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EPIGRAPH

Only the person who has faith in himself is able to be faithful to others.

—FErich Fromm

Impossible is just a big word thrown around by small men who find it easier to live in
the world they’ve been given than to explore the power they have to change it.
Impossible is not a fact. It’s an opinion. Impossible is not a declaration. It’s a dare.

Impossible is potential. Impossible is temporary. Impossible is nothing

—Muhammad Ali
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ABSTRACT OF THE DISSERTATION

Sensitivity analysis in multiscale, multi-physics problems

by

Kimoon Um

Doctor of Philosophy in Materials Science and Engineering

University of California San Diego, 2018

Professor Daniel M. Tartakovsky, Co-Chair

Professor Prabhakar Bandaru, Co-Chair

This dissertation deals with multiscale and multi-physics mathematical model-
ing and global sensitivity analysis. Multiscale and multi-physics problems are ubiqui-
tous in every field of science and engineering. For example, micro- or even nano-scale
material properties often influence their large-scale properties, and microscopic inter-
faces between different materials affect bulk transport phenomena. We develop and

deploy methods of global (variance-based) sensitivity analysis to determine how, and

Xiv



to what degree, nano-scale characteristics of (nano)porous materials affect and give
rise to bulk (Darcy-scale) properties.

We deploy stochastic multiscale algorithms to solve several problems of rele-
vance in materials science and biology, and conduct rigorous sensitivity analysis and
uncertainty quantification. In Chapter 2, we present a novel hybrid algorithm to ame-
liorate high computational costs typical of multiscale, multi-physics simulations, and
apply it to solve a chemotaxis-diffusion-reaction problem. In Chapter 3, we report on
our pore- and multi-scale simulations and perform a global (variance-based) sensitivity
analysis for uncorrelated input parameters. This chapter also contains results of our
uncertainty quantification analysis for this multiscale problem, which is based on a
(generalized) polynomial chaos expansion (gPCE). This UQ strategy can be used to
identify a set of pore-scale characteristics for robust materials design. In Chapter 4,
we introduce a novel graph-theoretic approach to conduct global sensitivity analyses

in the presence of correlated inputs.
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Chapter 1

Introduction

Many physical problems of current interest are complex in nature, and com-
posed of separate physical phenomena. Each constituent phenomenon can reinforce or
dampen another, giving rise to rich and sometimes unexpected behavior. Various phys-
ical and/or (bio)chemical sub-models can take place and operate either at the same or
vastly different spatiotemporal scales. To understand a system’s behavior, it is often
necessary to capture both the behavior of individual components and their interactions
and cross-communication. Multiphysics plays an equally strong role is the design of
subsystems and how they interact with other subsystems and systems. One example is
MEMS (microelectromechanical systems), which typically include small moving parts
such as wheels, rotors, levers and linkages, that are integrated into a larger system.

Other examples include the creation of “designer materials” tailored for specific envi-



ronments, as well as the simulation of nano-scale mechanics of white blood cells and
how that is being transported to inflammation location for medical treatment devices
and methods.

Multiscale nature of many phenomena poses another complication. For example,
small-scale (micro- or nano-scale) properties often influence bulk material properties
(i.e., on the continuum or Darcy scale). Engineers often need to simulate large-scale
structures in which micro-mechanical properties of constituent materials greatly af-
fect the overall behavior of the system. As such, the micro-structure and mechanical
properties need to be introduced explicitly in the analysis procedure. Multiscale and
multi-physics models are different but share many common features since both need
coupling strategies to combine their constitutive sub-models.

When using traditional single-scale simulation methods such as FDM (Finite
Difference Method), FVM (Finite Volume method), FEA (Finite Elements Analysis),
even modern computers are pushed to their limits in trying to resolve all the relevant
details of multiscale systems. This fact necessitates the development of hybrid meth-
ods, which couple micro- and macros-scale models and simulation. Our focus is on
identifying and capturing key multiscale features of several diverse problems of prac-
tical significance, and on identifying channels through which parametric uncertainty

propagates through scales.



1.1 Discrete and continuum multiscale simulations

Many biological process on sub-cellular level involve species whose numbers
vary by many orders of magnitude. If a small number of molecules/agents is present
in a system, their apparent behavior becomes random and exhibit spatiotemporal fluc-
tuations which can be captured by stochastic simulation. On the other hand, such
molecules/agents typically interact with other species whose concentrations (numbers
of molecules per unit volume) are many, many orders of magnitude higher. Simula-
tion of such systems is notoriously difficult and increasingly relies on multiscale hybrid
methods, which combine continuum-scale (deterministic) descriptors of reacting species
with large numbers of molecules/agents and discrete (stochastic) descriptors of react-
ing species with small numbers of molecules/agents. For example, chemo-attractants
(some of the chemicals involved in inflammation) diffuse through the tissue at concen-
trations that far exceed the numbers of bacteria or leukocytes present. The process by
which leukocytes (randomly) move towards a wound surrounded by bacteria is called
chemotaxis. We develop and implement numerically a novel hybrid algorithm that
captures the random motion of leukocytes and relies on discrete/continuous represen-
tations of chemotaxis(advection)-motility(diffusion)-reaction phenomena. This motion
is affected and “guided” by the concentration of chemo-attractants, whose gradients

are computed at the continuum scale to determine chemotactic velocity. Leukocyte



motility and reactions described by Brownian motion and stochastic simulation algo-
rithm, respectively. We develop a hybrid algorithm, which bridges these two scales and
captures the complexity of biochemical processes and the wide range of concentrations.
Time step is chosen by comparing the Péclet number and the Damkohler number at
every simulation step. We deploy our algorithm in three case studies. In the first,
we verify our hybrid algorithm by comparing its predictions for large numbers of all
the reactants involved (i.e., for a situation where randomness is expected to play mi-
nor role in system’s dynamics) with an analytical solution of chemotaxis(advection)-
motility (diffusion) equations for several Pécelt numbers. The second case study in-
volves a small number of leukocytes and serves to highlight the effects of randomness
in an inflammation process described, alternatively, by one-dimensional chemotaxis-
motility-reaction equations on the continuum scale and by our hybrid model. In the
third case study, we construct a more realistic two-dimensional model, in leukocytes

randomly move from the skin to a capillary.

1.2 Multiscale simulations with independent and

correlated inputs

Ubiquitous uncertainty about pore geometry inevitably undermines the veracity

of pore- and multi-scale simulations of transport phenomena in porous media. It raises



two fundamental issues: sensitivity of effective material properties to pore-scale param-
eters and statistical parameterization of Darcy-scale models that accounts for pore-scale
uncertainty. Homogenization-based maps of pore-scale parameters onto their Darcy-
scale counterparts facilitate both sensitivity analysis (SA) and uncertainty quantifi-
cation. We treat uncertain geometric characteristics of a hierarchical porous medium
as random variables to conduct global SA and to derive probabilistic descriptors of
effective diffusion coefficients and effective sorption rate. Our analysis is formulated in
terms of solute transport diffusing through a fluid-filled pore space, while sorbing to
the solid matrix. Yet it is sufficiently general to be applied to other multiscale porous
media phenomena that are amenable to homogenization.

Such analyses treat input parameters (coefficients) as mutually uncorrelated,
and are generally valid for a small range of correlated inputs as ab approximation. As
the ranges over which input parameters are allowed to vary become larger, the nonlinear
relationships between various pore-geometry parameters significantly complicates the
global (variance-based) sensitivity analysis. We handle the inter-dependence between

input parameters by developing a probabilistic graphical method.



1.3 Dissertation content

My research consists of four inter-related components, each of which is presented
in a separate chapter. In Chapter 2, we present a novel hybrid algorithm to ameliorate
high computational costs typical of multiscale, multi-physics simulations, and apply it
to solve a chemotaxis-diffusion-reaction problem.

In Chapter 3, we report on our pore- and multi-scale simulations and perform
a global (variance-based) sensitivity analysis for uncorrelated input parameters. This
chapter also contains results of our uncertainty quantification analysis for this multi-
scale problem, which is based on a (generalized) polynomial chaos expansion (gPCE).
This UQ strategy can be used to identify a set of pore-scale characteristics for robust
materials design.

In Chapter 4, we introduce a novel graph-theoretic approach to conduct global

sensitivity analyses in the presence of correlated inputs.



