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EPIGRAPH

Only the person who has faith in himself is able to be faithful to others.

—Erich Fromm

Impossible is just a big word thrown around by small men who find it easier to live in

the world they’ve been given than to explore the power they have to change it.

Impossible is not a fact. It’s an opinion. Impossible is not a declaration. It’s a dare.

Impossible is potential. Impossible is temporary. Impossible is nothing

—Muhammad Ali
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ABSTRACT OF THE DISSERTATION

Sensitivity analysis in multiscale, multi-physics problems

by

Kimoon Um

Doctor of Philosophy in Materials Science and Engineering

University of California San Diego, 2018

Professor Daniel M. Tartakovsky, Co-Chair

Professor Prabhakar Bandaru, Co-Chair

This dissertation deals with multiscale and multi-physics mathematical model-

ing and global sensitivity analysis. Multiscale and multi-physics problems are ubiqui-

tous in every field of science and engineering. For example, micro- or even nano-scale

material properties often influence their large-scale properties, and microscopic inter-

faces between different materials affect bulk transport phenomena. We develop and

deploy methods of global (variance-based) sensitivity analysis to determine how, and
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to what degree, nano-scale characteristics of (nano)porous materials affect and give

rise to bulk (Darcy-scale) properties.

We deploy stochastic multiscale algorithms to solve several problems of rele-

vance in materials science and biology, and conduct rigorous sensitivity analysis and

uncertainty quantification. In Chapter 2, we present a novel hybrid algorithm to ame-

liorate high computational costs typical of multiscale, multi-physics simulations, and

apply it to solve a chemotaxis-diffusion-reaction problem. In Chapter 3, we report on

our pore- and multi-scale simulations and perform a global (variance-based) sensitivity

analysis for uncorrelated input parameters. This chapter also contains results of our

uncertainty quantification analysis for this multiscale problem, which is based on a

(generalized) polynomial chaos expansion (gPCE). This UQ strategy can be used to

identify a set of pore-scale characteristics for robust materials design. In Chapter 4,

we introduce a novel graph-theoretic approach to conduct global sensitivity analyses

in the presence of correlated inputs.
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Chapter 1

Introduction

Many physical problems of current interest are complex in nature, and com-

posed of separate physical phenomena. Each constituent phenomenon can reinforce or

dampen another, giving rise to rich and sometimes unexpected behavior. Various phys-

ical and/or (bio)chemical sub-models can take place and operate either at the same or

vastly different spatiotemporal scales. To understand a system’s behavior, it is often

necessary to capture both the behavior of individual components and their interactions

and cross-communication. Multiphysics plays an equally strong role is the design of

subsystems and how they interact with other subsystems and systems. One example is

MEMS (microelectromechanical systems), which typically include small moving parts

such as wheels, rotors, levers and linkages, that are integrated into a larger system.

Other examples include the creation of “designer materials” tailored for specific envi-
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ronments, as well as the simulation of nano-scale mechanics of white blood cells and

how that is being transported to inflammation location for medical treatment devices

and methods.

Multiscale nature of many phenomena poses another complication. For example,

small-scale (micro- or nano-scale) properties often influence bulk material properties

(i.e., on the continuum or Darcy scale). Engineers often need to simulate large-scale

structures in which micro-mechanical properties of constituent materials greatly af-

fect the overall behavior of the system. As such, the micro-structure and mechanical

properties need to be introduced explicitly in the analysis procedure. Multiscale and

multi-physics models are different but share many common features since both need

coupling strategies to combine their constitutive sub-models.

When using traditional single-scale simulation methods such as FDM (Finite

Difference Method), FVM (Finite Volume method), FEA (Finite Elements Analysis),

even modern computers are pushed to their limits in trying to resolve all the relevant

details of multiscale systems. This fact necessitates the development of hybrid meth-

ods, which couple micro- and macros-scale models and simulation. Our focus is on

identifying and capturing key multiscale features of several diverse problems of prac-

tical significance, and on identifying channels through which parametric uncertainty

propagates through scales.
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1.1 Discrete and continuum multiscale simulations

Many biological process on sub-cellular level involve species whose numbers

vary by many orders of magnitude. If a small number of molecules/agents is present

in a system, their apparent behavior becomes random and exhibit spatiotemporal fluc-

tuations which can be captured by stochastic simulation. On the other hand, such

molecules/agents typically interact with other species whose concentrations (numbers

of molecules per unit volume) are many, many orders of magnitude higher. Simula-

tion of such systems is notoriously difficult and increasingly relies on multiscale hybrid

methods, which combine continuum-scale (deterministic) descriptors of reacting species

with large numbers of molecules/agents and discrete (stochastic) descriptors of react-

ing species with small numbers of molecules/agents. For example, chemo-attractants

(some of the chemicals involved in inflammation) diffuse through the tissue at concen-

trations that far exceed the numbers of bacteria or leukocytes present. The process by

which leukocytes (randomly) move towards a wound surrounded by bacteria is called

chemotaxis. We develop and implement numerically a novel hybrid algorithm that

captures the random motion of leukocytes and relies on discrete/continuous represen-

tations of chemotaxis(advection)-motility(diffusion)-reaction phenomena. This motion

is affected and “guided” by the concentration of chemo-attractants, whose gradients

are computed at the continuum scale to determine chemotactic velocity. Leukocyte

3



motility and reactions described by Brownian motion and stochastic simulation algo-

rithm, respectively. We develop a hybrid algorithm, which bridges these two scales and

captures the complexity of biochemical processes and the wide range of concentrations.

Time step is chosen by comparing the Péclet number and the Damköhler number at

every simulation step. We deploy our algorithm in three case studies. In the first,

we verify our hybrid algorithm by comparing its predictions for large numbers of all

the reactants involved (i.e., for a situation where randomness is expected to play mi-

nor role in system’s dynamics) with an analytical solution of chemotaxis(advection)-

motility(diffusion) equations for several Pécelt numbers. The second case study in-

volves a small number of leukocytes and serves to highlight the effects of randomness

in an inflammation process described, alternatively, by one-dimensional chemotaxis-

motility-reaction equations on the continuum scale and by our hybrid model. In the

third case study, we construct a more realistic two-dimensional model, in leukocytes

randomly move from the skin to a capillary.

1.2 Multiscale simulations with independent and

correlated inputs

Ubiquitous uncertainty about pore geometry inevitably undermines the veracity

of pore- and multi-scale simulations of transport phenomena in porous media. It raises

4



two fundamental issues: sensitivity of effective material properties to pore-scale param-

eters and statistical parameterization of Darcy-scale models that accounts for pore-scale

uncertainty. Homogenization-based maps of pore-scale parameters onto their Darcy-

scale counterparts facilitate both sensitivity analysis (SA) and uncertainty quantifi-

cation. We treat uncertain geometric characteristics of a hierarchical porous medium

as random variables to conduct global SA and to derive probabilistic descriptors of

effective diffusion coefficients and effective sorption rate. Our analysis is formulated in

terms of solute transport diffusing through a fluid-filled pore space, while sorbing to

the solid matrix. Yet it is sufficiently general to be applied to other multiscale porous

media phenomena that are amenable to homogenization.

Such analyses treat input parameters (coefficients) as mutually uncorrelated,

and are generally valid for a small range of correlated inputs as ab approximation. As

the ranges over which input parameters are allowed to vary become larger, the nonlinear

relationships between various pore-geometry parameters significantly complicates the

global (variance-based) sensitivity analysis. We handle the inter-dependence between

input parameters by developing a probabilistic graphical method.

5



1.3 Dissertation content

My research consists of four inter-related components, each of which is presented

in a separate chapter. In Chapter 2, we present a novel hybrid algorithm to ameliorate

high computational costs typical of multiscale, multi-physics simulations, and apply it

to solve a chemotaxis-diffusion-reaction problem.

In Chapter 3, we report on our pore- and multi-scale simulations and perform

a global (variance-based) sensitivity analysis for uncorrelated input parameters. This

chapter also contains results of our uncertainty quantification analysis for this multi-

scale problem, which is based on a (generalized) polynomial chaos expansion (gPCE).

This UQ strategy can be used to identify a set of pore-scale characteristics for robust

materials design.

In Chapter 4, we introduce a novel graph-theoretic approach to conduct global

sensitivity analyses in the presence of correlated inputs.
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Chapter 2

Hybrid method of multi-scale

model in

chemotaxis-motility-reaction

system

Two mathematical frameworks, discrete and continuous, are routinely used to

model kinetics of complex (bio)chemical systems. The first framework is based on the

chemical master equation[1, 2]; it is invoked when the number of molecules of reacting

species is relatively small, so that stochastic fluctuations in local concentrations become

pronounced. This randomness is a key feature of many biological processes, e.g., gene

7



expression[3]. The second framework consists of differential equations describing tem-

poral evolution of species concentrations; it predicts average behavior of large numbers

of molecules. Both frameworks can handle spatial variability, e.g., by adopting opera-

tor splitting techniques for discrete reaction-diffusion processes[4] or partial-differential

equations (PDEs) for their continuous counterparts.

Many systems involve reacting species with vastly different number of molecules/

agents, thus necessitating the simultaneous use of discrete and continuous descriptors,

i.e., call for the use of hybrid simulations. This occurs when a PDE-based model for one

or more species fails either locally, in a (small) part of a computational domain[5, 6], or

globally, over the whole simulation domain[7]. These two types of hybrid simulations

differ in the way they couple their discrete and continuous components. We focus on

the latter class of phenomena, of which leukocyte migration towards a pathogen is a

pertinent example.

Leukocytes, or white blood cells, are instrumental in a body’s immune response

to invading pathogens, such as bacteria, viruses, or parasites. A pathogen-induced

inflammation activates leukocytes in the bloodstream, causing their transmigration

from blood vessels to the surrounding tissue. Within the affected tissue leukocytes

move towards a contaminated site, exhibiting undirected (diffusion-like) and directed

(chemotaxis) forms of motion as well as interacting with a pathogen. Continuum-level

representations of the latter stage of leukocyte migration rely on systems of coupled

8



PDEs of various degrees of complexity, ranging from the celebrated Keller-Segel chemo-

taxis model[8] to its more evolved counterparts[9]. Such models track concentrations

of relevant species—the concentrations of leukocytes, C(x, t), and chemoattractant,

A(x, t), in the Keller-Segel model[8]—in space, x, and time, t. While large numbers

of chemoattractant molecules justify the use of a PDE-based model to describe the

spatiotemporal evolution of A(x, t), small numbers of leukocytes and bacteria involved

in the process render such continuum treatments problematic. Taken in isolation, a

motion of individual leukocytes has been described by, e.g., biased random walk[10, 11].

We present a hybrid algorithm that combines a continuum description of chemoat-

tractants with discrete representations of leukocytes and bacteria. We provides a

mathematical model of leukocyte migration towards an inflammation site, including

its continuum (PDE-based) formulation. Our hybrid method and its algorithmic im-

plementation are presented in Section 2.1. They are used in Section 2.2 to solve three

problems of increasing complexity. The first, a one-dimensional advection-diffusion

equation, serves to verify our algorithm by comparing its predictions with an analyti-

cal solution and to analyze the effect of a finite number of particles on the adequacy

of the continuum model. The second, unidirectional leukocyte migration in the pres-

ence of chemoattractant and bacteria, accomplishes the same goals by comparing our

predictions with those provided by solving numerically a system of one-dimensional

chemotaxis-motility-reaction PDEs. The third problem deals with a more realistic

9



two-dimensional setting, which represents leukocyte migration towards a wound. Main

conclusions drawn from our study are summarized in Section 2.3.

