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Abstract

Three Statistical Methods for the Social Sciences
by
Luke Weisman Miratrix
Doctor of Philosophy in Statistics
University of California, Berkeley
Professor Bin Yu, Co-chair

Professor Jasjeet Sekhon, Co-chair

Social sciences offer particular challenges to statistics due to difficulties such as conduct-
ing randomized experiments in this domain, the large variation in humans, the difficulty in
collecting complete datasets, and the typically unstructured nature of data at the human
scale. New technology allows for increased computation and data recording, which has in
turn brought forth new innovations for analysis. Because of these challenges and innova-
tions, statistics in the social sciences is currently thriving and vibrant. This dissertation is
an argument for evaluating statistical methodology in the social sciences along four major
axes: validity, interpretability, transparency, and employability. We illustrate how one might
develop methods that achieve these four goals with three case studies.

The first is an analysis of post-stratification, a form of covariate adjustment to evaluate
treatment effect. In contrast to recent results showing that regression adjustment can be
problematic under the Neyman-Rubin model, we show post-stratification, something that
can easily done in, e.g., natural experiments, has a similar precision to a randomized block
trail as long as there are not too many strata. The difference is O(1/n?). Post-stratification
thus potentially allows for transparently exploiting predictive covariates and random mech-
anisms in observational data. This case study illustrates the value of analyzing a simple
estimator under weak assumptions, and of finding similarities between different methodolog-
ical approaches so as to leverage earlier findings to a new domain.

We then present a framework for building statistical tools to extract topic-specific key-
phrase summaries of large text corpora (e.g., the New York Times) and a human validation
experiment to determine best practices for this approach. These tools, built from high-
dimensional, sparse classifiers such as L1-logistic regression and the Lasso, can be used to,
for example, translate essential concepts across languages, investigate massive databases of
aviation reports, or understand how different topics of interest are covered by various media
outlets. This case study demonstrates how more modern methods can be evaluated using ex-
ternal validation in order to demonstrate that they produce meaningful and comprehendible
results that can be broadly used.



The third chapter presents the trinomial bound, a new auditing technique for elections
rooted in very minimal assumptions. We demonstrated the usability of this technique by, in
November 2008, auditing contests in Santa Cruz and Marin counties, California. The audits
were risk-limiting, meaning they had a pre-specified minimum chance of requiring a full
hand count if the outcomes were wrong. The trinomial bound gave better results than the
Stringer bound, a tool common in accounting for analyzing financial audit samples drawn
with probability proportional to an error bound. This case study focuses on generating
methods that are employable and transparent so as to serve a public need.

Throughout, we argue that, especially in the difficult domain of the social sciences, we
must spend extra attention on the first axis of validity. This motivates our using the Neyman-
Rubin model for the analysis of post-stratification, our developing an approach for external,
model-independent validation for the key-phrase extraction tools, and our minimal assump-
tions for election auditing.
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Chapter 1

Introduction

The social sciences are becoming increasingly quantitative. A variety of factors are causing
this shift. First and foremost, information technology allows for the recording of human
activity in a much more widespread and detailed manner than ever before. This gives the
researcher much greater access to quantitative information, allowing for analyses that were
impossible before. Second, increased computational power allows for styles of inference
and analyses that would otherwise be impossible. Third, we have increased allegiance to
statistical methods and inference. For example, in education the “No Child Left Behind”
act, heavily focused on quantitative outcomes, calls for randomized experiments to assess
novel education policy. New professional groups such as SREE (the Society for Research
on Educational Effectiveness) have explicit mission statements calling for more quantitative
and causally rooted research. Political science now places greater value on field trials and
natural experiments.

The data available on almost anything is growing due to technological advances and these
new data are often unstructured, qualitative, or otherwise not of any traditional type. For
example, text data, which is now easily accessible in vast quantities, has a lack of plausible
models, an extremely high-dimensional setting, and many big-data concerns. These new
sources of data, coupled with greater computational power, have given rise to many novel
statistical methods. So far, however, much of this work has focused on prediction and
classification. This is not enough. In the social sciences there is real interest in finding
explanatory structure in data, as illustrated by the many questions on how to use large
bodies of text to understand the causal impacts of policy decisions voiced at a recent “Data
Without Borders” event.! For example, one NGO operating in rural India wanted to evaluate
the efficacy of their remote-MD program using all the text messages between their doctors
and patients. Explanatory efforts require the results of an analyses be interpretable and
valid. For the social sciences in particular validity is a huge concern due to their focus
on understanding causal mechanisms or underlying truths rather than predicting future
outcomes.

!Data Without Borders is an event which couples volunteer data analysts with needy NGOs and non-
profits
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Furthermore, methods need to be accessible. New methods should not be baroque, for
then any results based on them will likely be unconvincing because of the high barrier
to understanding their logical chains of reasoning. If new methods are overly complex or
opaque then they are likely to be only used, if at all, in internal communities that other
scientists, in effect, will ignore. Yes, the individual characters of different types of data
require specifically tailored approaches, but this cannot be taken to an extreme. We need
an approach to research that exploits the data and computational resources of the modern
world while remaining faithful to classical statistics’ values of meaning and interpretability
successfully communicated.

Given these concerns, we propose four major axes of evaluation for a statistical method:
its validity, its interpretability, its transparency, and its employability. Validity encompasses,
for example, appropriately measuring uncertainty in practice as compared to theory. In-
terpretability reflects the ability of the researcher to connect statistical findings to scientific
meaning. Transparency is a measure of how easily other researchers would be able to follow
and evaluate the work, and employability is a measure of how accessible it is for researchers
to implement or use the method. These four axes, coming from a rich tradition of classical
statistics, can serve as a guide for creating high-quality statistical methods in the increasingly
complex modern world. This is the focus of this dissertation.

1.1 Three Illustrative Projects

Good science coupled with pragmatism requires methods for looking at, testing, and pre-
senting data in a manner that does not grievously harm the quality of conclusions drawn.
We illustrate this coupling with three projects in three chapters that, we hope, achieve the
four goals outlined above. These projects are rooted in modern-day concerns: adjusting
treatment effect estimates in natural experiments motivated investigating post-stratification
under the Neyman-Rubin model; social scientists grappling with large text corpora led to a
novel form of summarization using sparse, high-dimensional regression techniques; and the
concerns about election security from the 2000 US election motivated new methods for au-
diting elections built from first principles in probability. Below, we summarize these projects
before discussing how they illustrate an overall philosophy for doing applied statistics.

Post-stratification

Chapter 2, taken from Miratrix, Sekhon and Yu (2012)[54], is on non-parametric adjustment
of randomized experiments. Randomized experiments have long been the gold standard of
statistical inference and are a key building block for proving the causal effects of, e.g., med-
ical drugs, voter turnout drives, or novel education programs. Our interest in randomized
experiments comes from looking for ways to analyze observational data. One approach to
observational data is to first identify a random mechanism at play and then conduct an
analysis based on that randomization. This creates a pseudo- (or natural) experiment, and
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makes the assumptions behind the analysis more explicit and therefore transparent, thus
increasing the legitimacy of any conclusions drawn. For example, if a scholarship were given
to all students scoring above a fixed threshold on a test, one might reasonably assume that
the students just shy of the threshold and those just above it were essentially equivalent
populations. Such observational data could be modeled and analyzed as if it were an exper-
iment where the students near the cut-off score were randomly assigned scholarships. This
practice, called Regression-Discontinuity, has recently become popular in political science.

To increase power and so reduce cost, researchers will often analyze experiments with
regression. For natural experiments, researchers adjust for similar reasons. This can be
problematic: such adjustments often require making false assumptions with unclear conse-
quences. An alternative to regression adjustment, inspired by the sampling literature, is
post-stratification. Post-stratification is stratifying experimental units, estimating effects
within the strata, and averaging appropriately to obtain an overall treatment effect after an
experiment is complete. Post-stratification is in spirit akin to blocking, a pre-randomization
technique used to increase power and ensure balance. With post-stratification, however, the
number of treated units in the strata can vary. We proved post-stratification to be actually
quite comparable to blocking by showing the difference in these approaches’ variance to be
of order 1/n?, with n being the number of experimental units. This means that researchers
can analyze a natural experiment—where they have no control over the randomization— “as
if” they had appropriately blocked it by design. However we also found that in finite sam-
ple situations post-stratification can substantially hurt precision if the number of strata is
large and the stratification variable poorly chosen. Understanding this trade-off is key for
researchers attempting to appropriately analyze experimental results.

Statistics in the media

News media heavily impacts policy through influencing public perception of world events.
It is important to understand how coverage of important topics changes over time, and how
different sources compare. For example, examining how different media sources portrayed
Muslim countries, and how that changed throughout the Iraq war, could give insight into the
shifts in public approval for the war. Information technology makes it possible to accumulate
vast amounts of text, e.g., the entire output of many media source over years, but analyzing
these data requires novel, computationally-intensive techniques.

The StatNews project, headed by Prof. El Ghaoui and Prof. Yu, builds statistical tools
and visualization aids to aid such endeavors. These tools rely on topic-specific summariza-
tion of large text corpora, which is the focus of Chapter 3, adapted from Miratrix, Jia,
Gawalt, Yu, and El Ghaoui (2011)[56]. This style of summarization had not been widely
investigated, and traditional summarization techniques do not seem to easily translate. To
solve this problem we used sparse regression techniques (e.g., ¢1-penalized logistic regression
or the Lasso) to generate relevant lists of key phrases that are topic specific. The spar-
sity ensures resulting summaries are human readable and interpretable. It also allows for
the severely high-dimensional setting of text, where any phrase is a covariate. However, as
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text is not generated by any plausible, tractable random model, we used a human valida-
tion experiment to evaluate the different summarizers. We then redesigned this experiment
into a randomized, multi-factor trial to examine how different choices in how to summarize
impacted final outcomes.

Our summarization approach uses model-intensive sparse regression, but no theoretical
results necessarily hold. In our view, externally validating this approach without regard to
the model whatsoever is the only way to demonstrate the legitimacy of the approach. This
chapter most fully illustrates how one might use modern methods in the spirit of classical
statistics.

Election auditing

Election integrity is a crucial part of a working democracy: we need to be sure that perceived
winners are actual winners. Statistical election audits are audits that have a pre-specified
minimal chance of noticing if this is not the case. They would typically be conducted by
hand-counting ballots in public view. Election auditing has recently gained importance due
to votes now being tallied either entirely electronically or via automated machines. Due
to fiscal constraints, we prefer audit methods that keep the total number of hand-counted
ballots small while preserving this minimal chance of error detection.

But we need to be careful in what we assume. In election auditing, any assumptions
made could, in principle, be exploited by an adversary. We need to account for possible
fraud as well as random error. Furthermore, transparency is key—the public should ideally
understand the process and believe in its effectiveness so as to bolster faith in the electoral
process.

In Chapter 4, originally published as Miratrix and Stark (2009)[55] and reprinted with
permission from IEEE, we develop the trinomial bound using techniques adapted from the
financial auditing literature and then prove that it both controls risk in all circumstances and
greatly reduces auditing load in most circumstances. Trinomial bound audits are based only
on the ability to accurately count a small sample of precincts by hand after selecting them
at random from the entire race. No further assumptions are necessary, and thus these audits
are not easily manipulable. We demonstrated that this method was viable by auditing two
races in California in conjunction with election officials (we certified both races). This work
has also shaped policy debates on legislative reform for election auditing in several states.

Conclusion

This dissertation aims to demonstrate with these three different case studies that a simple
structure proven to be correct gives maximal transparency and legitimacy to an analysis.
When a simple structure is impossible, then external validation can help avoid spurious con-
clusions. In either case, for a statistical analysis to be compelling it needs to be transparent;
conclusions are legitimate only if they are unlikely to be artifacts of the analysis but they
are convincing only if that fact is made clear. If possible, a method should be accessible to
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a broad audience both so many can understand resulting analyses and so they can conduct
their own.

This dissertation proposes the four qualities of walidity, interpretability, transparency,
and employability be guideposts to aid applied statisticians as they tackle modern problems.
Achieving all four qualities requires deep thinking and careful analysis. Creating and under-
standing a simple method is often, unfortunately, a very complex task. Making a complex
method accessible is typically even more daunting. But, hopefully by attending to these four
axes, statisticians can generate novel and useful methods for doing statistical work in the
social sciences. Ideally, this work shows how a few small steps can be taken in this direction.



Chapter 2

Post-Stratification

2.1 Introduction

One of the most important tools for determining the causal effect of some action is the
randomized experiment, where a researcher randomly divides units into groups and applies
different treatments to each group. Randomized experiments are the “gold standard” for
causal inference because, assuming proper implementation of the experiment, if a difference
in outcomes is found, the only possible explanations are a significant treatment effect or
random chance. Math gives a handle on the chance, which allows for principled inference
about the treatment effect. In the most basic analysis, a simple difference in means is
used to estimate the overall sample average treatment effect (SATE), defined as the average
difference in the units’ outcomes if all were treated as compared to their average outcomes
if they were not. This framework and estimator were analyzed by Neyman in 1923 under
what is now called the Neyman or Neyman-Rubin model of potential outcomes [37]. Under
this model, one need make few assumptions not guaranteed by the randomization itself.
Since each additional observation in an experiment sometimes comes at considerable cost,
it is desirable to find more efficient estimators than the simple difference-in-means estimator
to measure treatment effects. Blocking, which is when experimenters first stratify their
units and then randomize treatment within pre-defined blocks, can greatly reduce variance
compared to the simple-difference estimator if the strata differ from each other. See “A Useful
Method” in [22] for an early overview, [89] for an analysis and comparison with ANOVA,
or [43]. However, because blocking must be conducted before randomization, it is often not
feasible due to practical considerations or lack of foresight. Sometimes randomization may
even be entirely out of the researcher’s control, such as with so-called natural experiments.
When blocking was not done, researchers often adjust for covariates after randomization. For
example, [63] studied a sample of clinical trials analyses and found that 72% of these articles
used covariate adjustment. [45] analyzed the experimental results in three major political
science journals and found that 74% to 95% of the articles relied on adjustment. Post-

1See the English translation by [78].
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stratification is one simple form of adjustment where the researcher stratifies experimental
units with a pretreatment variable after the experiment is complete, estimates treatment
effects within the strata, and then uses a weighted average of these strata estimates for the
overall average treatment effect estimate. This is the estimator we focus on.

In this chapter, we use the Neyman-Rubin model to compare post-stratification both to
blocking and to using no adjustment. Neyman’s framework does not require assumptions
of a constant treatment effect or of identically or independently distributed disturbances,
assumptions typically made when considering adjustment to experimental data without this
framework [e.g., 52]. This avenue for a robust analysis, revitalized by Rubin in the 1970s [68],
has recently had much appeal. See, for example, work on general experiments [45], matched
pairs [41], or matched pairs of clusters [42].? Also see Neyman’s own treatment of blocking in
the appendix of [60]. Our estimator is equivalent to one from a fully saturated OLS regression.
[25, 26] analyzes the regression adjusted estimator under the Neyman-Rubin model without
treatment by strata interactions and finds that the asymptotic variance might be larger
than if no correction were made. [50] extends Freedman’s results and shows that when a
treatment by covariate interaction is included in the regression, adjustment cannot increase
the asymptotic variance. We analyze the exact, finite sample properties of this saturated
estimator. [44] analyzes estimating the treatment effect of a larger population, assuming
the given sample being experimented on is randomly drawn from it. However, because in
most randomized trials the sample is not taken at random from the larger population of
interest, we focus on estimating the treatment effect of the sample. [87] and [47] propose
other adjustment methods that also rely on weak assumptions and that have the important
advantage of working naturally with continuous or multiple covariates. Due to different sets
of assumptions and methods of analysis, these estimators have important differences from
each other. See Section 2.6 for further discussion.

We derive the variances for post-stratification and simple difference-in-means estimators
under many possible randomization schemes. We show that the difference between the
variance of the post-stratified estimator and that of a blocked experiment is on the order
of 1/n? with a constant primarily dependent on the proportion of units treated. Post-
stratification is comparable to blocking. Like blocking, post-stratification can greatly reduce
variance over using a simple difference-in-means estimate. However, in small samples post-
stratification can substantially hurt precision, especially if the number of strata is large and
the stratification variable poorly chosen.

After randomization, researchers can observe the proportion of units actually treated in
each strata. We extend our results by deriving variance formula for the post-stratified and
simple-difference estimators conditioned on these observed proportions. These conditional
formula help explain why the variances of the estimators can differ markedly with a prog-
nostic covariate: the difference comes from the potential for bias in the simple-difference
estimator when there is large imbalance (i.e., when these proportions are far from what
is expected). Interestingly, if the stratification variable is not predictive of outcomes the

2See [73] for a historical review of the Neyman-Rubin model.
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conditional MSE of the simple-difference estimator usually remains the same or even goes
down with greater imbalance, but the conditional MSE of the adjusted estimator increases.
Adjusting for a poorly chosen covariate has real cost in finite samples.

The rest of the chapter is organized as follows: In the next section, we set up the Neyman-
Rubin model, describe the estimators, and then derive the estimators’ variances. In Sec-
tion 2.3 we show that post-stratification and blocking have similar characteristics in many
circumstances. In Section 2.4, we present our formula for the estimators’ variances condi-
tioned on the observed number of treated units in the strata and discuss their implications.
We then align our results with those of [44] in Section 2.5 by extending our findings to the
super-population model and discussing the similarities and differences of the two viewpoints.
We compare post-stratification to other forms of adjustment in Section 2.6, focusing on how
these different approaches use different assumptions. In Section 2.7, we apply our method
to the real data example of a large, randomized medical trial to assess post-stratification’s
efficacy in a real-world example. We also make a hypothetical example from this data set
to illustrate how an imbalanced randomization outcome can induce bias which the post-
stratified estimator can adjust for. Section 2.8 concludes.

2.2 The Estimators and Their Variances

We consider the Neyman-Rubin model with two treatments and n units. For example con-
sider a randomized clinical trial with n people, half given a drug and the other half given
a placebo. Let y;(1) € R be unit i’s outcome if it were treated, and y;(0) its outcome if it
were not. These are the potential outcomes of unit 7. For each unit, we can only observe
either y;(1) or y;(0) depending on whether we treat it or not. We make the assumption that
treatment assignment for any particular unit has no impact on the potential outcomes of any
other unit (this is typically called the stable-unit treatment value assumption or SUTVA).
In the drug example this means the decision to give the drug to one patient would have no
impact on the outcome of any other patient. The treatment effect ¢; for unit ¢ is then the
difference in potential outcomes, t; = y;(1) — y;(0), which is deterministic.

Although these t; are the quantities of interest, we cannot in general estimate them
because we cannot observe both potential outcomes of any unit 2 and because the t; generally
differ by unit. The average across a population of units, however, is estimable. Neyman [78§]
considered the overall Sample Average Treatment Effect, or SATE:

P = 23 ) - (o)

_n'

To conduct an experiment, randomize units into treatment and observe outcomes. Many
choices of randomization are possible. The observed outcome is going to be one of the two
potential outcomes, and which one depends on the treatment given. Random assignment
gives a treatment assignment vector 17" = (17,...,7T,) with T; € {0,1} being an indicator
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variable of whether unit ¢ was treated or not. T’s distribution depends on how the random-
ization was conducted. After the experiment is complete, we obtain the observed outcomes
Y, with ¥; = Ty;(1) + (1 — T;)y;(0). The observed outcomes are random—but only due
to the randomization used. The y;(¢) and t; are all fixed. Neyman considered a balanced
complete randomization:

Definition 2.2.1 (Complete Randomization of n Units). Given a fixed p € (0, 1) such that
0 < pn < n is an integer, a Complete Randomization is a simple random sample of pn units
selected for treatment with the remainder left as controls. If p = 0.5 (and n is even) the
randomization is balanced in that there are the same number of treated units as control
units.

The classic unadjusted estimator 74 is the observed simple difference in the means of
the treatment and control groups:

. 1 ¢ .
fu = W;TM—WZ( - T)Y;

> = 3 g o)
where W (1) = >, T; is the total number of treated units, W (0) is total control, and W (1) +
W(0) = n. For Neyman’s balanced complete randomization, W (1) = W(0) = n/2. For
other randomizations schemes the W (¢) are potentially random.

We analyze the properties of the estimators based on the randomization scheme used—
this is the source of randomness. Fisher proposed a similar strategy for testing the “sharp
null” hypothesis of no effect (where y;(0) = y;(1) for ¢ = 1,...,n); under this view, all
outcomes are known and the observed difference in means is compared to its exact, known
distribution under this sharp null. Neyman, in contrast, estimates the variance of the differ-
ence in means, allowing for the unknown counterfactual outcomes of the units to vary. These
different approaches have different strengths and weaknesses that we do not here discuss.
We follow this second approach.

Neyman showed that the variance of 7,4 is

2 1
Var[7y] = - E [S% + 53] — ESQ (2.1)

where s? are the sample variances of the observed outcomes for each group, S is the variance
of the n treatment effects t;, and the expectation is over all possible assignments under
balanced complete randomization. We extend this work by considering an estimator that
(ideally) exploits some pretreatment covariate b using post-stratification in order to reduce
variance.
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The Post-Stratified Estimator of SATE

Stratification is when an experimenter divides the experimental units into K strata accord-
ing to some categorical covariate b with b; € B={1,..., K}, i =1,...,n. Each stratum k
contains ny = #{i : b; = k} units. For example, in a cancer drug trial we might have the
strata being different stages of cancer. If the strata are associated with outcome, an exper-
imenter can adjust a treatment effect estimate to remove the impact of random variability
in the proportions of units treated. This is the idea behind post-stratification. The b; are
observed for all units and are not affected by treatment. The strata defined by the levels of

b have stratum-specific SATE}:
1
T = — Z [vi(1) = %:(0)] k=1,.... K.

n
k b=k

The overall SATE can then be expressed as a weighted average of these SATEs:
_ Mk
T = Z Tk (2.2)
keB

We can view the strata as K mini-experiments. Let Wy (1) = »_,, _, T; be the number
of treated units in stratum k, and W;(0) be the number of control units. We can use a
simple-difference estimator for each stratum to estimate the SATEs:

DY Wﬁl)%(n -y %%m), (2.3)

i:bi=k

A post-stratification estimator is an appropriately weighted estimate of these strata-level
estimates:
ng

Tps = Zzﬂﬁ (2.4)

keB

These weights echo the weighted sum of SATE.s in Equation 2.2. Because b and n are
known and fixed, the weights are also known and fixed. We derive the variance of 7, in this
chapter.

Technically, this estimator is undefined if W (1) = 0 or Wy (0) =0 for any k € 1,..., K.
Similarly, 7,4 is undefined if W (1) = 0 or W(0) = 0. We therefore calculate all means and
variances conditioned on D, the event that 7, is defined, i.e., that each stratum has at least
one unit assigned to treatment and one to control. This is fairly natural: if the number of
units in each stratum is not too small the probability of D is close to 1 and the conditioned
estimator is similar to an appropriately defined unconditioned estimator. See Section 2.2.

Different experimental designs and randomizations give different distributions on the
treatment assignment vector T" and all resulting estimators. Some distributions on 7" would
cause bias. We disallow those. Define the Treatment Assignment Pattern for stratum k as
the ordered vector (T; : i € {1,...,n : b; = k}). We assume that the randomization used
has Assignment Symmetry:
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Definition 2.2.2 (Assignment Symmetry). A randomization is Assignment Symmetric if
the following two properties hold:

1. Equiprobable Treatment Assignment Patterns

All (WZ’ED) ways to treat W (1) units in stratum k are equiprobable, given Wy (1).

