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Three-dimensional acoustic scattering by vortical flows. I. General theory
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When an acoustic wave is incident on a three-dimensional vortical structure, with length scale small
compared with the acoustic wavelength, what is the scattered sound field that results? A frequently
used approach is to solve a forced wave equation for the acoustic pressure, with nonlinear terms on
the right-hand side approximated by the bilinear product of the incident wave and the undisturbed
vortex: we refer to this as the “acoustic analogy” approximation. In this paper, we show using
matched asymptotic expansions that the acoustic analogy approximation always predicts the
leading-order scattered sound field correctly, provided the Mach number of the vortex is small, and
the acoustic wavelength is a factor of order ! larger than the scale of the vortex. The
leading-order scattered field depends only on the vortex dipole moment. Our analysis is valid for
acoustic frequencies of the same order or smaller than the vorticity of the vortex. Over long times,
the vortex may become significantly disturbed by the incident acoustic wave. Additional conditions
are derived to maintain validity of the acoustic analogy approximation over times of brdér

long enough for motion of the vortex to be significant on the length scale of the acoustic waves.
© 2001 American Institute of Physic§DOI: 10.1063/1.140181j4

I. INTRODUCTION For small-Mach-number flowg;;;~ pou;u; , wherepy is the
mean density, and the are velocity components. The scat-
The problem of acoustic scattering by localized vorticaltered wave field is then computed on the assumptionThat
flows has a long histor¥;° and continues to attract attention may be approximated by the bilinear product of the veloci-
in a variety of fields, including acoustics, fluid tjes of the incoming plane Waveu}(’, say and the known
dynamics,’"** astrophysics? and superfluid$®*’ The de-  vortical flow (u’, say, so that T;;~ po(uf uj'+ uj'u?). We
velopment of experimental techniques to measure vortexhall call this approach the acoustic analogy approximation,
structures by acoustic scattering has been responsible for rgince the problem is analogous to one in which an acoustic
cent interest in the probleff=?° wave operator is provided with a known source. This termi-
The “Born” limit, where the wavelength of the incom- nplogy was used by Lighthill to refer to acoustic wave radia-
ing sound wave is much longer than the size of the vortex, igion by vortical flows, in which the relative weakness of the
amenable to analytic progress. To a first approximation, theadiation implies that the vortical flow can be regarded as
vortex is shaken backward and forward by the longitudinalknown, to leading order, and contains precisely the informa-
sound wave, which is uniform on the scale of the vortex; a&ion required to evaluate the nonlinear source term.
the next level of apprOXimation, the vortex responds to the The acoustic ana|ogy approxima‘[ion has been used to
large-scale compression and straining motion induced by thgptain results for scattering by point vortiégsnd distrib-
wave. Consequently, sound is radiated and the incomingted vortice& in two dimensions, and results obtained using
wave may be viewed as being scattered by the vortex.  this approximation agree well with numerical aeroacoustic
Acoustic scattering by a radially symmetric vortex in cajculations'! It has been claiméd that it leads to a singu-
two dimensions has been a major component of previougyity in the scattered field in the forward scattering direction,
work. In most studies, the problem is formulated as a forcegyt in fact, this singularity can be removed by considering a
wave equation. Following Lighthill's pioneering wofkthe region of parabolic shape about the forward Sx%i&1*
fluid equations are rewritten with the acoustic wave operator A more serious criticism of the acoustic analogy ap-
acting on the density perturbation on the left-hand side, a”Broximation is that no reason can be givepriori to explain
all the remainingnonlineay terms, which take the form of a why this approximation to the nonlinear terri should
quadrupole source, on the right. The quadrupole source igive the correct scattered sound field. The difficulty lies in
expressed mathematically a8T;; /9x;dx;, where thex are  the fact that the vortex and the sound wave interact, so the
the independent Cartesian coordinates, @pdis a tensor.  (ime_dependent velocity field in the vortex differs signifi-
cantly from the superposition of the velocity field of the
dDeceased. basic vortex and the velocity field of the incident sound
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wave. Moreover, this difference occurs at precisely the ordewhere here all the symbols take their usual meaningspgnd

of calculation required to determine the scattered sound fieldandp, denote the absolute pressure and density, respectively,
Reference 14(hereafter FL$ developed a rational as distinct from perturbation pressure and density to be de-

asymptotic expansion procedure that clearly showed the ndined below. We shall assume that the vortex has spatial scale

ture of the scattering in the farfield. Two regions are required.. We also define the vorticitw= VXu.

in this analysis: an inner, vortical region, and an outer, wave We assume that the vorticity decays rapidly with dis-

region. A solution is developed in the vortical region, in re-tance, so thafw|=0O[(r/L)~*] asr—o, meaning thalw|

sponse to forcing by the incident acoustic wave. The analysidecays faster than any inverse power i0fL(), wherer is a

shows how this response in the vortical region forces a scatmeasure of distance from the center of the vortex. We shall

tered wave in the wave region, and hence a completéake the velocity induced by the vorticity to be of magnitude

leading-order solution for scattering in the Born limit is ob- U. We then define the Mach numb&t=U/c,, wherec,

tained. It is shown in FLS that the leading-order scattered=(ypo/po)*? is the speed of sound. Throughout this paper

wave field is, in fact, correctly predicted by the forced wavewe take the Mach number to be small.

equation approach, at least for steady two-dimensional vor- We shall refer to the region of scalecentered on the

tices with circulation. Moreover, the scattered field dependwvortex as the vortical region, since it is only in this region

only on the circulation, and parameters of the incident acousthat the vorticity is significantly different from zero. If the

tic wave, but contains no information about the detailedvelocity is scaled o, and the length scaled dn which is

structure of the vortex. the nondimensional scaling appropriate to the vortical re-
The acoustic analogy approximation has also been engion, the governing equations are

ployed in three dimensiort§:?*=2?7 In this case there is

clearly no singularity in the scattered field, but the question  (1+M?p) @Jr u-Vu|=—Vp, (4)
of the validity of the acoustic analogy approximation re- at

mains. In this paper we ask the following question: under o

what circumstances is the scattered field predicted correctly MZ(EﬂLV-(pu) +V-u=0, 5)

when the acoustic analogy approximation is used to evaluate

Tij - 1+yM?p=(1+M?p)?, (6)
We answer this question by proceeding along the lines of h h lati

