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Abstract

It is a long standing challenge to devise a formal model of
ACT-R as a basis for formal reasoning on ACT-R. The ACT-R
architecture is a composition of components (such as modules)
with predefined interfaces between components and predefined
interactions on the interfaces. Reasoning over the correctness
of a formal model of ACT-R benefits from the separation of
abstraction levels i.e. reasoning on the level of interfaces and
interactions between components in isolation from the concrete
behaviour of each component.

We propose a formal semantics of ACT-R that preserves the
structural properties of architectural components, i.e., the in-
terfaces of modules to the remaining architecture as well as
communication between modules within the architecture. We
demonstrate how our new formal semantics of ACT-R serves to
prove the correctness of the timed automaton based operational
semantics for ACT-R (TA-ACT-R) on the level of architectural
components.

Keywords: ACT-R; Cognitive Architecture; Formal Opera-
tional Semantic;

Introduction

The cognitive architecture ACT-R (Anderson, 2007) is widely
used to model and validate psychological theories. To do
so, the psychological theory is realised as a cognitive model
and executed on the ACT-R architecture, with the subsequent
evaluation of statistical data.

Commonly, the ACT-R architecture is seen as one parame-
terised architecture that is used to execute cognitive models.
This view is reinforced by the ACT-R tool (Bothell, 2013),
which allows us to enable or disable certain modules and to
influence the simulation through certain numerical parameters
(like activation decay value). Going back to the ACT-R the-
ory (Anderson, 2007), we see that ACT-R is actually defined
as a whole family of architectures in the previous sense. Fol-
lowing Anderson, an architecture is a composition of modules
that each model a self-contained aspect of human cognition
such as memory, or a function of perception. What these mod-
ules have in common is that they interact exclusively through
an interface that is described in (Anderson, 2007). The in-
terface consists of working instructions (called actions) and
shared memory (called buffers) with additional restrictions,
e.g., that one buffer can only contain one chunk at a time.
The executions of a cognitive model on a given architecture
emerge from interactions between the production rules in the
cognitive model and the composition of modules in the con-
sidered architecture, and the interplay between the modules:
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Production rules can access modules’ buffers in order to check
whether their precondition is satisfied, that is, whether the rule
is enabled. If a production rule is enabled, it can be executed,
that is, it requests actions of the modules in the architecture.
It is a long standing challenge to devise a formal, mathe-
matical model of the ACT-R architecture and the behaviour
of cognitive models on an adequate level of abstraction, be-
cause (Anderson, 2007) only provides an informal description.
As of today, many details are clarified by the implementa-
tion in the ACT-R tool (Bothell, 2013), that is, the imple-
mentation effectively provides a precise ACT-R semantics
(cf. Figure 1 on page 2). A formal, mathematical model of
ACT-R in contrast would allow to prove that the ACT-R tool
(and re-implementations in other programming languages) all
correctly implement the ACT-R theory. Quite a number of
approaches to define ACT-R formally exist. There are earlier
works like (Stewart & West, 2007), which was designed to sup-
port the development of a new simulation tool, or (Schultheis,
2009) for the investigation of complexity theory questions. In
recent years, a branch of research emerged that is driven by
the need to exhaustively analyse cognitive models for certain
kinds of modelling errors (Gall & Frithwirth, 2014; Gall &
Frithwirth, 2018; Langenfeld, Westphal, Albrecht, & Podel-
ski, 2018). These works are based on a formal operational
semantics F-ACT-R (Albrecht & Ragni, 2014) (and its later re-
finement in (Gall & Friihwirth, 2018)). What these works have
in common is that they focus on the behaviour of cognitive
models and abstract the cognitive architecture into one mono-
lithic unit (cf. Figure 1). Recent research like (Langenfeld,
Westphal, & Podelski, 2019) has shown the scalability of ex-
haustive (symbolic) analysis and simulation of architectures
and models (here executed on the Timed Automaton-based
architecture model TA-ACT-R). Yet proving correctness of
such models with regard to a monolithic formalisation such
as F-ACT-R (Albrecht & Westphal, 2014) turns out to be diffi-
cult, as the proof has to mix different abstraction levels, i.e. the
proof has to regard not only the behaviour of all components of
the architecture at their interfaces but also the (possibly com-
plex) behaviour of the components itself. Such proof would
greatly benefit from decomposition (or rather compositional-
ity) of a formalisation. Hence there is a need for a formal
semantics of ACT-R that highlights the structural properties
of the architecture and explicitly formulates the expected be-
haviour of each component as stated in (Anderson, 2007). An
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Figure 1: The different models of the ACT-R Theory in rela-
tion. For each model of ACT-R represented by a grey back-
ground, the upper rectangle represents a cognitive model and
the lower rectangle represents the architecture.