Chapter 2

Hybrid method of multi-scale
model in
chemotaxis-motility-reaction

system

Two mathematical frameworks, discrete and continuous, are routinely used to
model kinetics of complex (bio)chemical systems. The first framework is based on the
chemical master equation[1, 2]; it is invoked when the number of molecules of reacting
species is relatively small, so that stochastic fluctuations in local concentrations become

pronounced. This randomness is a key feature of many biological processes, e.g., gene



expression|[3]. The second framework consists of differential equations describing tem-
poral evolution of species concentrations; it predicts average behavior of large numbers
of molecules. Both frameworks can handle spatial variability, e.g., by adopting opera-
tor splitting techniques for discrete reaction-diffusion processes[4] or partial-differential
equations (PDEs) for their continuous counterparts.

Many systems involve reacting species with vastly different number of molecules/
agents, thus necessitating the simultaneous use of discrete and continuous descriptors,
i.e., call for the use of hybrid simulations. This occurs when a PDE-based model for one
or more species fails either locally, in a (small) part of a computational domain[5, 6], or
globally, over the whole simulation domain[7]. These two types of hybrid simulations
differ in the way they couple their discrete and continuous components. We focus on
the latter class of phenomena, of which leukocyte migration towards a pathogen is a
pertinent example.

Leukocytes, or white blood cells, are instrumental in a body’s immune response
to invading pathogens, such as bacteria, viruses, or parasites. A pathogen-induced
inflammation activates leukocytes in the bloodstream, causing their transmigration
from blood vessels to the surrounding tissue. Within the affected tissue leukocytes
move towards a contaminated site, exhibiting undirected (diffusion-like) and directed
(chemotaxis) forms of motion as well as interacting with a pathogen. Continuum-level

representations of the latter stage of leukocyte migration rely on systems of coupled



PDEs of various degrees of complexity, ranging from the celebrated Keller-Segel chemo-
taxis model[8] to its more evolved counterparts|[9]. Such models track concentrations
of relevant species—the concentrations of leukocytes, C(x,t), and chemoattractant,
A(x,t), in the Keller-Segel model[8]—in space, x, and time, t. While large numbers
of chemoattractant molecules justify the use of a PDE-based model to describe the
spatiotemporal evolution of A(x,t), small numbers of leukocytes and bacteria involved
in the process render such continuum treatments problematic. Taken in isolation, a
motion of individual leukocytes has been described by, e.g., biased random walk[10, 11].
We present a hybrid algorithm that combines a continuum description of chemoat-
tractants with discrete representations of leukocytes and bacteria. We provides a
mathematical model of leukocyte migration towards an inflammation site, including
its continuum (PDE-based) formulation. Our hybrid method and its algorithmic im-
plementation are presented in Section 2.1. They are used in Section 2.2 to solve three
problems of increasing complexity. The first, a one-dimensional advection-diffusion
equation, serves to verify our algorithm by comparing its predictions with an analyti-
cal solution and to analyze the effect of a finite number of particles on the adequacy
of the continuum model. The second, unidirectional leukocyte migration in the pres-
ence of chemoattractant and bacteria, accomplishes the same goals by comparing our
predictions with those provided by solving numerically a system of one-dimensional

chemotaxis-motility-reaction PDEs. The third problem deals with a more realistic



two-dimensional setting, which represents leukocyte migration towards a wound. Main

conclusions drawn from our study are summarized in Section 2.3.

2.1 METHOD

Small(Finite) number of molecules compared with large number of inducing
molecules invoke the need of hybrid model based on particle method, stochastic simu-
lation by transferring Eq.(2.25a) ~ Eq.(2.26) into the discrete model. In chemotaxis-
motility-reaction sytem, chemo-attractants are inducing molecules and computed in
the continuum scale using mesh-based PDE model though bacteria and leukocytes
are solved by discrete model. Number of bacteria in each mesh element has effect on
the chemo-attractants and chemotaxis velocity of leukocyte is determined by the con-
centration and the concentration gradient of chemo-attractants where leukocytes are
located. Position of each bacteria molecule and leukocytes molecule is updated by the
random motility(u, or ) and/or by the chemotaxis velocity. Bacteria and leukocytes

react when they are close and collide each other.

2.1.1 Stochastic method

In the deterministic chemotaxis-motility-reaction systems of continuum model,

different time scale among three phenomenon makes operator splitting applied. Chemo-

10



taxis and motility are solved explicitly and (stiff) reaction is solved implicitly [12].
The reaction-diffusion system using stochastic method [4] is modified in our hy-
brid method because of chemotaxis. Two different pheonomenons, chemotaxis-motility
and reaction are calculated separately. In our system, bacteria undergo reaction-
diffusion system though leukocytes do chemotaxis(advection) — motility(diffusion) —
reaction. Chemotaxis is solved using chemo-attractants’ concentration and gradient
of chemo-attractant and motility is solved using Brownian motion. And (modified)
Gillespie method is utilized to solve reaction assuming that bacteria and leuckocytes

are well-mixed in a same mesh-element.

Operator splitting method

Operator splitting algotithm [13] to leukocytes chemotaxis-motility-reaction is

= VI =V V- (VL) (2.1a)
ac” /! "
5 = 9o+ aB")C (2.1b)

during the time interval [t,t + At]. Here C'(t) = C(t) and C"(t) = C'(t + At), so that
C"(t) = C(t + At). Compute the position of i—th cell of j—th kind(j = 1 for bacteria

and j = 2 for leukocytes) at time t + At as

XI(t 4 At) = XI(t) — VIAL + \/2p;Até (2.2)

11



where At is time step to update new position. V. is the chemotactic velocity vector in

each direction only for leukocytes, which is V. = V¢(a,Aa). £ is a vector of random

variables with normal distributed in each direction to represent Brownian motion.
And we assume that bacteria and leukocytes are well-mixed states and they

undergo reaction process by Gillespie method in Eq.(2.5)-Eq.(2.6).

Stochastic Simulation Algorithm : Reaction

Bacteria(B) in the wound site is reproduced with the growth rate, k,, leukocyte(C)
is died with the natural dying rate, gy We assumed bacteria and leukocyte died at the

same rate of k; and g;.
BY¥oB  c%¢  Bic (2.3)

The reaction between bacteria and leukocyte needs no activation energy (diffusion-
controlled reaction) within effective radius (r, 4+ ) and the reaction rate constant k,
is

kg = 4m(y + ) (ry + 1) X Avo x 10? (2.4)
where p, and p are the motility coefficient of bacteria and leukocyte. And r, and r. are
radius of theirs. Awvo is the Avogadro’s number. Reaction between the concentration

of bacteria(B) and that of leukocyte(C) is implicitly solved by the Newton-Raphson

method.

12



Gillespie multi-particle (GMP) method [14] is one of most popular method to
solve chemical reaction with diffusion. But we implement Brownian dynamics instead
of cellular automata and stochastic simulation analysis(SSA) due to better accuracy.
We discretize our domain into m cells and assumed that bacteria particles and leukocyte
particles were well-distributed within a cell. k—th cell (k = 1,---,m) has n} bacteria
cells and n* leukocytes cells respectively. Two random variables, r; and 7y are uniformly

distributed in [0, 1]. The continuous random value 7, is reaction time step within At.

1 | ( 1 ) —Inr
T = ——— N e g
B = gk 1 a ’

sum sum

Jj—1 J
Z aj/ S 7"2a§um S Z (,lj/ (25)
i'=1 i'=1

where agyy, is the sum of all propensity functions(a;). After reaction time (7p, )

process, the system state, m, at time ¢ 4 75, is
n(t+ 1g,) = n(t) + v, (2.6)

where v, = (Anf, Ank)T.

Brownian Dynamics : Random motility

The population of bacteria or leukocytes is considered as random motility with
single-cell parameters(y, p respectively) [15], which acts as the diffusion coefficient of

single particle movement in our model.

0= ST, (2.7)

13



where T}, is persistence time which is the time period before cell changing direction,
and v is its maximum velocity. Random motility of bacteria, p, is very small and set
as 10715 m?/s.

Brownian dynamics of bacteria and leukocytes in our method is applied as ran-

dom walk with the motility[16]. Motility of bacteria in stochastic equation is

XB(t+ At) ) + /2 AtE, (2.8)

where At is the time step, ¢ is a standard Gaussian random variable and g, is the

random motility of bacteria.

Chemotaxis

Chemotaxis coefficient, x is computed as

XoaNb
— 0A

where v is the maximum velocity of a leukocyte. Chemotactic belocity V, is character-
ized by chemotaxis coefficient y and the gradient of A. And we define the oriental bias,

¢, which varies from 0 (purely random motility) to 1 (full oriented motility)[17][18].

aA XBN,,@A
V(A AA) = Yo = pp = 90 0A Ba 2.10

where Yo is chemotactic sensitivity, N, is the number of bound receptors on the

cell membrane. And Nj is related to concentration of chemo-attractant A(x,t) by

14



Michaelis-Menten relationship

NrA

— 211
"TK,+ A (2.11)

where Nt is the total number of cell receptors on the cell membrane and K is the
receptor dissociation constant.

