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Abstract

Joint modeling of spatially-oriented dependent variables are commonplace in the environmental
sciences, where scientists seek to estimate the relationships among a set of environmental outcomes
accounting for dependence among these outcomes and the spatial dependence for each outcome. Such
modeling is now sought for very large data sets where the variables have been measured at a very large
number of locations. Bayesian inference, while attractive for accommodating uncertainties through their
hierarchical structures, can become computationally onerous for modeling massive spatial data sets because
of their reliance on iterative estimation algorithms. This manuscript develops a conjugate Bayesian
framework for analyzing multivariate spatial data using analytically tractable posterior distributions that
do not require iterative algorithms. We discuss differences between modeling the multivariate response
itself as a spatial process and that of modeling a latent process. We illustrate the computational and
inferential benefits of these models using simulation studies and real data analyses for a Vege Indices
dataset with observed locations numbering in the millions.

Key words: Conjugate Bayesian multivariate regression; Multivariate spatial processes; Matrix-
variate normal and inverse-Wishart distributions; Nearest-Neighbor Gaussian processes.
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I. INTRODUCTION

Analysis for environmental data sets often require joint modeling of multiple spatially dependent
variables accounting for dependence among the variables and the spatial association for each
variable. For point-referenced variables, multivariate Gaussian processes (GPs) serve as versatile
tools for joint modeling of spatial variables (see, e.g.,|Schabenberger and Gotway, [2004; Cressie
and Wikle, 2015} Banerjee et al., [2014, and references therein). However, for a dataset with n
observed locations, fitting a GP based spatial model typically requires floating point operations
(flops) and memory requirements of the order ~ 13 and ~ n?, respectively. This is challenging
when 7 is large. This “Big Data” problem has received much attention in the literature and a
comprehensive review is beyond the scope of this article; see, e.g., [Banerjee| (2017); Heaton et al.
(2019); |Sun et al| (2011) for a review and comparison of scalable modeling methods. Much of
the aforementioned literature for scalable models focused on univariate spatial processes, i.e.,
assuming only one response for each location.

Multivariate processes (see, e.g., |Genton and Kleiber| 2015; [Salvafia and Genton), 2020; [Le and
Zidek 2006, and references therein), has received relatively limited developments in the context
of massive data. Bayesian models are attractive for inference on multivariate spatial processes
because they can accommodate uncertainties in the process parameters more flexibly through
their hierarchical structure. Multivariate spatial interpolation using conjugate Bayesian modeling
can be found in |Brown et al.|(1994); Le et al.| (1997); Sun et al.| (1998)); Le et al.|(2001); |Gamerman
and Moreira| (2004), but these methods do not address the challenges encountered in massive
data sets. More flexible methods for joint modeling, including spatial factor models, have been
investigated in Bayesian contexts (see, e.g. [Schmidt and Gelfand) 2003} Ren and Banerjee) 2013;
Taylor-Rodriguez et al.| [2019), but these methods have focused upon delivering full Bayesian
inference through iterative algorithms such as Markov chain Monte Carlo (MCMC).

Our current contribution is an augmented Bayesian multivariate linear model framework that
accommodates conjugate distribution theory, similar to|Gamerman and Moreira| (2004), but that
can scale up to massive data sets with locations numbering in the millions. More specifically, we
embed the Nearest-Neighbor Gaussian process (NNGP) (Datta et al 2016a)) within our conjugate
Bayesian framework. We will consider two classes of models. The first is obtained by modeling the
spatially dependent variables jointly as a multivariate spatial process, while the second models a
latent multivariate spatial process in a hierarchical setup. We refer to the former as the “response”
model and the latter as the “latent” model and we explore some properties of these models.

The remainder of our paper is arranged as follows. Section [[I| develops a conjugate Bayesian
multivariate spatial regression framework using Matrix-Normal and Inverse-Wishart prior dis-
tributions. We first develop two classes of models, response models and latent models using
Gaussian spatial processes, in Section [l Subsequently, in Section [lj we develop scalable versions
of these models using the Nearest Neighbor Gaussian process (NNGP). We develop NNGP re-
sponse models and NNGP latent models in this conjugate Bayesian framework. A cross-validation
algorithm to fix certain hyperparameters in these models is presented in Section [ll]jand some the-
oretical attributes of these models are presented in Section [[V} Section [[II| present some simulation
experiments, while Section analyzes a massive Normalized Difference Vegetation Index data
with a few million locations. Finally, Section [V]concludes the manuscript with some discussion.



II. BAYESIAN MULTIVARIATE GEOSTATISTICAL MODELING

I. Conjugate Multivariate Spatial Models

Conjugate Multivariate Response Model Let y(s) = (y1(s),...,y4(s)) " € R7 be a g x 1 vector
of outcomes at location s € P C R? and x(s) = (x1(s),...,x,(s)) | € R” be a corresponding
p x 1 vector of explanatory variables. Conditional on these explanatory variables, the response is
assumed to follow a multivariate Gaussian process,

y(s) ~GP(B"x(s),C(-,-));  C(s,8") = lpy(s,s) + (a™! = 1)ds—g]Z, ©)

where the mean of y(s) is B x(s), B is a p x q matrix of regression coefficients and C(s,s’) =
{cov{yi(s),y;(s’)}} is a q x q cross-covariance matrix (Genton and Kleiber, 2015) whose (i, j)-th
element is the covariance between y;(s) and y;(s’). The cross-covariance matrix is defined for each
pair of locations and is further specified as a multiple of a nonspatial positive definite matrix X.
The multiplication factor is a function of the two locations and is composed of two components: a
spatial correlation function, py (s,s’), which introduces spatial dependence between the outcomes
through hyperparameters ¢, and a micro-scale adjustment (1/a — 1)ds_g, where 65_g = 1 if
s =8 and is 0 if s # s, and « € (0,1] is a scalar parameter representing the overall strength of
the spatial variability as a proportion of the total variation.