additional benefit is that such a modular formal semantics of
ACT-R can also be well-suited for architecture research, that
is, the investigation of modules beyond the standard set, and a
rigorous investigation of the interfaces and the module interac-
tion on an abstract level, as the behaviour of a model is largely
dependent on the interplay of the different modules within the
architecture. Other works such as (Ragni et al., 2018) use a
different level of abstraction as they aim at a generalisation of
in particular (Albrecht & Ragni, 2014) into a general cognitive
architecture that is supposed to abstractly model the compu-
tations of different cognitive architectures (such as ACT-R or
SOAR) in order to compare, e.g., the outcome of cognitive
models on different architectures.

In this work, we propose a formal semantics of ACT-R that
preserves the structural properties of architectural components,
i.e., the interfaces of modules to the remaining architecture as
well as communication between modules within the architec-
ture. We uses a formalism that is inspired by process calculi.
The idea of the new formal model is that each module and
each rule becomes a process with a well-defined interface.
The interfaces define which information is accessed by (or
shared with) other parts and the allowed interactions. The
behaviour of a cognitive model on a particular architecture
is then defined by the parallel composition of the rule and
module processes. To demonstrate the usefulness of our for-
malisation, we outline how to show that TA-ACT-R is a correct
implementation (or refinement) of our process-based seman-
tics (and thus the ACT-R cognitive architecture) by showing
that TA-ACT-R correctly implements the given interfaces and
interactions. On the example of TA-ACT-R, the benefits of
the P-ACT-R view for architectural research become partic-
ularly evident: Showing that a newly proposed module is a
proper ACT-R model amounts to showing that it implements
the general module interface and the abstract cycle of action
processing (cf. Figure 1).
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Preliminaries

Processes are defined over a set Chan of channels (on which
processes can synchronise) and a set Var of variables (which
processes can read or write). A process is a tuple T =
((1,V),(0,W)), with incoming channels / C Chan and out-
going channels O C Chan. A process offers a set of outgoing
variables W C Var to be read by other processes, and requires
a set of incoming variables V C Var to be readable by itself.
Intuitively, the channels allow to express that information from
another process is required (thus waiting for a process sending
on a certain channel) or that the continuation of a computation
by another process is required (thus waiting for a process re-
ceiving on a certain channel). Additional parameters can be
exchanged over the shared variables when a synchronisation
happens (and only then).

Each process has a set C of configurations. A configuration
¢ € C provides a value for each outgoing variable w € W, and
may include any number of other information. We write c[w]
for the value of w in c.

Two configurations ¢, ¢’ of a process are in a transition
relation if the process is synchronising on a channel, either
by receiving or sending, or if the process is waiting without
any synchronisation. Transitions depend on the values of the
incoming variables, these values are provided by an environ-
ment €. Processes can have three kinds of transitions from
configuration ¢ to successor configuration ¢’: (i) The process
receives a synchronisation on an incoming channel o € /; these
transitions we write as [€]{c) RN ,(orc a—?>£ ¢’ for short), (ii)
The process initiates a synchronisation on an outgoing channel
o € O, denoted; these transitions we write as [€](c) 2 ¢, (or
c %g ¢’ for short). (iii) A process can also wait for duration
te Rg as a transition; these transitions we write as ¢ LNpS

