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ABSTRACT OF THE DISSERTATION

Automation and Precision Control for Intraocular Robotic Interventional Surgical System

by

Cheng-Wei Chen

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2018

Professor Tsu-Chin Tsao, Chair

To improve surgical outcomes and reduce surgical complications in intraocular surgery, an op-

tical coherence tomography (OCT) imaging system is integrated into the intraocular robotic

interventional surgical system (IRISS). The OCT images are used for preoperative planning

and intraoperative intervention in a series of automated procedures. High-precision motion

control of the robot manipulator is enabled by leveraging learning-type control algorithms to

the data-based feedforward filter design. Real-time intervention allows a surgeon to evaluate

the surgical progress and manually override the autonomous tracking of the predefined tra-

jectory. The developed system was experimentally validated by performing lens extraction,

which is a critical surgical step in cataract surgery, on 30 post-mortem pig eyes. Complete

lens extraction was achieved on 25 eyes, and “almost complete” extraction was achieved on

the rest due to the inability of the OCT to image minute-sized particles of lens behind the

iris. No posterior capsule rupture occurred for any of the 30 pig eyes. This work successfully

demonstrated automated OCT-guided intraocular surgery using a robotic surgical system.

ii



The dissertation of Cheng-Wei Chen is approved.

Jean Pierre Hubschman

Jacob Rosen

Veronica Santos

Lieven Vandenberghe

Tsu-Chin Tsao, Committee Chair

University of California, Los Angeles

2018

iii



To Mia

whom feeds me never saturated love and patience;

To Manchester

whom tries his best for not being unobservable and uncontrollable.

iv



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Automation of Intraocular Surgical Procedures . . . . . . . . . . . . . . . . . 1

1.2 Precise Motion Control for Robot Manipulator . . . . . . . . . . . . . . . . . 5

1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 The IRISS for Surgical Automation . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 The IRISS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 The OCT Imaging System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 System Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Automation of Robotic Intraocular Surgery . . . . . . . . . . . . . . . . . . . . . 16

3.1 Laser-Assisted Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Segmentation and Modeling of Anatomical Structure . . . . . . . . . . . . . 19

3.3 Preoperative Trajectory Planning for Cataract Extraction . . . . . . . . . . 22

3.3.1 Trajectory Pattern Design for Lens Removal . . . . . . . . . . . . . . 24

3.3.2 Instrument Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.3 Aspiration Force Scheduling . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 User Interface for Intraoperative Intervention . . . . . . . . . . . . . . . . . . 27

3.4.1 Real-Time OCT Assessment . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.2 Intervention Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.3 Intermittent Volume Scan Assessment . . . . . . . . . . . . . . . . . 30

4 Learning-Based Precise Motion Control . . . . . . . . . . . . . . . . . . . . . . . . 31

v



4.1 Learning-Type Control Algorithms . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Iterative Learning Control and Repetitive Control . . . . . . . . . . . 32

4.1.2 Stability of Learning-Type Control . . . . . . . . . . . . . . . . . . . 33

4.1.3 Plant Inversion with Selected Bandwidth . . . . . . . . . . . . . . . . 34

4.2 Iterative Identification of Plant Inversion . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Identification of Plant Inversion on SISO Systems . . . . . . . . . . . 35

4.2.2 Extension to MIMO Systems . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Design Analysis and Simulation Validation . . . . . . . . . . . . . . . . . . . 41

4.3.1 Selection of Bandwidth and Frequency Weights . . . . . . . . . . . . 41

4.3.2 Analysis of Truncation Error . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.3 Simulation Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.1 SISO System: Linear Motor . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.2 Coupled MIMO System: Active Magnetic Bearing System . . . . . . 56

4.4.3 Decoupled MIMO System: IRISS . . . . . . . . . . . . . . . . . . . . 63

5 Iterative Learning Control with Progressive Updates . . . . . . . . . . . . . . . . 68

5.1 Data-Based Iterative Learning Control . . . . . . . . . . . . . . . . . . . . . 68

5.1.1 P-Type and PD-Type ILC . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.2 Reverse Time Filtering Based ILC . . . . . . . . . . . . . . . . . . . . 69

5.2 Progression of ILC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 Evolution of Learning Filter . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.2 Progressive Update of Learning Filter . . . . . . . . . . . . . . . . . . 73

5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

vi



6 Evaluations on an Animal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1 Experimental Setup and Evaluation Metrics . . . . . . . . . . . . . . . . . . 87

6.2 Bubble Removal by Intraoperative Intervention . . . . . . . . . . . . . . . . 89

6.3 Semi-Automated Cataract Removal on an Animal Model . . . . . . . . . . . 91

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

vii



List of Figures

1.1 A schematic of the anterior segment with relevant features labeled. Both

the posterior capsule and the corneal incision are important features and are

repeatably referred to throughout this thesis. . . . . . . . . . . . . . . . . . . 2

2.1 The overall system architecture for the OCT-guided robotic system. . . . . 9

2.2 The CAD model of the integrated system with the coordinate frame and

kinematic variables defined. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 The diagram of the hardware architecture. . . . . . . . . . . . . . . . . . . . 12

2.4 The software state chart for the OCT-guided surgical robotic system. . . . . 15

3.1 The flow chart of automated intraocular surgery. . . . . . . . . . . . . . . . . 16

3.2 The CAD model of the RCM laser tool holder (isometric view). . . . . . . . 18

3.3 An OCT scan of the upper anterior segment including (1) the cornea, (2) lens

material, and (3) the iris. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 An OCT scan of the lower anterior segment including (4) the lens and posterior

capsule and (5) the inverted iris. . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 The reconstructed eye model. (1) Magenta: reconstructed cornea, (2) green:

reconstructed pupil, (3) cyan: reconstructed posterior capsule, blue points:

raw OCT data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6 The preoperatively planned cataract-extraction trajectory in the IRISS frame.

Point cloud: raw OCT data, solid black line: tool-tip trajectory, red surfaces:

safety margins, green surfaces: tool-tip workspace, red X: the RCM. . . . . . 23

3.7 The top view of Fig. 3.6. Point cloud: raw OCT data, solid black line: tool-tip

trajectory, red X: the RCM, red box: OCT scanning volume. . . . . . . . . . 23

3.8 The definition of parameters for the generation of cataract-extraction trajectory. 25

viii



3.9 An example of aspiration force profile scheduled along the tool-tip trajectory

with zlb = 5.5 mm, zub = 6.5 mm, fa,lb = 400 mmHg, and fa,ub = 600 mmHg. 26

3.10 An example of the real-time OCT image feedback. Visible features are (1) the

posterior capsule, (2) lens material, (3) the iris, and (4) the tool tip. Note:

all images are inverted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.11 The user interface for intraoperative intervention. . . . . . . . . . . . . . . . 28

4.1 The block diagram of learning-type control. . . . . . . . . . . . . . . . . . . 33

4.2 Simulation results of learning the delta impulse (M(z) = 1, d = 0) for the

plant inversion filter – the convergence of the learning error. . . . . . . . . . 46

4.3 Simulation results of learning the delta impulse (M(z) = 1, d = 0) for the

plant inversion filter – the error spectrum of the identified inversion. . . . . . 46

4.4 Simulation results of learning a filtered step function for the plant inversion –

the Bode plot of M(z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Simulation results of learning a filtered step function for the plant inversion –

the convergence of the learning error. . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Simulation results of learning a filtered step function for the plant inversion:

– the error spectrum of the identified inversion. Dash lines indicate the esti-

mated error bounds based on the learning error shown in Fig. 4.5. . . . . . . 48

4.7 Simulation results when the FIR length is not sufficiently large – the impulsed

response of the identified inversion. . . . . . . . . . . . . . . . . . . . . . . . 49

4.8 Simulation results when the FIR length is not sufficiently large – the error

spectrum of the identified inversion. . . . . . . . . . . . . . . . . . . . . . . . 49

4.9 The control diagram of iterative identification of the plant inversion for the

linear motor system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.10 Error convergence of iterative learning the target step on the linear motor. . 51

4.11 Converged results of tracking the target step (d = 8 ms) on the linear motor. 52

ix



4.12 Impulse response of the identified plant inversion filter for the linear motor. . 52

4.13 The control diagram of feedforward tracking on the linear motor system. . . 53

4.14 Feedforward tracking of a 50 Hz triangular wave on the linear motor using the

identified inversion filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.15 Comparison of feedforward tracking of the 50 Hz triangular wave on the linear

motor using different methods. Acronyms are as defined in Chapter 1.2. . . . 54

4.16 Reference trajectory for engine piston manufacturing . . . . . . . . . . . . . 54

4.17 Comparison between the proposed approach and the model-based approach

(ZPETC) on tracking the reference trajectory as shown in Fig 4.16. . . . . . 55

4.18 The active magnetic bearing spindle system. . . . . . . . . . . . . . . . . . . 57

4.19 Identification of the plant inversion of the MIMO magnetic bearing spindle

system – the repetitive control tracks the target step at channel 1. . . . . . . 58

4.20 Impulse responses of the identified plant inversion filter for the magnetic bear-

ing spindle system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.21 Feedforward filtering by using the identified plant inversion. The feedforward

action was activated after the first second. See Fig. 4.22 for the zoomed-in

portion at the third channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.22 MIMO feedforward filtering on the magnetic bearing spindle system by using

the identified plant inversion (zoomed in at the third output channel). The

feedforward action was activated after the first second. . . . . . . . . . . . . 61

4.23 Error spectrum of the feedforward tracking on the magnetic bearing spindle

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.24 Error convergence of iterative learning the target step on the IRISS. . . . . . 65

4.25 Converged results of tracking the target step (d = 0.2 s) on the IRISS. . . . . 65

4.26 Impulse response of the identified plant inversion filter for the IRISS. . . . . 66

x



4.27 Comparison between PID control, ILC, and the proposed feedforward filtering

on the tracking of the predefined cataract-extraction trajectory. . . . . . . . 66

4.28 Comparison between PID control, ILC, and the proposed feedforward filtering

on the tracking of the predefined cataract-extraction trajectory. (zoomed in

at the peak). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 The control diagram of progressive ILC; i is the index of ILC progression and

j is the index of ILC iteration. . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Impulse response of the FIR linear motor model G(z). . . . . . . . . . . . . . 77

5.3 Progression of ILC with input reset in the simulation. . . . . . . . . . . . . . 78

5.4 Progression of ILC without input reset in the simulation. . . . . . . . . . . . 78

5.5 Progressively learned filtered impulse in the simulation. . . . . . . . . . . . . 79

5.6 Impulse responses of progressively learned dynamic inversion F<i>(z) in the

simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.7 Simulated comparison of the ILC error convergence rate by applying different

progressively identified inversion F<i>(z) as the learning filter for tracking a

chirp reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.8 Simulated comparison of the feedforward tracking performance (the first iter-

ation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.9 Simulated comparison of the tracking performance at the 10th iteration. . . . 82

5.10 Progression of ILC without input reset in the experimental result. . . . . . . 83

5.11 Spectrum of progressively learned dynamic inversion in the experimental result. 84

5.12 Experimental comparison of the ILC convergence rate by applying different

progressively reconstructed inversion F<i> as the learning filter for tracking a

chirp reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xi



5.13 Experimental comparison of feedforward tracking performance (the first iter-

ation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.14 Experimental comparison of tracking performance at the 10th iteration. . . . 86

6.1 Shown is the experimental setup for performing the animal model evaluation

of the system on post-mortem pig eyes. (1) User interface, (2) the IRISS,

(3) OCT probe with integrated camera, (4) pig eye in fixture, (5) I/A tool in

holder, and (6) the ACCURUS® system. . . . . . . . . . . . . . . . . . . . . 87

6.2 Shown are snapshots of a real-time intraoperative intervention with accom-

panying OCT B-scans. The surgical instrument is commanded to remove a

bubble near the upper-right (x = −2, y = 9) of the pupil. . . . . . . . . . . . 90

6.3 Two examples of OCT volume scans focusing at the lens bag and posterior

capsule. (a) The lens materials were completely removed from the lens bag

and the posterior capsule (the convex shape at the bottom of the image) was

intact. (b) The xy-slice of (a) at z = 0.55 mm. (c) The xy-slice of (a) at

z = 0.65 mm. The circular shape in (b) and (c) confirms the integrity of the

capsule. (d) The lens materials were completely removed but the posterior

capsule (the irregular shape at the bottom of the image) was ruptured. (e)

The xy-slice of (d) at z = 0.92 mm. (f) The xy-slice of (d) at z = 1.32

mm. Since the capsule was ruptured and folded, there is no longer a circular

pattern as shown in (b) and (c). . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 Shown are three examples of OCT volume scans for used for intraoperative

and postoperative evaulation – Eye #1 . . . . . . . . . . . . . . . . . . . . . 94

6.5 Intraoperative and postoperative OCT volume scans – Eye #2 . Left: the

intraoperative scan after two minutes. Massive amount of lens material still

remained in the lens bag. Right: the postoperative scan. The lens was com-

pletely removed and the posterior capsule was intact. . . . . . . . . . . . . . 94

xii



6.6 Intraoperative and postoperative OCT volume scans – Eye #3 . The lens

removal was finished within two minutes without posterior capsule rupture. . 95

6.7 Intraoperative and postoperative OCT volume scans – Eye #4 . Note that

a small piece of lens material was found behind the iris after the histologic

examination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.8 Intraoperative and postoperative OCT volume scans – Eye #5 . The surgical

progress was similar to Eye #2 . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.9 Intraoperative and postoperative OCT volume scans – Eye #6 . The surgical

progress was similar to Eye #1 . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.10 The histologic examination result of the 30 pig eye experiment. . . . . . . . . 97

6.11 The surgical duration of the 30 pig eye experiment. . . . . . . . . . . . . . . 98

xiii



List of Tables

2.1 Error of Typical Coordinate Transformation . . . . . . . . . . . . . . . . . . 14

4.1 The RMS tracking error on the magnetic bearing spindle system before and

after feedforward filtering. Unit in µm. . . . . . . . . . . . . . . . . . . . . . 59

4.2 The RMS tracking error on the IRISS before and after feedforward filtering.

Unit in mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1 Description of Post-surgical Evaluation Scores . . . . . . . . . . . . . . . . . 89

xiv



Acknowledgments

I would like to express my deepest thanks to Professor T.-C. Tsao for his guidance and

support since the very first time we met at the National Taiwan University. Professor Tsao

has infinite passion in research and more than infinite patience in education. Although he

has a time-varying delay on reading our writings, he could always give us timely feedback

when we need to be stabilized. For that I am very grateful. I’d also like to thank all my

committee members, Professors Jean Pierre Hubschman, Jacob Rosen, Veronica Santos, and

Lieven Vandenberghe, for their valuable insights and helpful suggestions.

This thesis includes the materials published or to be published. The system integration

and surgical automation will be published soon in [CLG18]; the iterative inversion identifi-

cation was first published in [CT16] and it will be published with more experimental results

in [CRT18]; the iterative learning control with progressive updates was published in [CT17].

Thanks to all the co-authors’ efforts and contributions.

Thanks to Yen-Chi Chang, Kuo-Tai Teng, Chris Kang, James Simonelli, Niloufar Esfandi,

Sandeep Rai, Grant Cavalier, Matt Gerber, Martin Lee, Jack LeCheng, Han Wang, and

Edwin Rachmawan in the Mechatronics and Controls Laboratory. Especially to Martin and

Matt, together we made the IRISS moving again. This work couldn’t be done without your

help.

Finally, thanks to my parents, my brother, my wife, and my little boy. All the achieve-

ments I’ve done belong to you.

xv



Vita

2009 B.S. (Electrical and Control Engineering), National Chiao Tung

University, Hsinchu, Taiwan.

2011 M.S. (Electrical Engineering), National Taiwan University,

Taipei, Taiwan.

Publications

Y. C. Chang, C. W. Chen, and T.-C. Tsao, “Near Time-Optimal Real-Time Path Following

Under Error Tolerance and System Constraints,” Journal of Dynamic Systems, Measurement

and Control, vol. 140, no. 7, pp. 071004, 2018.

J. Wilson, M. J. Gerber, S. Prince, C. W. Chen, S. Schwartz, J. P. Hubschman, and T.-

C. Tsao, “Intraocular Robotic Interventional Surgical System (IRISS): Mechanical Design

and MasterSlave Manipulation,” International Journal of Medical Robotics and Computer

Assisted Surgery, vol. 14, no. 1, pp. e1841, 2018.

C. W. Chen, Y. C. Chang, and T.-C. Tsao, “Dynamic Trajectory Tracking by Synergistic

Dual-Stage Actuation and Control,” IEEE/ASME Transactions on Mechatronics, vol. 22,

no. 6, pp. 2600–2610, 2017.