2. Independent Treatment Assignment Patterns
For all strata j, k, with 7 # k, the treatment assignment pattern in stratum j is
independent of the treatment assignment pattern in stratum k, given W;(1) and W (1).

Complete randomization and Bernoulli assignment (where independent p-coin flips deter-
mine treatment for each unit) satisfy Assignment Symmetry. So does blocking, where strata
are randomized independently. Furthermore, given a distribution on T that satisfies As-
signment Symmetry, conditioning on D maintains Assignment Symmetry (as do many other
reasonable conditionings, such as having at least z units in both treatment and control, and
so on). See the supplementary material for a more formal argument. Cluster randomization
or randomization where units have unequal treatment probabilities do not, in general, have
Assignment Symmetry. In our technical results, we assume that (1) the randomization is
Assignment Symmetric and (2) we are conditioning on D, the set of possible assignments
where 7,5 is defined.

The post-stratification estimator and the simple-difference estimator are used when the
initial random assignment ignores the stratification variable b. In a blocked experiment, the
estimator used is 7,5, but the randomization is done within the strata defined by 0. All three
of these options are unbiased. We are interested in their relative variances. We express the
variances of these estimators with respect to the sample’s (unknown) means, variances and
covariance of potential outcomes divided into between-strata variation and within-stratum
variation. The within-stratum variances and covariances are, for k =1, ..., K:

20 = —— 3 w0 - @O =01

it
and ]
Y(1,0) = — Z [vi(1) = Gk (1)] [5:(0) — 5k (0)],

where g (¢) denotes the mean of y;(¢) for all units in stratum k. Like many authors, we use
ng — 1 rather than n, for convenience and cleaner formula. The (1,0) in 74(1,0) indicates
that this framework could be extended to multiple treatments.

The between-stratum variance and covariance are weighted variances and covariances of
the strata means:

n—1

20 = — 3 m g0 - g0 =01
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and
1

n—1

7(1,0) = D e [ge(1) = 5(1)] [54(0) — g(0)].

The population-wide o(¢) and y(1,0) are analogously defined. They can also be expressed as
weighted sums of the component pieces. We also refer to the correlation of potential outcomes
r, where r = 7(1,0)/0(0)o(1) and the strata-level correlations, ry = 7x(1,0)/0x(0)ox(1). An
overall constant treatment effect gives r = 1, 0(0) = o (1), r, = 1 for all k£ and 04 (0) = o4 (1)

for all k.
We are ready to state our main results:

Theorem 2.2.1. The strata-level estimators 73, are unbiased, i.e.
E[ﬁg]:Tk kzl,,K

and their variances are
) 1
Varl#,] = - [Biroi(1) + Boror(0) + 295,(1,0)] (2.5)

with By, = E[Wi(0)/Wi(1)|D], the expected ratio of the number of units in control to the
number of units treated in stratum k, and Bo, = E[Wy(1)/Wi(0)|D], the reverse.

Theorem 2.2.2. The post-stratification estimator 7, is unbiased:

k k k

E[7,s|D] = E

Its variance s
. 1 Ny
Varlfy| D] = - ; — [Bukoi(1) + Boni (0) +27(1,0)] (2.6)

See Appendix A for a proof. In essence we expand the sums, use iterated expectation, and
evaluate the means and variances of the treatment indicator random variable. Assignment
Symmetry allows for the final sum. Techniques used are similar to those found in many
papers classic (e.g., [60, 85]) and recent (e.g., [43]).

Consider the whole sample as a single stratum and use Theorem 2.2.1 to immediately
get:

Corollary 2.2.3. The unadjusted simple-difference estimator 7sq is unbiased, i.e. E[fy| = 7.
Its variance is

VarlfudD) =~ [Bu0(1) + oo (0) + 21(1,0)], 2.7
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where f = E[W(0)/W(1)|D] and o = E[W(1)/W(0)|D]. In terms of strata-level variances,

its variance is

Varl7|D] = % [515%(1) + Boa2(0) +27(1,0)] +
%Z T;k__ll [B102(1) + Booz(0) + 274(1,0)] . (2.8)

For completely randomized experiments with np units treated, 8, = (1 — p)/p and Sy =
p/(1 — p). For a balanced completely randomized experiment, Equation 2.7 is the result
presented in [78]—see Equation 2.1; the expectation of the sample variance is the overall
variance. Then §;, = 1 and

(0%(1) + 0%(0) + 27(1,0))

(0*(1) + 02(0)) — % (02(1) + 0*(0) — 29(1,0))

(73(1) + 02(0)) — - Varlyi(1) — i (0)].

Var[7y] =

SIv3 o3|+

Remarks. [ is the expectation of W (0)/Wj (1), the ratio of control units to treated
units in stratum k. For large ny, this ratio is close to the ratio E[IW}(0)] / E[W(1)] since the
Wi (¢) will not vary much relative to their size. For small ny, however, they will vary more,
which tends to result in (i being noticeably larger than E[W}(0)]/ E[Wy(1)]. This is at
root of how the overall variance of post-stratification differs from blocking. This is discussed
more formally later on and in Appendix A.

For ¢ = 0,1 the £’s are usually larger than [, being expectations of different variables
with different distributions. For example in a balanced completely randomized experiment
f1=1but B, > 1for k=1,..., K since Wi(1) is random.

All the 8’s depend on both the randomization and the conditioning on D, and thus the
variances from both Equation 2.8 and Equation 2.6 can change (markedly) under different
randomization scenarios. As a simple illustration, consider a complete randomization of a
40 unit sample with a constant treatment effect and four strata of equal size. Let all the
or(¢) =1 and all r, = 1. If p = 0.5, then 5 = fy = 1 and the variance is about 0.15.
If p=2/3 then 51 = 1/2 and y = 2. Equation 2.8 holds in both cases, but the variance
in the second case will be about 10% larger due to the larger 8y. There are fewer control
units, so the estimate of the control outcome is more uncertain. The gain in certainty for
the treatment units does not compensate enough. For p = 0.5, B = PBor = 1.21. The
post-stratified variance is about 0.11. For p = 2/3, f1;x &~ 2.44 and Sy, =~ 0.61. The average
is about 1.52. The variance is about 14% larger than the p = 0.5 case. Generally speaking,
the relative variances of different experimental setups are represented in the (’s.

The correlation of potential outcomes, 7x(1,0), can radically impact the variance. If
they are maximally negative, the variance can be zero or nearly zero. If they are maximally
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positive (as in the case of a constant treatment effect), the variance can be twice what it
would be if the outcomes were uncorrelated.

Comparing the Estimators. Both 7,, and 7,4 are unbiased, so their MSEs are the same
as their variances. To compare 7,, and 7,4 take the difference of their variances:

Var[fy] — Var[#,,] = {% (815%(1) + Boa*(0) + 23(1, 0))} -
(5 [Com- i) o (3 2530) 0]

2 ”_””3%(1,0)}. (2.9)

n? n—1

Equation 2.9 breaks down into two parts as indicated by the curly brackets. The first
part, 3,52(1)+ By5%(0) +27(1,0), is the between-strata variation. It measures how much the
mean potential outcomes vary across strata and captures how well the stratification variable
separates out different units, on average. The larger the separation, the more to gain by post-
stratification. The second part, consisting of the bottom two lines of Equation 2.9, represents
the cost paid by post-stratification due to, primarily, the chance of random imbalance in
treatment. This second part is non-positive and is a penalty except in some cases where the
proportion of units treated is extremely close to 0 or 1 or is radically different across strata.

If the between-strata variation is larger than the cost paid then Equation 2.9 is positive
and it is good to post-stratify. If Equation 2.9 is negative then it is bad to post-stratify. It
can be positive or negative depending on the parameters of the population. In particular,
if there is no between-strata difference in the mean potential outcomes, then the terms on
the first line of Equation 2.9 are 0, and post-stratification hurts. Post-stratification is not
necessarily a good idea when compared to doing no adjustment at all.

To assess the magnitude of the penalty paid compared to the gain, multiply Equation 2.9
by n. The first term, representing the between-strata variation, is now a constant, and the
scaled gain converges to it as n grows:

Theorem 2.2.4. Take an experiment with n units randomized under either complete ran-
domization or Bernoulli assignment. Let p be the expected proportion of units treated. With-
out loss of generality, assume 0.5 < p < 1. Let f = min{ng/n : k = 1,..., K} be the
proportional size of the smallest stratum. Let o2,,, = maxyoi({) be the largest variance of
all the strata. Similarly define Ve Then the scaled cost term is bounded:

1
n?

 (Varffea] — Vi) — £10°(1) ~5u0*(0)~23(1,0)] < O+ O()

with
8 2p

C= + ) 02 e + 2K Ymaz-
(f(l -p)? 1-p
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See Appendix A for the derivation. Theorem 2.2.4 shows us that the second part of
Equation 2.9, the harm, diminishes quickly.

If the number of strata K grows with n, as is often the case when coarsening a continuous
covariate, the story can change. The second and third lines of Equation 2.9 are sums over
K elements. The larger the number of strata K, the more terms in the sums and the
greater the potential penalty for stratification, unless the o7(¢)’s shrink in proportion as K
grows. For an unrelated covariate, they will not tend to do so. To illustrate, we made a
sequence of experiments increasing in size with a continuous covariate z unrelated to outcome.
For each experiment with n units, we constructed b by cutting z into X' = n/10 chunks.
Post-stratification was about 15% worse, in this case, than the simple-difference estimator
regardless of n. See our supplementary materials for details and other illustrative examples.
Theorem 2.2.4 captures dependence on the number of strata through f, the proportional
size of the smallest strata. If f oc 1/K then the difference will be O(K/n). For example, if
K grows at rate O(logn), then the scaled difference will be O(logn/n), nearly O(1/n).

Overall, post-stratifying on variables not heavily related to outcome is unlikely to be
worthwhile and can be harmful. Post-stratifying on variables that do relate to outcome
will likely result in large between-strata variation and thus a large reduction in variance as
compared to a simple-difference estimator. More strata are not necessarily better, however.
Simulations suggest that there is often a law of diminishing returns. For example, we made a
simulated experiment with n = 200 units with a continuous covariate z related to outcome.
We then made b by cutting z up into K chunks for K = 1,...,20. As K increased from 1
there was a sharp drop in variance and then, as the cost due to post-stratification increased,
the variance leveled off and then climbed. In this case, K = 5 was ideal. We did a similar
simulation for a covariate z unrelated to outcome. Now, regardless of K, the o2(¢) were all
about the same and the between-strata variation fairly low. As K grew, the overall variance
climbed. In many cases a few moderate-sized strata give a dramatic reduction in variance,
but having more strata beyond that has little impact, and can even lead to an increase in
7ps's variance. Please see our supplementary material for details.

Estimation. Equation 2.6 and Equation 2.8 are the actual variances of the estimators. In
practice, the variance of an estimator, i.e., the squared standard error, would have to itself
be estimated. Unfortunately, however, it is usually not possible to consistently estimate
the standard errors of difference-in-means estimators due to so-called identifiability issues as
these standard errors depend on ~,(1,0), the typically un-estimable correlations of the po-
tential outcomes of the units being experimented on (see [78]). One approach to consistently
estimate these standard errors is to impose structure to render this correlation estimable or
known; [66], for example, demonstrate that quite strong assumptions have to be made to
obtain an unbiased estimator for the variance of 7,4. It is straightforward, however, to make
a non-trivial conservative estimate of this variance by assuming the correlation is maximal.
Sometimes there can be nice tricks—see, for example, [1], who estimate these parameters for
matched-pairs by looking at pairs of pairs matched on covariates—but generally bounding
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the standard error is the best one can do.

This chapter compares the actual variances of the estimators. Estimating these variances
is an area for future work, involving these identifiability issues and degrees-of-freedom issues
as well. It is quite possible that, in small samples, the increased uncertainty in estimating
the many variances composing the standard error of the post-stratification estimator would
overwhelm any potential gains.

That being said, all terms except the (1, 0) in Equation 2.9 are estimable with standard
sample variance, covariance, and mean formula. In particular, 7(1,0) is estimable. By then
making the conservative assumption that the (1, 0) are maximal (i.e., that r, = 1 for all k
so 7k(1,0) = o(1)0(0)), we can estimate a lower-bound on the gain. Furthermore, by then
dividing by a similar upper bound on the standard error of the simple-difference estimator,
we can give a lower-bound on the percentage reduction in variance due to post-stratification.
We illustrate this when we analyze an experiment in Section 2.7.

Not Conditioning on D Changes Little

Our results are conditioned on D, the set of assignments such that Wy (¢) # 0 for all k =
1,... K and ¢ = 0,1. This, it turns out, results in variances only slightly different from not
conditioning on D.

Define the estimator 7,5 so that 7,; = 0 if =D occurs, i.e. Wi(¢) = 0 for some k,¢.
Other choices of how to define the estimator when =D occurs are possible, including letting
Tps = Tsa—the point is that this choice does not much matter. In our case E[7,;] = 7PD.
The estimate of the treatment is shrunk by PD towards 0. It is biased by 7P—-D. The
variance is

Var[?,,] = Var|7,,| D] PD + 7*P-DPD

and the MSE is
MSE [%PS] = E[(%PS - 7—)2] - Varﬁ-ps’,D] PD + 7'2P_|,D.

Not conditioning on D introduces a bias term and some extra variance terms. All these
terms are small if P—D is near 0, which it is: P—=D is O(ne™") (see second part of Appendix
A). Not conditioning on D, then, gives substantively the same conclusions as conditioning
on D, but the formulae are a bit more unwieldy. Conditioning on the set of randomizations
where 7,5 is defined is more natural.

2.3 Comparing Blocking to Post-Stratification

Let the assignment split W of a random assignment be the number of treated units in the
strata:
W= (Wi(1),..., Wi(1)
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A randomized block trial ensures that W is constant because we randomize within strata,
ensuring a pre-specified number of units are treated in each. This randomization is As-
signment Symmetric (Def 2.2.2) and under it the probability of being defined, D, is 1. For
blocking, the standard estimate of the treatment effect has the same expression as 7,5, but the
Wi(€)s are all fixed. If all blocks have the same proportion treated (i.e., Wi(1)/ng = W(1)/n
for all k), this coincides with 7.

Because W is constant

(2.10)

Bk :E{Wk(o)l CW(0)  1—py

Wi(1) ] Wi(1)  pr ]

where py is the proportion of units assigned to treatment in stratum k. Similarly, So, =
pr/(1 —pg). Letting the subscript “blk” denote this randomization, plug Equation 2.10 into
Equation 2.6 to get the variance of a blocked experiment:

Ve 7] = = 30 (“p’“az(m L o,%<o>+zvk<1,o>). (2.11)

— n \ Dk 1 —pr

Post-stratification is similar to blocking, and the post-stratified estimator’s variance tends
to be close to that of a blocked experiment. Taking the difference between Equation 2.6 and
Equation 2.11 gives

Var[f-ps\D] — Varblk [%ps] = %Z % |:(B1k . 1 ;kpk) 0']%(1) —+ <50k _ : fkpk> 0']3(0):| .
’ (2.12)

The (1, 0) cancelled; Equation 2.12 is identifiable and therefore estimable.
Randomization without regard to b can have block imbalance due to ill luck: W is

random. The resulting cost in variance of post-stratification over blocking is represented by

the B1x — (1 — pr)/px terms in Equation 2.12. This cost is small, as shown by Theorem 2.3.1:

Theorem 2.3.1. Take a post-stratified estimator for a completely randomized or Bernoulli
assigned experiment. Use the assumptions and definitions of Theorem 2.2.4. Assume the
common case for blocking of p, = p fork=1,..., K. Then

1 1
n( Var{fye| D] = Var [7s] ) < G_pr?agmﬁ +0(e™™).

See second part of Appendix A for the derivation.

Theorem 2.3.1 bounds how much worse post-stratification can be as compared to blocking.
The scaled difference is on the order of 1/n. The difference in variance is order 1/n?%
Generally speaking, post-stratification is similar to blocking in terms of efficiency. The more
strata, however, the worse this comparison becomes due to the increased chance of severe
imbalance with consequential increased uncertainty in the stratum-level estimates. Many

strata are generally not helpful and can be harmful if b is not prognostic.
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A note on blocking. Plug Equation 2.10 into the gain equation (Equation 2.9) to immedi-
ately see under what circumstances blocking has a larger variance than the simple-difference
estimator for a completely randomized experiment:

1/1-—
Var[%sd] - Varblk [%ps] - ﬁ <Tp52(1> + 1 fp62(0) -+ 2’_}/(1, 0)) —

1 n—ng (1—p , P
— 1
n? —~ n—1 < Jk<)+1

Tpai(o) + 27k (1, 0)) (2.13)

If p = 0.5, this is identical to the results in the appendix of [43]. In the worst case where
there is no between-strata variation, the first term of Equation 2.13 is 0 and so the overall
difference is O(K/n?). The penalty for blocking is small, even for moderate-sized experi-
ments, assuming the number of strata does not grow with n. ([60] noticed this in a footnote
of his appendix where he derived the variance of a blocked experiment.) If the first term
is not zero, then it will dominate for large enough n, i.e. blocking will give a more precise
estimate. For more general randomizations, Equation 2.9 still holds but the 3’s differ. The
difference in variances is still O(1/n?).

2.4 Conditioning on the Assignment Split W

By conditioning on the assignment split W we can break down the expressions for variance
to better understand when 7,5 outperforms 7,4. For 7., with x* = ps or sd we have

Var|[f,.|D] = MSE[7,.|D] = Ew [MSE[7..[W] D] = 3 MSE[£.|W = w] P{W = w|D}
weWw

with W being the set of all allowed splits where 7, is defined. The overall MSE is a weighted
average of the conditional MSE, with the weights being the probability of the given possible
splits W. This will give us insight into when Var[7y,] is large.

Conditioning on the split W maintains Assignment Symmetry and sets

~ Wr(1—-1)

= forkel,....K
5@](: Wk(g) or € ) )

and B, = W (1 —¢)/W(¢). For 7,, we immediately obtain

Var[r W] = > D (vwvzgggazu) n x}:géiag(m e o)) EENCAPY

Under conditioning 7, is still unbiased and so the conditional MSE is the conditional vari-
ance. T.q, however, can now be biased with a conditional MSE larger than the conditional
variance if the extra bias term is nonzero. Theorem 2.4.1 show the bias and conditional
variance of T4:



CHAPTER 2. POST-STRATIFICATION 19
Theorem 2.4.1. The bias of 754 conditioned on W is

B - 7= 3 | () - 2 ) w0 - (a0 - 2 ) o).

keB

which is not 0 in general, even with a constant treatment effect. Ty4’s variance conditioned
on W is

Var{zoa W] =

keB

Wi Wor 1, 1, 2
— | =50i(1 —=0;(0 ——(1,0) | .
S ((0t0) + ot(0) + g n(1.0

See first part of Appendix A for a sketch of these two derivations. They come from an
argument similar to the proof for the variance of 7,5, but with additional weighting terms.

The conditional MSE of 7,4 has no nice formula that we are aware, and is simply the sum
of the variance and the squared bias:

MSE[#,q|W] = Var[y|W] + (E[foq|W] — 7)° (2.15)

In a typical blocked experiment, W would be fixed at W where W* = n;p for k =
1,...,K. For complete randomization, E[W] = W"*. We can now gain insight into the
difference between the simple-difference and post-stratified estimators. If W equals Wk,
then the conditional variance formula for both estimators reduce to that of blocking, i.e.,
Equation 2.14 and Equation 2.15 reduce to Equation 2.11. For 7,,, the overall variance for
each strata is a weighted sum of Wy (0)/Wy(1) and Wy (1)/Wy(0). The more unbalanced
these terms, the larger the sum. Therefore the more W deviates from W% —i.e., the more
imbalanced the assignment is—the larger the post-stratified variance formula will tend to
be. The simple-difference estimator, on the other hand, tends to have smaller variance
as W deviates further from W% due to the greater restrictions on the potential random
assignments.

7ps has no bias under conditioning, but 7,4 does if b is prognostic, and this bias can
radically inflate the MSE. This bias increases with greater imbalance. Overall, then, as
imbalance increases, the variance (and MSE) of 7,5 moderately increases. On the other
hand, for 7,4 the variance can moderately decrease but the bias sharply increases, giving an
overall MSE that can grow quite large.

Because the overall MSE of these estimators is a weighted average of the conditional
MSEs, and because under perfect balance the conditional MSEs are the same, we know any
differences in the unconditional variance (i.e., MSE) between 7,4 and 7,5 comes from what
happens when there is bad imbalance. 7,4 has a much higher variance than 7,, when there
is potential for large bias. Its variance is smaller when there is not. With post-stratification,
we pay for unbiasedness with a bit of extra variance—we are making a different bias-variance
tradeoff than with simple-difference.

The split W is directly observable and gives hints to the experimenter as to the success, or
failure, of the randomization. Unbalanced splits tell us we have less certainty while balanced
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splits are comforting. For example, take a hypothetical balanced completely randomized
experiment with n = 32 subjects, half men and half women. Consider the case where only
one man ends up in treatment as compared to 8 men. In the former case, a single man gives
the entire estimate for average treatment outcome for men and a single woman gives the
entire estimate for average control outcome for women. This seems very unreliable. In the
latter case, each of the four mean outcomes are estimated with 8 subjects, which seems more
reliable. Our estimates of uncertainty should take this observed split W into account, and
we can take it into account by using the conditional MSE rather than overall MSE when
estimating uncertainty. The conditional MSE estimates how close one’s actual experimental
estimate is likely to be from the SATE. The overall MSE estimates how close such estimates
will generally be to the SATE over many trials.

This idea of using all observed information is not new. When sampling to find the mean
of a population, [38] argue that, for estimators adjusted using post-stratification, variance
estimates should be conditioned on the distribution of units in the strata as this gives a
more relevant estimate of uncertainty. [86] sharpens this argument by presenting it as one
of prediction. Under this view, it becomes more clear what should be conditioned on and
what not. In particular, if an estimator is conditionally unbiased when conditioned on an
ancillary statistic, then conditioning on the ancillary statistic increases precision. This is
precisely the case when conditioning the above estimators on the observed split, assuming
Assignment Symmetry. Similarly, in the case of sampling, [72] compare variance estimators
for the sample totals that incorporate the mean of measured covariates as compared to the
population to get what they argue are more appropriate estimates. [63] extends [76] and
examines conditioning on the imbalance of a continuous covariate in ANCOVA. They show
that not correcting for imbalance (as measured as a standardized difference in means) gives
one inconsistent control on the error rate when testing for an overall treatment effect.

2.5 Extension to an Infinite-Population Model

The presented results apply to estimating the treatment effect for a specific sample of units,
but there is often a larger population of interest. One approach is to consider the sample to
be a random draw from this larger population, which introduces an additional component of
randomness capturing how the SATE varies about the Population Average Treatment Effect,
or PATE. See [44]. But if the sample has not been so drawn, using this PATE model might
not be appropriate. The SATE perspective should instead be used, with additional work
to then generalize the results. See [32] or [43]. Regardless, under the PATE approach, the
variances of all the estimators increase, but the substance of this chapter’s findings remain.