2.1 METHOD

Small(Finite) number of molecules compared with large number of inducing

molecules invoke the need of hybrid model based on particle method, stochastic simu-

lation by transferring Eq.(2.25a) ∼ Eq.(2.26) into the discrete model. In chemotaxis-

motility-reaction sytem, chemo-attractants are inducing molecules and computed in

the continuum scale using mesh-based PDE model though bacteria and leukocytes

are solved by discrete model. Number of bacteria in each mesh element has effect on

the chemo-attractants and chemotaxis velocity of leukocyte is determined by the con-

centration and the concentration gradient of chemo-attractants where leukocytes are

located. Position of each bacteria molecule and leukocytes molecule is updated by the

random motility(µb or µ) and/or by the chemotaxis velocity. Bacteria and leukocytes

react when they are close and collide each other.

2.1.1 Stochastic method

In the deterministic chemotaxis-motility-reaction systems of continuum model,

different time scale among three phenomenon makes operator splitting applied. Chemo-

10



taxis and motility are solved explicitly and (stiff) reaction is solved implicitly [12].

The reaction-diffusion system using stochastic method [4] is modified in our hy-

brid method because of chemotaxis. Two different pheonomenons, chemotaxis-motility

and reaction are calculated separately. In our system, bacteria undergo reaction-

diffusion system though leukocytes do chemotaxis(advection) – motility(diffusion) –

reaction. Chemotaxis is solved using chemo-attractants’ concentration and gradient

of chemo-attractant and motility is solved using Brownian motion. And (modified)

Gillespie method is utilized to solve reaction assuming that bacteria and leuckocytes

are well-mixed in a same mesh-element.

Operator splitting method

Operator splitting algotithm [13] to leukocytes chemotaxis-motility-reaction is

∂C ′
∂t

= −∇J = µ∇2C ′ −∇ · (VcC ′) (2.1a)

∂C ′′
∂t

= −(g0 + g1B′′)C ′′ (2.1b)

during the time interval [t, t + ∆t]. Here C ′(t) = C(t) and C ′′(t) = C ′(t + ∆t), so that

C ′′(t) = C(t + ∆t). Compute the position of i–th cell of j–th kind(j = 1 for bacteria

and j = 2 for leukocytes) at time t+ ∆t as

Xj
i (t+ ∆t) = Xj

i (t)−Vj
i∆t+

√
2µj∆tξ (2.2)

11



where ∆t is time step to update new position. Vc is the chemotactic velocity vector in

each direction only for leukocytes, which is Vc = Vc(a,∆a). ξξξ is a vector of random

variables with normal distributed in each direction to represent Brownian motion.

And we assume that bacteria and leukocytes are well-mixed states and they

undergo reaction process by Gillespie method in Eq.(2.5)–Eq.(2.6).

Stochastic Simulation Algorithm : Reaction

Bacteria(B) in the wound site is reproduced with the growth rate, kg, leukocyte(C)

is died with the natural dying rate, g0 We assumed bacteria and leukocyte died at the

same rate of kd and g1.

B kg−→ 2B, C g0−→ φ, B + C kd(=g1)−−−−→ φ (2.3)

The reaction between bacteria and leukocyte needs no activation energy (diffusion-

controlled reaction) within effective radius (ra + rb) and the reaction rate constant kd

is

kd = 4π(µb + µ)(rb + rc)× Avo× 103 (2.4)

where µb and µ are the motility coefficient of bacteria and leukocyte. And rb and rc are

radius of theirs. Avo is the Avogadro’s number. Reaction between the concentration

of bacteria(B) and that of leukocyte(C) is implicitly solved by the Newton-Raphson

method.
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Gillespie multi-particle (GMP) method [14] is one of most popular method to

solve chemical reaction with diffusion. But we implement Brownian dynamics instead

of cellular automata and stochastic simulation analysis(SSA) due to better accuracy.

We discretize our domain intom cells and assumed that bacteria particles and leukocyte

particles were well-distributed within a cell. k–th cell (k = 1, · · · ,m) has nkb bacteria

cells and nkc leukocytes cells respectively. Two random variables, r1 and r2 are uniformly

distributed in [0, 1]. The continuous random value τRk is reaction time step within ∆t.

τRk =
1

aksum

ln
( 1

r1

)
=
− ln r1

aksum

,

j−1∑
j′=1

aj′ ≤ r2a
k
sum ≤

j∑
j′=1

aj′ (2.5)

where asum is the sum of all propensity functions(aj). After reaction time (τRk)

process, the system state, n, at time t+ τRk is

n(t+ τRk) = n(t) + νk, (2.6)

where νk = (∆nkb ,∆n
k
c )
T .

Brownian Dynamics : Random motility

The population of bacteria or leukocytes is considered as random motility with

single-cell parameters(µb, µ respectively) [15], which acts as the diffusion coefficient of

single particle movement in our model.

µ =
1

2
Tpv

2, (2.7)
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where Tp is persistence time which is the time period before cell changing direction,

and v is its maximum velocity. Random motility of bacteria, µb, is very small and set

as 10−15 m2/s.

Brownian dynamics of bacteria and leukocytes in our method is applied as ran-

dom walk with the motility[16]. Motility of bacteria in stochastic equation is

XB(t+ ∆t) = XB(t) +
√

2µb∆tξ, (2.8)

where ∆t is the time step, ξ is a standard Gaussian random variable and µb is the

random motility of bacteria.

Chemotaxis

Chemotaxis coefficient, χ is computed as

χ = v
χ0

∂Nb
∂A

1 + χ0
∂Nb
∂A

∂A
∂x

, (2.9)

where v is the maximum velocity of a leukocyte. Chemotactic belocity Vc is character-

ized by chemotaxis coefficient χ and the gradient of A. And we define the oriental bias,

φ, which varies from 0 (purely random motility) to 1 (full oriented motility)[17][18].

Vc(A,∆A) = χ
∂A

∂x
= vφ = v

χ0
∂Nb
∂A

∂A
∂x

1 + χ0
∂Nb
∂A

∂A
∂x

(2.10)

where χ0 is chemotactic sensitivity, Nb is the number of bound receptors on the

cell membrane. And Nb is related to concentration of chemo-attractant A(x, t) by
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Michaelis-Menten relationship

Nb =
NTA
Kd +A (2.11)

where NT is the total number of cell receptors on the cell membrane and Kd is the

receptor dissociation constant.

And the stochastic equation of a leukocyte is

XC(t+ ∆t) = XC(t) + Vc∆t+
√

2µ∆tξ, (2.12)

where Vc is the chemotactic velocity and calculated from Eq.(2.10).

Initial and boundary condition

d 

d 

Figure 2.1: Schematic view of reflective boundary. Vertical lines : the location of each
boundary, Solid circle : starting location of particle, Horizontal solid line : trajectories
within the domain, and Dashed line : the trace after reflecting the boundary.

In our method, the initial condition of bacteria and luekoyctes, Eq.(2.29)–

Eq.(2.30) are transferred as initial number of each cell and they have the reflective

boundary condition.

XB(t0) = Fx, Fx = NB
0 δ(x− (xs + ε)), (2.13)

XC(t0) = Gx, Gx = NC
0 δ(x− (xf − ε)), (2.14)
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where NB
0 and NC

0 are the initial number of bacteria and leukocytes respectively at the

very small distance from the each boundaries which represent the skin surface and the

blood vessel. The reflective boundary which is in accordance with no flux boundary is

depicted in Fig.2.1. And the reflective boundary is assumed that there is a barrier at

the boundary which rebounds cells into domain with perfectly elastic collision. This

causes opposite direction of velocity with the same magnitude and no change for other

properties[19].

2.1.2 Continuum method : Chemo-attractants

Chemo-attractants behave continuous motion of diffusion and are produced

by bacteria. Relatively high concentration against the bacteria and the leukocytes

brings about continuum scale calculation to solve diffusion and reaction for chemo-

attractants. Implicit-Explicit method(IMEX) based on Finite Volume Method(FVM)

is implemented to obtain the concentration distribution of chemo-attractants, which is

described in 2.1.2. The concentration profile of chemo-attractants plays a key role as

determining the chemotactic velocity of leukocytes explained in Section 2.1.1, which

move toward higher concentration sites of chemo-attractants, the wound site.

The discretization in time and space of Eq.(2.34) in (i, j)–th element at n + 1
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time step is

An+1
i,j −Ani,j

∆t
= D

(An+1
i+1,j − 2an+1

i,j −An+1
i−1,j

∆x2

+
An+1
i,j+1 − 2An+1

i,j −An+1
i,j−1

∆y2

)
+ kpb

n
i,j

(2.15a)

−syAn+1
i,j−1 − sxAn+1

i−1,j + (1 + 2sx + 2sy)An+1
i,j

−sxAn+1
i+1,j − syAn+1

i,j+1 = ∆tAni,j + ∆tkpb
n
i,j

(2.15b)

where sx = D∆t
∆x2 and sy = D∆t

∆y2 . Timestep ∆t is varied at every timestep, which is ex-

plained in Section 2.1.3. This discretization is composed of penta-diagonal matrix and

is solved by using the restarted Generalized Minimum Residual (GMRES) algorithm

[20].

2.1.3 Time-step Decision

The proper time step is determined by considering chemotaxis, random motility

and reaction of leukocytes in every time step. First, time step comes from leukocytes’s

migration (random motility and chemotaxis) which chracterized by Pèclet number

Pe =
VChmin
µ

=
τD
τC

(2.16)

where hmin is the smallest element-mesh size, and τD and τC represent different time

scales for random motility and chemotaxis respectively. Diffusion-dominated(Pe < 1)

or advection-dominated(Pe > 1) regime is determined by Pèclet number. We keep

smaller time step between τC and τD as the drift time step, τDR and make comparison
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this with the reaction time step.

τDR = min{τD, τC} (2.17)

Reaction time step is the minimum of all k-th leukocyte cell from Eq.(2.5)

TRk =
1

aksum

, aksum ≡
N∑
j=1

aj(Xk) (2.18)

where Xk is the state of X of k–th leukocytes molecule and aj(Xk) is the propensity

function for j–th reaction. We set up the minimum time step at each time step out of

whole domain.

Tmin
R ≡ min TRk , where k = 1, · · · ,m (2.19)

And its reaction time step is considered with the Damköhler number

Da =
τDR
Tmin
R

, where τDR = min (τC , τD) (2.20)

Drift time step, τDR is minimum time during leukocytes’ migration between chemotaxis

and random motility.

We determine time step whether our model is reaction-controlled (Da >> 1) or

drift-controlled(Da < 1) regime at each time step considering the Damköhler number.

This system would be homogenized well under drift-controlled regime which secures

time of reaction and we choose the time step as the drift time(∆tstep = τDR). If our

system is reaction-controlled regime, we should choose more time step size rather than

∆tstep = TminR considering small number of the bacteria molecule and the leukocytes
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molecule where it has reaction, or high speed of leukocyte around the source of chemo-

attractants. We set ∆tstep = 5τDR with 0.5 < Da < 1.0 and ∆tstep = 10τDR with

Da < 0.5 to procure enough reaction time[4] of firing reaction between bacteria and

leukocytes.

2.1.4 Algorithm

A detailed algorithm for the applied numerical method suggested above is shown

below.

1. For a given space dimension d and cell size ∆x, calculate the diffusion time step

τDi =min{∆x}/(2Did) of diffusing species i = 1, · · · ,M and let τD =min{τDi}.

2. Initialize t = ti

3. While t ≤ tf

(a) Define whether system is drift- or reaction-controlled at every time step.

i. Calculate τDR through Eq.(2.16)

• Calculate the distribution of chemo-attractant using the expected

time step. Use previous time step but diffusion time step for the

first time step.
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• Calculate the chemotactic velocity of every leukocyte through Eq.