FLS, deriving the leading-order scattered field far from theWhere the relations,

vortex via a rational asymptotic expansion procedure. The p,=1+yM?p, p,=1+M?p, (7)

basic equations and expansion procedure are outlined in Sec. . . .
[I. The full equations of motion are solved in Secs. Il and IV imply that pressure and density depart from their uniform

2 . .
in the inner and outer regions, respectively. The acoustigaCkground values byO(M?), consistent with near-

N , ible motiof®
analogy approximation to the scattered sound field can pHICOMPress o . .
derived directly from the analysis presented, and it is shown From (4) and(5) we can form the “Lighthill equation,

that, in fact, the acoustic analogy approximation does not Pp T
neglect any terms that contribute to the leading-order scat- — MZ—2 ax-a;(- =-V?p, (8
tered sound. This is discussed in Sec. V, and conclusions are at e
presented in Sec. VI. where the Lighthill stress tensor is given by
In Part Il of this papef® we calculate sound scattering 5
Tij:(1+M p)Uin. (9)

by Hill's spherical vortex in the axisymmetric case, where
the incident sound wave is parallel to the axis of symmetry  In the two-dimensional problem solved in FLS, the un-
and direction of propagation of the vortex. The inner anddisturbed vortexi.e., in the absence of the acoustic waves
outer problems are solved in closed form, and compared tgas taken to be steady, and so in that problem the vortical

the results derived in this paper. region is fixed in space. In three dimensions, however, there
are very few examples of localized vortices that are fixed in
Il. STATEMENT OF PROBLEM space. The classic example of Hill's spherical vortex trans-

L : . _lates at a constant velocity, and we wish to include this ex-
For simplicity, we consider the problem of the Scatterlngample within our analysis. We also wish to allow the vortex

of acoustic waves by a vortex in a homentropic ideal gas o

- : .2 "tp move through a significant number of wavelengths of the
The momentum and continuity equations and the equation of_ . ! . ‘ .
Incident acoustic wave, so our analysis must remain valid for

state are times O(M~1). We shall therefore employ, in the vortical
au region, a spatial coordinat& defined such that
Pal = tu-Vu|=—Vp,, (1)
at E=x—X(1), (10
9pa LV (pau)=0 @) wherex; is the center of the vortical region. The definition of
at Pa ' the center of the vortical region is an arbitrary one and, as we
0 shall see, the exact definition that we use does not affect the
a j—

Y . . .
E) (3) results that we obtain. However, we shall require that in our

Po \po definition, the center of the vortical regioy move with the
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vortex, so that the vorticity remains confined to a region in
which |& is of order unity. For example, we may use the

definition of vortex centroid given BY

1
_ ’ ! ’ 3y’
xv—ﬁfx[x Xw(x")-17d°x", (11
where
1
'EEJ X' Xe(x") d3x’, (12

andl=|l|.
In coordinatest andt, Egs.(4)—(6) for the flow in the
vortical region are

Jau

(1+M2p)(ﬁ—v-Vu+u-Vu)=—Vp, (13

o[ 9P
M E—v-VerV-(pu) +V-u=0, (14
1+ yM2p=(1+M?2p)?, (15)

where nowV is a gradient with respect t§ and

_dxe 18

TS (19

Note that in(13)—(15) the coordinates are£(t), but the ve-

S. G. Llewellyn Smith and R. Ford

H
E+V-U+M2V-(UH)=0, (20)

1+ yM?P=(1+M?H)". (21)
The gradient operator acting on a wave-region quantity cor-
responds to differentiation with respect ¥ Nondimen-
sional fields in the wave region are represented by capital
letters, except for the densipy which is denoted there biy.

The velocity field has been scaled by a factoivin (19),
(20).

Now, the vorticity in the wave region is assumed to be
smaller than any power d¥l, and we may hence use a ve-
locity potential @ in the wave region such thdd=V®.
Using (21), the momentum equatiofi9 may then be inte-
grated once to yield the wave-region Bernoulli equation,

b 1 1
—+ MV . Vo + mM—Z[(H M2H)(»"D—1]=0.

a2
(22)

This equation and20) together constitute a complete set of
equations for flow in the wave region.

Throughout we shall assume that the amplitude of the
incident acoustic wave is sufficiently small that quantities
quadratic in the amplitude of the incident wave can be ne-
glected. In the present nondimensional variables, we shall

locity u is the velocity relative to an observer at a fixed therefore take the pressuRé!) associated with the incident

location inx.

Equations(13)—(15) are a complete set of equations for
a homentropic ideal gas, but in the following analysis it

proves convenient to use the vorticity equation:

Jm
—=VX[(u—v)Xw],

o 17

and the Lighthill equatior§8), which, in the vortical region,
is written as

(18)

We shall use(14), (17), (18) in developing the asymptotic

expansion of the flow in the vortical region.

wave to be given by

P(I): 5ei(kX—wt)’ (23)

with the wave propagating in the positive direction, and

Egs.(21) and(22) imply
w=Kk, (24

with both w andk positive without loss of generality.
Equationg19)—(21) apply everywhere outside the vorti-

cal region, whose location we denote Xy X (t). Here we

make no assumption on the magnitudeXgf so our analysis

is valid for timesO(M 1), over which the vortex may move

through several wavelengths of the incident acoustic wave.