Let fy, k=1,..., K, be the proportion of the population in stratum k. The PATE can
then be broken down by strata:
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with 777 being the population average treatment effect in stratum k. Let the sample S be a
stratified draw from this population holding the proportion of units in the sample to f (i.e.
ng/n = fr for k=1,..., K). (See below for different types of draws from the population.)
7, the SATE, is random, depending on §. Due to the size of the population, the sampling is
close to being with replacement. Alternatively, the sample could be generated by independent
draws from a collection of K distributions, one for each stratum. Let o7 (¢)*,72(1,0)*, etc
be population parameters. Then the PATE-level MSE of 7, is

Var[7,s] = Z Ji [(Bur 4+ D)o (1)* + (Bor + 1)o7 (0)*] . (2.16)

See Appendix A for the derlvatlon. [44] has a similar formula for the two-strata case.
Compare to Equation 2.6: All the correlation of potential outcomes terms ~;(1,0) vanish
when moving to PATE. This is due to a perfect trade-off: the more they are correlated, the
harder to estimate the SATE 7 for the sample, but the easier it is to draw a sample with a
SATE 7 close to the overall PATE 7*.

The simple-difference estimator. For the simple-difference estimator, use Equation 2.16
with K =1 to get

A 1 * *
Var[f] = — [(81 + Do(1)" + (fo + 1)a*(0)] (2.17)
Now let 2(¢)* be a weighted sum of the squared differences of the strata means to the overall
mean:
K
(0 = fu @ (0) = 77 (0))*.
k=1
The population variances then decompose into 62(¢)* and strata-level terms:
K
o*(0) =a*(0) + ) froi(0)
k=1

Plug this decomposition into Equation 2.17 to get
(51‘1‘1 ( +ka0k ) (Bo+1) ( +ka0k )]

Variance gain from post-stratification. For comparing the simple-difference to the
post-stratified estimator at the PATE level, take the difference of Equation 2.17 and Equa-
tion 2.16 to get

Var [72 sd]

Var|7sq) — Var[7,s] =

(81 + 1e(1)" + (o + 1o(0)

S I

— =3 5 [(Bu = B0t ()" + (Bor = B)a(0)°]
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Similar to the SATE view, we again have a gain component (the first line) and a cost (the
second line). For Binomial assignment and complete randomization, 5, < [y for all k,
making the cost nonnegative. There are no longer terms for the correlation of potential
outcomes, and therefore this gain formula is directly estimable. The cost is generally smaller
than for the SATE model due to the missing (1, 0) terms.

The variance of blocking under PATE. For equal-proportion blocking, Wy (1) = pny
and Wy(0) = (1 — p)ng. Using this and Sg + 1 = Elng/Wy(¢)], the PATE-level MSE for a
blocked experiment is then

ol [l .. 1 .
Var[f,] = - > . {501%(1) + rpai(())
k

For comparing complete randomization (with pn units assigned to treatment) to blocked
experiments, plug in the 5’s. The £, — By terms all cancel, leaving
11, 11

A R
Var([74] — Var|7s] npg (1) +n1—p

Unlike from the SATE perspective, blocking can never hurt from the PATE perspective.

Not conditioning on the n;. Allowing the n, to vary introduces some complexity, but
the gain formula remain unchanged. If the population proportions are known, but the sample
is a completely random draw from the population, the natural post-stratified estimate of the
PATE would use the population weights fr. These weights can be carried through and no
problems result. Another approach is to estimate the f; with ny/n in the sample. In this
latter case, we first condition on the seen vector N = ny,...n; and define a 7V based on
N. Conditioned on N, both 7,5 and 7,4 are unbiased for estimating 7V, and we can use
the above formula with 7y /n instead of f;. Now use the tower-property of expectations and
variances. This results in an extra variance of a multinomial to capture how 7V varies about
7 as N varies. The variances of both the estimators will each be inflated by this extra term,
which therefore cancels when looking at the difference.

2.6 Comparisons with Other Methods

Post-stratification is a simple adjustment method that exploits a baseline categorical covari-
ate to ideally reduce the variance of a SATE estimate. Other methods allow for continuous
or multiple covariates and are more general. The method that is appropriate for a given
application depends on the exact assumptions one is willing to make.

Recently, [25, 26] studied the most common form of adjustment—Ilinear regression—
under the Neyman-Rubin model. Under this model, Freedman, for an experimental setting,
showed that traditional OLS (in particular ANCOVA) is biased (although it is asymptotically
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unbiased), that the asymptotic variance can be larger than with no adjustment, and worse,
that the standard estimate of this variance can be quite off, even asymptotically. Freedman’s
results differ from those in traditional textbooks because, in part, he uses the Neyman-Rubin
model with its focus on SATE. Subsequently, [50] expanded these results and showed that
OLS with all interactions cannot be asymptotically less efficient than using no adjustment,
and further, that Huber-White sandwich estimators of the standard error are asymptotically
appropriate. These papers focus primarily on continuous covariates rather than categorical,
but their results are general. Our post-stratified estimator is identical to a fully saturated
ordinary linear regression with the strata as dummy variables and all strata by treatment
interactions—i.e., a two-way ANOVA analysis with interactions. Therefore, our results apply
to this regression estimator, and, in turn, all of Lin’s asymptotic results apply to our 7,.

[87] propose a semi-parametric method where the researcher independently models the
response curve for the treatment group and the control group and then adjusts the estimated
average treatment effect with a function of these two curves. This approach is particularly
appealing in that concerns about data mining and pre-test problems are not an issue—i.e.,
researchers can search over a wide class of models looking for the best fit for each arm
(assuming they don’t look at the consequent estimated treatment effects). With an analysis
assuming only the randomization and the infinite super population model, Tsiatis et. al
show that asymptotically such estimators are efficient. This semi-parametric approach can
accommodate covariates of multiple types: because the focus is modeling the two response
curves, there is basically no limit to what information can be incorporated.

A method that does not have the super population assumption is the inference method for
testing for treatment effect proposed by Koch and coauthors [e.g., 46, 47]. Koch observed that
under the Fisherian sharp null of no treatment effect, one can directly compute the covariance
matrix of the treatment indicator and any covariates. Therefore, using the fact that under
randomization the expected difference of the covariates should be 0, one can estimate how
far the observed mean difference in outcomes is from expected using a x? approximation.
(One could also use a permutation approach to get an exact P-value.) However, rejecting
Fisher’s sharp null, distinct from the null of no difference in average treatment effect, does
not necessarily demonstrate an overall average impact. Nonetheless, this approach is very
promising. Koch et. al also show that with an additional super population assumption one
can use these methods to generate confidence intervals for average treatment effect.

[52] compare post-stratification to blocking using an additive linear population model and
a sampling framework, implicitly using potential outcomes for some results. They consider
linear contrasts of multiple treatments as the outcome of interest, which is more general than
this chapter, but also impose assumptions on the population such as constant variance and,
implicitly, a constant treatment effect. Using asymptotics, they isolate the main terms of
the estimators’ variance and drop lower order ones.

Relative to post-stratification, there are three concerns with these other adjustment meth-
ods. First, many of these methods make the assumption of the infinite population sampling
model discussed in Section 2.5 (which is equivalent to any model that has independent, ran-
dom errors, e.g., regression). The consequences of violating this assumption can be unclear.
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Therefore, one may prefer estimating sample treatment effects, and then generalizing beyond
the given experimental sample using methods such as those of [32]. Second, methods within
the SATE framework that depend on a Fisherian sharp null for testing for a treatment effect
have certain limitations. In some circumstances, this null may be considered restrictive and
generating confidence intervals can be tricky without assuming a strong treatment effect
model such as additivity. Third, asymptotic analyses may not apply when analyzing small-
or mid-sized experiments, and experiments with such samples sizes is where the need for
adjustment is the greatest.

Notwithstanding these concerns, if one is in a context where these concerns do not hold,
or one has done work showing that the impact of them is minor, these alternative methods of
adjustment depend on relatively weak assumptions and also allow for continuous covariates
and multiple covariates—a distinct advantage over post-stratification. These other methods,
due to their additional modeling assumptions, may be more efficient as well. Different
estimators may be more or less appropriate depending on the assumptions one is willing to
make and the covariates one has.

Post-stratification is close in conceptual spirit to blocking. This chapter shows that this
conceptual relationship bears out. Blocking, however, is a stronger approach because it re-
quires the choice of which covariates to adjust for to be determined prior to randomization.
Blocking has the profound benefit that it forces the analyst to decide how covariates are
incorporated to improve efficiency before any outcomes are observed. Therefore, blocking
eliminates the possibility of searching over post-adjustment models until one is happy with
the results. The importance of this feature of blocking is difficult to overstate. Blocking
is, however, not always possible. In medical trials when patients are entered serially, for
example, randomization has to be done independently. Natural experiments, where random-
ization is due to processes outside the researchers’ control, are another example particularly
of interest in the social sciences. In these cases, post-stratification can give much the same ad-
vantages with much the same simplicity. But again, as “Student” (W. S. Gosset) observed,
“there is great disadvantage in correcting any figures for position [of plots in agricultural
experiments|, inasmuch as it savors of cooking, and besides the corrected figures do not rep-
resent anything real. It is better to arrange in the first place so that no correction is needed
[85].”

2.7 PAC Data Illustration

We apply our methods to evaluating Pulmonary Artery Catheterization (PAC), an invasive
and controversial cardiac monitoring device, that was, until recently, widely used in the man-
agement of critically ill patients [14, 21]. Controversy arose regarding the use of PAC when a
non-random study using propensity score matching found that PAC insertion for critically ill
patients was associated with increased costs and mortality [12]. Other observational studies
came to similar conclusions leading to reduced PAC use [11]. However, an RCT (PAC-Man)
found no difference in mortality between PAC and no-PAC groups [33], which substantiated
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the concern that the observational results were subject to selection bias [69].

PAC-Man has 1013 subjects, half treated. The outcome variable investigated here is
“gqalys” or quality-adjusted life years. Higher values indicate, generally, longer life and higher
quality of life. Death at time of possible PAC insertion or shortly after receives a value of
0. Living two years in full health would be a 2. There is a lot of fluctuation in these data.
There is a large point mass at 0 (33% of the patients) and a long tail.

Unfortunately, the RCT itself had observed covariate imbalance in predicted probability
of death, a powerful predictor of the outcome, which calls into question the reliability of
the simple-difference estimate of the treatment effect. More low-risk patients were assigned
to receive treatment, which could induce a perceived treatment effect even if none were
present. Post-stratification could help with this potential bias and decrease the variance of
the estimate of treatment effect. To estimate the treatment effect using post-stratification we
first divide the continuous probability of death covariate into K K-tiles. We then estimate
the treatment effect within the resulting strata and average appropriately.

This analysis is simplified for the purposes of illustration. We are only looking at one
of the outcomes and have dropped several potentially important covariates for the sake of
clarity. Statistics on the strata for K = 4 are listed on Table 2.1. A higher proportion of
subjects in the first two groups were treated than one would expect given the randomization.
Imbalance in the first group, with its high average outcome, could heavily influence the overall
treatment effect estimate of 74,.

Strata # Tx # Co SDi(1) SDy(0) gx(1) 9x(0) Tk
Low Risk 136 118 5.80 5.68 5,57 541 0.15
Moderate Risk 142 111 3.42 417 169 270 -1.01
High Risk 106 147 3.60 3.7 197 236 -0.39
Extreme Risk 122 131 3.41 3.10 1.37 1.19 0.18
Overall 506 507 4.56 4.48 272 284 -0.13

Table 2.1: Strata-Level Statistics for the PAC Illustration

We estimate the minimum gain in precision due to post-stratification by calculating point
estimates of all the within- and between-strata variances and the between-strata covariance
and plugging these values into Equation 2.9. We are not taking the variability of these
estimates into account. By assuming the strata r; are maximal, i.e., r, = 1 for all k, we
estimate a lower bound on the reduction in variance due to post-stratification. The 5’s are
estimated by numerical simulation of the randomization process (with 50,000 trials) and
are therefore exact up to uncertainty in this Monte Carlo experiment; these values do not
depend on the population characteristics and so there is no sampling variability here. We
show the resulting estimates for several different stratifications. For K = 4, we estimate the
percent reduction of variance, 100% x (Var[7,s] — Var[7sq|)/Var|7s4], to be no less than 12%.
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If the true r, were less than 1, the benefit would be greater. More strata appear somewhat
superior, but gains level off rather quickly. See Table 2.2.

The estimate of treatment effect changes markedly under post-stratification. The esti-
mates 7,s hover around —0.28 for K = 4 and higher, as compared to the —0.13 from the
simple-difference estimator. The post-stratified estimator appears to be correcting the bias
from random imbalance in treatment assignment.

We can also estimate the MSE for both the simple-difference and post-stratified estimator
conditioned on the imbalance by plugging point estimates for the population parameters into
Equation 2.15 and Equation 2.14. We again assume the correlations r; are maximal. We
estimate bias by plugging in the estimated g (¢) for mean potential outcomes of the strata.
These results are the last columns of Table 2.2; the percentage gain in this case is higher
primarily due to the correction of the bias term from the imbalance. When conditioning
on the imbalance W, the estimated MSE (i.e., variance) of the post-stratified estimator is
slightly higher than the variance of the simple-difference estimator, but is substantially lower
than its overall MSE. This is due to the bias correction. Because the true variances and the
ri for strata are unknown, these gains are estimates only. They do, however, illustrate the
potential value of post-stratification. Measuring the uncertainty of these estimates is an area
of future work.

Uncond. Variance MSE Conditioned on W
K Tps Tod Tps Ted % | MSET,; varty; biast,y MSETy %

2 -0.34 -0.13]0.077 0.081 5% 0.077 0.076  0.207 0.118 35%
4 -0.27 -0.13]0.071 0.081 12% 0.072 0.070  0.137 0.089 19%
10 -0.25 -0.13 | 0.070 0.081 14% 0.071 0.069  0.119 0.083 15%
15 -0.24 -0.13 | 0.070 0.081 14% 0.070  0.067  0.115 0.081 13%
30 -0.28 -0.13 ] 0.069 0.081 15% 0.068 0.064  0.148 0.086 21%
50 -0.32 -0.13 ] 0.068 0.081 15% 0.066 0.061  0.190 0.097 32%

Table 2.2: Estimated Standard Errors for PAC. Table shows both conditioned and uncondi-
tioned estimates for different numbers of strata.

Matched Pairs Estimation. We can also estimate the gains by building a fake set of
potential outcomes by matching treated units to control units on observed covariates. We
match as described in [74]. We then consider each matched pair a single unit with two
potential outcomes. We use this synthetic set to calculate the variances of the estimators
using the formula from Section 2.2.

Matching treatment to controls and controls to treatment gives 1013 observations with
all potential outcomes “known.” The correlation of potential outcomes is 0.21 across all
strata. 7 = —0.031. The unconditional variance for the simple-difference and post-stratified
estimators are 0.048 and 0.038, respectively. The percent reduction in variance due to post-
stratification is 19.6%.
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Figure 2.1: PAC MSE Conditioned on Imbalance. Uses constructed matched PAC dataset.
Points indicate the conditional MSE of 7, and 744 given various specific splits of W. z-axis
is the imbalance score for the split. Curved dashed lines interpolate point clouds. Horizontal
dashed lines mark unconditional variances for the two estimators. The curve at bottom is
the density of the imbalance statistic.

We can use this data set to further explore the impact of conditioning. Assume the
treatment probability is p = 0.5 and repeatedly randomly assign a treatment vector and
compute the resulting conditional variance. Also compute the “imbalance score” for the
treatment vector with a chi-squared statistic:

Imbalance =

3 (Wi(1) — png)?

n
A png

This procedure produces Figure 2.1. As imbalance increases, the MSE (variance) of 7,
steadily, but slowly, increases as well. The MSE of 7, is quite resistant to large imbalance.
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This is not the case for 754, however. Generally, high imbalance means high conditional MSE.
This is due to the bias term which can get exceedingly large if there is imbalance between
different heterogeneous strata. Also, for a given imbalance, the simple-difference estimator
can vary widely depending on whether stratum-level bias terms are canceling out or not.
This variability is not apparent for the post-stratified estimator, where only the number of
units treated drives the variance; the post-stratified points cluster closely to their trend line.

The curve at the bottom shows the density of the realized imbalance score: there is a
good chance of a fairly even split with low imbalance. In these cases, the variance of 7,4 is
smaller than the unconditional formula would suggest. If the randomization turns out to
be “typical” the unconditional variance formula would be conservative. If the imbalance is
large, however, the unconditional variance may be overly optimistic. This chance of large
imbalance with large bias is why the unconditioned MSE of 7, is larger than that of 7.

The observed imbalance for the actual assignment was about 2.37. The conditional MSE
is 0.083 for 744 and 0.039 for 7,,, a 53% reduction in variance. The conditional MSE for the
simple-difference estimator is 75% larger than its unconditional MSE due to the bias induced
by the imbalance. We would be overly optimistic if we were to use Var[7s4| as a measure of
certainty, given the observed, quite imbalanced, split W. For the post-stratified estimator,
however, the conditional variance is only about 1% higher than the unconditional; the degree
of imbalance is not meaningfully impacting the precision. Generally, with post-stratification,
the choice of using an unconditional or conditional formula is less of a concern.

Discussion. The PAC RCT has a strong predictor of outcome. Using it to post-stratify
substantially increases the precision of the treatment effect estimate. Furthermore, post-
stratification mitigates the bias induced by an unlucky randomization. When concerned
about imbalance, it is important to calculate conditional standard errors—not doing so could
give overly optimistic estimates of precision. This is especially true when using the simple-
difference estimator. The matched-pairs investigation shows this starkly; 7y,;’s conditional
MSE is 75% larger than the unconditional.

2.8 Discussion

Post-stratification is a viable approach to experimental design in circumstances where block-
ing is not feasible. If the stratification variable is determined beforehand, post-stratification
is nearly as efficient as a randomized block trial would have been: the difference in variances
between post-stratification and blocking is a small O(1/n?). However, the more strata, the
larger the potential penalty for post-stratification. There is no guarantee of gains.
Conditioning on the observed distribution of treatment across strata allows for a more
appropriate assessment of precision. Most often the observed balance will be good, even
in moderate-sized experiments, and the conditional variance of both the post-stratified and
simple-difference estimator will be smaller than estimated by the unconditional formula.
However, when balance is poor, the conditional variance of the estimators, especially for the
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simple-difference estimator, may be far larger than what the unconditional formula would
suggest. Furthermore, in the unbalanced case, if a truly prognostic covariate is available
post-stratification can significantly improve the precision of one’s estimate. For a covariate
unrelated to outcome, however, a simple-difference estimator can be superior.

When viewing a post-stratified or a blocked estimate as an estimate of the PATE, under
the assumption that the sample is a random, independent, draw from a larger population,
the potential for decreased precision is reduced. However, in most cases the sample in
a randomized trial is not such a random draw. We therefore advocate for viewing the
estimators as estimating the SATE, not the PATE.

Problems arise when stratification is determined after treatment assignment. The re-
sults of this chapter assume that the stratification is based on a fixed and defined covariate
b. However, in practice covariate selection is often done after-the-fact in part because, as
is pointed out by [63], it is often quite difficult to know which of a set of covariates are
significantly prognostic a priori. But variable selection invites fishing expeditions, which
undermine the credibility of any findings. Doing variable selection in a principled manner
is still notoriously difficult, and is often poorly implemented; [63], for example, found that
many clinical trial analyses select variables inappropriately. [87] summarize the controversy
in the literature and, in an attempt to move away from strong modeling, and to allow for
free model selection, propose a semiparametic approach as a solution.

[3] suggests that, at minimum, all potential covariates for an experiment be listed in
the original protocol. Call these z. In our framework, variable-selection is then to build a
stratification b from z and T after having randomized units into treatment and control. b
(now B) is random as it depends on 7. Questions immediately arise: how does one define
the variance of the estimator? Can substantial bias be introduced by the strata-building
process? The key to these questions likely depends on appropriately conditioning on both
the final, observed, strata and the process of constructing B. This is an important area of
future work.
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Chapter 3

Validating Text-Summarization
Methods

3.1 Introduction

Joseph Pulitzer wrote in his last will and testament, “[Journalism] is a noble profession and
one of unequaled importance for its influence upon the minds and morals of the people.”
Faced with an overwhelming amount of world news, concerned citizens, media analysts and
decision-makers alike would greatly benefit from scalable, efficient methods that extract
compact summaries of how subjects of interest are covered in text corpora. These compact
summaries could be used by the interested people for screening corpora of news articles
before detailed reading or further investigation.

We propose a novel approach to perform automatic, subject-specific summarization of
news articles that applies to general text corpora. Our approach allows researchers to easily
and quickly explore large volumes of news articles. These methods readily generalize to other
types of documents. For example, [19] identified potentially dangerous aspects of specific
airports by using these methods on pilots’ flight logs. We are currently implementing our
approach within an on-line toolkit, SnapDragon,! which will soon be available to researchers
interested in screening corpora of documents relative to a subject matter.

News media significantly drives the course of world events. By choosing which events to
report and the manner in which to report them, the media affects the sentiments of readers
and through them the wider world. Exposure to news can drive change in society [53, 61,
39], and, even when controlling for topic, can vary in tone, emphasis, and style [8, 29, 15].
Our focus on news media is motivated by a crucial need in a democracy: to understand
precisely where and how these media variations occur.

Currently, media analysis is often conducted by hand coding [88, 16, 64]. Hand-coding
manually reduces complex text-data to a handful of quantitative variables, allowing for
statistical analysis such as regression or simple tests of difference. It is prohibitively labor-

Thttp://statnews2.eecs.berkeley.edu/snapdragon
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intensive [39]. In personal correspondence, Denham relayed that each article took roughly
fifteen minutes to analyze, suggesting about 28 hours of time for their full text corpus of 115
articles.

In the last five years we have seen the emergence of a computational social science field
connecting statistics and machine learning to anthropology, sociology, public policy, and
more [48]. Many organizations have introduced automated summary methods: Google news
trends, Twitter’s trending queries, Crimson Hexagon’s brand analysis and others all use
computation to make sense of the vast volumes of text now publicly generated. These
approaches, discussed below, illustrate the potential of computation for news media analysis.

Summarization by extraction. There are two major approaches to text analysis, key-
phrase extraction (listing key-phrases for the document such as in [67, 75, 24, 10]) and
sentence extraction (identifying and presenting the “most relevant” sentences of a document
as a summary, such as in [35, 30, 59]). Both these approaches score potential key-phrases
or sentences found in the text and then select the highest scorers as the summary. This line
of research has primarily focused on summarizing individual documents, with one summary
for every document in a corpus.

However, when there are multiple documents, even a short summary of each document
adds up quickly. Content can be buried in a sea of summaries if most documents are not
directly related to the subject of interest. If many documents are similar, the collection of
summaries becomes redundant. Moreover, if the subject of interest is usually mentioned in
a secondary capacity, it might be missing entirely from the summaries. To address some
of these problems, [30] worked on summarizing multiple documents at once to remove re-
dundancy. Under their system, sentences are scored and selected sequentially, with future
sentences penalized by similarity to previously selected sentences. In this system, the docu-
ments need to be first clustered by overall topic.

[35] fits a latent topic model (similar to LDA, discussed below) for subject-specific sum-
marization of documents. Here the subject is represented as a set of documents and a short
narrative of the desired content. All units of text are projected into a latent topic space
that is learned from the data independent of the subject and then sentences are extracted
by a scoring procedure by comparing the similarity of the latent representations of the sen-
tences to the subject. Although we also summarize an entire collection of documents as they
pertain to a specific subject of interest, we do not use a latent space representation of the
data. In [57], the authors merge all text into two super-documents and then score individual
words based on their differing rates of appearance, normalized by their overall frequency.
We analyze the corpus through individual document units.

