped with partial
orders ≤X , ≤D, and ≤Y . We also introduce an induced
signal partial ordering ≤P[·] over P and interval I = [a, b]
such that for signals p1[·], p2[·] the ordering p1[·] ≤P[·] p2[·]
signifies that p1[k] ≤P p2[k] for all k ∈ [a, b].

A function between partially ordered sets f : P 7→ Q is a
monotone function if p1 ≤P p2 implies f(p1) ≤Q f(p2) for
all p1, p2 ∈ P. The composition of monotone functions is
also a monotone function [7].

3. DIRECTED SPECIFICATIONS
3.1 Lower and Upper Sets

Definition 1. (Lower Set) Given a partially ordered set
P with relation ≤P , a subset L ⊆ P is a lower set if for all
p, q ∈ P:

p ∈ L and q ≤P p =⇒ q ∈ L. (2)

1

1

2

2

x[1]

x[0]
1

1

2

2

x[1]

x[0]

Figure 3: Sets with norm bounds {x[·] : ||x[·]||i ≤ 2} for i ∈
{1,∞} are lower specifications on positive signals x[·] : [0, 1] 7→
R≥0.

An upper set satisfies Definition 1 with the relation ≥P in-
stead. Common alternative names for lower sets are down
sets and downward closed sets [7].

A lower setM⊆ P is a principal subset if there exists x ∈ P
such that M = {y : y ≤ x}. If x ∈ L, then M⊆ L. With a
coordinate-wise ordering, principal sets are rectangles. See
Fig. 2 for visualizations of L and M in Rn≥0.

Lower sets on P have the following useful properties (the
dual properties for upper sets can be obtained by swapping
“lower” and “upper”) [7]:

Property 1. If L ⊆ P is a lower set, then LC is an
upper set.

Property 2. The collection of all lower sets of P is closed
under arbitrary unions and intersections.

Property 3. Let the collection of lower sets Li ⊆ Pi
be indexed by a set A and P =

∏
i∈A Pi. Their Cartesian

product
∏
i∈A Li is a lower set with the product ordering ≤P .

Property 4. Sets P and ∅ are both upper and lower sets.

We now define a set of specifications φ that are satisfied on
lower/upper sets in the signal space.

Definition 2 (Lower/Upper Specifications).
A lower specification φ on signals X [·] satisfies(

(x1[·] ≤X [·] x2[·]) ∧ (x2[·] |= φ)
)
⇒ (x1[·] |= φ). (3)

Likewise, an upper specification φ on signals X [·] satisfies(
(x1[·] ≤X [·] x2[·]) ∧ (x1[·] |= φ)

)
⇒ (x2[·] |= φ). (4)

A directed specification is one that is either a lower or upper
specification.

Common examples of lower specifications in the control the-
ory literature are the set of non-negative signals with upper

1

1

2

2

3

3

x[1]

x[0]

Figure 4: The set of signals x[·] over X = [0, 3] with interval

I = [0, 1] that satisfy lower specification φ = 3[0,1](x[·] ≤ 1).

Specification φ is the union of two clauses (x[0] ≤ 1) and (x[1] ≤
1), respectively depicted with vertical and diagonal lines.

bounds on some norm, as shown in Fig. 3, and the set of
non-negative signals that converge to zero. However, only
considering specifications of interest to be over sublevel sets
with respect to some norm is too restrictive and does not
permit non-convex specifications such as“intermittent spikes
in freeway occupancy are permitted as long as they do not
last longer than 30 minutes”. Lower sets do not need to
be convex, open, or closed, and allow specifications like the
freeway specification above. The following section covers a
set of rules that provides a sufficient condition for a temporal
logic specification to be directed.