The parallel composition of a set of processes Ty || ... |7,
has configurations (cy,...,cy,), with ¢; being configuration of

process T;, 1 < i < n. There are two kinds of transitions be-

. . . 03
tween such configurations. There is a transition (cy,...,c,) —

(ch,..ich) if [er, ..o cim1,Cigty - cnl(ci) Y e O, and
(€1, Cjam1,Ct1y - -5 Cnl{Cjy) RN = I;,,i.e., one sender
and all receivers on channel o do a joint transition while
the configurations of all other processes form the environ-
ment (i.e., offer values) for the input variables. Alternatively,
all processes can wait simultaneously. There is a transition

(Clyeesen) = (¢)ynnscl) if e D ¢ forall 1 <i<n.

The ACT-R Process Semantic (P-ACT-R)

In this section, we propose a new compositional operational
semantics for the ACT-R architecture with an explicit repre-
sentation of structural properties. The main idea is to view a
cognitive architecture as a parallel composition of processes,
one for the procedural and one for each other module, and to
view a cognitive model as a parallel composition of finitely
many rules with a compatible cognitive architecture. Each pro-
cess has a well-defined interface (which consists of input and
output channels, and sets of variables that are read or written



by other processes) that defines its structural view, and a set
of possible transitions that define its behaviour. The emphasis
of the P-ACT-R formalisation lies on the possible interactions
between components. The architecture hence abstracts from
all computations inside the modules that are not necessary to
describe these possible interactions, for example, the particular
computation of rule enabledness. In the section on TA-ACT-R
below, we outline how it is possible to refine these aspects of
the P-ACT-R semantics into concrete computations.

Chunks

Let C be a possibly infinite set of chunks including the null
chunk L. The null chunk is used by actions that do not pass
any ordinary chunk (see below). Note that, in ACT-R process
semantics (similar to (Ragni et al., 2018)), we abstract from
the complex data structure of a chunk (including slots and
their values) hence chunks in C can be seen as unique chunk
identities that are identified with the concrete, structured chunk
that they denote.

Module

The following Definition 1 provides an abstract formalisation
of ACT-R modules as processes. Recall that, in ACT-R, a mod-
ule models a self contained cognitive process, such as access
to memory or the visual apparatus. Modules communicate
with the remainder of the ACT-R architecture and the rules
over buffers that offer information in the form of chunks, and
status information in the form of boolean flags (called queries)
to the architecture. A module can be triggered to perform a so-
called action, like remembering or shifting the visual attention.
In ACT-R, a module does offer a set of discrete actions, e.g., to
remember something. In many cases, arguments are added to
the action e.g., to remember something that is blue. The result
of an action as well as the (possibly instantaneous) delay pro-
duced by performing the action, is up to the implementation
of the module.

Definition 1 (P-ACT-R Module). A module in the ACT-R
process semantics is a process m = ((I,V),(0,W)) with
I ={t"a'(Y),...,a}(y),harvest(y) | Y€ C}, V=0, O =
{bc,harvest(y) | vy € C}, and W = {B",Q0™}, whose set of
configurations is partitioned into stable and unstable configu-
rations, and whose behaviour always has one of the following
two forms:

50 o? t

c g~ —=c (D)
50 a? t be!

c—cy)—C —Cy—¢C 2)

Here, c,c’ are stable and c; are unstable configurations.