Summarization via topic modeling. Some analysis algorithms take text information
as input and produce a model, usually generative, fit to the data. The model itself captures
structure in the data, and this structure can be viewed as a summary. A popular example
is the latent Dirichlet allocation [7], which posits that each word observed in the text is
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standing in for a hidden, latent “topic” variable. These models are complex and dense, with
all the words playing a role in all the topics, but one can still take the most prominent words
in a topic as the summary.

[9] had humans evaluate the internal cohesion of learned topics. Respondents were asked
to identify “impostor” words inserted into lists of words representing a topic. This showed
these approaches as producing cogent and reasonable topics. Supervised versions [6] of these
methods can be used to summarize a subject of interest.

Although these methods are computationally expensive and produce dense models re-
quiring truncation for interpretability, they are powerful indications of the capabilities of
computer-assisted summarization. These methods analyze the corpus as a whole and model
how the documents cover a modest number of organically grown topics. We opt instead
for a more directed process of summarizing a particular, specified subject (out of possible
millions).

Other automated approaches. Google Trend charts are calculated by comparing the
number of times a subject appears in the news outlets that Google compiles to the overall
volume of news for a specified time period. Even this simple approach can show how subjects
enter and leave public discourse across time. Twitter’s trending topics appears to operate
similarly, although it selects the hottest topics by those which are gaining in frequency most
quickly. Although neither of these tools summarize a specified subject, they are similar
in spirit to the normalized simpler methods (co-occur and correlation screen) that we will
introduce and investigate in this chapter.

[39] extrapolates from a potentially non-random sample of hand-coded documents to
estimate the proportion of documents in several pre-defined categories. This can be used
for sentiment analysis (e.g., estimating the proportion of blogs showing approval for some
specified public figure). We instead identify key-phrases most associated with a given subject.
These key-phrases could then be analyzed directly for sentiment, thus reducing the amount of
hand-coding required. Their work is behind Crimson Hexagon, a company currently offering
brand analysis to several companies.

In a similar spirit, we believe there is opportunity to answer the question, “What is being
said in the news regarding China?” or, more generally, “What is discussed in this corpus of
documents regarding subject A?” using machine learning techniques.

Our predictive and sparse approach with human evaluation. In this chapter, we
propose to use statistical machine learning tools such as Lasso that are fast, sparse, and
different from those described earlier to produce short and interpretable summaries. Our
proposal is desirable because media analysis (or general document summarization) tools
need to encourage exploration, allowing researchers to easily examine how different topics
are portrayed in a corpus or how this portrayal evolves over time or compares across different
corpora.
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Given a corpus of documents (e.g., the New York Times International Section articles in
2009) as well as a subject of interest (e.g.,subject China as represented as a short list of words
China, Chinas and Chinese), we establish the predictive framework by first automatically
labeling documents into positive and negative examples by, for example, determining if
they contain words from the subject list. Counts of words/phrases not on the subject list
then form the predictor vectors for the documents. After normalizing these vectors, we use
scalable, reproducible prediction and classification techniques to identify a small set of words
and phrases that best predict the subject as it appears. This overall arc reduces corpora of
many millions of words into a few representative key-phrases that constitute how the given
subject is treated in the corpus.

To walidate these summaries we cannot use traditional machine learning approaches,
however, since traditional measures have no guarantee of correlating with actual meaning.
We therefore compare the different summary approaches with a human survey. We find that
sparse methods such as Lasso indeed produce higher quality summaries than many currently
used, simpler, methods. Moreover, we conducted usability testing to investigate how different
preprocessing techniques differ in quality of resulting lists in the user survey. We found the
choice of preprocessing important, especially with simpler summarization methods. The
sparse methods such as Lasso, however, are more robust to potential mistakes made in the
data preparation step.

To illustrate, consider how the New York Times treated China (represented as “china,
chinas, chinese”) in the international section in 2009. One of our summary methods, L1LR,
yields a short list of terms: “beijing, contributed research, global, hu jintao, imports, of xin-
Jiang, peoples liberation army, shanghai, sichuan province, staterun, tibet, trade, wighurs,
wen jiabao, winhua news agency”. This succinct summary captures main relevant person-
alities (e.g., Wen Jiabao, Hu Jintao), associated countries and areas (e.g., Uighurs, Tibet),
entities (Xinhua news), and topics (trade, imports, global [activity]|, state-run [organiza-
tions]). The presence of “contributed research” indicates that other people, in addition to
the authors, contributed to many of the Times articles on China. These terms inform inter-
ested readers including China experts about how China is being treated by the New York
Times and suggest directions for further reading on topics such as Sichuan, Xinjiang, Tibet,
and trade. Table 3.2 contains four other sample summaries.

The rest of this chapter is organized as follows. Section 3.2 describes our proposal includ-
ing the predictive framework and the preprocessing choices used in the study. Section 3.2
proposes different key-phrase selectors (e.g.,Lasso, co-occurrence) one might use to gener-
ate the final summary. We then describe the validation experiment designed to examine
the performance of the summarizers built from the choices in Sections 3.3. Results of this
experiment are shown in Section 3.4. Section 3.5 concludes.
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3.2 QOur Approach: Predictive, Fast, and Sparse

Our approach is based on a predictive binary classification framework. In a typical binary
classification scenario, data units (e.g.,news articles or paragraphs) belong to two classes
and features of a data unit are used to predict its class membership. Classification of text
documents using the phrases in those documents as features is familiar and well-studied [28,
91].

We turn subject-specific (e.g., China) summarization into a binary classification problem
by forming two classes, that is, we automatically label news articles (or other document
units) in a corpus as subject-related and irrelevant. See Section 3.2, where we discuss several
different ways of labeling. We then use a predictive classifier to generate a summary list. To
be precise, we take those words and phrases most important for classification as a summary
of the subject relative to the corpus.

A predictive framework consists of n units, each with a class label y; € {—1,+1} and
a collection of p possible features that can be used to predict this class label. Each unit
i€ Z={1,...,n} is attributed a value w;; for each feature j € J = {1,...,p}. These
x;; form a n x p matrix X. The n units are blocks of text taken from the corpus (e.g.,
entire articles or individual paragraphs), the class labels y; indicate whether document unit
1 contains content on a subject of interest, and the features are all the possible key-phrases
that could be used to summarize the subject. As mentioned earlier, we consider several
ways of automatically labeling or assigning class memberships based on the document unit
itself in Section 3.2. Matrix X and vector y can be built in several ways. We build X by
reweighting the elements of a document-term matrix C"-

Definition 3.2.1. A document-term matrix C' sets
Ci; := The number of times key-phrase j appears in document ¢

This is often called the bag-of-phrases model: each document is represented as a vector
with the jth element being the total number of times that the specific phrase j appears in
the document. Stack these row vectors to make the matrix C' € R™*? of counts. C has one
row for each document and one column for each phrase. C' tends to be highly sparse: most
entries are 0.

To transform raw text into this vector space, convert it to a collection of individual text
document units, establish a dictionary of possible phrases, and count how often each of the
dictionary’s phrases appear in each of the document units. Once this is completed, the
summarizing process consists of 3 major steps:

1. Reweight: build X from C

2. Label: build y by identifying which document units in the corpus likely treat the
specified subject;

3. Select: extract a list of phrases that ideally summarize the subject.
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How the document units are labelled, how the document units are wvectorized, and how
phrases are selected can all be done in different ways. Different choices for these steps result
in different summarizers, some better than others. We describe these steps and choices fully
in Sections 3.2 and 3.2.

Iraq Russia Germany Mexico

american a medvedev angela merkel and border protection
and afghanistan caucasus berlin antonio betancourt
baghdad europe chancellor angela cancn

brigade gas european chihuahua

combat georgia france and denise grady

gen interfax news agency frankfurt drug cartels

in afghanistan iran group of mostly guadalajara
invasion MOSCOW hamburg influenza

nuri nuclear marwa alsherbini oaxaca

pentagon president dmitri matchfixing outbreak

saddam republics minister karltheodor zu president felipe
sergeant sergei munich sinaloa

sunni soviet nazi swine

troops vladimir world war texas

war and who tijuana

Table 3.1: Four Sample Summaries of Four Different Countries. The method used, a count
rule with a threshold of 2, the Lasso for feature selection, and tf-idf reweighting of features,
was one of the best identified for article-unit analysis by our validation experiment.

Data pre-processing

In this section, we describe in detail how we pre-process a corpus of documents into a vector-
ized space so that the predictive classification approach can be employed. Our description
is for a general document corpus, but at times we use examples from news article summa-
rization to ground the general description and to show the need to consider context.

Choosing the document units

We divide the raw text into units of analysis and determine which of those units have
relevant information about the subject, and summarize based on common features found in
these units. The granularity with which the text is partitioned may then have some impact
on the resulting summaries. In particular, we hypothesized that using smaller, lower-word-
count units of text should produce more detail-oriented summaries, while using larger units
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will highlight key-phrases dealing more with the larger themes discussed when the subject
of interest is mentioned.

We tested this hypothesis by comparing summarizers that analyze at the article level to
those which analyze at the component-paragraphs level. Interestingly, we found no large
differences. See Section 3.4.

Identifying potential summarizing phrases

To build the document-term matrix C' we first identify all possible phrases that could be part
of a summary. This list of possibilities constitute our dictionary. Building this dictionary
begins with asking, “Which text phrases are acceptably descriptive?” Sometimes the answer
to this question suggests a manually-defined dictionary: if summaries should only list, e.g.,
countries then the dictionary would be easy to assemble by hand.

In many situations, however, the dictionary of terms should be kept large, and possibly
be drawn from the corpus itself. Different decisions—Should capitalization matter? Are
punctuation marks terms? Can terms include numerals?—yield dictionaries varying widely
in size and utility. Terms could be further disambiguated by many natural language tools,
e.g., part-of-speech tagging, which would again increase dictionary size. Any automated
system for forming a dictionary will entail at least some uncertainty in term identification.

We elected to use a large dictionary containing all phrases of up to three words in length.
We generated our dictionary by first removing all numerals and punctuation, then case-
folding (converting all text to lowercase). We then segmented each document into overlap-
ping phrases, consisting of all single words, bigrams and trigrams in that document unit.
Some text analysts stem their phrases, reducing words to a core root prefix, e.g., truncating
“terror,” “terrorist,” and “terrorism” to “terror”. But we do not stem. There is a se-
mantic difference if a particular subject is associated with “canadians”, the citizenry versus
“canada” the country. For our corpus of articles from the New York Times International
Section in 2009, this identified in 4.5 million distinct phrases. A first-pass pruning, removing
all phrases appearing fewer than six times, resulted in a dictionary of p = 216,626 distinct
phrases.

Representing subjects as lists of words/phrases and automatically labeling
documents

We train a classifier to predict document labels, y; € {—1,+1}, with their vectors of phrase
features, x; € RP, for ¢ = 1,...,n. In the labeling step we automatically build the label
vector y = (y1,...,y,) by deciding whether each document unit in the corpus should be
considered a positive class example or a negative class example.

Establishing the class labels for a news document corpus is sometimes straightforward.
For instance, for comparing 1989 articles about mental illness to those from 1999 as Wahl
et. al did, the labels would be simple: the documents from the opposing years go in opposite
classes. We build y by identifying which of the document units treat the subject of interest
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with "treat” being precisely defined later. For small enough n, y could be built by hand. For
corpora too large to admit manual labeling, we need reasonable automatic labeling. Ideally
this need not be a perfect identification—mnoise in labeling should not have undue impact on
the resulting summaries.

In the large sense, a subject is a concept of interest that an investigator might have. We
represent a subject with a small list of words or phrases, e.g., the subject of China would
be well represented by the set { “china,” “chinas,” “chinese”}. Specifically, let the subject
@ C J be a list of words or phrases selected by the user to capture a subject of interest.

A1

count-m. We consider two general automatic labeling techniques. The first technique,
count-m, marks document unit ¢ as treating a subject if related phrases appear frequently
enough, as given by:

Definition 3.2.2. Count-m labeling labels document unit i as:
yi=2-1{r; >m} —1

where 1{-} is the indicator function and r; = Zj co Cij 1s the total number of subject-specific
phrases in unit .

hardcount-m. The second automatic labeling technique, hardcount-m, drops any docu-
ment ¢ with 0 < r; < m from the data set instead of labeling it with —1. The hardcount
method considers those documents too ambiguous to be useful as negative class examples.
It produces the same positive example set as count-m. We hypothesized that dropping the
ambiguous document units would heighten the contrast in content between the two classes,
and thus lead to superior summaries. It did not. See Section 3.4.

We generate y this way because we are interested in how a subject is treated in a corpus.
Other approaches are possible. For example, y might identify which articles were written in
a specific date range; this would then lead to a summary of what was covered in that date
range.

Reweighting and removing features

It is well known that baseline word frequencies impact information retrieval methods, and
so often raw counts are adjusted to account for commonality and rarity of terms [e.g., 57,
71]. In the predictive framework, this adjustment is done in the construction of the feature
matrix X. We consider three different constructions of X, all built on the bag-of-phrases
representation. [71] examined a variety of weighting approaches for document retrieval in
a multi-factor experiment and found choice of approach to be quite important; we take a
similar comparative approach for our task of summarizing a corpus of documents.

We first remove the columns corresponding to the phrases in subject @) from the set
of possible features J to prevent the summary from being trivial and circular. We also
remove sub-phrases and super-phrases. For example, if Q) is { “united states”} then candidate
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summary phrases “united”, “states”, “of the united”, and “states of america” would all be
removed. The removal is easily automated.

Our baseline then is to simply drop stop words (words determined a priori as too unin-
formative to merit inclusion). Our second approach is to rescale each phrase vector (column
of C) to have unity L? norm. Our third is an implementation of the tf-idf technique [71, 70],
rescaling the bag-of-phrases components so that appearances of rarer phrases are considered
more important than common ones.

Stop Words. Stop words are low information words such as “and,” or “the”, typically
appearing with high frequency. Stop words may be context dependent. For example, in
US international news “united states” or “country” might be considered high frequency and
low information. High-frequency words have higher variance and effective weight in many
methods, causing them to be erroneously selected as features due to sample noise. To deal
with these nuisance words, many text-processing methods use a fixed, hand-built stop-word
list and preemptively remove all features on that list from consideration [e.g., 91, 40, 28].

This somewhat ad-hoc method does not adapt automatically to the individual character
of a given corpus and presents many difficulties. Switching to a corpus of a different language
would require new stop word lists. When considering phrases instead of single words, the
stop word list is not naturally or easily extended. For example, simply dropping phrases
containing any stop word is problematic: it would be a mistake to label “shock and awe”
uninteresting. On the other hand, there are very common candidate phrases that are entirely
made up of stop words, e.g., “of the,” so just culling the single word phrases is unlikely to
be sufficient. See [57] for further critique.

L?-rescaling. As an alternative, appropriately adjusting the document vectors can act in
lieu of a stop-word list by reducing the variance and weight of the high-frequency features.
We use the corpus to estimate baseline appearance rates for each feature and then adjust
the matrix C' by a function of these rates; this core idea is discussed by [57].

We define L?-rescaling to be:

Definition 3.2.3. X is a L2-rescaled version of C' if each column of C' is rescaled to have
unit length under the L? norm. Le.:

Cij o “ 9
= ., wh = E 2.
Tij = ere z; 2 Cij
tf-idf Weighting. An alternate rescaling comes from the popular tf-idf heuristic [70],

which attempts to de-emphasize commonly occurring terms while also trying to account for
each document’s length.
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Definition 3.2.4. X is a tf-idf weighted version of C' if

Cij n
x;; = — log (—)
! qi d;

where ¢; = Z§=1 cij is the sum of the counts of all key-phrases in document ¢ and d; =
>or 1{c¢;j > 0} is the number of documents in which term j appears at least once.

Under tf-idf, words which appear in a large proportion of documents are shrunk consid-
erably in their representation in X. Words which appear in all n documents, such as “the”,
are zeroed out entirely. A potential advantage of tf-idf is that it might ease comparisons
between documents of different lengths because term counts are rescaled by the total count
of terms in the document.

To illustrate the advantages of reweighting, we generated four summaries from the L1LR
feature selection method with all combinations of L*rescaling and stop-word removal (see
supplementary material). Without reweighting, if no stop words are deleted the list is

“© » o«

dominated by high-frequency, low-content words such as “of,” “and,” and “was”. The just
stop-word removal list is only a bit better. It contains generic words such as “mr,” “percent,”
and “world.” The rescaled list does not contain these words. This is a common problem with
stop-word lists: they get rid of the worst offenders, but do not solve the overall problem. The
list from stop-word removal together with L?-rescaling and the list from just L?-rescaling
are the same—the rescaling, in this case, has rendered the stop-word list irrelevant.

We hypothesized that feature weighting is more transparent and reproducible than stop-
word removal and that it results in superior summaries when compared to stop-word removal.
With the human validation experiment, we compared using L*-rescaling, tf-idf weighting,
and stop-word removal as the pre-processing step for each of our feature selectors and found

that humans indeed prefer lists coming from the reweighting methods.

Four Feature Selection Methods

Classical prediction yields models that give each feature a non-zero weight. The models
are thus hard to interpret when there are many features, as is typically the case with text
analysis (our data set contains more than 200,000 potential phrases). We, however, want
to ensure that the number of phrases selected is small so the researcher can easily read
and consider the entire summary. Short summaries are quick to digest, and thus are easily
comparable. Such summaries might even be automatically generated for a corpus in one
language and then translated to another, thus easing comparison of media coverage from
different nationalities and allowing insight into foreign language news [13]. Fundamentally,
a small set of features is more easily evaluated by human researchers.

Given the features X and document labels y for a subject, we extract the columns of
X that constitute the final summary. We seek a subset of phrases K C J with cardinality
as close as possible to, but no larger than, a target k, the desired summary length. We
typically use & = 15 phrases, but 30 or 50 might also be desirable. The higher the value of
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k, the more detailed and complex the summary. We require the selected phrases be distinct
meaning that we don’t count sub-phrases. For example, if “united states” and “united” are
both selected, we drop “united”.

The constraint of short summaries makes the summarization problem a sparse feature
selection problem, as studied in, e.g., [23, 49, 90]. Sparse methods, such as L!-penalized
regression, naturally select a small subset of the available features (in our case candidate
key-phrases) as being relevant predictors.

In other domains, L!-regularized methods are useful for sparse model selection; they can
identify which of a large set of mostly irrelevant features are associated with some outcome.
In our domain there is no reasonable underlying model that is indeed sparse; we expect
different phrases to be more or less relevant, but few to be completely and utterly irrelevant.
Nevertheless, we still employ the sparse methods to take advantage of their feature selection
aspects, hoping that the most important features will be selected first.

We examine four methods for extraction, detailed below. Two of them, Co-occurrence
and Correlation Screening, are scoring schemes where each feature gets scored independently
and the top-scoring features are taken as a summary. This is similar to traditional key-phrase
extraction techniques and to other methods currently used to generate word clouds and other
text visualizations. The other two (the Lasso and L1LR) are L' regularized least squares
linear regression and logistic regression, respectively. Table 3.2 displays four summaries
for China, one from each feature selector: choice matters greatly. Co-occurrence and L1-
penalized logistic regression (L1LR), are familiar schemes from previous work [27].

Co-occurrence

Co-occurrence is our simplest, baseline, method. The idea is to take those phrases that
appear most often (or have greatest weight) in the positively marked text as the summary.
This method is often used in, e.g., newspaper charts showing the trends of major words
over a year (such as Google News Trends?) or word or tag clouds (created at sites such as
Wordle?).

By the feature selection step we have two labelled document subsets, Z+ = {i € Z|y; =
+1}, of cardinality #Z7, and Z= = {i € Z|y; = —1}, of cardinality #Z~. The relevance
score s; of feature j for all j € J is then:

1
T Z Tij

eIt

s; is the average weight of the phrase in the positively marked examples.

For some k', let § be the (k' + 1)th highest value found in the set {s; | j € J}. Build
K={jeJ : s; > 5}, the set of (up to) k' phrases with the highest average weight across
the positive examples. Any phrases tied with the (k' + 1)th highest value are dropped,

’http://wuw.google.com/trends
3http://www.wordle.net/
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Co-occurrence Correlation LI1ILR Lasso
1 and beijing and asian asian
2 by beijings beijing beijing
3 contrib. research contrib. research contrib. research contrib. research
4 for from beijing euna lee exports
5 global global global global
6 has in beijing hong kong hong kong
7 hu jintao li jintao jintao
8 in beijing minister wen jiabao north korea north korea
9 its president hu jintao  shanghai shanghai
10 of prime minister wen staterun tibet
11 that shanghai uighurs uighurs
12 the the beijing wen jiabao wen jiabao
13 to tibet xinhua xinhua
14 xinhua xinhua the
15  year zhang

Table 3.2: A Comparison of the Four Feature Selection Methods. Four sample summaries of
news coverage of China. (Documents labeled via count-2 on articles, X from L2-rescaling.)
Note superior quality of Lasso and L1LR on the right.

sometimes giving a list shorter than &’. The size of K after subphrases are removed can be
even less. Let the initial value of &’ be k, the actual desired length. Now adjust &’ upwards
until just before the summary of distinct phrases is longer than k. We are then taking the
k' > k top phrases and removing the sub-phrases to produce k or fewer distinct phrases in
the final summary.

If X = C,1ie. it is not weighted, then s; is the average number of times feature j appears
in Z%, and this method selects those phrases that appear most frequently in the positive
examples. The weighting step may, however, reduce the Co-occurrence score for common
words that appear frequently in both the positive and negative examples. This is especially
true if, as is usually the case, there are many more negative examples than positive ones.
Appropriate weighting can radically increase this method’s performance.

Correlation Screening

Correlation Screening selects features with the largest absolute correlation with the subject
labeling y. It is a fast method that independently selects phrases that tend to appear in the
positively marked text and not in the negatively marked text. Score each feature as:

s; = |cor(z;,y)]

Now select the k highest-scoring, distinct features as described for Co-occurrence, above.
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L1-penalized linear regression (the Lasso)

The Lasso is an L'-penalized version of linear regression and is the first of two feature selec-
tion methods examined in this chapter that address our model-sparsity-for-interpretability
constraint explicitly. Imposing an L' penalty on a least-squares problem regularizes the
vector of coefficients, allowing for optimal model fit in high-dimensional (p > n) regression
settings. Furthermore, L' penalties typically result in sparse feature-vectors, which is desir-
able in our context. The Lasso takes advantage of the correlation structure of the features
to, in principle, avoid selecting highly correlated terms. For an overview of the Lasso and
other sparse methods see, e.g., The Elements of Statistical Learning [34].
The Lasso is defined as:

(B(N),4) = arg rginZ”y—x?B—’yW—i—)\Z\ﬂj]. (3.1)
v = -

The penalty term A governs the number of non-zero elements of 3. We use a non-penalized
intercept, 7, in our model. Penalizing the intercept would shrink the estimated ratio of
number of positive example documents to the number of negative example documents to
1. This is not desirable; the number of positive examples is far less than 50%, as shown
in Table 1 in the supplementary materials, and in any case is not a parameter which needs
estimation for our summaries. We solve this convex optimization problem with a modified
version of the BBR algorithm [28] described further in Section 3.2.