3.2 Constructing Directed Specifications
Temporal logics are a logical formalism for expressing spec-
ifications as sets of satisfying signals [17]. We restrict our
interest to signals over a partially ordered set X . A predicate
µ : X 7→ B assigns a truth value to elements in X . As an
example, consider a discrete-time variant on signal temporal
logic(STL) [12] where specifications can be constructed with
the grammar

φ := >|µ|¬φ|φ1 ∧ φ2|φ1UIφ2 (5)

where I is an interval, ¬ is Boolean negation, and ∧ is a
Boolean AND. Specification φ1UIφ2 is true if there exists
a time k ∈ I such that φ2 is true at time k and φ1 is true
until k. From the above grammar, one can derive additional
temporal operators 3Iφ = >UIφ for “φ is eventually true in
I”and �Iφ = ¬(3I¬φ) for“φ is always true in I”. Formally:

(x[·], k) |= µ iff x[·] satisfies µ at time k
(x[·], k) |= ¬φ iff (x[·], k) 6|= φ
(x[·], k) |= φ1 ∧ φ2 iff (x[·], k) |= φ1 and (x[·], k) |= φ2

(x[·], k) |= φ1U[a,b]φ2 iff ∃p ∈ [k + a, k + b] such that
(x[·], p) |= φ2 and
∀q ∈ [k + a, p− 1], (x[·], q) |= φ1

When temporal operators omit the interval I, it is assumed

that I = [0,∞) and x[·] |= φ is a shorthand for (x[·], 0) |= φ.

In this section, we adopt a geometric view of temporal logic
formulas with predicates on R by viewing them as subsets
of a Euclidean signal space, just as level sets of l1, l2 and l∞
norms are visualized as high dimensional diamonds, balls
and boxes. Fig. 4 depicts a specification consisting of an
eventually operator and shows that it can be thought of as
a union over different sets in the signal space. The mixed-

integer constraints appearing in model predictive control
with temporal logic constraints effectively encode unions of
polyhedra in a signal space [20] [18].

3.3 Order Preserving Operations
We outline a fragment of the temporal logic over a partially
ordered set by restricting the grammar (5) in such a way
that all generated specifications are directed.

Theorem 1. Let µl and µu be restricted to predicates that
are true on lower and upper sets of X respectively. Let φd

be constructed with the grammar

φd := φl|φu

φl := >|µl|¬φu|φl1 ∧ φl2|φl1UIφ
l
2

φu := >|µu|¬φl|φu1 ∧ φu2 |φu1UIφ
u
2

Any specification φd respecting the grammar above is a di-
rected specification of X [·] satisfying (3) or (4).

Proof. We adopt a syntax directed approach to proving
that a specification is directed and only prove the following
statements about lower specifications φl. The dual state-
ments for upper specifications are easily derived.

• Formulas φ = > and φ = ⊥ are both lower and upper
specifications.
Proof : Follows from Property 4.

• If predicate µl is true on a lower set in X , then φ = µl

is a lower specification in X [·].
Proof Sketch: Follows from the definition of lower set,
Property 3, and the identity:

{x[·] : x[0] ∈ µl} ≡ {x[·] : x[·] ∈

µl × ∏
i∈[1,∞]

X

}
• If φl is a lower specification, then ¬φl is an upper spec-

ification, as shown using DeMorgan’s law:

(x1[·] ≤X [·] x2[·] ∧ x2[·] |= φl)⇒ (x1[·] |= φl)

≡ ¬(x1[·] ≤X [·] x2[·] ∧ x2[·] |= φl) ∨ x1[·] |= φl

≡ x1[·] 6≤X [·] x2[·] ∨ x2[·] |= ¬φl ∨ x1[·] |= φl

≡ ¬(x1[·] ≤X [·] x2[·] ∧ x1[·] |= ¬φl) ∨ x2[·] |= ¬φl

≡ (x1[·] ≤X [·] x2[·] ∧ x1[·] |= ¬φl)⇒ x2[·] |= ¬φl.

• If φl1 and φl2 are both lower specifications, then φl1∧φl2
also is a lower specification.
Proof Sketch: Consider two signals x1[·], x2[·] where
x1[·] ≤X [·] x2[·]. If x2[·] |= φl1 ∧ φl2, then the inequality
x1[·] ≤X [·] x2[·] and the definition of lower specification

guarantee that x1[·] |= φl1 and x1[·] |= φl2.

• If φl1 and φl2 are lower specifications, then φl1U[a,b]φ
l
2

also is a lower specification.
Proof Sketch: Consider two signals x1[·], x2[·] where
x1[·] ≤X [·] x2[·] and x2[·] |= φl1U[a,b]φ

l
2. At some time

p ∈ [a, b], signal (x2[·], p) |= φl2 and the definition

�φ = ¬(>U¬φ)

¬

U

> ¬

φ

Figure 5: Parse tree that uses order preserving operations to

determine that �φ is a lower specification if φ is also a lower

specification. Thick and thin lines respectively denote upper and

lower specifications.

of lower specification guarantees that (x1[·], p) |= φl2
(x1[·] may satisfy φl2 earlier than time p). A similar
argument can be made about x1[·] |= φl1 for all time in
[a, p− 1].