C. W. Chen and T.-C. Tsao, “Data-Driven Progressive and Iterative Learning Control,” in

proceedings of the IFAC 2017 World Congress, vol. 50, no. 1, pp. 4825–4830, Toulouse,

France, Jul. 2017.

xvi



J. Simonelli, Y. H. Lee, S. Mikaiel, C. W. Chen, X. Li, K. Sung, D. Lu, H. Wu, and T.-C

Tsao, “An MR-Compatible Stage for Respiratory Motion Emulation,” in proceedings of the

IFAC 2017 World Congress, vol. 50, no. 1, pp. 6073–6078, Toulouse, France, Jul. 2017.

C. W. Chen and T.-C. Tsao, “Data-Based Feedforward Controller Reconstruction from It-

erative Learning Control Algorithm,” in proceedings of the IEEE/ASME Int’l Conf. on

Advanced Intelligent Mechatronics, pp. 683–688, Banff, Canada, Jul. 2016.

Y. C. Chang, C. W. Chen, and T.-C. Tsao, “Real-Time Sub-Count Estimation With State

Continuity for Asynchronous and Quantized Sensing,” IEEE/ASME Transactions on Mecha-

tronics, vol. 21, no. 3, pp. 1457–1466, 2016.

Y. Wang, M. E. Saad, K. Ni, Y. C. Chang, C. W. Chen, C. Chen, L. Pan, T.-C. Tsao, A. S.

Lavine, D. B. Bogy, and X. Zhang, “Scalable Plasmonic Nanolithography: Prototype Sys-

tem Design and Construction,” in proceedings of the ASME 2016 11th Int’l Manufacturing

Science and Engineering Conf., pp. V001T02A081, Blacksburg, Virginia, Jun. 2016.

M. C. Ke, Y. H. Tseng, C. W. Chen, M. C. Ho, F. L. Lian, J. Y. Yen, W. L. Lin, and Y. Y.

Chen, “Preliminary Study of Intracorporeal Localization for Endoscopy,” in proceedings of

the 2013 CACS Int’l Automatic Control Conf., pp. 130–134, Taiwan, Dec. 2013.

C. W. Chen and Y. Y. Chen, “Recovering Depth from a Single Image Using Spectral Energy

of the Defocused Step Edge Gradient,” in proceedings of the IEEE Int’l Conf. on Image

Processing (ICIP), pp. 1981–1984, Brussels, Belgium, Sep. 2011.

xvii



CHAPTER 1

Introduction

Overcoming physiological limitations of a human surgeon and deficiencies in sensing ca-

pabilities, robotic surgical platforms have been developed and applied to various kinds of

microsurgery for reducing surgical complications and improving surgical outcomes. Despite

the success of the Intuitive Surgical’s Da Vinci Surgical Platform in general surgery, the

robot-assisted intraocular surgery which deals with particular microscale, complexity, and

sensitivity still requires continuous effort in the research of robotics and control. For exam-

ple, cataracts—an opaque clouding of the lens in the eye—are the leading cause of blindness

in the world [PM12]. Cataract-induced blindness is remedied by cataract surgery, which

is the most frequently performed surgical procedure in the United States [OBC17]. With

a success rate over 90%, cataract surgery represents one of the most successful intraocular

procedures [Nat]. However, surgical complications still remain, including posterior capsule

rupture (1.8–4.4%), incomplete lens removal (1.1%), and corneal incision leakage (1.2%)

[DMR99]. To improve surgical outcomes, it is necessary to improve visualization of anatom-

ical features inside the eye and to use that information to autonomously and precisely guide

a surgical instrument.

1.1 Automation of Intraocular Surgical Procedures

To visualize intraocular tissues, non-invasive imaging technologies such as magnetic reso-

nance imaging, ultrasound biometry, and optical coherence tomography (OCT) have been

developed and used in preoperative and postoperative diagnoses. Magnetic resonance imag-

ing provides high-contrast and high-resolution images [FF12], but is unsuitable for intraop-

1



erative surgical procedures due to physical space constraints, high field strengths, and low

frame rates. High-frequency ultrasound biometry provides real-time, high-resolution images

[Sil09], but requires a contact medium between the probe and the eye to reduce signal reflec-

tion. In contrast, OCT provides a non-contact, real-time, high-resolution imaging modality

that can be integrated into surgical instruments and microscopes [FS16, CVK17]. Most im-

portantly, it has been shown that intraocular tissues can be visualized in OCT scans in both

anterior [RRR01] and posterior segments [EPH10].

Cataract surgery (refer to Fig. 1.1) involves a suite of procedural steps including (1) cre-

ating a corneal incision, (2) removing the anterior capsule via capsulorhexis, (3) fragmenting

the cataract into pieces of lens material, (4) emulsifying and aspirating the lens material

using an ultrasonic surgical instrument, (5) aspirating the remaining lens material with an

irrigation-aspiration (I/A) tool, and (6) inserting an intraocular lens implant. The first

three steps (corneal incision, capsulorhexis, and fragmentation) have been partially or fully

automated by OCT-based femtosecond laser systems [DBC13, PSF11, Abb, LEN, Alcb]. Au-

tomation of the final step (implant insertion) has also been investigated to improve precision

over that of a human surgeon [AHS12]. However, the cataract-extraction procedure remains

a manually performed operation, despite being the main source of the aforementioned sur-

gical complications.

Posterior
Capsule

Anterior

Capsule

Corneal
Incision

Cornea

Iris

Corneal
Epithelium

Lens

Corneal
Endothelium

Figure 1.1: A schematic of the anterior segment with relevant features labeled. Both the

posterior capsule and the corneal incision are important features and are repeatably referred

to throughout this thesis.
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Even if provided with the “best” visual feedback, a surgeon cannot perform surgical pro-

cedures absolutely accurately unless the physiological limitations of tactile control are over-

come. To address the stringent requirements of intricate tool manipulation, robot-assisted

surgical platforms have been investigated by several groups. Johns Hopkins University devel-

oped a steady-hand manipulator for membrane peeling [UBH10]. The University of Tokyo

demonstrated the feasibility of a robotic system in performing vitreoretinal tasks such as

posterior vitreous detachment, vessel sheathotomy, and microcannulation [UYS09, THI15].

Vanderbilt University demonstrated robotic capabilities of conducting constrained ocular

manipulation, membrane peeling, and stent deployment [YSJ13]. The University of Utah

designed a compact, remotely operated manipulator for disposable instruments and per-

formed membrane peeling on an eye phantom [NBA15]. The University of Munich tested

the efficacy of a target-based injection platform on pig eyes aimed at assisting the treatment

of age-related macular degeneration [NML17]. In our previous work, the IRISS successfully

demonstrated the feasibility of remotely operated cataract surgery and vein cannulation via

mechanism design and motion filtering [WGP18].

Recognizing the advantages of integrating high-resolution OCT imaging with a high-

precision robotic platform, several groups have demonstrated success in robot-assisted in-

traocular surgical intervention using OCT. A team from the Cleveland Clinic integrated an

OCT probe with a surgical microscope to provide high-resolution visual feedback [ESF14].

More recently, the same group proposed using a stereo-tracked i-OCT system to automat-

ically deploy scans in real-time near the surgical instrument tip to ease the effort of probe

re-allocation [ET15]. Vanderbilt University integrated an OCT optic fiber cable into the tool

and conducted epiretinal membrane peeling using a master-slave configuration guided by

OCT B-scans [YSS15]. The same team also demonstrated a semi-automated micro-injection

via the assistance of three-dimensional virtual fixtures based on both microscope and B-mode

OCT feedback [YSJ16]. Johns Hopkins University incorporated an A-mode OCT as a distal

sensor with a piezo-motor in the hand-held tool piece to achieve active depth-locking control

[CHC15]. The depth-locking feature was applied to the OCT-embedded micro-forceps for
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epiretinal membranectomy [CGT17].

Despite the advances in both robotic platforms and OCT-based technologies, several

unresolved issues remain, particularly in the case of cataract extraction. First, the location

where a surgical instrument passes through the cornea (referred to as the “corneal incision”)

must be constrained throughout surgery to decrease undesirable trauma in adjacent corneal

tissue. However, the methods in existing work to align the remote center of motion (RCM) of

the robot to the corneal incision are contact-based and require well-calibrated kinematics. In

addition, no methods exist to automate the alignment procedure. Second, despite the wealth

of anatomical information provided by OCT-based systems, no existing work uses OCT scans

to reconstruct the surgical environment for trajectory planning of the surgical instrument

or for automation of the surgical procedures. Third, the surgical information acquired from

real-time A or B mode OCT used in previous work [YSJ16, CGT17] is noisy and insufficient

to represent the constantly changing intraocular environment. In other words, an automated

surgical platform must be capable of adapting, in real-time, to the dynamic nature of its

surgical workspace.

This thesis addresses these concerns by developing and implementing a series of auto-

mated intraocular surgical procedures on the OCT-guided robotic platform:

1. An automated procedure that utilizes laser landmarks to reliably align the RCM of the

robot to the corneal incision. In contrast to existing methods, this procedure enables

the minimization of physical stress in adjacent corneal tissue during surgical operations.

2. A method that uses OCT scans to generate a three-dimensional parameterized model

of the anatomical eye structure with safe surgical zones of operation.

3. A method to use the eye model to plan a safe, efficient tool-tip trajectory through the

workspace. This method has the advantage of preventing tissue damage and posterior

capsule rupture by reducing the risk of inadvertent collision between the instrument

and tissues.

4



4. The development of intraoperative diagnostics and intervention methods to allow the

surgeon to override or modify any portion of the automated procedure, including tool-

tip trajectory and the predefined workspace. This functionality improves the flexibility

and safety of the automation in the event of unexpected disturbances.

1.2 Precise Motion Control for Robot Manipulator

Since intraocular anatomical structure is delicate and fragile, it is important for the robot

manipulator to precisely track the predefined trajectory generated during the preoperative

planning stage. Feedforward control is commonly applied to applications which require high-

precision motion tracking control [YHP17]. Among the efforts, iterative learning control

(ILC), which utilizes error signals to update the feedforward inputs, has shown excellent

tracking performance on a class of dynamic systems such as chemical processing [CQL04],

robot manipulators [Tay04, WNG11], CNC machining [KT04], wafer stage motion systems

[BA08], and stroke rehabilitation [FRB15]. A typical limitation of ILC is that the tracking

reference must retain identical during the trials. Any slight perturbation of the reference

requires certain amount of iterations to converge again for the optimal feedforward input

[MTB08].

To relax the reference limitation, ILC is enhanced by imposing basis functions [MTB08,

WB10, HS01, FLM17, BO15b, BOS15, BBB16]. Polynomial basis functions were applied to

parameterize the feedforward input in terms of the reference [MTB08, WB10, HS01, FLM17].

It requires iterative trials and the Newton method to determine the unknown coefficients on

top of the polynomial basis functions. Once the coefficients are determined, a finite-impulse-

response (FIR) filter is constructed to filter the reference for the feedforward input. Recently,

rational basis function is also investigated for better performance [BO15b, BOS15, BBB16].

Although it is beneficial when impossible to apply a high-order FIR filter due to the limitation

of computation resources, this method is challenged by the non-convex optimization for the

synthesis of the infinite-impulse-response (IIR) filter.
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Basis function approaches are similar to using ILC for system identification, a.k.a. It-

erative Learning Identification (ILI) [CSS08, JPS13, LA14], but they directly identify the

plant inversion as an FIR (or an IIR when imposing a rational basis function) filter. If

plant dynamic model is available, model-based approaches can also be applied to invert the

plant dynamics instead of applying iterative learning regarding basis functions. In fact, the

performance of the ILC algorithm is determined by its learning filter. It has been shown

that the convergence rate can be maximized by applying a well-approximate plant inversion

as the learning filter [BTA06, NG02, TT15], and therefore reference variation would not be

a problem.

For a minimum phase system with an accurate plant model, exact inversion can be

obtained. However, for a typical resonant system, the phase angle around the resonant fre-

quency ramps down by −180 degrees very quickly. It is challenging to acquire an accurate

model of this kind of rapid phase changing. Inaccurate modeling around the resonant fre-

quency necessities a manual fine tune of the number of delay/preview steps of the feedforward

filter to reduce the phase tracking error. Besides, if there is a non-minimum phase zero in the

plant, which is common in applications such as linear motors, an approximation is needed

to keep the feedforward filter being stable. Various model-based approaches for handling

the non-minimum phase plant inversion problem of a Single-Input-Single-Output (SISO)

system have been proposed, such as the zero-magnitude-error tracking controller (ZMETC)

[RPL09], zero-phase-error tracking controller (ZPETC) [Tom87, TT87, KT14], time-domain

direct inversion (DI) [CT14]. Multi-Input Multi-Output (MIMO) plant inversion, however,

is mostly ignored since its complexity and non-commutative property.

Data-based plant inversion approaches, such as filtered B-spline basis [DYO17], Modeling-

Free Inversion-Based Iterative Feedforward Control (MIIFC) [KZ13], and above-mentioned

basis function approaches that identify the plant inversion using iterative trials, are attrac-

tive because the requirement of an accurate plant model is eliminated. Filtered B-spline

basis requires determination of basis inputs and the corresponding output signals prior to

reference tracking. For a linear time-invariant (LTI) system, superposition of the inputs
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that generate the desired output patterns guarantees an optimal feedforward input for any

arbitrary reference trajectory. However, solving the least-square problem is required for ev-

ery new trajectory. On the other hand, the target reference adopted for learning trials in

either basis function approaches or MIIFC is never been specified and discussed, though it

is an important factor since the plant dynamics must be fully excited by the reference model

within the bandwidth of interest.

Intuitively, using a delta impulse as the reference model in basis function approaches re-

sults in an FIR feedforward filter which approximates the plant inversion. However, the delta

impulse which implies all-band inversion is too aggressive and may induce control saturation

during the learning process. Therefore, the proposed method relaxes the delta impulse to

a filtered impulse according to the selection of desired inversion bandwidth. Borrowing the

idea from ILI, we apply the learning-type control, e.g. repetitive control and ILC, to identify

the plant inversion and create the optimal feedforward filter for LTI systems. Instead of

using the Newton method to search the coefficients as in ILI, the learned input which gener-

ates the smoothed impulse directly forms the impulse response (i.e. the FIR coefficients) of

the FIR feedforward filter. This high-order FIR filter can also be approximated by an IIR

filter after employing balance realization [BKC92]. Therefore this approach is comparable

to the data-driven approaches that apply a rational basis function when the length of the

FIR filter is sufficiently long. The proposed method is able to handle both SISO and MIMO

non-minimum phase systems under the same framework. No complicated synthesis method

or transformation is required for obtaining the plant inversion of a MIMO system.

This study reveals an interesting chicken-and-egg problem: It is well-known that the

ideal learning filter of the learning-type control in terms of convergence rate is the inverse of

the controlled system, but this study shows that the plant inversion can also be constructed

from any converged learning-type control scheme (e.g. repetitive control [INK81], PD-type

[CM02] and time-reversal based ILC [BO15a]). This study also shows that the identified

inversion filter can be applied as the learning filter of the ILC algorithm to further improve

its performance in terms of convergence rate. This approach discloses another degree of
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freedom for ILC algorithms: for any stable ILC, the iteration of input signals brings smaller

tracking error, while the progression of learning filter improves error convergence rate.

1.3 Main Contributions

The main contributions of this thesis are:

1. The integration of the perioperative OCT imaging system and the surgical robot—the

IRISS—for OCT-guided robotic intraocular surgery.

2. The automation of critical intraocular surgical procedures, including alignment, mod-

eling of anatomy, preoperative planning, and real-time supervision and intervention.

3. The development of precise motion control using data-based inversion identification for

robot manipulator and other physical plants.

These contributions were experimentally validated by performing lens extraction on 30

post-mortem pig eyes.

This thesis is organized as follows. Chapter 2 provides a system overview and intro-

duces the integrated components of the OCT-guided robotic platform. Chapter 3 describes

the automated procedures for intraocular surgery using the OCT-guided robotic platform.

Chapter 4 presents the proposed method of precise motion control for the robot manipulator.

Chapter 5 extends the work in Chapter 4 to further improve the error convergence rate of the

ILC algorithm. Chapter 6 presents the experimental results and evaluations on post-mortem

pig eyes. Conclusion is given in Chapter 7.
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CHAPTER 2

The IRISS for Surgical Automation

The overall system architecture of the OCT-guided robotic system is shown in Fig. 2.1. The

IRISS controls both the tool-tip position (here demonstrated by an I/A hand-piece) and the

irrigation and aspiration forces generated by the Alcon ACCURUS® system [Alca]. The

tool-tip position is programmed based on the anatomical model reconstructed from OCT

volume scans, which are obtained from the OCT probe physically positioned over the eye

(Fig. 2.2). The OCT and embedded camera provide real-time visual feedback to the surgeon.