L1-penalized logistic regression (L1LR)

Similar to the Lasso, Ll-penalized logistic regression (L1LR) is typically used to obtain a
sparse feature set for predicting the log-odds of an outcome variable being either +1 or —1.
It is widely studied in the classification literature, including text classification [see 28, 40,
91]. We define the model as:

(BON),3) 1= arg wmin— 3" Tog (1+expl—u(al 5+ ) +A Y18 (32)
’ i=1 J
The penalty term A again governs the number of non-zero elements of 3. As with Lasso,
we again do not penalize the intercept. We implement L1LR with a modified form of the
BBR algorithm.

Implementation and computational cost

Computational costs primarily depend on the size and sparsity of X. We store X as a list
of tuples, each tuple being a row and column index and value of a non-zero element. This
list is sorted so it is quick to identify all elements in a matrix column. This data structure
saves both in storage and computational cost.
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The complexity for the tf-idf and L? rescaling methods are O(Z), with Z being the
number of nonzero elements in X, because we only have to re-weight the nonzero elements
and the weights are only calculated from the nonzero elements. Stop-word elimination is
also O(Z).

The running times of the four feature selection methods differ widely. For Correlation
Screening and Co-occurrence, the complexity is O(Z). The Lasso and L1LR depend on
solving convex optimization problems. We implemented them using a modified form of the
BBR algorithm [28]. The BBR algorithm is a coordinate descent algorithm for solving L'
penalized logistic regressions with penalized (or no) intercept. It cycles through all the
columns of X, iteratively computing the optimal @ for feature j holding the other Bk fixed.
We modified the BBR algorithm such that 1) we can solve the Lasso with it; 2) we do not
penalize the intercept; and 3) the implementation exploits the sparsity of X. Not penalizing
the intercept preserves sparsity, even if we chose to center the columns of X.

For each iteration of the modified BBR, we first calculate the optimum intercept 4 given
the current value of 3 and then cycle through the features, calculating the update to 3; of
Ap; for j =1,...,p. The complexity for calculating Aj; is O(Z;), where Z; is the number
of nonzero elements in the jth column of X. We then have a complexity cost of O(Z) for
each full cycle through the features. We stop when the decrease in the loss function after a
full cycle through ; to 3, is sufficiently small. For both the Lasso and Logistic regression,
we need only a few iterations to obtain the final solution. When not exploiting the sparse
matrix, the complexity of a coordinate decent iteration is O(n x p). When Z < n X p, our
implementation saves a lot of computation cost.

For both the Lasso and L1LR, higher values of A result in the selection of fewer features.
A sufficiently high A will return a § with zero weight for all phrases, selecting no phrase
features, and A = 0 reverts the problem to ordinary regression, leading to some weight put
on all phrases in most circumstances. By doing a binary search between these two extremes,
we quickly find a value of A for which S(\) has the desired k distinct phrases with non-zero
weight.

Computation speed comparisons. We timed the various methods to compare them
given our data set. The average times to summarize a given subject for each method, not
including the time to load, label, and rescale the data, are on Table 3.3. As expected, Co-
occurrence and Correlation Screening are roughly the same speed. The data-preparation
steps by themselves (not including loading the data into memory) average a total of 15
seconds, more expensive by far than the feature selection for the simple methods (although
we did not optimize the labeling of y or the dropping the subject-related features from X).

The Lasso is currently about 9 times slower and L1LR is more than 100 times slower
than the baseline Co-occurrence using current optimization techniques, but these techniques
are evolving fast. For example, one current area of research, safe feature elimination, allows
for quickly and safely pruning many irrelevant features before fitting, leading to substantial
speed-ups [18]. This pre-processing step allows for a huge reduction in the number of features
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when the penalty parameter is high, which is precisely the regime where the desired list length
is short.

The difference between the Lasso and L1LR may seem surprising given the running time
analysis above. L1LR is slower for two main reasons: for a given A L1LR requires more
iterations to converge on average, and for each iteration, L1LR takes more time due to, in
part, more complex mathematical operations.

We implemented the sparse regression algorithms and feature correlation functions in C;
the overall package is in Matlab. L1LR is the slowest method, although further optimization
is possible. The speed cost for Lasso, especially when considering the overhead of labeling
and rescaling, is fairly minor, as shown on the third column of Table 3.3.

Phrase Total Percent
selection time increase
(sec)  (sec)

Co-occurrence 1.0 20.3
Correlation Screen 1.0  20.3 0%
The Lasso 9.3 28.7 +41%

L1LR 104.9 1242  +511%

Table 3.3: Computational Speed Chart. Average running times for the four feature selec-
tion methods over all subjects considered. Second column includes time to generate y and
adjust X. Final column is percentage increase in total time over Co-occurrence, the baseline
method.

Comments

The primary advantages of Co-occurrence and Correlation Screening is that they are fast,
scalable, and easily distributed across multiple platforms for parallel processing. Unfortu-
nately, as they score each feature independently from the others, they cannot take advantage
of any dependence between features to aid summarization, for example, to remove redundant
phrases. The Lasso and L1LR, potentially, do. The down side is sparse methods can be more
computationally intensive.

Final summaries consist of a target of k distinct key-phrases. The feature-selectors are
adjusted to provide enough phrases such that once sub-phrases (e.g., “wunited” in “united
states”) are removed, the list is k phrases long. This removal step, similar to stop-word
removal, is somewhat ad hoc. It would be preferable to have methods that naturally select
distinct phrases that do not substantially overlap. Sparse methods are such methods; they
do not need to take advantage of this step, supporting the heuristic knowledge that L!-
penalization tends to avoid selecting highly correlated features. With tf-idf, an average of
about one phrase is dropped for Lasso and L1LR. The independent feature selection methods,
however, tend to drop many phrases. See Section 1 of the supplementary material.
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3.3 Human Experiment

Four sample summaries of the coverage of four different countries are shown in Table 3.2.
Sometimes fragments are selected as stand-ins for complete phrases, e.g., “President Felipe
[Calderon/.” These summaries inform us as to which aspects of these countries are of most
concern to the New York Times in 2009: even now, Nazis and the World Wars are tied
to Germany. Iraq and Afghanistan are also tied closely. Genlerals| and combat are the
major focus in Iraq. The coverage of Mexico revolves around the swine flu, drug cartels,
and concerns about the border. Russia had a run-in with Europe about gas, and nuclear
involvement with Iran. These summaries provide some pointers as to future directions of
more in-depth analysis. They came from a specific combination of choices for the reweighting,
labeling, and feature selection steps. But are these summaries better, or worse, than the
summaries from a different summarizer?

Comparing the efficacy of different summarizers requires systematic evaluation. To do
this, many researchers use corpora with existing summaries (e.g., using the human-encoded
key-phrases in academic journals such as in [24]), or corpora that already have human-
generated summaries (such as the TIPSTER dataset used in [59]). Others have humans
generate summaries for a sample of individual documents and compare the summarizer’s
output to this human baseline. We, however, summarize many documents, and so we cannot
use an annotated evaluation corpus or summaries of individual documents.

In the machine-learning world, numerical measures such as prediction accuracy or model
fit are often used to compare different techniques, and has been successful in many applica-
tions. While we hypothesize that prediction accuracy should correlate with summary quality
to a certain extent, there are no results to demonstrate this. Indeed some researchers found
that it does not always [27, 9]. Because of this, evaluating summarizer performance with
numerical measures is not robust to critique.

Although time consuming, people can tell how well a summary relates to a subject, as
the hand-coding practice in media analysis shows. Because final outcomes of interest are
governed by human opinion, the only way to validate that a summarizer is achieving its
purpose is via a study where humans assess summary quality. We therefore design and
conduct such a study. Our study has three main aims: to verify that features used for
classification are indeed good key-phrases, to help learn what aspects of the summarizers
seem most important in extracting the key meaning of a corpus, and to determine which
feature selection methods are most robust to different choices of pre-processing (choice of
granularity, labeling of document units, and rescaling of X).

We compare our four feature selection methods under a variety of labeling and reweighting
choices in a crossed, randomized experiment where non-experts read both original documents
and our summaries and judge the quality and relevance of the output. Even though we
expect individuals’ judgements to vary, we can average the responses across a collection of
respondents and thus get a measure of overall, generally shared opinion.

We carried out our survey in conjunction with the XLab, a campus lab dedicated to help-
ing researchers conduct human experiments. We recruited 36 respondents (undergraduates
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at a major university) from the lab’s respondent pool via a generic, nonspecific message stat-
ing that there was a study that would take up to one hour of time. While these experiments
are expensive and time consuming, they are necessary for evaluating text summarization
tools.

Description of text corpus

For our investigation we used the International Section of the New York Times for the 2009
year. Articles were scraped from the newspaper’s RSS feed,* and the HTML markup was
stripped from the text. We obtained 130,266 paragraphs of text comprising 9,560 articles.
The New York Times, upon occasion, will edit an article and repost it under a different
headline and link; these multiple versions of the articles remain in the data set. By looking for
similar articles as measured by a small angle between their feature vectors in the document-
term matrix C, we estimate that around 400 articles (4-5%) have near-duplicates.

The number of paragraphs in an article ranges from 1 to 38. Typical articles® have about
16 paragraphs (with an Inter-Quartile Range (IQR) of 11 to 20 paragraphs). However, about
15% of the articles, the “World Briefing” articles, are a special variety that contain only one
long paragraph.® Among the more typical, non-“World Briefing” articles, the distribution
of article length as number of paragraphs is bell-shaped and unimodal. The longer articles,
with a median length of 664 words, have much shorter paragraphs (median of 38 words),
generally, than the “Word Briefing” single-paragraph articles (median of 87 words).

Generating the sample of summaries

A choice of each of the options described above gives a unique summarizer. We evaluated
96 different summarizers built from these factors:

1. We evaluated summarizers that analyzed the data at the article-unit and paragraph-
unit level (see Section 3.2).

2. When performing paragraph-unit analysis, we labeled document units using count-1,
count-2, and hardcount-2. For the article-unit analysis we considered these three, plus
count-3 and hardcount-3 (see Section 3.2).

3. We considered tf-idf weighting, L? rescaling, and simple stop-word removal (see Sec-
tion 3.2).

4. We considered four feature-selection techniques (see Section 3.2).

‘feed://feeds.nytimes.com/nyt/rss/World
5See, e.g., http://www.nytimes.com/2011/03/ 04/world/americas/0O4mexico.html
6See, e.g., http://www.nytimes.com/2011/03/03/ world/americas/03briefs-cuba.html
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Choices of unit of analysis, labeling, the three preprocessing options, and the four feature-
selection methods give 96 different summarizers indexed by these combinations of factors.

We compared the efficacy of these combinations by having respondents assess the quality
of several different summaries generated by each summarizer. We applied each summarizer
to the set of all articles in the New York Times International Section from 2009 for 15
different countries of interest. These countries are listed in Table 1 in the supplementary
materials. We only considered countries with reasonable representation in the corpus. After
identifying these countries, we hand-specified a phrase set () for each county by including
any plurals and possessives of the country and any common names for the country’s people.
Using these 15 subjects on each of the 96 summarizers, we calculated 1,440 summaries.

Supplementary Table 1 also includes the number of positively marked examples under
all the count-m labeling schemes we used for both article- and paragraph-unit analysis. The
“article-1” header is the most generous labeling: any article that mentions any of the words
associated with the subject one or more times is marked as treating the subject. Even under
this, positive examples are scarce; it is clear we are attempting to summarize something that
does not constitute a large portion of the text.

The survey and respondents

For our survey, paid respondents were convened in a large room of kiosks where they could be
asked questions in a focused, controlled environment. . Each respondent sat at a computer
and was given a series of questions over the course of an hour. Respondents assessed a series
of summaries and articles presented in 6 blocks of 8 questions each. Each block considered a
single (randomly selected) subject from our list of 15. Within a block, respondents were first
asked to read four articles and rate their relevance to the specified subject. Respondents
were then asked to read and rate four summaries of that subject randomly chosen from the
subject’s library of 96. Respondents could not go back to previous questions.

Before the survey all respondents did a sample series of four practice questions and were
then asked if they had any questions as to how to score or rate articles and summaries.

Evaluating article topicality. To insure that respondents had a high probability of seeing
several articles actually relevant to the subject being investigated, the articles presented in
a block were selected with a weighted sampling scheme with weights proportional to the
number of times the block’s country’s name was mentioned. We monitored the success of
this scheme (and collected data about the quality of the automatic labelers) by asking the
respondents to evaluate each shown article’s relevance to the specified subject on a 1 to 7
scale.

With 4 or higher scored as relevant, respondents saw at least 2 articles (out of the 4)
on the subject of interest about 75% of the time. With 3 or higher, the number of blocks
with at least two relevant articles rises to 91%. We attempt to summarize how a subject
is treated overall, including how it is treated in articles in which the subject is only a
secondary consideration. For example, an article focused on world energy production may
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discuss Russia. Hence, even a modest score of 3 or 4 is a likely indication that the article
has subject-related content.

Only the first 120 words of each article were shown; consultation with journalists suggests
this would not have a detrimental impact on content presented, as a traditional newspaper
article’s “inverted pyramid” structure moves from the most important information to more
minute details as it progresses [65].

Evaluating summaries. A simple random sample of 4 summaries were presented after
the four articles. Each summary was presented on its own screen. The respondents were
asked to assess each summary in four respects:

1. Content: How does this list capture the content about [subject] in the text you just
read? (1-7 scale, 7 being fully captured)

2. Relevance: How many words irrelevant or unrelated to [subject] does this list contain?
(1-7 scale, 7 being no irrelevance)

3. Redundancy: How many redundant or repeated words does this list contain? (1-7
scale, 7 being no redundancies)

4. Specificity: Given what you just read, would you say this list is probably too general
or too specific a summary of how [subject] was covered by the newspaper in 20097
(response options: too general, about right, too specific, not relevant, and can’t tell)

All respondents finished their full survey, and fewer than 1% of the questions were skipped.
Time to completion ranged from 14 to 41 minutes, with a mean completion time of 27
minutes.

3.4 Human Survey Results

We primarily examined an aggregate “quality” score, taken as the mean of the three main
outcomes (Content, Relevance, and Redundancy). Figure 3.1 shows the raw mean aggregate
outcomes for the article-unit and paragraph-unit data. We immediately see that the Lasso
and L1LR perform better than Co-Occurrence and Correlation Screen, and Tf-idf is a good
choice of rescaling for articles, L?-rescaling for paragraphs. Labeling does not seem to matter
for the articles, but does for paragraphs. Clearly, the unit of analysis interacts with the other
three factors, and so we conduct further analysis of the article-unit and paragraph-unit data
separately. Section 3.4 has overall comparisons.

We analyze the data by fitting the respondents’ responses to the summarizer character-
istics using linear regression. The full model includes terms for respondent, subject, unit
type, rescaling used, labeling used, and feature selector used, as well as all interaction terms
for the latter four features.
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Figure 3.1: Aggregate Results of Human Survey. Outcome is aggregate score based on
the raw data. There are major differences between article-unit analysis and paragraph-unit
analysis when considering the impact of choices in preprocessing.

In all models, there are large respondent and subject effects. Some subjects were more
easily summarized than others, and some respondents were more critical than others. In-
teractions between the four summarizer factors are (unsurprisingly) present (df = 33, F =
4.14,log P ~ —13 under ANOVA). There are significant three-way interactions between
unit, feature-selector, and rescaling (P =~ 0.03) and labeling, feature-selector, and rescaling
(P ~ 0.03). Interaction plots (Figure 3.1) suggest that the sizes of these interactions are
large, making interpretation of the marginal differences for each factor potentially mislead-
ing. Table 3.4 shows all significant two-way interactions and main effects for the full model,
as well as for models run on the article-unit and paragraph-unit data separately.

Article unit analysis

Interactions between factors make interpretation difficult, but overall, Lasso is a good sum-
marizer that is resistant to preprocessing choices. Interestingly, the simplest method, Co-
occurrence, is on par with Lasso under tf-idf.

The left column of Figure 3.2 shows plots of the three two-way interactions between
feature selector, labeling scheme, and rescaling method for the article-unit data. There is a
strong interaction between rescaling and feature-selection method (df = 6, F = 8.07,log P ~
—8, top-left plot), and no evidence of a labeling by feature-selection interaction or a label-
ing by rescaling interaction. Model-adjusted plots (not shown) akin to Figure 3.2 do not
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Figure 3.2: Aggregate Quality Plots. Pairwise interactions of feature selector, labeling, and
rescaling technique. Left-hand side are for article-unit summarizers, right for paragraph-unit.
See testing results for which interactions are significant.
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All data Article-unit Paragraph-unit
Factor Unit Feat Lab Resc | Feat Lab Resc | Feat Lab Resc
Unit . -2 -1 -7
Feature Selection -15 ) -10 | -10 . -7 -6 ) -2
Labeling . . . : -1 .
Rescaling -14 -15 -3

Table 3.4: Main Effects and Interactions of Factors. Main effects along diagonal in bold. A
number denotes a significant main effect or pairwise interaction for aggregate scores, and is
the base-10 log of the P-value. “.” denotes lack of significance. “All data” is all data in a
single model. “Article-unit” and “paragraph-unit” indicate models run on only those data
for summarizers operating at that level of granularity.

differ substantially in character. Table 3.4 show all significant main effects and pairwise
interactions. There is no significant three-way interaction.

Lasso is the most consistent method, maintaining high scores under almost all combina-
tions of the other two factors. In Figure 3.2, note how Lasso has a tight cluster of means
regardless of rescaling used in the top-left plot and how Lasso’s outcomes are high and con-
sistent across all labeling in the middle-left plot. Though L1LR or Co-occurrence may be
slightly superior to Lasso when the data has been vectorized according to tf-idf, they are not
greatly so, and, regardless, both these methods seem fragile, varying a great deal in their
outcomes based on the text preprocessing choices. Note, for example, how vulnerable the
Co-occurrence feature-selection method is to choice of rescaling.

Tf-idf seems to be the best overall rescaling technique, consistently coming out ahead
regardless of choice of labeling or feature-selection method. Note how its curve is higher
than the rescaling and stop-word curves in both the top- and bottom-left plots in Figure 3.2.
Under tf-idf, all the methods seem comparable. Alternatively put, tf-idf brings otherwise
poor feature selectors up to the level of the better selectors.

Adjusting P-values with Tukey’s honest significant difference and calculating all pair-
wise contrasts for each of the three factors show which choices are overall good performers,
ignoring interactions. For each factor, we fit a model with no interaction terms for the
factor of interest and then performed pairwise testing, adjusting the P-values to control
familywise error rate. See Table 3.5 for the resulting rankings of the factor levels. Co-
occurrence and Correlation Screening are significantly worse than L1LR and Lasso (correla-
tion vs. L1LR gives t = 3.46, P < 0.005). The labeling method options are indistinguish-
able. The rescaling method options are ordered with tf-idf significantly better than rescaling
(t = 5.08,1log P &~ —4), which in turn is better than stop-word removal (t = 2.45, P < 0.05).
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Data Included Order (article) Order (paragraph)

All cooc, corr < L1LR, Lasso cooc < corr, Lasso, L1LR
stop < resc < tf-idf tfidf, stop < resc

tf-idf only no differences no differences

L? only cooc < L1LR, Lasso; corr < Lasso no differences

stop only cooc < corr, L1LR, Lasso; corr < Lasso cooc < Lasso, L1LR

cooc only stop < resc < tf-idf stop < resc

corr only stop < tf-idf no differences

Lasso only no differences no differences

L1LR only no differences tf-idf < resc

Table 3.5: Quality of Feature Selectors. This table compares the significance of the separation
of the feature selection methods on the margin. Order is always from lowest to highest
estimated quality. A ”<” denotes a significant separation. All P-values corrected for multiple
pairwise testing. The last seven lines are lower power due to subsetting the data.

Paragraph unit analysis

For the paragraph-unit summarizers, the story is similar. Lasso is again the most stable to
various pre-processing decisions, but does not have as strong a showing under some of the
labeling choices. Co-occurrence is again the most unstable. L1LR and Correlation Screening
outperform Lasso under some configurations. The main difference from the article-unit data
is that tf-idf is a poor choice of rescaling and L2-rescaling is the best choice.

The right column of Figure 3.2 shows the interactions between the three factors. There is
again a significant interaction between rescaling and method (df = 6, F = 3.25, P < 0.005,
top-plot). This time, however, it is not entirely due to Co-occurrence being sensitive to
rescaling. Co-occurrence is still sensitive, but correlation and L1LR are as well. Stop-word
removal does quite well for L1LR and Lasso, suggesting that rescaling is less relevant for
shorter document units.

Co-occurrence is significantly worse than the other three on the margin (Co-occurrence
vs. Correlation Screening gives an adjusted pairwise test with ¢ = 4.11, P < 0.0005), but
the other three are indistinguishable. Labeling matters significantly (df = 2, F' = 5.23, P <
0.01), with count-1 doing better in the margin than count-2 and hardcount-2. The higher
threshold is likely removing too many substantive paragraphs from the set of positive exam-
ples. See Table 1 in the supplementary materials—around 75% of the examples are dropped
by moving from count-1 to count-2.

Analysis of subscores

The above analysis considers the aggregate score across (1) specific Content captured, (2)
Redundancy of phrases in the list, and (3) general Relevance of phrases in the list to the
subject. We also performed the above analyses for each of the three sub-scores separately.
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Overall conclusions mainly hold, with a few important exceptions. The paragraph-unit
results are especially variable, suggesting that paragraph-unit analysis requires more fine-
tuning to get good results than article-unit.

The Lasso and L1LR maintain word-lists that have few repeats (good Redundancy
scores), but their information capture degrades when given quite short units of text. This
partially explains the weaker performance of Lasso in the aggregate scores for the paragraph-
unit. For the paragraph unit summarizers, L?-Rescaling is clearly superior for Relevance and
Content scores, but inferior to tf-idf for Redundancy.

The marginal Redundancy scores for feature selection method are extremely differenti-
ated, with L1LR and Lasso both scoring high and Co-occurrence and Correlation Screening
scoring quite low. Correlation Screening’s poor Redundancy score substantially reduces its
aggregate score. This might be solved by a different, more sophisticated, pruning technique.
Indeed, given Correlation Screening’s quite high scores for Relevance and Content, fixing the
Redundancy problem could result in a good, fast summarizer that may well outperform the
penalized regression methods.

Summary of Overall Results

The feature selectors interact differently with labeling and rescaling under the two different
units of analyses. While the overall summary quality was no different between these two
varieties of summarizer, interaction plots suggest labeling is important, with count-2 being
more appropriate for articles and count-1 being more appropriate for paragraph units (see
top plots of Figure 3.1). This is unsurprising: a count of 1 vs. 2 means a lot more in a single
paragraph than an entire article.

Preprocessing choice is a real concern. While stop-word removal and L2-rescaling seem
relatively consistent across both units of analysis, tf-idf works much worse, overall, for the
paragraph unit summarizers than with articles. This is probably due to the short length
of the paragraph causing rescaling by term frequency to have large and varying impact. It
might also have to do with tf-idf correctly adjusting for the length of the short “World-
Briefing” articles. Under Lasso, however, these decisions seem less important, regardless of
unit size.

Comparing the performance of the feature selectors is difficult due to the different nature
of interactions for paragraph and article units. That said, Lasso consistently performed well.
For the article-unit it performed near the top. For the paragraph-unit it did better than
most but was not as definitively superior. L1LR, if appropriately staged, also performs well.