And the stochastic equation of a leukocyte is
Xt + At) = XO(t) + VAL + /2uAtE, (2.12)

where V, is the chemotactic velocity and calculated from Eq.(2.10).

Initial and boundary condition

— d
. S —

J—

Figure 2.1: Schematic view of reflective boundary. Vertical lines : the location of each
boundary, Solid circle : starting location of particle, Horizontal solid line : trajectories
within the domain, and Dashed line : the trace after reflecting the boundary.

In our method, the initial condition of bacteria and luekoyctes, Eq.(2.29)-
Eq.(2.30) are transferred as initial number of each cell and they have the reflective

boundary condition.
XB(ty) = Fu, Fo=NE6(z — (x5 +¢)), (2.13)

XO(t) = Gr,  Go = NCO(z — (7 — ), (2.14)

15



where NP and N§ are the initial number of bacteria and leukocytes respectively at the
very small distance from the each boundaries which represent the skin surface and the
blood vessel. The reflective boundary which is in accordance with no flux boundary is
depicted in Fig.2.1. And the reflective boundary is assumed that there is a barrier at
the boundary which rebounds cells into domain with perfectly elastic collision. This
causes opposite direction of velocity with the same magnitude and no change for other

properties[19].

2.1.2 Continuum method : Chemo-attractants

Chemo-attractants behave continuous motion of diffusion and are produced
by bacteria. Relatively high concentration against the bacteria and the leukocytes
brings about continuum scale calculation to solve diffusion and reaction for chemo-
attractants. Implicit-Explicit method(IMEX) based on Finite Volume Method(FVM)
is implemented to obtain the concentration distribution of chemo-attractants, which is
described in 2.1.2. The concentration profile of chemo-attractants plays a key role as
determining the chemotactic velocity of leukocytes explained in Section 2.1.1, which
move toward higher concentration sites of chemo-attractants, the wound site.

The discretization in time and space of Eq.(2.34) in (4, j)-th element at n + 1
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time step is

n+1 n n+1 n+1 n+1
Ai,j - AZ,] _ AH—l] - Az 1,5
At Ax2
An+1 _ QAL _ gntl (2.15a)
7,7+1 2, 4,5—1 +l€ b
Ay2 P¥1,
_Sy-A?j_ll - SxA;H_ll] (1+2s; + 23y)-’42;_1
(2.15Db)

—s2 AT — sy ATTL = ALAY S + Atk by

where s, = fo and s, = iﬁt Timestep At is varied at every timestep, which is ex-

plained in Section 2.1.3. This discretization is composed of penta-diagonal matrix and
is solved by using the restarted Generalized Minimum Residual (GMRES) algorithm

120].

2.1.3 Time-step Decision

The proper time step is determined by considering chemotaxis, random motility
and reaction of leukocytes in every time step. First, time step comes from leukocytes’s

migration (random motility and chemotaxis) which chracterized by Péclet number

pe = ~Cmin _ ID (2.16)
M TC

where h,,;, is the smallest element-mesh size, and 7p and 7o represent different time
scales for random motility and chemotaxis respectively. Diffusion-dominated(Pe < 1)
or advection-dominated(Pe > 1) regime is determined by Peclet number. We keep

smaller time step between 7¢ and 7p as the drift time step, 7pr and make comparison
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this with the reaction time step.

Tpr = min{7p, 7¢} (2.17)

Reaction time step is the minimum of all k-th leukocyte cell from Eq.(2.5)

N
1
Tr, = ——, abm = a;(Xy) (2.18)

j=1
where X, is the state of X of k-th leukocytes molecule and a;(X}y) is the propensity
function for j—th reaction. We set up the minimum time step at each time step out of

whole domain.

T8™ = min Tk, wherek=1,---,m (2.19)
And its reaction time step is considered with the Damkohler number

TDR
Da _- —
Tmm’
R

where Tpgr = min (7¢, 7p) (2.20)
Drift time step, T7pg is minimum time during leukocytes’ migration between chemotaxis
and random motility.

We determine time step whether our model is reaction-controlled (Da >> 1) or
drift-controlled(Da < 1) regime at each time step considering the Damkéhler number.
This system would be homogenized well under drift-controlled regime which secures
time of reaction and we choose the time step as the drift time(Atg., = 7pr). If our

system is reaction-controlled regime, we should choose more time step size rather than

Atgiep = Tp™ considering small number of the bacteria molecule and the leukocytes
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molecule where it has reaction, or high speed of leukocyte around the source of chemo-
attractants. We set Atg, = 57pg with 0.5 < Da < 1.0 and Atge, = 107pr with
Da < 0.5 to procure enough reaction time[4] of firing reaction between bacteria and

leukocytes.

2.1.4 Algorithm

A detailed algorithm for the applied numerical method suggested above is shown

below.

1. For a given space dimension d and cell size Ax, calculate the diffusion time step

7p, =min{Ax}/(2D;d) of diffusing species i = 1,--- , M and let 7p =min{7p, }.

2. Initialize t = ¢,

3. While t S tf

(a) Define whether system is drift- or reaction-controlled at every time step.

i. Calculate Tpr through Eq.(2.16)

e (Calculate the distribution of chemo-attractant using the expected
time step. Use previous time step but diffusion time step for the

first time step.
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e (Calculate the chemotactic velocity of every leukocyte through Eq.

(2.10) for Pe
ii. Calculate TH'™ through Eq.(2.19)
iii. Calculate time step, Atg,, considering Da
(b) Let tog =t
(c¢) Perform the drift step(Diffusion-Chemotaxis) and the reaction step using
operator-splitting method.
i. Drift step with time-step Aty
e Chemo-attractants diffusion-reaction using IMEX

e Diffusion for bacteria and leukocytes using Brownian dynamics to

advance.
e Chemotaxis using the calculated chemotactic velocity to advance
species.
ii. Reaction step for each cell
o While (t —toq) < Aty
Calculate reaction time step 75 using Eq.(2.5) within Atye,.
- If 7p < Atgep, update the state vector through Eq.(2.6)

- Otherwise, do not update the state vector

end while
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i1i. Go to next cell to calculate reaction

(d) Let t = tyq + Atstep for all cells

end while

2.2 RESULTS

Hybrid method is studied in one dimensional case and two dimensional case. In
one dimension case, analytic solution and stochastic solution in advection-diffusion are
compared in various Peclet number in 2.2.1 and show our method fits well. In 2.2.2,
relatively large number of leukocytes cells and bacteria cells are applied and the results
of chemotaxis-motility-reaction are compared with continuum scale by normalizing the
initial input number of them. Continuum method fails when applied small concentra-
tion but hybrid method shows better result with the small number of cells(or small
concentration) in the view of calculation time. We show more realistic case study in
two dimension case by domain size from the skin to capillary vessel (about 1mm) and
multi-site input points of leukocytes at the capillary in section 2.2.3.

We solve random motility(diffusion)-chemotaxis(advection) using TVD (2nd or-
der) [21] for chemotaxis and reaction using Netwon Raphson method in continnum

scale [22]. Though Eq.(2.8)-Eq.(2.12) are used to calculate position of bacteria and
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leukocytes and Eq.(2.5)-Eq.(2.6) are used for reaction in hybrid method. Parameters

are reported in TABLE 2.2.

2.2.1 Comparison between analytic solution and stochastic so-

lution for Diffusion-Advection

Comparison of the deterministic solution and stochastic solution is shown semi-
infinte domain, Q2 € [0occ]. Deterministic solutions have a Dirac delta type point source
as an initial condition and no flux boundary condition at x = 0 and goes to zero at

infinite domain.

ou ou 0%u

i + Ve = D@, z € [0, oo, (2.21)
IC: u(z, ty) = do(z),
BCs: u(0,t) + DM =0, wu(oo,t)=0

ot

We transfer continuum equation of advection-diffusion equation(Eq.(2.21) into
stochastic equation which has a reflective boundary condition(2.1) at # = 0 and make
particles locate very close to this boundary at ¢t = O0s for n particles. The position of

each particles are described with Brownian dynamics and are transferred with velocity,
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Figure 2.2: Deterministic solutions have Dirac-delta type point source and stochastic
solutions are normalized with initial number of paticles. Results are shown at t = 500s,
= 1000s, and t = 1500s with different Peclet numbers.
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C'(t + At) = C'(t) + V2DAtE + vAt (2.22)

C'(0) =€, wheree< 1

where i = 1,--- ,n. Diffusion coefficient, D is 1075m?/s and the velocity, v is varied
to see whether it is diffusion-dominated or advection-dominated and set cell Peclet
numbers as

A
Pe="20 (2.23)

The cell Peclet number represents diffusion-dominated(Pe < 1),
and advection-dominated( Pe > 1). 0.5, 2.0, and 10.0.