(2.10) for Pe

ii. Calculate Tmin
R through Eq.(2.19)

iii. Calculate time step, ∆tstep considering Da

(b) Let told = t

(c) Perform the drift step(Diffusion-Chemotaxis) and the reaction step using

operator-splitting method.

i. Drift step with time-step ∆tstep

• Chemo-attractants diffusion-reaction using IMEX

• Diffusion for bacteria and leukocytes using Brownian dynamics to

advance.

• Chemotaxis using the calculated chemotactic velocity to advance

species.

ii. Reaction step for each cell

• While (t− told) ≤ ∆tstep

Calculate reaction time step τR using Eq.(2.5) within ∆tstep.

- If τR ≤ ∆tstep, update the state vector through Eq.(2.6)

- Otherwise, do not update the state vector

end while
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iii. Go to next cell to calculate reaction

(d) Let t = told + ∆tstep for all cells

end while

2.2 RESULTS

Hybrid method is studied in one dimensional case and two dimensional case. In

one dimension case, analytic solution and stochastic solution in advection-diffusion are

compared in various Pèclet number in 2.2.1 and show our method fits well. In 2.2.2,

relatively large number of leukocytes cells and bacteria cells are applied and the results

of chemotaxis-motility-reaction are compared with continuum scale by normalizing the

initial input number of them. Continuum method fails when applied small concentra-

tion but hybrid method shows better result with the small number of cells(or small

concentration) in the view of calculation time. We show more realistic case study in

two dimension case by domain size from the skin to capillary vessel (about 1mm) and

multi-site input points of leukocytes at the capillary in section 2.2.3.

We solve random motility(diffusion)-chemotaxis(advection) using TVD (2nd or-

der) [21] for chemotaxis and reaction using Netwon Raphson method in continnum

scale [22]. Though Eq.(2.8)–Eq.(2.12) are used to calculate position of bacteria and

21



leukocytes and Eq.(2.5)–Eq.(2.6) are used for reaction in hybrid method. Parameters

are reported in TABLE 2.2.

2.2.1 Comparison between analytic solution and stochastic so-

lution for Diffusion-Advection

Comparison of the deterministic solution and stochastic solution is shown semi-

infinte domain, Ω ∈ [0∞]. Deterministic solutions have a Dirac delta type point source

as an initial condition and no flux boundary condition at x = 0 and goes to zero at

infinite domain.

∂u

∂t
+ v

∂u

∂x
= D

∂2u

∂x2
, x ∈ [0, ∞], (2.21)

IC: u(x, t0) = δ0(x),

BCs: u(0, t) +D
∂u(0, t)

∂t
= 0, u(∞, t) = 0

We transfer continuum equation of advection-diffusion equation(Eq.(2.21) into

stochastic equation which has a reflective boundary condition(2.1) at x = 0 and make

particles locate very close to this boundary at t = 0s for n particles. The position of

each particles are described with Brownian dynamics and are transferred with velocity,

22



0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Space(m)N
or

m
al

iz
ed

 c
on

ce
nt

ra
tio

n 
or

 n
um

be
r 

of
 p

ar
tic

le

 

 

Deterministic @500s
Deterministic @1000s
Deterministic @1500s
Stochastic @500s
Stochastic @1000s
Stochastic @1500s

(a) Pe = 0.5

0 1 2 3 4 5
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Space(m)N
or

m
al

iz
ed

 c
on

ce
nt

ra
tio

n 
or

 n
um

be
r 

of
 p

ar
tic

le
 

 

Deterministic @500s
Deterministic @1000s
Deterministic @1500s
Stochastic @500s
Stochastic @1000s
Stochastic @1500s

(b) Pe = 2.0

0 5 10 15 20
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Space(m)N
or

m
al

iz
ed

 c
on

ce
nt

ra
tio

n 
or

 n
um

be
r 

of
 p

ar
tic

le

 

 

Deterministic @500s
Deterministic @1000s
Deterministic @1500s
Stochastic @500s
Stochastic @1000s
Stochastic @1500s

(c) Pe = 10

Figure 2.2: Deterministic solutions have Dirac-delta type point source and stochastic
solutions are normalized with initial number of paticles. Results are shown at t = 500s,
t = 1000s, and t = 1500s with different Pèclet numbers.
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v.

Ci(t+ ∆t) = Ci(t) +
√

2D∆tξ + v∆t (2.22)

Ci(0) = ε, where ε� 1

where i = 1, · · · , n. Diffusion coefficient, D is 10−5m2/s and the velocity, v is varied

to see whether it is diffusion-dominated or advection-dominated and set cell Pèclet

numbers as

Pe =
v∆x

D
. (2.23)

The cell Pèclet number represents diffusion-dominated(Pe < 1),

and advection-dominated( Pe� 1 ). 0.5, 2.0, and 10.0.

The comparison results between analytic solution and stochastic solution i shown

in figure 2.2. We use 10000 particles to compare the results with analytic solution.

Our method using Brownian Dynamics and explicit velocity update works well. We

set ∆x = 0.01m and normalize number of particles in each cell with total number of

initial particles. Our method works well regardless Pèclet number.

The error is analyzed with L2–Norm with respect to number of total input

particles.

L2–Norm =

√√√√ n∑
i=1

(c(i)− C(i)2) (2.24)

where c(i) is analytic solution at x = (i − 0.5)∆x and C(i) is normalized number of

particles at i–th cell which is (i− 1)∆x ≤ x ≤ i∆x. Our method is not related to cell
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size directly but it is neccessary to set up cell size to count number of particles inside.

The error decreases with increasing the number of particles shown in figure 2.3.

We take L2–Norms for five realizations and take the average values for different number

of particles such as 2p × 1000 where p = 1, 2, ..., 8.
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Figure 2.3: Error Analysis at t = 500s, t = 1000s, and t =
1500s: L2–Norms are shown in log–log scale when number of particles are
1000, 2000, 4000, 8000, 16000, 32000, 64000, and 128000

2.2.2 Hybrid method results in one dimensional behavior

Here we are interested in the chemotactic behavior of leukocytes caused by the

distribution of chemo-attractants and the reaction between the bacteria and leukocytes.

Keller and Segel [8] considered a 1-D spatial domain as Ω ∈ [xs, xf ] = [0, 10−3m] and

a time domain as T ∈ [t0, tf ] = [0, 3000s]. Let C(x, t) denote the concentration of
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Figure 2.4: Results in 1D simulation at t = 646.7s and t = 1010.6s; (a) Chemo-
attractants concentration (b) Bacteria and leukocyte in normalized value with respect
to initial values. Solid line : continuum scale, Dash-dot : hybrid-method.

the leukocytes, B(x, t) the concentration of bacteria, and A(x, t) the concentration of

chemo-attractants. Leukocytes move toward higher concentration of chemo-attractant

through chemotaxis. It naturally dies and is degraded with contact to bacteria after

digesting it.

∂C(x, t)
∂t

= −∂Jc(x, t)
∂x

− (g0 − g1B(x, t))C(x, t), (2.25a)

Jc(x, t) = −µC(x, t)
∂x

+ C(x, t)χ∂A(x, t)

∂x
, (2.25b)

where µ is the random motility coefficient of leukocytes and χ is the chemotaxis coef-

ficient related to the strength and the gradient of concentration of chemo-attractants.

They are removed by the natural death with the rate of g0 and by the interaction

with bacteria with the rate of g1 in the cell. We assume the interaction rates between

bacteria and leukocytes, which kd and g1 are the same.
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Bacteria randomly move in the cell. They reproduce and are removed if they

are caught by leukocytes.

∂B(x, t)

∂t
= µb

∂2B(x, t)

∂x2
+ (kg − kdC(x, t))B(x, t), (2.26)

where µb is random motility coefficient of bacteria. kg and kd are respectively the

growth rate and the consumption rate of bacteria when they meet leukocytes.

Chemo-attractants diffuse into cell at the wound site and is produced by the

result of bacteria metabolism.

∂A(x, t)

∂t
= D

∂2A(x, t)

∂x2
+ kpB(x, t), (2.27)

where D is the diffusion coefficient and kp is the rate of production.

Table 2.1: Computation time for continuum model and hybrid model with different
number of leukocytes and bacteria with same population each. Twenty realization is
conducted to have mean CPU time and variance.

Mean CPU time(s) Variance
Continuum Model 6.4597132 0.050070843766150

10 particles 0.2808018 0.001460178720060
100 particles 1.0296066 0.015672598656790
250 particles 3.3602622 0.016801690465362
500 particles 5.7595568 0.016198336129357
1000 particles 14.052570 0.040144665600025
5000 particles 25.263758 1.430611099335806

We impose boundary conditions and initial condition assuming that the skin

surface locates at x = xs and that the capillary transporting blood or the venule is

found at distance x = xf from the skin surface. There is not chemo-attractant at

t = t0, though bacteria and leukocyte locates very close to the skin surface and the
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blood vessel respectively.

A(x, t0) = 0, (2.28)

B(x, t0) = fx, fx = B0δ(x− (xs + ε)), (2.29)

C(x, t0) = gx, gx = C0δ(x− (xf − ε)), (2.30)

where ε is very small value, 0 < ε � 1. We assume that bacteria remain on the finite

domain with very small motility compared with that of leukocytes’(µb � µ). This

leads us to assume that chemo-attractants have the constant concentration at x = xs

though they diffuse into the vessel at x = xf .

∂B(xs, t)

∂x
= 0,

∂B(xf , t)

∂x
= 0, (2.31)

∂C(xs, t)
∂x

= 0,
∂C(xf , t)

∂x
= 0, (2.32)

A(xs, t) = A0,
∂A(xf , t)

∂x
= haA(xf , t), (2.33)

Eq.(2.31) and Eq.(2.32) imply that bacteria and leukocytes neither enter nor leave

a domain of x ∈ (xs, xf ) and these boundary conditions are translated into reflec-

tive boundaries explained in section 2.1.1. Initial number of bacteria molecules and

leukocytes molecules are B0 = 8000, and C0 = 8000. And initial concentration of

chemo-attractans is A0 = 10−5M at x = xs. The results of hybrid method is compared

with continuum method solved by finite volume method(FVM) using operator-splitting

method such as chemotaxis-motility step and reaction step. Total value diminishing
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method is used for chemotaxis(advection) and implicit method for motility(diffusion).

And Newton-raphson method is used to solve (stiff) reaction step.

In both method, concentration and existing number of the bacteria and the

leukocytes are normalized with initial concentration and initial number of input cells.

The comparison result is shown in Fig. 2.4. Leukoyctes move randomly due to random

motility µ and toward the location of higher concentration of chemo-attractant with

chemotaxis process. Bacteria and leukocytes meet around 1.5× 10−4 from the wound

site and are removed. Here our hybrid model shows exactly same as deterministic

model with oscillation owing to stochastic effect. The random motility of bacteria, µb,

is set as 10−12 to see the location of reaction occurrence clearly where leukocytes meet

bacteria.

In one dimensional model, we measure the calculation time until 3000s using In-

tel(R) Core(TM) i7-2600 CPU @ 3.40GHz. Mean CPU time and variance are calculated

from twenty realizations. Calculation time of continuum scale and different initial num-

ber of particles are reported in Table 2.2.2. In continuum model, space is discretized

with two hundred elements(cells) and time step is set as min{∆x2/2D, ∆x/|v|} con-

sidering Pèclet number. Hybrid method is valuable under small number of particles

and our method is much faster in the view of computational time.
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Table 2.2: Parameters for diffusion, reaction and chemotaxis

Notation Description Value[Unit]
D diffusion coefficient of chemo-

attractant
10−8 [m2 · s−1]

µb random motility of bacteria 10−15 [m2 · s−1]
µ random motility of leukocyte calculated in Eq.(2.7)
kp production rate of bacteria 10−6 [s−1]
kg generation rate of bacteria 3.47× 10−5 [s−1]

kd(= g1) decay rate of bacteria/leukocyte calculated in Eq.(2.4)
g0 decay rate of leukocyte 1.65× 10−6 [s−1]
Avo Avogadro’s number 6.022140857× 1023 [mol−1]
rb radius of bacteria 0.8− 1.2 [µm]
rc radius of leukocyte 8− 20 [µm]
Tp persistant time 300 [s]
v chemotactic velocity 1.2 [µm · s−1]
χ0 chemotactic sensitivity 4.0× 10−8 [s−1]
NT total number of cell receptors on

the cell membrane
5.0× 1010 [·]

Kd receptor dissociation constant 2.0× 10−8 [s−1]

2.2.3 Hybrid method results in two dimensional behavior

Concentrations of chemo-attractants(A), bacteria(B) and leukocytes(C) are de-

lineated by chemotaxis-motility-reaction equations in the similar method of one dimen-

sional model with two spatial dimensional domain, Ω ∈ [xs , xf ]× [ys , yf ] and temporal

dimension, t ∈ [t0 , tf ].