We hypothesized that paragraph-unit analysis would generate more specific summaries
and article-unit more general. This does not seem to be the case; in analyzing the results
for the fourth question on generality vs. specificity of the summaries (not shown), there was
no major difference found between article-unit and paragraph-unit summarizers.

It is on the surface surprising that the Lasso often outperformed L1LR as L1LR fits a
model that is more appropriate for the binary outcome of the labeling. The Lasso has a L>2-
loss, which is sensitive to outliers, while L1LR’s logistic curve is less sensitive. However, the
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design matrix X, especially under rescaling, is heavily restricted. All entries are nonnegative
and few are large. This may limit the opportunity for individual entries in the L? loss to
have a significant impact, ameliorating the major drawback of the Lasso.

There is no evidence that dropping units that mention the subject below a given threshold
(the hardcount labeling technique) is a good idea. Indeed, it appears to be a bad one. The
pattern of a quality dip between count-n and hardcount-n appears both in the paragraph-
and article-unit results. Perhaps articles that mention a subject only once are important
negative examples. The sub-scores offer no further clarity on this point.

3.5 Discussion

News media significantly impact our day to day lives and the direction of public policy.
Analyzing the news, however, is a complicated task. The labor intensity of hand coding
either leads to small-scale studies, or great expense. This and the amount of news available
to a typical reader strongly motivate automated methods to help with media analysis.

We proposed a sparse predictive framework for extracting meaningful summaries of spe-
cific subjects from document corpora including corpora of news articles. We constructed dif-
ferent summarizers based on our proposed approach by combining different options of data
preparation scheme, document-granularity, labeling choice, and feature selection method. A
human validation experiment was strongly advocated and carried out for comparing these
different summarizers among themselves and with human understanding.

Based on the human experiment, we conclude that the features selected using a prediction
framework do generally form informative key-phrase summaries for subjects of interest for
the corpus of New York Times international section articles. These summaries are superior
to those from simpler methods of the kind currently in wide use such as Co-occurrence. The
Lasso is a good overall feature selector that seems robust to how the data is vectorized and
labeled and it is computationally scalable. L1LR, a natural fit model-wise, can perform well if
preprocessing is done correctly. However, it is computationally expensive. Data preparation
is important: the vector representation of the data should incorporate some reweighting of
the phrase appearance counts. Tf-idf is a good overall choice unless the document units are
small (e.g., paragraphs, and, presumably, headlines, online comments, and tweets) in which
case an L? scaling should be used. We also learned that limiting phrases to three words or
fewer is a potential problem; we encountered it, for example, when dealing with political
leaders frequently mentioned with title (as in “Secretary of State Hillary Clinton”). [40]
proposed a greedy descent approach for L1LR that allows for arbitrary-length key-phrases,
but it currently does not allow for intercept or reweighting. However, it potentially could.
Alternatively, natural language tools such as parts of speech tagging could pull out such
names as distinct features. These approaches are currently under investigation.

Our framework provides a general tool for summarization of corpora of documents relative
to a subject matter. Using this tool, researchers can easily explore a corpus of documents
with an eye to understanding a concise portrayal of any subject they desire. We are now
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in the process of working with social scientists to use this tool to carry out research in a
substantive social science field. Our proposed approach is being implemented within an
on-line toolkit, SnapDragon.” This toolkit is intended for researchers interested in quickly
assessing how corpora of documents cover specified subjects.

Thttp:/ /statnews2.eecs.berkeley.edu/snapdragon
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Chapter 4

Election Auditing With the Trinomial
Bound

4.1 Introduction

Electronic voting machines and vote tabulation software are complex and opaque, raising
concerns about their reliability and vulnerability. Audits can provide a measure of “software
independence,” controlling the risk that errors—whatever their source—cause the apparent
outcome to differ from the outcome a full hand count would show [81, 79, 80, 83]. Several
states have laws mandating election audits and others are considering such laws [31].} Tt is
crucial to ensure that the audit trail is accurate, durable and complete from its creation
through the audit. If there is no audit trail, there can be no audit. If there is an audit trail,
but no audit, there is no assurance of accuracy. If there is an audit trail and an audit, but
the audit trail does not reflect the electoral outcome, there is still no assurance.

Henceforth, we assume that the audit trail is complete and accurate. When we say “the
apparent outcome is correct” we mean the apparent outcome is the same outcome that a
full hand count of the audit trail would show. “The apparent outcome is wrong” means a
full hand count would show a different outcome.

An election outcome can be checked by hand counting the entire audit trail. This,
however, is expensive and time-consuming, and unnecessary unless the outcome is wrong.
The goal of a statistical audit, which compares a hand count of a random sample of batches
of ballots to the audit trail for those batches, is to ensure that the outcome is correct without
a full hand count—unless the outcome is wrong. If the outcome is wrong, a full hand count is
needed to set the record straight. A risk-limiting audit has a minimum pre-specified chance,
1 — «, of requiring a full hand count whenever the apparent outcome is wrong.? The risk, a,
is the largest possible chance that there will not be a full hand count when the outcome is
wrong, no matter what caused the discrepancies between the apparent outcome and the audit

1See also http://www.verifiedvoting.org/article.php?id=5816 (last visited 18 February 2009).
2See http://www.electionaudits.org/bp-risklimiting (last visited 19 February 2009).
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trail. (We assume that o < 1; otherwise, an audit would be unnecessary.) The guaranteed
minimum chance of a full hand count when the outcome is wrong is 1 — a.

In statistical language, a risk-limiting audit is a significance-level a test of the null hy-
pothesis “the outcome is wrong” against the alternative hypothesis “the outcome is right.”
Commonly, tests are formulated so that the null hypothesis that things are “good”; here, it
is that things are “bad.” The reason is that, in the Neyman-Pearson paradigm, the chance
of incorrectly rejecting the null hypothesis is controlled to be at most a. We want to control
the chance that an incorrect outcome will go undetected, i.e., the chance that there is not a
full hand count when there should be.

Not rejecting the null hypothesis entails a full hand count. A good test simultaneously
limits the chance of incorrectly rejecting the null hypothesis to at most a and has high
power. That is, a good test has chance at least 1 — « of requiring a full hand count when the
outcome is wrong, and is very likely to conclude that the outcome is right, with a minimum
of hand counting, when the outcome is indeed right.

The outcome can be right even when there are some errors, and audits of voter-marked
paper ballots generally find errors at a rate of a few tenths of a percent.® For a test to have
good power, it needs to have a large probability of rejecting the null hypothesis even when
some errors are observed, provided the outcome of the race is right. The issue is whether, in
light of the errors found in the sample, there is still compelling statistical evidence that the
outcome of the race is correct.

Audits compare hand counts of a random sample of batches to reported totals for those
batches.* The sampling design used in this chapter is sampling with probability proportional
to an error bound (PPEB) [2, 83]. Suppose the error in batch p can be no larger than u,. Let
U= Zp u, be the total of all the error bounds. In PPEB, there are n independent draws
from the set of N batches. In each draw, the chance of selecting batch p is u,/U. This makes
it more likely that batches that can conceal more error will be audited.

Sampling proportional to an error bound is common in financial auditing, where it is
called dollar unit sampling or monetary unit sampling (MUS) [17]. A standard problem in
financial auditing is to find an upper confidence bound for the total overstatement of a set
of accounts. Each account has a “book value” in dollars; the real value—the value an audit
would reveal—might be lower. The overstatement is the book value minus the real value.
The overstatement can be no larger than the book value. Thus, book value is an error bound
and MUS is PPEB.

3We have seen much better accuracy than this, for instance, in the audit of the race in Marin county
described here, and in a November 2008 audit in Yolo County, CA, we participated in. If something goes
wrong—a ballot definition error, miscalibrated scanner, bug, or fraud—errors can be much larger. Direct-
recording electronic voting machines (DREs) should be perfectly accurate, and any errors in DRE results
are cause for alarm and should be thoroughly investigated.

4The design of the sample matters for the probability calculations and for efficiency. Some methods,
such as SAFE [51] use a simple random sample of batches. Others use stratified simple random samples [81,
79, 80]. States, including California and Minnesota, require drawing random samples stratified by county;
batches are ballots for a single precinct. Stratifying on the method of voting—by mail, early, in-precinct or
provisional-—can have logistical advantages.
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Methods used to analyze MUS data generally convert the overstatement to taint, which
is the overstatement divided by the book value. For instance, if an account with a book
value of $1,000 has an audited value of $900, the overstatement is $100 and the taint is
$100/$1,000 = 0.1, i.e., ten cents per dollar.

Working with taint in PPEB samples has theoretical advantages; see [5, 4, 20, 58, 83].
The expected taint of each PPEB draw is the overall error in the population divided by the
total of the error bounds for the population. Moreover, the observed taints are independent
and identically distributed. Those features make it straightforward to use the taint in a
PPEB sample to find an upper confidence bound on the total overstatement error.

There is an extensive literature on confidence bounds for overstatement from PPEB
samples [17]. Apparently, [84] developed the first such confidence bound, based on nesting
binomial confidence bounds. That bound turns out to be quite conservative in practice; the
multinomial bound of [20, 58] is sharper. See section 4.5. The multinomial bound bins the
taint into pennies (zero cents per dollar, one cent per dollar, ..., 100 cents per dollar), and
uses the multinomial distribution of the counts in each bin to make a confidence bound on
the population taint by inverting hypothesis tests. [5, 4] develop a different improvement of
the bound in [84]. [83] shows how some common probability inequalities can be used with
the taint in a PPEB sample to test hypotheses about the overall error. Those tests can be
converted into confidence bounds as well.

We present here a simplified variant of the multinomial bound, the trinomial bound. It
divides the taint into three bins and constructs an upper confidence bound for the expected
taint by inverting a set of hypothesis tests. The acceptance regions for the trinomial bound
differ from those of the multinomial bound.® For the kind of data that typically arise in
election audits, computing the trinomial bound is straightforward.® The trinomial confidence
bound for the taint can be small even when some errors are observed. When that happens,
the audit stops short of a full hand count and the risk is still limited to at most a.

We used the trinomial bound to audit two November 2008 races, one in Santa Cruz
County and one in Marin County, California. Table 4.1 summarizes the election results. The
Santa Cruz County contest was for County Supervisor in the 1st District. The competitive
candidates were John Leopold and Betty Danner. According to the semi-official results
provided to us by the Santa Cruz County Clerk’s office, Leopold won with votes on 45% of
the 26,655 ballots. Danner received the votes on 37% of the ballots. The remaining ballots
were undervoted, overvoted, or had votes for minor candidates.”

The Marin County race was for Measure B, county-wide contest that required a simple

5The multinomial bound bases the hypothesis tests on “step-down sets,” which partially order the set
of possible outcomes. We order outcomes by sample mean of the binned taints, which is more intuitive.
Using the sample mean to order outcomes for the 101-bin multinomial would be combinatorially complex,
but since the trinomial has only three bins it turns out to be simple.

6The Kaplan-Markov bound [83] seems to be comparable, but easier to compute; there has been no
extensive comparison so far.

“In calculating the confidence bound on the error, the audit took every ballot into account, not just the
ballots with votes.
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majority. According to the semi-official results, provided to us by the Marin County Registrar
of Voters office, 121,295 ballots were cast in the race. 51% of the ballots recorded “yes” votes;
35% said “no.” The remaining 14% had undervotes or overvotes.

Both audits were designed to limit the risk to @ = 0.25. That is, the chance of a full hand
count was at least 75% if the outcome was wrong. Both outcomes were confirmed without
a full hand count.

County Total Winner Loser Margin Precincts Batches
Ballots

Santa Cruz 26,655 45% 3% 8% 76 105

Marin 121,295 51% 35% 16% 189 544

Country Batches # Ballots % Ballots
Audited Audited  Audited

Santa Cruz 16 7,105 27%

Marin 14 3,347 3%

Table 4.1: Summary of the Two Races Audited. The main contenders in the race for
Santa Cruz County Supervisor, 1st District, were John Leopold and Betty Danner. Leopold
apparently won. Marin Measure B required a simple majority. It apparently passed. The
audits confirmed both outcomes.

This chapter is organized as follows. Section 4.2 reviews notation and points to other work
for details. Section 4.3 develops the trinomial confidence bound and a method for selecting
the bins and the sample size. Section 4.4 explains how the trinomial bound was used to
audit contests in Marin and Santa Cruz counties and presents the audit results. Section 4.5
compares the trinomial bound to the Stringer bound. Section 4.6 presents conclusions.

4.2 Notation and Assumptions

We generally follow the notation in [79, 80, 83]. There are K candidates; voters may vote for
up to f > 1 of them (the contest has f winners). There are N batches of ballots, indexed by
p. There are vy, votes reported for candidate k in batch p. There are actually ay, votes cast
for candidate k in batch p. The total vote reported for candidate k is Vj, = Zp Ugp, the sum
of the votes reported for candidate k£ in the N batches. The total actual vote for candidate
kis Ay = Zp arp. The set W comprises the indices of the apparent winners so #W = f.
The set £ comprises the indices of the apparent losers, so #£ = K — f.
If we W and ¢ € L then
Ve =V — Ve > 0. (4.1)
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The outcome of the election is right if for every w € W and ¢ € L,
Awg = Aw — Ag > 0. (42)

Define
Vwp — Vep — (awp B aZp)

Ewlp = v , . (43)

That is the amount by which error in batch p overstated the margin between candidate w
and candidate ¢, expressed as a fraction of the reported margin between them.
If the outcome of the race is wrong, there is some pair w € W, ¢ € L for which

> ewrp > 1. (4.4)

p

Define
€, = max Eyupm. 4.5
P ewer VP (4.5)

[79] shows that a sufficient condition for the outcome to be correct is
E=) e, <L (4.6)
p

This condition is sufficient but not necessary; tightening the condition could yield better
tests.
We want to draw a statistical inference about F from a random sample of batches, making
a bare minimum of assumptions about {e,}. We do assume that we have a bound b, on the
total number of ballots in batch p. [79] shows that from such a bound we can deduce that
bp + Vwp — Vep

e, <uU,= max ————. 4.7
P="P" vewier Vo (4.7)

Let

U=> u, (4.8)

We call e, the overstatement error in batch p, ' the overstatement error, u, the maximum
overstatement error in batch p, and U the maximum overstatement error.

The sample is selected as follows: We draw n times independently (with replacement)
from the set of N batches. In each draw, the probability of selecting batch p is u,/U. This
is called a PPEB (probability proportional to an error bound) sample [2]; it is equivalent to
monetary unit sampling and dollar unit sampling in financial auditing [17].

This chapter gives a method to compute an upper 1 — « confidence bound E for E from
a PPEB sample. One general strategy for risk-limiting audits, described in [81, 79, 80], is
to test the hypothesis that the outcome is wrong sequentially: The auditor draws a sample,
then assesses whether there is sufficiently strong evidence that the outcome is correct. If
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there is, the audit stops. If there is not, the audit sample is enlarged and the new evidence
is assessed. Eventually, either there is strong evidence that the outcome is right, or there
will have been a full hand count.

Stage s of a sequential audit can be viewed as a test at significance level a,. In this
chapter, we focus on a single stage: The hypothesis that the outcome is wrong is rejected
at significance level ay if £ < 1. That might be the only stage of an audit that takes a
sample then either stops or conducts a full hand count, or it might be one of the stages of a
multi-stage audit that could expand the sample once or more before demanding a full hand
count.

The two audits we conducted using the new method were single-stage audits. We drew
an initial sample of n batches and calculated an upper 75% confidence bound for E from the
errors the hand counts uncovered in those batches. If that upper confidence bound, Ej,s,
had been greater than 1, the elections officials would have conducted complete hand counts.

4.3 The Trinomial Confidence Bound

Our method for constructing a 1 — a upper confidence bound E} for E is similar to the
multinomial bound with clustering [20, 58].
The taint t, of batch p is the ratio of the actual overstatement in batch p to the maximum

overstatement in batch p:
e

<. (4.9)

Up

E = Z ep = Z Z—pup = thup. (4.10)
p p P P

Suppose we draw a PPEB sample of size n. Let T denote the taint of the jth draw. Then
the expected value of Tj is

tp

Now,

E[T), =) tyu,/U =E/U. (4.11)

Multiplication by U transforms an upper 1 — « confidence bound for E[T] ; nto an upper
1 — «a confidence bound for E. See also [83].
Let d € (0,1). Define

)

=S
IA
=]

<T <d (4.12)
j > d.

0
Y=< d
1

~

9

For any d € (0,1),® Y; is stochastically larger than T} (i.e., Pr[Y; > T;] = 1), so
E[T]; <E[Y],. (4.13)

8Some papers on the multinomial bound in financial auditing suggest that d can be chosen after the data
are collected. We have seen no proof that post hoc selection of d results in a valid confidence bound. We
select d before the data are collected.
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Let
T = Pr[Y; =0],
g = PrlY; =d], and
m = Pr[Y; =1];

and let m = (mg, mg, m1). Define p = p(d) = (0,d,1). Then
E[Y]j =0mg+drg+1my = p- . (4.14)

Define
Z=#{j:Y;=0}L#{j: Y, =d},#{j: Y, =1}). (4.15)
This is a random 3-vector. Its first component is the number of observed taints that are no
bigger than zero; its second is the number of observed taints that are strictly positive but
no bigger than d; and its third is the number of observed taints that exceed d. It has a

trinomial distribution with category probabilities 7.
We will use Z to find a set S,(Z) such that

Pr[S.(Z)> 7] >1—a. (4.16)
That is, S,(Z) is a 1 — « confidence set for 7. Then

th= max p-~y (4.17)

is the upper endpoint of a 1 — o upper confidence interval for E[Y] ; and hence for E[T] o It
follows that Ut/ is the upper endpoint of a 1 — o upper confidence interval for E.

We construct S, (Z) by inverting hypothesis tests about 7. We are ultimately interested
in inferring that p - 7 is not large, so it makes sense to reject the hypothesis m = v when

pZ <z, (4.18)

with
2y = 2, () Emax{z:Pr[u~Z§z] ga}, (4.19)
gl

so that the test has level a.
The test statistic p - Z orders the possible values of Z by the sample mean of the values

of Yj from which Z was constructed.” To find a confidence bound for E[T];, we invert the

9This test statistic generally results in a different test from the “step-down set” acceptance region used
by [20, 58].
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hypothesis tests to find the confidence set S,(z) of trinomial category probabilities 7 for
which the hypothesis 7 = v would not be rejected if we observed Z = z. That set is

Sa(2) = {7=007m) €R* 7 >0,0+7+m =1
and p -z > 2}

= {v=(07n) ER:7>00+1+n =1
and Prlu-Z < pu-z] > a}. (4.20)
Y

The corresponding confidence bound for E[T] ; 1s the largest value of -y over v € Sa(2):

th=1tl(z) = . 4.21
o =1l (2) e ax (4.21)
We now characterize the solution to the optimization problem (4.21) in some useful cases.
If u-Z/n > 1/U, we certainly will not be able to conclude that £ < 1. The question is how
much smaller than 1/U the “sample mean” - Z/n must be to provide strong evidence that
E < 1. Because a < 1 by assumption,
P Z <zl < 4.22
PrluZ<pdd<a (1.22)
unless z = (0,0,n). If 2 =(0,0,n), t& = 1.
If z # (0,0,n), then the maximum in (4.21) is attained for some v for which Pr,[p- Z <
p - 2] = a.'% Suppose no observed taints are greater than d and k < 1/d taints are strictly
positive. Then z = (n — k, k,0) and

M-

Prl-Z<pez) = S PiZ = (n—j.j,0)
gl pardl
- <j)73_37$- (4.23)

(en)

j:
Hence,

th = 1+max{(d—1)va—7 :70,7% >0, %0 +7 <1,

Y0,7d

k
and Z <n) YN = a}. (4.24)
j=0

The two-dimensional optimization problem (4.24) can be solved using an ascent method or by
searching. The R package “elec,” available through CRAN (http://cran.r-project.org),
implements the computation.

10To see this, note (i) that u -7 increases continuously and monotonically as mass is moved either from
Yo to v or from 4 to 41, and (ii) that Pry[pu - Z < p - 2] decreases monotonically and continuously as
mass is moved either from -y to 1 or from 4 to ;. Suppose the maximum in 4.21 were attained for some
d = (00,04,01) with Prs[p - Z < p- 2] > a. By assumption, ¢ # (0,0,1). Hence, either §o > 0 or d4 > 0.
Moving an infinitesimal amount mass from either of those components to d; increases p - d and decreases
Prs[p- Z < p- z]. Hence, ¢ cannot be optimal.
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Selecting n and d

No matter what values we select for n and d, the upper confidence bound for E will be
conservative. However, if we choose n very small or d very large, the audit will not be able
to provide strong evidence that ' < 1, even when the outcome of the election is correct. The
confidence bound EJ will be greater than 1, and the audit will progress—either to the next
stage or to a full hand count. On the other hand, setting n large entails a lot of auditing in
the first stage, perhaps more than necessary to confirm the outcome when the outcome is in
fact correct.

We select d and n iteratively, using simulation to estimate the power of the test against
a “realistic” alternative hypothesis under which there is error, but not enough error to alter
the outcome of the contest. In the alternative, the error is randomly distributed. Batches
are tainted with probability 7, independently. If batch p is tainted, it has an overstatement
of (up to) n votes, and the error is min{n/V,,, u,}. The amount of taint that the n votes
represents thus depends on the batch. For batches with small u,, an overstatement of 7
votes is a large taint, while for batches with large u, it is a small taint. Because the chance
of drawing batch p is smaller for batches with small w,, it is less likely that the sample will
include the larger taints.

We adjust d and n iteratively until the chance is approximately 1 — § that the 1 — «
trinomial confidence bound for F is less than one. The chance is estimated by simulation.
The confidence level is always at least 1 — a. Adjusting n and d only affects the power.

In the simulations to select d and n for the Marin and Santa Cruz County audits, which
were conducted at level a = 0.25, we used 7 = 0.05, n = 10 votes and 1 — 5 = 0.9. These
choices resulted in using d = 0.047, n = 19 for Santa Cruz and d = 0.038, n = 14 for Marin.

4.4 November 2008 Audits in Marin and Santa Cruz
Counties

In November 2008 we audited races in Marin and Santa Cruz counties, CA, using the tri-
nomial bound,' as follows: The elections officials provided us the semi-official results {uvy,}
and the number of ballots cast in each batch, which we took as {b,}. From {vg,} and {b,}
we calculated {u,} and U. We selected the number of draws n as described in section 4.3.

The elections officials rolled dice to generate 6-digit seeds which they sent to us.'? We
used the seeds in the R implementation of the Mersenne Twister algorithm to make n PPEB
draws to select batches for audit. The batches selected were counted by hand by members of
the staffs of the Santa Cruz County Clerk’s office and the Marin County Registrar of Voters
office. They reported the hand-count results to us. We calculated confidence bounds for
from the observed discrepancies and U using the trinomial bound. In both cases, the 75%
upper confidence bounds were less than 1, so no further counting was required.

1We audited a race in Yolo County, CA, using a different method.
12The Santa Cruz seed was 541,227; the Marin seed was 568,964.
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Section 4.4 describes the Santa Cruz County audit in some detail. Section 4.4 summarizes
the Marin County audit.

Santa Cruz County Supervisor, 1st District

There were 152 batches containing 0 to 855 ballots (median 66). The maximum potential
error per batch ranged from wu, = 0% to 49% of the margin: Some individual batches could
hide enough error to account for nearly half the margin. The distribution of the {u,} was
heavily skewed to the right. The total possible margin overstatement across all batches was
U = 13.46.