The covariance among the elements of y(s) within a location s is given by the elements of
C(s,s) = (1/a)X suggesting the interpretation of I as the within-location (nonspatial) dependence
among the outcomes adjusted by a scale of 1/a to accommodate additional variation at local
scales. The interpretation of « is equivalent to the ratio of the “partial sill” to the “sill” in classical
geostatistics. For example, in the special case that £ = ¢°I,, cov{yi(s),y;(s)} = a?o(s,s') +
0%(1/a — 1)ds_y, which shows that 0?(1/a — 1) = 72 is the variance of micro-scale processes (or
the “nugget”), so that & = 02/ (02 + 72) is the ratio of the spatial variance (partial sill) to the total
variance (sill). A similar interpretation for a results in the univariate setting with g = 1.

Let S = {sl, .. .,sn} C D be a set of n locations yielding observations on y(s). Then Y =
y(S) = [y(s1) : -+~ :y(sn)] " isn x gand X = x(S) = [x(s1) : - -- : x(sy)] " is the corresponding
n X p matrix of explanatory variables observed over S. We will assume that X has full column rank
(= p < n). The likelihood emerging from (1) is Y | B, £ ~ MN,,4(XB, IC, £), where MN denotes
the Matrix-Normal distribution defined inDing and Cook|(2014), i.e.,

exp (—% tr [271 (Y-XB)TK 1Y - X,B)} )
Ry ’

MN,4(Y[XB, K, L) = 2)

where tr denotes trace, K = p,, + (=1 —1)I, and Py = {py(si,sj)} is the n x n spatial correlation
matrix. A conjugate Bayesian model is obtained by a Matrix-Normal-Inverse-Wishart (MNIW)
prior on {B, L}, which we denote as

MNIW (B, Z | ptg, Vi, ¥, v) = IW(E | ¥, v) x MN,,4(B | g, V1, T) , 3)

where IW(XZ | -, -) is the inverted-Wishart distribution with parameters v and ¥ describing the
degrees of freedom and the scale matrix (see section 3.6 in|Gelman et al}|2013). The MNIW family
is a conjugate prior with respect to the likelihood (2) and, for any fixed values of «, i and the
hyperparameters in the prior density, we obtain the posterior density

p(B,Z|Y) x MNIW(B, X | g Vi, ¥,v) x MN,4(Y | XB, IC,Z) o MNIW (p*, V¥, ¥75,v%) ,  (4)



where
V* — (XT’C71X+V’.—1)—1 , ‘u* — V*(xT’C*lY+V;1”ﬂ) ,

(5)
Y =Y+Y' K'Y +,uEVr_1;4ﬁ — TVt and v =v4n.

Direct sampling from the MNIW posterior distribution in (@) is achieved by first sampling
L ~ IW(¥*,v*) and then sampling one draw of B ~ MN,,(u*,V*, L) for each draw of X. The
resulting pairs {8, Z} will be samples from (). Since this scheme draws directly from the posterior
distribution, the sample is exact and does not require burn-in or convergence.

Turning to predictions, let i = {uy,...,u,y} be a finite set of locations where we intend to
predict or impute the value of y(s) based upon an observed n’ x p design matrix X;; = [x(uy) :

:x(wy)] " for U. I Yy = [y(ug) : - : y(u,y)] " is the n’ x g matrix of predictive random
variables, then the conditional predictive distribution is

p(Yu | Y, B,E) = MNy , (Yo [ XuB + p, (U, S)ICTT[Y — XB],

-1 -1 (6)
Py U) + (a7 = Dy = p, U, S)Kp, (SU), T),

where plp(Z/l,S) = {py(u;,s;)} is n’ x n and py(S,U) = {py(si,uj)} = plp(Z/l,S)T. Predictions
can also be directly carried out in posterior predictive fashion, where we sample from

PO Y) = [ MNy (X py (U, S)K Y = XB,
pyUU) + (1 = 1)Ly = p, (U, S)K N, (S,U), )
x MNIW (u*, V¥, ¥*,v*) dBdL . (7)

Sampling from (7) is achieved by drawing one Y;; from (6) for each posterior draw of {B,L}.

Conjugate Multivariate Latent Model We now discuss a conjugate Bayesian model for a latent
process. Consider the spatial regression model

y(s) = B'x(s) +w(s) +e(s), s€D, ®)

where w(s) ~ GP (0,1, 04(-,-)X) is a g x 1 multivariate latent process with cross-covariance matrix

7

py(s,s')Z and e(s) i N(0,x1, (! —1)E) captures micro-scale variation. The “proportionality
assumption for the variance of e(s) will allow us to derive analytic posterior distributions using
conjugate priors.

The latent process w(s) captures the underlying spatial pattern and holds specific interest
in many applications. Let w = w(S) = [w(s1) : -+ : w(sy)]" be n x q. The parameter space
with the latent process is {8, w,L}. Letting v" = [B',w ] be g x (p + n), we assume that
{7, Z} ~ MNIW(n,, V,,¥,v), where ;41 = [yg,oqm] and V,, = blockdiag{Vr,plp(S,S)}. The
posterior density is

P(7,Z]Y) « MNIW (7, E| 1., Vo, ¥,v) X MNoyg (Yog | X : L]y, (67 = DL, )

)
o MNIW (7, [ i, V¥, ¥%,v%) ,
where
—_ 71 —
V* _ 1izxxTX + VY ! 1 1faXT ﬂ* _ V* lﬁaxTY + Vr 1”I3
- o — o ’ - ’
71_(XX Py (8,8) + 71_0(111 v 7150(Y (10)

Y=Y+ %YTY —i—,uEV;lyﬁ - ,u:TV**lyi‘Y and v  =v+n.



