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ARTICLE OPEN

Adversity in early life and pregnancy are immunologically
distinct from total life adversity: macrophage-associated
phenotypes in women exposed to interpersonal violence
Kirstin Aschbacher 1,2,3✉, Melissa Hagan1,4, Iris M. Steine5,6, Luisa Rivera7, Steve Cole8, Alyssa Baccarella9, Elissa S. Epel1,
Alicia Lieberman1 and Nicole R. Bush 1,10,11

© The Author(s) 2021

Early childhood and pregnancy are two sensitive periods of heightened immune plasticity, when exposure to adversity may
disproportionately increase health risks. However, we need deeper phenotyping to disentangle the impact of adversity during
sensitive periods from that across the total lifespan. This study examined whether retrospective reports of adversity during
childhood or pregnancy were associated with inflammatory imbalance, in an ethnically diverse cohort of 53 low-income women
seeking family-based trauma treatment following exposure to interpersonal violence. Structured interviews assessed early life
adversity (trauma exposure ≤ age 5), pregnancy adversity, and total lifetime adversity. Blood serum was assayed for pro-
inflammatory (TNF-a, IL-1ß, IL-6, and CRP) and anti-inflammatory (IL-1RA, IL-4, and IL-10) cytokines. CD14+monocytes were isolated
in a subsample (n= 42) and gene expression assayed by RNA sequencing (Illumina HiSeq 4000; TruSeq cDNA library). The primary
outcome was a macrophage-associated M1/M2 gene expression phenotype. To evaluate sensitivity and specificity, we contrasted
M1/M2 gene expression with a second, clinically-validated macrophage-associated immunosuppressive phenotype (endotoxin
tolerance) and with pro-inflammatory and anti-inflammatory cytokine levels. Adjusting for demographics, socioeconomic status,
and psychopathology, higher adversity in early life (ß = .337, p= 0.029) and pregnancy (ß = .332, p= 0.032) were each associated
with higher M1/M2 gene expression, whereas higher lifetime adversity (ß = −.341, p= 0.031) was associated with lower
immunosuppressive gene expression. Adversity during sensitive periods was uniquely associated with M1/M2 imbalance, among
low-income women with interpersonal violence exposure. Given that M1/M2 imbalance is found in sepsis, severe COVID-19 and
myriad chronic diseases, these findings implicate novel immune mechanisms underlying the impact of adversity on health.
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INTRODUCTION
Exposure to adversity during sensitive periods of immunologic
development is associated with heightened risk for poor health
outcomes, including cardiovascular [1], metabolic [2], psychiatric
[1, 3], and neurodegenerative disorders [4], as well as premature
all-cause mortality [5]. Sensitive periods are limited windows of
development, during which the central nervous system (CNS) and
immune system can both be especially “plastic” or prone to
epigenetic changes in response to environmental stimuli.
“Biological embedding” [6, 7] of stress through epigenetic changes
can lead to heightened health risks later in life [6–8]. While the
plasticity of brain, behavior, and immunity is pronounced early in
life, it continues across the adult lifespan. We know comparatively
little about whether there are specific developmental stages in
adulthood that are associated with heightened susceptibility to
adversity and sustained phenotypic changes. Pregnancy may be

an important “developmental infection point,” during which the
maternal immune system undergoes profound and progressive
transformations, central to the survival of mother and baby [9]. As
not all women exposed to adversity in their lifetime develop poor
health, a deeper understanding of the phenotypes and mechan-
isms associated with adversity exposure, with consideration of
potential sensitive periods, is needed. Such evidence would allow
development of new diagnostic biomarkers, identification of high-
risk individuals, and better disease targeting [10].
Inflammation is one major pathway by which adversity

exposure increases later disease risk [11]. The immune system
has particular sensitive periods of development, such as early life
[12, 13] and pregnancy [14–16], during which it undergoes
substantial changes, exhibiting heightened phenotypic plasticity
and vulnerability to environmental stressors [17–19]. Although
trauma exposure tends to be associated with elevated pro-
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inflammatory proteins [7, 20], these biomarkers are not highly
specific—i.e., they are also elevated in myriad mental and physical
conditions [21–23]. Furthermore, because inflammation is multi-
dimensional, employing a single biomarker, like C-Reactive Protein
(CRP), tends not to be sensitive enough to optimally identify at-risk
individuals [24, 25]. Accordingly, the National Institute of Health
recently called for complex, composite biomarkers [26]. Inflam-
matory cytokines are predominantly produced by myeloid cells of
the innate immune system, such as monocyte/macrophages.
Hence, this study investigates whether pro-inflammatory mono-
cyte/macrophage phenotypes may elucidate the unique biological
fingerprint of adversity experienced during sensitive periods of
immunological development.
Early childhood, especially the first 5 years of life, is a sensitive