As described in section 4.3, we used d = 0.047 and n = 19 in this audit. Since the draws
are independent, they need not yield distinct batches. The expected number of distinct

batches in 19 PPEB draws is
u n
1— (1 _ —p> ) ~16.3 425

and the expected number of ballots in the sample is
Up\"
S b, (1 — ( — U> ) — 7.214. (4.26)
P

A simple random sample would have required a much larger audit to control the risk to
the same level.'® The 19 draws produced 16 distinct batches containing 7,105 ballots in all.
Even with PPEB, a high proportion of ballots needed to be audited, which is typical for
small races. The sample size needed to control the risk does not depend directly on the size
of the race. Wide variations in the error bounds {u,} also contribute to the need for a larger
sample. Table 4.2 gives the audit results.

While analyzing the data we learned that, although the audit data included provisional
ballots, the original totals on which we had based the audit did not.'* This increased the
number of ballots in several audited batches and changed the margins in some of them.
The audit also showed a difference of one in the number of ballots in some VBM batches.
We attribute that difference to ballots that needed special treatment. To ensure that the
audit remained statistically conservative, we treated every change to the reported margins—
including changes produced by provisional ballots—as error in the reported counts, i.e., as
error uncovered by the audit.'® The change in b,, the number of ballots in a batch, affects wu,,.

13For example, the method in [81, 80] would have required a simple random sample of n = 38 batches,
with the expectation of counting 13,017 ballots, on the order of twice the effort required by the trinomial
bound with PPEB sampling.

14 Apparently 806 provisional ballots had been cast in the race in all. Among the audited batches,
precinct 1005 had 37; 1007 had 30; 1019 had 32; 1060 had 11; and 1101 had 39.

15Tt would also have been conservative to treat all the provisional ballots as error, but we had no way
to separate the votes for the provisional and original ballots, so it was impossible to isolate the error in the
original counts.
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Leopold Danner
Batch ID b, u, | Reported Actual | Reported Actual | MOV t, Times
1002 VBM 573 0.28 251 252 227 227 -1 -0.002 1
1005 PCT 556 0.32 292 304 166 170 -8 -0.012 1
1005 VBM 436 0.23 208 208 150 150 0 0 1
1007 PCT 692 0.40 367 382 205 216 -4 -0.005 1
1007 VBM 630 0.33 311 311 240 240 0 0 1
1013 VBM 557 0.28 261 261 216 216 0 0 2
1017 VBM 399 0.21 191 191 139 139 0 0 1
1019 PCT 448 0.25 218 223 128 137 4 0.007 1
1019 VBM 378 0.20 186 186 128 128 0 0 1
1027 VBM 232 0.11 107 107 98 98 0 0 1
1028 VBM 365 0.15 136 137 174 174 -1 -0.003 1
1037 VBM 758 0.33 261 261 309 309 0 0 2
10563 VBM 18 0.01 10 10 4 4 0 0 1
1060 PCT 322 0.17 142 145 105 108 0 0 2
1073 VBM 20 0.01 11 11 3 4 1 0.036 1
1101 PCT 721 0.35 312 321 275 279 -5 -0.007 1

Table 4.2: Santa Cruz Audit Data. The major contestants in the contest for Supervisor,
1st District, were Leopold and Danner. Sixteen batches were sampled, three of them twice.
The number of ballots initially reported for the batch is b,. The upper bound on the taint
in batch p is u,. In each PPEB draw, the probability of selecting batch p is proportional to
u,. MOV is number of votes by which error increased the apparent margin for Danner. The
taint ¢, is the observed overstatement of the margin in the batch divided by the maximum
possible overstatement of the margin in the batch. “Times” is the number of times the batch
was selected in 19 PPEB draws. Two positive taints were found, both less than d = 0.047.

If w,, is still an upper bound on e, the audit remains valid. Since the bound u, is extremely
conservative (calculated by assuming that all the votes in batch p are actually for the loser)
and there are so few provisional ballots in all, it is implausible that e, > b, in any batch.
The largest observed taint, 0.036, was a 1-vote overstatement in a tiny precinct. The
largest absolute overstatement, 4 votes, was in a much larger precinct; that taint was only
0.007. “Error” was as large as 8 votes in some batches, an atypically high rate for voter-
marked optically scanned ballots. As far as we can tell, this discrepancy was due to miscom-
munication, not an error in the counts per se. This experience underscores the importance
of clear communication among the auditors and elections officials and their staff.
Apparently, the majority of the provisional ballots in the sample were for the winner,
so including them among the ballots in the audited batches only strengthened the evidence
that the outcome was right. Despite treating changes caused by including provisional ballots
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as errors, only two batches had margin overstatements, both less than d = 0.047. (If any of
the three batches that were drawn twice had positive taint, the taint of that batch would
count twice.)

The trinomial observation was thus z = (17,2,0). The calculation of the trinomial
confidence bound is illustrated in Figure 4.1. The upper confidence bound for E[T]; is
tdos = 0.072, which yields the upper confidence bound

Elys = Utlys = 13.46 x 0.072 = 0.97 < 1. (4.27)

This allowed us to reject the hypothesis that the outcome was wrong and stop the audit
without a full manual count.!®

Marin County Measure B

Table 4.1 summarizes the results of the race. In Marin, “decks” of VBM ballots are run
through the scanner as a group. Decks usually contain about 250 ballots, sometimes from
several precincts. To collect all the ballots for a single precinct could require sorting through
several decks of ballots. This is laborious and prone to error; for a race as large as Measure B,
the effort is prohibitive. For this reason, we used the decks as batches.

There was a complication. While the total number of ballots b, in each deck is known, the
number of votes for each candidate or position is not. (The vote tabulation software would
not generate such subtotals without extensive hand editing.) To calculate a rigorous upper
bound u, for decks, we made extremely conservative assumptions: v,, = b, but as = b,.
That is, to find an upper bound on the margin overstatement in batch p we assumed that
every ballot was reported as cast for the apparent winner, but that in reality every ballot
was cast for the reported loser. That leads to the bound u, = 2b,. While this is extremely
conservative, the resulting sample size was still manageable. The sample size n was larger
than it would have been had we known v,, and v, but that was balanced by the labor
saved in not having to generate vote totals for the decks manually.!” The bound would have
been effectively much more conservative if only a subset of the ballots in a deck included
Measure B, but Measure B was county-wide.

There were 544 batches in all—189 batches of ballots cast in precinct and 355 decks.
Using (small) decks as batches reduces the expected workload because the more batches
there are, the smaller the size of each. The number of draws required does not depend
directly on the number of batches in the population, so dividing the ballots into many small
batches usually leads to less counting than dividing the population into fewer large batches.

The total error bound was U = 9.78. The distribution of error bounds was roughly
bell-shaped, with a spike at 0.025 because many decks were about the same size (roughly

160n the basis of the trinomial bound, the P-value of the hypothesis that the outcome is wrong is 0.24.

7Tf the vote tabulation software had been able to report vy, and vy, for each deck, we would not have
had to use such a conservative bound. Data export from vote tabulation systems is a serious bottleneck for
election auditing.
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Figure 4.1: The optimization problem over trinomial category probabilities for the Santa
Cruz audit.

The heavy line is the set {7y : Pry[p- Z < pu- 2] = a = 0.25}. The parallel lines are the
contours of 100 x - y. The points to the right of the heavy line comprise the confidence
set. The heavy dot is the category probability vector with the largest value of -~ among
parameters in the confidence set. For this contest, U = 13.46, so the audit can stop if the
confidence set excludes 1/13.46 ~ 0.074, corresponding to a contour line at 7.4 in the units
of this figure.

250 ballots each). In this election no batch could hold error of more than 3% of the margin.
In contrast, in the Santa Cruz race some batches could hold errors of up to 48% of the
margin.

As described in section 4.3, we chose d = 0.038 and n = 14 draws, which were expected
to yield 13.8 distinct batches and 3,424 ballots. The expected number of batches is close to
the number of draws because the error bounds w, are reasonably uniform and no u, is very
large, in contrast to the bounds in Santa Cruz. With simple random sampling, the audit
would have required roughly 22 batches to control the risk to the same level (o = 0.25).
The expected number of ballots to audit would have been about 4,900, 44% more than with
PPEB and the trinomial bound.
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BatchID b, Yes No Up

D-31 91 50 33 0.009
D-43 108 59 40 0.011
D-104 40 16 16 0.004

D-191 217 137 57 0.022
D-255 246 156 67 0.025
D-286 258 144 88 0.026
D-301 245 129 88 0.025
D-339 248 134 80 0.025
IP-1002 316 151 110 0.018
IP-1017 362 186 133 0.021
IP-3013 277 125 102 0.015
IP-3014 498 256 152 0.030
IP-3017 318 154 111 0.018
IP-3020 123 64 39 0.007

Table 4.3: Marin Audit Results. Reported votes in the audit sample in Marin. Fourteen
batches were selected using PPEB from 355 decks of vote-by-mail ballots (the 8 batch IDs
beginning with “D”) and 189 batches of ballots cast in precincts (the 6 batch IDs beginning
with “IP”). b, is the total number of ballots in the batch. Yes and No are the votes for and
against the measure. wu, is the bound on error in that batch, given b, and the reported totals.
The audit found no errors.

Once the decks to audit were selected, subtotals for those decks were produced, in order
to have semi-official figures to audit. This involved replicating the data base and generating
a special report for each audited precinct by manually deleting every batch but one and
generating a report for the remaining batch, an arduous and error-prone procedure. Those
subtotals were then audited by hand-counting paper ballots. Table 4.3 lists the reported
votes in the 14 batches in the sample, which included 3347 ballots. Remarkably, the audit
found no errors. The vector of trinomial counts was thus z = (14,0, 0). The 75% confidence
bound for taint was tg,; = 0.094, and the 75% confidence bound for E was

Efys = 0.0943 x 9.78 = 0.922 < 1, (4.28)

so the audit stopped without a full hand count. The corresponding P-value was about 0.22.

Late problems in Marin County

We discovered in late July 2009, long after the end of the canvass period, that while Marin
County had not found any discrepancies in any audited batches, the totals they audited were
not identical to the totals on which we had based the audit calculations. In Marin County,
voters in precincts with fewer than 250 registered voters are required to vote by mail, and
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VBM ballots are reported as if they were IP ballots. For larger precincts, the IP results were
final by 7 November, but for precincts with fewer than 250 registered voters, the “nominal”
IP results were not final until 14 November: It takes longer for the VBM ballots to be
sorted and tallied.!® We based our audit calculations on the IP results in the 7 November
statement of vote, understanding—incorrectly—that those were final. They were final for
larger precincts, but not for VBM-only precincts. Marin County audited the 14 November
statement of vote. Again, this emphasizes the importance of clear communication between
auditors and elections officials, and shows the value of pilot studies.

n,d=38
0.15 0.20 0.25

0.10

0.05

0.00

0.75 0.80 0.85 0.90 0.95 1.00

L

Figure 4.2: The optimization problem over trinomial category probabilities for the Marin
audit. The heavy line is the set {y : Pry[pn- Z < p- 2] = a = 0.25}. The parallel lines are
contours of 100 X u - ~. The confidence set consists of the points to the right of the heavy
line. The point is the category probability vector in the confidence set with the largest value
of u-~. Because no errors were found, the maximum lies on the boundary. For this contest,
U = 9.78, so the audit can stop if the confidence set excludes 1/9.78 ~ 0.102, corresponding
to a contour line at 10.2 in the units of this figure.

18The VBM ballots for VBM-only precincts get special treatment: They are segregated from the other
VBM ballots and sorted by precinct.
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4.5 Comparison with the Stringer Bound

The Stringer bound [84] has long been used in financial auditing to find an upper confidence
bound on the overstatement of a group of accounts using a PPEB sample. It is generally—
though not always—quite conservative, more so than the multinomial bound [62]. If there

are M non-zero taints, t; > --- > t;, the Stringer bound is
M
to =3 (0)+ ) [7(0) —7i( — D], (4.29)
j=1

where 7} (k) is the exact 1 — o upper confidence bound for 7 from datum X ~ Bin(n,)
when the observed value of X is k.

Table 4.4 compares the 75% upper confidence bound for E based on the Stringer bound
and the trinomial bound for the Santa Cruz and Marin audit data. For the Santa Cruz data,
the Stringer bound is larger but still below 1, so it would have permitted the audit to stop.
When all the taints are non-positive, as they are for the Marin data, the Stringer bound
equals the trinomial bound. The Kaplan-Markov bound [83] can be sharper, especially if

there are negative taints.

County n positive taints Stringer Trinomial
Santa Cruz 19 0.036, 0.007 0.984 0.956
Marin 14 none 0.922 0.922

Table 4.4: 75% upper confidence bounds for E. The Stringer bound is larger than the
trinomial bound for the Santa Cruz race, but both are below one: The audit could stop if
either method were used. The trinomial and Stringer bounds are equal and less than one for
the Marin race.

4.6 Conclusion

We used a novel method to audit two November 2008 contests in California, one in Santa
Cruz County and one in Marin County. The audits were conducted in a way that guaranteed
at least a 75% chance of a full hand count if the outcome of the contest were wrong. Neither
audit resulted in a full hand count.

The method we used, the trinomial bound, constructs an upper confidence bound for the
total overstatement error E in the race. For the apparent outcome of the race to be wrong,
it is necessary that £ > 1. Hence, if the confidence bound for E' is less than 1, the audit can
stop. If the confidence bound is 1 or greater, there is a full manual count. This results in a
risk-limiting audit, i.e., an audit with a guaranteed minimum chance of a full manual count
whenever the apparent outcome is wrong.
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The trinomial bound relies on a sample drawn with probability proportional to a bound
on the overstatement error in each batch of ballots (PPEB sampling), a technique long used
in financial auditing, but new to election auditing [2]. There are other ways of using PPEB
samples to draw inferences about E [83, 82]. The trinomial bound constructs a confidence
set for the category probabilities for a trinomial variable from the taints observed in the
PPEB sample, then projects and scales that confidence set to find a confidence bound for
E.

The audit in Marin county posed unusual logistic challenges because ballots were not
sorted by precinct. We used batches defined by “decks” of ballots that were fed through
scanners as a group. The inability of the vote tabulation software to produce batch subtotals
made it necessary then to use extremely conservative bounds on the possible error in each
batch: twice the number of ballots.

Election audits face considerable logistic challenges. The time and effort of counting
votes by hand is one. The lack of good “data plumbing” is another. Current vote tabulation
systems do not seem to export data in formats that are convenient for audits, necessitating
hours of error-prone hand editing. Elections officials and legislators interested in promoting
post-election audits could help by demanding this functionality. Embracing standard data
formats would also help considerably.
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Chapter 5

Appendix A: Proofs and Examples for
Post-Stratification

Conditioning on D Maintains Assignment Symmetry

Assume the original randomization is Assignment Symmetric. The event D of 7,5 being
defined is a function of W, the vector of number of treated units in the strata:

K
k=1

Treatment assignment pattern 7} is independent of pattern T; given W, so since D is a
function of W, T, is independent of T; given W, D: conditioning on D maintains independence
of treatment assignment patterns.

Now let 2, be the space of possible values of W and consider two assignment patterns s
and ¢ in stratum k. We have

due to the unconditioned Assignment Symmetry. Then

1
P{Tk = S‘Wk = f, D} = Z E P{Tk = S‘W = w} 1{wk:Z}]—{f(w):1}P{W = w}
wEW

with Z = 3 1iw, = 1{fw)=1} P{W = w}. Therefore. conditioning on D maintains equiprob-
able treatment assignment patterns.
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5.1 Derivation of Theorem 2.2.1, the Variance
Formula

Under Assignment Symmetry the chance of any given unit being treated is Wy (1)/ny so
Wi (1
B[ Wi(1)] = L

Nk

for unit ¢ in stratum k. Then

(00 [N O TN D 58 B

: [sz(l)} SR [Wk(1)|Wk(1)} _E[”k] e
Rearrange f1x = E[W,(0)/Wi(1)] = ng E[1/Wi(1)] — 1 to get E[1/Wi(1)] = (L1 +1)/nx and
] 1; 1 1 | Butl
= |ivac) =2 [ =5, & ) -

These derivations are easier if we use ay, = E[1/W}(1)], but the 8’s are more interpretable
and lead to nicer final formula. To continue, Assignment Symmetry gives

E[TT|We(1) =w] = P{T,=1AT,=1W,(1) = w}

oGS 2wl —w)!
(") (w — 2)!(ng —w)! !

w(w —1)
nk(nk — 1)

w0 E{ T, } B [Wk(l)(Wl)—l)} 1 Butn-1

W) W) ne(ng — 1) ni(ng—1)

There are analogous formula for the control unit terms. Similarly,
TO-T7) ] Wem-Wa)] 11
S F Aol e R e R s e

We use these relationships to compute means and variances for the strata-level estimators.

Unbiasedness. The strata-level estimators are unbiased:

Eff] = E[Z %;’Dyxl) =S ;V;—(g;yxm

i:b;=k i:b;=k

- ¥ E[%(l)} yi() = > EB/;—(OT;} ¥i(0)

i:b;=k i:b;=k
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Variance. Var[7] = E[7?] — 72. E[7#] breaks down into three big terms:

Bl = B| Y )
(2 atio) (S i) [ i

J/ N J/

Simplify the three parts of the above. For part (a):

@ = E gfl) b+ TT)yza)yz(l)]
B 3 P A e
ﬁnj 4B + D S (1)
k i:b;=k k\TVk i#£j

Part (c) is similar. The cross-terms are:

() = 2E +2F

T; 1-T,
szk Wk(l)%(l) Wk(O)yi(O)

To1-T,
B 0+2;E[Wk(1> Wk(O)] v 1)(0)

= ﬁ > ui(1)yi(0)
i)

The first term vanishes since T;(1 — T;) = 0 always.
These are the three parts of the expectation of the square. We have related components
in 72 when you expand the square:

2 = (Z nikyi(l)> —2 (Z nikyi(l)> <Z nikyi(())) + (Z nikyi(())) -

T; 1-T7;
2w Vi

g

(a”) ) (e
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The variance is Var[7] = (a)—(a’) = (b)+ (V') +(c) — (¢), a sum of several ugly differences.
Expanding (a’) and plugging in gives the first difference:

(@)~ () = D Zﬁun‘ﬁlﬁnk_lzyz 1)y (1

ko b=k (nx —1) i2j
1
_F i __Zyz yz
kiib=k ki
51k +1 1) 9 ( Bik +np — 1 1)
(5 —5) S+ (St ) Do
Bk | 1 9
= — | “(1 i 4
ol o ';kyz( ) — nk_l ;y )y
1:b;= 17]
ﬁlk 2
= — 1).
o)

(¢) — () is similar. The cross terms are:

O =) = o S wn0) — Zyia)yi(m—% 5:(1)3:(0)

1#£j 1:b,‘:k k 1#£j

Sum the above to get Equation 2.5.

Theorem 2.2.2 The mean is immediate. For the variance, observe:

Var[7,,] = E Z % (7x — Tk)2]
=3 () Bl - w)) + X Bl ) (e - 7).
k=1 k#r

The first sum is what we want. The second is 0 since, using the tower property and Assign-
ment Symmetry

EE[(Tx — ) (7 — 7)) |[W]] = E[E[(7% — ) W] E[(7;, — ) [W]] = E[0- 0] = 0.
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Theorem 2.4.1. Calculate the MSE of 7,; conditioned on the split W with a slight mod-
ification to the above derivation. Define a new estimator that is a weighted difference in

means: T
i:b;=k

with Ay, By constant. ¢ is an unbiased estimator of the difference in means weighted by
A and By:

=B Y () = B Y ()| = A1) = Bu(0)

Now follow the derivation of the variance of 7, propagating A, and By through. These are
constant and they come out, giving

. 1

Expand 7,4 into strata terms:

K

R W W )
T Z W Z Wm W Z WOk (0 :;&

i:bj=k i:b;=k

with Ay = Wix/W; and B, = Wy, /Wy. Conditioning on W makes the Ay and the By
constants, B1 = Wor/ Wik, and Bor, = Wi /Wok. Assignment symmetry ensures that, condi-
tional on W, the stratum assignment patterns are independent, so the &; are as well, and
the variances then add:

K
Var[#,a[W] =Y Var[a,|W].

k=1
The bias is E[7sq|W] — 7 with
K
Elfa|W] =Y Ela|W] = Z Axg(1) = Bigie(0).
k=1

Expand 7 as in Equation 2.2 and rearrange terms.

Extending to PATE. First, decompose the variance:
Var([7,s| D] = Es [Var|[7,s|S, D] |D] 4+ Varg [E[7,s|S, D] | D]

The first term is simply the expectation of Equation 2.6, the SATE variance formula. Since
S is random, so are the oi(f), etc. The expectation of these quantities over S gives the
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population parameters as they are unbiased estimators. The (’s are all constant, and D is

independent of S. Therefore EJX|D] = EJX] and:

B VarlfyalS, D) D] = B |37 [B1602(1) + o} (0) + 2(1,0)] D

k

= %Z % [Biror(1)* + Bokor(0)* + 295(1,0)*] . (5.1)

k

The second term is

Var[E|[7,|S, D]] = Var[7]

_ fj”’“]

k=1
2

n
n—’; Var ykl yko

k=1

K
”—%Zi )"+ 2(0)* — 27(1,0)] . (5.2)
n? g

k=1

Sum Equation 5.1 and Equation 5.2 to get the PATE-level MSE.

5.2 Proofs of the Bounds on Variance Differences

B can be approximated by E[W (1 — £)] / E[W(£)]. For example, in the complete random-
ization case (1, ~ (1 — p)/p. Generally, the 5’s are larger than their approximations. They
can be less, but only by a small amount. For complete randomization and Bernoulli assign-
ment, the difference between the ’s and their approximations is bounded by the following
theorem:

Theorem 5.2.1. Take an experiment with n units randomized under either complete ran-
domization or Bernoulli assignment. Let p be the expected proportion of units treated. Let
D be the event that T, is defined. Let ppar = max(p,1 — p) andn, be the smallest strata
size. Then By, — (1 — p)/p is bounded above:

1-— 4 1 1 1 4 P2 .
Blk - —p - — - + max |:(n]C > 677”]67 O:| + anK (pmaw)nmm

p PP pnp+1 2 pPng
4 1
P ny, ( )
Furthermore, it is tightly bounded below:

1-— 2 , g
Blk - Tp > _5<1 - ) b= 2nkK<pmam)nmm = _O(nke mm).
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Similar results apply for the By, and Sy.

Proof. Start without conditioning on D. Wy, = > T; with 7; € {0,1}. For Bernoulli
assignment, the T; are i.i.d Bernoulli variables with probability p of being 1. For completely
randomized experiments, the Wy, are distributed according to a hypergeometric distribution,
i.e., as the number of white balls drawn in n, draws without replacement from an urn of n
balls with np white balls. Regardless, E[W7] = ngp.

