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ScienceDirect
The neurobiological substrates that cause people with dyslexia

to experience difficulty in acquiring accurate and fluent reading

skills are still largely unknown. Although structural and

functional brain anomalies associated with dyslexia have been

reported in adults and school-age children, these anomalies

may represent differences in reading experience rather than the

etiology of dyslexia. Conducting MRI studies of pre-readers at

risk for dyslexia is one approach that enables us to identify

brain alterations that exist before differences in reading

experience emerge. The current review summarizes MRI

studies that examine brain differences associated with risk for

dyslexia in children before reading instruction and meta-

analyzes these studies. In order to link these findings with

current etiological theories of dyslexia, we focus on studies that

take a modular perspective rather than a network approach.

Although some of the observed differences in pre-readers at

risk for dyslexia may still be shaped by language experiences

during the first years of life, such studies underscore the

existence of reading-related brain anomalies prior to reading

onset and could eventually lead to earlier and more precise

diagnosis and treatment of dyslexia.
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Introduction
Developmental dyslexia is the most common learning

disability, but we do not yet fully understand its core

neurobiological cause(s) [1]. MRI brain imaging stud-

ies, when performed at an early point in children’s

reading development, have the potential to validate

theories about the etiology of dyslexia by precisely

localizing early neurobiological anomalies. Although

an increasing number of studies take a network and/

or a multivariate pattern analytical approach in identi-

fying differences in dyslexia (e.g. [2,3]), here, we de-

liberately take a modular perspective and focus on the

location of neurobiological anomalies related to dyslex-

ia in order to link findings with etiological theories of

dyslexia. We therefore do not include electrophysiolog-

ical studies, which have higher temporal resolution but

typically have lower spatial resolution (for an overview

of other behavioral and electroencephalography (EEG)

studies see [4,5]).

Much of our understanding of the brain basis of dyslexia

comes from MRI studies of adults and older school-aged

children, which limits the conclusions that can be drawn

regarding the origin of the neurobiological differences in

dyslexia. Indeed, learning to read is a dynamic process

that depends on brain plasticity as well as implicit and

explicit learning. Such learning-induced brain plasticity

has been demonstrated in studies of non-literate adults

who show both functional and structural changes in

reading-related brain regions after learning to read [6].

In addition, findings from MRI studies comparing indi-

viduals with dyslexia to both age-matched and younger

reading level-matched control groups suggest that some

of the brain differences observed in dyslexia can be

explained by differences in the amount and quality of

reading experience [7]. Hence, neurobiological anoma-

lies in dyslexia observed at later stages of reading devel-

opment (mainly in left temporo-parietal (TP) and

occipito-temporal (OT) regions, [8]) may reflect impo-

verished or reduced reading experience among those

with dyslexia [9] rather than a true biological cause of

dyslexia.

Recently, advances in MRI technology and the refine-

ment of child-friendly scanning protocols have made it

feasible to study the brain in young children prior to

reading onset. At least 16 published studies have used

MRI to examine cognitive processes associated with
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reading in pre-readers, including those who are at risk for

dyslexia, in several independent cohorts [3,10–13�,14–
16,17��,18�,19–22,23�,24��]. In this review, we discuss

and, for the first time, quantify the location and function

of the reported differences in reading-related regions and

pathways observed in pre-readers. We then interpret

these findings vis-à-vis existing etiological theories of

dyslexia. These theories vary in their conceptualization

of the core deficit in dyslexia, including cognitive-linguis-

tic, perceptual, and meta-cognitive deficit perspectives

(for detailed discussion see [25–27]). We focus here on

neurobiological findings that relate to theories for which

behavioral studies have found differences in preliterate

children at high risk compared to low risk for developing

dyslexia: specifically theories associated with phonologi-

cal, orthographic, and lower-level perceptual/attention

deficits.

Dyslexia-related differences in pre-readers

Several studies to date have focused on pre-readers who

are at risk for developing dyslexia because of a family

member with dyslexia or because of low performance on

standardized behavioral measures that are strongly as-

sociated with later reading. Though it would be infor-

mative to follow these pre-readers until they could be

classified as having dyslexia or typical reading abilities,

very few studies have taken this approach. Differences

between pre-readers with and without risk for dyslexia

have been found across a wide variety of different

structural and functional MRI measures [3,12,13�,14–
16,17��,18�,21,22,23�,24��]. Differences associated with

dyslexia risk are consistently found across studies in

four main brain regions: left TP, OT, and cerebellum

as well as right parietal which are consistent with a

previous structural and functional meta-analysis of chil-

dren and adults with dyslexia [28] (see meta-analysis of

pre-reading studies in Figure 1). These findings of

similar anomalies in at risk pre-readers and dyslexic

individuals compared to their respective controls pro-

vide the first evidence that neurobiological differences

observed in adults and children with dyslexia are not

purely reading experience-driven, but are more likely

related to etiological differences. Other brain regions

have also been indicated, though less consistently,

across studies. We now turn to examining these findings

in greater detail as they relate to theories of the etiology

of dyslexia.