The comparison results between analytic solution and stochastic solution i shown
in figure 2.2. We use 10000 particles to compare the results with analytic solution.
Our method using Brownian Dynamics and explicit velocity update works well. We
set Ax = 0.01m and normalize number of particles in each cell with total number of
initial particles. Our method works well regardless Peclet number.

The error is analyzed with L,—Norm with respect to number of total input

particles.

Ly-Norm = | Y “(c(i) — C(i)?) (2.24)

i=1

where ¢(7) is analytic solution at z = (i — 0.5)Az and C(i) is normalized number of

particles at i—th cell which is (i — 1)Az < z < iAz. Our method is not related to cell
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size directly but it is neccessary to set up cell size to count number of particles inside.
The error decreases with increasing the number of particles shown in figure 2.3.
We take Lo—Norms for five realizations and take the average values for different number

of particles such as 27 x 1000 where p =1,2,...,8.

-1

10 T
—e— @500s
—e— @1000s
—e— @1500s
£
2 107
N
-
-3
10 A A A
10° 10° 10°
Number of particles
Figure 2.3: Error Analysis at ¢t = 500s, t = 1000s, and t =

1500s:  Lo—Norms are shown in log-log scale when number of particles are
1000, 2000, 4000, 8000, 16000, 32000, 64000, and 128000

2.2.2 Hybrid method results in one dimensional behavior

Here we are interested in the chemotactic behavior of leukocytes caused by the
distribution of chemo-attractants and the reaction between the bacteria and leukocytes.
Keller and Segel [8] considered a 1-D spatial domain as Q € [z, ;] = [0, 107%m] and

a time domain as T € [to,t;] = [0, 3000s]. Let C(x,t) denote the concentration of

25



®
T T T T D012 T T T T T
o
Chemoattractant @ 646.7s = Bactria deterministic @ 646.7s
S 09\ = = = Chemoattractant @ 1010.6s | s = = = Bacteria hybrid @ 646.7s
= ‘\ s o014 = Bactria deterministic @ 1010.6s
§ 0.81 \ = ‘o0 Bacteria hybrid @ 1010.6s
8 A\ 2 = Leukocyte deterministic @ 646.7s
s 0.7 ‘\ g 0.08t = = = Leukocyte hybrid @ 646.7s
g Ay = == Leukocyte deterministic @ 1010.6s
£ 061 ‘\ s 1 e Leukocyte hybrid @ 1010.6s
2 . 5
G 05 ~ .0 0.06
— . ]
o . ©
c 04 ~ c
S ~ @
= . O 0.04f
® 03 S S
c > °
9 02 Sl 3
g SO N 0.02f
O o1f Sea TEB
0 s S o -
1 2 3 4 5 6 71 8 9 z 2 5
Space(m) x10™ Space(m) X107
(a) Chemo-attractant (b) Bacteria and Leukocyte

Figure 2.4: Results in 1D simulation at ¢ = 646.7s and t = 1010.6s; (a) Chemo-
attractants concentration (b) Bacteria and leukocyte in normalized value with respect
to initial values. Solid line : continuum scale, Dash-dot : hybrid-method.

the leukocytes, B(z,t) the concentration of bacteria, and A(x,t) the concentration of
chemo-attractants. Leukocytes move toward higher concentration of chemo-attractant
through chemotaxis. It naturally dies and is degraded with contact to bacteria after

digesting it.
oC(x,t)  O0Je(x,t)

5 = on  Wo— ¢iB(x,t))C(x,1), (2.25a)
Jo(z,t) = _f(g;) +C(x,t)X%’ (2.25b)

where p is the random motility coefficient of leukocytes and x is the chemotaxis coef-
ficient related to the strength and the gradient of concentration of chemo-attractants.
They are removed by the natural death with the rate of gy and by the interaction
with bacteria with the rate of g; in the cell. We assume the interaction rates between

bacteria and leukocytes, which k4 and ¢; are the same.
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Bacteria randomly move in the cell. They reproduce and are removed if they

are caught by leukocytes.

oB(z,t)  0°B(z,t)
a1 a2

+ (kg — kiC(x,t))B(z,1), (2.26)

where 1, is random motility coefficient of bacteria. k, and k; are respectively the
growth rate and the consumption rate of bacteria when they meet leukocytes.
Chemo-attractants diffuse into cell at the wound site and is produced by the

result of bacteria metabolism.

0A(z,t) DazA(a:, t)

ot 0x?

+kB(z,1), (2.27)

where D is the diffusion coefficient and k,, is the rate of production.

Table 2.1: Computation time for continuum model and hybrid model with different
number of leukocytes and bacteria with same population each. Twenty realization is
conducted to have mean CPU time and variance.

Mean CPU time(s) Variance

Continuum Model 6.4597132 0.050070843766150
10 particles 0.2808018 0.001460178720060
100 particles 1.0296066 0.015672598656790
250 particles 3.3602622 0.016801690465362
500 particles 5.7595568 0.016198336129357
1000 particles 14.052570 0.040144665600025
5000 particles 25.263758 1.430611099335806

We impose boundary conditions and initial condition assuming that the skin
surface locates at x* = x5 and that the capillary transporting blood or the venule is
found at distance x = z; from the skin surface. There is not chemo-attractant at

t = ty, though bacteria and leukocyte locates very close to the skin surface and the
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blood vessel respectively.

Az, o) =0, (2.28)
B(ZE, tO) - fma fz - 505@ - (xs + 6))7 (229)
C(JT,t()) = Gz, 9z = C[)(S(ZL‘ - (xf - E))? (230)

where € is very small value, 0 < € < 1. We assume that bacteria remain on the finite
domain with very small motility compared with that of leukocytes’(u, < p). This
leads us to assume that chemo-attractants have the constant concentration at r = x4

though they diffuse into the vessel at x = xy.

oB(z,,t) oB(xy,t)
o =0, o =0, (2.31)
8C(xs,t) . (9C(a:f,t) .
5= =0, S =0, (2.32)
t
Az, t) = Ao, % = hoA(z 1), (2.33)

Eq.(2.31) and Eq.(2.32) imply that bacteria and leukocytes neither enter nor leave
a domain of z € (z,, x5) and these boundary conditions are translated into reflec-
tive boundaries explained in section 2.1.1. Initial number of bacteria molecules and
leukocytes molecules are By = 8000, and Cy = 8000. And initial concentration of
chemo-attractans is Ay = 107> M at x = x,. The results of hybrid method is compared
with continuum method solved by finite volume method(FVM) using operator-splitting

method such as chemotaxis-motility step and reaction step. Total value diminishing
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method is used for chemotaxis(advection) and implicit method for motility(diffusion).
And Newton-raphson method is used to solve (stiff) reaction step.

In both method, concentration and existing number of the bacteria and the
leukocytes are normalized with initial concentration and initial number of input cells.
The comparison result is shown in Fig. 2.4. Leukoyctes move randomly due to random
motility p and toward the location of higher concentration of chemo-attractant with
chemotaxis process. Bacteria and leukocytes meet around 1.5 x 10~* from the wound
site and are removed. Here our hybrid model shows exactly same as deterministic
model with oscillation owing to stochastic effect. The random motility of bacteria, p,
is set as 10712 to see the location of reaction occurrence clearly where leukocytes meet
bacteria.