Acoustic waves are incident upon the flow in the vortical However, the vortex does move with a velocity that is char-

region. We shall take the frequenayof these waves to be of acteristic of the velocity in the vortical regiob, which is a
the same order of magnitudd/L, as the magnitude of the factorM smaller than the sound speed, and so
vorticity in the vortical region. Our analysis is hence valid

for unsteady vortices, but also applies to steady vortices. The MV = dXe —O(M).

ratio of length scales between the inner and outer region is dt
L/N=M w/27. Then the assumption of small Mach number ) )
of the flow in the vortical region implies that the acoustic Again, we shall expand the expression Yarbut the expres-
waves must have waveleng®(LM ~1) (Refs. 14, 29 and  Sion for X. is not expanded. Note that it is not necessary for
so the vortical region takes the role of an inner region, surdXc/dt to be equal taMdx./dt, and, in fact,dX./dt will
rounded by an outer, wave region, of length sdaié . differ from Mdx./dt at O(M?26). There is no technical dif-

In the wave region the appropriate spatial variablis ficulty in having a difference betweef; andMx., provided

=Mx. Equations4)—(6) are then rewritten, using the wave- this difference is accounted for when deriving matching con-
region spatial variabl&. The result is ditions between the two regions. Note also that the flow in

the wave region is expressed in terms of the spatial variable
X: no transformation to a moving frame is employed in the
wave region.

(25

(1+M?H) (19

at

Ju
—+ MZU-VU) =-VP,

Downloaded 12 Aug 2002 to 132.239.191.220. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Phys. Fluids, Vol. 13, No. 10, October 2001 Scattering by vortices. |I. General theory 2879

We now develop the solutions in the inner vortical re-lished using(14), (15), and (18) to determine the pressure,
gion and the surrounding wave region, on the assumptiodensity, and divergence at successive orders. This procedure
that bothM <1 andé< 1. The solution is thus represented asdiffers slightly from that followed by FLS, in which the vor-

a double asymptotic series M and § (although with a spe- ticity is also expanded. The expansion of vorticity is possible

cial treatment of the vorticity, as discussed below in that paper because the basic flow is a steady state that does
not support neutral modes at the incident frequency. In this
paper, however, we consider general, unsteady vorticity dis-

IIl. THE SOLUTION IN THE VORTICAL REGION tributions, and so the nonexpansion of vorticity is crucial to

The solution in the vortical region is now expressed ad€t@ining well-ordered expansions over a long time.

an asymptotic expansion i and é: . .
A. The undisturbed vortical flow
U=Uo+ MZUZ+' --+5U01+M5U11+M25U21+M35U31 i ) X ) .
At leading order[i.e., O(1)], the continuity equation

+.- (260 (19 is
P=po+M?pat - -+ 8por+ Mp1+M?8pyy V-up=0. (30)
+M38pat -, (27 Thus, given the vorticitys, we may obtain the leading-order
p=potM2pyt -+ + 8port M Spri+ M2pay ;aetleogrlgl/luo in terms of the vorticity using the Biot—Savart
+M385pgt+ - . (28 1
Powers ofM? are required initially in the expansion of the Uo="— EJ o(§)XVe - &) i’ (3D

basic flow, as could be predicted from the form of Ed<)—
(15). The terms linear ins increase in single powers off  This simply represents the relationship between velocity and
due to matching conditions with the incident acoustic waveVvorticity in the three-dimensional incompressible Euler equa-

The vorticity itself must not be expanded, however, be-tions. We have assumed that the vorticityQgr ) asr
cause the corresponding evolution equations for the higher=>>, where henceforth=|£| denotes distance from the cen-
order contributions to the vorticity are likely to have solu- ter of the vortical region, and so the integral {@1) con-
tions that grow exponentially in tim&? and so the Verges.
expansion will become disordered at tim@pIn(1/M)]. In- In order to determine matching conditions between the
stead, the vorticity is taken to satisfy the induction equatiorvortical region and the wave region, the asymptotic behavior
(17), with the induction velocityu and the velocity of the ©Of flows in the vortical region must be determined in the
centroid v computed to whatever order is required. Thelimit r—ce.
question of the existence of solutions of this induction equa-  From(31), we have
tion is an unsolved problem. The truncation at leading order 1
is equivalent to the three-dimensional incompressible Euler y,=— 4_J w(g')xvg(r—l—g'-vgr—l
equations, for which finite-time singularity is conjectured, 77
for some initial condition$® but not proved. Our approach
here is a practical one. We do not necessarily require the
solution to exist for long times. If it does not, then the analy-The first term in the expansiai32) vanishes because, by the
sis presented here is valid for tim@¢1). On theother hand, divergence theorem and the fact thakw=0, we have
if the solution to the vortical flow does exist for long times 5
(e.g., a steady solution, such as Hill’s vortethen our analy- _ | 43 o _ | 43£.
sis is capable of capturing this solution, and perturbations to O_J d §a—i[§Jw|(§)]—f 8w (8). 33
it, over times of at leasD(M ~1).

In order to maintain long-time validity of the solution,
the locationx, of the centroid of the vortex is not expanded
but its velocity is, so that

+ 38 EV VL HdBE +0(r 7). (32

The next two terms if32) can be expressed as gradients of
a scalar potential, because the vorticity vanishes-ase.

’ The first of these two is discussed in standard t&ksjt the
second is often not treated. The analysis is presented in Ap-

v=vgt vyt . (29 pendix A. The result is that
Thus, the evolution oX; is treated similarly to the evolution 1
of @, with the expression fox, not expanded, but the center Uo=,_ V(! VrT V) +0(r7°), asr—», (34

of the vortexx, traveling with the velocityv expanded to

whatever order is required. We shall choagg and subse- where

guents-dependent terms as is convenient, while the higher-

order terms independent éfare not needed. J=— 1] EE Xo(E)]d3X'. (35)
Because we do not exparw, all velocities excepti, 3

must be irrotational, and so only their divergence is requirecNote that(34) implies

to determine the velocity at each successive order. As we

shall see, a perturbation expansion procedure can be estab- u,=0(r"3), asr—; (36
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this result is crucial to establishing the convergence of cer-

tain integrals that arise as the analysis proceeds.
To determine the leading-order presspge we use the
Lighthill equation(18), which gives

72
25123

Here, uy; are the components afy,, which is determined
from the vorticity by(31). Thus,(37) shows thatp, can be

(Ugilgj) = —V?pg. (37)

determined fromw, and, using the free-space Green'’s func-

tion for the Laplacian, the solution af37) for p, can be
written as

o= i [ BE1E €17 € (€. @B

r9§| €]

To determinepg in the limit r —oe, it is convenient to
rewrite (38) as

2

9&i0§;

6) asr—w. In the limitr

Po=7- f d*& ugi(&)ugj(§) ———|6-&["%. (39

This is valid sinceug;ug;=O(r -

— o0, this gives

5 1\ 1
Po™ (9§|(9§J( ) fdsg/um(f)uo](g')‘f'O(r 4)
(40)
Thus,
pO:O(r_S)- as r—oo, (41)

We now proceed to calculate the velocity and pressure at

O(M?). Expanding(14) at O(M?), we have

Ipo

ot Vo Vpo+V-(poUg) + V-u=0 (42
and the equation of state gives

Po=po- (43

Equation(42) is an equation foV-u,. Moreover,u, is irro-
tational, and so, writingu,=Vd¢,, Eq. (42) is a Poisson
equation for¢,, providedug, pg, anddpq/dt are known.