Phonological deficit theory

A deficit in phonological processing, and especially in

phonological awareness (i.e. the ability to process and

manipulate the sound structure of words), is widely

recognized as an underlying cause of dyslexia [25,29].

The phonological deficit theory is supported by behav-

ioral evidence from longitudinal studies showing pre-

reading phonological deficits [30], and from phonological

training studies yielding improved reading [31].
Current Opinion in Behavioral Sciences 2016, 10:155–161 
In adults and school-age children, phonological proces-

sing has repeatedly been associated with a left-lateralized

network including the TP region (including the supra-

marginal gyrus, planum temporale, and superior temporal

gyrus) as well as inferior and superior frontal regions

([32,33], for a meta-analysis see [34]). Anomalies in the

left TP region (Figure 1a; shown in red) are consistently

observed in dyslexia, including decreased functional ac-

tivation [35,36] as well as atypical gray matter volume [37]

and white matter organization [38]. These robust differ-

ences in the left TP region are often interpreted as neural

evidence for the phonological deficit theory, yet such a

causal interpretation needs validation in pre-readers, es-

pecially given the fact that some studies comparing

dyslexic readers with reading-matched and age-matched

controls have not found differences in this area [39]

whereas others have [7].

Several MRI studies in pre-readers at risk for dyslexia also

observe different neural organization in left TP regions in

the children [3,12,13�,14,16,21,22,24��]. Further, gray and

white matter volume in left TP regions predict later

reading skills [11,40]. Importantly for validation of the

phonological deficit theory, left TP anomalies in at-risk

pre-readers have been associated with participants’ pho-

nological processing difficulties; functional MRI (fMRI)

studies in both English and Norwegian children show that

left TP is hypoactivated in at-risk compared to typically-

developing pre-readers during a phonological processing

task [13�] and in beginning readers during an alphabetic

decoding reading task [21]. In addition, two independent

diffusion MRI studies found that phonological awareness

scores were correlated with organization of the left arcu-

ate fasciculus, a white matter tract that connects TP and

frontal regions [16,18�]. Thus, it may not be only a local

anomaly in TP cortex per se, but different functional and

structural connectivity between TP and other reading-

related regions that give rise to phonological difficulties

[41,42�,43].

Together with evidence from fMRI studies of skilled

readers [34], these data suggest that the link between

phonological processing and left TP seems to be estab-

lished prior to reading and might remain present through-

out reading development. Yet, in contrast to adults, pre-

readers seem to recruit a more distributed network of

regions for phonological processing which includes left

OT and cerebellar as well as right hemisphere areas

[14,18�,21] (see also Figure 1 panel b and c), although

these additional regions seem less consistently impaired in

pre-readers at risk for dyslexia. Further, based on the few

studies to date that followed at-risk pre-readers and ex-

amined whether these differences are markers of which

children develop dyslexia, the involvement of TP regions

are not fully clear. One study found no significant differ-

ences in left TP cortical thickness among pre-readers

who later developed dyslexia versus those who did not;
www.sciencedirect.com
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Figure 1
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Regional differences in pre-readers that are related to familial or behavioral risk for dyslexia, or to later reading outcome, revealed by meta-

analysis. Only coordinate-based studies are included in this figure (Refs. [12,13,14�,15–17,18��,20–23]; no coordinates are available from Refs.

[3,19�,24�,25��]). Studies and corresponding reference numbers contributing to each cluster are listed in the figure. Analyses were performed in

Ginger ALE 2.3. A cluster is identified when reported by multiple studies with a cluster-level significance threshold of P < .01 (10,000

permutations). The circles are drawn proportional to the size of the cluster, which reflects the variability in location within the cluster and not

necessarily the strength of the effect. (a) The red cluster represents the left temporo-parietal (TP) region (center at Montreal Neurological Institute

(MNI) coordinates �46, �61, 14, with 5 sub-peaks within the cluster). The blue cluster is the left fusiform gyrus in the occipito-temporal (OT)

region (�44, �57, �15). (b) The green cluster is in the right parietal lobe (45, �71, 33). (c) The yellow cluster is in the left cerebellum (�26, �79,

�27).
significant group differences were observed in other more

sensory regions [17��]. The number of pre-readers who

later developed dyslexia in this study was small (N = 7),

however [44]. Another study found that children with

family history of dyslexia differed from controls in the

organization of the left arcuate fasciculus; further, the

trajectory of left arcuate development over time predicted

their later reading ability [24��]. In sum, though our meta-

analysis identified left TP abnormalities in pre-readers at

risk for dyslexia, future studies should further investigate

the precise role of this region in reading development.