Although this proof is on discrete-time specifications, the
above properties also apply to specifications with continuous-
time semantics.

It is straightforward to prove the above properties about
temporal logic operators in a set theoretic context using
Properties 1-4 of lower/upper sets. The above are suffi-
cient conditions to determine satisfaction of properties (3)
and (4), and allow derivation of similar statements for �φ,
3φ, φ1 ∨ φ2, and φ1 ⇒ φ2.

• �φ and 3φ are lower specifications if φ is a lower spec-
ification. Fig. 5 demonstrates how order preserving
operators are used to derive �φ’s directed property.

• φ1 ∨ φ2 is a lower specification if φ1 and φ2 are lower
specifications.

• φ1 ⇒ φ2 is a lower specification if φ1 is an upper spec-
ification and φ2 is a lower specification.

Note that the proof for Theorem 1 only assumes that sets
have a partial ordering and no makes no restrictions that
predicates be over discrete or continuous sets such as Bn or
Rn, respectively.

Curiously, it is possible to generate lower specifications that
combine elements of temporal logics and norms that are not
expressible in either alone. Consider

�[0,100]3[0,7](

4∑
i=0

x[i] ≤ 3)

which encodes that a running average is periodically below
a constant, is a specification that cannot be written in signal
temporal logic, yet is still a lower specification.

X ×D[·]

Σ−1(φ)

X [·]

φ

Σ−1(·)

Figure 6: A monotone function’s preimage of a lower set is itself

a lower set. Therefore, the assumption set Σ−1(φ) ⊆ X ×D[·] of

the lower specification φ ⊆ X [·] is a lower set. Although Σ−1(φ)

is unknown, the lower set property is useful for constructing ap-

proximations.

4. MONOTONE SYSTEM DYNAMICS
Let the discrete time system Σ have an associated update
equation FΣ : X ×D 7→ X such that

x[k + 1] = FΣ(x[k], d[k]) (6)

for all k ≥ 0.

Definition 3 (Monotone Systems). A system (6) is
monotone with respect to ordering ≤X and ≤D if

x1 ≤X x2 and d1 ≤D d2 =⇒ FΣ(x1, d1) ≤X FΣ(x2, d2).
(7)

The system has a monotone output if the output function
h(·) : X [·] 7→ Y[·] is monotone.

To extend the definition of monotone system from a single-
step update equation FΣ to a definition about the signals
generated by Σ, consider d1[·] ≤D[·] d2[·] on the interval
[a, b] and x1[a] ≤X x2[a]. If the system is monotone, it
follows from iterating Definition 3 via (6) that:

x1[·] ≤X [·] x2[·] (8)

for state signals x1[·], x2[·] on the interval [a, b+ 1].

Thus monotonicity of FΣ(·, ·) in (7) implies the monotonicity
of Σ : X ×D[·] 7→ X [·].

Example 1. Let a ≥ 0, x ∈ R≥0, d ∈ R. The system

x[k + 1] = max(0, ax[k] + d[k])

is monotone.

Consider the assumption mining problem as formalized in
Problem 1, but with the additional information that the
system Σ is monotone and the specification φ is a lower set.
The following property of lower sets and monotone functions
lets us deduce that the assumption set is also a lower set as
depicted in Fig. 6.

Property 5. If f : P 7→ Q is a monotone function, the
preimage f−1(M) of a lower(upper) set, M⊆ Q, is itself a
lower(upper) set.

Proof. Consider the case when M is a lower set. The
preimage f−1(M) = {x ∈ P|f(x) ∈ M} may be the empty
set, in which case it satisfies Definition 1. If f−1(M) is
nonempty then let there be p1, p2 such that p2 ∈ f−1(M)
and p1 ≤P p2. By monotonicity of f , it follows that f(p1) ≤Q
f(p2) and f(p1) ∈ M because M is a lower set. Thus, p1

is an element of the preimage f−1(M), which satisfies the
definition of a lower set. A similar argument can be used
when M is an upper set.