Now, pg is computed from(38), in which ug in the in-
tegrand is obtained from the vorticity vi&1). Thereforeug
and p, are known. To evaluatép,/dt we use the fact that
Po=Po, and therefore we evaluadip,/Jt by taking the time
derivative of the integral representati@8). To do this, we
must evaluate&ug/Jt, which is done taking the time deriva-
tive of the expressiof31). This integral depends only upon
the vorticity, and so by17) its time derivative may be evalu-
ated in principle simply by replacingw/dt by VX[(u
—v)Xw].

This general structure is applied to all evaluations of

S. G. Llewellyn Smith and R. Ford

(9.7:_ OF Jw

ot ew ot (44)

where §F/ dw is a functional derivative. It follows that, al-
though a quantity may exist only at a single order in the
asymptotic expansion, its time derivatives will exist at that
orderand all higher ordersThus, if a functionalF is itself
expanded, in powers & and &, so that

f:f0+5./f01+"', (45)

then the time derivative of that field is calculated according
to

(9.7: (9.7:0 (9.7:01
ot gt ot
0F,
= _VX[(U0+ 5U01_Uo_ 5v01+ .. )Xw]
ow
(uo—vo+ .. )Xw]—|— .

Sw

0Fo
EVX[(UO_UO)X(‘)]

+
+%VX[(u01—v01)Xw] + (46)
0]
We therefore introduce the notation
i (47)
at O(MP5Y)

to mean the component of the time derivative of the quantity
F at the ordefMPs9, where, in this papemp andq will be
non-negative integers. This means that the time derivative
dpoldt in (420 must be replaced by dp/dt|o,
=dpgldt |0(1)- Indeed, not only is this consistent with the
asymptotic expansion procedure, but it is, in fact, necessary
in order for the expansion procedure to proceed. The quantity
dpol/at can never be evaluated using an asymptotic expan-
sion procedure of the type developed here, since the full
velocity field, to all orders, is never known in any asymptotic
expansion procedure; howevep,/dt |o(1) can be evaluated

at this stage in the procedure becaugés known from(31).

To supplement the notatidd7), we shall also use shorthand
notation for the leading-order time derivative of the quantity
F, namely

doF
at

dF

3 (48)

o(1)
Using (43), and the notation just introduced, E¢2) is

time-derivative terms. All the fields are regarded as functionWritten as

als of the vorticity, with different functionals~ ., for the
different fields, and we introduce the notatifu,,pg, . . .}
={]—‘uo(w),]-‘po(w), ...} to represent this. The rate of

dPo

Vi,=— ot +vo'Vpo—

o(1)

V+(PoUo). (49

change of any of these fields is thus ultimately determined by A solution to this equation could be given by using the

the evolution ofw, or more precisely by w/dt, through

free-space Green’s function for the Laplacian, as(38).
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However, the farfield behavior of the first term on the right- arises due to the motion of the vortex through the fluid. Re-
hand side 0f49) cannot be determined in this way, becausecall that this second time dependence is slow, in the sense
po does not decay sufficiently rapidly mnasr—o. Instead thatdX./dt=0(M). Sinceuy;=0, we also takey;=0.

(cf. Ref. 29, we invert the Laplacian on the kernel in the At O(M 6), Eq. (14) gives

integral representatio(88) for po, and hence

V-u11=0. (58)
,=— _j B |- &) —— (‘90 vo Vel ) The conditions on the velocity and pressure, in the limit
agl agl at o0, are
) ) ) u _}ieikxcefiwt; —>I|( eIkX Io)t, 59
X[ (€ o (§)1+ 5[ o 8 ke (59
wherei is the unit vector in the direction of propagation of
X | &~ §'|71V§f'[pouo( ). (50) the incident acoustic wave.

The flow is irrotational at all orders beyor@(1), and

_ -3
Now, we have thatip=0(r"~) asr—w. Then, from so the solution for the velocity consistent with8) and (59)

(13) we have

is
|5 |uo=—p6. a5, Gy Unieen (©0
This is the same as in FLS, but in that paper, there was also
and so a rotational component of the flow at this order, which was
do obtained by solving a Rayleigh-type equation. In this paper,
(&t vo- V)uo o(r %, asr—x, (52)  that component is incorporated into the leading-order flow,
because in this paper the leading-order vorticity is advected
It follows that by the full velocity field, and the vorticity is not expanded in
powers ofM and 6. The current analysis can be used in the
(‘90 vor V)(UOIUO]) or "), asr—w. (53  two-dimensional case too, and e>_<actly the same results as
ot FLS are recovered, thereby showing that @EM?5) scat-

Hence, an expression fap, in the limit r—c can be ob- tering prediction of FLS applies to unsteady flow too, as
tained, namely, might be expected since the form of the scattering term de-

. pends only of the circulation, which is independent of time.
_ , The Lighthill equation(18) at O(M 8) gives
b=~ ( f d3§ __Uo Vg/

8w agag

V%py;;=0, (61)

-2
X[ Uoi(€)uo;(£)]+0(r ), (59 and the solution t¢61) consistent with the matching condi-
and, sincau,=V¢,, (54) implies tion (59) is
u,=0(r 2), asr—om, (55) P =ikgekXeemiot, (62)

Note here that; is independent of the spatial coordi-
nate&. We shall therefore take
Because of the long wavelength of the incident acoustic _