Orthographic deficit theory

Fluent reading also depends on orthographic processing,

that is, the ability to identify written letter patterns and
www.sciencedirect.com 
words as whole units (rather than letter by letter). As

orthographic knowledge is chiefly acquired by repeated

and successful phonological decoding of words [45], or-

thographic problems in dyslexics are often considered

secondary to a primary phonological deficit. However,

some studies show that orthographic processing might be

an independent cause of dyslexia, as it predicts word

reading ability after controlling for phonological proces-

sing [46,47]. In parallel to the left TP region’s involve-

ment in phonological processing, the left ventral OT area,

including the fusiform gyrus, plays a key role in ortho-

graphic processing in skilled readers [48,49]. In a subsec-

tion of the OT region often referred to as the visual word

form area (VWFA), activation to words is reduced among

individuals with dyslexia relative to controls [50].
Current Opinion in Behavioral Sciences 2016, 10:155–161
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In pre-readers and early readers at risk for dyslexia, the

left OT region shows reduced gray matter volume [14],

different patterns of anatomical folding [23�], reduced

functional activation [21], and reduced connectivity to

frontal regions [18�]. Furthermore, among a small sample

of pre-readers, activation in the OT region to words and

symbols predicted later reading ability beyond the con-

tribution of behavioral and EEG measures [19]. Among

children who could read beginning words, this area

showed activation for words that must be remembered

as wholes because of their irregular spelling pattern, but

not for words that could be decoded based on grapheme–
phoneme correspondences [21].

Although many studies suggest involvement of the left

OT region in orthographic processing, it is not yet clear

how specialized this region is for orthographic processing

early in reading development. Indeed, studies of pre-

readers have found that phonological awareness skills

relate to left OT structure [14], function [13�] and con-

nectivity patterns [18�]. In addition, performing an ortho-

graphic task activates regions beyond left OT including

bilateral TP, frontal and parietal regions in pre-readers

and early readers [3,13�,17��,21]. More longitudinal stud-

ies, starting at the pre-reading stage, should be conducted

to validate whether neural specialization for reading-

related cognitive functions is something that is only

established after reading acquisition.

Theories based on perceptual and other deficits

Theories based on perceptual deficits generally do not

deny that cognitive-linguistic problems characterize dys-

lexia; however, they assert that these phonological and

orthographic deficits are caused, in turn, by lower-level

deficits. In pre-readers, perceptual deficit theories have

not been frequently investigated using MRI methods.

One study [15] found that pre-readers at risk for dyslexia

showed hypoactivation in pre-frontal regions during pro-

cessing of nonlinguistic auditory stimuli with rapid fre-

quency transitions. Activation during this rapid auditory

processing task was correlated with phonological aware-

ness, suggesting a link to reading ability through that

process. Indirect support for perceptual theories also

comes from the aforementioned study that showed re-

duced cortical thickness in primary auditory and visual

areas in a small sample of pre-readers who were later

diagnosed with dyslexia [17��]; however, no behavioral or

functional MRI data were provided in that study to

support a direct link with perceptual abilities. Therefore,

further investigation of perceptual theories by means of

MRI studies in pre-readers is needed in order to confirm

whether atypical neural processing of perceptual infor-

mation is a precursor and cause of dyslexia. Other per-

ceptual theories including deficits in visual–spatial

attention [51] and neural coding of auditory stimuli

[52] have been validated in pre-readers, but have not

yet been investigated using MRI.
Current Opinion in Behavioral Sciences 2016, 10:155–161 
In contrast, theories based on other deficits have been

tested using MRI in older children and adults, but not yet

in pre-readers. Deficits in auditory/temporal sampling,

which may account for deficits in reading speed and

accuracy in dyslexia, have been observed [53,54]. There

is also evidence for the double-deficit hypothesis [55],

which suggests that weaknesses in either rapid automa-

tized naming (RAN) or phonological awareness can cause

dyslexia, and that those with both deficits are the most

severely impaired readers. Functional activation and

connectivity patterns in these groups are consistent with

this hypothesis [56]. In terms of brain structure, white

matter tracts relating to PA have been identified, but no

measures of tract organization have yet consistently been

associated with RAN [16,18�].