∂A(x, t)

∂t
= D∇2A(x, t) + kpB(x, t) (2.34)

∂B(x, t)

∂t
= µb∇2B(x, t) + (kg − kdC(x, t))B(x, t) (2.35)

∂C(x, t)
∂t

= −∇ · Jc(x, t)− (g0 − g1B(x, t))C(x, t), (2.36a)
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Jc = −µ∇C(x, t) + C(x, t)Vc(A,∆A), (2.36b)

Vc(A,∆A) = (v · φ)e = vi
χ0

Kd+A
(Kd+A)2

∂A
∂xi

1 + χ0
Kd+A

(Kd+A)2
∂A
∂xi

ei (2.36c)

where Vc is the chemotaxis velocity and is computed in each coordinate. vi and φ is

the maximum velocity and the oriental bias in each direction of coordinate respectively.

The initial condition of bacteria is that all bacteria cells(B0) locate at the same position

nearby the skin surface and that of leukocytes is that there are three different locations

with the number of them(C01,C02, and C03) underneath the blood vessel. The distance

of initial locations are assumed that they are two or three endothelial cells apart.

A(x, y, t0) = 0, (2.37)

B(x, y, t0) = f(x, y),

f(x, y) = B0δ(x− xB0)δ(y − yB0), (2.38)

C(x, y, t0) = g(x, y),

g(x, y) =
∑
i

C0iδ(x− xCi)δ(y − yCi), (2.39)

where the initial position of bacteria (xB0, yB0) is (0.5Lx, ys+ε) and the initial positions

of leukocyte, (xC1, yC1), (xC2, yC2) and (xC3, yC3) are (0.3Lx, yf − ε), (0.5Lx, yf − ε),

and (0.7Lx, yf − ε) respectively. ε is very small value, 0 < ε� 1 and Lx is the length

of domain, Lx = xf − xs. We assume that bacteria remains on the finite domain with
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very small motility compared with that of leukocyte’s(µb � µ) same as one dimensional

model. We impose the dirichlet boundary condition of chemo-attractant at (0.5Lx, ys)

though it diffuses into the vessel at y = ys. Leukocyte is assumed to have no flux

boundary.

∂A(xs, y, t)

∂x
= 0,

∂A(xf , y, t)

∂x
= 0,

∂A(x1, ys, t)

∂y
= 0,

∂A(x, yf , t)

∂x
= haA(x, yf , t), A(0.5Lx, ys, t) = A0 (2.40)

∂B(xs, y, t)

∂x
= 0,

∂B(xf , y, t)

∂x
= 0,

∂B(x, ys, t)

∂y
= 0,

∂B(x, yf , t)

∂x
= 0, (2.41)

∂C(xs, y, t)
∂x

= 0,
∂C(xf , y, t)

∂x
= 0,

∂C(x, ys, t)
∂y

= 0,
∂C(x, yf , t)

∂x
= 0, (2.42)

where x1 is x1 ∈ [xs, 0.5Lx) ∪ (0.5Lx, xf ]. Concentration profile of chemo-attratants is

solved by mesh-based continuum model using Finite Volume Method(FVM). Bacteria

randomly work with the random motility(µb) and leukocyte drift with the random

motility and the chemotactic velocity (Vc) which is computed from the concentration

of chemo-attractants and the concentration gradient of it considering the location of

each leukocyte. And they undergo the reflective boundary condition and the initial

condition with certain number of them(NB
0 , N

C
0 , N

C
1 , N

C
2 ). We use Gillespie Multi-

Partilce method solving reaction within the range of properly assigned region.
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Figure 2.5: Results in 2D simulation; (a) Traces of five different particles. Thicker
dots show at the time of 0.0s, 505.04s, 1010.1s, 1010.1s, 1501.5s, 2006.5s, 2497.9s. (b)
Distribution of chemo-attractant at 1010.1s. (c) Number of leukocyte with respect to
time.
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The behavior of leukocytes chemotaxis-motility-reaction with bacteria under two

dimensional hybrid method is formulated in Eq.(2.34)–Eq.(2.36c). Its initial condition

is Eq.(2.37)–Eq.(2.39) and boundary condition is Eq.(2.40)–Eq.(2.42) under spatial

domain, Ω ∈ [xs, xf ]× [ys, yf ] and temporal dimension, t ∈ [t0, tf ]. And we impose the

domain as [xs, xf ] = [0, 4× 10−4m], [ys, yf ] = [0, 10−4m] and the dirichlet boundary

condition of chemo-attractants as A0 = 10−5M . The profile of chemo-attractants is

solved in continuum scale with Eq.(2.15b). Chemo-attractants diffuse into cells and

leak out with the slope of ha at y = yf where capillary vessel locates. Bacteria move into

cell with much smaller random motility(µb) than that of leukocyte’s(µ). Bacteria move

little in our time scale while leukocytes transfer from the capillary vessel to the wound

site. Bacteria could be reproduced with the rate of kg and removed by leukocyte’s

metabolism. Leukocytes attach and roll over the vessel wall. And they transmigrate

through endothelial cells of the capillary vessel and chemotaxis to the wound site during

the inflammation process. We focus the process after transmigration of leukocytes.

Leukocytes initially locate at the y = yf considered as the capillary location, and

different positions in x-direction.

Results of two dimensional hybrid method are shown in Fig. 2.5. Lekocytes

move to the wound site with different path ways though they start at the same po-

sition due to its random motion. But all the particles move toward to the source of

chemo-attractants with chemotaxis motion. Five different colors represent the traces
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of different particles and bigger solid dots are at the position at the certain time step.

When a leukocyte coincides with a bacteria, both undergo reaction with GMP method.

We control the time step considering Pe and Da with shown algorithm in section 2.1.4.

This result shows that the movement of any leukocyte inside the domain with any initial

position follows the chemotactic behavior with respect to the distribution of chemo-

attractants and the gradient of it. And they have good agreement of reaction process

with GMP method. The novel hybrid algorithm of ours could perfectly describe the

process of the lekocyte’s behavior of small concentration.

2.3 SUMMARY and CONCLUSION

Chemo-attractants mainly diffuse into skin or wounded cell from wound site

where bacteria invade. And leukocytes detect the gradient of chemo-attractant’s con-

centration and move to higher concentration where bacteria to be located. The motility

of bacteria is much smaller than that of leukocyte’s, and this smaller motility causes

bacteria to move little within same time scale of leukocyte’s movement. Leukocytes

decrease due to dying during inflammation process not only because of natural dying,

but also phagocytosis action by moving to the wound site and engulfing and degrad-

ing bacteria. Here we assumes one leukocyte could kill only one bacteria. Bacteria

decrease after leukocyte’s phagocytosis action but increase because of duplication as
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well. These process need multi-scale algorithm due to its wide range of time scale and

length scale.

Wide range of spatial or temporal simulation in complex biological problem

cause a big burden of computational capacity and time when we use continuum scale

modeling about an accuracy, especially handling small concentration problems. We de-

velop hybrid algorithm implementing continuum and stochastic method for chemotaxis-

motility-reaction problem. Leukocytes and bacteria move randomly and the quantity

of random motion is solved using Brownian motion. Chemotaxis is a form of advection

and it is expressed as particle tracking dependent on the concentration and the concen-

tration gradient of chemo-attractant which are solved in continuum scale. Reaction is

solved by using modified Gillespie multi-particle method considering the chemical mas-

ter equation. We consider the cell Pèclet number to determine diffusion- or advection-

dominated scheme. Every particle could have different velocity and it is possible to

have shorter time than diffusion time step and we need to choose shorter time step to

decide reasonably after making comparison with reaction time step. And Damköhler

number to take account for the time scale between transferring phenomenon(random

motility and chemotaxis) and multi-particle reaction. Our algorithm produces good

result when we use many particles compared with continuum model but takes longer.

But we focus small number or small concentration and it is much faster than contin-

uum model and show the stochastic character of it. We suggest more realistic and solid
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model in chemotaxis-motility-reaction by hybrid model.

Um, K. and D. M. Tartakovsky, “Hybrid models of chemotaxis with application to

leukocyte migration”, in preparation
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Chapter 3

Global sensitivity analysis in

multi-scale problem with

independent input variables

Pore- and Darcy-scale models provide two distinct descriptors of flow and trans-

port in porous media. The former approach relies on relatively few modeling assump-

tions but requires the detailed knowledge of a material’s pore structure and is com-

putationally prohibitive unless the number of pores being simulated is small. The

latter approach invokes the concept of a representative elementary volume, treating

a porous medium as an effective continuum without distinguishing the pore space

and surrounding solid matrix. While orders of magnitude faster to solve than their

38



pore-scale counterparts, Darcy-scale models are grounded in a number of simplifying

assumptions whose validity is often questionable [23, 24].

Upscaling techniques, such as homogenization via multiple-scale expansions [25]

or the method of volume averaging [26], allow one to ascertain the applicability of

Darcy-scale models both by identifying the necessary and sufficient conditions under

which their foundational assumptions hold and by relating parameters in these models

to pore geometry and operating regime. While many of these approaches formally place

restrictions on the regularity of a pore structure (e.g., by requiring it to be periodic),

they often yield remarkably robust predictions of macroscopic properties of materials

with irregular pore structures with equivalent microscopic characteristics (e.g., porosity,

pore-size distribution, connectivity) [25]. Recent examples of such studies include [27,

28, 29, 30], among many others. By mapping microscopic material properties onto

their macroscopic counterparts, upscaling approaches of this kind instill confidence in

predictions of transport processes in natural (e.g., geologic) porous media [31, 32] and

facilitate design of new metamaterials [33, 34]. For example, since porous electrodes

with high surface area have high energy density and, hence, high electrical double-layer

capacitance (EDLC) [35], much of recent effort focused on synthesis of nanostructured

electrodes with high surface area [36]. However, as a specific surface area of nanoporous

materials continues to increase, their EDLC cannot be generated at high power density

if ions in the electrolyte cannot diffuse fast enough. Attempts to increase ion diffusion

39



by altering electrolyte molecules or salts were shown to adversely change the intrinsic

chemical stability [37]. Instead, an observation that ordered nanopores increase ion

diffusion [38] suggests a multi-objective optimization problem, in which specific surface

area and diffusion coefficients are two quantities of interest.

One of the least studied aspects of multiscale simulations of transport phenom-

ena in porous media is sensitivity of their results to changes in pore geometry. Yet,

high sensitivity would undermine the generality of a detailed pore-scale investigation,

based on either computer-generated or imaged pore spaces of a porous material. Like-

wise, a metamaterial’s design that is excessively sensitive to parameters controlling its

pore structure is unlikely to be of much practical use. Homogenization-based relation-

ships between pore-scale parameters and their Darcy-scale counterparts facilitate both

sensitivity analysis (SA) and uncertainty quantification (UQ) in this multiscale setting.