Because Σ is monotone and φ is true on a lower set, the
assumption set Σ−1(φ) is a lower set and the assumption
violation set Σ−1(¬φ) is an upper set. Because a compo-
sition of monotone functions is monotone, if φ ⊆ Y[·] is a
directed specification on the system’s output signals, then
the assumption set will also be directed with the same po-
larity.

5. ASSUMPTION MINING FOR MONOTONE
SYSTEMS

5.1 Approximating the Assumption Set
Determining the set of all admissible initial state and distur-
bance signals that satisfy (or falsify) arbitrary specifications
for nonlinear or hybrid systems is intractable. However, be-
cause Σ is monotone and φ is directed, we can take advan-
tage of Σ−1(φ)’s geometric properties.

We assume that a single simulation of Σ with different ini-
tial states and disturbance signals induces a trajectory that
either satisfies φ or ¬φ. To evaluate a trace’s satisfaction of
a specification, we would use the Breach or S-TaLiRo tool-
boxes [11][2]. An initial state and disturbance pair (x0, d[·])
is used to underapproximate Σ−1(φ) if Σ(x0, d[·]) |= φ and is
used to underapproximate Σ−1(¬φ) if Σ(x0, d[·]) |= ¬φ (see
lines 8-13 of Algorithm 1 and green/red points in Fig. 7a).

Observe that the boundary between a lower and upper set
can be under-approximated arbitrarily well by a union of
principal sets, which under a coordinate-wise ordering are
rectangular. If the assumption space is of finite dimension
and is bounded, then the set can be approximated arbitrar-
ily well (in a way that will be made precise) with a finite
number of simulations. Solely for the purpose of assumption
mining, we impose a practical restriction that disturbance
and state signals be of finite length because simulations are
of finite length. This implicitly limits the set of specifica-
tions that can be mined to those whose satisfaction can be
decided for signals of that length. For instance, given a sig-
nal x[·] over I = [0, N], the specifications �[0,2N](x[·] ≤ 1)
and 3[0,2N](x[·] ≤ 1) are disallowed.

A natural question arises of how to intelligently generate
disturbance inputs to simulate. This problem becomes more
difficult as the signal length increases because the lower set
resides in progressively larger dimension spaces. Ideally, one
would like to represent the lower set as accurately as possi-
ble with a small number of sample points in the assumption
space. We provide a modified algorithm that uses the Z3
satisfiability modulo theories (SMT) solver as an oracle to
determine the location of the next query [8]. Legriel, Le
Guernic, Cotton, and Maler take a similar approach when

tackling the problem of estimating a Pareto front of a multi-
criteria optimization problem by making queries to a satis-
fiability solver [15].

If we query a signal in the white region of Fig. 7a, then
we are guaranteed to refine our approximation of the or-
dered set. A rectangle is encoded as an intersection of half
planes, and its complement is a union over the opposite half
planes. The white region is equivalent to the intersection of
the complements of each rectangle. Thus, finding a point in
that region can be posed as a conjunctive normal form-like
satisfiability query, which we pose to an SMT solver.

The query may return a point that does not contribute to im-
proving the boundary approximation such as the black dot
in Fig. 7b. To explore the signal space effectively, we first
“bloat” each rectangle along each side by a constant ε im-
mediately before sending the query to the SMT solver. The
bloating factor is represented by the grey region in Fig. 7b,
and this technique serves a similar purpose to tabu search
in [9]. A satisfying query will return a point in the white re-
gion, whereas unsatisfiability signifies that the white region
does not exist and the entire space X ×D[·] is covered.

Unsatisfiability of the queried formula indicates that the
rectangle bloating was too aggressive and covered the entire
space; it serves as a convenient certificate for the quality of
our approximation of the ordered set. Unsatisfiability with
an ε bloating indicates that every point on the boundary
must lie within ε coordinate-wise of a point in either the set
of upper or lower points as in Fig. 7c. If a query is unsat-
isfiable, then we decrease the size of ε by multiplying by a
learning rate α ∈ (0, 1) until our algorithm reaches a given
desired precision εfinal (see lines 2,4-7 of Algorithm 1) or a
timeout.