For prediction on a set of location I/, we can estimate the unobserved latent process wy = w(U) =
[w(ug) : -+ : w(u,)]" and the response Yy, through

(Yo, wy | Y) = /Manlq(Yu | XyB+wy, (@' = 1)Ly, Z) x MN,y o (@ | My, Ve, )
X MNIW (v, & |y:;, VY5, v") dydL, (1)

where My, = plp(Z/l,S)plzl(S,S) and Vg, = plp(u,bl) - plp(u,S)plf(S,S)pw(S,Z/{). Posterior
predictive inference proceeds by sampling one draw of wy; ~ MN,y ;(wy | My w, V,,, L) for each
posterior draw of {7, XL} and then one draw of Y;; ~ MN(Xy B + wy, («~! — 1)L, L) for each
drawn {wy, v, L}

II. Scalable Conjugate Bayesian Multivariate Models

Conjugate multivariate response NNGP model A conjugate Bayesian modeling framework is
appealing for massive spatial data sets because the posterior distribution of the parameters are
available in closed form circumventing the need for MCMC algorithms. The key computational
bottleneck for Bayesian estimation of spatial process models concerns the computation and storage
involving ! in (5). The required matrix computations require O(n%) flops and O(n?) storage
when K is n x n and dense. While conjugate models reduce computational expenses by enabling
direct sampling from closed-form posterior and posterior predictive distributions, the computation
and storage of IC is still substantial for massive datasets.

One approach to obviate the overwhelming computations is to develop a sparse alternative for
K1 in (). One such approximation that has generated substantial recent attention in the spatial
literature is an approximation due to Vecchia (Vecchial |1988). Consider the spatial covariance
matrix }C = p,, + ds—g I in H This is a dense n x n matrix with no apparent exploitable structure.
Instead, we specify a sparse Cholesky representation

K1=(1-Ax) D(I-Ax), (12)

where Dy is a diagonal matrix and Ay is a sparse lower-triangular matrix with 0 along the
diagonal and with no more than a fixed small number m of nonzero entries in each row of Ax.
The diagonal entries of chl and the nonzero entries of Ay are obtained from the conditional
variance and conditional expectations for a Gaussian process with covariance function py(s,s’). To
be precise, we consider a fixed order of locations in S and define N, (s;) to be the set comprising
at most m neighbors of s; among locations s; € S such that j < i. The (i,j)-th entry of A is
0 whenever s; ¢ Ny (s;). If j1 < j2 < - < ji are the m column indices indicating the nonzero
entries in the i-th row of Ay, then the (i, ji)-th element of A is set equal to the k-th element of
the 1 x m vector a] = pw(si, Nm(si))pw(Nm(si), Ny (s;)) L. The (i,i)-th diagonal element of D,_C1
is given by py(s;, ;) — aiTP¢(Nm (si),si). Repeating these calculations for each row completes the

construction of Ax and D, ! and yields a sparse K™ in . This construction can be performed
in parallel and requires storage or computation of at most m x m matrices, where m << n, costing
O(n) flops and storage. Further algorithmic details about this construction can be found in [Finley
et al.| (2019).

Based on Section [I, the posterior distribution B,X|Y follows MNIW (u*, V¥, ¥*, v*) where
{p*,V*,¥*,v*} are given in (5). With the sparse representation of KC~! in (I2), the process of
obtaining posterior inference for {8,Z} only involves steps with storage and computational
requirement in O(n).



The predictions on the unobserved locations & = {uy, ..., u,/} is also simplified as follows.
We extend the definition of Ny, (s;)’s to arbitrary locations by defining Ny, (u;) to be the set of m
nearest neighbors of u; from S. Furthermore, we assume that y(u) and y(u’) are conditionally
independent of each other given Y = y(S) and the other model parameters. Thus, for any u; € U,
we have

y(w) Y, B,E ~N(B x(w) +[Y-XB] &, dx), i=1,...7, (13)

where &; is an n x 1 vector with m non-zero elements. If Ny, (u;) = {s;, }*,, then

({ai}jy, - {@i}j,) = py (Wi Nu(ui) ) {py (Non (w;), N (w;)) + (7 = 1)L} 7,

- B B B (14)
di =o' — py (Wi, Nuw(u)) [ (N (wi), Non (w3) + (& = )]~ pyy (N (wi), ;) -
IfA=1[4: - :4,]" and D = diag({d;},, then the conditional predictive density for Y;, is
Yy |Y, B, ~ MN(XyB + A[Y — XB,D,E) . (15)

Since the posterior distribution of {B,X} and the conditional predictive distribution of Y;; are
both available in closed form, direct sampling from the posterior predictive distribution is straight-
forward. A detailed algorithm for obtaining the posterior inference on parameter set {8, L} and
the posterior prediction over a new set of location If is given as below.

Algorithm 1: Obtaining posterior inference of {8, X} and predictions on U for conjugate multivariate response NNGP

1. Construct V*, u*, ¥* and v*:

(a) Compute L, the Cholesky decomposition of V,

_1 _1
(b) Compute DIAX = D, (I — A;)X and DIAY = D, * (I - A;)Y

o Construct Ag and D as described, for example, in |[Finley et al.|{(2019) (Q(nms)

e Compute DIAX = D;% (I— Ag)X and DIAY = D;% (I—ApY Om(m+1)(p+4q+2))
(c) Obtain V*, p* and ¥*

e Compute V* = (DIAX"DIAX + V; 1)1 and its Cholesky decomposition Ly O(np?)

e Compute u* = V*(DIAXT DIAY + V,‘lyﬁ) O(npq)

o Compute ¥* =¥ + DIAY 'DIAY + (L; 'ug) " (L ) — (Lot ) T (L) p¥) O(ng?)

e Compute v* =v+n

2. Generate posterior samples {Yg) }L_| on anew set U given Xy
(@) Construct A and D as described in O(n'm3)
(b) Forlinl:L
i. Sample () ~ IW(¥*,v*)
ii. Sample B) ~ MN(u*,V*,£())
o Calculate Cholesky decomposition of £0, 20 = Lyo Lgm
e Sample u ~ MN(0,I,,1;) (i.e. vec(u) ~ MVN(0,I;))
o Generate B) = p* + Lv*uLg(U
iii. Sample Y ~ MN(X, 8" + A[Y — xg"],D,20))
e Sample u ~ MN(0, L, I;).
e Generate YI(AI) =Xy B + AlY - xpD] + D%“Lgm O((n' +n)pq+n' (4> + mq))