Actions are modelled in P-ACT-R by a set of channels
al'(y),...,ay(y). Executing a buffer action (for example, to
remember something) is modelled by synchronising on the
according channel with all arguments of the action passed as
a chunk v. The incoming channel harvest(7y) is to be able to
receive a chunk v from other modules, e.g., as part of a fact

learning mechanism. The action t™ is a special action that

can be sent to the module in order to request that the module
does not do anything. The outgoing channels bc and harvest
are channels that are internal to the architecture. Channel bc
is used to inform the procedural module (see below) of the
fact that an action with non zero delay has ended. Channel
harvest is used to announce a chunk to the processes in the
architecture to realise ACT-R’s harvesting concept (Anderson,
2007). Buffers are modelled by the output variables B™ with
type C and buffer queries by the output variables Q" with
boolean type. Note, that we consider B” to be exactly one
buffer for simplicity. In Definition 1, Sequence (1) models
the case where the module waits for an action, executes the
action (followed by a possibly zero delay). Sequence (2)
models the case where, after some time, the end of the action
is communicated to the procedural system via the bc channel.

Note, that the harvest action is not part of the transition
sequences for simplicity. It may appear as a synchronisation
between two modules before or after an action (including t™).

Procedural

The following Definition 2 provides an abstract formalisation
of ACT-R procedural. Recall that, he procedural is respon-
sible for choosing and executing production rules. After a
waiting period that shall model the time spent on selecting a
production rule, the procedural evaluates the precondition of
all production rules in the current cognitive state. Amongst the
rules whose precondition is fulfilled, the procedural chooses
one rule, and executes its action. If no rule is applicable be-
cause no precondition is fulfilled, the procedural waits for the
cognitive state to change e.g. due to a module finishing its
action.

Contrary to the common view that the procedural is also a
module, we define the procedural on its own, because neither
its interface nor its behaviour matches that of modules.

Definition 2 (P-ACT-R Procedural). Let R be the set of
production rule identities. A procedural is a process p =
(LV),(0,W)) with I = {bc}, V={E" | re R}, 0=
{cr.fire(r) | r € R} and W = 0 whose set of configurations is
partitioned into stable and unstable configurations, and whose
behaviour always has one of the following two forms:

50 vl fire(r)!
c—>c0i>cli>c' 3)
50 cr! t bc?
c—cog—cCl—>C)—>C 4)

PN if1<50 (5

Here c,c’ are stable and c; are unstable configurations.

The procedural has only one incoming channel bc, which is
used by modules to inform the procedural that an action has
finished and thus the configuration of the module may have
changed. To choose a rule for execution, the procedural can
access if the precondition of a production rule r was satisfied
by reading the variable E”. Also, in contrast to ACT-R where
the procedural is responsible for checking the precondition
and execution of the action of a rule, in the P-ACT-R the pro-
cedural is only responsible for scheduling. In other words, the
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50 ! re(r)!
proc.| ¢ — erty - Jrelr) c
50 2
mod.| d > % d
50 b? ,
mod.| e — — e
50 1? ’
mod.| g — - g
50 cr? fire(r)! al bl T ,
rule | r — — —— ——— T

(a) In this example transition sequence, rule is fired and all actions
are exeucted.

, 20 be? 1 50 cr!
proc.| ¢/ — — ¢ ==
20 be! 50
mod.| d = 5 4 =
20 50
mod.| ¢ = e =
20 50
mod.| ¢ = g =
, 20 , 50 cr?
rule | ¥ — r = -

(c) The next rule execution cycle starts, but a module finishes its
action after another 20-delay. A new execution cycle is started after-
wards.

proc. | ¢
mod. | d’'
mod. | e

mod. | g

l2 2222

rule | 7 i> —>ﬁm(r>!

(b) All modules in the prefix executed their action instantaneously.
The next rule execution cycle runs wihout interuption.

;50 cr! 20 be? , 50

proc.| ¢/ — — = — ¢ =
50 20, be! 50

mod.| d = =0 g 5
;50 20 , 50

mod.| & — = e —

mod. | g 0, 2, g 0,
;50 cr? 20 n 50

rule | ¥ = — = r —

(d) The next execution cycle starts, but no precondition of a produc-
tion rule is fulfilled. After a 70-delay a module finishes its action. A
new execution cycle is started afterwards.

Figure 2: Example transition sequences of the P-ACT-R semantic. All sequences begin with a prefix (Figure 2a), and extend the
transition sequence by the different possible cases of interaction between procedural, an exemplary production rule and modules.