. . . . . . U11=Uqq. (63)
wave, it affects the flow in the vortical region via matching
conditions in the limitr —oo. The matching process carries Consequently, we can see frdfv) that there is no evolution
through in a straightforward manner, while the unexpandedf vorticity relative to the coordinates of the vortical region
vorticity and the use of different frames in near- and far-at O(M &). This greatly simplifies the analysis that follows.
fields is not so simple, so the matching will be presented in
an informal manner for convenience. 8 8), the incident C. The flow in the vortical region at ~ O(M?&)
acoustic wave imposes matching conditions:

B. The flow in the vortical regionto  O(Mé)

At O(M26), conditions on the velocity and pressure in
cem ot po—eXeem 1Oty 0 as r—om, the limitr—o are

(56) Uy _}Hkgelkx th; pz_)__k2§2 IkXCe lwt (64)

Poi— eikX

sinceX—X.=M¢, whereé is thex component off.
The solution for the flow fields in the vortical region is
then simply

Po1=por=e* e ', uy=0. (57 o»
ot

The velocity is irrotational, but14) at O(M?5) shows
that the expression,

: (65
o(9)

(&I(Po+ Oport - - ))
Thus, atO(8), the pressure and density experience time- (%)
dependent but spatially independent oscillations, and there iseeds to be evaluated, following the procedure outlined in
no flow in the vortical region at this order. Note thgh, and  (46). The O(6) truncation ofde/dt in (17) is zero, because
poy are time dependent in two ways: the'“! factor due to  there is naO( ) velocity field to contribute to the truncation.

the incident acoustic wave, and also the faett¥<(, which ~ The truncation of they, term can be calculated explicitly:
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d 90 ex—iut ot since there can be changewby theO(M 6) velocity. How-
1 Opodlo =7 @ eltXeg10l= —jpe!kXee™ 1!, (66)  evervyVpy=ikvope:r, and V-(pouiy)=v11-Vpg, SO (75)
simplifies to
because, even thougK, varies in time,dX./dt=0(M). >, .
Therefore Eq(14) at O(M?29) is Vo¢a1= = V-(p1auo) +iwpys. (77
V2= welkXegiot (67) Note that, atO(M §) and O(M?25), the velocities ob-

tained were just the velocity associated with the incident
and sou,; is compressible. Equatiof©7) has the solution acoustic wave, in the absence of the vortex. However, Eq.
(75) shows that there will be an additional contribution to the

_ L2 kX ot
b=zl wéTeT e, (68) velocity atO(M?36) because of the, andp, terms.
and To solve(77), we divide ¢3; as follows:
Upy= Vb =i wéeikXeg it (69) V2§ =iwpi (78)
verifies that this solution is consistent with matching condi-and
tions (64). 2 ()
Following the same procedure, the equation for the pres- Vi3 ==V-(pulio)- (79
surepy; is Equation(78) has the solution
92 1 (— _ ;wk§3eikxcefiwt, (80)
?por+ 2(95 9, UgjUogj+ 2 PotUoilloj | = —V%py. 8 °

(79  and sou{)=V ¢{) is the velocity due to the incident wave in
the absence of the vortex:
Using (57) and (69), Eq. (70) can be written as

uf) = — Lok ekXeeit, (81
Ao
kX ) 2 kX [0}
VZpy=—2iw—r g e/ %ce™ !4 V2p, el eg 1! This matches the incident wave in the limits .
_ A The equation forp$) can be simplified:
_ wZelkxce—lwt, (71) A A
V2= —ikuge¥ee !, (82

whereug=ug-i. From(31), we have
We can solveg82) using(72), giving

1
Uo=——i'f d*¢ w(&)XV - &7, (72) ik
4 ¢ 4’(31):@' fd3§/w(§r XV |§ §/|elkxce th (83)
and hence
Hence,¢$)=0(r 1), and
)
P21= . Ifdgf’w(§)><vgﬁ—§|§ &g Xegmiet u(3'1)—0(r_2), as r—o, (84)
. . - . In fact, the resul{84) holds whatever the value af;;.
_ 11,2 £2A40kX, iwt ikX¢ i wt 11
2k7g7e ™ ee1¢ 4 e e 1¢p,. (73 The Lighthill equation(18) at O(M36) is
In the limit r—oo, this gives ( P 2 P 2
| 5 Vo V) P11 _( _011V>
at oM3) at

o(M &)

iw 1 3¢
:__ 22 |kXC —iwt >
P21 k &oe!" e +47T| g(r3 )

= i)

_ _ + 25| UgjUszy; + UpjUygj T poUopiUyzj T 5 P11U0i Uoj

x ekXeg 10t 4 O(13). (74) & 0¢, 0it131j T H2itl1aj T PoHoit1aj T 5 P11toiYoj
=—V?ps;. (85)
The first term simplifies to leave?p;;, while the sec-

ond one is given by

a 2
(at_"llv)

D. The flow in the vortical region at ~ O(M®é)
At O(M36), Eq. (14) gives

p

V2¢31= —V-(p1sUo+ polsy) — a5t

—Zvllv vall Vpo
O(Mé) (86)

Hence, we may define two contributionsyg,, namelyp(')
and p(r)m such thatps;=p$)+p$? , and

o(Mé)
+vo°Vp11tv11°Vpo. (795
Note the presence of terms dependentwgn in Eq. (75),
wherev (; is given by(63).
2
We now have w2 +2(9_ UntD U U + Unq+ 1L Uoi)
P11 IEIE, (U0|Uslj UojU1gj T poUoiUaij ™ 3P 11U0i Uoj

ap
—_— =—iwp11+i|(vop01, (76)
Mo =— V%Y (87)