Conjugate multivariate latent NNGP model Bayesian estimation for the conjugate multivariate
latent model is more challenging because inference is usually sought on the (high-dimensional)
latent process itself. In particular, the calculations involved in V* in (9) are often too expen-
sive for large data sets even when the precision matrix p;, 1(S,8S) is sparse. Here, the la-
tent process w(s) in follows a multivariate Gaussian process so that its realizations over
S follows w ~ MN(Oan,p,E), where p is the Vecchia approximation of plp(S,S ). Hence,

p—l =(I- Ap)TDgl(I —A,), where A, and D, are constructed analogous to Ax and Dy in

(12) with K replaced by p,,(S, S). This corresponds to modeling w(s) with a Nearest-Neighbor
aussian Process (NNGP) (see, e.g., Datta et al.,2016a}b; Banerjee, 2017, for details).

The posterior distribution of {7, £} follows a Matrix-Normal distribution similar to (9), but
with p,,(S,S )~lin replaced by its Vecchia approximation (S, S). We will solve the linear
system X* " X*u* = X*TY* for u*, compute {¥*,v*} and generate posterior samples of T from
IW(Y*,v*). Posterior samples of  are obtained by generating # ~ MN(O, I,,;, L), solving
X*TX*v = X* Ty for v and then obtaining posterior samples of 7 from ¢ = p* + v.

However, sampling {'y, Z} is still challenging for massive data sets, where we seek to minimize
storage and operations with large matrices. Here we introduce a useful representation. Let V, be
a non-singular square matrix such that p@l (S,S8) = V;Vp where we write V, = D;l/ 21— Ap).
We treat the prior of 7 as additional “observations” and recast p(Y,y|Z) = p(Y |y, Z) x p(y | X)
into an augmented linear model

= X el | g n
Lr I’lﬁ Lr 0 |: w :| + T , (16)
0 0 Vo ——— Uk )
v D
Y* X*

where L, is the Cholesky decomposition of V,, and  ~ MN(0, Lytp, L). With a flat prior for g,
L, ! degenerates to O and does not contribute to the linear system. The expression in (I0) can
now be simplified as follows

V* = (X*TX*>—1 ’4* —_ (X*TX*)—lx*Ty*

. a7
T =4 (Y - X)) (Y = X), v =v .

Following developments in |Zhang et al|(2019) for the univariate case, one can efficiently generate
posterior samples through a conjugate gradient algorithm exploiting the sparsity of V,. The
sampling process for ¢ will be scalable when there is a sparse precision matrix Py 1(S8,8). Ttis

also possible to construct V* and p* in using p,, 1(S,S) instead of V,. We refer to|Zhang
et al| (2019) for further details of this construction. We provide a detailed algorithm of the
conjugate multivariate latent NNGP model below, where we implement a “Sparse Equations
and Least Squares” (LSMR) algorithm (Fong and Saunders| 2011)) to solve the linear system
X TX*p* = X*TY* and X*TX*v = X*T# needed to generate 4. LSMR is a conjugate-gradient
type algorithm for solving sparse linear equations Ax = b where the matrix A may be square or
rectangular. The matrix A := X* is a sparse tall matrix. LSMR only requires storing X*, Y* and #*
and, unlike the conjugate gradient algorithm, avoids X*" X*, X*TY and X* " . LSMR also tends to
produce more stable estimates than conjugate gradient. We have also tested a variety of conjugate
gradient methods and preconditioning methods, where we have observed that their performances
varied across different data sets. The LSMR without conditioning showed a relatively good
performance for the latent models. Therefore, we choose LSMR without preconditioning for our
current illustrations.



Posterior predictive inference will adapt from for scalable models. After sampling {v, X},
we sample one draw of wy; ~ wy |7, £ ~ MN([O,y,, Aly, D, E) for each sampled {7, L}, where

A=[a: - :a,)", D=dag({d;}l,) with
({ai}jy, - {di}j,) = py (Wi, Nu(ui))py ' (N (w7), Nin () ,
di = 1= p,(ui, N (1)) py " (No (07), Non (7)) pyy (Now (w7), w7)

Finally, for each sampled {8, wy, £} we make one draw of Y;; ~ MN(XyB + wy, (=1 — 1)L/, L).
The following provides details of the algorithm for predictive inference.

(18)

Algorithm 2: Obtaining posterior inference of {-, £} and predictions on set U/ for conjugate multivariate latent NNGP

1. Construct X* and Y* in

(@) L' and L;lyﬁ
o Compute the Cholesky decomposition of V,, L,
e Compute L; ! and L;lyﬁ

(b) V,

e Construct A, and D, as described, for example, in |[Finley et al.|(2019) O(nm3)
1

e Compute V, =D, 2(I—-A,) On(m+1))

(c) Construct X* and Y*

2. Obtain p*, ¥* and v*.

(a) Obtain p* = [uj : -+ : 7]
e Solve u! from X*u} = Y] by LSMR fori =1,...,q.

(b) Obtain ¥* and v*
e Generate u = Y* — X*p* Om(1+ (p+m+1)q)
e Compute ¥* =¥ +u'u O(ng?)
e Compute v* =v+n

3. Generate posterior samples of {4"), 2!}l | Forlin1:L

(a) Sample () ~ TW(F*,v*)
(b) Sample 1) ~ MN(u*, V¥, 1)

e Sample u ~ MN(0, Iy, p, I;) O(2ngq)
o Calculate Cholesky decomposition of Z(), 2!} = L, ng
e Generate § = uL)T = [y, :---: 1,] 0O(2ng?)
e Solve v; from X*v; = 5, by LSMR fori =1,...,q.
o Generate 'y(l) =p*+vwithv=[vg: - -: vq} O(nq)
4. Generate posterior samples of {Yz(p} on a new set U given Xy,.
(a) Construct A and D using O(n'm3)
(b) Forlinl:L
i. Sample wg) ~ MN([OH/XP,A]'y(”, D,z?)
e Sample u ~ MN(0,1,,,1;) O(n'q)
o Generate wg) = [0, xp, Ay + ﬁ%uL;@ O(n'mq +n'q?)
ii. Sample Y. | @/, v, £0) ~ MN(XyB + wyy, (&' = 1)1, )
e Sample u ~ MN(0, Iy, I;) O(n'q)
e Generate Yl(j) =Xyp+ “71(,5) + (a7t = 1)uL;(I) O(n'pq+n'g?)