The surgeon can override the IRISS during automated operation to assess surgical progress

and to account for variations in the surgical environment.

EyeSurgeon

I/A Tool

I/A
Forces

I/A
Commands

Tool-tip
Position
Control

Surgical
Operation

Scan
Pattern

Camera

OCT

The IRISS

ACCURUS

Eye
Anatomy

OCT
Display

Camera
Images

Override
Commands

Figure 2.1: The overall system architecture for the OCT-guided robotic system.
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Figure 2.2: The CAD model of the integrated system with the coordinate frame and kine-

matic variables defined.

2.1 The IRISS

The IRISS consists of two, independently controllable manipulator arms, each holding two

interchangeable surgical instruments [WGP18]. Because only a single I/A tool is required

for lens extraction on pig eyes, only one manipulator arm equipped with a single I/A tool

is used in this study. The I/A tool is mounted to a carriage that rides on a circular track

which is rotated about a shaft mounted to the base of the IRISS. This spherical mechanism

kinematically guarantees a mechanically fixed RCM. To allow three-dimensional translation

of the RCM position relative to the eye, the arm assembly is mounted to a motorized linear

stage capable of three-dimensional XYZ translation. This feature enables eye tracking, while

not addressed in this work, to compensate for possible eyeball movement as the patient is

awake during some specific surgery such as cataract surgery. Further details of the mechanical

design of the IRISS and an evaluation of its performance can be found in [WGP18].

For convenient mathematical representation, the Cartesian coordinate frame of the IRISS

is chosen to be coincident with the RCM (Fig. 2.2). Desired tool-tip positions are achieved

by the coordination of two rotational angles (θ1 and θ2) and one translational displacement

(d3). Kinematically, the tool rotation about its centerline (θ4) has no effect on tool-tip
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position. Mechanical calibration is performed prior to surgery to ensure the commands

θ1 = θ2 = θ4 = 0 and d3 = 0 result in the tool tip located coincident with the RCM and the

aspiration port facing anterior. Given a tool-tip position p = [px py pz]
T inside the eye, the

inverse kinematics are given by
θ1 = atan2 (−pz, py)

θ2 = atan2
(
−px,

√
p2y + p2z

)
d3 = ∥p∥2

(2.1)

where atan2 (·, ·) is the four-quadrant inverse tangent function with two arguments and ∥·∥2
is the Euclidean norm.

For the duration of intraocular surgery, the tool tip remains inside the eye and Eq. 2.1

defines a unique map from the tool-tip position to the robotic joint space. However, when

the tool tip is outside the eye, motion control is realized in joint space and the kinematic

singularity at [0 0 0]T (the RCM) is avoided. Doing so has the advantage of directly coupling

the desired insertion angles to joint angle commands.

2.2 The OCT Imaging System

A commercially available ThorLabs SD-OCT imaging system (Telesto II 1060LR) is inte-

grated with the IRISS (Fig. 2.2). The OCT system operates with a broadband superlumi-

nescent diode with a central wavelength of 1060 nm, axial resolution of 9.18 µm, and imaging

depth in air of 9.4 mm. The objective lens (LSM04BB) exhibits a focal length of 54 mm,

a lateral resolution of 25 µm, and a 10×10 mm field of view. The OCT probe has been

vertically actuated with a custom stage for changing its depth of view.

The integrated OCT system is capable of performing three-dimensional volume scans,

real-time A and B scans, and custom scanning patterns programmed through the provided

software development kit. Volume scans are used for modeling of anatomical structure

(Chapter 3.2) and intermittent assessment (Chapter 3.4). Real-time B scans and custom
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scanning patterns are used for real-time intraoperative intervention (Chapter 3.4). Although

it is common for anterior-segment OCT to use a laser with central wavelength of 1310 nm

to penetrate tissue to a greater depth [RRR01], this system uses an illumination source with

central wavelength of 1060 nm as a balance between signal attenuation and imaging depth.

To image the anterior segment of pig eyes (which have a thicker lens than that of humans

[SMU11]), tissue penetration is sacrificed in favor of signal transmittance by shortening the

wavelength of the illumination source.

2.3 System Integration

The hardware-integration architecture is shown in Fig. 2.3. The IRISS is controlled by a

National Instruments PXI real-time target at a sampling rate of 1 kHz. Brushed DC motors

on the IRISS joints are driven by current-type amplifiers and the control loops are closed by

rotary optical encoders integrated into the motors. Aspiration and irrigation commands are

sent from the NI PXI target to the ACCURUS® via a pulse-width modulated signal. The

joint motions and I/A command either follow a trajectory provided by the trajectory planner
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Figure 2.3: The diagram of the hardware architecture.
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(Chapter 3.3) or are directly controlled by user command. The host PC acquires OCT scans

and camera images from the OCT system, which is driven by a base unit that positions

its A-scans. The host PC runs with a graphical user interface programmed in LabVIEW.

Through this interface, the user can supervise real-time scanning of the workspace, and—if

necessary—override the tool-tip trajectory or the I/A commands (Chapter 3.4).

To enable control of the IRISS using OCT feedback, the registration between the OCT

reference frame and the IRISS frame was required. To derive this relationship, the IRISS was

autonomously commanded to touch a series of points that formed a unique, non-symmetric

pattern representational of the intraocular workspace. At each point, the tool-tip position

was determined in the OCT frame from medium-sensitivity (48 kHz) volume scans by ap-

plying a custom, image-processing algorithm. At each point, two representations existed:

the tool-tip position in the IRISS frame from the ideal forward kinematics and the tool-tip

position in the OCT frame from the volume scan. To find the linear transformations (trans-

lation, rotation, and uniform scaling) between the frames, Procrustes superimposition was

performed [GD04]. With the linear transformations and their inverses known, any point in

the OCT reference frame can be converted to a point in the IRISS reference frame—and vice

versa. This initial registration is dynamically updated in real-time when the IRISS or the

OCT probe are moved, thereby maintaining the validity of the registration despite relative

motion between the physical hardware.

To test the accuracy of the OCT–IRISS coordinate frame relationship, the I/A tool was

commanded to touch a series of n = 30 randomly generated points within its workspace.

At each point, a volume scan was acquired, the tool-tip position was determined, and the

ideal tool-tip position was calculated from the forward kinematics. The coordinate frame

transformation was used to transform the tool-tip positions determined by the OCT scan

into the IRISS frame. Ideally, these points would perfectly overlap the points obtained from

the forward kinematics with zero error; in reality, some error exists. This error was calculated

as the 3D Euclidean distance between each pair of points. The statistical measures of the

errors for a typical derivation of the coordinate transformation are shown in Table 2.1.
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Table 2.1: Error of Typical Coordinate Transformation

Min. Mean RMS Max. Std.

0.047 0.19 0.21 0.34 0.077

* All values in units of mm

2.4 Software Design

The software state chart is shown in Fig. 2.4. In the mechanism homing state, each joint is

incrementally actuated until its homed position is found via a photo-interrupter sensor. In

the initialization state, the I/A tool is commanded to a safe, predefined initial position and

the RCM of the IRISS is automatically aligned to the corneal incision in the eye (Chapter

3.1). Then, the I/A tool is inserted into the eye, a surgical trajectory is loaded into the

software, and the tool begins tracking the predefined trajectory (Chapter 3.3 and 4). During

the tracking, the user may pause the motion or reroute the tool tip to a specific point.

The tracking process is considered complete when either the end of the trajectory has been

reached or a finishing command has been sent from the user. At this point, the tool returns

to the engaged state to await tool retraction or additional track commands.

For safety reasons, emergency retraction and shutdown are included in the state chart.

For example, in the event of homing sensor malfunction, the program will terminate to

prevent hardware damage. On the other hand, emergency tool retraction is employed in

the states where the tool tip is within the eye. To prevent surgical damage that would

occur during emergency shutdown if the tool remained inside the eye, the system is powered

off only when the tool is fully retracted and any existing operations have been successfully

terminated.
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Figure 2.4: The software state chart for the OCT-guided surgical robotic system.
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CHAPTER 3

Automation of Robotic Intraocular Surgery

The core contribution of this thesis is the proposed methodology for automated intraocular

surgery, as illustrated in the flow chart Fig. 3.1. This methodology can be divided into

four distinct steps: laser-assisted alignment (Chapter 3.1), segmentation and modeling of

anatomical structures (Chapter 3.2), preoperative trajectory planning (Chapter 3.3), and

real-time intraoperative supervision and intervention (Chapter 3.4).

Figure 3.1: The flow chart of automated intraocular surgery.

16



3.1 Laser-Assisted Alignment

To reduce stress at the entry site during intraocular surgery, the first step of automated

intraocular surgery involves aligning the IRISS to the eye such that the mechanical RCM

of the robot is coincident with an approximation of the corneal incision, a point p∗
CI . If

this condition is not satisfied, then the self-sealing properties of the surrounding corneal

tissue may be diminished, resulting in post-operative corneal incision leakage. This clinical

requirement necessitates the use of a mechanical RCM and forms the basis for the mechanical

design of the IRISS robot.

Though the RCM is an invisible point in space, two lasers were mounted on the tool

carriage to intersect at the RCM (Fig. 3.2). When the visible points produced by the lasers

converge at a single point on a surface, that point is coincident with the mechanical RCM.

In this way, aligning the mechanical RCM of the IRISS to the corneal incision point can be

automatically performed by integrating control of the automated XYZ stage with computer-

vision feedback. After the surgeon creates the corneal incision, visual feedback guides the

stage to first align one of the laser spots to the incision, and then registers the optical axis

of the aligned laser. By moving the stage along the registered optical axis and searching

for the minimal detected area of the laser points on the microscope image, alignment of the

RCM to the incision point can be achieved. This process requires less than two minutes to

complete and is only required once per surgery.

Due to mechanical construction error of the lasers themselves, as well as the assembly

and manufacturing tolerance stack-up error of the laser mount sub-system, it cannot be

guaranteed that the laser beams will accurately intersect at pRCM after mounting. For

example, typical commercial LED lasers have a deflection angle of ±10◦ and a beam offset of

±1 mm. This fact necessitates a post-mounting precision adjustment mechanism on the laser

mounts, which are incorporated into the design as two orthogonally mounted thumb screws.

The laser is secured in a spherical bearing, and the thumb screws—when tightened—push

into the laser housing thereby changing the pitch angle ϕi and the yaw angle ψi of the laser
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Figure 3.2: The CAD model of the RCM laser tool holder (isometric view).

beam. Compression springs provide a return motion.

The laser beams were independently aligned to pass through pRCM by a manual, two-

step procedure. First, a flat precision-ground plate was mounted perpendicular to the fixed

robot base and placed such that its surface was aligned with the Ẑ axis. The carriage was

then repeatedly cycled through its θ2 rotation and the laser yaw angle ψi manually adjusted

until the rotational motion repeatedly produced a stationary laser point on the flat plate.

Once satisfied, the angular deflection in ψi was considered to be sufficiently reduced. Second,

the plate was moved along its normal direction (along X̂) and the laser pitch angle ϕi was

manually adjusted such that the laser point remained stationary as the plate was moved,

thereby sufficiently reducing the angular deflection in ϕi. Once complete, the process was

repeated on the other laser. After this alignment process, the lasers were considered aligned

to intersect at the RCM and could be confirmed by actuating the tool tip through the RCM

and noting the laser deflection. While the manual nature of this process was slow and

inherently inaccurate, it must only be performance once, and was considered adequate for

the purpose of visualizing the RCM location in space and aligning the RCM with a surgical

incision in the eye.
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3.2 Segmentation and Modeling of Anatomical Structure

To account for anatomical variation between eyes, a pair of preoperative OCT volume scans

are acquired of the anterior segment. Because the depth of the posterior capsule (approxi-

mately 10–15 mm from the top of the cornea) is greater than the sensing depth of the OCT

(9.4 mm), the OCT probe is physically translated via its translational stage to cover the en-

tire range of interest. Two scans are sufficient: a representative B-scan of the upper portion

is shown in Fig. 3.3 and includes the iris and cornea; a representative B-scan of the lower

portion is shown in Fig. 3.4 and includes the posterior capsule and the inverted iris. The iris

appears inverted in the lower scan due to the limited sensing depth of the OCT system. To

avoid overlapping the posterior capsule with the inverted iris, the lower scan is taken when

the posterior capsule appears (by visual inspection) within the top 3 mm of the OCT frame

and the inverted iris is located in the bottom 5 mm (Fig. 3.4).

After acquisition, the two scans are stitched together with the known displacement of the

OCT probe to create a single, composite scan of the entire anterior segment. The volume

scan data are converted to a point cloud by automated binary thresholding. The point-cloud

represents tissue whose reflection is stronger than that of water or balanced salt solution and

is therefore a down-sampled representation of anatomical features of interest. For tool-tip

navigation within the eye, it is critical to determine the positions of the cornea, iris, and

posterior capsule from this point-cloud data.

Although various approaches exist for OCT image segmentation of anterior structures,

all require significant computational resources to produce accurate results [WZB13]. If im-

plemented, the surgical consequence would be a protracted delay prior to the start of surgical

procedures, during which the cornea will begin to collapse. Therefore, a custom algorithm

was developed that considers a priori knowledge of the eye anatomy to quickly generate

(within one minute) a parameterized anatomical model with acceptable accuracy (< 100

µm). The pupil was modeled as a 2D ellipse in 3D space. For segmentation of the cornea, a

second-order parabolic surface was chosen to represent the corneal epithelium and was fit to
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Figure 3.3: An OCT scan of the upper anterior segment including (1) the cornea, (2) lens

material, and (3) the iris.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

1.00.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Width [mm]

D
e

p
th

 (
Z

) 
[m

m
]

4

5

Figure 3.4: An OCT scan of the lower anterior segment including (4) the lens and posterior

capsule and (5) the inverted iris.
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the point-cloud data using a least-squares method. This fit takes advantage of the knowledge

that the cornea must be located near the top of the scan volume. Similarly, for segmentation

of the posterior capsule, a second-order parabolic surface was chosen.

The three generated surfaces define the workspace within the anterior segment (Fig.

3.5). This model is parameterized and is used to preoperatively plan the cataract-extraction

trajectory. Due to the effective range of the I/A tool aspiration, a safety margin around all

three anatomical features was enforced in the model. This guaranteed that any composite

error from the segmentation and modeling was alleviated, providing the error magnitude was

less than this margin.
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Figure 3.5: The reconstructed eye model. (1) Magenta: reconstructed cornea, (2) green:

reconstructed pupil, (3) cyan: reconstructed posterior capsule, blue points: raw OCT data.

It is important to note that the medium through which the OCT laser signal propagates

is variable. Specifically, when the laser signal passes from air into the corneal epithelium,

the refractive index changes from 1 to approximately 1.35 (that of water). For this reason,

21



the depth values acquired from the OCT system, zo, are adjusted to update the anatomical

model to account for this change:

z′o =


zo, zo < ze

ze + n (zo − ze) , zo ≥ ze

(3.1)

where z′o is the adjusted depth value, ze is the depth of the corneal epithelium along an

A-scan line, and n is the ratio of the refractive index of air over that of water (n ≈ 0.74).

To evaluate the accuracy of the anatomical model, it was compared to human-labeled

ground truths on n = 10 randomly sampled OCT images from nine different eyes. The

accuracy of posterior capsule detection, with the worst image quality among all tissue, was

79.6 ± 23.3 µm (the 95% confidence interval around the average). This modeling error was

considered negligible in comparison to the safety margins established near intraocular tissue,

which are on the order of 1.5 mm.

3.3 Preoperative Trajectory Planning for Cataract Extraction

In this step, a tool-tip trajectory is generated based on the eye model obtained in the

previous step, allowing the IRISS to guide the surgical instrument with respect to anatomical

structures within the eye. To demonstrate the capability of performing automated cataract

extraction, the generated tool-tip trajectory exhibits the following characteristics:

(i) The geometry of the trajectory is chosen to mobilize the lens material and to increase

surgical efficacy and efficiency.

(ii) The tool-tip motion deepens and decelerates after each repetition of a baseline trajec-

tory to avoid posterior capsule rupture.

(iii) The aspiration and θ4 are scheduled as functions of the tool-tip position to increase

surgical efficacy and provide additional protection against posterior capsule rupture.
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Figure 3.6: The preoperatively planned cataract-extraction trajectory in the IRISS frame.