period during which environmental exposures influence the
allocation of resources between innate (non-specific) immunity
versus adaptive (specific) immunity. Exposure to adversity,
especially interpersonal trauma [27], activates the neuroimmune
networks that anticipate the threat of wounding and infection
[28], thereby mobilizing the pro-inflammatory defenses of the
innate immune system. In contrast, adaptive immunity, or
targeting of specific pathogens, is more precise, but it takes years
to develop [29]. It is increasingly recognized that the innate
immune system can form epigenetically mediated immunologic
“memory” known as “trained immunity”, which results in
heightened reactions to secondary infections or sterile inflamma-
tory triggers (like stress), and which may be intergenerationally
transmissible [30–33]. Current available evidence suggests that
exposure to adversity during early life drives epigenetic modifica-
tions that enhance inflammation, skew T-cell repertoires [34], and
may contribute to immunosupression [8, 35, 36]. Hence, these
enduring phenotypic alterations facilitate a robust inflammatory
response to threats, but over time, can drive chronic disease and
accelerate aging of the adaptive immune system.
As in early childhood, pregnancy is a period of an individual’s

lifespan characterized by high levels of tissue proliferation,
establishment of immune tolerance, and heightened vulnerability
to infection—a major cause of maternal and fetal mortality
[29, 37]. In apparent contradiction, pregnancy is characterized by
both chronic low-grade maternal inflammation and immunosup-
pression, which helps restrain the inflammatory response
[9, 15, 38]. Circulating blood monocytes infiltrate the uterine
lining during early pregnancy, becoming “decidual macrophages”.
Excess inflammation at the maternal-fetal interface is associated
with a pro-inflammatory “M1-like” macrophage phenotype and
predicts fetal loss and premature birth [39, 40]. In contrast,
macrophages exhibiting greater expression of “M2-like” genes
(immunoregulatory and anti-inflammatory) help generate immu-
nosuppressive T-regulatory cells, which prevent rejection of the
semi-allogenic (non-self) fetus [14, 15, 41]. These M1-like and M2-
like profiles reflect coordinated programs involving hundreds of
genes, instantiated in part through epigenetic regulation [42],
whereby a relative imbalance favoring M1 versus M2-like
expressed genes has been linked with inflammatory disease [43].
It may be “through the eyes” of the macrophage that pregnancy

emerges as a sensitive period for immune system development in
adulthood, such that the effects of adversity during pregnancy
may persist post-natally. Decidual (uterine) macrophages play a
pivotal role in a successful pregnancy [44]. In pregnancy, the
uterus undergoes an enormous transformation “to a degree
unparalleled in most adult tissues” [44]. Whereas many of her
tissue macrophage compartments (e.g., the CNS) were populated
when the mother herself was in utero, during her pregnancy, the
decidual macrophages are largely drawn from bone marrow-
derived monocytes. Under chronic stress conditions, these
monocytes become biased toward M1-like, pro-inflammatory
phenotypes [45–48]. Moreover, decidual macrophage phenotypes
are epigenetically modified by the microenvironment [44, 49] of

the fetal-maternal interface, and may be skewed toward an M1-
like phenotype by stress-associated glucocorticoids [50]. In fact,
psychological stress during pregnancy has been associated with
leukocyte epigenetic markers of higher inflammation and lower T-
regulatory-associated immunosuppression, which persist after birth
to predict post-partum depression in a sample of Latinx mothers
[51]. Psychosocial stress during pregnancy has also been linked to
elevated expression of inflammatory genes (RNA) during preg-
nancy [52], which can in turn affect fetal tissue development [53]
and birth timing and weight [54]. Hence, pregnancy appears to be
an epigenetically sensitive window in the life of an adult woman,
during which adversity may leave an enduring impact on her
immune system and its reactivity to threat, as well as impacting
offspring development and outcomes.
The current cross-sectional study sought to understand social

adversity predictors of immune phenotypes among ethnically
diverse low-income women, with significant exposure to diverse
forms of interpersonal trauma. We focus on monocyte/macro-
phage phenotypes because they (1) exhibit developmental
sensitivity during the first several years of life [13], and during
pregnancy [9, 14, 15, 38], (2) drive inflammatory disease [33, 43],
and (3) help regulate the balance of innate and adaptive
immunity, with implications for immunosuppression [41]. Our
primary hypothesis was that greater adversity during two sensitive
periods of the female lifespan—early life (defined herein as birth
to age five) and pregnancy—would be significantly positively
associated with alterations in a macrophage-associated M1/M2
RNA phenotype, reflecting a relative upregulation of pro-
inflammatory versus anti-inflammatory and
immunoregulatory genes.
Furthermore, we reasoned that a novel phenotypic marker of