A prevalent UQ framework treats uncertain input parameters as random vari-

ables. Within this paradigm, sensitivity of a model’s prediction to input parameters

can be quantified in terms of relative contributions of variances of the input parameters

to the prediction’s variance. Such an approach to SA is often referred as analysis of

variance or ANOVA; it is global in the sense that, unlike its local counterparts, it does

not require identification of a base set of parameter values which is then sequentially

perturbed on at a time. ANOVA is well suited for homogenization-based multiscale

modeling since a base set of parameter values either is unknown/unknowable due to
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pore-scale heterogeneity of natural (e.g., geologic) materials or has to be identified by

solving a shape optimization problem (in the case of material design).

We develop these ideas in the context of multiscale modeling of reactive solutes

diffusing through a (nano)porous material, while sorbing to its solid matrix. Pore-

and Darcy-scale formulations of this problem are provided in Section 3.1. A global SA

(GSA) of two macroscopic material properties, effective diffusion coefficient and effec-

tive sorption rate, to microscopic pore-geometric parameters is described in Section 3.2.

In Section 3.3 we provide simulation results and discuss their implications for material

design. Main conclusions derived from our study are summarized in Section 3.4.

3.1 Problem Formulation

Consider a volume V = P ∪ S of a porous material, which comprises the fluid-

filled pore space P and the solid matrix S; the (multi-connected) fluid-solid interface is

denoted by Γ = P ∩ S. Following the standard practice in homogenization theory, we

assume that the volume V consists of a periodic arrangement of unit cells U = PU ∪SU

with the pore space PU , solid matrix SU , and the interface ΓU . Figure 3.1 provides a

typical example of hierarchical nanoporous materials that exhibit such a structure.
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Figure 3.1: Schematic representation of a hierarchical nanoporous material (left) and
its unit cell (right).

3.1.1 Pore-scale model

Let c(x, t) [mol/L3] denote the solute concentration at a point x ∈ P and time

t. Its evolution within the pore space P is governed by a diffusion equation

∂c

∂t
= ∇ · (D∇c), x ∈ P , t > 0, (3.1)

where the spatial variability of the diffusion coefficient D(x) [L2/T] accounts for the

possibility of having Fickian diffusion in mesopores and Knudsen diffusion in nanotubes

(see Fig. 3.1). Equation (3.1) is subject to a uniform initial condition

c(x, 0) = cin, x ∈ P . (3.2)

A boundary condition at the fluid-solid interface Γ with unit normal vector n(x) is

constructed from mass conservation, such that the normal component of the solute
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mass flux, −Dn · ∇c, is balanced by the rate change of absorbed solute,

−Dn · ∇c = qm
∂s

∂t
, x ∈ Γ, t > 0, (3.3a)

where q(x, t) = qms(x, t) is the adsorption amount per unit area of the Γ [mol/L2], qm

[mol/L2] is the maximal adsorption amount, and s(x, t) is the fractional coverage of Γ.

The latter is assumed to follow Lagergren’s pseudo-first-order rate equation [39, 40],

ds

dt
= γ(seq − s), (3.3b)

where γ [1/T] is the adsorption rate constant and the equilibrium adsorption coverage

fraction seq satisfies Langmuir’s adsorption isotherm

seq =
Kc

1 +Kc
(3.3c)

with the adsorption equilibrium constant K [L3/mol].

3.1.2 Darcy-scale model

Darcy-scale models treat a porous material as a continuum, without separating

fluid and solid phases. Thus, a volume-averaged concentration,

C(x, t) ≡ 1

‖U‖

∫
U(x)

c(ξ, t)dξ =
1

‖U‖

∫
PU (x)

c(ξ, t)dξ =
φ

||PU ||

∫
PU (x)

c(ξ, t)dξ, x ∈ V ,

(3.4)

is defined at every “point” x of the material V . Here, || · || indicates the volume of

the corresponding domain, and φ ≡ ||PV ||/||V|| = ||PU ||/||U|| is the porosity. Gener-

alizing the homogenization via multiple-scale expansions in [33] to account for spatial
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variability of D, it is easy to show that the Darcy-scale solute concentration C(x, t)

satisfies a reaction-diffusion equation

φ
∂C

∂t
= ∇ · (Deff∇C)− φqmγeff

KC

1 +KC
, (3.5)

where “the effective rate constant” γeff [1/L] is defined in purely geometric terms,

γeff =
||ΓU ||
||PU ||

, (3.6)

while the effective diffusion coefficient Deff, a second-rank tensor, depends on both pore

geometry and pore-scale processes. Specifically, it is computed as

Deff =
1

||U||

∫
PU

(I +∇ξχ>)dξ, (3.7a)

where I is the identity matrix and the closure variable χ(ξ), a U -periodic vector defined

on PU , satisfies a Laplace equation

∇ξ · (D∇ξχ) = 0, ξ ∈ PU (3.7b)

and the normalizing condition

〈χ〉 ≡ 1

||U||

∫
PU

χ(ξ)dξ = 0. (3.7c)

Equation (3.7b) is subject to the boundary condition along the fluid-solid segments

ΓU ,

n · ∇ξχ = −n · I, ξ ∈ ΓU ; (3.7d)
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and the U -periodic boundary conditions along the remaining (“fluid”) segments Γf of

the boundary of PU . In the case of the hierarchical nanoporous material shown in

Figure 3.1, these take the form

χ1(−a, ξ2) = χ1(a, ξ2) = 0,
∂χ1

∂ξ2

(ξ1, 0) =
∂χ1

∂ξ2

(ξ1, b) = 0, (3.7e)

and

χ2(ξ1, 0) = χ2(y1, b) = 0,
∂χ2

∂ξ1

(−a, ξ2) =
∂χ2

∂ξ1

(a, ξ2) = 0, (3.7f)

where a = R cos θ and b = 2R + l. Here, R is the mesopore radius; θ is the angle

of overlap between any two adjacent mesopores in a nano-tunnel; and d and l are,

respectively, the diameter and length of nanotubes which serve as nano-bridges between

adjacent nano-tunnels.

3.2 Global Sensitivity Analysis and Uncertainty

Quantification

Equations (3.6) and (3.7) map the pore-structure parameters p = {R, θ, d, l} ≡

{p1, · · · , p4} onto the macroscopic material properties,

Deff = Deff(p), γeff = γeff(p). (3.8)

These maps allow us both to investigate sensitivity of the macroscopic parameters to

variations in the pore geometry and to relate uncertainty in the latter to uncertainty
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in the former. We treat the uncertain parameters pi (i = 1, · · · , 4) as statistically

independent random variables with probability density functions (PDFs) fpi , so that

the joint PDF of p is fp =
∏
fpi . This simplifying assumption is made to facilitate the

subsequent variance-based sensitivity analysis, even though the geometrical properties

characterizing a pore structure are generally interdependent.

We present our global sensitivity analysis (GSA) and uncertainty quantification

(UQ) for the longitudinal diffusion coefficient D11
eff ≡ DL(p). All the other functions of

p in (3.8) are treated identically.

3.2.1 Global Sensitivity Analysis

Thorough expositions of the GSA can be found in several monographs [41, 42],

here we briefly describe it in terms relevant to our study. The (explicitly unknown)

function DL(p) has a unique expansion into summands of p = {p1, · · · , p4}, e.g. [43],

DL(p) = D0 +
4∑
i=1

Di(pi) +
4∑
i=1

∑
j<i

Dij(pi, pj) + · · ·+D1234(p1, · · · , p4), (3.9a)

where

D0 =

∫
R4

DLdp; Di =

∫
R3

DL

∏
k 6=i

dpk −D0, i ≥ 1; (3.9b)

Dij =

∫
R2

DL

∏
k 6=i,j

dpk −D0 −Di −Dj, (3.9c)
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etc. By construction, for all summands,

∫
R

Di1···isdpik = 0 and

∫
R4

Di1···isDj1···jrdp = 0. (3.10)

The ensemble mean and variances of DL(p) are defined as

〈DL〉 =

∫
R4

DL(p′)fp(p′)dp′ and σ2
DL

=

∫
R4

D2
L(p′)fp(p′)dp′ − 〈DL〉2, (3.11)

respectively. Substituting (3.9) into (3.11), while accounting for the orthogonality

condition (3.10), yields the so-called analysis of variance (ANOVA) decomposition,

σ2
DL

=

Npar∑
i=1

σ2
i +

Npar∑
i=1

∑
j<i

σ2
ij + · · ·+ σ2

1234, (3.12)

where the partial variances σ2
i1···is are computed as

σ2
i1···is =

∫
R4

D2
i1···is(p

′
i1
· · · p′is)fp(p′)dp′. (3.13)

The Sobol’ sensitivity indices [44] are defined by dividing both sides of (3.12) with σ2
DL

,

such that the first- and second-order Sobol’ indices are defined as

Si =
σ2
i

σ2
DL

and Sij =
σ2
ij

σ2
DL

, (3.14)

respectively. The total Sobol’ sensitivity index, which quantifies the total effect of

uncertainty in the ith parameter pi on the overall uncertainty in the macroscopic pa-

rameter DL, is

Ti =
1

σ2
DL

∑
α∈Ii

σ2
α (3.15)

47



where Ii is the set of all subset of {p1, · · · , p4} containing the ith parameter.

The statistical moments in (3.11)–(3.15) can be estimated with, e.g., Monte

Carlo simulations (MCS) consisting of NMCS deterministic solves of (3.7) in which

realizations p̃i (i = 1, · · · , NMCS) of the pore-scale parameters p are drawn from the

distribution fp, such that

σ̃2
DL

=
1

NMCS − 1

NMCS∑
i=1

D2
L(p̃i)− 〈D̃L〉, 〈D̃L〉 =

1

NMCS

NMCS∑
i=1

DL(p̃i). (3.16)

This MCS procedure has a slow convergence rate of ∼ 1/
√
NMCS. One alternative,

which we pursue in this study, is to use the stochastic collocation method [45]. This

approach to GSA is nonintrusive, in that it can be seamlessly combined with any

solver used to solve deterministic realizations of (3.7), e.g., the finite element method

in COMSOL used in our simulations. We deployed the GSA implementation in the

software DAKOTA [46].

3.2.2 Uncertainty Quantification

Uncertainty in the pore-scale parameters p gives rise to uncertainty in the

macroscopic parameters, e.g., DL. The latter is expressed in terms of its PDF fDL
(η),

which is computed as follows. First, we deploy DAKOTA [46] to construct a surrogate

model of DL(p) by using a (generalized) polynomial chaos expansion (PCE) [47, 48, 49],
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truncated after NPCE terms,

DL(p) =
∞∑
i=0

D̂iΨi(p) ≈
NPCE−1∑
i=0

D̂iΨi(p), NPCE − 1 =
(n+Npar)!

n!Npar!
, (3.17)

where n is the polynomial degree, Ψi(p) are the orthogonal multivariate polynomials

and D̂i are the expansion coefficients. The set of Ψi(p) is derived from the Askey

scheme of hypergeometric orthogonal polynomials [48] to match continuous PDFs of

Npar = 4 parameters p, specifically, since in the simulations reported below each pk (k =

1, · · · , 4) follows a uniform distribution, Ψi(p) are multivariate Legendre polynomials.

Convergence properties of (3.17) have been the subject of many studies [48]. Figure 3.2

demonstrates the convergence of estimates of the ensemble means 〈DL〉, 〈DT〉, and 〈γeff〉

in terms of both the polynomial degree n and the number of samples used to computed

the means from (3.17). Based on these results, we use n = 4 (NPCE = 626) and

NDL
= NDT

= Nγeff
= 108 samples in the simulation results presented below.
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Figure 3.2: Ensemble means of the normalized longitudinal diffusion coefficient,
〈DL〉/D, normalized trnasverse diffusion coefficient, 〈DT〉/D and rate constant, 〈γeff〉.
The means are computed from (3.17) with the second (n = 2), third (n = 3) and fourth
(n = 4) degree polynomials, using respectively NDL

, NDT
or Nγeff

realizations of the mu-
tually independent and uniformly distributed microscopic parameters p = {R, θ, d, l}.