II1.

Cross-validation for Conjugate Multivariate NNGP Models

Conjugate Bayesian multivariate regression models will depend upon fixing hyperparameters
in the model. Here, we apply a K-fold cross-validation algorithm for choosing {y,«}. This
algorithm is a straightforward generalization of the univariate algorithm in (Finley et al} [2019).
We run the conjugate models for each point {¢,a} on a grid and choose the value that pro-
duces the least magnitude of root mean square prediction error. The inference on that point
is then presented. This is appealing for scalable Gaussian process models that, for any fixed
{,a}, can deliver posterior inference at new locations requiring storage and flops in O(n).

Algorithm 3: Cross-validation of tuning ¢, « for conjugate multivariate response or latent NNGP model

1. Split S into K folds, and build neighbor index.

e Split S into K folds {S;}K . We use S_ to denote S without the locations in Sy.
e Build nearest neighbors for {S_;}X_,

o Find the collection of nearest neighbor set for Sy among S_j fork =1,...,K.

. or response ix ¢ and «, obtain posterior mean o after removing the old of the data:
(F P NNGP) Fix ¢ and btain p i f B af 'ghkthfldfhd

e Use step 1 in Algorithm 1 to obtain B, by taking S to be S_; and p* to be B;.

(For latent NNGP) Fix ¢ and a, obtain posterior mean of 7, = {8, w(S_)} after removing the k' fold of the data:

o Use step 1-2 in Algorithm 3 to obtain 4, by taking S to be S_; and u* to be 4.

. (For response NNGP) Predict posterior means of y(Sk)

o Construct matrix A through by taking S to be S_; and U to be .
e According to (I5), the predicted posterior mean of y(Sk) follows
Y(Si) = Ely(Si) [ v(S—#)] = x(Si) B + Aly(S—k) — x(S—) By
(For latent NNGP) Predict posterior means of y(Sk)

e Construct matrix A by taking S to be S_ and U to be Sy.

o The predicted posterior mean of y(Sy) follows
9(Sk) = Ely(Se) |y(S-1)] = Ew[Ey[y(Se) | @ (S—), y(S-)]] = [x(Sk), A%

. Root Mean Square Predictive Error (RMSPE) over K folds

e Initializee =0
for (kin 1: K)
for (s; in Sg)

e=e+|ly(s;) —9(si)?

. Cross validation for choosing ¢ and «

e Repeat steps (2) - (4) for all candidate values of ¢ and «
o Choose g and ag as the value that minimizes the average RMSPE




IV.  Comparison of Response and Latent Models

Modeling the response as an NNGP produces a different model from modeling the latent process
as an NNGP. In the former, Vecchia’s approximation to the joint density of the response yields a
sparse precision matrix for the response. In the latter, it is the precision matrix of the realizations
of the latent process that is sparse. This has been discussed in|Datta et al.[(2016a) and also explored
in greater generality by Katzfuss and Guinness (2017). Comparisons based on the Kullback-Leibler
divergence (KL-D) between the NNGP based models and their parent full GP models reveal that
the latent NNGP model tends to be closer to the full GP than the response NNGP. A proof of such
a result is provided by |[Katzfuss and Guinness| (2017), but this result holds only in the context of
an augmented directed acyclical graphical model with nodes comprising the response and the
latent variables. However, if we compute the KL-D between the NNGP models and their full
GP counterparts in terms of the collapsed or marginal distribution for Y, then it is theoretically
possible for the response model to be closer to the full GP.

Here we provide a simple example where a response NNGP model outperforms a latent
NNGP model on a collapsed space. Assume the observed location set is S = {s1, 82,83}, w(S)
has covariance matrix o?R with correlation matrix

1 o1 pi13
R=[pn 1 px3]. (19)
p13 p23 1

Let us suppress the connection between knots s; and s3 in the directed acyclic graph corresponding
to the finite realization of the NNGP on S. Then the covariance matrix of of the response NNGP
model Zr and that of the latent NNGP model Z; have the following forms:

2 P12023
1 + 1) P12 W

Ir=0*| prn 1+ pos |, E =07

P12023

1432 p3 140

p2 146 o (20)

p12p23 P23 1+62

146 pp 012923]

where 6% = % is the noise-to-signal ratio with 72 as the variance of the noise process €(s). Since R
is positive-definite, we must have

1— (p%, + pl5 + p33) + 2012013023 > 0, 1 —p3, > 0. (21)

It is easy to show that Zr and X; are also positive-definite. If pj3 = qli?f , then the KL-D from the
response NNGP model to the true model always equals zero, which is no more than the KL-D
from the latent NNGP model to the true model. If p13 = p12023, then the KL-D of the latent NNGP
model to the true model always equals zero, which reverses the relationship. Numerical examples
can be found in https://luzhangstat.github.io/notes/KL-D_com.html

Still, our simulations indicate that the latent NNGP model tends to outperform the response
NNGP model in approximating their parent GP based models. This is consistent with the
theoretical result of (Katzfuss and Guinness, |2017) and also with our intuition: the presence of the
latent process should certainly improve the goodness of fit of the model. Without loss of generality,
our discussion here considers the univariate case, but the argument applies to the multivariate
setting as well. Let {y(s) : s € D} be the process of interest over D C RY,d € N¥, and let
y(s) = w(s) + €(s) for some latent spatial GP w(s) and white noise process €(s). A response
NNGP model specifies the NNGP on y(s), while a latent NNGP model assumes that w(s) follows
the NNGP.
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Let the covariance matrix of y = y(S) of the parent GP based models be C + 721, where C
is the covariance matrix of the latent process w(S). Consider the Vecchia approximation of the
precision matrices C~! and K~! = {C + 721}~