sensitive periods should meet certain criteria for specificity with
respect to the timing of exposure and the genomic fingerprint.
First, we reasoned that if the M1/M2 phenotype is specific to early
life or pregnancy exposures, then it should not be significantly
associated with total adversity across the lifespan. Second, if
sensitive periods are uniquely associated with M1/M2, then they
should not be associated with alternative biomarkers. Thus, to
ascertain whether standard protein biomarkers might provide
similar insights, we additionally analyzed levels of classic pro-
inflammatory and anti-inflammatory cytokines and C-Reactive
Protein (CRP). Similarly, we contrasted M1/M2 with an alternative
macrophage-associated phenotype, known as endotoxin toler-
ance (ET), validated across a wide age-range among patients with
sepsis [55]. We selected ET based on emerging epigenetic
research that describes trained immunity and tolerance as “two
opposite functional programs of innate immunity” [30], because,
after an initial priming (e.g., by pathogen exposure), the former
enhances inflammatory reactivity while the latter suppresses it [42].

METHODS
Study population
Data used in the present study came from “The Child Parent
Psychotherapy Health study” (CPP-HEALTH), conducted between 2013
and 2015. CPP-HEALTH enrolled 62 women and their children who were
seeking treatment for the child’s exposure to interpersonal trauma. The
goal was to examine biological correlates of trauma and treatment-related
changes in psychological functioning following participation in a
previously-validated dyadic intervention, Child-Parent Psychotherapy
[56]. Inclusion criteria included biological mothers with children aged
2–6 years who had been exposed to a traumatic event, and were fluent in
English or Spanish. Exclusion criteria included homelessness, current family
violence, substance abuse, child was a ward of the state, current
pregnancy, child developmental disorder, psychosis, and chronic medical
conditions in mother or child. Maternal participants provided written
consent and were compensated. The research was approved by the
Institutional Review Boards at Zuckerberg San Francisco General and the
University of California San Francisco.

K. Aschbacher et al.

2

Translational Psychiatry          (2021) 11:391 

1
2
3
4
5
6
7
8
9
0
()
;,:



Participant characteristics
The present study included 53 mother–child dyads who completed the
baseline assessment and provided a blood sample for inflammatory
cytokine assays (Table 1). Of these, gene expression phenotypes were
obtained in a convenience subset of 42. Power analyses demonstrated
80% power to detect a moderate effect size (d= 0.40) at n= 44.

Study procedures
At baseline, women provided information on their history of adversity and
current psychological functioning. Participants were excluded from study
enrollment if they were currently experiencing domestic violence. To
ascertain early life adversity (ELA) and total life adversity (TLA) exposure,
women completed the 30-item Life Stressor Checklist-Revised (LSC-R) in
interview format [57]. Because the current study focused on interpersonal
adversity, natural disasters and vehicle accidents were excluded. TLA was
computed by summing the number of different types of events
experienced throughout the lifespan, and ELA was quantified as the
number of different types of events experienced up to age 5. Pregnancy
adversity (PA) was assessed using a validated structured interview [58], in
which a trained clinician asked mothers to report whether ten different
types of violence (e.g., being hit in the head or stomach, choked, pushed,
kicked, knifed, threatened) occurred during her pregnancy with the target
child (aged 2–6 years). PA was computed as (0) no events, (1) one event, or
(2) more than one event. Women also completed the Center for
Epidemiologic Studies Depression Scale Revised (CESD-R) [59] and the
Posttraumatic Stress Scale Interview (PSSI) [60].

Laboratory procedures
Blood draw procedure. Women provided morning fasting blood samples
at the hospital laboratory; prior to the draw, mothers were asked to
consume nothing other than water or coffee and to reschedule if they felt
ill, or had used medications in the prior three days that might affect assays/
biomarkers. Serum was stored at −80°.

Immunogenomic phenotypes (M1/M2 ratio). We selected a set of a priori-
determined [61], previously published (44) genes reflecting an M1 and M2-
like profile, quantified at baseline, based on previous literature (Supple-
mentary Table 1). This M1/M2 phenotype reflects a relative increase of pro-
inflammatory M1-like versus anti-inflammatory and immunoregulatory M2-
like expressed genes. Our prior work demonstrated that higher levels of
the M1/M2 phenotype prospectively predicted poorer response to
behavioral trauma treatment in this same sample [62], indexed as a lesser
reduction in depressive and PTSD symptoms. In line with this previous
work, we computed an aggregate sum for M1-like genes and another for
M2-like genes (focused on M2ab) [61], and then computed a final M1/M2
ratio as an index of relative pro-inflammatory imbalance.