Second, we use (3.17) to compute NDL
samples of DLi = DL(p̃i), with i =
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1, · · · , NDL
, corresponding to NDL

realizations of the random parameter vector p.

Then, fDL
(η) is computed with a kernel density estimator (KDE),

fDL
(η) =

1

NDL

√
2πh2

NDL∑
i=1

exp

[
−(η −DLi)

2

2h2

]
, (3.18)

where h is the kernel bandwidth. Since uncertainty in the macroscopic parameters

in (3.8) stems from their dependence on the same set of uncertain pore-scale parameters

p, they are expected to be correlated. Joint PDFs of the macroscopic parameters, e.g.,

the longitudinal (DL) and transverse (D22
eff ≡ DT) components of the effective diffusion

coefficient tensor Deff, are estimated with a KDE as

fDLDT
(ηL, ηT) =

1

NDL
2πhLhT

NDL∑
i=1

exp

[
−(ηL −DLi)

2

2h2
L

− (ηT −DTi)
2

2h2
T

]
. (3.19)

Kernel bandwidths—h in (3.18), and hL and hT in (3.19)—are computed with the

modified Sheather-Jones method [50].

Once computed, the (joint) PDFs of the macroscopic parameters Deff and γeff

complete a probabilistic formulation of the Darcy-scale problem (3.5). This problem

can be solved with any standard uncertainty quantification method, including the MCS

and PCE described above.

3.3 Simulation Results

We consider the hierarchical nanoporous material, whose assembly template is

shown in Figure 3.1. In the absence of information about the statistical properties
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of the pore-scale parameters p, we take each pi (i = 1, . . . , 4) to have a uniform

distribution on the respective interval [pmin
i , pmax

i ]. (The methods described above can

also accommodate more informative priors.) The values of pmin
i and pmax

i , for (i =

1, . . . , 4), are reported in Table 3.1; the large intervals over which these parameters

are allowed to vary are representative of typical variability of natural (e.g., geologic)

materials or initial uncertainty about optimal values of pore-scale parameters used in

material design. We used a constant value of molecular diffusion D throughout the

pore space PU .

Table 3.1: Intervals of determination, [pmin
i , pmax

i ], of the four pore-scale parameters
describing the pore structure in Figure 3.1.

p1 = R, [nm] p2 = θ, [rad] p3 = d, [nm] p4 = l, [nm]
pmin
i 10.00 0.07 4.0 8.00
pmax
i 60.00 0.70 8.0 18.00

For given values of the parameter set p, i.e., for a given computational domain

PU in Figure 3.1, first, the closure vector variable χ(ξ) is computed by solving (3.7b)–

(3.7f) with COMSOL. Second, the normalized components of the effective diffusion tensor,

DL/D and DT/D, are computed by numerically evaluating the quadrature in (3.7a).

The corresponding values of the effective rate constant γeff are computed with (3.6).

The results of these calculations are exhibited in Figures 3.3 and 3.4. They demonstrate

the complex interplay of the pore-scale parameters p and their opposing effects on the

macroscopic material properties. While the effective diffusion coefficients DL/D and
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DT/D increase with the mesopore radius R and overlap angle θ, the effective rate

constant γeff decreases as these parameters increase.
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Figure 3.3: Dependence of the normalized longitudinal, DL/D, (left column) and
transverse, DT/D, (right column) diffusion coefficients on R and θ for either fixed
l = 13.0 nm and d = 6.0 nm (upper row) or d and l for fixed R = 35.0 nm and θ = 0.38
(bottom row).

3.3.1 Global sensitivity analysis

Since the parameters p are uniformly distributed, we take Ψi(p) in the PCE (3.17)

to be Legendre polynomials; the series is truncated after NPCE − 1 = 625 terms, i.e.,
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Figure 3.4: Dependence of the effective rate constant γeff [nm−1] on R and θ for either
fixed l = 13.0 nm and d = 6.0 nm (left) or d and l for fixed R = 35.0 nm and θ = 0.38
(right).

using the n = 4 degree polynomials in the pore-scale parameter pi (i = 1, . . . , 4), each

of which is defined on its respective interval in Table 3.1. The longitudinal (DL) and

transverse (DT) components of the effective diffusion coefficient Deff and the effective

reaction rate constant γeff are calculated for NDL
= NDT

= Nγeff
= 108 realizations of

the microscopic parameters {R, θ, d, l}. These realizations are then used in (3.17) to

compute the variances of the macroscopic parameters, and in (3.9)–(3.15) to compute

the corresponding first-order and total Sobol’ sensitivity indices. Table 3.2 summa-

rizes the results of these calculations, and Figures 3.5 and 3.6 provide their visual

representation.

Both the longitudinal (DL) and transverse (DT) components of the effective

diffusion coefficient tensor D are most sensitive to the overlap angle θ, which determines

the pore-throat size. While longitudinal diffusion coefficient DL is virtually insensitive
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Figure 3.5: Relative contribution of the first-order (upper row) and total (bottom row)
Sobol’ sensitivity indices to the total variance of the longitudinal, DL, (left column)
and transverse, DT, (right column) components of the effective diffusion tensor.

Figure 3.6: Relative contribution of the first-order (left) and total (right) Sobol’ sensi-
tivity indices to the total variance of γeff.

54



Table 3.2: The first-order (S) and total (T ) Sobol’ indices of effective longitudinal (DL)
and transverse (DT) diffusion coefficients and effective rate constant (γeff) for the four
pore-scale parameters p = {R, θ, d, l}.

SDL
TDL

SDT
TDT

Sγeff
Tγeff

R 1.95× 10−1 4.90× 10−2 7.70× 10−2 1.92× 10−1 8.72× 10−1 9.09× 10−1

θ 7.73× 10−1 9.54× 10−1 4.61× 10−1 4.95× 10−1 9.29× 10−3 1.24× 10−2

d 7.50× 10−4 1.08× 10−3 3.87× 10−1 4.14× 10−1 6.64× 10−4 1.50× 10−3

l 1.64× 10−3 1.60× 10−3 2.69× 10−1 5.61× 10−1 8.01× 10−2 9.96× 10−2

to the variability in the nanotube size (d and l), it has a major impact on transverse

diffusion coefficient DT. Both DL and DT exhibit an intermediate sensitivity to pore

radius R. This is in contrast to the effective rate constant, γeff, whose variance is

dominated by variability in R and, to a significantly smaller extent, by l. Its values

are virtually insensitive to θ and d.

3.3.2 Statistical parametrization of the macroscopic model

Uncertainty in values of the pore-scale parameters gives rise to that in values of

their macroscopic counterparts. Nonlinearity of the mappings, (3.6) and (3.7), between

these two sets of parameters suggests that PDFs of the macroscopic material proper-

ties can be nontrivial even when PDFs of the microscopic parameters are. Moreover,

the mappings (3.6) and (3.7) imply that even if the pore-scale variables are mutually

independent, the macroscopic parameters might be strongly correlated.

We use the kernel density estimators in (3.18) and (3.19) to post-process the

NDL
= NDT

= Nγeff
= 105 realizations of the three macroscopic parameters, DL,
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DT and γeff. Estimation of the kernel bandwidth with the modified Sheather-Jones

method [50] leads to hL = 0.0077, hT = 0.0057 and hγ = 0.0058 for the KDE

in (3.18); and (hL, hT) = (0.0083, 0.0061), (hγ, hL) = (0.0088, 0.0093), and (hγ, hT) =

(0.0085, 0.0107) for the KDE in (3.19). The resulting (marginal) PDFs, fDL
(η), fDT

(η)

and fγeff
(η), are shown in Figure 3.7. All three PDFs are highly asymmetric and exhibit

long tails. The non-Gaussianity is, of course, to be expected since these parameters

are positive quantities. This finding undermines the long-standing practice of assign-

ing standard (e.g., Gaussian or log-normal) distributions to macroscopic properties of

porous media [51, 52, 53, 54, 55].
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Figure 3.7: Probability density functions fDL
(η), fDT

(η) and fγeff
(η) of the macroscopic

material properties, DL, DT and γeff, respectively. The microscopic parameters p =
{R, θ, d, l} are mutually independent and uniformly distributed.

Joint PDFs, fDL,DT
(ηL, ηT), fγeff,DT

(ηγ, ηT) and fγeff,DL
(ηγ, ηL), are shown in Fig-

ure 3.8. The three macroscopic parameters, DL, DT and γeff, are neither statistically

independent nor multivariate Gaussian. Like their marginal counterparts in Figure 3.7,
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they exhibit multimodality. The longitudinal (DL) and transverse (DT) components

of the effective diffusion tensor are positively correlated (the correlation coefficient

ρDL,DT
= 0.44), and both are negatively correlated with the effective sorption rate γeff

(ργeff,DL
= −0.50 and ργeff,DT

= −0.18).
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Figure 3.8: From left to right: joint probability density functions fDL,DT
(ηL, ηT),

fγeff,DT
(ηγ, ηT) and fγeff,DL

(ηγ, ηL) of the macroscopic material properties, DL, DT and
γeff. The microscopic parameters p = {R, θ, d, l} are mutually independent and uni-
formly distributed.

3.4 Conclusions

Ubiquitous uncertainty about pore geometry inevitably undermines the verac-

ity of pore- and multi-scale simulations of transport phenomena in porous media. It

raises two fundamental issues: sensitivity of effective material properties to pore-scale

parameters and statistical parameterization of Darcy-scale models that accounts for

pore-scale uncertainty. We treated uncertain geometric characteristics of a hierarchical

nanoporous material as random variables to conduct GSA and to derive probabilistic
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descriptors of effective diffusion coefficients and effective sorption rate.

Our analysis leads to the following major conclusions.

1. When combined with a probabilistic framework, homogenization-based maps be-

tween pore-scale parameters and their Darcy-scale counterparts allow one to esti-

mate global sensitivity of Darcy-scale material properties to geometric character-

istics of a material’s pore structure and to relate PDFs of pore- and Darcy-scale

parameters.

2. For the hierarchical porous medium considered, the effective longitudinal diffusion

coefficient (DL) is insensitive to the size of nanotube bridges, while the effective

transverse diffusion coefficient (DT) exhibits high sensitivity to this geometric

parameter. The longitudinal and transverse components of the effective diffusion

tensor are positively correlated (the correlation coefficient ρDL,DT
= 0.44), and

both are negatively correlated with the effective sorption rate γeff (ργeff,DL
= −0.50

and ργeff,DT
= −0.18).

3. Multiscale solutions typically depend on the volume fraction. Since derivatives

of this macroscopic quantity with respect to the pore space parameters can be

evaluated analytically, it may provide a valuable a posteriori interpretation of the

GSA results.

4. The proposed approach provides a simple tool that enables a quantitative ranking
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of the microstructural parameters.

The simulations reported in this study rely on the simplifying assumption of statis-

tical independence of the uncertain (random) geometric characteristics of hierarchical

nanoporous media. In a follow-up study we will obviate the need for this assumption

by replacing the variance-based GSA with, e.g., its distribution-based counterpart.

Our analysis is formulated in terms of solute transport diffusing through a fluid-

filled pore space, while sorbing to the solid matrix. Yet it is sufficiently general to be

applied to other multiscale porous media phenomena that are amenable to homoge-

nization.

Kimoon Um, Xuan Zhang, Markos Katsoulakis, Petr Plechac, and Daniel M.