5.2 Remarks on Tractability
If the assumption space is of finite dimension and is bounded,
then a finite number of queries are needed for our algorithm
to approximate the set to an arbitrary degree of precision
εfinal > 0. As a worst case scenario, our algorithm has an
upper bound of (b

εfinal
)d queries, where d is the dimension of

the assumption set and b = sup(||x− y||∞, x, y ∈ X × D[·])
is the diameter of the assumption space. If the assumption
space and assumption set are not bounded, it may still be
possible for the latter to have a finite ε-approximation for all
ε > 0, but establishing this requires prior knowledge about
the assumption set, the very object we are trying to identify.

As highlighted in our freeway example in Section 6 below,
the aforementioned upper bound is rather conservative and
the number of queries is typically orders of magnitude less.
The variable bloating ε effectively amounts to a way to vary
the grid granularity. Picking a learning rate α requires a del-
icate tradeoff between exploring the space earlier. A learning
rate that is too conservative will result in slower convergence
but better coverage of the space, whereas too aggressive a
learning rate will rapidly increase the number of points in
the grid.

X ×D[·]

s

(a) A green point s = (x[0], d[·]) generates a state signal
Σ(s) |= φ that satisfies φ; therefore, s ∈ Σ−1(φ). Because
Σ−1(φ) is known to be a lower set, the patterned principal set
{t : t ≤ s} is a subset of Σ−1(φ). A union of upper and lower
rectangles can converge on the lower set’s boundary (dotted
line).

X ×D[·]

ε

(b) Bloating the set of sampled points by ε (grey region) to
encourage exploration of the assumption space and avoid new
samples like the solid dot. The oracle must return a point in
the now smaller white region.

X ×D[·]

(c) After two more samples are taken, all points on the bound-
ary, e.g. the solid square, lie within an ε neighborhood (dashed
box) of a sampled point.

Figure 7: The assumption mining algorithm consists of general-

izing information from simulations (Fig. 7a) and systematic ex-

ploration of the assumption space (Fig. 7b). After the algorithm

terminates, we have a certificate for the approximation’s quality

(Fig. 7c).

Algorithm 1 ε-approximation of assumption Σ−1(φ)

Input: Σ, φ, α ∈ (0, 1), ε, εfinal

Output: lowerP ts, upperP ts
1: lowerP ts = [], upperP ts = []
2: while ε ≥ εfinal do
3: (x0, d[·]) = orderedQuery(lowerP ts, upperP ts, ε)
4: if (x0 is NaN) then
5: ε = α ∗ ε
6: continue
7: end if
8: x[·] = Σ(x0, d[·])
9: if (x[·] |= φ) then

10: lowerP ts.append(x0, d[·])
11: else
12: upperP ts.append(x0, d[·])
13: end if
14: end while
15: return (lowerP ts, upperP ts)

Algorithm 2 Ordered Query

Input: lowerP ts, upperP ts, ε
Output: x, d[·]
1: smtConstraints = []
2: for all (xi, di[·] ∈ lowerP ts) do
3: rect = getLowerRect(xi, di[·])
4: bloatedRect = bloatRect(rect,ε)
5: smtConstraints.append(bloatedRect)
6: end for
7: for all (xi, di[·] ∈ upperP ts) do
8: rect = getUpperRect(xi, di[·])
9: bloatedRect = bloatRect(rect,ε)

10: smtConstraints.append(bloatedRect)
11: end for
12: satisfied = smt.solve(smtConstraints)
13: if satisfied then
14: return (x, d[·]) = smt.model()
15: else
16: return (x, d[·]) = (NaN, NaN)
17: end if

6. EXAMPLES
6.1 Monotone Integrator Example
Our first example illustrates the use of our mining algorithm
for a simple system and short disturbance signals. Let Σ be
a discrete time system with x ∈ R≥0, d ∈ R and update
equations

x[k + 1] = max(0, ax[k] + d[k]) (9)

where a = .4. We let the initial state x[0] = 0. This system
is monotone with respect to the standard ordering on R.
The specification φ = �[0,1](3[0,2](x(t) ≤ 4.0)) is a lower
specification according to the rules outlined in Section 3.3
and it is either satisfied or violated with a state signal on
the interval [0, 3] and an input signal on the interval [0, 2].
Fig. 8 shows the approximate assumption set for φ with an
absolute precision ε = .25 with a total of 430 points.