P-ACT-R procedural synchronises with all production rules
on cr to let the production rules check their precondition, and
it synchronises with one production rule on fire(r) to let the
rule execute its action. Sequence (3) models the basic cycle of
waiting, letting all production rules check their preconditions,
and firing one enabled rule. Sequence (4) models the case, in
which after the check no rule can fire and the procedural waits
for the cognitive state to change (i.e. a module has ended its
computation and synchronises on bc) (5) models the case in
which a module changes the cognitive state before a rule is
chosen and executed, causing the rule execution cycle to start
from the beginning.

Cognitive Architecture

We define a cognitive architecture in ACT-R process seman-
tics as the parallel composition p||m||...||m, of a procedural
p and finitely many modules my,...,m,.

Note that the channels bc and harvest(7y) are only used for
the communication between modules and procedural resp.
only modules (i.e., inside the architecture) and could thus be
hidden from the rules.

Production Rule

The following Definition 3 provides an abstract formalisation
of ACT-R cognitive models. A cognitive model in ACT-R
consists of a set of production rules modelling the researched
cognitive task. Production rules have two parts: A precondi-
tion and an action. The precondition is a proposition over all
buffers and buffer queries that defines when the rule is enabled.
A rule action (or action for short) is a set of module actions
with parameters, at most one per module in the architecture.
A rule action could, for example, consist of the ‘remember’
action of the declarative module with a parameter that says ‘of

colour blue’, and the ‘clear’ action of the imaginal module.

Definition 3 (P-ACT-R Production Rule). A production rule
is a process r = ((I,V),(0O,W)) with I = {cr,fire(r)}, V =
{BY,...,B;, ,01,...,0n }, O={a},...,a, } and W = {E"}.
whose set of configurations is partitioned into stable and un-
stable configurations, and whose behaviour always has one of
the following two forms:

che (6)
¢ if [E]=0 (7)

cr? fire(r)? ‘120 ! aZk ! ’
c—Cl———>C—> " ——C

if[E]=1 (8

Here, c,c’ are stable and c; are unstable configurations.

After synchronising on the cr channel, a production rule
may receive a message on the fire(r) channel, if ¢'[E"] = 1.
The concrete semantics of the check is not part of the P-ACT-R
formalisation. After a synchronisation on the fire(r) channel,
an action for each module in the architecture is executed. If no
specific action is required of a module, T is used. Sequence
(6) models waiting for other processes, sequence (7) models if
the precondition is not fulfilled and sequence (8) models if the
precondition is fulfilled and the rule is fired.

Cognitive Model

We define a cognitive model in ACT-R process semantics as
the parallel composition of an architecture with production
rules r| to ryy, with all interfaces being satisfied, i.e., for each
input variable v of a rule, there is a unique module that provides
the variable as an output (in W). For each output channel
of a rule in O, there is a unique module that provides it as
part of its incoming channels /, and the output channels of
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each rule include the internal action T of each module of the
architecture.

The computations of a cognitive model consist of transition
sequences where fire(r) is followed by exactly N actions, one
for each module in the process model (and hence one for
each buffer). An example of possible computations resulting
from different delays of modules are depicted in Figure 2. A
cognitive model configuration (¢p,Cimys---sCmysCris---Cry)
is stable if and only if all components are stable

A stable state models a configuration of the module (and
other processes) that is relatable to cognitive states in the
execution of an ACT-R model (on the ACT-R architecture).
Unstable states make the inner workings of the architecture
and the causes of executions visible.

TA-ACT-R: A concrete instance of P-ACT-R

The process-based model P-ACT-R from the previous section
is meant to be a theoretical formal model of the concepts
from (Anderson, 2007) on a directly corresponding level of
abstraction. To this end, P-ACT-R aims at having a one-to-
one relation between activities described in (Anderson, 2007)
(such as checking rules for enabledness, delay, notifying the
procedural of module changes, etc.) and transitions in the
execution of a cognitive model on a cognitive architecture in
P-ACT-R. P-ACT-R in particular abstracts from the syntax
of rules’ premises and actions and from the way how the
enabledness check is conducted for the premise of a given rule
and how actions are interpreted by modules.