Tartakovsky, “Global sensitivity analysis of multiscale properties of porous materials”,

Journal of Applied Physics, 123, 075103(2018).
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Chapter 4

Probabilistic graphical models and

multi-scale porous media

Our primary objective is to bring a Bayesian network perspective to the mod-

eling of multiscale porous media. In particular, we will build a Probabilistic Graphical

Model (PGM) for pore scale parameters and incorporate this into a full Bayesian net-

work(statistical model) for the multiscale porous media system described in chapter 3.

PGMs, for example depicted in fig.4.1 to fig.4.3, provide a rich framework for encoding

distributions over large, complex domains of interacting random variables i.e. param-

eter space in our application of interest [56][57][58]. If the structure of the PGM is

a directed acyclic graph (also known as a Bayesian network) then the model provides

a factorization for the joint probability distribution of random variables that respects
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correlations. Constructing a PGM for pore scale parameters is a novel approach to

modeling multiscale porous media that will allow us to break down the stochastic

modeling and statistical inference tasks into smaller, controllable parts enabling us to:

1. Build systematically informed parameter priors that include physical constraints

and/or correlations.

2. Carry out global sensitivity analysis and (traditional) uncertainty quantification.

3. Build systematically random PDE models at the Darcy scale, which are informed

by pore-scale parameters, constraints, and uncertainties.

Overall, we believe that PGMs provide a systematic way of building a complete pre-

dictive model, including forward physical models, transitions between scales (e.g. ho-

mogenization) and uncertainties in parameters, mechanisms and parameter or model

constraints.

After introducing the full Bayesian network for our multiscale porous media

in 4.1, we focus on a particular component: modeling of the pore scale parameters.

Presently, we provide two examples based on hierarchical pore scale parameters,

1. with independent priors following chapter 3 and

2. with correlations induced by geometrical constraints,
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and illustrate how to incorporate these into the full Bayesian network. Our general

goals for this work are:

a. build Random PDE models by constructing corresponding Darcy parameters;

b. compare findings and role of constraints/correlations;

c. other priors, that incorporate computational data and experiments.

4.1 PGMs for multiscale porous media

Presently, we introduce a framework for treating the statistical model for the

multiscale porous media system outlined in chapter 3 and follow every terminolo-

gies(definitions) and hierarchical pore structure in figure 3.1. Following the description

in chapter 3, the key components of the full statistical model are:

1. Θ, a random vector of parameters related to the pore-scale geometry;

2. X, a random field related to the closure equations in (3.7b)) to (3.7f) obtained

via homogenization of the pore-scale physical model; and

3. U , a random field related to the macroscopic Darcy flow equations in (3.5), (3.6),

and (3.7a).

A Bayesian network formulation for the full statistical model that describes the

relationships among these three components(Θ), X, and U) is given in figure 4.1.
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The model output U depends on the distribution of X since the Darcy-scale solute

u depends on the closure variable χ. In turn, we observe that X depends on the

distribution of Θ since χ depends on p. Roughly, the variable Θ is related to the pore-

scale geometry, U is related to the Darcy scale, and X is related to the homogenization

that links the two scales. We observe that the network structure in figure 4.1 is directed,

indicating that there is no communication between the problem scales.

Figure 4.1: A Bayesian network describing the components of the full statistical model
P in (4.3) for the multi-scale porous media system takes into account the joint distri-
bution P (Θ) of the parameters, the distribution P (X | Θ) of the closure variable, and
the output distribution P (U |X) of the Darcy solute. Cf. with the PGMs in figure 4.2,
figure 4.3 which replace the simple Θ component above with additional structure.

For the network in figure 4.1, the full statistical model possesses the following

form. Let P (p) denote the joint distribution of the parameters and for simplicity we

assume the models for X and U are known, i.e. since χ and u solve deterministic

equations that uncertainty enters only through the parameters. Then the distribution
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of X is given by the trivial distribution

P (X | Θ) = δX(X − χ(ξ, t; Θ)) (4.1)

where χ solves (3.7b) to (3.7f) given a sample Θ = p. Similarly, the distribution of U

is given by

P (U |X) = δU(U − u(x, t;X)) (4.2)

where u solves (3.5), (3.6), (3.7a) given a sample X = χ. Then the full statistical

model P is given by

P :=P (Θ,X, U) = P (U |X) P (X | Θ) P (Θ)

=δU(U − u(x, t;X)) δX(X − χ(ξ, t; Θ)) P (Θ) .

(4.3)

The representation in (4.3) enables uncertainty quantification. The traditional

uncertainty quantification perspective involves strategies for sampling the model P

above, such as generalized polynomial chaos (gPC) and Monte Carlo methods(MC).

The sampled model is then used for critical uncertainty quantification tasks such as

global sensitivity analysis. These traditional uncertainty quantification methods rely

on the form of P being known and deal with how changes to the distribution affect

changes to forward (physical) model outputs/quantities of interest. The model-form

uncertainty quantification tasks deal with providing robust and tight bounds on the

error in a quantity of interest between two different models for P . In this sense, the

model-form UQ tasks allow us to answer questions about the impact that various
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modeling choices related to P will have on our quantities of interest and are key to the

support of various decision tasks.

4.1.1 First simple case: full statistical model with uniform

priors

The analysis in chapter 3 for the simple hierarchical nanopore geometry in

figure 3.1 assumes independent uniform priors for each of the pore scale parameters

p = {R, θ, l, d}. For Θ = (Θ1, . . . ,Θn) (in particular with n = 4 for the given p) we

assume that the Θi are independent, that is, we assume

Θi
Π

Θj ⇐⇒ P (Θi,Θj) = P (Θi)P (Θj) ,

for all i, j = 1, . . . , n such i 6= j. Then we have that the joint distribution for Θ factors

into the product of the priors

P (Θ) =
n∏
i=1

P (Θi) . (4.4)

The full statistical model for P in (4.3) is given by

P0 := δU(U − u(x, t;X)) δX(X − χ(ξ, t; Θ1, . . . ,Θn))
n∏
i=1

P (Θi) (4.5)

and in this case the Bayesian network has the special form given in figure 4.2. In

figure 4.2, the independent priors assumption on Θ = (Θ1, . . . ,Θn) leads to a flat

structure with each Θi, i = 1, . . . , n, pointing at X. This independence assumption
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does not take into account correlations between the pore scale parameters Θ that are

induced by geometrical constraints. As a second simple case, we consider correlations

imposed by geometrical constraints by adding more complexity to the structure of the

priors for Θ.

Figure 4.2: A Bayesian network describing the components of the full statistical model
under the assumption of independent priors on Θ = (Θ1, . . . ,Θn). Cf. the flat structure
of the Θ component in the model above to the rich structure of the Bayesian network
in 4.3 that captures Θ correlations.
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4.1.2 Second simple case: correlations arising from geometri-

cal constraints

One possible PGM for the hierarchical pore scale parameters p = {R, θ, l, d} is

as follows. For each of the parameters p ∈ p, we fix hyperparameters {p−, p+} corre-

sponding to upper and lower bounds on p. Then one chooses a subset of independent

parameters, e.g. {R, θ}, and assumes independent uniform priors, that is

ΘR | (R−, R+) ∼ Uniform(R−, R+) and Θθ | (θ−, θ+) ∼ Uniform(θ−, θ+) .

The physical geometry implicitly constrains the remaining dependent parameters l and

d:

l ≥ max{2R− 2R sin θ, l−} (4.6)

and

d ≤ min{2R cos θ, d+} . (4.7)

Thus, the distribution of Θl and Θd depends on the distribution of ΘR and Θθ.

These choices also fix other aspects of the pore scale geometry such as the unit

cell length x, the unit cell height1 y, and nanotube/mesopore overlap ε (i.e. ε = 1
2
|l− ls|

where l is the length of the nanotube as measured at the center and ls as measured

at the side). Although the parameters x, y, and ε are redundant in the sense that the

do not provide additional information to that already contained in (R, θ, l, d), these

1Compare to a and b in chapter 3: x = a/2 and y = b.
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parameters might play a role in sensitivity analysis. For example the parameter ε,

which depends on R, l, and θ is related to the sharpness of the inward facing angle

in the domain. This parameter also plays a role in the specification of the numerical

method. Choosing which parameter “directions” are most sensitive to perturbations via

principal component analysis vs basis directions. It is important from the perspective

of global sensitivity analysis.

Given these geometric constraints, it is more appropriate to assume a distribu-

tion for Θl and Θd conditioned on an observation ΘR, Θθ. That is, the conditional

density of Θl given ΘR,Θθ is

Θl | (ΘR,Θθ, l−, l+) ∼ Uniform(max{2R− 2R sin θ, l−}, l+) (4.8)

and Θd given ΘR,Θθ, is

Θd | (ΘR,Θθ, d−, d+) ∼ Uniform(d−,min{2R cos θ, d+}) . (4.9)

A pictorial representation of the causality and correlations discussed above is given

by the directed graph in figure 4.3. In figure4.3, fixed hyperparameter values are

represented by closed dots, independent variables are flagged with red, and dependent

variables are flagged with blue. There are edges between ΘR and Θl, Θθ and Θl, ΘR

and Θd, and Θθ and Θd indicating a correlation between these parameters (where the

conditional relationship is given by the direction of the arrow). The absence of edges
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between ΘR and Θθ indicates the independence

ΘR

Π

Θθ

and the absence of edges between Θl and Θd indicates conditional independence

Θl

Π

Θd | (ΘR,Θθ) ,

(i.e., the latter quantity indicates that the conditional density factors into the product

of the marginals).

Using the relationships encoded in 4.3, we have that the joint distribution P (Θ)

is given by

P (Θ) =P (Θl,Θd | ΘR,Θθ)P (ΘR,Θθ)

=P (Θl | ΘR,Θθ)P (Θd | ΘR,Θθ)P (ΘR)P (Θθ) .

(4.10)

(c.f. the joint density assuming independent priors in 4.4). Incorporating this compo-

nent into the full statistical model 4.3, we obtain the expression

P1 :=δU(U − u(x, t;X)) δX(X − χ(ξ, t; Θ)) P (Θl | ΘR,Θθ)

· P (Θd | ΘR,Θθ)P (ΘR)P (Θθ) ,

(4.11)

which describes the statistical model for the full multiscale system with the correlation

structure in figure 4.3 assuming the models for U and X are known.
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Figure 4.3: A PGM for pore scale geometry that encodes the correlations among the
distribution for pore scale parameters Θ = {ΘR,Θθ,Θl,Θd}. Note that ΘR

Π

Θθ and
Θl

Π

Θd | (ΘR,Θθ). The rich structure above encodes correlations among the Θ that
are absent in the model represented in 4.2.

4.1.3 Unknown model for the Darcy scale process

In chapter 3, the interest is in analyzing a quantity of interest DL := D11
eff , a

functional of the macroscopic Darcy parameters {Deff(p), γeff(p)}. Instead of being a

statistic of the forward model output, the goal functional was a kernel density estimator

f for DL that then depends on the joint distribution of the pore-scale parameters p.

In this case, the distribution of the quantity of interest is not the trivial distribution
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(4.2) but is instead a kernel density estimator which has some error (a distribution).

In particular, the network in figure 4.3 yields the model:

P3 := f(DL | Θ) =f(DL |X) δX(X − χ(ξ, t; Θ)) P (Θl | ΘR,Θθ)

· P (Θd | ΘR,Θθ)P (ΘR)P (Θθ) .

This model can be sampled using traditional uncertainty quantification methods and

in particular the variance of this density can then be analyzed using the techniques in

chapter 3.

One might play a similar game with the closure variable: the error in the ho-

mogenization can be included by putting a distribution on X that is not trivial, i.e. by

replacing (4.1) with some distribution that captures the error in the homogenization.

4.1.4 Rosenblatt transform

We sample our parameters uniformly at random from a hypercube. Rosenblatt’s

transformation [59] is useful; it transforms the problem of sampling a general joint

distribution into the problem of sampling a vector of independent Uniform(0, 1) random

variables.