6.2 Freeway Example
Our second example is of a freeway traffic network, where
we seek to determine the limits of the assumption mining

Figure 8: Converging on the boundary of system (9)’s as-
sumption set. Dark blue balls represent points contained
within the lower set Σ−1(φ) and lighter red balls are in the
upper set Σ−1(¬φ). We fix the initial state to be zero and
only plot the D[·] component of the assumption set.

algorithm by introducing a large state space and long dis-
turbance signals. Consider the network depicted in Fig. 9,
which has a main stretch of three links x0, x2, x4 and two on-
ramps x1, x3. The dynamics are taken from the cell trans-
mission model (CTM) [6][13], a macroscopic fluid-like model
of freeway dynamics. Individual vehicles are not a compo-
nent of this model. Each discrete time instant represents a
five minute interval. Our state space X =

∏5
i=1[0, 100] ⊂

R5
≥0 represents the average occupancy over the five minute

period in each of the five links. We overload notation and
refer to links and their occupancy values using the same vari-
able. The state update equations arise from conservation of
mass:

x0[k + 1] = min(100, x0[k]− fout
0 [k] + 30)

x1[k + 1] = min(100, x1[k]− fout
1 [k] + d1[k])

x2[k + 1] = min(100, x2[k]− fout
2 [k] +

∑
i={0,1}

fout
i [k])

x3[k + 1] = min(100, x3[k]− fout
3 [k] + d3[k])

x4[k + 1] = min(100, x4[k]− fout
4 [k] +

∑
i={2,3}

fout
i [k])

where fout
i [k] represents the flow exiting link xi at time k.

The disturbances d1[k], d3[k] represent the number of vehi-
cles that would like to enter the network via on-ramps x1, x3

and lie within a range [0, 30]. We assume link x0 experiences
a constant disturbance of 30 vehicles from the exogenous up-
stream link. The disturbance space is D =

∏
i={1,3}[0, 30] ⊂

R2
≥0. The minimization terms above prevent the occupancy

from exceeding the maximum capacity of the freeway seg-
ments.

The flows into and out of a link are determined by supply and
demand. A link’s demand is the rate at which it would like
to send vehicles to downstream links. The demand Φi(xi[k])
that link xi exhibits is a non-decreasing function

Φi(xi[k]) = min(ci, αixi[k]) (10)

where ci is a saturation rate and αi ∈ [0, 1] is the fraction
of current vehicles that will leave xi. The primary links
have saturation rates c0 = c2 = c4 = 40 and on-ramps have

x0

x1

x2

x3

x4

Figure 9: An example network with two on-ramps x1, x3.
Dashed arrows are exogenous network links

20 40 60 80 100

20

40

60

80

x2[k]

Φ2(x2[k])

.8Ψ2(x2[k])

Figure 10: Supply (solid) that link x2 provides to link x0 and

Demand (dashed) that link x2 creates for link x4

saturation rates c1 = c3 = 30. Link xi also exhibits a supply

Ψ(xi[k]) = 100− xi[k], (11)

which is the rate of incoming vehicles that it can accept from
upstream. A link’s supply is partitioned among upstream
links, with links x2, x4 allocating 80% of their supply to an
upstream highway link and 20% to on-ramps. The flow out
of a link xi is the minimum between supply available to it
and xi’s demand:

fout
0 [k] = min (.8(100− x2[k]), 40, .5x0[k])

fout
1 [k] = min (.2(100− x2[k]), 30, x1[k])

fout
2 [k] = min (.8(100− x4[k]), 40, .5x2[k])

fout
3 [k] = min (.2(100− x4[k]), 30, x3[k])

fout
4 [k] = min (40, x4[k])

The exogenous link that is immediately downstream from
x4 can always accept up to 40 vehicles.

Congestion occurs when demand exceeds supply and the left
term in the minimization is active; one can verify that con-
gestion occurs on an upper set of the state space because the
left term remains active after an increase in any xi[k]. Let
the predicate c(x) be true if congestion is present. Our spec-
ification, φ = �[0,T]3[0,1](¬c(x[·])), requires that congestion
be intermittent. Note that φ’s satisfaction value can be de-
termined for inputs over I = [0, T] because the generated
state trajectories are over I = [0, T + 1]. Because a maxi-
mum rate of 40 vehicles can exit the network but a net rate
of 90 vehicles can enter via links x0, x1, x3 at any time step,
φ can easily be violated with a determined adversary. The
network in Fig. 9 was shown to exhibit monotone dynamics
in [5].