Downloaded 12 Aug 2002 to 132.239.191.220. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Phys. Fluids, Vol. 13, No. 10, October 2001 Scattering by vortices. |I. General theory 2883

and (92 -1 ikX,qn—iot
7 o %9, |E— &' —2ue™ e
UgiU +2v V —iwvVpo=—V?pY
85,&5 ———(Ugiuz{") + 20, 11°Vpo P31 _ Lik3g3eikXeg ot 95
(88)
0 . In the limit r—o, we have
Recall thatuy{ is the velocity that would be present due to e s
the incident acoustic wave, in the absence of the vortex, and  PoUoU11=O(r "),  p1algUo=0(r ). (96)
ugy is the remainder. It follows that, in the limitr —c, the second line i1195) is
We shall show first thap§) does not enter the matching o(r~3), and the third isO(r ~2). The leading-order contri-
conditions atO(M*4). In the limitr —, we have bution top4) in the limit |&—o therefore comes from the
- . 3 . .-
UgU r)_o(r 5, (89) fourth line of (95), which isO(r~). and matches to the inci

dent wave. The next-order contribution comes from the first
and so by(88) we have line of (95), which is O(r "), and so matches to flow at
O(M*%5) in the wave region. The result is

=— d3& (ugiu ! 2
f £ (ugiuz,” ag 7%, |- o= — Eik3§3eikxce’i“’t— wk |_1+ ﬂ-ﬁ- E&l
1 d o g g
o .
‘E(z"ﬂ'vﬁ"“"’ﬂ'v 380
2 _ . e'kxce"‘”t{— O(r—z). (97)
r
d3 _ & | alkX —iwt.
f §uo.(§)u0,(§)ﬁ§ 9§ |6=¢']e e It follows that only the superscript-( components

(90) match the flow in the wave region &(M*8). Moreover, it
o o can be seen that, is not required in order to calculafs) .
In the limit r —oe, (90) implies Therefore, in the limitr —o, the superscripti] fields are
") _ _7 exactly what would be calculated by the acoustic analogy
Py =0(r ), asr—e. (OD) method. We now use matched asymptotic analysis to obtain

Thus, p§} matches to terms in the wave region that arethe flow in the wave region.
O(M%6) and smaller.
We turn now top$] . First, we observe that IV. THE OUTER SOLUTION

92 J 9 The solution in the wave region is expressed as an
ZW(UZiUMj):ZUM@UZi a§V2¢ €"%e™ "t asymptotic expansion iM and 5. We shall see that the
el : (92) asymptotic expansion takes the form
and O=M2D,+M3Dy+ -+ 6P+ M*5D 1+ - -, (99)
2 P=M%Pg+ ...+ 6P+ M*6P,+- -+, (99

05.05

(Uo|U31, ))=—2wk

ikXca—iwt
Upt ¢ g) e H=M3H3+ -+ SHpu+M*SH 1+ - - - . (100

93 Here we are using the fact that, in the wave regith,
Hence,pY] satisfies =V to all orders required.
We start by considering the flow in the wave region in

(')—2 Kl u +§ aikXegiot_ V2¢ the absence of the incident acoustic wave. This is the com-
V2p3i=2wk| Uo g g 2 ponent of the flow in the expansiof@8)—(100) that is inde-
2 1 pendent ofs.
% elkXcgiwt _ UeiUrr + = 01l U ) The leading-order velocity, in the vortical region de-
ox;ax; | POTOL T 5 P1itoitoj cays ag ~3 in the limitr —. This corresponds to a velocity
K2 (94) potentialO(M?) in the wave region, since the velocity in the
P11 wave region has already been scaled by one factbt.dthis
It follows that explains why the expansion fob starts atO(M?). The
leading-order pressung, in the vortical region also decays
(— _ “’_k 34 / asr 3 asr—oo, and this corresponds to a press@M ) in
P3i= i+ | d°& w(&')XV, : . . .
the wave region. This explains why the expansiondfand

H start atO(M?3).

With the expansions fod, P, andH as given, Eq(20)
atO(M?) gives

V2d,=0, (101

. ) 1
w eikXcg—iot f 3z Uaq: + — Un: .
eree on) 46 (pouo'u”‘ 2p11u0,u0,> and(22) at O(M?) gives

1
x| &~ §'|+§ fle-€l-5 §zlf §'I3l
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ERON However, this solution is unacceptable because, over long
it (102 timesO(M 1), the location of the vortexX., will, in gen-
eral, beO(1). This implies thatb{ becomeO(M ~*) and
To determined,, we must use asymptotic matching to the asymptotic expansion fab would then become disor-
the flow in the vortical region. Equatiaf34) gived the form  dered for timesO(M~1). Thus, in common with many
of ug in the limitr —c. Matching to(34), we can see that, to asymptotic expansion procedures, a multiple-time-scale ex-

leading order(101) implies pansion is required fax,, so thatX, must be represented as
1 1 Xc(t,Mt, . ..). Wethen apply a nonsecularity condition to
@2:4_| 'V(ﬁ)’ (103  the right-hand side of110). Physically, the nonsecularity

a

condition is simply that any mean motion of the vortex must
where not be contained in the order-unity time scale. Mathemati-
cally, this can be stated as
R=|X—X.(1)]. (104

+T
Equation (102 is satisfied, sincd is conserved by the Iim Eft X(t',Mt, ...)dt’=0, for all timest. (112
leading-order incompressible dynamics of the vorticaITwT t

. O .
regior” (see also Appendix B and so In fact, we can remove the leading-order time dependence

di from X, entirely by taking a slowly varying definition of the
Gl =0 (105  vortex center. Then, althougW, is taken to beO(1) in
o(1) general,dV,/dt will be O(M), and the right-hand side of

Time dependence is nevertheless presenibjndue to mo- (110 then vanishes. Thusb; satisfies the unforced linear
tion of the centeiX.(t), and the fact that is not conserved wave equation, and the solution consistent with matching to
to all orders in the perturbation expansion, but these arg¢he vortical region in the limiR—0 is

higher-order effects. Hence, although there is a contribution

to the velocity in the wave region &@(M?), there are no @szivv;<£3(t_R)), (113
propagating acoustic waves at this order. 4 R
At the next orderO(M?), Egs.(20) and(22) give The expressior(113 is the familiar “Lighthill” radiation
doHs from the vortex, in the absence of any incident wave.
p +V2d,=0, (1006 The expansion in the vortical region proceeds in powers

of M2, and so it is possible that, in addition (d13), there

do®s 9D, may also be a monopole term @(M?) in the vortical re-
praahire +H3=0, (107 gion, which would also match to a ter@(M?) in the wave
o(m) region. In fact, it can be seen fro(B4) that there is no term
where of the monopole type i, in the limitr —co, and so there is
no monopole in the acoustic wave field@{M?). This re-
9P, :i| V[i(i) kY }: _ iw 'VV(£> sult is due to Crov® It is also possible to develop the ex-
I oy 4™ LIXAR 0 47 " O R/ pansion in the wave region at further powers\bfindepen-