Let (X1, . . . , Xk) be a random vector with continuous joint cumulative distribu-

tion function F (x1, . . . , xk). Define a transformation T x = T (x1, . . . xk) = (z1, . . . , zk) =
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z given by

z1 = P (X1 ≤ x1) = F1(x1) ,

z2 = P (X2 ≤ x2 | X1 = x1) = F2|1(x2 | x1) ,

...

zk = P (Xk ≤ xk | Xk−1 = xk−1, . . . , X1 = x1) = Fk|k−1,...,1(xk | xk−1, . . . , x1) ,

where Fi|j is the conditional distribution of Xi given Xj. Then the random vector

Z := T (X) is uniformly distributed on the k-dimensional hypercube (i.e. Z1, . . . , Zk

are iid Uniform(0, 1)).

For our random vector of parameters Θ = (ΘR,Θθ,Θl,Θd), we note that given

the model in 4.3 the Rosenblatt transform T takes the form

z1 = FR(x1) ,

z2 = Fθ|R(x2 | x1) = Fθ(x2) , (since ΘR

Π

Θθ) ,

z3 = Fl|R,θ(x3 | x2, x1) ,

z4 = Fd|l,R,θ(x4 | x3, x2, x1) = Fd|R,θ(x4 | x2, x1) , (since Θd

Π

Θl | ΘR,Θθ) .

Thus

T (Θ) =T (ΘR,Θθ,Θl,Θd)

=
(
FR(ΘR), Fθ(Θθ), Fl|R,θ(Θl | ΘR = R,Θθ = θ), Fd|R,θ(Θd | ΘR = R,Θθ = θ)

)
where (since each of the cumulative distribution functions above corresponds to a
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uniform distribution) the components of the random vector are given by the variables

Z1 := FR(ΘR) =
ΘR −R−
R+ −R−

,

Z2 := Fθ(Θθ) =
Θθ − θ−
θ+ − θ−

,

Z3 := Fl|R,θ(Θl) =
Θl −max{(2R− 2R sin θ), l−}

l+ − l−
,

Z4 := Fd|R,θ(Θd) =
Θd − d−

min{2R cos θ, d+} − d−
.

This transforms the sampling problem into the problem of sampling a vector Z =

(Z1, Z2, Z3, Z4) of independent Uniform(0, 1) random variables. In particular, we are

interested in a quantity of interest Y = M(Θ) where M is the (forward) model with

random input Θ. Then the compositional model Y = (M◦T −1)(Z) provides a means

of computing since the statistics of the output ofM◦T −1 in response to Z are identical

to the statistics of the output of M in response to Θ [60].

4.1.5 Recipe for using this method with Monte Carlo sam-

pling

1. Specify upper and lower limits on the parameters,

i.e. fix: R−, R+, θ−, θ+, l−, l+, d−, d+ .

2. Sample iid Uniform(0, 1) random variables Z1, Z2, Z3, Z4 .

3. Use inverse transform Θ = T −1(Z) to obtain a sample values R, θ, l, d for each of
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ΘR,Θθ,Θl,Θd, i.e.:

(a) R := Z1(R+ −R−) +R− ,

(b) θ := Z2(θ+ − θ−) + θ− ,

(c) l := Z3(l+ − l−) + max{(2R− 2R sin θ), l−} ,

(d) d := Z4(min{2R cos θ, d+} − d−) + d− .

4. Run forward model using sample values R, θ, l, d; these sample are drawn from

the appropriate joint distribution with correlations.

5. Conduct uncertainty quantification analysis.

For the (isoprobabilistic) transform T , the statistics of the quantity of interest with

respect to the compositional modelM◦T −1 with input Z should match the statistics

with respect to the original model M with input Θ.

4.2 Results

We consider the hierachical nanoporous material shown in Fig. 3.1. The inde-

pendent random variable of the pore-scale parmeter p in chapter 3 is shown in (4.3).

And we take account of the correaltion of pore-scale parameter (4.7) to (4.6) and re-

build it in (4.11) using a Probabilistic Graphical Model. But the input parameters
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are given uniform random distribution (0 ≤ Z ≤ 1) by Rosenblatt transformation ex-

plained in 4.1.4. We use (3.17) and corresponding probability density functions(PDF)

using a kernel density estimator(KDE) described in (3.18) and (3.19).

4.2.1 Comparison of independent inputs and uncorrelated in-

puts

Input parameters (p) in pore-scale reported in table 4.1 brings about macro-

scopic counterpart. We compare the macroscopic values by probabilistic graphical

model with those reported in chapter 3. We use the Kernel Distribution Estima-

tor(KDE) in (3.18) and (3.19) and show the results in figure 4.4 and in figure 4.7.

We post-process the 105 realizations of three macroscopic parameters, DL, DT, and

γeff from the PCEs in (3.17) and use KDE. Estimation of the kernel bandwidth

with the modified Sheather-Jones method [50] indicates hL = 0.0058, hT = 0.0012,

and hγ = 8.6741 × 10−4 for the KDE in (3.18) and (hL, hT) = (0.0049, 0.0023),

(hT, hγ) = (0.0025, 0.0015), and (hγ, hL) = (0.0020, 0.0046) for the KDE in (3.19).

The comparing results of marginal PDF are shown in figure 4.4. They behaves similar

Table 4.1: Range of input parameter to make comparion of results between the inde-
pendent input parameters and correlated input parameters

R(nm) θ(rad) d(nm) l(nm)
Max. 60 0.7 8 18
min. 10 0.07 4 8
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trends but PGM model shows more narrow and sharp distribution. This results shows

very simple geometrical correlation(constraints) brings about changes of the Darcy

scale properties.
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Figure 4.4: PDFs of fDL
(η), fDT

(η), and fγ(η). Left graph : PDFs from independent
input parameters, right graph : PDFs from correlated input parameters.

Joint PDFs are shown in figure 4.7. These joint PDFs also show similar dis-

tribution to independent random value in pore-scale, that is, effective diffusion in

longitudinal direction(DL) and transverse direction(DT) are positively correlated, and

both are negatively correlated with the effective sorption rate(γeff ). Joints PDFs also

have narrow distribution, particularly in fDT,Dγ . It is concentrated very small range of

ηT and ηγ and even seen as optimized property of Darcy-scale.

Table 4.2: Range of input parameters from pore-scale. Maximum value and minmum
value is corresponding with described values in figure 4.3(R+, R−, θ+, θ−, d+, d−, l+,
l−)

R(nm) θ(rad) d(nm) l(nm)
Max. 60 0.05π 60 60
min. 10 0.4π 5 1
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Figure 4.5: From left to right: joint probability density functios fDL,DT
(ηL, ηT ),

fγeff ,DT
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(ηγ, ηL) of macroscopic material properties, DL, DT, and γeff .
Upper row : independent input parameters of p and below row : correlated input
parameters by PGM.

77



4.2.2 PGM with wider range of input parameters

Uncertainty quantification

The greatest benefit of correlation input is that the correlations coming from

the geometric factors(constraints) are considered in figure 4.3. And the interval is

reported in Table 4.2 relatively larger interval for d and l to see the effect of correlation

of input parameters. We analyze PGM model following described in 4.1.5 and post-

process the 105 realizations of three macroscopic parameters, DT, DL, and γeff from

the polynomial chaos expansion and kernel density estimator.
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Figure 4.6: fDL
(η), fDT

(η), and fγ(η) of the macroscopic material properties, DL, DT,
and γeff respectively. Microscopic parameters are correlated and following the interval
shown in table 4.2.
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The estimated kernel density bandwidths by the modified Shearther-Jones method

[50] are hL = 0.0065, hT = 0.0016, and hγ = 0.0011 for the KDE in (3.18) and

(hL, hT) = (0.0080, 0.0049), (hT, hγ) = (0.0038, 0.0022), and (hγ, hL) = (0.0015, 0.0042)

for the KDE in (3.19). The comparing results of marginal PDF are shown in figure 4.6.

fDL
, and fγeff behave similar tendency though wider interval of microscopic input

parameter(d, l) but fDT
trends different. Microscopic parameter d influences most to

macroscopic parameter DT and nanoporous geometry could have wider interval of it

without breaking geometric limits through probabilistic graphical model.

Joint probability density functions, fDL,DT
(ηL, ηT), fγeff ,DL

(ηγ, ηL), and

fγeff ,DT
(ηγ, ηT), are shown in figure 4.7. fDL,DT

(ηL, ηT) shows highly complex behavior

though fγeff ,DT
(ηγ, ηT) are biased(concentrated).
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(ηγ, ηL) of macroscopic material properties, DL, DT, and γeff
from the correlated input parameters reported in table 4.2.
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4.3 Summary and discussion

We build Random PDE models by constructing corresponding Darcy parame-

ters (run simulations using P1 model) and the correlations in the pore-scale parameter

enables us to understanding of behaviors of effective diffusion coefficient in the trans-

verse direction. In previous analysis, it is difficult to see the behavior of DT because of

geometrical constraints once we use uniformly distributed pore-scale parameters. We

see that the diffusion coefficients are highly non-linear and very complex coming from

geometrical non-linearity.

One direction could be, given the structure of the PGM, to consider a case

where correlations are inferred from some data set (simulated data comprising mea-

surements). Another direction: in general, the parameters that describe the geometry

themselves might be unknown (and possibly high dimensional) and the parameters and

their correlations might be obtained from a machine learning technique using experi-

mental (image) data.

Um, K., E. Hall, M. Katsoulakis, and D. M. Tartakovsky, “Probabilistic graphical

models and multiscale porous media“, submitted
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Chapter 5

Conclusion

This dissertation leads to the following major conclusions:

1. In complex biological problems, wide range of spatial and/or temporal conditions

brings about the necessities of multi-scale simulation. Here we develop hybrid

algorithm to implement of different scale for chemotaxis-motility-reaction prob-

lem. Three different phenomenons are controlled by operator-splitting method.

Random motility is described by stochastic method using Brownian motion and

reaction is depicted by Gillespie multi-particle method considering the chemical

master equation. Chemotaxis which is influenced by the concentration and the

gradient of concentration of chemo-attractants acquired by continuum scale calcu-

lation could be described in hybrid method. The cell Pèclet number is calculated

for each leukocyte or bacteria particle to determine its dominated dominated
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scheme(diffusion– or advection–dominated scheme). Also Damköhler number is

taken account to determine proper time step. Hybrid algorithm in different scale

of species(chemattractants, bacteria, and leukocytes) is validated by comparing

continuum scale model with error analysis and it is turned out solid algorithm in

the aspect of speed and accuracy.

2. Multiscale simulation in pore-scale geometric structure and Darcy-scale material

properies is conducted for material design. We can see the probabilistic relation

though the geometric parameters in the pore-scale is independent. Darcy-scale

properties, effective diffusion coefficients and effective sorption rate are calcu-

lated by upscaling with closure and randomness comes from uniform distribution

of pore-scale input parameters. Polynomial chaos expansion about Darcy-scale

properties drives the probability density function and the joint probability density

function using kernel density estimator and these shows the relationship between

the Darcy-scale properties. Also global sensitivity analysis based on Sobol’s in-

dices and total indices gives the guideline of material design by showing the

ranking of the most effective influence. The ranks indicate the effectiveness of

pore-scale parameters to Darcy-scale parameters.

3. In real experiments, the intrinsic constraints(correlations) limits the material

design. Probabilistic graphical methods helps to consider the correlation in the
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pore-scale parameters and Rosenblatt transformation and inverse transformation

makes these correlations handled in uniform distribution. We validate PGM using

same interval of input parameter. Larger input range shows different relationship

in Darcy-scale parameters and this comes from the correlation as well. Geometric

correlations produce more condensed range in joint probabilistic density function

and these results suggests most probable output(Darcy-scale parameters) under

given interval of input parameters(pore-scale).
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