Point cloud: raw OCT data, solid black line: tool-tip trajectory, red surfaces: safety margins,

green surfaces: tool-tip workspace, red X: the RCM.
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Figure 3.7: The top view of Fig. 3.6. Point cloud: raw OCT data, solid black line: tool-tip

trajectory, red X: the RCM, red box: OCT scanning volume.

23



3.3.1 Trajectory Pattern Design for Lens Removal

Based on surgeon input and clinical feedback, a flower-shaped pattern with a scooping mo-

tion was developed (Fig. 3.6 and 3.7). The geometric shape in the plane of the pupil

is intended to disaggregate conglomerated lens material, while the scooping motion is in-

tended to detach lens material from the posterior capsule. Given a desired tool-tip position,

p(t) = [px(t) py(t) pz(t)]
T , then


px(t) = cx + q cos(θ(t))

py(t) = cy + q sin(θ(t))

pz(t) = cz − wa sin(nθ(t))

(3.2)

where c = [cx cy cz]
T is the coordinate of the iris center, w(θ) is a window function between

[0, 1] such that the trajectory will start and end at c, a(θ) is a position-dependent amplitude

bounded by the distances to the anterior and posterior capsular surfaces, n is the number

of “flower petals” in the geometric pattern, and q(θ) is the two-dimensional motion of the

tool-tip in polar coordinates defined as (Fig. 3.8):

q(θ) = (sR− wr) sin2

(
nθ(t)

2

)
+ wr (3.3)

where s(θ) is the radial scaling of the flower pattern which preserves the safety gap between

the tool-tip and iris, R is the pupil radius, r is the inner radius of the flower pattern,

and θ(t) is the angle between the x-axis and a line from c to the tool tip in the range

[0, 2π]. The value of θ(t) was chosen with equidistant sampling in polar coordinates with an

approximately averaged tool-tip velocity of 0.6 mm/s and cycle time of 90 s.

Based on clinical experience, it is necessary to move the tool slower and deeper after each

cycle to detach and aspirate lens material. Therefore, the tool moves fastest for the first

cycle (approximately averaged tool-tip velocity: 0.6 mm/s) and at a conservative, shallow

depth (within the top 30% of the capsular bag thickness). Each subsequent cycle progresses
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Figure 3.8: The definition of parameters for the generation of cataract-extraction trajectory.

the tool tip deeper (+10% lens thickness per cycle) and slower (−25% tool-tip velocity).

3.3.2 Instrument Rotation

The aspiration port of the I/A tool is located on the side of the instrument near its tip.

Posterior capsule rupture may occur when the port aspirates the capsular surface in close

proximity. For this reason, θ4 is scheduled such that the aspiration port is always facing

away from the posterior capsule. Also, when the tool tip is near the equator of the capsular

bag, the normal vector of the port is directed towards a virtual axis above the iris center c,

{
(x, y, z) ∈ R3 : x = cx and z = cz +∆za

}
(3.4)

where ∆za > 0 indicates the offset between the iris center and the virtual axis. The position-

dependent instrument rotation can be described as:

θ4(t) = atan2 (px − cx, pz − cz −∆za) (3.5)
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3.3.3 Aspiration Force Scheduling

Even if the aspiration direction is accounted for, posterior capsule rupture may still occur

if the aspiration magnitude is ignored. Therefore, the aspiration is also scheduled based

on ∆zp(t), the distance between the tool tip and the posterior capsule (Fig. 3.9). This is

achieved by the following position-dependent aspiration scheduling:

fa(t) = fa,lb + (fa,ub − fa,lb) sat

[
∆zp(t)− zlb
zub − zlb

]
(3.6)

where fa(t) is the aspiration force as a function of tool-tip position; (·)lb and (·)ub are short-

hand notations for the lower and upper bounds of a parameter; sat(·) is the saturation

function with both domain and co-domain [0, 1]; and zlb and zub are user-defined bounds on

the magnitude of ∆zp(t). This saturation is necessary to prevent the aspiration force from

becoming too aggressive or from deforming the intraocular tissue, while providing sufficient

force to continue aspirating the lens material.
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Figure 3.9: An example of aspiration force profile scheduled along the tool-tip trajectory

with zlb = 5.5 mm, zub = 6.5 mm, fa,lb = 400 mmHg, and fa,ub = 600 mmHg.

Once the cataract-extraction trajectory is generated, a top view of the calculated tool-

tip trajectory is projected on an anterior view of the eye in the graphical user interface.

Likewise, the side view of the calculated tool-tip trajectory is projected on a superior view

of the eye. If any adjustment is requested by the surgeon, offsets and range resizing can be
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manually performed.

3.4 User Interface for Intraoperative Intervention

Automated intraocular surgery is conducted by tracking the predefined trajectory. However,

while the preoperative scan is useful in constructing an initial anatomical model and tool

trajectory, the intraoperative anterior segment is a dynamic environment subject to change

during surgical operations. To account for the changing surgical environment, intraopera-

tive supervision and manual intervention strategies are provided to the surgeon during the

autonomous surgical procedure.

3.4.1 Real-Time OCT Assessment

During automated tracking, either real-time OCT B-scans (Fig. 3.10) or localized B-scans

that intersect and track the tool tip (Fig. 3.11) are displayed to the user for monitoring

surgical progress. Both custom, real-time OCT scans can be acquired to provide timely

information regarding the surgical instrument and anatomical features.

Acknowledging the difficulty inherent to real-time image processing of OCT images, the

user interface was designed with a focus on improving visualization and enabling directed

targeting of lens material (Fig. 3.11). The OCT probe can also be translated to track the

posterior capsule, lens material, or other features of interest. The frame rate of a B-scan

(the time interval between each update without saving the data) is approximately 8 Hz and

is limited by the motion bandwidth of the mechanical galvo mirror. The frame rate of a

localized scan volume is approximately 1.5 Hz.

3.4.2 Intervention Strategy

Based on the real-time OCT feedback, several options are provided to the user.

(i) The user can offset and resize the workspace of the predefined trajectory. The trajectory
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Figure 3.10: An example of the real-time OCT image feedback. Visible features are (1) the

posterior capsule, (2) lens material, (3) the iris, and (4) the tool tip. Note: all images are

inverted.

Figure 3.11: The user interface for intraoperative intervention.

28



p(t) is modified according to the adjusted workspace:

p′(t) = RS [p(t)− c] + T + c (3.7)

where R and S are the rotation and scaling matrices representing the workspace defor-

mation, T is the translation vector representing the workspace translation, and the iris

center c is the resizing center. This function is critical in the event of eye deformation

or corneal collapse because, in such an event, the anatomical structure is different than

that at the beginning of the surgery.

(ii) The user can modify the tool-tip velocity or pause the motion while maintaining the

aspiration.

(iii) The user can override the rotation angle of the surgical instrument. This function is

used to create intraocular turbulence which is useful for detaching larger pieces of lens

material from the posterior capsule.

(iv) The user can command the tool tip to any point inside the workspace by directly

clicking on the displayed images. The camera view determines the (x, y) coordinates of

the target while the z coordinate is assigned from localized OCT B-scans. This function

can be used to directly target and remove floating lens material and air bubbles. In the

event a user requests a point outside the tool workspace or beyond the safety margins,

a bisection algorithm efficiently determines the boundary point closest to the desired

target (Algorithm 3.1) without formulating and solving a convex optimization problem.

The tool tip will move towards the commanded point and then stop when its distance

to the boundary is less than the threshold ϵ.

(v) The user can request emergency termination of the surgery. Once asked, the instrument

will cease aspiration and begin to retract from the eye within 200 ms.
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Algorithm 3.1 Algorithm for Rerouting Assigned Point

Inputs: Current position p0, assigned position ptrg

Output: Feasible assigned point p∗

Step 1: if ptrg is inside workspace, return p∗ = ptrg

Step 2: ∆p = ptrg − p0

(αlb, αub) = (0, 1) and p∗ = p0

do

pprev = p∗

α = 1
2
(αub − αlb)

p∗ = p0 + α∆p

if p∗ is out of bounds, αub = α

else αlb = α

end if

while (
∥∥p∗ − pprev

∥∥
2
> ϵ) or (p∗ is out of bounds)

return p∗

3.4.3 Intermittent Volume Scan Assessment

To assess surgical progress, evaluation is performed every two minutes by returning the

tool to the standby position, pausing its motion, and acquiring an OCT volume scan (as

demonstrated in Fig. 6.4). At this point, the surgeon can study the volume scan and

visually inspect the eye. Based on this evaluation, one of three options can be chosen:

(1) continuation of the cataract-extraction trajectory, (2) declaration of specific points to

target, or (3) termination of the surgery. Option (1) is useful if significant amounts of lens

material remain in the anterior segment. Option (2) is useful for extracting small pieces of

lens material. Option (3) is applied when no lens material appears in the OCT volume scans

and the lens extraction is considered complete.
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CHAPTER 4

Learning-Based Precise Motion Control

To ensure surgical safety and improve the efficiency of robotic intraocular surgery, the robot

manipulator must precisely track the predefined trajectory as generated in Chapter 3.3. To

achieve precise motion control, a novel data-based approach to construct plant inversion

filter from learning-type control algorithms, such as Iterative Learning Control (ILC) and

repetitive control, is proposed. Once the plant inversion is identified, the inversion filter can

be applied to feedforward filtering and high-precision tracking control. Compared to existing

inversion methods, the proposed approach eliminates the requirements of accurate dynamic

modeling and complicated synthesis methods. It is also shown the proposed method can be

applied to MIMO systems, such as robot manipulators, without additional diagonalization

or transformation. The design analysis, simulation validation, and experimental results are

presented to demonstrate the effectiveness and performance of the proposed method.

4.1 Learning-Type Control Algorithms

A method using learning-type control schemes, such as repetitive control and ILC, to identify

the plant inversion within the selected bandwidth is proposed. To start with, both repetitive

control and ILC are reviewed in this section followed by a discussion of the role of plant

inversion in the learning-type control.
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4.1.1 Iterative Learning Control and Repetitive Control

Applying internal model principle, repetitive control is developed for tracking or rejecting

periodic signals without steady-state error [INK81]. Considering a SISO plant G(z),

Assumption 4.1 The controlled discrete-time plant G(z) is asymptotically stable, i.e., all

its poles are inside the unity circle.

A generic repetitive control on G(z) can be expressed as

u(k) = L(z)
z−N

1− z−N
e(k) (4.1)

where N is the period of the target signal, k is the discrete time index, u(k) is the control

input to plant G(z), e(k) = r(k) − y(k) is the error signal, r(k) is the reference, and y(k)

is the output of G(z). L(z), here referred as the learning filter, stabilizes the closed-loop

system. Eq. 4.1 can be further organized as

u(k) = u(k −N) + L(z)e(k −N) (4.2)

The block diagram of Eq. 4.2 is illustrated in Fig. 4.1.

When N equals the length of the reference r(k), Eq. 4.2 can also be seen as the control

updating law in the ILC algorithm, where 0 ≤ k ≤ N − 1. Although repetitive control

is designed for on-line tracking of a periodic signal and ILC does batch process on a fixed

reference trajectory, the similarities of these two control schemes have been investigated

[WGD09]. Introducing the iteration index j, Eq. 4.2 can be rewritten into the batch form

to represent a generic ILC algorithm,

uj(k) = uj−1(k) + L(z)ej−i(k) (4.3)

and the control input uj(k) at iteration j can be derived as

u1(k) = L(z)r(k) (4.4)

uj(k) = [I − (I − L(z)G(z))j]G−1(z)r(k) (4.5)

ej(k) = (I −G(z)L(z))jr(k) (4.6)
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Figure 4.1: The block diagram of learning-type control.

Note that the G−1(z) term in Eq. 4.5 is algebraically canceled after multiplying with the

[I − (I − L(z)G(z))j] term, so Eq. 4.5 holds for both minimum and non-minimum phase

systems, while a stable G−1(z) does not exist for the systems with non-minimum phase zeros.

4.1.2 Stability of Learning-Type Control

The stability criteria of the generic ILC algorithm expressed in Eq. 4.3 can be observed

from the learning error ej(k) in Eq. 4.6. [NG02] has proven that Eq. 4.5 and 4.6 are

asymptotically stable iff

∥I −G(z)L(z)∥∞ < 1 (4.7)

If fact, the repetitive control as described in Eq. 4.1 also shares the same stability criteria.

The importance of the plant inversion can be seen here. If the learning filter L(z) is assigned

as the perfect plant inversion of G(z), the stability condition of Eq. 4.7 holds and the tracking

error in Eq. 4.6 converges within a single iteration. Therefore, a well-approximate plant

inversion, especially when G(z) has non-minimum phase zero, is useful on many aspects,

including feedforward filtering, repetitive control, and ILC.

Assumption 4.2 The learning-type control schemes referred in this Chapter, either repeti-

tive control or ILC, are stabilized by a pre-selected learning filter L(z) such that the stability

criteria of Eq. 4.7 holds.
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4.1.3 Plant Inversion with Selected Bandwidth

For a plant inversion filter F (z) that perfectly inverts the controlled plant G(z),

G(z)F (z) = I (4.8)

perfect tracking can then be done by feedforward filtering of the reference r(k),

y(k) = G(z)u(k) = G(z)F (z)r(k) = r(k) (4.9)

However, perfect inversion implies high-gain feedforward inputs at frequencies beyond the

bandwidth of the controlled plant G(z). Beside, model uncertainties are usually proportional

to the frequency in reality. As a result, the feedforward inputs must be filtered by a low-pass

filter to ensure the control saturation is not triggered.

Instead of cascading a low-pass filter after feedforward filtering, one can relax the perfect

inversion (Eq. 4.8) to only invert the plant dynamics within certain bandwidth. In other

words, it is to find the plant inversion filter F (z) such that

G(z)F (z) =M(z)z−d (4.10)

whereM(z) is a zero-phase low-pass filter limiting the bandwidth for plant dynamic inversion,

and z−d maintains the causality and allows for d steps delay at the output. When M(z) is

constructed as an FIR filter, d must be larger than half of its order. Allowing more delay

also helps approximate the dynamic of non-minimum phase zeros. When all the frequency

components of the reference trajectory r(k) fall in the bandwidth of M(z), i.e., M(z)r(k) =

r(k), perfect tracking can be still obtained with d steps delay,

y(k) = G(z)u(k) = G(z)F (z)r(k)

=M(z)z−dr(k) = r(k − d)
(4.11)

Remark 4.1 (Zero-phase low-pass filter) The zero-phase low-pass filter M(z) may be

created by

M(z) = N(z)N(z−1) (4.12)
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where N(z) is an FIR low-pass filter (not necessary to be zero-phase) designed with the

selected bandwidth.

4.2 Iterative Identification of Plant Inversion

For construction of the plant inversion filter F (z) subject to the selected bandwidth charac-

terized by M(z), as stated in Eq. 4.10, we propose using learning-type control algorithms to

do so. The core idea is intuitive: for a LTI system, assigning the impulse response f(k) of the

plant inversion filter F (z) as the control input u(k) generates a delta impulse (or a filtered

impulse m(k)) at the output. On the other words, if we can find the u(k) that generates a

symmetric impulse at the output, it can then be used to form an FIR feedforward filter. In

the following subsections, the algorithm for learning the plant inversion of a SISO system is

explained in detail followed by its extension to MIMO systems.

4.2.1 Identification of Plant Inversion on SISO Systems

The identification of plant inversion can be achieved by determining the control input u(k)

that generates a delta impulse function at the output. For the cases with the relaxation of

inversion bandwidth, i.e., Eq. 4.10, the desired output is changed from the delta impulse to

the impulse response of the target filter, M(z)z−d. Since learning-type control algorithms

feature finding the optimal control input for tracking a specific reference with zero steady-

state error (once again, for LTI systems), it perfectly fits the requirement for plant inversion

identification.

Starting from an all-band plant inversion that inverts the plant over the entire frequency

band from D.C. to the Nyquist frequency, i.e., Eq. 4.8,

Method 4.1 (Learning Plant Inversion Using ILC). For a SISO controlled plant G(z)

with an arbitrary stable ILC learning filter L(z) that satisfies Eq. 4.7, the plant inversion

F (z) is constructed by the converged input to track a delta impulse with N − 1 points zero

35



padding as the reference:

f(k)
∆
= lim

j→∞
uj(k)

= lim
j→∞

[I − (I − L(z)G(z))j]G−1(z)δ(k)
(4.13)

where f(k) is the impulse response of F (z),

F (z) =
N−1∑
k=0

f(k)z−k (4.14)

�

Ideally, since the ILC is asymptotically stable and (I − L(z)G(z))j converges to zero as

j increases, a perfect plant inversion can be obtained from Method 4.1. However, this is

not the case happening during implementation because (1) G(z) may contain non-minimum

phase zeros that make exact plant inversion unstable; (2) learning the delta impulse is too

aggressive and beyond the capability of the controlled plant. The control signal may saturate

during the learning process; and (3) the updating of high frequency components may be slow

or even be shutdown by the ILC algorithm due to stability concerns. Since the performance

of the iterative inversion identification on LTI systems depends on how well and how fast

the ILC algorithm can learn for tracking the delta impulse, slow ILC convergence for high-

frequency components implies significant amount of iterations is required to identify the

inversion at the high-frequency region.