Define Y,, = (ny/Wix) X 1w, >0y Due to the indicator function, Y, < nj. Given D,
the event that all strata-level estimators are well-defined, Y,,, = ny/Wi so

1-— W, 1— 1 1
o= 2 k| pp| - 2 | e ip| - L iyl
p Wik D Wik D P

We first show the probability of =D is very small, which will allow for approximating the
expectation of the conditioned Y,,, with the unconditioned. If n,,;, is the size of the smallest
strata, then

K
P-D < > P{Wy =0or Wy, =0}
k=1

IN
[\
=
=
=
=
'-U
—~—
=
I
@)
——

< 2K (paaz)™™™ -
Expand the expected value of Y as
E[Y,,] = E[Y,,|D]PD + E[Y,,, |-D] P-D.
Use this and the bound Y,,, < n; to get
E[Y,.|D] —E[Y,.]| = |E[Y,.|D]-E[Y,, |DPD -E]Y,, |-D] PﬁD‘
— |E[Y,,|D](1 — PD) — E[Y,,|-D] PﬁD’

= |E[Y,,|D] — E[Y,,|-D]|P-D
< nP-D =2nK (pmaz)" ™" (5.3)

This shows that E[Y,, |D] is quite close to E[Y,, ], i.e.
1 . 1—p 1 -
E[Y,,] — i 2nK (Pmaz)" ™" < 1 — — <E[Y,,] - p +2nK (Pmaz) ™ .

Now we need the following lemma to get a handle on E[Y,,, |:
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Lemma 5.2.2. Let W be a Binomial (n,p) random variable or a hypergeometric (n,w, N)
random variable, i.e., a sample of size n from coin flips with probability of heads p or an urn
with N = nc balls, ¢ > 1, of which w = ncp are white. Then for' Y = (n/W)1liwso:

2 1 41 1 1 4 2
——(1=p)"<E}Y]--<———- Fmax | (2 — exp 2, ,0[ .
P p_p*n pn+1 2 p°n 2

See below for proof. Use Lemma 5.2.2 on E[Y,,,]. This gives our stated bounds.

Proof of 5.2.2

Proof. First we derive the lower bound on the expectations. For ease of notation, define
E[X; A] as the expectation of X1¢4y. For both Bernoulli assighment or complete random-
ization,

np = E[W] = E[W; W > 0] = E[W|W > 0] P{W > 0}.
Also, P{W =0} < (1 — p)". For a random variable X > 0, E[1/X] > 1/ E[X]. Therefore

E[ﬁ;w > o} :E[%M/ > o] P{IW > 0}

n 2
> " p
Z Eww s o >0
11 ,
o (PW 0P -1
p p({ } )
12
>-_Z(1—p)y
= p( p)

For the upper bound, expand E[n/W; W > 0] into two terms and analyze each term. Namely,
we will show that E[n/W;W > 0] = I + D with

[ n 1 1 1
[=E|- " w>o0|<-— =
W+ 1 “p n+lp
and
[n n n
D=E|— — W >0|=E W >0
WoW1 } [W(WH)’ }

R 1\’ no1 1\’ )
< min < — +max || = — — exp(—2nca; ), 0
0<an<p | N \ P — Qy, 2 n\p—a,

Instead of minimizing the bound across the possible values of «,,, we can simply fix «,, = p/2
to obtain a looser, but more intelligible, bound:

41 n 4 p?
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We show D first. Let a,, be in (0, p). Then:

D=

&=

o W iRl g
W(W+1)’p n n W(W+1) {W>0}7p
1 n \2 w n w

il ) p—= - = — > )
nERW) P s n} * 2P{p n _an}

The n/2 is because W > 0 implies W > 1.

[36] famously bounded the tail probabilities of sums of independent random variables,
allowing us to control the probability of W/n being far from p. He also, in section 6 of the
same work, generalized his bound to the hypergeometric. We use both of these results:

IA

P{p v > an} < exp(—2na?).
n

Because 0 < p — v, < W/n we have

() o) et

(p_}an>2+ﬂnax{<g-—;EG;:%£55>exp(—2n&i%O}.

The max(-,+) comes from the choice of «,, possibly making n/2 — 1/n(p — a,,)? < 0 which
would invert the Hoeffding bound. We instead conservatively set this quantity to 0.

To evaluate I, consider the Binomial case first. Express the expectations as a sum and
re-index the sum and add in the first two terms to get the sum of the distribution of a
(n+ 1,p) binomial variable:

D <

Sl 3=

<

n

n n! e
T (1 —p)"*

- = kA1 (n k)

r=|

n 1

n—l—lz_?

1 11 n 1
== - ~(np+ 1)(1 —p)™.
PR n+1p(p )(1=p)

This is exact for the Binomial case. To extend to complete randomization, we use a fur-
ther result from Hoeffding. Hoeffding showed that, for a continuous, convex function f(x),
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Egrs [f(W)] < Epi [f(W)]. Let f(x) be n/(x + 1). f(z) is continuous, convex for z > 0.
Furthermore for Binomial W

lﬁwﬁjwv>ﬂ+na—M”:MﬂWﬂ

asn/(W+1)= f(W) for all W. So

n n
Esrs—;W>O§Esrs W) < Eyp, W :E'Ln—7W>O L—p)"
[t W 0] < Euy [F0)] < Bag [1(00)] = B[22 W > 0] + (1 )
Thus we gain an extra (small) n(1 — p)” term to bound I, but this term is more than offset
by the negative term n/(n+ 1) x (np+1)/p x (1 — p)™ and so we drop both.
To get the overall bound, sum the bounds for I and D. O

Remarks: As a side note, [77] improves Hoeffding’s bound for sampling without replace-
ment, implying that the rate of the s convergence is faster under complete randomization
than for Bernoulli.

10%
1

100% X |Y -1/pl/(1/p)
1%
1

0.1%
Il

0.01%

Figure 5.1: log-log plot comparing actual percent difference 100% x (E[Y]| —1/p)/(1/p), Y
as defined in Lemma 5.2.2 to the given bound. Three probabilities of assignment shown:
p = 0.1,0.5, and 0.9. Actual differences computed with Monte Carlo. Y generated with
Bernoulli distribution.
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Remark on Lemma 5.2.2. Numerical calculation shows the constants of the 1/n term
are overly large, but the rate of 1/n appears to be correct. Figure 5.1 show a log-log plot
of the actual percent increase of Y’s over 1/p for several values of p and n along with the
calculated bounds. When the exponential term becomes negligible, the bound appears to be
about 4, 7, and 31 times bigger for p = 0.1,0.5, and 0.9 respectively, i.e., the constants on
the 1/n term are overstated by this much. For low p, the exponential terms can remain for
quite some time in the bound and there is significant bias in actuality due to high chance of
0 units assigned to treatment. The log-log slope is —1 suggesting the 1/n relationship.

Proof of Theorem 2.2.4. Assume the conditions stated for Theorem 2.2.4 and consider
Equation 2.9. Replace all os and ~s with o2 —and ~2 . Replace all B, with 3y, the largest

such 8 for some stratum k. Same for ;. Collapse the sums to get

K I K—1
scaled cost < (ﬁo _n Bg> o2 .+ (51 _Z 1 ﬁ1> o2+ 2—1%nax.
n— n

n—1 _
Then,
P . n—K
Bo — Bo §‘50—50‘+ Bo — Bo
n—1 n—1
4 1 K-—1 p 1
- O(—
_(1—p)2fn+n—11—p+ <n2>

Because the lower bound is so tight, we don’t need to double the bound from Theorem 5.2.1
for bounding the difference ’B — 50’. Because the (; expression will be smaller at the end,

we can simply double the [y expression. This gives the bound.

Proof of Theorem 2.3.1. This is handled the same way as for Theorem 2.2.4, but is more
direct.

5.3 Toy Examples of Gain and Loss

In this section we provide a few small examples to demonstrate the potential for gain or loss
due to post-stratification. Each of the following scenarios specify a particular collection of
potential outcomes, and Table 5.1 shows the resulting variances of the unadjusted estimator
and post-stratified estimator (both conditioned on D). In all cases we assume complete
randomization with 100p% units treated, with p as stated on the table. Table 5.1 also shows
the variance if the randomization were done via blocking.

We plug the parameters defined by the stated population into the variance formulas
presented in Chapter 2. We numerically compute the s by conducting the described ran-
domization 50,000 times and computing the mean fs for those randomizations where all
strata estimators were defined (i.e., we condition on D). The results on Table 5.1 are exact
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up to the uncertainty in computing the fs. Bernoulli randomization gives near-identical
results (since the f’s are near identical). Directly estimating variance with a monte-carlo
of point estimates also gives identical results up to sampling error, further validating the
formula as correct.

variances % gain/loss

n K p PD T | Tps Tsa blk | blkips swips sw:blk

LA 40 4 050 99.9% 1.00|1.01 1.36 0.92 % 26% 33%
ILB 40 4 050 99.9% 1.00|1.01 0.85 0.92| -11% -20% -8%
I.C 40 4 030 93.7% 1.00|1.28 1.62 1.09 | -12% 21% 33%
ILD 40 4 050 99.9% 1.00 | 1.01 2.24 0.92 4%  55% 59%
ILE 40 4 050 99.9% 1.00|1.01 091 092 -10% -11% -1%
ILA 100 4 050 99.9% 1.911]0.39 0.63 0.37 3% 39% 42%
ILB 100 4 0.30 97.2% 1.91|0.52 0.80 0.47 5% 35% 41%
IITLA 200 2 0.50 100% 094|024 0.30 0.24 0% 21% 21%
III.LB 200 5 0.50 100% 0.94 | 0.21 0.30 0.21 2%  28% 30%
III.C 200 10 0.50 100% 0.94 | 0.22 0.30 0.21 4%  25% 29%
IILD 200 20 0.50 97% 0941024 030 021] -10% 20% 30%
IILE 200 25 0.50 84.4% 094025 030 0.21| -13% 18% 30%
IV.A 200 2 050 100% 0.94 | 0.30 0.30 0.30 -1% 0% 0%
IVB 200 5 0.50 100% 0.94 | 0.31 0.30 0.30 2% 2% 0%
IV.C 200 10 0.50 100% 0.94 | 0.32 0.30 0.30 5% -T% -2%
IV.D 200 20 0.50 97% 0941035 030 0.31] -14% -17% -3%
IV.E 200 25 050 84.4% 0.94]0.37 030 0.31| -19% -23% -4%
V.A 100 4 0.50 99.9% 1.80|0.32 0.55 0.30 4%  42% 45%
V.B 200 4 0.50 100% 1.80 | 0.15 0.28 0.15 2% 45% 47%
V.C 400 4 0.50 100% 1.80 | 0.07 0.14 0.07 1% 4% 47%
V.D 800 4 0.50 100% 1.80 | 0.04 0.07 0.04 0% 4% 48%

Table 5.1: Variances of Estimators for Several Scenarios. K is the number of strata. PD
is the probability of 7,s; being defined, estimated by simulation. 7 is actual SATE. The
percentages are calculated as 100% x A /Var[7y4] with A being the specified difference between
variances.

The families of scenarios are as follows:

I) We first consider a simple experiment with four strata, A, B, C, and D, with 10 units
each.

A) In the first scenario, the units in strata B, C' and D are replicates of A shifted up by
+2, +4, and +6, respectively. There is a constant treatment effect of +1. There is
substantial between-strata variation, and therefore post-stratification is beneficial.
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1)

The left plot in Figure 5.2 displays the relationship between potential outcomes and
strata. This is the idealized constant-treatment effect situation where stratification
separates units of different types.

As Scenario I.A, but now the units in B, C', and D are simple replicates of A’s units
not shifted. There is no difference between strata and so we see the full price paid
by spurious post-stratification. It is easy in this small experiment for a random
imbalance to occur. An imbalance overweights some of the units, making it easier
to reach extreme values for estimated treatment effect. This results in a larger
variance. In this scenario blocking is also a poor choice, incurring a small cost.

As Scenario I.A, but with probability of treatment p = 0.3. The small propor-
tion treated makes it easier to have very few units estimating the average treat-
ment effect in a stratum (or overall). All estimators’ variances increase, but post-
stratification still comes out ahead of simple difference.

Now we have differing treatment effects of —3,0,+2, and +5 for the four strata.
We no longer have an overall constant treatment effect: different strata respond to
treatment differently. Here the between-strata correlation of potential outcomes is
near 1.00. This makes post-stratification work very well.

A reverse of Scenario 1.D, we now have differing treatment effects of +5,+2,0, —3
for the four strata. The trend of the group means is opposite to the trend of
outcomes within groups, which causes problems. The between-strata correlation
of potential outcomes is —0.95. See right plot on Figure 5.2. The between-strata
term is small due to this negative correlation. Negative correlations are good for
randomization because it means that if a randomly high unit is put into treatment,
a randomly high unit will probably be put into control as well to compensate. Post-
stratification does not take advantage of this, and thus does more poorly than the
unadjusted estimator, which does. Blocking also does not fair well in this case for
the same reasons.

In all the above, which are for a small-sized experiment, post-stratification is somewhat
close to blocking.

A slightly more complex experiment with unequal strata sizes. A has 60 units, B has
15, C has 15 and D has 10. We drew the y(0) for A from a N(5,5) population, B from
a N(3,10), C from a N(7,15) and D from a N(3,15), where N(ju, c?) denotes a normal
distribution with mean g and variance o?. The treatment effects for all units, drawn
from a unif(—1,5) distribution, were added to the control outcomes. The presented
results are the variances of the estimators under different randomizations of a single
sample drawn from this described population.

A)

Equal treatment proportions of p = 0.5. Post-stratification helps. It is also close
to blocking.
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Figure 5.2: From left to right, the potential outcomes for scenarios I.A, .D, and [.E. Strata
membership on the plots are denoted A through D. “X” denotes strata means.

11)

IV)

Discussion.

B) p = 0.3. The efficacy declines slightly due to the increased chance of imbalance.
Blocking does not suffer as much.

A set of experiments with a continuous covariate z evenly spaced on the interval [0, 100]
which we then partition into K strata of equal sizes. We vary K to see the impact of
finer stratification. The control outcome for unit ¢ is distributed as y;(0) ~ N(y/z;,9)
and the treatment outcome as y;(1) ~ N(y;(0) + 1,1). About 5 strata seems ideal
although even two strata is far better than doing nothing. Too many strata and we see
less benefit, plus a large increase in the chance of an undefined estimator.

As III, but now z is useless. We generate this set by permuting the observed z from
III, breaking any connection between the covariate and the outcomes. 7,4 is completely
unaffected. As the number of strata increase, things worsen for post-stratification due
to the increased chance of an accidental imbalance giving a single unit a great deal of
weight. Blocking also suffers, but not by nearly as much.

In this set of experiments, the set-up being the same as for Experiment II, we first
generated an initial set of data, and then replicated the units within the strata to
increase n. The number of strata is thus held constant and the treatment effect,
covariances and variances for subsequent experiments remain essentially unchanged.
As n grows, the percentage increase in variance of 7, over blocking converges to 0 at
rate 1/n, and thus the percentage gain over 7y, converges to a fixed relative improvement
in precision over the unadjusted estimate.

Generally speaking, post-stratification is similar to blocking in terms of effi-

ciency. The more strata, however, the worse this comparison becomes due to the increased
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chance of severe imbalance with consequential increase high uncertainty in the stratum-level
estimates. Post-stratification’s overall efficacy depends on how much larger the between-
stratum variation is compared to the penalty paid by giving some observations greater weight
due to random assignment imbalance. Having many strata is generally not helpful and can
be harmful if b is not prognostic. A moderate number of strata seems to offer protection
from this: compare K = 5 for scenarios III and IV.

Examining Conditional Variance

To illustrate how the variance of the estimators conditioned on the split W varies, we re-
peatedly conduct a randomization for a specific sample and calculate the conditional MSE
for both estimators given the generated split as shown in the latter half of Section 7 of Chap-
ter 2. These simulations demonstrate that if b is indeed prognostic, then the MSE of 7, is far
lower than that of 7,4, and this difference increases with degree of imbalance. However, if b
is not prognostic, then the reverse trend is evident. The post-stratified estimator does worse
in the very circumstance when people might use it: to adjust for a seen imbalance in the
randomization. It is not necessarily beneficial to adjust—the variable used for adjustment
must be selected with care.

The left side of Figure 5.3 shows 5000 such calculations for Scenario III.B, presented
above. With low imbalance, the variance of 7,; is even smaller than the unconditional
formula would suggest. But as imbalance deteriorates, the variance of 7, increases.

Compared to 7,, the simple-difference estimator 754 is vulnerable to poor splits. Gener-
ally, high imbalance means high conditional MSE. This is due to the bias term which can
get exceedingly large if there is imbalance between different heterogeneous strata. We see a
similar trend to the analogous PAC-Man example.

If b is not prognostic, however, the story changes. The experimental units in Scenario
IV.B, shown on right of Figure 5.3, are the same as for Scenario II1.B, but the elements of
the covariate vector b have been shuffled to break b’s prognostic ability. Because the units
are the same, the unconditional variance of 7,; is the same as well. Because b is no longer
prognostic, post-stratification does not help, as illustrated by the elevated unconditional and
conditional trend lines. The post-stratified estimator still worsens with greater imbalance as
it did before because the cost of imbalance comes from the number of observations in the
treatment and control groups, something unrelated to b. The simple-difference estimator,
however, often can even improve with large imbalance. This is due to imbalance ensuring
a greater comparability of treatment and control units—if it were known that b was not
connected to the potential outcomes then it would actually be most ideal to treat all of some
strata and none of the others.

In other scenarios (not shown) these trends are repeated. Furthermore, when there are
few strata, the imbalance tends to be low (e.g., Scenarios I and II, or III with small K)
with a heavily right skewed distribution of conditional variance—most of the time there
is a good balance and low conditional variance, but there is a low chance of a bad split
and a high conditional variance. In such circumstances, there is very a good chance that
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the conditional variance of a post-stratified experiment is even closer to its corresponding
blocked experiment than one would initially expect from Equation 12 in the main document.
Also in such circumstances the pattern of the MSE of 7,4 worsening for prognostic b and
improving for unrelated b as imbalance increases is even more apparent.
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Figure 5.3: Conditional Variance of Scenario III1.D (left) and Scenario IV.D (right). Points
indicate the conditional MSE of 7,5 and 7,4 given various specific splits of W. zx-axis is
the imbalance score for the split. Curved dashed lines interpolate point clouds. Horizontal
dashed lines mark unconditional variances for the two estimators. The curves at bottom are
the densities of the imbalance statistic.
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Chapter 6

Appendix B: Further Details on Text
Summarization

6.1 Supplementary Tables

Table 6.1 shows the countries used in the human validation experiment along with the
number of positive examples found for each under different labeling schemes. Table 6.2
gives an example of lists generated with and without stop-word removal, demonstrating how
regularization achieves the impact of stop-word removal and also removes “second-order”
stop words as well, giving better results in general.

6.2 The Impact of Selecting Distinct Phrases

Final summaries consist of a target of k distinct key-phrases. The feature-selectors are
adjusted to provide enough phrases such that once sub-phrases (e.g., “united” in “united
states”) are removed, the list is k£ phrases long. This removal step, similar to stop-word
removal, is somewhat ad hoc. It would be preferable to have methods that naturally select
distinct phrases that do not substantially overlap. Sparse methods have some protection
against selecting highly correlated features, and thus they might not need this cleaning step
as sub-phrases tend to be highly correlated with parent phrases, with correlations often
exceeding 0.8. To investigate this, we examined the average value of k' — k, the difference
of the length of the summary without sub-phrases removed to the length with this removal.
Results are shown in Table 6.3. The sparse methods indeed do not need to take advantage
of this step, supporting the heuristic knowledge that L!-penalization tends to avoid selecting
correlated features. Under tf-idf, only a little over 1 phrase, on average, is dropped. The
independent feature selection methods, however, drop many phrases on average.

For Correlation Screening, this difference is because sub-phrases are often extremely
highly correlated with parent phrases—if a given phrase is highly correlated with the out-
come, then any sub-phrase or parent phrase is likely to also be highly correlated. This
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article-1 article-2  article-3 ‘paragraph—l paragraph-2

subject # % # % # % # % # %

china 1436 15% 970 10% 800 8% | 6455 5% 2026 1.6%
iran 1387 15% 906 9% 715 7% | 4875 4% 1621 1.2%
iraq 1139 12% 710 7% 562 6% | 4806 4% 1184 0.9%
afghanistan 1133 12% 729 8% 592 6% | 4774 4% 659 0.5%
israel 1126 12% 591 6% 388 4% | 4478 3% 1537  1.2%
pakistan 989 10% 650 7% 555 6% | 4454 3% 1384 1.1%
russia 981 10% 699 7% 590 6% | 4288 3% 1168  0.9%
france 867 9% 419 4% 291 3% | 2815 2% 586  0.4%
india 848 9% 613 6% 537 6% | 2368 2% 559  0.4%
germany 788 8% 387 4% 284 3% | 2333 2% 459 0.4%
japan 566 6% 273 3% 195 2% | 1780 1% 406 0.3%
mexico 413 4% 238 2% 189 2% | 1475 1% 392 0.3%
south korea 382 4% 208 2% 136 1% | 1254 1% 251 0.2%
egypt 361 4% 231 2% 194 2% | 1070 1% 230 0.2%
turkey 281 3% 125 1% 9% 1% | 797 1% 197 0.2%

Table 6.1: Our Experiment’s Subjects With Sizes of Positive Example Sets. “#” denotes
number and “%” denotes portion of units positively marked. A greater proportion of units
are marked positive in the article-unit analysis. Generally, only a small portion of articles
are considered topical for a given subject.

problem is especially common with the names of political leaders, e.g., Prime Minister Wen
Jiabao in the second column of Table 3.2. Correlation Screening is virtually unusable without
dropping sub-phrases and expanding the list to the desired length.

The amount of sub-phrase reduction in Co-occurrence-derived summaries strongly de-
pends on the reweighting method used. Under stop-word removal there is little reduction
since many of the selected phrases are combinations of non-overlapping stop-words, such as
“of the,” or “to the,” where the individual component stop-words have been removed prior
to summarization. Under L*-rescaling, the typically common stop-word combinations no
longer score highly, and problems similar to those seen in the Correlation Screening results
arise: groups of parent- and sub-phrases score similarly, requiring sub-phrase pruning to
improve list quality.
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stop-word stop word no rescaling
only and rescaling adjustment  only
1 afghanistan asian afghanistan  asian
2 beijing beijing and beijing
3 companies contributed research beijing contributed research
4 countries euna lee countries euna lee
5 economic global global global
6 global hong kong has hong kong
7 hong jintao his jintao
8 military north korea its north korea
9 mr shanghai mr shanghai
10 north staterun north staterun
11 percent uighurs of uighurs
12 the united states wen jiabao the united wen jiabao
13 uighurs xinhua to xinhua
14 world united states
15 year was

Table 6.2: Comparative Effects of Reweighting Methods. Four summaries of “China” from
all combinations of L2-rescaling and stop-word removal. The phrase-selection method used
is LILR with count-2 labeling on full articles.

Feat. Sel. Method

Reweighting Method

stop-word L?-rescaling tf-idf rescaling

Co-occurrence 2.7
Correlation 12.9
L1LR 0.5

Lasso 0.6

12.8
12.9
3.9
3.7

7.3
12.7
1.2
1.2

Table 6.3: Phrase Reduction for the Four Feature Selectors. Fach entry shows the mean
number of sub-phrases dropped, on average, for all varieties of summarizer with specified
rescaling and feature-selection method for a target summary length of k& = 15 phrases. For
example, under tf-idf we need to generate a full list of 16.2 phrases with L1LR, on average,
to achieve a final list length of 15 phrases. The sparse methods do not need much pruning.
Correlation Screening selects highly related sub-phrases and therefore requires much pruning.
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