Limitations of current evidence in pre-readers

Although the MRI studies of pre-readers reviewed here

provide hints about the validity of the different etiological

models, interpretation in terms of causal effects is limited

by a few shortcomings. First, prenatal and early develop-

mental and environmental effects also shape many of the

processes underlying reading and the brain. Efforts to

scan infants, for whom these differences are more mini-

mal, are already underway and may provide new insights

into these questions. Second, a more comprehensive

assessment of parental influences might lead to a better

understanding of the genetic and environmental mecha-

nisms underlying dyslexia [57]. For example, it may be

the case that parents with dyslexia provide different

quality or quantity of reading-related input to their child,

though behavioral studies suggest that such differences

have a modest effect on behavioral indices of reading and

language development [58]. Third, the modulating role of

orthographic depth is not examined in the current review

due to a small number of MRI studies in pre-readers per

language. Although a recent meta-analysis of cognitive

studies indicated that differences in phonemic awareness

between pre-readers with and without familial risk were

not dependent on orthographic depth [58], a meta-analy-

sis on fMRI studies in school-aged children and adults

with dyslexia did show a modulating effect in phonologi-

cal-related regions such as left TP, with dyslexic hypo-

activation only present in shallow orthographies [59].

Finally, and most importantly, most MRI studies to date

have examined pre-readers at-risk for dyslexia but have

not followed up to establish which of these children

actually develop dyslexia (but see [17��,24��]). (Some

longitudinal studies using EEG, which is less expensive

and easier to acquire than MRI, have taken this approach

[60,61].) It remains therefore to be determined whether

the pattern of brain anomalies observed in at-risk pre-

readers will be the same in the subset who actually

develop dyslexia. At-risk children who become typical

readers display subtle problems in phonemic awareness,

but these problems are less severe than the deficits among
www.sciencedirect.com
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at-risk pre-readers who do develop dyslexia [58]. There-

fore, it might be that left TP anomalies, which are

typically associated with phonemic awareness, will be

more severe in the at-risk pre-readers who eventually

develop dyslexia. Longitudinal follow-up of the at-risk

pre-readers, allowing classification according to later read-

ing outcome, may significantly improve our understand-

ing of neural risk factors related to dyslexia.

Conclusion
The purpose of this review was to examine whether

dyslexia-related anomalies can be detected with MRI

prior to reading onset, and whether taking a modular

perspective of brain function and identification of the

anomalous locations can inform theories on the etiology of

dyslexia. The most consistent findings across studies are

differences in left TP brain regions between at-risk pre-

readers and controls. Because left TP is associated with

phonological processing, this provides substantial support

for the phonological deficit theory. Differences in left

ventral OT regions are also observed prior to reading

onset, though less consistently. Finally, some evidence is

also provided for an early deficit in perceptual regions,

especially in the auditory domain [15,17��].

It is important to highlight that several studies indicate

early connectivity differences in at-risk pre-readers

[3,16,18�]. One possibility is that structural connectivity

differences give rise to differences in function; a recent

study found that even before the VWFA is selective for

letters and words in pre-readers, structural connectivity

‘fingerprints’ in kindergarten children of varying reading

ability predicted location of the VWFA 2.5 years later

[62]. This finding suggests that inefficient communica-

tion and coordination between cortical regions prior to

reading instruction could shape neural activation during

reading. Insufficient functional and structural connectiv-

ity among the regions of the reading network may give

rise to the complex behavioral deficits seen in dyslexia,

such as difficulty with rapid naming and reading fluency.

Given the complexity of reading and variety of profiles

observed in dyslexia, considering each etiological theory

in isolation may be a too simplistic a view. As multi-

componential models suggest, it is very unlikely that a

single underlying causal factor drives the heterogeneous

patterns of reading difficulties across individuals with

dyslexia [63��]. Dyslexia is perhaps more accurately con-

ceptualized as a complex interaction of different risk and

protective factors, and the weighting of each of these

factors can vary across different individuals with dyslexia.

It may be that inefficient auditory and phonological

neural systems cause reading difficulties in one individual

with dyslexia, but another individual may struggle as a

result of predominant visual-orthographic integration pro-

blems. In addition, genetic, environmental, and meta-

cognitive factors can modulate these risks [58].
www.sciencedirect.com 
Educators and clinicians should consider that brain dif-

ferences in dyslexia are present before children learn to

read, and thus that waiting for these problems to resolve

on their own is inefficient. However, at the moment, brain

measures are insufficiently sensitive and specific at the

individual level to aid in early diagnosis. Future studies

using MRI and other brain imaging technologies may

reveal early, reliable and cost-effective biomarkers of

dyslexia. Until then, the most efficient approach is still

examination of a combination of early, comprehensive

behavioral assessments and demographic information

such as family history, followed by intervention that is

designed to ameliorate the individual’s particular areas of

difficulty.
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