Endotoxin tolerance (ET): an immunosuppresive phenotype. To establish
whether associations of adversity during sensitive periods would be specific
to M1/M2, or whether there might be a more general pattern of
associations with other established inflammatory phenotypes, we included
a previously validated, endotoxin tolerance (ET) phenotype for model
comparison [55] (Supplementary Table 2). ET was specifically chosen
because the profile of macrophage gene expression evoked by social
stress overlaps substantially with the macrophage gene expression profile
evoked by endotoxins such as lipopolysaccharides (LPS), and ET is
specifically elicited in culture models by repeated LPS stimulation, hence,
we hypothesized that it might provide insights into total lifetime
experiences of social stress or adversity [28]. Repeated in vitro endotoxin
stimulation over a 24-h period results in a temporary refractory period,
during which cells exhibit sub-normal production of both pro-
inflammatory and anti-inflammatory cytokines, described as “immunopar-
alysis.” In the context of wounding or infection, this immunoparalytic state
can result in death [55]. Hence, we reasoned that greater total adversity
across the lifespan might be associated with a desensitization of this
negative feedback mechanism, resulting in lower ET scores.

Inflammatory protein profiles. The inflammatory cytokines IL-6, IL-1ß, IL-1
receptor antagonist (IL-1RA), IL-4, IL-10, and tumor necrosis factor alpha
(TNF-a) were measured in serum in duplicate using a chemiluminescent
multiplex assay from Meso Scale Discovery (Rockville, MD). CRP was
measured using a high-sensitivity immunoturbidimetric assay from Randox
(Kearneysville WV) and a PolyChem clinical chemistry analyzer (PolymedCo,
Cortlandt Manor, NY). A pro-inflammatory aggregate score was comprised
of the average of the normalized scores for CRP, IL-6, TNF-a, and IL-1ß. An
anti-inflammatory aggregate score was constructed by averaging the
normalized scores for IL-1RA, IL-4, and IL-10.

Immune RNA phenotyping. These methods are described elsewhere in
detail (Supplementary Methods). CD14+ monocytes were isolated from
total peripheral blood mononuclear cells using positive selection (anti-
CD14 PE by BD Pharmingen), and frozen in RNAprotect Cell Reagent at
−80°. Total RNA was isolated, converted to cDNA using with the Illumina
TruSeq Stranded enzyme system and sequenced on Illumina HiSeq 4000,
reads are aligned to the reference human transcriptome (HISAT2), and
gene expression modeled (StringTie [63]).

Statistical analysis
All variables were inspected for normality violations; inflammatory
cytokines were blom-transformed and gene counts were log2-
normalized. Multivariable regression models inputted each adversity factor
as a predictor of the M1/M2 phenotype with and without adjustment for
two separate sets of covariates. Model 1 included demographic and
medical covariates strongly connected with inflammatory cytokines in the
literature [62], and those highly characteristic of this sample: age, BMI,
antidepressant use, and Hispanic ethnicity. Four participants indicated they
were breastfeeding, however the small number precluded us from
including it as a covariate. Model 2 included socioeconomic status factors:
family poverty per census definition, being US born, and education [64].
Specificity tests for IP, pro-inflammatory (PRO) and anti-inflammatory
(ANTI) cytokines were conducted similarly. Finally, we conducted

Table 1. Sociodemographic, adversity exposure, mental health, and
medical characteristics of the sample.

Sample
characteristics

Serum
cytokine cohort

Gene expression
subcohort

Statistical estimate
(n= 53)

Statistical
estimate (n= 42)

Mother’s age, yearsa 32.10 (0.92) 31.84 (0.91)

Non-Hispanic
Caucasianb

7 (13%) 4 (10%)

Hispanic/Latina
Caucasianb

38 (72%) 32 (76%)

African Americanb 2 (4%) 2 (5%)

Asian Americanb 6 (11%) 4 (10%)

High school
educationb

34 (64%) 24 (57%)

Family povertyb 35 (66%) 29 (69%)

US Bornb 45 (85%) 37 (86%)

Child’s age, monthsa 50.38 (1.74) 49.53 (1.93)

Early life adversitya 0.81 (0.15) 0.81 (0.17)

Adversity in
pregnancya

0.91 (0.11) 0.88 (0.12)

Total life adversitya 11.12 (0.58) 11.58 (0.64)

PTSD severity (PSSI)a 21.30 (1.55) 21.81 (1.71)