In one dimensional model, we measure the calculation time until 3000s using In-
tel(R) Core(TM) i7-2600 CPU @ 3.40GHz. Mean CPU time and variance are calculated
from twenty realizations. Calculation time of continuum scale and different initial num-
ber of particles are reported in Table 2.2.2. In continuum model, space is discretized
with two hundred elements(cells) and time step is set as min{Ax?/2D, Az/|v|} con-
sidering Peclet number. Hybrid method is valuable under small number of particles

and our method is much faster in the view of computational time.
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Table 2.2: Parameters for diffusion, reaction and chemotaxis

Notation | Description Value[Unit]
D diffusion coefficient of chemo- | 1078 [m? - s71]
attractant
Ly random motility of bacteria 10715 [m? - s71]
i random motility of leukocyte calculated in Eq.(2.7)
kp production rate of bacteria 107° [s71]
kg generation rate of bacteria 3.47 x 107° [s71]
kq(= g1) | decay rate of bacteria/leukocyte | calculated in Eq.(2.4)
90 decay rate of leukocyte 1.65 x 1079 [s71]
Avo | Avogadro’s number 6.022140857 x 10 [mol™!]
Ty radius of bacteria 0.8 — 1.2 [um)]
Te radius of leukocyte 8 — 20 [um]
T, persistant time 300 [s]
v chemotactic velocity 1.2 [um - s71]
Xo chemotactic sensitivity 4.0 x 1078 [s71]
Nr total number of cell receptors on | 5.0 x 10 []
the cell membrane
Ky receptor dissociation constant 2.0 x 1078 [s71]

2.2.3 Hybrid method results in two dimensional behavior

Concentrations of chemo-attractants(A), bacteria(B) and leukocytes(C) are de-
lineated by chemotaxis-motility-reaction equations in the similar method of one dimen-
sional model with two spatial dimensional domain, 2 € [z,,z] X [y, , yf] and temporal

dimension, t € [ty ,tf].

aA((;;’ Y~ DA, ) + BB (2.34)
88(5;, D B 1)+ (ky — RaCx 1)B(x, 1) (2.35)
acg;, Do 9 at) ~ (90— 0iBlx 0)C(x ), (2.36a)
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Jo = —pVC(x, 1)+ C(x,t)Vo(A, AA), (2.36b)

K4+ A 0A

X0Tx A)2 Oz;
VoA, ) = (v gle = v e (2.36¢)
T XOTR, 7 A oz

where V. is the chemotaxis velocity and is computed in each coordinate. v; and ¢ is
the maximum velocity and the oriental bias in each direction of coordinate respectively.
The initial condition of bacteria is that all bacteria cells(By) locate at the same position
nearby the skin surface and that of leukocytes is that there are three different locations
with the number of them(Cy1,Cp2, and Cp3) underneath the blood vessel. The distance

of initial locations are assumed that they are two or three endothelial cells apart.

A(l‘, Y, tO) = 07 (237)

B(JT,y,to) = f(l',y),

f(z,y) = Bod(x — 2B0)0(y — Yno), (2.38)

C(ﬂ?,y,to) - 9($7y)7

Zcm — zci)0(y — yei), (2.39)

where the initial position of bacteria (xgo, ypo) is (0.5L,, ys+¢€) and the initial positions
of leukocytea (:1:017 yCl>7 ('TC% yCQ) and <x037 3103) are (O3L:L"7 Yy — 6)7 (05LI7 Yy — 6)7
and (0.7L,, ys — €) respectively. € is very small value, 0 < € < 1 and L, is the length

of domain, L, = 2y — x,. We assume that bacteria remains on the finite domain with
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very small motility compared with that of leukocyte’s(u, < 1) same as one dimensional
model. We impose the dirichlet boundary condition of chemo-attractant at (0.5L,, ys)

though it diffuses into the vessel at y = y,. Leukocyte is assumed to have no flux

boundary.
OA(xs,y,t) 0A(xs,y,t) OA(x1,ys,t)
—0, —0, —0,
ox ox oy
W = h,A(x,yr,t), A(0.5L,,ys,t) = Ay (2.40)
aB(I&yvt) -0 as(xf7y7t) -0
ox 7 ox -
0B(x,ys,t) 0B(x,ys,t)
= _ = 241
dy 0 ox 0, ( )
(9C(acs,y,t) 0 GC(xf,y,t) 0
ox - ox -
OC(z,ys,t) IC(x,yy,t)
= —_— = 2.42
oy 0, ox 0, ( )

where ;1 is 21 € [z4,0.5L,) U (0.5L,, z¢]. Concentration profile of chemo-attratants is
solved by mesh-based continuum model using Finite Volume Method(FVM). Bacteria
randomly work with the random motility(u,) and leukocyte drift with the random
motility and the chemotactic velocity (V) which is computed from the concentration
of chemo-attractants and the concentration gradient of it considering the location of
each leukocyte. And they undergo the reflective boundary condition and the initial
condition with certain number of them(NEZ, N§, NE, NY). We use Gillespie Multi-

Partilce method solving reaction within the range of properly assigned region.
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Figure 2.5: Results in 2D simulation; (a) Traces of five different particles. Thicker
dots show at the time of 0.0s, 505.04s, 1010.1s, 1010.1s, 1501.5s, 2006.5s, 2497.9s. (b)
Distribution of chemo-attractant at 1010.1s. (c¢) Number of leukocyte with respect to
time.
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The behavior of leukocytes chemotaxis-motility-reaction with bacteria under two
dimensional hybrid method is formulated in Eq.(2.34)-Eq.(2.36¢). Its initial condition
is Eq.(2.37)-Eq.(2.39) and boundary condition is Eq.(2.40)-Eq.(2.42) under spatial
domain, Q € [z, ¢ X [ys, y¢] and temporal dimension, ¢ € [ty, tf]. And we impose the
domain as [z, z;] = [0, 4 x 107*m], [ys, ys] = [0, 10~*m] and the dirichlet boundary
condition of chemo-attractants as Ay = 107°M. The profile of chemo-attractants is
solved in continuum scale with Eq.(2.15b). Chemo-attractants diffuse into cells and
leak out with the slope of h, at y = y; where capillary vessel locates. Bacteria move into
cell with much smaller random motility (1) than that of leukocyte’s(p). Bacteria move
little in our time scale while leukocytes transfer from the capillary vessel to the wound
site. Bacteria could be reproduced with the rate of k, and removed by leukocyte’s
metabolism. Leukocytes attach and roll over the vessel wall. And they transmigrate
through endothelial cells of the capillary vessel and chemotaxis to the wound site during
the inflammation process. We focus the process after transmigration of leukocytes.
Leukocytes initially locate at the y = y; considered as the capillary location, and
different positions in x-direction.

Results of two dimensional hybrid method are shown in Fig. 2.5. Lekocytes
move to the wound site with different path ways though they start at the same po-
sition due to its random motion. But all the particles move toward to the source of

chemo-attractants with chemotaxis motion. Five different colors represent the traces
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of different particles and bigger solid dots are at the position at the certain time step.
When a leukocyte coincides with a bacteria, both undergo reaction with GMP method.
We control the time step considering Pe and Da with shown algorithm in section 2.1.4.
This result shows that the movement of any leukocyte inside the domain with any initial
position follows the chemotactic behavior with respect to the distribution of chemo-
attractants and the gradient of it. And they have good agreement of reaction process
with GMP method. The novel hybrid algorithm of ours could perfectly describe the

process of the lekocyte’s behavior of small concentration.

2.3 SUMMARY and CONCLUSION

Chemo-attractants mainly diffuse into skin or wounded cell from wound site
where bacteria invade. And leukocytes detect the gradient of chemo-attractant’s con-
centration and move to higher concentration where bacteria to be located. The motility
of bacteria is much smaller than that of leukocyte’s, and this smaller motility causes
bacteria to move little within same time scale of leukocyte’s movement. Leukocytes
decrease due to dying during inflammation process not only because of natural dying,
but also phagocytosis action by moving to the wound site and engulfing and degrad-
ing bacteria. Here we assumes one leukocyte could kill only one bacteria. Bacteria

decrease after leukocyte’s phagocytosis action but increase because of duplication as
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well. These process need multi-scale algorithm due to its wide range of time scale and
length scale.

Wide range of spatial or temporal simulation in complex biological problem
cause a big burden of computational capacity and time when we use continuum scale
modeling about an accuracy, especially handling small concentration problems. We de-
velop hybrid algorithm implementing continuum and stochastic method for chemotaxis-
motility-reaction problem. Leukocytes and bacteria move randomly and the quantity
of random motion is solved using Brownian motion. Chemotaxis is a form of advection
and it is expressed as particle tracking dependent on the concentration and the concen-
tration gradient of chemo-attractant which are solved in continuum scale. Reaction is
solved by using modified Gillespie multi-particle method considering the chemical mas-
ter equation. We consider the cell Peclet number to determine diffusion- or advection-
dominated scheme. Every particle could have different velocity and it is possible to
have shorter time than diffusion time step and we need to choose shorter time step to
decide reasonably after making comparison with reaction time step. And Damkdohler
number to take account for the time scale between transferring phenomenon(random
motility and chemotaxis) and multi-particle reaction. Our algorithm produces good
result when we use many particles compared with continuum model but takes longer.
But we focus small number or small concentration and it is much faster than contin-

uum model and show the stochastic character of it. We suggest more realistic and solid
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model in chemotaxis-motility-reaction by hybrid model.