Vecchia(C™') = €, Vecchia(K™!) = K™!. (22)

The covariance matrix of y(S) from the latent NNGP model is C + 721, while the precision matrix
of y(8S) from the response NNGP model is K~!. We denote the error matrix of the Vecchia
approximation of C~! by E. We assume that E is small so that C~! approximates C~! well. With
the same observed location S and the fixed number of nearest neighbors, the error matrix of the
Vecchia approximation of K~! is believed to be close to E, i.e.,

Cl=C'4E; K'=K'!'+0(E). (23)

Representing the precision matrices of y(S) of the parent GP based model and the latent NNGP
model by
c+?nt=cl-cmict M=c'l+774,
C+nt=Cct-Ccm1¢t M =C 777,
we find that the difference between the precision metrics over the collapsed space for the parent
NNGP and for the latent NNGP model is

(24)

Cc+n) -+ t=cl-cMmict-Ccl+C M IC!
=E-EM !IC!'-CMIE-C'M ! -M"HC ! -EME
N— e’
B O(E?)

Representing B in terms of C~!, M* and E, where E is assumed to be nonsingular, we find
B= E-EM" IC !+ EM" Y E '+ M )M IC - C M IE 5)
+ CflM*fl (Efl 4 M*fl)flM*flE 4 Cflfol(Efl + M*fl)flM*fléfl .

Using the familiar Woodbury matrix identity and the expansion (I +X)~1 = Y% ;{—X}", we find
Bl +M D) IM ! = (MFE M) = (MFE 1) ]
=I—{I+EM" 1} ' =1—-{I-EM* ' + O(E?)}
=EM* ' + O(E?).

Using the above equations and excluding the terms of order O(E?) in the expression of B, the
leading term in the difference is
B=(I-C M HEI-M"1CY) = 0+2CHEQ+2C 1. (26)
Using the spectral decomposition (I + t2C~!) = P' (I + 72D)P, where P is orthogonal and D is
diagonal with positive elements on the diagonal, we obtain
IBllp = |P"(1+7°D) 'PEP' (I+7°D) 'P||p = ||(I+ D) 'PEP' (I+7°D) | @)
< |[PEP"|[F = |[E[|F,

where || - || denotes the Frobenius matrix norm. The inequality also holds for the absolute value
of the determinant and p norms. And the equality holds if and only if 7> = 0 when the difference
is the same as the error matrix for response NNGP model. Thus, the latent model tends to shrink
the error from the Vecchia approximation, which explains the expected superior performance of
the latent NNGP model over the response NNGP model based on KL-Ds.

11



III. SIMULATION

Our proposed models were implemented in Julia 1.2.0 (Bezanson et al., 2017). All models were
run on a Linux environment (Ubuntu 18.04.2 LTS), with 32 Gbytes of random-access memory
and 1 Intel Core i7-7700K CPU @ 4.20GHz processor with 4 cores each and 2 threads per core -
totaling 8 possible threads for use in parallel. Model diagnostics and other posterior summaries
were implemented within the Julia statistical environment and R 3.6.1. Each model was compared
in terms of the posterior inference of parameters (posterior mean and 95% confidence interval),

root mean squared predict error (RMSPE= n~! Yiq ((y(si) — ]/Aj(si))z)%,j =1,...,9 ), mean
squared error of intercept-centered latent processes (MSEL = 1! Yig ((wj(si) + Bij — wi(si) —

B, ]-)2) 2, j=1,...,9), prediction interval coverage (CVG; the percent of intervals containing the true
value), interval coverage for intercept-centered latent process of observed response (CVGL), mean
continuous rank probability score (MCRPS = /' ¥ | CRPS;(u;),j =1,...,q, where CPRS;(u;)
is the CRPS of j-th response on held location u; see |Gneiting and Raftery|(2007)), and run time. To
calculate CRPS;(u;), we assumed the associated predictive distribution was well approximated by
a Gaussian distribution with mean centered at the predicted value §;(u;) and standard deviation
equal to the predictive standard error &;j(u;), CPRS;(u;) = 6j(w;)[1/v/7 — 2¢(z;j) — 2;;(2P(z;;) —
1)] with z;; = (yj(w;) — §;(u;))/0j(u;), ¢ and ® denoting the probability density function and
the cumulative distribution function of a standard Gaussian variable. All NNGP models in this
section specified at most m = 10 nearest neighbors.

We simulated y(s) using model (8) with ¢ = 2, p = 2 over 1200 randomly generated locations
inside a unit square. The design matrix X consisted of a column of 1’s and a single predictor
generated from a standard normal distribution. An exponential covariance function with decay
¢ was used to model py(-,-) in @), ie, py(s’,s") = exp (—¢||s' —s"||), fors’,s" € D, with
|s’ — s"|| be the L? norm of s’ — s and ¢ = ¢. The value of parameters are listed in table |1} We
withheld 200 locations to assess predictive performance for conjugate models and benchmark
models. NNGP based BSLMC model was also tested here for a comparison.

We assigned a flat prior for B, the prior of X was set to follow IW(¥,v) with ¥ = diag([1.0,1.0])
and v = 3. The candidate values for {¢, a} used in cross-validation algorithm were a 25 by 25
grid over [2.12,26.52] x [0.8,0.99]. The posterior inference of conjugate response and latent
NNGP models were based on 500 samples. The run times for conjugate models include the
time for choosing hyper-parameters through cross-validation and the time for the sampling
process. We summarize posterior inference for regression coefficients f = { ,Bl]}f jl, =17 covariance
of measurement error (labeled as cov(e) in summary table), covariance across different latent
processes (labeled as cov(w) in summary table) and hyperparameters {¢, a} in Table

Table [1|lists the parameter estimates and performance metrics of the candidate models. The
posterior inference of regression slopes {B,;, B,, } are close among two models. The 95% confidence
intervals of the intercepts {B,;, By, } all include the actual value.