In this section, we show that a concrete, simulatable, veri-
fiable model of cognitive ACT-R models (in the sense of the
ACT-R tool (Bothell, 2013)) that uses the formalism of timed
automata and for which we can make plausible that it is a
proper model (Langenfeld et al., 2019), is in particular an
instance of the P-ACT-R model of ACT-R-like cognitive archi-
tectures and models in general. In other words, the TA-ACT-R
model that we introduce in the following correctly realises
rule-based cognitive reasoning as specified by the process-
based P-ACT-R model.

This section is structured as follows. For self-containedness,
we briefly recall the definition of timed automata. In the
following subsections, we outline a construction procedure
for timed automata for the procedural, for modules, and for
rules given an ACT-R model (e.g., in form of an input file
of the ACT-R tool (Bothell, 2013)). In the last subsections,
we recall the notion of a weak (bi)simulation and outline
how to prove that there is such a weak bisimulation relation
between networks of timed automata constructed according
to the TA-ACT-R procedure and the P-ACT-R model for the
same cognitive model.

Timed Automata

Timed Automata (TA) (Alur & Dill, 1994) are a formal opera-
tional model of real-time systems. In its simplest case, a timed
automaton is a tuple 4 = (L,B,V,X,I,E,{;y;) with L being
a finite set of locations (including the initial location £, ), a
set of channels B, a set of variables V, and a set of clocks X,
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a function [ labelling each location with a clock constraint
(called an invariant), and a finite set of edges E. An edge is
atuple (4,0, g,p,¢) with source location ¢ and destination ¢/,
action o (being either an internal action T, output b! or input
b? on a channel b € B), a clock constraint g as a guard, and an
update p C X of clocks to reset.

The operational semantics of a network of timed automata
AN =4 || ... || A, (with || denoting parallel composition) is a
labelled transition system over configurations (7,v) with /;
being a location of 4; and v : X — Rg being a valuation of

clocks. Two configurations are in a transition relation (Z,V) LN
(0 V'Y iff L e RS, € =" and V' = v + \ satisfy the invariants
of Z(delay transition), or there is an edge (¢,a,g,p,¢) € E; so
that ; = ¢ and /! = /', g is satisfied by v and V' by resetting all
clocks in p (internal transition), or there are two edges enabled
in two different automata in A with complementary input and
output actions (rendezvous transition). A computation path
is a sequence of configurations starting with <ZO,VO> with £,
being the set of all initial locations, Vg has all clocks at zero,
and all subsequent transitions are in a transition relation.

We use a graphical representation of timed automata, where
the double outline location is initial, and locations with a
superscript ‘C’ are committed locations, which inhibit delay.
Invariants at locations (if not equal to true) are shown in purple.
Edges are annotated with actions (in orange), guards (in green),
and updates (in blue).

Chunks

In ACT-R a chunk is seen as a number of slots which them-
selves can only contain other chunks. The leaves of the re-
sulting tree are chunks without any slots themselves. In the
timed automata model, we implement the concept of chunk
identities and have (in the set of variables V') a lookup table
that is indexed by chunk identities where each entry contains
slot/value pairs. As most operations in the ACT-R architecture
work by value, i.e., slot contents of buffers in the architec-
ture are copied to other buffers, chunk identity lookups are
only necessary in the case of a dereference action, and during
interaction with declarative memory.

Modules

The TA model of a module m is a timed au-
tomaton 4, = (L,B,X,V,[LE,{;;) with  chan-
nels B = {df',...,d} bc,done harvest}, variables

V = {bm,by,b",b°P}, and the locations and actions as
shown in Figure 3. The schematic automaton includes one
example of an action where the result is available after a delay,
and an example where the result is available instantaneously.