To solve the above-mentioned problems, the reference model in Method 4.1 is modified

as a smoothed impulse with certain delay steps to compensate for non-minimum phase zeros

and to maintain the causality of the reference model. Most importantly, it does not require

high gain inputs to generate the filtered impulse at the output. Therefore control saturation

is avoided. The generalized method is given as

Method 4.2 (Plant Inversion Construction with Assigned Reference Model). For a SISO

controlled plant G(z) with an arbitrary stable ILC learning filter L(z) that satisfies Eq. 4.7,

the plant inversion filter F (z) is constructed as

F (z)
∆
= H−1(z)Un(z) (4.15)
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after the learning error en(k) = rM(k) − yn(k) converges to a specified tolerance ϵl at the

n-th iteration, i.e., ∥en(k)∥∞ ≤ ϵl, and Un(z) is the FIR filter constructed as:

Un(z) =
N−1∑
k=0

un(k)z
−k (4.16)

where un(k) is the learned input at the n-th iteration to generate the output that tracks the

impulse response rM(k) of the reference model RM(z),

RM(z) = H(z)M(z)z−d (4.17)

�

Method 4.2 only needs to be performed one time for every plant, unless the physical plant

is changed after learning.

Remark 4.2 (Required number of iterations) The number of iterations n required for

learning the target impulse depends on the learning filter L(z) of the learning-type control. n

could be minimized if L(z) approximates the plant inversion. In this Chapter, however, we

only assume L(z) satisfies the stability condition as stated in Eq. 4.7. The performance of

the embryonic learning-type control, in terms of minimizing n, is not addressed. A way to

progressively update the learning filter L(z) will be proposed in Chapter 5.

Remark 4.3 (Frequency Weight) H(z) indicates the frequency weight over the reference

model, which can be used to prevent control saturation but not affect the identification result.

It must be invertible (without any non-minimum phase zero). A typical selection used in this

study is an integrator (therefore the ILC is learning for a filtered step function),

H(z) =
1

1− z−1
(4.18)

H−1(z) = 1− z−1 (4.19)

Corresponding analysis is discussed in Chapter 4.3.
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Theorem 4.1 The plant inversion filter F (z) constructed from Method 4.2 inverts the con-

trolled plant G(z) over the selected bandwidth specified by M(z) with a bounded error, i.e.,∥∥M(z)z−d −G(z)F (z)
∥∥
∞ ≤ ϵl

∥∥H−1(z)
∥∥
∞ (4.20)

Proof 4.1 Assuming at the n-th iteration of the ILC learning process, the learning error for

the smoothed impulse converges below to the specified error boundary ϵl,

∥en(k)∥∞ ≤ ϵl (4.21)

Let En(z) be the FIR filter constructed by en(k),

En(z) =
N−1∑
k=0

en(k)z
−k (4.22)

and ϵl is conservatively bounding ∥En(z)∥∞

∥En(z)∥∞

= ∥[I −G(z)L(z)]nRM(z)∥∞

≤ϵl

(4.23)

Therefore ∥∥M(z)z−d −G(z)F (z)
∥∥
∞

=
∥∥M(z)−G(z)F (z)zd

∥∥
∞

=
∥∥M(z)−G(z)H−1(z)Un(z)z

d
∥∥
∞

= ∥M(z)−M(z) + (I − L(z)G(z))nM(z)∥∞

=
∥∥En(z)H

−1(z)zd
∥∥
∞

≤ϵl
∥∥H−1(z)

∥∥
∞

(4.24)

where Un(z) is the FIR form of the learned input un(k) at the n-th iteration. By applying

Eq. 4.5,

Un(z) = [I − (I − L(z)G(z))n]G−1(z)RM(z) (4.25)

�
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Theorem 4.1 shows that the plant inversion can be constructed within an arbitrary small

error bound ϵl. This method can even handle the system with non-minimum phase zeros as

long as the number of delay steps d is sufficiently large to cover the dynamics of the unstable

zeros. The ILC algorithm autonomously figures out the approximation of the inversion of

non-minimum phase zeros. Last but not least, although ILC is used in Method 4.1 and

4.2, it can be replaced by any type of learning control algorithm such as repetitive control

which has be shown similar to ILC and also offers zero steady-state tracking error. The only

difference is that for ILC, batch process is performed iteratively on the target impulse, while

a long, repeating reference connected by multiple impulses is applied when using repetitive

control to determine the coefficients of the inversion filter.

4.2.2 Extension to MIMO Systems

Similar to system identification of multi-variable systems, the proposed method can also be

applied to a MIMO plant by constructing the inversion filter channel by channel. Assuming

a learning-type control has been implemented on a MIMO system G(z) (of course, this may

not be easy), a multi-variable inversion filter can be constructed by

Method 4.3 (Plant Inversion Construction of MIMO systems). For a v×w MIMO stable

plant G(z), using a learning-type control to track rp(k) ∈ Rv×1, where the p-th channel of

rp(k) is assigned as the impulse response of the SISO reference model RM(z) = H(z)M(z)z−d

and 0 for other channels. For the p-th output channel, let

Fp(z)
∆
= diag(H−1(z))Up(z) ∈ Rw×1 (4.26)

Note that

Up(z) =
N−1∑
k=0

up(k)z
−k (4.27)

and up(k) ∈ Rw×1 is the learned input for generating rp(k) at the outputs. By repeating the

learning process channel by channel (increasing p from 1 to v), the MIMO plant inversion
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filter can be constructed as

F (z) =
[
F1(z) F2(z) · · · Fv(z)

]
(4.28)

�

An example is given as the following. Considering a 2×2 MIMO plantG(z) (v = w = 2), a

reference model RM(z) is selected with a unity frequency weight, i.e., H(z) = 1. The impulse

response of the SISO reference model is represented as rM(k) = m(k−d). For the first output

channel (p = 1), r1(k) is assigned as [rM(k); 0; ]. After the tracking error for r1(k) converges,

the learned input u1(k) is used to construct F1(z) as shown in Eq. 4.26. Repeat the same

process for the second output channel (p = 2) with r2(k) = [0; rM(k); ] and obtain F2(z).

The MIMO plant inversion filter of G(z) is then constructed as F (z) =
[
F1(z) F2(z)

]
.

Theorem 4.2 The feedforward filter F (z) constructed from Method 4.3 inverts the MIMO

controlled plant G(z) over the selected bandwidth specified by M(z), i.e.,

G(z)F (z) → diag(M(z)z−d) (4.29)

Proof 4.2 For the p-th output channel,

G(z)Fp(z)

=G(z)diag(H−1(z))Up(z)

→diag(H−1(z))
N−1∑
k=0

rp(k)z
−k

=

M(z)z−d, pth channel

0, others

(4.30)

because the tracking error for rp(k) converges to zero and

G(z)Up(z) →
N−1∑
k=0

rp(k)z
−k (4.31)
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Therefore,

G(z)F (z) =
[
G(z)F1(z) G(z)F2(z) · · · G(z)Fv(z)

]
→diag(M(z)z−d)

(4.32)

�

Note that it is also possible to assign different bandwidth to each channel. In this case,

the reference model RM(z) is a diagonal v×v MIMO transfer function. The impulse response

of the (p, p) element of RM(z) is then assigned as the target reference rp(k).

4.3 Design Analysis and Simulation Validation

The identification of plant inversion filter can be summarized as follows: (1) decide the

reference model, (2) assign the impulse response of the reference model as the desired tra-

jectory to a learning-type control algorithm, (3) update iteratively the control input until

the tracking error of the impulse converges below the specified error bound, and (4) create

an FIR plant inversion filter using the learned input as the FIR coefficients (with necessary

filtering if a frequency weighting filter is added in the reference model). Couple design fac-

tors have raised, such as the influence of the order of the FIR filter, the determination of

bandwidth, and the selection of frequency weight. These critical design factors are discussed

in the following subsections accompanying with simulation validation on a SISO linear motor

model.

4.3.1 Selection of Bandwidth and Frequency Weights

One of the most important issues in the proposed method is how to decide the reference

model RM(z), namely the bandwidth represented by M(z), the frequency weight H(z), and

the number of delay steps d. For the purpose of selecting a proper reference model, two

things need to be considered. First, the energy of the impulse response should be as large as

possible for a better signal-noise-ratio (SNR), but there is an upper bound for the energy to
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prevent the control inputs from saturation. Second,M(z) that specifies the bandwidth of the

plant inversion filter should provide enough bandwidth for the desired feedforward tracking

performance. Intuitively, higher bandwidth is also more prone to control saturation.

H2 system norm is used to predict the peak value of the input signal and check if the

assigned reference model is acceptable without triggering control saturation. Assuming

the learning-type control monotonically converges to zero steady-state error on the con-

trolled SISO plant G(z), both the peak value of the control input at the first iteration

(u1(k) = L(z)rM(k)) and after converged (G(z)u∞(k) = rM(k)) must be less than the con-

trol saturation limit ū. Specifically, the following inequality must hold:

∥m(k)∥2 6 min(
∥∥H−1(z)G(z)

∥∥
2
,

1

∥H(z)L(z)∥2
) · ū (4.33)

where the H2 system norm for an arbitrary SISO plant model G(z) with its state-space

expression (AG, BG, CG, DG) is defined as

∥G(z)∥2 ≡ sup
u∈L2

{∥y∥∞ | ∥u∥2 6 1}

= CGXC
T
G, AGXA

T
G −X +BGB

T
G = 0

(4.34)

where X is the controllability Gramian.

Aside from control saturation, another factor that affects the selection of the bandwidth

of M(z) is the performance of the learning-type control algorithm. If the updating of the

control law is filtered by a low-pass filter,M(z) should also limit its bandwidth corresponding

to what the embryonic learning-type control can do (or it would learn nothing beyond the

cut-off frequency). Once M(z) is determined after considering control saturation and the

bandwidth of the learning-type control algorithm, the number of delay steps d is decided

to maintain the causality. In the implementation, we select an arbitrary large d such that

the reference model is causal and the dynamic of non-minimum phase zeros can be well-

approximated.

The frequency weight H(z), on the other hand, does not affect the performance if there

is no control saturation. As long as the same number of iterations is applied to learn the
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impulse response of the reference model, with or without H(z) creates an identical filter.

As an optional design factor, H(z) can be added in order to perform more iterations before

the learning-type control algorithm hits the control saturation boundary. This study applies

an integrator (Eq. 4.19) as the frequency weight, but it is not required for every controlled

plant.

4.3.2 Analysis of Truncation Error

The other important design factor is the length N of the target impulse response, or equiv-

alently the order of the constructed FIR plant inversion filter. The proposed method can be

seen as a special case of polynomial basis function approaches [MTB08, WB10, HS01, FLM17]

as we are using a delta/filtered impulse to form the basis functions. However, the perfor-

mance shown in [MTB08, WB10, HS01, FLM17] is limited by the chosen basis functions

where a relatively small N is applied. Ideally, the length of the target impulse response

should be sufficiently large to cover the plant dynamics. With sufficiently large N , the per-

formance of the proposed FIR plant inversion filter is comparable with the rational basis

function approaches where an IIR plant inversion filter is constructed.

A typical way to determine the order N of the FIR inversion filter F (z) is by observing

the impulse response of the controlled plant G(z). In fact, we can also guess the bandwidth

of M(z) based on the experimental impulse response of G(z). If, for example, the impulse

response of G(z) takes 10 ms to settle down, then it is required to select an N larger than

10 ms and design a similar “smoothness” of the impulse response for M(z). When N is

not selected large enough, significant truncation error (when using ILC to learn the target

impulse after zero padding) or time-domain aliasing (when using repetitive control) would

deteriorate the performance of the plant inversion filter.

Theorem 4.3 The error of the truncated FIR plant inversion filter Fc(z) is bounded by the

truncation threshold ϵt times twice of the H∞ gain of the controlled plant, i.e.,

∥∥M(z)z−d −G(z)Fc(z)
∥∥
∞ ≤ 2ϵt ∥G(z)∥∞ (4.35)
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Proof 4.3 With the truncation threshold ϵt, let fc(k) be the truncated impulse response of the

inversion filter. fp(k) and ff (k) are the discarded signals at left and right side, respectively.

fp(k) =

f(k), ∀k < k1, |f(k)| ≤ |f(k1)| ≤ ϵt

0, else
(4.36)

ff (k) =

f(k), ∀k ≥ k2, |f(k)| ≤ |f(k2)| ≤ ϵt

0, else
(4.37)

fc(k) =

f(k), ∀k, k1 ≤ k < k2

0, else
(4.38)

f(k) =fp(k) + fc(k) + ff (k) (4.39)

Therefore, ∥∥M(z)z−d −G(z)Fc(z)
∥∥
∞

=
∥∥M(z)z−d −G(z)[F (z)− Fp(z)− Ff (z)]

∥∥
∞

=
∥∥M(z)−M(z) +G(z)[Fp(z) + Ff (z)]z

d
∥∥
∞

≤2ϵt ∥G(z)∥∞

(4.40)

where F (z) is assumed to yield G(z)F (z) =M(z)z−d. �

4.3.3 Simulation Validation

The proposed method is validated on a SISO closed-loop plant model G(z) of a linear motor

[TT15, CCT17],

G(z) =
−0.02(z − 1.664)(z − 0.648)(z + 0.036)

(z2 − 1.804z + 0.835)(z2 − 1.599z + 0.764)
(4.41)

with sampling rate 10 kHz (sampling period Ts = 0.1 ms). Note that there is an unstable zero

locating at 1.664. This model is only used to emulate the system dynamics in the following

simulations. No plant model is required (although it is optional to apply a model-based ILC

to learn the target impulse) for constructing the plant inversion filter.

The time-reversal based ILC [BO15a] is applied here as the learning-type control algo-

rithm to demonstrate the iterative identification of the plant inversion. By filtering the
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reversed error signal rM(N − k) − y(N − k) using the same controlled plant G(z), the ILC

algorithm can be stabilized by selecting a sufficiently small learning gain, which is set as

0.8 in the following simulations. Subject to the bandwidth of G(z), the learning gain of the

time-reversal ILC at high-frequency regions is almost negligible. Therefore, it takes signif-

icant amount of iterations to learn the high-frequency components of the desired reference

trajectory. Alternatively, applying model-based ILC that uses an approximated inversion as

the learning filter could improve the convergence rate. However, to avoid falling into the

chicken-and-egg situation, the convergence rate is compromised by applying the model-less

time-reversal ILC algorithm.

The simulation result shown in Fig. 4.2 and 4.3 uses the delta impulse as the reference

model, i.e.,M(z) = 1 and thereforem(k) = δ(k) = 1/Ts = 104 (1 mm physical displacement)

when k = 0; m(k) = 0 elsewhere. To account for the dynamic of the non-minimum phase

zero, the number of delay step d is set as 25 ms and the order N of the FIR plant inversion

filter is conservatively selected as 50 ms (500 points under 10 kHz control sampling rate).

The performance with and without adding the frequency weight, here demonstrated by an

integrator as shown in Eq. 4.19, is also compared. For the ideal simulation that does not take

control saturation into account, both cases achieve nearly perfect plant inversion under 1 kHz

after 104 ILC iterations. There is no significant difference between the case with (grey line)

and without (black line) adding the frequency weight. If the ILC iteration continues after

104 iterations, the error of the constructed inversion will be further reduced until it reaches

the level of numerical error (−250 dB). Note that totally 104 ILC iterations is performed

because the time-reversal ILC updates high-frequency components very slowly. Much less

iterations are required for constructing the plant inversion under 500 Hz, where the −3 dB

cut-off frequency of the plant G(z) locates.

The simulation of the ideal cases is not suitable for implementation due to control satura-

tion. The simulation results with the consideration of control command saturation (ū = 105,

i.e. ±10 mm physical traveling range) are shown as dot lines in Fig. 4.2 and 4.3. For the

case without the frequency weight, the ILC convergence saturates after 1500 iterations while
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Figure 4.2: Simulation results of learning the delta impulse (M(z) = 1, d = 0) for the plant

inversion filter – the convergence of the learning error.
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Figure 4.3: Simulation results of learning the delta impulse (M(z) = 1, d = 0) for the plant

inversion filter – the error spectrum of the identified inversion.