Um, K. and D. M. Tartakovsky, “Hybrid models of chemotaxis with application to

leukocyte migration”, in preparation
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Chapter 3

Global sensitivity analysis in
multi-scale problem with

independent input variables

Pore- and Darcy-scale models provide two distinct descriptors of flow and trans-
port in porous media. The former approach relies on relatively few modeling assump-
tions but requires the detailed knowledge of a material’s pore structure and is com-
putationally prohibitive unless the number of pores being simulated is small. The
latter approach invokes the concept of a representative elementary volume, treating
a porous medium as an effective continuum without distinguishing the pore space

and surrounding solid matrix. While orders of magnitude faster to solve than their
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pore-scale counterparts, Darcy-scale models are grounded in a number of simplifying
assumptions whose validity is often questionable [23, 24].

Upscaling techniques, such as homogenization via multiple-scale expansions [25]
or the method of volume averaging [26], allow one to ascertain the applicability of
Darcy-scale models both by identifying the necessary and sufficient conditions under
which their foundational assumptions hold and by relating parameters in these models
to pore geometry and operating regime. While many of these approaches formally place
restrictions on the regularity of a pore structure (e.g., by requiring it to be periodic),
they often yield remarkably robust predictions of macroscopic properties of materials
with irregular pore structures with equivalent microscopic characteristics (e.g., porosity,
pore-size distribution, connectivity) [25]. Recent examples of such studies include [27,
28, 29, 30], among many others. By mapping microscopic material properties onto
their macroscopic counterparts, upscaling approaches of this kind instill confidence in
predictions of transport processes in natural (e.g., geologic) porous media [31, 32] and
facilitate design of new metamaterials [33, 34]. For example, since porous electrodes
with high surface area have high energy density and, hence, high electrical double-layer
capacitance (EDLC) [35], much of recent effort focused on synthesis of nanostructured
electrodes with high surface area [36]. However, as a specific surface area of nanoporous
materials continues to increase, their EDLC cannot be generated at high power density

if ions in the electrolyte cannot diffuse fast enough. Attempts to increase ion diffusion
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by altering electrolyte molecules or salts were shown to adversely change the intrinsic
chemical stability [37]. Instead, an observation that ordered nanopores increase ion
diffusion [38] suggests a multi-objective optimization problem, in which specific surface
area and diffusion coefficients are two quantities of interest.

One of the least studied aspects of multiscale simulations of transport phenom-
ena in porous media is sensitivity of their results to changes in pore geometry. Yet,
high sensitivity would undermine the generality of a detailed pore-scale investigation,
based on either computer-generated or imaged pore spaces of a porous material. Like-
wise, a metamaterial’s design that is excessively sensitive to parameters controlling its
pore structure is unlikely to be of much practical use. Homogenization-based relation-
ships between pore-scale parameters and their Darcy-scale counterparts facilitate both
sensitivity analysis (SA) and uncertainty quantification (UQ) in this multiscale setting.

A prevalent UQ framework treats uncertain input parameters as random vari-
ables. Within this paradigm, sensitivity of a model’s prediction to input parameters
can be quantified in terms of relative contributions of variances of the input parameters
to the prediction’s variance. Such an approach to SA is often referred as analysis of
variance or ANOVA; it is global in the sense that, unlike its local counterparts, it does
not require identification of a base set of parameter values which is then sequentially
perturbed on at a time. ANOVA is well suited for homogenization-based multiscale

modeling since a base set of parameter values either is unknown/unknowable due to
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pore-scale heterogeneity of natural (e.g., geologic) materials or has to be identified by
solving a shape optimization problem (in the case of material design).

We develop these ideas in the context of multiscale modeling of reactive solutes
diffusing through a (nano)porous material, while sorbing to its solid matrix. Pore-
and Darcy-scale formulations of this problem are provided in Section 3.1. A global SA
(GSA) of two macroscopic material properties, effective diffusion coefficient and effec-
tive sorption rate, to microscopic pore-geometric parameters is described in Section 3.2.
In Section 3.3 we provide simulation results and discuss their implications for material

design. Main conclusions derived from our study are summarized in Section 3.4.

3.1 Problem Formulation

Consider a volume V = P U S of a porous material, which comprises the fluid-
filled pore space P and the solid matrix S; the (multi-connected) fluid-solid interface is
denoted by I' = PN S. Following the standard practice in homogenization theory, we
assume that the volume V consists of a periodic arrangement of unit cells Y = P, USy
with the pore space Py, solid matrix &, and the interface I';;. Figure 3.1 provides a

typical example of hierarchical nanoporous materials that exhibit such a structure.
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Figure 3.1: Schematic representation of a hierarchical nanoporous material (left) and
its unit cell (right).

3.1.1 Pore-scale model

Let ¢(x,t) [mol/L?] denote the solute concentration at a point x € P and time

t. Its evolution within the pore space P is governed by a diffusion equation

dc

a—V~(DVC), xeP, t>0, (3.1)

where the spatial variability of the diffusion coefficient D(x) [L2/T] accounts for the
possibility of having Fickian diffusion in mesopores and Knudsen diffusion in nanotubes

(see Fig. 3.1). Equation (3.1) is subject to a uniform initial condition
c(x,0) = cip, x € P. (3.2)
A boundary condition at the fluid-solid interface I' with unit normal vector n(x) is

constructed from mass conservation, such that the normal component of the solute
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mass flux, —Dn - V¢, is balanced by the rate change of absorbed solute,

)
—Dn-Ve= qma—j, xel, t>0, (3.3a)

where ¢(x,t) = qus(x,t) is the adsorption amount per unit area of the I' [mol/L?], ¢
[mol/1?] is the maximal adsorption amount, and s(x, t) is the fractional coverage of T'.

The latter is assumed to follow Lagergren’s pseudo-first-order rate equation [39, 40],

ds

% = (Seq — 9), (3.3b)

where 7 [1/T] is the adsorption rate constant and the equilibrium adsorption coverage

fraction seq satisfies Langmuir’s adsorption isotherm

B Ke
Sea = 1+ Kec

(3.3¢)

with the adsorption equilibrium constant K [L3/mol].

3.1.2 Darcy-scale model

Darcy-scale models treat a porous material as a continuum, without separating

fluid and solid phases. Thus, a volume-averaged concentration,

¢
C6D = 1 / (§,1)dg = ”u” / (€06 = o / &.)de,  xeV,

Pu(x) P (x)

(3.4)

is defined at every “point” x of the material V. Here, || - || indicates the volume of
the corresponding domain, and ¢ = ||Py||/||V|| = ||Pull/||U]|| is the porosity. Gener-

alizing the homogenization via multiple-scale expansions in [33] to account for spatial
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variability of D, it is easy to show that the Darcy-scale solute concentration C(x, 1)

satisfies a reaction-diffusion equation

KC

14+ KC’ (3.5)

oC
625@ =V- (DeffVC) — OGmVeft

where “the effective rate constant” ~.g [1/L] is defined in purely geometric terms,

(3.6)

while the effective diffusion coefficient Dg, a second-rank tensor, depends on both pore

geometry and pore-scale processes. Specifically, it is computed as

1
D.s = W /(I + VEXT)dE, (3.7a)
Pu

where I is the identity matrix and the closure variable x (&), a U-periodic vector defined

on Py, satisfies a Laplace equation
Ve (DVex) =0, €€Py (3.7b)
and the normalizing condition

1 _ C
0= P/ x(€)d¢ =0, (3.7

Equation (3.7b) is subject to the boundary condition along the fluid-solid segments
FZ/h

n-Vex=-n-1 £ ely; (3.7d)
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and the U-periodic boundary conditions along the remaining (“fluid”) segments I'f of
the boundary of P,. In the case of the hierarchical nanoporous material shown in

Figure 3.1, these take the form

Xl(—a,&) = Xl(a,&) =0, g—g(fbo) = 2_2(51,5) =0, (3-76)
and
x2(£1,0) = x2(y1,0) =0 %(—a §r) = %(& &) =0 (3.7f)
) ) ) 8&1 ) 851 ) )

where a = Rcosf and b = 2R + [. Here, R is the mesopore radius; 6 is the angle
of overlap between any two adjacent mesopores in a nano-tunnel; and d and [ are,
respectively, the diameter and length of nanotubes which serve as nano-bridges between

adjacent nano-tunnels.