Depressive symptoms
(CESD-R)a

24.98 (1.72) 24.60 (1.82)

Body mass indexa 27.57 (0.84) 27.53 (0.96)

Current
antidepressant useb

6 (11%) 4 (10%)

NSAID useb 1 (2%) 1 (2%)

n= 53 constitutes the sample with serum cytokine data and n= 42
constitutes the subsample of these 53 women, who had gene expression
data. High school education was coded 0 for participants who attended
school for less than 12 years, and 1 for 12 or more years of attendance.
Poverty was calculated using 2016 Census criteria (see “Methods” section).
PSSI PTSD Symptom Scale Interview, total score, CESD-R Center for
Epidemiologic Studies Depression Scale, total score.
aMean (SEM).
bn(%).
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multivariable regression analyses to better understand whether different
adversity factors exhibited associations with immunophenotypes that were
independent of one another and of psychiatric symptoms.

RESULTS
Participant characteristics
On average (Table 1), women were 32 years of age (range: 22–51
years), predominantly non-white Hispanic (72%), and living in
poverty (66%). The mean number of years since the adversity
reported in the pregnancy recorded herein was 4 years (range: 2–6
years). Participants had been exposed to, on average, 11 different
types of adverse events across their lifespan (total life adversity;
TLA), with 45% reporting early life adversity (ELA), and 66%
reported pregnancy adversity (PA), demonstrating high but
variable levels of trauma exposure across different developmental
periods. ELA and PA were not significantly correlated with one
another. On average, participants exhibited elevated depressive
and PTSD symptoms, were overweight, and exhibited low-grade
chronic inflammation at baseline, with a mean CRP level of 2.50
(SEM: 0.42, range: 0.29–11.60) mg/L.

Associations of adversity with immune biomarkers
ELA and PA were each significantly associated with a higher M1/
M2 RNA score (all p’s < 0.05), whereas TLA was not (Fig. 1).
Conversely, higher TLA only (but not ELA or PA) was significantly
related to a lower score on the endotoxin intolerance (ET)
immunosuppressive phenotype.
In contrast, neither ELA nor PA were significantly associated

with serum pro-inflammatory cytokines (PRO) in any analysis
(Table 2). Moreover, TLA was only significantly associated with
PRO when adjusting for socioeconomic factors, such as poverty
(which also exhibited a significant independent positive associa-
tion with TLA), being US born, and education (both ns). Higher PA
(but not ELA or TLA) was significantly associated with lower anti-
inflammatory cytokines (ANTI) in unadjusted analyses; however, it
became non-significant when adjusting for age, BMI, antidepres-
sants, and ethnicity.
In multivariate analyses (Table 3), ELA remained significantly

associated with the M1/M2 RNA score, independent of PA and
PTSD or depressive symptoms (all p’s < 0.05). Of note, the
association of PA with M1/M2 showed a non-significant trend in
the presence of ELA (p= 0.052). Similarly, the TLA-ET association
remained significant when adjusting for potentially confounding
effects of ELA and PA (p= 0.031), or symptoms of PTSD or
depression (p= 0.026; Table 4). Exploratory post-hoc analyses for
hypothesis generation revealed that, of the genes comprising the
M1/M2 phenotype, toll-like receptor 2 (TLR2) showed the highest

Pearson correlation with both ELA and PA (r’s > 0.20; Supplemen-
tary Fig. 1). Due to their exploratory nature, no correction for
multiple comparisons was made.

CONCLUSIONS
Exposure to psychosocial adversity during sensitive periods of
child and adult development exerts a particularly potent impact
on health across the lifespan [1, 65–68]; however, the mechanisms
by which adversity becomes “biologically embedded” remain
elusive, and not all exposed individuals are equally at-risk. For
Precision Medicine care, we need better screening tools that
combine an assessment of adversity, through a developmental
lens, with actionable biomarker panels [25]. Inflammation is a
major mechanism that links adversity, during developmental
inflection points, with increased health risks across the lifespan
[8, 16–18]. Nonetheless, little research has validated diagnostic
immune biomarkers that are specific to adversity during two
crucial sensitive periods of a woman’s lifespan [69]—her early life
and her own pregnancy—during which her immune system
undergoes significant transformation. This study leverages a
unique, cross-sectional clinical sample of low-income, ethnically
diverse women with a history of exposure to interpersonal
violence, to identify associations between adversity during early
life and pregnancy, in comparison to total lifetime exposure, with
current immune phenotypes.
This study identifies the macrophage-associated M1/M2 phe-