We consider disturbance signals I = [0, T − 1] with signal

5 10 15 20 25 30

Assumption Space Dimension

0.0

0.1

0.2

0.3

0.4

0.5

0.6
P

re
ci

si
on

ε
af

te
r7

00
0

S
am

pl
es

Coarser ε Reached after 7000 Points with Increased Dimension

5 10 15 20 25 30

Assumption Space Dimension

0

1000

2000

3000

4000

5000

6000

7000

S
am

pl
es

un
til

pr
ec

is
io

n
ε

=
0
.2

5

More Samples Required to Reach ε = 0.25 with Increased Dimension

Figure 11: For assumption spaces of varying dimension, precision

and number of samples are used as two stopping criteria, with the

other criterion plotted after termination. Lower values are better

for both precision and samples. The samples plateau in the lower

graph appears because of a time out.

lengths T ∈ {2, 3, . . . , 11}. The input is two dimensional and
the state space has five dimensions, so the dimension of the
assumption space is 2T+5 and the boundary of the assump-
tion set can be as complex as a 2T + 4 dimensional object.
Fig. 11 shows how increasing the dimension of the problem
presents a tradeoff between granularity and sample points.
The precision ε is normalized along each axis; for example,
ε = .1 represents that demand signals d1[k], d3[k] ∈ [0, 30]
have a granularity of a rate of three vehicles at each time
k and that xi[0] ∈ [0, 100] has granularity of ten vehicles.
We opted to test our method for higher dimensions and less
granularity (i.e. higher εfinal) because obtaining a fine ap-
proximation of the assumption set doesn’t make sense when
traffic model parameters are imprecise and the model does
not incorporate higher-order dynamics. The learning rate
was α = .95 and the initial bloating factor was ε = .6. Our
algorithm required anywhere from 3 to 12 orders of magni-
tude less samples than the worst case scenario number of
samples (1

ε
)2T+5.

Runtimes for T = {2, . . . , 7} are plotted in Fig 12. Larger
dimensions did not achieve the desired precision by a min-
ing algorithm timeout of 10 minutes. Experiments were run
on a standard on a laptop with 8 GB memory and 2.4 GHz
Intel Core i7 processor. As expected, the main factors that
influenced the miner’s total run time was dimension and

8 10 12 14 16 18 20

Assumption Space Dimension

0

5

10

15

20

25

30

To
ta

lS
ol

ve
rT

im
e

(s
)

0

2

4

6

8

10

12

14

A
ve

ra
ge

Ti
m

e
pe

rq
ue

ry
(m

s)

Solver Time until ε = .25 Reached with Increased Dimension

Total Solver Time
Time per Query

Figure 12: For a fixed εfinal = .25, the total solver runtime and

average runtime for each SMT query. The increase in total solver

time is primarily due to the fact that more points were required

to cover the space with an ε bloating. The total solver time does

not include overhead for declaring constraints and was a variable

proportion of total mining time.

the target εfinal. However, individual SMT query times de-
pended much more on the presence of “easy solutions” than
on problem dimension or the number of constraints. In lower
dimensions, M samples provide more comprehensive cover-
age of the ambient space than M samples in a higher di-
mension space. Thus, for lower dimension spaces obvious
solutions to the SMT queries become sparse at sooner than
for higher dimensions.

7. CONCLUSION
We have introduced directed specifications and shown how
their structure can be exploited in the assumption mining
problem for monotone dynamical systems. Future work will
focus on seeking out other connections between classes of
dynamical systems and temporal logic fragments. Viewing
temporal logic specifications as geometric objects in a signal
space could enable a common language to explore connec-
tions between objectives written as temporal logic specifica-
tions and traditional control theoretic properties on signals
and dynamical systems.

8. REFERENCES
[1] R. Alur, S. Moarref, and U. Topcu. Counter-strategy

guided refinement of GR(1) temporal logic
specifications. In Formal Methods in Computer-Aided
Design, FMCAD 2013, Portland, OR, USA, October
20-23, 2013, pages 26–33, 2013.