2400 iterations for the case using an integrator as the frequency weight. From Fig. 4.3 one

can see the benefit of applying the frequency weight. Since 900 more ILC iterations are

performed before saturated, the constructed plant inversion filter after adding the frequency

weight outperforms the one directly learns the delta impulse.

To avoid control saturation,M(z) is designed to have 300 Hz bandwidth by applying FIR

filter design techniques (see Fig. 4.4 for its bode diagram). The performance of constructing
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Figure 4.4: Simulation results of learning a filtered step function for the plant inversion –

the Bode plot of M(z).
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Figure 4.5: Simulation results of learning a filtered step function for the plant inversion –

the convergence of the learning error.

the plant inversion filter F (z) by learning a 500 Hz bandwidth smoothed step function is

shown in Fig. 4.5. The error upper bounds estimated from Theorem 4.1 are also plotted as

dash lines (Fig. 4.6). Similar to the case learningM(z) = 1, the error of the constructed plant

inversion is reduced and bounded by the learning error as the iteration number increases.

After only 20 iterations of the iterative identification, the plant inversion is identified, with

the error less than −90 dB, up to 400 Hz. Since the plant inversion at high frequency is
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Figure 4.6: Simulation results of learning a filtered step function for the plant inversion: –

the error spectrum of the identified inversion. Dash lines indicate the estimated error bounds

based on the learning error shown in Fig. 4.5.

inheritedly shutdown by the 300 Hz bandwidth M(z), the control input is never saturated

during the learning process.

Last but not least, the effect of truncating the order N of the FIR plant inversion filter is

simulated. The truncated impulse response and the error spectrum of the identified inversion

is shown in Fig. 4.7 and 4.8, where the ILC is performed 20 iterations before constructing

the inversion filter. This simulation result suggests that N should be sufficiently large for a

better performance; it also shows the limitation of the methods proposed in [MTB08, WB10,

HS01, FLM17] where a small N is usually applied. From the error spectrum, one can see

the accuracy of the inversion is significantly deteriorated after truncating N from 50 ms to

4 ms (500 to 40 points). One way to improve the performance is to multiply a windowing

function at the beginning and the end, such that there is no abrupt changes induces by the

rectangle truncation window. This improvement can be observed at the low-frequency bands
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Figure 4.7: Simulation results when the FIR length is not sufficiently large – the impulsed

response of the identified inversion.
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Figure 4.8: Simulation results when the FIR length is not sufficiently large – the error

spectrum of the identified inversion.
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in Fig. 4.8. Of course, whether multiplying a windowing function or not would not affect

the performance when N is sufficiently large.

4.4 Experimental Results

In this section, the proposed method for iterative plant inversion identification and feedfor-

ward filtering was implemented on a SISO linear motor, a MIMO active magnetic bearing

spindle system, and the IRISS robot manipulator (a decoupled MIMO system). Feedforward

tracking was performed to evaluate the performance of the constructed plant inversion filters.

4.4.1 SISO System: Linear Motor

The proposed method was first implemented on the SISO linear motor used in the simulation

(see Chapter 4.3). This linear motor was designed for a fast tool servoing system with

measurement quantization of 0.1 µm, and actuated by a current amplifier. The control

algorithm was implemented on a dual-core Labview real-time target with 10 kHz control

sampling rate. The control diagram for the iterative identification process is illustrated in

Fig. 4.9, where the learning filter L(z) was implemented by the model-based zero-phase-error

tracking controller (ZPETC) [Tom87, TT87, KT14] for increasing the convergence rate. As

rM

L
�

�

�

C �

uj
yj ej uj+1P

G

�

�

F

Figure 4.9: The control diagram of iterative identification of the plant inversion for the linear

motor system.
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for the reference model, a zero-phase low-pass filter with bandwidth around 300 Hz was used,

M(z) = (
z−1 + 2.1 + z

4.1
)q (4.42)

with q was set as 40, d and N was 8 and 50 ms for preserving the causality, respectively;

H(z) was assigned as an integrator as shown in Eq. 4.19 with the step size of 100 µm.

Assigning rM(k), the impulse response of the reference model RM(z) = H(z)M(z)z−d, as

the reference to the ILC algorithm, the plant inversion filter F (z) was constructed after the

ILC converged. The error convergence is shown in Fig. 4.10. The ILC algorithm converged

after 9 iterations with RMS error of 0.41 µm. The converged output and the corresponding

input for tracking rM(k) is shown in Fig. 4.11. After performing normalization and discrete-

time differentiation on the converged control input as shown in Fig. 4.11, the plant inversion

filter was constructed as a FIR filter in length of N = 500, as shown in Fig. 4.12.
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Figure 4.10: Error convergence of iterative learning the target step on the linear motor.
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Figure 4.11: Converged results of tracking the target step (d = 8 ms) on the linear motor.
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Figure 4.12: Impulse response of the identified plant inversion filter for the linear motor.
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Figure 4.13: The control diagram of feedforward tracking on the linear motor system.
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Figure 4.14: Feedforward tracking of a 50 Hz triangular wave on the linear motor using the

identified inversion filter.
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Figure 4.15: Comparison of feedforward tracking of the 50 Hz triangular wave on the linear

motor using different methods. Acronyms are as defined in Chapter 1.2.
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Figure 4.17: Comparison between the proposed approach and the model-based approach

(ZPETC) on tracking the reference trajectory as shown in Fig 4.16.

The constructed plant inversion filter was then used as a feedforward controller to track

a 50 Hz triangular wave with the amplitude of 250 µm. The control diagram for feedforwad

tracking is illustrated in Fig. 4.13. The tracking performance is shown in Figure 4.14, where

the RMS error is 9.33 µm. The identified inversion was very accurate and eliminated the

phase error. The tracking error at DC was almost eliminated. As expected, the inversion

filter was less precise for the high-frequency components due to non-linearity of the system

such as friction force and sensor quantization. The comparison of the tracking error by

using different inversion methods is illustrated in Fig. 4.15. The “best” tracking result

we could obtain by applying the ILC algorithm to track the triangular wave is also shown.

The proposed approach outperformed both model-based and data-based approaches. The

tracking performance done by the identified inversion filter was comparable with the one
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achieved by the ILC, without any training process taken on this specific reference trajectory.

The proposed method could be seen as an alternative approach for the applications where

iterative learning process is not suitable.

In addition to the tracking of a 50 Hz triangular wave, the comparison between the

proposed method and the model-based approach (ZEPTC) is also performed on the linear

motor for the application of engine piston manufacturing. Both dry run and actual cutting

cases are performed with various spindle speeds which determine the fundamental frequency

of the reference trajectory. An example trajectory (R40) sampled at spindle speed of 1500

rpm is illustrated in Fig. 4.16. When the spindle speed increased, the tracking error became

larger because the linear motor must move faster to track higher frequency components.

However, the proposed method still outperformed the model-based approach on both dry

run and actual cutting in all the cases of spindle speed (Fig. 4.17).

4.4.2 Coupled MIMO System: Active Magnetic Bearing System

The proposed method is capable of constructing the plant inversion filter for MIMO systems.

This was demonstrated on a 4× 4 MIMO active magnetic bearing spindle system that was

applied to high speed machining [RCS16], as illustrated in Fig. 4.18. An LQGi controller

C(z) implemented at 10 kHz control smapling was used to stabilize the open-loop plant. In

this experiment, we applied MIMO repetitive control to identify the plant inversion filter.

Because the analog gap sensors of each axes were not co-located with those of the actuators,

the strong off-diagonal coupling appeared and made it difficult to identify and control the

system. The details of modeling and repetitive control design of the magnetic bearing spindle

system can be found in [RCS16].

For the reference model, a zero-phase low-pass filter with bandwidth around 300 Hz was

again used, but the transition band of this M(z) filter was minimized through designing an

80 points equiripple FIR filter. The number of delay steps d and the order N of the FIR

inversion filter (which was also the delayed time period set in the repetitive control) was set
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Figure 4.18: The active magnetic bearing spindle system.

as 4 and 20 ms, respectively; H(z) was assigned as an integrator as shown in Eq. 4.19 with

the step size of 25 µm. The impulse response of the reference model RM(z) = H(z)M(z)z−d

along with the converged learning results are shown in Fig. 4.19. Note that Fig. 4.19 only

shows the result for the first output channel (p = 1). As proposed in Chapter 4.2, the same

process must be repeated for the rest of the output channels. The impulse responses of

the constructed MIMO plant inversion are illustrated in Fig. 4.20. As expected, there are

coupling terms between the first and third channel, and so as the second and forth channel.

57



0 0.01 0.02

0

10

20

30

P
os

iti
on

 [
µ

m
]

Channel 1

0 0.01 0.02
-2

0

2

E
rr

or
 [
µ

m
]

0 0.01 0.02

Time [s]

-100

0

100

Le
ar

ne
d 

in
pu

t [
µ

m
]

0 0.01 0.02

0

10

20

30
Channel 2

0 0.01 0.02
-2

0

2

0 0.01 0.02

Time [s]

-100

0

100

0 0.01 0.02

0

10

20

30
Channel 3

0 0.01 0.02
-2

0

2

0 0.01 0.02

Time [s]

-100

0

100

0 0.01 0.02

0

10

20

30
Channel 4

target step
learned output

0 0.01 0.02
-2

0

2

0 0.01 0.02

Time [s]

-100

0

100

Figure 4.19: Identification of the plant inversion of the MIMO magnetic bearing spindle

system – the repetitive control tracks the target step at channel 1.

-2

0

2

T
o:

 O
ut

(1
)

From: In(1)

-2

0

2

T
o:

 O
ut

(2
)

-5

0

5

T
o:

 O
ut

(3
)

0 0.01 0.02

-2

0

2

T
o:

 O
ut

(4
)

From: In(2)

0 0.01 0.02

From: In(3)

0 0.01 0.02

From: In(4)

0 0.01 0.02

Impulse Response

Time (seconds)

A
m

pl
itu

de

Figure 4.20: Impulse responses of the identified plant inversion filter for the magnetic bearing

spindle system.
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Similar to the SISO linear motor experiment, the constructed plant inversion filter was

evaluated by feedforward tracking. The purpose of identifying the plant inversion of the

magnetic bearing spindle system was using feedforwad action to account for non-periodic

references, which were demonstrated here by tracking a combination of sinusoidal signals:

rc(t) =
3∑

i=1

[1− 0.1(c− 1)]Aisin(2πfit) (4.43)

where c represents c-th channel, 1 ≤ c ≤ 4, f1 was chosen as 40 Hz; f2 and f3 was set as

70 and 170 Hz, respectively. The amplitude Ai was selected as 12, 8, and 4 µm for each

frequency, respectively.

The feedforward tracking result is shown in Fig. 4.21, where the references were filtered

by the constructed inversion filter starting from the first second of tracking. Once the

feedforward filtering was turned on, the phase error caused by the LQGi controller was

compensated for, and therefore, the tracking error was significantly reduced. As shown in

the zoomed-in portion of channel 3 (Fig. 4.22) and the error spectrum (Fig. 4.23), the

references were non-periodic because their frequency components were not integral times

to each other. Traditional feedback controllers such as repetitive controllers are not able

to handle this kind of reference, therefore a feedforward controller is required to improve

the tracking performance by eliminating phase error and increasing the tracking bandwidth.

The RMS error before and after applying the identified inversion filter is listed in Table 4.1,

where the performance was improved by at least 77.4% after feedforward filtering.

Table 4.1: The RMS tracking error on the magnetic bearing spindle system before and after

feedforward filtering. Unit in µm.

Channel 1 2 3 4

without feedforward 8.62 7.66 9.38 5.82

with feedforward 1.95 1.71 1.27 0.72
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Figure 4.21: Feedforward filtering by using the identified plant inversion. The feedforward

action was activated after the first second. See Fig. 4.22 for the zoomed-in portion at the

third channel.
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Figure 4.23: Error spectrum of the feedforward tracking on the magnetic bearing spindle

system.
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4.4.3 Decoupled MIMO System: IRISS

Lastly, the proposed method was implemented on the IRISS robot manipulator. Three

joints, namely θ1, θ2, and θ3 as defined in Fig. 2.2, were controlled for tracking the predefined

cataract-extraction trajectory as generated in Chapter 3.3. Although the IRISS manipulator

is inheritedly an MIMO plant, each of its joints is an independent controlled plant as it is not

significantly affected by the motion of other joints. In other words, the IRISS is a decoupled

MIMO system. A typical PID control scheme was implemented for tracking the desired

reference trajectory. Although the overall performance was acceptable, feedback control

created overshoots at the peaks of the trajectory (see Fig. 4.28). The overshoots may cause

inadvertent collision between the instrument and the tissues during intraocular surgery,

hence, feedforward compensation is required. On the other hand, ILC is not applicable in

this application since the predefined trajectory is not the repeatable as the target eye changes.

To remove those overshoots without iterative learning process, feedforward filtering is the

best option to be implemented for the IRISS manipulator control.

Since the IRISS is a decoupled MIMO system, the identification of the plant inversion

and high-precision feedforward control can be achieved by applying Method 4.2 on every

each of the three joints. Similar to the experiments on the linear motor and the active

magnetic bearing spindle, a zero-phase low-pass filter with bandwidth around 14 Hz was

assigned as the reference model M(z) that represents the desired bandwidth of inversion for

each joint. The number of delay steps d and the order N of the constructed FIR inversion

filters were set as 0.2 and 2 s under 1 kHz sampling rate, respectively. H(z) was assigned as

an integrator with proper step size (e.g. 0.9 deg for θ1) to avoid current command saturation.

Three PD-type ILC algorithms were implemented for three individual joints to facilitate the

proposed method.

Among the three controlled axes, θ1 is the most critical joint since it rotates the arc

which carries the instrument holder. If θ1 rotates too aggressively, the inertia created by the

mass of the arc and instrument holder will cause significant oscillation. Applying Method
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4.2, the output of θ1 joint took 20 iterations (see Fig. 4.24) to converge to the target step

function (Fig. 4.25). It is obvious that the learned inversion filter, as shown in Fig. 4.26,

was canceling the oscillation mode of the controlled plant.

The identified inversion filters of each joint were then applied to feedforward filtering of

a cataract-extraction trajectory. Note that to demonstrate the capability for high-precise

tracking, the IRISS was commanded to move through the predefined trajectory around 5

times than its regular speed. The tracking result on θ1, comparing to the ones achieved by

applying only PID servo control and ILC, is shown in Fig. 4.27. The tracking performance

was improved by 40% compared to using only the PID control. The overshoots created

by the PID controller were removed after applying the proposed feedforward filtering. As

expected, the performance of the proposed method was in the middle between conventional

PID servo loop and ILC. The comparison of tool-tip positioning error using the PID control

and the proposed feedforward tracking is as listed in Table 4.2.

Table 4.2: The RMS tracking error on the IRISS before and after feedforward filtering. Unit

in mm.

Control method Max error RMS error

PID 0.519 0.129

with feedforward 0.314 0.078
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Figure 4.27: Comparison between PID control, ILC, and the proposed feedforward filtering

on the tracking of the predefined cataract-extraction trajectory.
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CHAPTER 5

Iterative Learning Control with Progressive Updates

A novel method which utilizes learning-type control algorithms to identify the plant inversion

is proposed and applied to high-precise feedforward tracking control in Chapter 4. This

method does not require the model of plant dynamics, however, a pre-stabilized learning-

type control algorithm is a prerequisite. Although data-based ILC exists, such learning-

type control algorithms usually require the knowledge of plant dynamics for a faster error

convergence. To address this problem, this Chapter proposes a novel way to improve the

error convergence rate of data-driven ILC. A data-based ILC, here demonstrated by a PD-

type ILC or a time-reversal filtering ILC, is first applied to Method 4.2 which is devoted to

identifying the plant inversion. After tracking of the target impulse function slowly converges,

the learned control input which is formerly used for feedforward tracking is now serving as

the learning filter of the ILC. It is also shown that this upgrade of the learning filter can be

done “progressively” – meaning it is not necessary to wait until it converges before the next

upgrade. The progression of the ILC learning filter brings an additional degree of freedom

for the learning filter design with proven stability and convergence properties. Simulation

and experimental results on the linear motor positioning system have demonstrated the

effectiveness and performance of the approach.