The interpolated map of the recovered posterior mean of latent processes (figure [1) capture
the patterns of the underlying latent processes. The conjugate NNGP models all yielded close
RMSPEs and MCRPSs. The CVG and CVGL are close to 0.95, supporting reliable inference from
conjugate NNGP models. The two models finished within a minute. The simulation example
shows that fitting a conjugate model is a pragmatic method for quick inference in multivariate
spatial data analysis.
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Table 1: Simulation 1 study summary table: posterior mean (2.5%, 97.5%) percentiles

True Conj resp Conj latent
B 1.0 1.391 (0.814, 1.902) 1.459 (0.865, 2.057)
Bio -1.0 0.813 (0.344, 1.286) 0.734(0.201, 1.276)
By 20 | -1.978 (-2.114, -1.841) -1.979 (-2.121, -1.842)
Bx» 2.0 2.076 (1.952, 2.21) 2.082 (1.961, 2.208)

cov(e)n | 0222 | 0.226(0.205,0.248)  0.231 (0.212, 0.252)
cov(e)rp | -0.111 | -0.113(-0.129,-0.099)  -0.115( -0.128, -0.103)
cov(€)n | 0.167 | 0.172 (0.158, 0.188) 0.175 (0.16, 0.189)

cov(w)yy | 1.234 1.208 (1.148, 1.268)
cov(w)yz | -0.701 - -0.705( -0.75, -0.658)
cov(w)yy | 1.077 - 1.077 (1.023, 1.131)
¢ 6.0 8.220 7.204
e 0.9 0.863 0.871
RMSPE? - [0.727, 0.602, 0.668] [0.723, 0.6, 0.664]
MSEL - - [0.112, 0.112, 0.103]
CVG? - [0.935, 0.955,0.945]  [0.925, 0.95, 0.9375]
CVGL? - - [0.957, 0.945, 0.951]
MCRPS? - [-0.408, -0.336, -0.372]  [-0.405, -0.334, -0.37]
time(s) - [12, 1]P [17, 1]P

“[response 1, response 2, all responses]
Y[time for cross-validation, time for sampling]
¢[time for MCMC sampling, time for recovering B and predictions]

IV. VEGETATION INDICES DATA ANALYSIS

We implement all proposed models on a real dataset to test their performances in a realistic
analysis scenario. Our dataset comprises Vege Indices data and landcover data (see Ramon Solano
et al., 2010; |Sulla-Menashe and Friedl, 2018, for further details). The Vege Indices data records
the standard Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index
(EVI). These two indices are robust, empirical measures of vegetation activity at the land surface,
that are studied for an understanding of the global distribution of vegetation types as well
as their biophysical and structural properties and spatial /temporal variations (Ramon Solano
et al., 2010). Provided along with the two vegetation indexes are red reflectance, near-infrared
(NIR) reflectance, blue reflectance mid-infrared (MIR) reflectance, view zenith angle, sun zenith
angle and relative azimuth angle. All data were mapped to Euclidean coordinates using the
Sinusoidal (SIN) grid projection. We chose zone h08v05 which covers 11,119,505 to 10,007,555
meters south of the prime meridian and 3,335,852 to 4,447,802 meters north of the equator. The
land region in zone h08v05 is the western United States. We generated a dummy variable for no
vegetation or urban area through the 2016 landcover data, and took it along with the intercept
as the explanatory variables in the analysis. All other data were measured through MODIS
satellite over a 16-days period from 2016.04.06 to 2016.04.21. Some variables were rescaled and
transformed in exploratory data analysis for the sake of better model fitting. The datasets were
downloaded using the R package MODIS, and the code for exploratory data analysis is provided
on https://github.com/LuZhangstat/Conj_Multi_NNGP.

There are 3,115,934 observed locations. We chose transformed NDVI (log(NDVI + 1) labeled
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Figure 1: Interpolated maps of (a) & (c) the true generated latent processes and the posterior
means of the spatial latent process w from the (b) & (d) conjugate latent NNGP model. The NNGP
based models were all fit using m = 10 nearest neighbors.

as NDVI) and red reflectance (red refl) as responses. Bayesian linear models were fitted for
comparison. All NNGP based models specified at most m = 10 nearest neighbors. We randomly
held out 1% of observed locations and then held all responses over region 10,400,000 to 10,300,000
meters south of the prime meridian and 3,800,000 to 3,900,000 meters north of the equator to
examine the predictive performance of models on randomly missing locations and a missing
region. There were in total 67,132 locations held for prediction. Figure [2a|illustrates the map of
the transformed NDVI data. The white square region within the Continent is the region held out
for prediction.
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Posterior inference from our conjugate models were based on 500 independent samples from
the posterior distribution. Recall that the samples are directly drawn from the conjugate posterior
distribution and, hence, there is no need to monitor convergence of these samples. The priors for
all parameters, except the decay, follow those in the simulation section. We recursively shrink the
domain and grid of candidate values {¢, a} through repeatedly using cross-validation algorithms
for fixing parameters. The recorded run time for running the cross-validation algorithms, therefore,
varied a lot across different models. The number of threads used in the cross-validation algorithm
for conjugate models and response NNGP models with misalignment were equal to the number
of folds. The remaining part of all the code were run with single thread.

The results for the conjugate models are listed in Table 2| Consistent with the related back-
ground, the regression coefficients of the index of no vegetation or urban area show relatively low
biomass (low NDVI) and high red reflectance over no vegetation or urban area. The inference of
the covariance of the noise and non-spatial covariance of the latent process shows a negative asso-
ciation between the residuals and latent processes of transformed NDVI and red reflectance, which
satisfies the underlying relationship between two responses. The maps of the latent processes
recovered by conjugate latent NNGP shown in Figure [2|also support this relationship.