notype as a specific biomarker of exposure to adversity during
early life (ELA) and during pregnancy (PA). Specifically, we found
that greater ELA and greater PA were associated with a greater
relative expression of M1 versus M2-like genes in CD14+
circulating monocytes, indicating a pro-inflammatory imbalance,
even when adjusting for sociodemographic, medical, and
psychological factors. Adding confidence to the specificity of M1/
M2 as a biomarker of adversity during these two sensitive periods,
the M1/M2 phenotype was not significantly associated with total
lifetime adversity (TLA) exposure.
Macrophages are the primary cellular mediators of inflamma-

tion, a complex response to actual and anticipatory threats [28],
involving coordinated transcriptional programs across hundreds
of expressed genes [70]. Hence, inflammation cannot be mean-
ingfully understood by one or two serum protein biomarkers.
During the arc of an inflammatory response, marophage
phenotypes are highly dynamic, transitioning from a pro-
inflammatory M1 (classically activated) phenotype across a
spectrum of anti-inflammatory/immunoregulatory M2-like (alter-
natively activated) phenotypes [61, 70]. Prior evidence demon-
strates that a pro-inflammatory M1/M2 polarization skew is

Fig. 1 Life adversity is associated with differing immune phenotypes, depending on the timing of the exposure. Note: *p < 0.05. The
scatterplots above depict the unadjusted associations between self-reported interpersonal adversity across various periods of life in relation to
normalized immune gene expression signatures, with color mapped to the y-axis biomarker. The M1/M2 phenotype refers to a relative
increase in the expression of macrophage-associated pro-inflammatory M1-like genes versus anti-inflammatory and counter-regulatory M2-
like genes. The Immunosuppressive phenotype represents a tolerant or desensitized state elicited by repeated cellular stressors (e.g.,
endotoxin), during which time the typical inflammatory response is deactivated; lower scores imply increased duration of the inflammatory
response.
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associated with heightened risk for myriad adverse clinical
outcomes, including atherosclerosis, diabetes, neurodegeneration,
pregnancy complications, and mental health treatment non-
response [14, 43, 61, 62, 71–73]. As such, these findings
demonstrating potential sensitive windows of development in
the etiology of a pro-inflammatory M1/M2 phenotype have
significant potential for advancing understanding of the origins
of myriad disease risks.
In contrast, adversity during sensitive periods did not signifi-

cantly correlate with a pro-inflammatory aggregate score,
composed of CRP, IL-6, TNF-a, and IL-1ß. Despite other studies
linking early life adversity and CRP [74], in the present study, only
total lifetime adversity correlated with the pro-inflammatory
protein profile, and only when adjusting for socioeconomic
factors. Notably, the average level of the pro-inflammatory protein
CRP in this sample was 2.5 mg/L (range: 0.29–11.60), which
indicates prevalent low-grade inflammation associated with
heightened cardiovascular risk [75]. As such, while the small
sample size may have limited statistical power, nonetheless, there
was good statistical distribution in the pro-inflammatory outcome,
and the effect sizes were small (β < 0.20), suggesting that the M1/
M2 phenotype may be a more sensitive biomarker than serum
proteins.
The present findings paint pregnancy as a sensitive period in a

woman’s life span for bioembedding of experience within her own
immune system, rather than solely as a “vessel” for the fetus. It is
established that balance of maternal M1 versus M2 phenotypes of
decidual macrophages in the uterine lining plays a crucial role in a
successful pregnancy, from implantation, to fetal tolerance, to
parturition [14]. Other studies have reported that stress during
pregnancy is cross-sectionally associated with a pro-inflammatory
milieu and markers of impaired adaptive immunity [17]. In thisTa
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Table 3. Univariate and multivariate associations of adversity during
sensitive periods and mental health symptoms with the M1/M2
phenotype.

M1/M2 phenotype

β t-test p-value

Univariate associations (Mental health)

PTSD symptom severity (PSSI),
df = 40

0.180 1.157 0.254

Depressive symptoms (CESD-R), df = 40 0.074 0.470 0.641

Multivariate model 1 (Adversity only, df = 39)

Early life adversity 0.297 2.049 0.047*

Adversity in pregnancy 0.291 2.008 0.052†

Multivariate model 2 (Adversity and mental health, both)