5.1 Data-Based Iterative Learning Control

In the ILC algorithm, the key to success is properly choosing the update law for control

input. More specifically, the learning filter of the ILC algorithm determines its performance
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in terms of stability, error convergence rate, and converged error. Without the knowledge of

plant dynamics, there are several data-based approaches to stabilize the ILC algorithm.

5.1.1 P-Type and PD-Type ILC

P-Type and PD-Type ILC are very popular in the literature since ILC was first proposed

in 1970’s [CM02]. Without using the knowledge of system dynamics, the learning filter is

determined by the proportional and derivative gains, Kp an Kd, on top of the tracking error:

uj(k) = uj−1(k) +Kpej−i(k) +Kdėj−i(k) (5.1)

As long as the stability criteria Eq. 4.7 is met, the tracking error to the desired reference

will gradually converge.

The performance (in terms of convergence rate and converged error) of P-Type and PD-

Type ILC, however, relies on how the gains are tuned. As discussed in the literature, it

depends on how well the learning filter approximates the plant inversion [BTA06, NG02,

TT15]. Although P-type and PD-type ILC are intuitive to implement, it is not possible

to accurately approximate the plant inversion by a constant gain or a first order filter. To

ensure the performance of ILC, applying a high order learning filter is essential.

5.1.2 Reverse Time Filtering Based ILC

To enable the construction of inverse filter and to use it as the learning filter for improving

the performance of ILC, [CT16] used the model-based ZPETC [Tom87] as the learning filter

in the generic ILC. Applying the adjoint system, ZPETC was used to stabilize repetitive

controller [TTC89] and was shown could be used as the learning filter for ILC algorithm

[Lon00]. The convergence and robustness properties of adjoint operator were studied in the

norm optimal ILC [KSA02, RHL08, OHD09], where a precise plant model is applied.

For model-free ILC design, time-reversal technique was proposed to realize the adjoint

operator [WYZ14, Gus96, YW05]. This approach was later extended to handle point-to-point
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tracking [PW04], non-minimum phase plants [FLR07], stochastic disturbance [BKL08], and

multivariable systems [BO15a].

Definition 5.1 (Time-reversal operator) A time reversal operator R which flips a se-

quence of signal is defined as an N-by-N involutory permutation matrix such that

y∗(k) = y(N − k) = Ry(k) (5.2)

Definition 5.2 (Adjoint system) G∗, with an input y and an output w, is the adjoint

system of the SISO plant G where

w(k) = G∗(z)y(k) = RG(z)Ry(k) (5.3)

Because G∗G forms a system with positive magnitudes and zero phase angles, G∗ can

serve as the learning filter and stabilize the model-free iterative process after scaled by a

sufficiently small constant learning gain α:

L(z) = αG∗(z) (5.4)

When α is sufficiently small, the stability criteria of Eq. 4.7 is met and therefore the stability

of the reverse time filtering based ILC is guaranteed. However, small α results in conservative

updating and thus slows down the error convergence rate.

5.2 Progression of ILC

To improve the performance of ILC without tedious modeling or tuning process, an algorithm

that updates the learning filter progressively is proposed in this study. The main idea is to

use a non-optimized data-based ILC to identify the plant inversion (Method 4.2), and then

plug the approximated inversion back as the learning filter to track other desired reference

trajectories. This updating method is very similar to the approach proposed in [SFT09]

where the inversion filter is obtained by solving a least-square optimization and is used to

calculate the feedforward input in the next ILC iteration. With the quality of identified
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inversion filter as demonstrated in Chapter 4, the performance of ILC after evolution will

undoubtedly be improved. The only problem of this method is that, it will require significant

amount of iterations for the embryonic data-based ILC to identify the plant inversion. This

is once again a chicken-and-egg problem: a well-approximate inversion improves the learning-

type control in terms of error convergence rate, while a fast-converging learning-type control

is somehow required for identifying the plant inversion. In this section, progressive update

of the learning filter is proposed to resolve this problem, even when the embryonic ILC is

conservative and slow.

5.2.1 Evolution of Learning Filter

With any non-optimized (in terms of error convergence rate) data-based ILC, Method 4.2

is first applied to identify the plant inversion. Once the tracking of target impulse/step

function converges, the dynamic inversion is identified and the learned input is used to

construct an FIR inversion filter. The embryonic data-based learning filter is then replaced

by the identified plant inversion filter. This process is called evolution of learning filter:

Method 5.1 (Data-Based Evolution of ILC). For a SISO controlled plant G(z) with an

arbitrary stable ILC learning filter L(z) that satisfies Eq. 4.7, the plant inversion F (z) is

approximated by the converged input to track a smoothed delta impulse m(k − d):

f(k) = lim
jevol→∞

ujevol(k)

= lim
jevol→∞

[1− (1− L(z)G(z))jevol ]G−1(z)m(k − d)
(5.5)

where jevol is the iteration index in the identification stage, f(k) is the impulse response of

F (z), and L(z) is the learning filter of the non-optimized ILC.

After obtaining the approximated plant inversion F (z), a d-step non-causal preview zd

along with the inversion, i.e. F (z)zd, will replace L(z) and will be used as the learning filter

of ILC to track the pre-defined references. �

Remark 5.1 (Bandwidth of the inversion) The bandwidth of the approximation of in-
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version is determined by the target impulse m(k), which is the impulse response of a zero-

phase low pass filterM(z). The inversion filter F (z) approximates G(z)F (z) toM(z). In the

other words, the inversion at the stop-band of M(z) converges to zero. This can protect the

controlled plant from control saturation, which may cause instability onto ILC convergence.

As stated before, the performance of ILC in terms of stability and error convergence rate

is the main concern when designing the learning filter. It can be shown that the evolved

learning filter F (z)zd can stabilize the ILC algorithm if the embryonic learning filter L(z)

satisfies the ILC stability criteria Eq. 4.7:

Theorem 5.1 (Stability of the evolved learning filter). The evolved learning filter F (z)zd

stabilizes the ILC algorithm on the plant G(z), i.e.,

∥1− F (z)zdG(z)∥∞ < 1 if ∥1− L(z)G(z)∥∞ < 1 (5.6)

Proof 5.1

∥1− F (z)M−1(z)zdG(z)∥∞

=∥1− lim
jevol→∞

[1− (1− L(z)G(z))jevol ]G−1(z)z−dM(z)M−1(z)zdG(z)∥∞

=∥ lim
jevol→∞

(1− L(z)G(z))jevol∥∞

= lim
jevol→∞

(∥1− L(z)G(z)∥∞)jevol

<∥1− L(z)G(z)∥∞ < 1

(5.7)

This implies that in the polar coordinate F (z)M−1(z)zdG(z) is inside the unity circle around

1. Therefore,

∥1− F (z)zdG(z)∥∞ = ∥1−M(z)(F (z)M−1(z)zdG(z))∥∞

< 1
(5.8)

because M(z) is zero phase and

∥M(z)∥∞ ≤ 1 (5.9)

�
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It has also been shown that the evolved learning filter by applying Method 5.1 not only

stabilizes the ILC algorithm, but also exponentially improves the error convergence rate:

Theorem 5.2 (Error convergence rate of the evolved learning filter). Assume the bandwidth

of the reference trajectory r(k) is limited by the low-pass filter M(z), i.e., (1−M(z))r = 0,

the evolved learning filter F (z)zd exponentially improves the error convergence rate.

Proof 5.2

∥e<F>
j (k)∥∞ = ∥(1−G(z)F (z)zd)jr(k)∥∞

= ∥[(1−M(z)) +M(z)(1− F (z)M−1(z)zdG(z))j]r(k)∥∞

= ∥(1−M(z))r(k) +M(z) lim
jevol→∞

(1− L(z)G(z))jevoljr(k)∥∞

= ∥ lim
jevol→∞

(1− L(z)G(z))jevoljr(k)∥∞

< ∥(1−G(z)L(z))jr(k)∥∞ = ∥e<L>
j (k)∥∞

(5.10)

where e<L>
j (k) and e<F>

j (k) denote the tracking error at j-th iteration when using L(z) and

F (z)zd as the learning filter, respectively. �

Although the stability and better error convergence rate of the evolved learning filter is

proven, Method 5.1 faces a major problem when using the non-optimized data-based ILC to

identify the plant inversion. If the upper bound of ∥1−L(z)G(z)∥∞ is too close to 1, meaning

the embryonic learning filter is very conservative and therefore slows down the convergence

rate, it will take thousands of iteration before the tracking of the target impulse/step function

converges. This issue makes Method 5.1 hard to be implemented.

5.2.2 Progressive Update of Learning Filter

To further reduce the number of iteration required for plant inversion identification and

learning filter evolution, a method that progressively updates the learning filter during the

identification stage is proposed. As the block diagram shown in Fig. 5.1, the update of the

learning filter is taken place every n iterations:
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Figure 5.1: The control diagram of progressive ILC; i is the index of ILC progression and j

is the index of ILC iteration.

Method 5.2 (Data-Based Progression of ILC). For a SISO controlled plant G(z) with

an arbitrary stable ILC learning filter F<i>(z) that satisfies Eq. 4.7, the learned input un(k)

(for tracking a smoothed delta impulse m(k − d) after n iterations) is used to upgrade the

learning filter as F<i+1>(z):

f<i+1>(k) = un(k + d)

= [1− (1− F<i>(z)G(z))n]G−1(z)m(k)
(5.11)

where f<i+1>(k) is the impulse response of F<i+1>(z). For the initial condition i = 0,

the embryonic learning filter F<0>(z) could be any non-optimized data-based ILC such as

P-type, PD-type, or reverse time based filtering.

By progressively updating the learning filter, the required number of iteration for iden-

tifying the plant inversion is significantly reduced. Once the plant inversion is identified

(i.e. the tracking error of the target impulse/step function is below to the error threshold

as stated in Method 4.2), the latest upgraded learning filter F<i>(z) will be used as the

learning filter of ILC to track any pre-defined reference. �

Method 5.2 illustrates the ILC progression for the dynamic inversion and learning filter

F<i+1>(z). At the initial progression, i.e. i=0 (denoted as Prog. 0), the embryonic learning

filter of the ILC is conservatively selected to meet the stability criteria Eq. 4.7. After tracking

the target smoothed impulse/step function for n iterations, the error slightly decreased

(contributed by the conservative learning filter F<0>(z)). Then, the learned input u(k)

at the n-th iteration are used to construct the FIR learning filter F<1>(z) by applying Eq.
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5.11 in Method 5.2. The same process is repeated until y(k) converges to m(k− d). Similar

to Method 5.1, the stability and error convergence rate of the progressively updated learning

filters can be proven:

Theorem 5.3 (Stability of the progressively updated learning filter). The progressively up-

dated learning filter F<i+1>(z) stabilizes the ILC algorithm on the plant G(z), i.e.,

∥1− F<i+1>(z)G(z)∥∞ < 1 if ∥1− F<i>(z)G(z)∥∞ < 1 (5.12)

Proof 5.3

∥1− F<i+1>(z)M−1(z)G(z)∥∞

=∥1− [1− (1− F<i>(z)G(z))n]G−1(z)M(z)M−1(z)G(z)∥∞

=∥(1− F<i>(z)G(z))n∥∞

=(∥1− F<i>(z)G(z)∥∞)n

<∥1− F<i>(z)G(z)∥∞ < 1

(5.13)

This implies that in the polar coordinate F<i+1>(z)M−1(z)G(z) is inside the unity circle

around 1. Therefore,

∥1− F<i+1>(z)G(z)∥∞ = ∥1−M(z)(F<i+1>(z)M−1(z)G(z))∥∞

< 1
(5.14)

because M(z) is zero phase and

∥M(z)∥∞ ≤ 1 (5.15)

�

The error convergence rate is also improved exponentially after every each progression:

Theorem 5.4 (Error convergence rate of the progressively updated learning filter). Assume

the bandwidth of the reference trajectory r(k) is limited by the low-pass filter M(z), i.e.,

(1−M(z))r(k) = 0, the progressively updated learning filter F<i+1>(z) exponentially improves

the error convergence rate over F<i>(z).
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Proof 5.4 According to Eq. 4.6, the error convergence rates when using F<i+1>(z) and

F<i>(z) as the learning filter are (1−G(z)F<i+1>(z)) and (1−G(z)F<i>(z)), respectively.

1−G(z)F<i+1>(z) = 1−M(z) +M(z)[1− F<i+1>(z)M−1(z)G(z)]

= 1−M(z) +M(z)[(1− F<i>(z)G(z))n]
(5.16)

For the desired pre-defined trajectory r(k), (1 − M(z))r(k) = 0 and M(z)r(k) = r(k).

Therefore, the error convergence rate can be further reduced to (1−F<i>(z)G(z))n, which is

the error convergence rate when using F<i>(z) as the learning filter to the n-th. �

The proposed progressive and iterative learning control reveals an additional degree of

freedom for designing ILC algorithm. While iterative process decreases tracking error, pro-

gression of ILC exponentially accelerates error convergence. Therefore, the slow convergence

of the non-optimized data-based ILC, due to conservative learning gain assignment, can

be significantly improved. This approach solves the chick-and-egg problem. Starting with

a conservative learning filter, the plant inversion can be quickly identified. The identified

inversion filter is beneficial to either data-based feedforward filtering or ILC.

5.3 Simulation Results

The proposed progressive ILC was simulated on a SISO model of the single axis linear motor

positioning system. A PD-controller was first used to stabilize the motor because the system

is open-loop unstable. A 2000 points FIR model for the following simulation was obtained

from experimental step response data of the closed-loop system, with sampling rate of 10

kHz. As the impulse response shown in Fig. 5.2, the main dynamics occur at first 5 ms,

while oscillation lasts for 30 ms. To validate the proposed data-driven method, this plant

model was only used for emulating the motor dynamics, but not for designing any filter or

controller.

The embryonic learning filter for ILC progression (Prog. 0) was implemented by reverse

time based filtering as stated in Chapter 5.1.2. A small gain α was set as 0.01 to ensure the
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Figure 5.2: Impulse response of the FIR linear motor model G(z).

stability criteria Eq. 4.7 was met. The reference model M(z) was assigned as a zero-phase

low pass filter,

M(z) = (
z−1 + 2.1 + z

4.1
)r (5.17)

where r equals 40 for 300 Hz bandwidth. The impulse response of M(z), also denoted as

the target filtered delta function m(k), can be found in Fig. 5.5.

In the simulation of ILC progression (Method 5.2), 9 progressions were performed, and

10 iterations of error updating were run in each progression (n=10 and max(i)=9). In order

to demonstrate the difference of the error convergence rate of each progression, the control

input u(k), which was trained to track the targeted impulse m(k), was reset whenever new

progression was generated. The results of ILC progression is shown in Fig. 5.3.

In Fig. 5.3, Prog. 0 converged extremely slow because the learning gain α was set to be

0.01 such that the model-free iterative process was stable and converging. As the progression

number i increased, the error convergence rate was accelerated. At the 9th progression, the
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Figure 5.3: Progression of ILC with input reset in the simulation.
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Figure 5.4: Progression of ILC without input reset in the simulation.

tracking error of the target impulse m(k) converged to 0.45 µm, meaning that the dynamic

inversion has been successfully approximated. If there was no progressive algorithm to update

the learning filter F<0>(z), Prog. 0 might take hundreds or even thousands of trials to reach

the same level of error amount as in Prog. 9.

In actual applications, there is no need to reset the control input, therefore much less
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iteration and progression are required for identifying the plant inversion. For the case without

resetting after each progression, the converged error to track the filtered impulse m(k) (see

Fig. 5.4) is smaller compared to the one with resetting initial input (Fig. 5.3).

The learned output y(k) and the corresponding impulse response of the identified dynamic

inversion F<i>(z) at Prog. 0, 1, 2, and 9 are shown in Fig. 5.5 and Fig. 5.6, respectively. At

the 9th progression, the learned output y(k) had the smallest error to the desired filtered delta

function m(k) (bottom right of Fig. 5.6) than the others, meaning that the corresponding

dynamic inversion F<9>(z) more precisely approximates the plant inversion than F<0>(z),

F<1>(z), and F<2>(z). Similarly, F<2>(z) is better than F<0>(z) and F<1>(z) because it

has smaller amount of error, m(k)− y(k), as shown in Fig. 5.5.

-6 -3 0 3 6

0

0.05

0.1

P
os

iti
on

 [m
m

]

Prog. 0

-6 -3 0 3 6

0

0.05

0.1

Prog. 1

targeted impulse
learned output

-6 -3 0 3 6

Time [ms]

0

0.05

0.1

P
os

iti
on

 [m
m

]

Prog. 2

-6 -3 0 3 6

Time [ms]

0

0.05

0.1

Prog. 9

Figure 5.5: Progressively learned filtered impulse in the simulation.