Model performances were compared in terms of RMSPE, CVG, MCRPS and run time. The
spatial models, unsurprisingly, greatly improved predictive accuracy. Conjugate Bayesian spatial
models effected 35% shrinkage over the (non-spatial) Bayesian linear model in the magnitude of
RMSPE. The performance in terms of the CVG is similar among all the models, but all the spatial
models provided more accurate predictions than the Bayesian linear models based on MCRPS.
Visual inspections of the predictive surfaces based on conjugate response NNGP model are shown
in Figure 2} Notably, the proposed methods smooth out the predictions in the held-out region.

Posterior sampling for the conjugate response and latent models cost 1.8 and 18.88 minutes,
respectively, which is impressive given our sample sizes of around 3 million locations. The run
time for both the cross-validation algorithm and sampling for conjugate models is appealing for
such massive datasets.

Table 2: Real data analysis summary table 1: posterior mean (2.5%, 97.5%) percentiles

Bayesian linear model conj response conj latent
intercept; 0.25144 (0.25131, 0.25158) 0.1023(0.0822, 0.1223) 0.240729 (0.240723, 0.240736)
intercept, 0.13951 (0.13944, 0.13958) 0.2218(0.2094, 0.2338) 0.144277 (0.144273, 0.144281)

no vege or urban area; -0.13375(-0.13425, -0.13329) -8.010e-3( -8.233e-3, -7.796e-3)  -8.025e-3 (-8.050e-3, -8.001e-3)
no vege or urban area, 6.026e-2(6.002e-2, 6.052e-2) 4.381e-3 (4.261e-3, 4.514e-3) 4.390e-3 (4.376¢-3, 4.402¢-3)

cov(e)n 1.599e-2 (1.596e-2, 1.602e-2)  3.493e-5 (3.487e-5, 3.499-5) 3.125e-5 (3.120e-5, 3.130e-5)
cov(e)r -6.494e-3 (-6.505¢-3, -6.483e-3)  -1.214e-5 (-1.217e-5, -1.212e-5)  -1.086e-5 (-1.089¢-5, -1.085¢-5)
cov(€e)n 3.656e-3 (3.651e-3, 3.662e-3)  1.090e-5(1.08%-5, 1.092e-5) 9.760e-6 (9.745e-6, 9.776e-6)
cov(w)i - 7.776e-2 (7.764e-2, 7.78%-2)  1.7192e-2 ( 1.7190e-2, 1.7193e-2)
cov(w)2 - 2.703e-2 (-2.709¢-2, -2.697e-2)  -7.0307e-3( -7.0314e-3, -7.03e-3)
cov(w)a - 2.428e-2( 2.424e-2, 2.432e-2)  3.8897e-3 (3.8893e-3, 3.8901e-3)
- 17.919 (x = 0.999551) 20.1755 (a = 0.999551)
RMSPE? [0.09899 0.04932 0.07821] [0.05707 0.03187 0.04622] [0.0503 0.02572 0.03995]
MCRPS? [-0.05588 -0.02818 -0.04203] [-0.03301 -0.0188 -0.02591] [-0.0314 -0.01748 -0.02444]
CVG? [0.9664 0.9847 0.9755] [0.9756 0.9707 0.9732] [0.9764 0.9715 0.974]
time(mins)® - [1012.18, 1.8] [270.28, 18.88]

[1st response transformed NDVI, 2nd response red reflectance, all responses]
b[time for cross-validation, time for generating 500 samples]
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Figure 2: Colored NDVI and red reflectance images (first and second row respectively) of western
United States (zone h08v05). Maps of raw data (a) & (e), raw data with predictions fitted by
NNGP based conjugate response model (b) & (f), raw data with predictions fitted by NNGP based
conjugate latent model (c) & (g) and the posterior mean of the intercept-centered latent process
recovered from NNGP based conjugate latent model (d) & (h).

V. SUMMARY AND DISCUSSION

We have presented a conjugate Bayesian multivariate spatial regression model using Matrix-Normal
and Inverse-Wishart distributions. A specific contribution is to embed the latent spatial process
within an augmented Bayesian multivariate regression to obtain posterior inference for the high-
dimensional latent process with stochastic uncertainty quantification. For scalability to massive
spatial datasets—our examples here comprise locations in the millions—we adopt the increasingly
popular Vecchia approximation and, more specifically, the NNGP models that render savings
in terms of storage and floating point operations. We present elaborate simulation experiments
to test the performance of different models using datasets exhibiting different behaviors. Our
conjugate modeling framework fixes hyperparameters using a K-fold cross-validation approach.
While our analysis is based upon fixing these hyperparameters, the subsequent inference obtained
is seen to be effective in capturing the features of the generating latent process (in our simulation
experiments) and is orders of magnitude faster than iterative alternatives at such massive scales as
ours. We also applied our models, and compared them, in our analysis of an NDVI dataset. The
scalability of our approach is guaranteed when univariate scalable model can exploit a tractable
precision or covariance matrix. Our approach can, thereofore, incorporate other methods such as
multiresolution approximation (MRA) and more general Vecchia-type of approximations (see, e.g.
[Katzfuss and Guinness| [2017).

Future work can extend and adapt this framework to univariate and multivariate spatiotempo-
ral modeling. A modification is to use a dynamic nearest-neighbor Gaussian process (DNNGP)
(Datta et al.,2016b) instead of the NNGP in our models, which dynamically learns about space-time
neighbors rather than fixing them. We can also develop conjugate Bayesian modeling frameworks
for spatially-varying coefficient models, where the regression coefficients  are themselves random
fields capturing the spatially-varying impact of predictors on the vector of outcomes. While
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conceptually straighforward, their actual implementation at massive scales will require substantial
development.

Developments in scalable statistical models must be accompanied by explorations in high
performance computing. While the algorithms presented here are efficient in terms of storage and
flops, they have been implemented on modest hardware. Implementations exploiting Graphical
Processing Units (GPUs) and parallel CPUs can be further explored. For the latent NNGP models,
the algorithms relied upon sparse solvers such as conjugate gradients and LSMR matrix algorithms.
Adapting such libraries to GPUs and other high performance computing hardware will need to be
explored and tested further in the context of our spatial Gaussian process models.
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