Early life adversity 0.330 2.171 0.036*

Adversity in pregnancy 0.312 1.916 0.063†

PTSD symptom severity (PSSI) 0.123 0.554 0.583

Depressive symptoms (CESD-R) −0.224 −1.042 0.304

Univariate associations show that neither mental health factor is
significantly associated with the phenotype in regression analyses
(equivalent here to Pearson correlations). Multivariate models 1 and 2
demonstrate the relative independent associations of each sensitive period
from one another and also from mental health symptoms, taking into
account the small sample size may limit statistical power. Correlation of
PSSI and CESD-R: r= 0.731, p < 0.001; Adversity in Early Life and Pregnancy
are not significantly correlated with one another. The results of Multivariate
Model 2 do not substantially change when only including either PSSI or
CESD-R rather than both.
PSSI PTSD symptom scale interview, total score, CESD-R Center for
epidemiologic studies depression scale, total score.
*p ≤ 0.05, †p ≤ 0.10.
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study, women who retrospectively reported greater adversity
during pregnancy not only had an increased M1/M2 skew, but
also had lower levels of anti-inflammatory cytokines, at least two,
and as many as 6 years after the pregnancy ended. Furthermore,
this correlation was not better explained by total life adversity,
which included assessment of recent stressful events. At least one
prior study has reported that adversity during pregnancy was
associated with epigenetic alterations consistent with an M1/M2
imbalance that persisted post-natally [51]. A second study also
linked psychosocial stress during pregnancy (but not prior to
pregnancy) with elevated inflammatory gene expression profiles
consistent with M1/M2 imbalance [52]. Moreover, these stress-
related material immunologic alterations appear to impact fetal
tissue development and immune regulation [53, 54] in ways that
can potentially shape neonatal development. Altogether, these
findings align with recent research highlighting women’s neuro-
biological plasticity during pregnancy and the potential for
biological embedding of stress during this time, for the mother
herself, as well as for her baby [76].
These findings revealed an intriguing contrast between two

macrophage-associated phenotypes with potential implications
for the discovery of novel diagnostic biomarkers, experimental
paradigms, and treatment approaches [77]. First, adversity during
sensitive periods (but not total life adversity) was associated with
an increased pro-inflammatory M1/M2 phenotype skew. Second,
total adversity across the life span was associated with reduced
expression of an immunosuppressive, endotoxin tolerance phe-
notype, validated among adults and children with sepsis [55].
Futhermore, this association remained significant, even when
adjusting for sensitive period exposure.
To provide context for the significance of these findings, the

body’s defense against infection balances “host resistance” with
“disease tolerance”. Resistance kills or clears pathogens (e.g., via

inflammatory responses), whereas, tolerance helps limit tissue
damage (e.g., via prolonged inflammation) [78], and is a response
to repeated exposure [79, 80]. Experimental models using a single
endotoxin exposure have provided significant insights into
inflammation as an important pathway by which adversity leads
to mental and physical health risks [81, 82]. However, to our
knowledge, this is the first time a human study has reported an
association of any psychosocial factor with an endotoxin tolerance
phenotype, a novel translational model for repeated adversity
exposures. These findings extend prior evidence in mice reporting
that chronic unpredictable stress suppressed the development of
LPS-induced endotoxin intolerance, and induced heightened pro-
inflammatory markers in the hippocampus [83]. Our findings may
reflect a “weathering effect” [84], such that a lifetime of recurrent
adversity may blunt tolerance mechanisms of cellular resilience
and enable more reactive or prolonged inflammatory responses,
thereby potentially accelerating disease risk.
We speculate that the association between adversity exposure

during sensitive periods and the M1/M2 phenotype might be an
adaptive manifestation of “trained immunity” [30, 78], a long-
lasting, epigenetically-mediated form of innate immunologic
memory. The M1/M2 phenotype may reflect a bias toward greater
M1-mediated resistance and lower M2-mediated tolerance,
although future studies would ideally validate the functional
phenotype. This study’s specific M2-like signature closely follows
the so-called M2a and M2b subtypes [61]. Hence, this M1/
M2 signature reflects not only increased inflammatory mediators,
but reduced expression of genes that code for several critical
functions: (1) “self-recognition” complexes and T-helper cell
signaling (Human Leukocyte Antigen-DR isotype (HLA-DR), CD80
and CD86), (2) critical activators of immunosuppressive T-
regulatory cells (transforming growth factor-beta (TGF-β) and IL-
10), and (3) cytokines/receptors that inhibit IL-1β-mediated
inflammation (IL-1RA, IL-1R2, and IL-10) [15, 85, 86]. Reduced
expression of these M2-like genes suggests that cross-talk with
adaptive immune cells may be reduced, particularly immunsup-
pressive T-regulatory cells and T-helper cells that orchestrate the
adaptive immune repertoire [87].
Crucially, although trained immunity is typically studied in