After the ILC progression was performed, the progressively identified dynamic inversions

F<1>(z), F<2>(z), and F<9>(z) were then applied as the learning filter of ILC for reference

tracking. Though the progressive ILC can be applied to track any arbitrary trajectory, a 2

s chirp signal with the maximal frequency of 100 Hz was assigned as the tracking reference
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Figure 5.6: Impulse responses of progressively learned dynamic inversion F<i>(z) in the

simulation.

to verify the performance of the learning filters over broadband.

The comparison of the error convergence rate by using different progressively identified

dynamic inversions F<i>(z) as the learning filter is shown in Fig. 5.7. As discussed in

Chapter 5.2, the convergence rate was accelerated as the progression number i increased. At

the 2nd iteration, for example, Prog. 0 decreased the error to 19.96 dB while 3.64 dB by

Prog. 1 and -37.31 dB by Prog. 9. After Prog. 2, the error converged below -30dB (31.6

µm) within only 3 iterations, compared to 67 iterations took by Prog. 0. Clearly, the later

progressed ILC generated less tracking error at every iteration. The benefits of using the

proposed progressive ILC in terms of error convergence rate and converged error are both

demonstrated by this simulation.

The tracking performance of the identified dynamic inversion F<i>(z) as a feedforward

controller was also examined at the first iteration (Fig. 5.8). There was a large amount of

error on magnitude when using F<0>(z). This suggests time-reversal approaches could only
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Figure 5.7: Simulated comparison of the ILC error convergence rate by applying different

progressively identified inversion F<i>(z) as the learning filter for tracking a chirp reference.

ensure zero phase cancellation and take a long time to learn the desired magnitude. On the

other hand, F<9>(z) derived after 9 progressions was able to track the chirp signal with the

RMS error of 0.14 mm.

At the 10-th iteration, the performance of progressive ILC tracking is illustrated in

Fig. 5.9. Clearly, F<9>(z) achieved the minimum tracking error at the 10th iteration. Please

be noted that Prog. 2 and 9 are mostly overlapped in Fig. 5.9, except the transient from 0

to 0.1 s where the 9th Progression converged faster than the 2nd. This also indicates that

Prog. 9 provides a better learning filter than the previous progressions.
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Figure 5.8: Simulated comparison of the feedforward tracking performance (the first itera-

tion).

Figure 5.9: Simulated comparison of the tracking performance at the 10th iteration.
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5.4 Experimental Results

The proposed progressive ILC was implemented on the actual linear motor. Similar to the

simulation, the embryonic learning filter for ILC progrssion (Prog. 0) was implemented by

reverse time based filtering with a small gain α = 0.005 to ensure the stability. A zero-phase

low-pass filter with bandwidth of 500 Hz was designed and assigned as the target reference

model M(z). The bode diagram of M(z) is illustrated in Fig. 5.11.

In the experiment, 9 progressions were performed without resetting the input, and 10

iterations of error updating were run in each progression (n=10 and max(i)=9). The exper-

imental result is shown in Fig. 5.10. Similar to the simulation result, Prog. 2 converged and

identified the plant inversion within 30 iterations, while Prog. 0 had to take more than 100

iterations to do so. Actually, the converged error at the 100th iteration by using reverse time

based filtering F<0>(z) is even larger than the 20th iteration done by the first progression

F<1>(z). This experimental result also validates Theorem 5.4 that the error convergence
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Figure 5.10: Progression of ILC without input reset in the experimental result.
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Figure 5.11: Spectrum of progressively learned dynamic inversion in the experimental result.

rate accelerates exponentially after each progression.

The spectra of progressively learned inversion filters are shown in Fig. 5.11. After

Prog. 2, the spectra under 500 Hz converged, meaning the dynamic inversion was well-

approximated. Since the bandwidth of reference modelM(z) was selected as 500 Hz, the cut-

off frequencies of the identified inversion filters F<i>(z) are also around 500 Hz. This prevents

the feedforward input from being saturated, and therefore deteriorating the performance of

ILC.

Similar to the simulation, the progressively identified dynamic inversions F<1>(z), F<2>(z),

and F<9>(z) were then applied as the learning filter of ILC for reference tracking after the

ILC progression was performed (Fig. 5.12). The performance of feedforward control and

ILC are illustrated in Fig. 5.13 and Fig. 5.14, respectively. It is obvious that with ILC pro-

gression, the tracking error could be minimized with much less iterations spending during

identification stage.
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Figure 5.12: Experimental comparison of the ILC convergence rate by applying different

progressively reconstructed inversion F<i> as the learning filter for tracking a chirp reference.
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Figure 5.13: Experimental comparison of feedforward tracking performance (the first itera-

tion).
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Figure 5.14: Experimental comparison of tracking performance at the 10th iteration.
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CHAPTER 6

Evaluations on an Animal Model

The integrated system was tested in a clinical environment (Fig. 6.1). An animal model

evaluation was done by performing automated lens removal on post-mortem pig eyes.

Figure 6.1: Shown is the experimental setup for performing the animal model evaluation of

the system on post-mortem pig eyes. (1) User interface, (2) the IRISS, (3) OCT probe with

integrated camera, (4) pig eye in fixture, (5) I/A tool in holder, and (6) the ACCURUS®

system.

6.1 Experimental Setup and Evaluation Metrics

The evaluation of the integrated system was performed on post-mortem pig eyes pinned in

a Styrofoam holder. The main objective was to autonomously remove the entire lens with-

out rupturing the posterior capsule. Because femtosecond laser equipment was unavailable
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for the experiments, manual preparation of each eye was performed by a human surgeon

under a surgical microscope. The surgeon created a uniplanar corneal incision with a 2.8

mm keratome knife, performed circular and continuous capsulorhexis of 5 mm diameter,

and performed hydrodissection and hydrodelamination of the lens with balanced salt solu-

tion. Because the automated alignment, tool insertion, volume scanning, and anatomical

model generation required approximately ten minutes following eye preparation, as a final

preparation step, the anterior chamber was filled with viscoelastic liquid to prevent cornea

collapse.

The I/A hand-piece tool (92-IA21 Handle, Millennium Surgical) was mounted on the

IRISS and fitted with a straight tip with side aspiration port (92-IA225). The tubing of

the I/A tool was connected to the ACCURUS® to provide irrigation and aspiration, the

magnitude of which was controlled by the IRISS.

The automated OCT-guided lens extraction was performed and tested on n = 30 post-

mortem pig eyes. For every eye, preoperative, intraoperative, and postoperative OCT volume

scans were acquired for analysis. Microscope-based examination was performed by a trained

surgeon to assess the integrity of the tissues and to determined if lens material remained.

The evaluation metrics were:

1. Completeness of lens removal (Y/N)

2. Posterior capsule rupture (Y/N)

3. Iris damage (damage score 0–3)

4. Cornea damage (damage score 0–3)

5. Incision stress (stress score 0–3)

6. Completion time (in s)

where the scores are qualitatively defined in Table 6.1.
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Table 6.1: Description of Post-surgical Evaluation Scores

Score Cornea Damage Iris Damage Incision Stress

0

No evidence of

endothelial or

stromal defect

No iris touch Preserved incision

1

Mild descemet

folds, no

stromal defect

Iris touch

without damage

Mild opening

of the incision,

does not

compromise sealing

2

Descemet fold

and mild

corneal edema

Iris touch and

damage in one site

Opening of

the incision,

compromised sealing

3 Opaque cornea

Iris touch and

damage in

multiple sites

Opening and widening

of the incision with

compromised sealing

6.2 Bubble Removal by Intraoperative Intervention

To validate the ability of real-time intraoperative targeted intervention, the I/A tool was

commanded to remove an artificially injected air bubble from the anterior chamber (Fig.

6.2). Removing a bubble is technically more challenging than removing a piece of lens

material because the bubble has lower visual contrast in OCT images and is smaller than

a piece of lens material. Despite these challenges, the depth information provided by the

real-time OCT images enabled the system to target the bubble and successfully aspirate it.
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(a) Here, the tool tip follows the predefined cataract-extraction trajectory.

(b) At this point, the bubble is assigned as a target by clicking the camera and OCT image.

(c) The tool tip moves towards the bubble.

(d) The tool has reached the bubble and has successfully aspirated it.

(e) Next, the tool resumes tracking the cataract-extraction trajectory.

Figure 6.2: Shown are snapshots of a real-time intraoperative intervention with accompa-

nying OCT B-scans. The surgical instrument is commanded to remove a bubble near the

upper-right (x = −2, y = 9) of the pupil.
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6.3 Semi-Automated Cataract Removal on an Animal Model

OCT volume scan focusing at the lens bag is a deterministic evidence of the surgical progress

and the integrity of posterior capsule. As shown in Fig. 6.3, when the lens materials are

completely removed from the lens bag without rupturing the posterior capsule, the OCT

volume scan is clear and the image of the posterior capsule presents a convex shape in the

volume scan and circular shape in its xy-slice. Otherwise, the OCT image of posterior capsule

appears an irregular shape since the pressure of anterior segment cannot be regulated once

the posterior capsule is broken. By examining the OCT volume scan intraoperatively and

postoperatively, the surgical progress can be monitored and analyzed.

The surgical progress of an example surgery (Eye #1) is shown in Fig. 6.4. After two

minutes of tracking, a majority of lens remains in the anterior segment (Fig. 6.4a). The

OCT volume scan indicates a second, deeper extraction cycle is required. After four minutes

of tracking (Fig. 6.4b), most of the lens material has been removed and only a small piece of

lens material remains attached to the posterior capsule. At this state, a third cycle would be

less efficient than directly targeting the piece; therefore, the I/A tool is commanded to this

position and to aspirate the remaining material. A postoperative OCT volume scan (Fig.

6.4c) reveals that no lens material remains in the anterior segment. Based on the convex

shape of the posterior capsule, it is clear that the capsule remains intact.

More experimental OCT data is given from Fig. 6.5 to Fig. 6.9. Similar to the progress

observed in Fig. 6.4, the postoperative volume scan of every each eye shows a convex shape

for the posterior capsule since it remained intact through the entire operation. Since the

surgical duration varies, some of eye was completed within two minutes and therefore only

one volume scan is available (Eye #3 and #4). Note that although there is no lens material

appears in the postoperative OCT scan of Eye #4 , this case was recognized as incomplete

since a small piece of lens material was found behind the iris after the histologic examination.

The statistical data of the evaluated metrics is presented in Fig. 6.10. The histogram of

completion time is demonstrated in Fig. 6.10. Among the 30 eyes, iris was touched during
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Figure 6.3: Two examples of OCT volume scans focusing at the lens bag and posterior

capsule. (a) The lens materials were completely removed from the lens bag and the posterior

capsule (the convex shape at the bottom of the image) was intact. (b) The xy-slice of (a)

at z = 0.55 mm. (c) The xy-slice of (a) at z = 0.65 mm. The circular shape in (b) and (c)

confirms the integrity of the capsule. (d) The lens materials were completely removed but

the posterior capsule (the irregular shape at the bottom of the image) was ruptured. (e) The

xy-slice of (d) at z = 0.92 mm. (f) The xy-slice of (d) at z = 1.32 mm. Since the capsule

was ruptured and folded, there is no longer a circular pattern as shown in (b) and (c).
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(a) After two minutes of operation, an intermittent volume

scan reveals an intact posterior capsule and a majority of

lens material remaining.

(b) After four minutes of operation, only a small piece of

lens material remains.
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(c) This postoperatively volume scan shows an intact pos-

terior capsule and complete removal of lens removal.

Figure 6.4: Shown are three examples of OCT volume scans for used for intraoperative and

postoperative evaulation – Eye #1 .

Figure 6.5: Intraoperative and postoperative OCT volume scans – Eye #2 . Left: the

intraoperative scan after two minutes. Massive amount of lens material still remained in the

lens bag. Right: the postoperative scan. The lens was completely removed and the posterior

capsule was intact.

94



Figure 6.6: Intraoperative and postoperative OCT volume scans – Eye #3 . The lens removal

was finished within two minutes without posterior capsule rupture.

Figure 6.7: Intraoperative and postoperative OCT volume scans – Eye #4 . Note that a

small piece of lens material was found behind the iris after the histologic examination.

Figure 6.8: Intraoperative and postoperative OCT volume scans – Eye #5 . The surgical

progress was similar to Eye #2 .
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Figure 6.9: Intraoperative and postoperative OCT volume scans – Eye #6 . The surgical

progress was similar to Eye #1 .

tracking the cataract-extraction trajectory in 9 cases. This is because the eye was slightly

moving when the surgical instrument was operating. This complication could be mitigated

by implementing eye tracking or deploying a larger safety gap to the iris. The damage to the

cornea was expected due to dehydration and a degradation in freshness in the pig eyes which

were shipped overnight from the slaughterhouse. The cornea damage was proportional to

the surgical duration (the averaged surgical duration of the eyes with cornea damage score

of 1 is 220.6 s; 333.5 s for the eyes with cornea damage score of 2), since the eye was exposed

to air and started dehydrating once it was placed on the eye holder. The instrument never

touched the cornea during the tests and therefore was not a source of damage. The cornea

damage due to dehydration and degradation will not be a problem when performing in

vivo experiments. Last, the incision stress was well regulated contributed by the automated

alignment procedure in almost every eye.
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In summary, posterior capsule rupture was prevented in all 30 trials. Complete lens

extraction (100%) was achieved on 25 of the samples. In all five cases where 100% extraction

was not achieved, minute particles of lens material were discovered post-surgery hidden

behind or attached to the iris or posterior capsule where the OCT was unable to image.

Therefore, the imperfect success rate was due to limitations of the sensing technology and

not the system itself. The average completion time was less than 5 minutes (277±42 s). The

iris damage score was 0.33±0.20, cornea damage score was 1.47±0.20, and incision stress

score of 0.97±0.11.
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Figure 6.10: The histologic examination result of the 30 pig eye experiment.
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Figure 6.11: The surgical duration of the 30 pig eye experiment.
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CHAPTER 7

Conclusions

To avoid common complications and to improve surgical outcomes in intraocular surgery,

a robotic surgical platform integrated with OCT imaging, automation methodology, high-

precision control, and intervention interface is developed in this thesis. Using OCT scan

data, both preoperative planning and intraoperative intervention for the robotic system—the

IRISS—was demonstrated. Laser-assisted alignment of the mechanical RCM to the corneal

incision reduced the stress on the corneal incision and reduced corneal leakage. The eye

anatomy was segmented through parametric modeling, within which a tool-tip trajectory

was generated while preserving a safety margin with anatomical bounds.

To account for the changing surgical environment, various strategies for monitoring and

intervening the intraocular surgery were adopted. For example, the surgeon can override the

robot motion and assign a specific target position for the tool tip. The proposed strategy for

intraoperative targeting was validated by aspirating an air bubble from the anterior chamber.

In addition, the surgical progress can be monitored by intermittent OCT volume scans.

For high-precision tracking of the preoperative planned tool-tip trajectory, a data-based

approach to identify the dynamic inversion utilizing learning-type control algorithms is pro-

posed. The convergence rate of the iterative identification process is also improved by the

proposed progressive and iterative learning control scheme. Without using the knowledge of

plant dynamics, the identified inversion filter is applied to feedforward control which mini-

mizes the tracking error of the desired reference trajectory on both SISO and MIMO system,

including the IRISS robot manipulator.

The integrated system was evaluated by performing the automated cataract-extraction
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procedure on 30 post-mortem pig eyes. Only in five cases did the system leave small particles

of lens material due to the inability of the OCT to sense them. In addition, there was no

posterior capsule rupture among all 30 eyes tested.

Recommendations for future research directions include

1. Implementing an OCT-based tissue-detection algorithm is desirable to facilitate the

automation of intraoperative intervention. The information should be used to update

the workspace and adjust the navigation strategy to prevent tissue damage and improve

surgical efficacy.

2. Including another imaging modality which can visualize the lens equator and can detect

small piece of lens behind the iris will improve the completion rate of lens removal.

3. Regulating the intraocular pressure (IOP) via active irrigation control will stabilize the

intraocular tissues and therefore reduce the risk of surgical complication.

4. Integrating an eye tracking algorithm is helpful for maintaining the alignment between

the RCM and the surgical incision. The XYZ transnational stage will be adjusted

according to the eye motion, which is inevitable when the patient is not unconscious

during the surgery.

5. Introducing another surgical instrument which collaboratively assists the I/A tool for

lens extraction will significantly improve the surgical efficiency and therefore reduce

the surgical duration.

6. Extending the proposed inversion identification method to nonlinear system is appeal-

ing especially when coupling effect and gravitational force are not negligible to the

motion actuation of the robot manipulator.
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