3.2 (Global Sensitivity Analysis and Uncertainty

Quantification

Equations (3.6) and (3.7) map the pore-structure parameters p = {R,0,d,l} =

{p1,- -+ ,ps4} onto the macroscopic material properties,

Dt = Der(p), Vet = Yest(P)- (3.8)

These maps allow us both to investigate sensitivity of the macroscopic parameters to

variations in the pore geometry and to relate uncertainty in the latter to uncertainty
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in the former. We treat the uncertain parameters p; (i = 1,---,4) as statistically
independent random variables with probability density functions (PDFs) f,,, so that
the joint PDF of p is f, = [] fp,- This simplifying assumption is made to facilitate the
subsequent variance-based sensitivity analysis, even though the geometrical properties
characterizing a pore structure are generally interdependent.

We present our global sensitivity analysis (GSA) and uncertainty quantification
(UQ) for the longitudinal diffusion coefficient D'} = Dy,(p). All the other functions of

p in (3.8) are treated identically.

3.2.1 Global Sensitivity Analysis

Thorough expositions of the GSA can be found in several monographs [41, 42],
here we briefly describe it in terms relevant to our study. The (explicitly unknown)

function Dy, (p) has a unique expansion into summands of p = {py, -, ps}, e.g. [43],

4 4
Dy (p) = Do + ZDi(pi) + Z Z D;;(pi,pj) + -+ + Diga(p1, - -+ ,pa), (3.9a)
i=1

i=1 j<i
where
Dy = /DLdp; D; = /DLHdpk — Dy, i>1; (3.9b)
R4 R3 ki
Dij = /DL H dpk — DO — Dz — Dj, (39C)
R2 k’-#Z?]
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etc. By construction, for all summands,

/Dl1lsdp2k =0 and /‘D’il-"isDjl“'jrdp =0. (310)

The ensemble mean and variances of Dy (p) are defined as

(Dy) = / Du(p))fo(p)dp' and o, = / D)) fo(0)dp — (DL (3.11)

R4

respectively. Substituting (3.9) into (3.11), while accounting for the orthogonality

condition (3.10), yields the so-called analysis of variance (ANOVA) decomposition,

dir dir
oh, = Z oL+ D ot ol (3.12)
i=1 j<1u

where the partial variances o2, are computed as

Lo

03, / D . (P, - pi) fo(p')dp'. (3.13)

The Sobol’ sensitivity indices [44] are defined by dividing both sides of (3.12) with o7, ,

such that the first- and second-order Sobol’ indices are defined as

o2 2,
S,L' = 21 and Sij =5 (314)
UDL O-DL

respectively. The total Sobol” sensitivity index, which quantifies the total effect of
uncertainty in the 7th parameter p; on the overall uncertainty in the macroscopic pa-

rameter Dy, is

T, = —Za (3.15)

DL a€cl;
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where [; is the set of all subset of {p1,--- ,ps} containing the ith parameter.

The statistical moments in (3.11)—(3.15) can be estimated with, e.g., Monte
Carlo simulations (MCS) consisting of Nycs deterministic solves of (3.7) in which
realizations p; (i = 1,--+ , Nycs) of the pore-scale parameters p are drawn from the

distribution f,, such that

Nnces Nucs
9 1 1

Op, = Nares — 1 Z D} (p;) — (Dr), (Dy) Z Dy, (pi). (3.16)

i=1

~ Naos
This MCS procedure has a slow convergence rate of ~ 1/4/Nycs. One alternative,
which we pursue in this study, is to use the stochastic collocation method [45]. This
approach to GSA is nonintrusive, in that it can be seamlessly combined with any
solver used to solve deterministic realizations of (3.7), e.g., the finite element method
in COMSOL used in our simulations. We deployed the GSA implementation in the

software DAKOTA [46].

3.2.2 Uncertainty Quantification

Uncertainty in the pore-scale parameters p gives rise to uncertainty in the
macroscopic parameters, e.g., Dy,. The latter is expressed in terms of its PDF fp, (n),
which is computed as follows. First, we deploy DAKOTA [46] to construct a surrogate

model of Dy,(p) by using a (generalized) polynomial chaos expansion (PCE) [47, 48, 49],
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truncated after Npcg terms,

Npcg—1

Dy(p) = Z D;W;(p) ~ D¥;(p), Npcg — 1 =
i=0

=0

(n 4+ Npar)!

1
n! Npar! (3.17)

where n is the polynomial degree, ¥;(p) are the orthogonal multivariate polynomials
and D; are the expansion coefficients. The set of W;(p) is derived from the Askey
scheme of hypergeometric orthogonal polynomials [48] to match continuous PDFs of
Npar = 4 parameters p, specifically, since in the simulations reported below each pj, (k =
1,---,4) follows a uniform distribution, ¥;(p) are multivariate Legendre polynomials.
Convergence properties of (3.17) have been the subject of many studies [48]. Figure 3.2
demonstrates the convergence of estimates of the ensemble means (Dy,), (Dr), and (Yes)
in terms of both the polynomial degree n and the number of samples used to computed

the means from (3.17). Based on these results, we use n = 4 (Npcg = 626) and

5

=

= Np, = N, = 10® samples in the simulation results presented below.
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Figure 3.2: Ensemble means of the normalized longitudinal diffusion coefficient,
(Dy,)/D, normalized trnasverse diffusion coefficient, (Dr)/D and rate constant, (Veg).
The means are computed from (3.17) with the second (n = 2), third (n = 3) and fourth
(n = 4) degree polynomials, using respectively Np, , Np, or N, , realizations of the mu-
tually independent and uniformly distributed microscopic parameters p = {R, 0, d, }.

Second, we use (3.17) to compute Np, samples of Dy; = Dy(p;), with i =

49



1,--+,Np,, corresponding to Np, realizations of the random parameter vector p.

Then, fp, (1) is computed with a kernel density estimator (KDE),

S DL@)T 7

1
= E ex
Jou(0) Np, V2rh? = p{ 2h?

(3.18)

where h is the kernel bandwidth. Since uncertainty in the macroscopic parameters
in (3.8) stems from their dependence on the same set of uncertain pore-scale parameters
p, they are expected to be correlated. Joint PDF's of the macroscopic parameters, e.g.,
the longitudinal (Dy) and transverse (D* = Dr) components of the effective diffusion

coefficient tensor D.g, are estimated with a KDE as

NDL
1 (. — Du,)*  (gr — Dry)?
I B _ ) 3.19
fDLDT (T/Lv T]T) NDLQﬂ-thT Zz_; eXp |: 2h% 2h’2I‘ ( )

Kernel bandwidths—h in (3.18), and hy, and At in (3.19)—are computed with the
modified Sheather-Jones method [50].

Once computed, the (joint) PDFs of the macroscopic parameters Deg and 7eg
complete a probabilistic formulation of the Darcy-scale problem (3.5). This problem
can be solved with any standard uncertainty quantification method, including the MCS

and PCE described above.

3.3 Simulation Results

We consider the hierarchical nanoporous material, whose assembly template is

shown in Figure 3.1. In the absence of information about the statistical properties
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of the pore-scale parameters p, we take each p; (i = 1,...,4) to have a uniform

min

distribution on the respective interval [p"™, p***]. (The methods described above can

also accommodate more informative priors.) The values of pm®

M and pte*) for (i =

i
1,...,4), are reported in Table 3.1; the large intervals over which these parameters
are allowed to vary are representative of typical variability of natural (e.g., geologic)
materials or initial uncertainty about optimal values of pore-scale parameters used in
material design. We used a constant value of molecular diffusion D throughout the

pore space Py.

Table 3.1: Intervals of determination, [p™®, pnax

describing the pore structure in Figure 3.1.

], of the four pore-scale parameters

| p=R/[nm] | py=0, [rad] | ps =d, [nm] | py = [, [nm]
Pt 10.00 0.07 4.0 8.00
P 60.00 0.70 8.0 18.00

For given values of the parameter set p, i.e., for a given computational domain
Py in Figure 3.1, first, the closure vector variable x (&) is computed by solving (3.7b)—
(3.7f) with COMSOL. Second, the normalized components of the effective diffusion tensor,
Dy /D and Dr/D, are computed by numerically evaluating the quadrature in (3.7a).
The corresponding values of the effective rate constant ~.g are computed with (3.6).
The results of these calculations are exhibited in Figures 3.3 and 3.4. They demonstrate
the complex interplay of the pore-scale parameters p and their opposing effects on the

macroscopic material properties. While the effective diffusion coefficients Dy, /D and
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Dt /D increase with the mesopore radius R and overlap angle 6, the effective rate

constant v.g decreases as these parameters increase.