(108  dent of 5, but we shall see that the developmen©&vi®) is

Taking the time derivatives ofl06) and (107) is awk-  Sufficient here. f en be obtained |
ward because som®(M?) terms in the second derivatives . An e>|(p_reSS|on oiH3 can then be obtained frof107).
of &5 andH come from applying the general procedure of 1€ resultis

(46) to lower-order terms itH and®. Instead, we combine 1 1. 1 1
(20) and (22) to give Hy=—7-VV: <§J(t— R)) - ElVoiVV(ﬁ), (114
*® VD
V2P =—M2VP-—— +M2V-(UH) where
ot? ot 1
o4 J=- §J dPEE EXVX[(Up— o) Xw]} (115
— —[(1+M2H)72-1], (109 . . .
ot is theO(1) time derivative of). The form(114) for density
Truncating this equation @(M?3), we have or pressure is a Well-known res_ult of H?I[ing?“ usually
written in terms of a third-order time derivative. A lengthy
95D ) PP, 1 [(dg 1 but straightforward calculation shows thdfl4) matches to
e —Vidy=— e 77\ ai Vol VYR Py in the limit r—2 given by (40). _
o(M) 110 We now turn to the incident wave and the associated
scattered fields. The outer solution was already cho-
(110 d fields. Th lutionG) Iready ch
A particular solution to(110) is sen to be the incoming acoustic wave, in which
(p) 1 —1ly . 1 i(kX—wt). 1 i (kX— wt)
(D3 :EI M XCVV ﬁ . (111) H01: P01=e y (I)01=Ee . (116)
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Consideration of matching to the vortical region, g,

from (74) andps; from (97), shows that the first contribution P,;,=

to the scattered wave field occurs@¢M*6), and this is the

same as the order at which there is forcing by lower-order
terms linear iné in the wave region. Thus, as indicated in

(98)—(100), the next order afte®© () at which the solution
in the wave region is nonzero ®(M*8). The governing
equations at this order are

L) P do®
—tz —t3 0 t“+ Uy Ugr+ P21=0,
J o(M25) J O(M o) J
(117
s (1189
ot o(Ms) at
H41: P41. (119)
Using the fact that ,,=P,4; and
U,= ! Vi Vl 120
=7 -V I'Vg (120

(109 may be evaluated &@(M*6), giving the forced wave
equation ford,,,

2
P41
at?

P,

Dy
417 > -

at?

o(M25) O(M )

U
+UyVHgy— U, °1.

(121
Now, the second term on the right-hand side(b21)
vanishes because there are @9M §) derivatives in this
analysis, since ;;—v17) =0, and so there is no vorticity
evolution atO(M 6).
The first term on the right-hand side ¢f21) takes a

simple form, and is evaluated in Appendix B. The result is

that d,, satisfies

d ¢41—V2CI>41— _ —I V( ) (KXo~ wt)
at?

ik d
4 — gi(kX=ot)
J

5 (122

| 1
R
The appropriate solution t122) is

1 1 1 1
(D4l:Eel(kX07wt)| .V(ﬁ) _ Eel(kX*out)I .Vﬁ +<I)z|1!
(123

where®Y; satisfies thgunforced wave equation, and must
be determined by matching. Hen(h‘{'1 may be expressed as

@ A eIkR Ai J eikR . AIJ (92 eikR .
a= Iw R iw&Ei? E(?EM?E]?
Xeikxcfiwt, (124)
where E=X-X., R=|E|, and the coefficients
Ag, A, AIJ , etc., are constants.

Using(117), the corresponding expression for pressure is

Scattering by vortices. |I. General theory 2885
_“’eikx—iwq N ikX— thl 511' 355
J R3 Aqr R3 RS
A lkR+ikXc—iwt A g ekR+ikX —iwt
+Ag——————— A —————
0 R LoX; R
g2 elkR+ikX —iwt
+A; o, (125
1 oX;0X; R

whereE is the component oF in the direction of propaga-
tion of the incident acoustic wave. We have retained only
monopole, dipole, and quadrupole termq125); the higher
multipole terms are, in fact, zero, as will be made clear by
the fact the the terms displayed are sufficient to satisfy the
matching conditions derived below.

We are now in a position to determine the scattered field
completely by carrying out the matching, which determines
Ao, A, andA;;. We are free to express the matching con-
dition in terms of either pressui or velocity potential®.
Here we use the pressure. We take the limit for siRalf the
outer expansions, expanding the teeff*, and match to the
leading-order decaying terms fropy, and ps; rewritten in
terms ofR. At this point we must also recall that the origin of
the vortical-region coordinates differs from the origin of the
wave-region coordinates byYD(M ), becausevqi;=uyy,
whereasV,=0. Therefore, when th&-independent pres-
sure fieldspg, p, are expressed in terms of the wave-region
coordinates, terms linear iA occur due to the coordinate
shift. However, becausp,=0(r %), andp,=0(r 1), as
r—oo, these contribute additional terms to the wave region at
O(M?®6), and higher, but make no contribution@{M*5).

The matching conditions are then expressed as three
equations. The first equation, corresponding to terniRif,
is

I 81 3EE; 358
O I ) N =i 2o
Aqr R3 R5 J 3 RS
(126)
This determines the quadrupole coefficient,
1.5
_ i1
Aii_ﬁ- (127

Using (74), the second equation in the matching, which
comes from terms ilR™2, is

fo B, By tigl %y, 3EE
Qar ) R3 ! R3 47~ R3 R5
iwI - 1 352 -
= ar K s s | (128
This gives the dipole coefficient
ik
A| :E 51i I 1- (129)

Finally, from the terms iR~ ! and using(97),
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From the analysis presented, it may appear that, to de-
termine the scattered sound, all we require is a leading-order
description of the vorticity over the time of interest, since

1 S 35 this enables us to determirie and henceP,,. Moreover,
+ -1 Zg2m2 4 bl sincel is conserved to leading order, we may apparently use
4 2 RR R the value ofl from the initial, undisturbed vortex.