Recall that the P-ACT-R semantics summarises module
actions into one process action with a chunk parameter. The
timed automata formalism does not support this brevity hence
we implement module actions with a combination of channels
al',...,a;, avariable b" that contains arguments for the action
and another (optional) variable b°” that contains operators.
Compared to a cognitive model in the input language of the



(S
c:= B (b",b°P)

Cby = By (BY,b°P)

Figure 3: An example of a TA-ACT-R module with an instan-
taneous actions (af') returning to ¢;,; without time passing,
and an action a3’ delaying for a time d in location £,,. Dot-
ted edges may be realised by not only one direct edge, but
may include complex behaviour or communication with other
automata (without time being allowed to pass) e.g. an environ-
mental model.

ACT-R tool, this partition corresponds to the pattern of action,
value, and comparator. E.g. the action to remember something,
the value blue for a colour slot, and the equality comparator for
the colour slot, together formulating the action to remember
something blue. The other channel of P-ACT-R that passes
arguments of chunk type, harvest(7y), is realised in the same
way by the combination of a channel (harvest) and shared
variables on the receiving side.

Functionality of the channels and buffers directly matches
the one of P-ACT-R. A module may either make all its compu-
tations within no time after receiving the action, or it may start
a longer lasting computation and may later finish sending the
bc message. The computation of the effect of an action is indi-
cated by the update ‘c := B, in Figure 3, where the function
B4 models the actual computation of a resulting chunk from
a and the provided arguments. After completing the computa-
tion of effects (without time passing in between), the module
synchronises on channel done with the rule which issued the
command. This cycle of @', updates, and done realises the
synchronous execution of actions in the P-ACT-R model. In
both cases, timely or delayed completion, the module must
be able to accept all action-channels (a]") without blocking
while time in the model passes (probably skipping the cur-
rent computation for a new action, or discarding the action
internally).

Module automata never cause deadlocks and we can observe
that they do not synchronise on channels of other modules.
Neither do they change any variables that belong to other
modules (except for harvest). Note, that modules are not
prohibited from communicating with, e.g., a model of the
experimental environment as long as this communication does
not interfere with the architecture.

Procedural

Given a set R of rule identities, the TA-ACT-R model of the
procedural is the timed automaton 4, = (L,B,X,V,I,E {;,;)
with channels B = {bc,cr,fire(r) | r € R}, variables V =
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—(enabledy, \ ...\ enabled,, )

dr
enabled,

t:=0

Figure 4: An example of a TA-ACT-R procedural. A rule
execution cycle starts in ¢;,;,, and enters Ef after time d syn-
chronising on cr. If there is a rule r with enabled, true, the
rule is fired, if not the procedural enters /,,,;; waiting for bc.
The existential quantification over r does function as a short
hand for a specialised copy of the edge existing for each pro-
duction rule.

I9]
enabled, =1

Figure 5: An example of a production rule of TA-ACT-R. The
precondition is evaluated on the self loop of ¢;,;;. Beginning
at the fire, synchronisation, the rule executes actions by syn-
chronising on a; and done (analogous for actions a, ..., ay).

{enabled,}, and locations and transitions as given by Fig-
ure 4. The procedural does not write any variables, but may
read the enabled, variables of rules (modelling E", see below).
Consequently the procedural of TA-ACT-R does never dead-
lock, yet it may wait for a bc message forever if there is no
rule applicable and no module with pending actions.

Rules

The timed automata model of a rule is 4, =
(L,B,X,V,I,E {;,;) with channels B = {fire,,cr,ay,...,a,}
(where ay, ..., a, follow the partitioning of actions, slot values
and arguments of the modules as discussed above) and
variables V = {enabled, }. Locations and transitions are given
by Figure 5.