Dv/D,[-] Dr/D,[-]
0.15
0.1
0.05
0
R, [nm] Dv/D, -] R, [nm] Dy/D, (-]
16
0.15
14
g
H 0.1
- 12
10 0.05
5 6 7 5 6 7
d, [nm] d, [nm]

Figure 3.3: Dependence of the normalized longitudinal, Dy /D, (left column) and
transverse, Dt/D, (right column) diffusion coefficients on R and 6 for either fixed
[ =13.0 nm and d = 6.0 nm (upper row) or d and [ for fixed R = 35.0 nm and § = 0.38
(bottom row).

3.3.1 Global sensitivity analysis

Since the parameters p are uniformly distributed, we take ¥;(p) in the PCE (3.17)

to be Legendre polynomials; the series is truncated after Npcp — 1 = 625 terms, i.e.,
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Figure 3.4: Dependence of the effective rate constant y.¢ [nm~'] on R and 6 for either
fixed [ = 13.0 nm and d = 6.0 nm (left) or d and [ for fixed R = 35.0 nm and 6 = 0.38
(right).

using the n = 4 degree polynomials in the pore-scale parameter p; (i = 1,...,4), each
of which is defined on its respective interval in Table 3.1. The longitudinal (Dy,) and
transverse (D) components of the effective diffusion coefficient Dog and the effective
reaction rate constant 7.g are calculated for Np, = Np, = N, , = 10® realizations of
the microscopic parameters {R,6,d,l}. These realizations are then used in (3.17) to
compute the variances of the macroscopic parameters, and in (3.9)—(3.15) to compute
the corresponding first-order and total Sobol’ sensitivity indices. Table 3.2 summa-
rizes the results of these calculations, and Figures 3.5 and 3.6 provide their visual
representation.

Both the longitudinal (Dy,) and transverse (Dr) components of the effective
diffusion coefficient tensor D are most sensitive to the overlap angle 6, which determines

the pore-throat size. While longitudinal diffusion coefficient Dy, is virtually insensitive
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Figure 3.5: Relative contribution of the first-order (upper row) and total (bottom row)
Sobol” sensitivity indices to the total variance of the longitudinal, Dy, (left column)
and transverse, D, (right column) components of the effective diffusion tensor.

H 00.9604% B 01.2113%
/ 5 d0.0686% © do0.1467%
A827% 379%

Figure 3.6: Relative contribution of the first-order (left) and total (right) Sobol’ sensi-
tivity indices to the total variance of ~g.
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Table 3.2: The first-order (S) and total (7') Sobol” indices of effective longitudinal (Dy,)
and transverse (Dr) diffusion coefficients and effective rate constant (veg) for the four
pore-scale parameters p = { R, 6,d,[}.

Spy, Tp, SDy T'py Sest T q
R|11.95x107" 490 x 1072 7.70x 1072 192 x 107" 872x 10! 9.09 x 107!
0| 7.73x 1071 954 x 107! 461 x 1071 495 x 107! 929x 1073 1.24 x 1072
d|750x10"% 1.08x 102 387x107' 4.14x 107! 6.64x10* 1.50 x 1073
[ 11.64x107% 1.60x 102 269 x 107" 561 x 107! 801 x 1072 9.96 x 1072

to the variability in the nanotube size (d and [), it has a major impact on transverse
diffusion coefficient Dr. Both Dy, and Dt exhibit an intermediate sensitivity to pore
radius R. This is in contrast to the effective rate constant, 7.g, whose variance is
dominated by variability in R and, to a significantly smaller extent, by [. Its values

are virtually insensitive to 6 and d.

3.3.2 Statistical parametrization of the macroscopic model

Uncertainty in values of the pore-scale parameters gives rise to that in values of
their macroscopic counterparts. Nonlinearity of the mappings, (3.6) and (3.7), between
these two sets of parameters suggests that PDFs of the macroscopic material proper-
ties can be nontrivial even when PDFs of the microscopic parameters are. Moreover,
the mappings (3.6) and (3.7) imply that even if the pore-scale variables are mutually
independent, the macroscopic parameters might be strongly correlated.

We use the kernel density estimators in (3.18) and (3.19) to post-process the

Np, = Np, = N,, = 10° realizations of the three macroscopic parameters, D,
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Dt and v.g. Estimation of the kernel bandwidth with the modified Sheather-Jones
method [50] leads to h;, = 0.0077, hy = 0.0057 and h, = 0.0058 for the KDE
in (3.18); and (hy, hy) = (0.0083,0.0061), (h,hs,) = (0.0088,0.0093), and (h., ht) =
(0.0085,0.0107) for the KDE in (3.19). The resulting (marginal) PDFs; fp, (1), fp+(n)
and f,_,(n), are shown in Figure 3.7. All three PDF's are highly asymmetric and exhibit
long tails. The non-Gaussianity is, of course, to be expected since these parameters
are positive quantities. This finding undermines the long-standing practice of assign-

ing standard (e.g., Gaussian or log-normal) distributions to macroscopic properties of

porous media [51, 52, 53, 54, 55].

7
= TVeff
6fF /% ---Dp1
\‘ ‘‘‘‘‘ DT

5

PDFs fDL (77)7 fDT (77) and f’Yeff(n)

Figure 3.7: Probability density functions fp, (1), fp.(n) and f._.(n) of the macroscopic
material properties, Dy, Dt and g, respectively. The microscopic parameters p =

{R,0,d,l} are mutually independent and uniformly distributed.

Joint PDFS7 fDL,DT (77L7 nT)a f’yeff,DT (7777 nT) and f’yeff,DL (77’Ya nL)a are shown in Flg'
ure 3.8. The three macroscopic parameters, Dy, Dt and ~.g, are neither statistically

independent nor multivariate Gaussian. Like their marginal counterparts in Figure 3.7,
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they exhibit multimodality. The longitudinal (Dy,) and transverse (Dt) components
of the effective diffusion tensor are positively correlated (the correlation coefficient
ppy.pr = 0.44), and both are negatively correlated with the effective sorption rate ~es

(p’Yeff,DL = —0.50 and Prest,DT = _018)

f’chf-,DL

% 02 04 06 08 1
Ty

fDL-,DT

20 1
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nr
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Figure 3.8: From left to right: joint probability density functions fp, p. (1L, n7),
free.pr (M, nr) and fo o p, (14, m1,) of the macroscopic material properties, Dy,, Dy and
Yei- The microscopic parameters p = {R,0,d, [} are mutually independent and uni-
formly distributed.

3.4 Conclusions

Ubiquitous uncertainty about pore geometry inevitably undermines the verac-
ity of pore- and multi-scale simulations of transport phenomena in porous media. It
raises two fundamental issues: sensitivity of effective material properties to pore-scale
parameters and statistical parameterization of Darcy-scale models that accounts for
pore-scale uncertainty. We treated uncertain geometric characteristics of a hierarchical

nanoporous material as random variables to conduct GSA and to derive probabilistic
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descriptors of effective diffusion coefficients and effective sorption rate.

Our analysis leads to the following major conclusions.

1. When combined with a probabilistic framework, homogenization-based maps be-
tween pore-scale parameters and their Darcy-scale counterparts allow one to esti-
mate global sensitivity of Darcy-scale material properties to geometric character-
istics of a material’s pore structure and to relate PDF's of pore- and Darcy-scale

parameters.

2. For the hierarchical porous medium considered, the effective longitudinal diffusion
coefficient (Dy,) is insensitive to the size of nanotube bridges, while the effective
transverse diffusion coefficient (Dr) exhibits high sensitivity to this geometric
parameter. The longitudinal and transverse components of the effective diffusion
tensor are positively correlated (the correlation coefficient pp, p, = 0.44), and
both are negatively correlated with the effective sorption rate Yeg (pq 4.0, = —0.50

and p..;p, = —0.18).

3. Multiscale solutions typically depend on the volume fraction. Since derivatives
of this macroscopic quantity with respect to the pore space parameters can be

evaluated analytically, it may provide a valuable a posteriori interpretation of the

GSA results.

4. The proposed approach provides a simple tool that enables a quantitative ranking
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of the microstructural parameters.

The simulations reported in this study rely on the simplifying assumption of statis-
tical independence of the uncertain (random) geometric characteristics of hierarchical
nanoporous media. In a follow-up study we will obviate the need for this assumption
by replacing the variance-based GSA with, e.g., its distribution-based counterpart.
Our analysis is formulated in terms of solute transport diffusing through a fluid-
filled pore space, while sorbing to the solid matrix. Yet it is sufficiently general to be
applied to other multiscale porous media phenomena that are amenable to homoge-

nization.

Kimoon Um, Xuan Zhang, Marko