vaccination and infection models, it relies on cellular stress and
damage pathways that can be activated by psychological stress
[28]. Exciting new evidence suggests that high catecholamine can
also induce trained immunity in human monocytes both in vitro
and in vivo [88], resulting in epigenetic markers (H3K4me3), as
seen in vaccination models [30]. In that study, in vivo norepi-
nephrine induction did not explicitly utilize an in vivo experi-
mental stress model, providing an important direction for future
research. Another cardinal characteristic of trained immunity is a
heightened pro-inflammatory response to challenge, after an
initial priming exposure [30]. Among humans and animals in vivo,
experimental psychological stress tests acutely increase secretion
of M1-associated pro-inflammatory and pro-atherogenic cytokines
like IL-1β [82, 89] via sympathetic arousal, and enhance the
binding of nuclear factor kappa-B (NF-kB) in peripheral leukocytes
[28], a transcriptional regulator that induces a pro-inflammatory
M1-like phenotype. Conversely, relative decreases in M2-
associated IL-10, as suggested by this M1/M2 phenotype, may
reduce tolerance and delay stress recovery. Consistent with the
functional phenotype expected if adversity during sensitive
periods results in trained immunity and long-lasting innate
immunologic memory, depressed individuals with early life
adversity exhibited greater inflammatory reactivity to a standar-
dized acute stress task than similarly depressed individuals
without early adversity [90]. Hence, we posit that adversity during
sensitive periods “educates” the macrophage to mount a
heightened inflammatory response, whereas repeated life adver-
sity “wears down” or desensitizes the mechanisms that constrain
the inflammatory response. Through a developmental perspective,

Table 4. Univariate and multivariate associations of total life adversity,
adversity during sensitive periods, and mental health with the
endotoxin tolerance phenotype.

Endotoxin tolerance
immunosuppressive
phenotype

β t-test p-value

Univariate associations (Mental health)

PTSD symptom severity (PSSI),
df = 40

0.115 0.730 0.470

Depressive symptoms (CESD-R),
df = 40

0.189 1.216 0.231

Multivariate model 1 (df = 36)

Total life adversity −0.442 −2.607 0.031*

Early life adversity 0.118 0.741 0.464

Adversity in pregnancy 0.213 1.375 0.178

Multivariate model 2 (df = 36)

Total life adversity −0.374 −2.321 0.026*

PTSD symptom severity (PSSI) 0.034 0.143 0.887

Depressive symptoms (CESD-R) 1.182 0.805 0.426

Univariate associations show that neither mental health factor is
significantly associated with the phenotype in regression analyses
(equivalent here to Pearson correlations). Multivariate models 1 and 2
demonstrate the relative independent association of total life adversity
from adversity during sensitive periods and from mental health symptoms.
PSSI PTSD symptom scale interview, total score, CESD-R Center for
Epidemiologic Studies depression scale, total score.
*p ≤ 0.05, †p ≤ 0.10.
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these findings might suggest that an M1/M2 skew associated with
adversity during sensitive periods may reflect an anticipatory
adaption (intelligent resource allocation), whereas reduced ET
associated with total lifetime adversity may reflect a reactionary
adaption (limiting damage induced by weathering).

Strengths and limitations
These data come from a sample of diverse, low-income women
with high exposure to violence and other adversities, and findings
may not generalize to men or different populations of women. As
a limitation, women were interviewed about adversity experi-
enced during one particular pregnancy due to clinic-based
recruitment; hence, possible additional adversity during other
pregnancies was not assessed. Although other sensitive periods of
development may be of interest, available research suggests
monocyte/macrophages are likely to be most developmentally
sensitive during early life [13] and during pregnancy [9, 14, 51]. We
acknowledge that in vivo macrophage phenotypes are dynamic,
multidimensional, and tissue-specific [70, 91] and may differ from
over-simplified in vitro frameworks of the M1/M2 spectrum. Future
studies should triangulate gene expression phenotypes with cell
surface and functional phenotyping. Single cell RNA seq would be
needed to resolve whether M1 and M2 expression is co-expressed
on single cells or represents a shift in underlying myeloid lineage
cell subsets.
We now understand that adversity exposure is as veritable a risk

factor for chronic disease as poor diet or exercise; yet, we
understand little about the immunological mechanisms that help
explain this link. This study identifies the M1/M2 RNA phenotype
as a novel and specific adulthood biomarker of adversity exposure
during two sensitive developmental periods in the female lifespan
and points to paths for advancing translational research targeting
these mechanisms. Such discoveries may further Precision
Medicine through developmentally-oriented adversity screening
paired with sophisticated biomarker panels to support individuals
and prevent adversity-associated morbidity.

DATA AND MATERIALS AVAILABILITY
FASTQ files are available from the NCBI Sequence Read Archive (SRA) under
BioProject PRJNA626346.
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