Semantically, a TA-ACT-R rule can wait arbitrarily long
in its idle location (see Figure 5). If the guard is enabled
(i.e. the interpretation / of the precondition ¢ is fulfilled), a
rule can synchronise on cr, setting enabled, to true on the
edge. If the production system decides to fire production
rule r, it synchronises on fire(r), which results in a sequence
of edges executing without time advancing. The edges are
labelled in sequence with the actions ay, ..., a,, using b, and
bP as described in the module section. After each action, the
rule waits for the module to finish its initial computations by
synchronising on done. After the sequence of edges, the rule
automaton returns to its idle location.



Equivalence of Computations

Assume there is a cognitive model M consisting of the parallel
composition of processes p,my,...,my (the architecture) and
rule processes ¢y, .. .,cp,. In the following, we want to estab-
lish that the behaviour (the set of computation paths) of the
corresponding TA-ACT-R model 4 is related to the behaviour
of the cognitive model in a certain way which in particular
allows us to conclude from the reachability of configurations
in A to the reachability in M. Since there exist effective
reachability checkers for timed automata (cf. (Langenfeld et
al., 2019)) we then obtain an effective procedure to check
cognitive models for reachability properties such as absence
of deadlocks.

The relation between a P-ACT-R model M and its TA-ACT-
R model 4 is a weak bisimulation. That is, there is a so-called
simulation relation on the configurations ¢ of M and con-
figurations (7, v) of ( such that (a) the initial configurations
are related, (b) for each transition sequence of M from a sta-
ble configuration c to the next stable configuration ¢/, if ¢ is
related to <Z ,V), then there is a transition sequence in A to a
configuration (£ V') such that ¢/ and (¢',V') are related, and
(c) M can simulate transition sequences of A.

A central role in the definition of the simulation relation
plays the location ¢,,,; of the procedural (the production cycle
delay location). A configuration (7,v) of A that has just
entered /,,,;; characterises stability in the TA-ACT-R model.
Then a stable configuration ¢ of M and a stable configuration
(Z,v) of 9\ are related if the state of the buffers of a module
mresp. M is equal c[B™] = v(by) (similarly for Q™), and for
all production rules r it holds that c[E"] = v(enabled, ).

If we now assume that the guard expression /[¢] (cf. Fig-
ure 5) correctly implements the rule enabledness checks in M,
and that the updates ¢ := B,,(b”,b°P) (cf. Figure 3) correctly
implement the module behaviour, we are able to show that A’
weakly simulates M by matching the transition sequences in
Figure 2 step by step against transitions of the timed automata.
Here, the network of timed automata will sometimes need
two or more transitions to counter one transition in M, for
example with the synchronisation on done which is not present
in M. The other direction (M weakly simulates ) follows
similarly.

Conclusion

We have presented P-ACT-R, a new abstract, operational, for-
mal model for the cognitive architecture ACT-R. The new
model faithfully reflects the structural aspects of cognitive
models and the interactions between their components. In con-
trast to earlier formalisations, P-ACT-R explicitly proposes
structural and behavioural interfaces for model components
and thereby provides a convenient framework for architectural
research. The example of TA-ACT-R shows that the P-ACT-
R model can be concretised into fully operational models
that can be used with tools for step-wise simulation and ex-
haustive state space exploration, the (formerly) ad-hoc model
TA-ACT-R (Langenfeld et al., 2019) is thereby supplied with
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a solid formal underpinning.

On the level of TA-ACT-R, we also see how the new ap-
proach supports rigorous architecture research. Adding a new
module to the TA-ACT-R model amounts to the development
of a new timed automaton. To guide this process, the new
automaton should realise the desired module behaviour behind
the well-defined interface and can then be checked for preserv-
ing properties like absence of deadlocks as discussed above.
Changing existing module automata for experiments is even
easier and guaranteed not to interfere with other components.

For future work, we will explore the relation between the
different existing formalisations of the ACT-R framework,
such as (Albrecht & Westphal, 2014) as well as continuing
to explore the application of P-ACT-R on TA-ACT-R, start-
ing with modelling the defined interfaces within the timed
automaton formalisation.
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