[2] Y. Annapureddy, C. Liu, G. Fainekos, and
S. Sankaranarayanan. S-TaLiRo: A Tool for Temporal
Logic Falsification for Hybrid Systems. In Proceedings
of Tools and Algorithms for the Construction and
Analysis of Systems, 2011.

[3] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli.
Satisfiability Modulo Theories. In Handbook of
Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications, chapter 26, pages
825–885. IOS Press, Feb. 2009.

[4] K. Chatterjee, T. Henzinger, and B. Jobstmann.

Environment Assumptions for Synthesis. In CONCUR
2008 - Concurrency Theory, volume 5201 of Lecture
Notes in Computer Science, pages 147–161. Springer
Berlin Heidelberg, 2008.

[5] S. Coogan and M. Arcak. Scalable finite abstraction of
mixed monotone systems. Proceedings of the 18th
ACM International Conference on Hybrid Systems:
Computation and Control, 2015.

[6] C. F. Daganzo. The cell transmission model: A
Dynamic Representation of Highway Traffic
Consistent with the Hydrodynamic Theory.
Transportation Research, 28:269–287, 1994.

[7] B. Davey and H. Priestley. Introduction to Lattices
and Order. Cambridge University Press, 2nd edition.

[8] L. De Moura and N. Bjørner. Z3: An Efficient SMT
Solver. In Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of
Systems, TACAS’08/ETAPS’08, pages 337–340,
Berlin, Heidelberg, 2008. Springer-Verlag.

[9] J. Deshmukh, X. Jin, J. Kapinski, and O. Maler.
Stochastic Local Search for Falsification of Hybrid
Systems. In 13th International Symposium on
Automated Technology for Verification and Analysis,
2015.

[10] E. W. Dijkstra. Guarded Commands, Nondeterminacy
and Formal Derivation of Programs. Commun. ACM,
18(8):453–457, Aug. 1975.

[11] A. Donzé. Breach, a Toolbox for Verification and
Parameter Synthesis of Hybrid Systems. In
Proceedings of the 22nd International Conference on
Computer Aided Verification, CAV’10, 2010.

[12] A. Donzé and O. Maler. Robust satisfaction of
temporal logic over real-valued signals. In Proceedings
of the 8th International Conference on Formal
Modeling and Analysis of Timed Systems,
FORMATS’10, pages 92–106, Berlin, Heidelberg,
2010. Springer-Verlag.

[13] G. Gomes and R. Horowitz. Optimal freeway ramp
metering using the asymmetric cell transmission
model. Transportation Research Part C: Emerging
Technologies, 14(4):244 – 262, 2006.

[14] X. Jin, A. Donze, S. A. Seshia, and J. V. Deshmukh.
Mining Requirements from Closed-Loop Control
Models. In Hybrid Systems: Computation and Control,
2013.

[15] J. Legriel, C. Le Guernic, S. Cotton, and O. Maler.
Approximating the Pareto Front of Multi-criteria
Optimization Problems. In Tools and Algorithms for
the Construction and Analysis of Systems, volume
6015 of Lecture Notes in Computer Science, pages
69–83. Springer Berlin Heidelberg, 2010.

[16] W. Li, L. Dworkin, and S. A. Seshia. Mining
assumptions for synthesis. In In Proc. 9th
MEMOCODE, 2011.

[17] A. Pnueli. The Temporal Logic of Programs. In
Proceedings of the 18th Annual Symposium on
Foundations of Computer Science, pages 46–57, 1977.

[18] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and
S. A. Seshia. Reactive Synthesis from Signal Temporal
Logic Specifications. In 18th International Conference
on Hybrid Systems: Computation and Control, HSCC

’15, pages 239–248. ACM, 2015.

[19] U. Topcu, N. Ozay, J. Liu, and R. M. Murray. On
Synthesizing Robust Discrete Controllers Under
Modeling Uncertainty. In 15th ACM International
Conference on Hybrid Systems: Computation and
Control, HSCC ’12, pages 85–94, New York, NY, USA,
2012. ACM.

[20] E. Wolff, U. Topcu, and R. Murray.
Optimization-based trajectory generation with linear
temporal logic specifications. In Robotics and
Automation (ICRA), 2014 IEEE International
Conference on, pages 5319–5325, May 2014.