> o 3 Note, however, that the effect of scattering is present not
B wk( 3 I_l_ =k B B EE N 3= :klk) (130 only in P44, but also in the lower-order fields. The expres-
R R R3 R® sion (114) for H;, and henceP5, depends orJ, and ulti-
This gives the monopole coefficient, maFer upone. Noyv, w satisfieg an induction equat_io_n with
an induction velocity up t@®@(M*5). Hence, the vorticityw
Ap=0. (131 differs from the vorticityw", say, that would have evolved

This completes the matching of terms in the wave regiori” the. absence of any incident waves. Any resulting differ-
at O(M*8) to all terms in the vortical region that depend €NCe in pressur®; should then be regarded as part of the

explicitly on 8. The result is scattered pressure field. In particular, we see thatié€parts
by O(M &) from the valuelV that would have existed in the
1 ) ) J eIkR . . . .
Py=—e ot @k | 1.V 4iol,)— absence of the acoustic wave, then this difference will be
4 I= O(M ), and so should be counted as part of the leading-

order scattered sound field.
+eikx(é_iw) I VE] (132 Now, sinceuy;=0, andu;=v,,, there is no evolution
= R of vorticity at O(8) andO(M 8). Over timesO(M ~1), how-
In the farfield limit R— oo, the second of the two terms in €Ver, it is possible that the velocity fielt, may act to lead
(132 is O(R™2). The first of the two terms contains the to differences betweew and ", and so to differences be-
radiating waves, and in the limR—c we have tweenJ andJV, of orderM 8. Such differences would then
imply that, over long times, the pressuPg would contain a

e

2 — i(KR+kXg— ot) L e
o) I-= e c
Py=— —00s9| — +1 1) +O(R™2), (133 contr!lbutlon atO(M ), and so a contrlbutlorj to the pressure
4 R R O(M*®6) due to the presence of the acoustic waves. Thus, in
2 (KR KX — ot order for the leading-order scattered wave field to be repre-
w e ( C ) -
= — —cosd(cosd+cosu)l +0(R7?), sented by(132) over long times, we must assume thgf has
4m R no secular effect od and so
(134
3= 3%(D]=0(M ), (136

where hered is the angle subtended at the vortex between
the positionX and the direction of propagation of the inci- over the time interval in question. We also assume that the
dent acoustic wave, and is the angle between the direction same structure holds at higher orders, so that the restriction
of | and the direction of propagation of the incident acousticon P3 is the most restrictive. In general136) cannot be
wave. guaranteed priori; in Part 1128 we show that it does apply,
under certain assumptions about the magnitudé&, dor the
problem of scattering from Hill's spherical vortex. Rdrand
V. RELATIONSHIP TO THE ACOUSTIC ANALOGY 6 indepen_dent, the_ expansion is valid _under th(_e_conditions
APPROXIMATION we have just mentioned, but the detailed conditions under
which it may fail, and, in particular, the extra conditions this
The result can readily be shown to agree with the scatmay impose orM and 6§ depend on the particular problem
tered sound field obtained using the acoustic analogy apinder study.
proximation. Equation(17) of Ref. 18 agrees with(133),
pr(_)vu_jed that in the former, the Fourier transform of the VO-\ /| CONCLUSION
ticity is approximated as
The problem of scattering of an acoustic plane wave by
f w(x)eik-deX%f ik- xe(x)d3x. (135  a three-dimensional vortical structure has been solved by a
rational expansion of the equations of motion in the limit of
This approximation is valid provided the length scale of thelong waves, when the acoustic frequency is of the same order
vortical region is small compared to the wavelength of theas the vorticity. The results also hold for smaller acoustic
incident acoustic waves, which is precisely the condition refrequencies. The resulting solution is the same as that ob-
quired for our analysis to be valid. The applicability of the tained by using the acoustic analogy approximation, pro-
acoustic analogy approximation to vortices with length scalevided the impulsel is nonzero, and the assumptigh36)
comparable with the wavelength of the incident waves is arholds. This is because only the pressure figlgs P11, P21,
open question, which cannot be addressed by the asymptotind pg'{ from the vortical region are required to determine
analysis presented here. The present results also hold fanatching conditions to the wave region@(M*5), and the
waves with wavelength larger thavi ~2, i.e., which have right-hand sides of the equations that these pressure fields
frequency smaller than the vorticity. satisfy are all formed from the product of the velocities of
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the undisturbed vortex and the incident plane wave, ex- dimensional case all moments are present in the leading-
actly as if the acoustic analogy approximation had beerrder scattered field.

made from the outset. =0, then the leading-order scat- ~ Despite these differences, however, it is interesting to
tered field isO(M53), where the details for the structure of Note the similarities that exist between the two cases. The

the vortex, and not just its impulse, are required in order tdeading-order scattered sound field in the MAE framework

determine the scattered sound field. The situation is anald{€Pends in each case on a.single integrgted q‘,Ja”titY of the
gous to that of FLS, where, in two dimensions, the Ieading_vortex, namely, the impulskin the three-dimensional case

order scattered sound field depends only upon the circulatioﬁnd. the_ cwculauon in the two-d|mer_15|onall case. Moreover,
of the vortex. orcing is present in the wave equation satisfied by the scat-

For times longer tharO(1), there is no difficulty, in tered sound, implying that in both cases the velocity due to

. . ] the vortex is significant in the wave region. This is, at first
principle, in allowing the vortex to move through an order-

it b f incident i lenaths. Th ight, surprising, since the velocity associated with the vor-
unity number of incident acoustic wavelengins. 1he Use oy, decays more rapidly with distance in three dimensions

the acoustic analogy method for computing tr21e scattereghan in two, but scattering occurs in the three-dimensional
sound field is the_n valid prowded_ velociti€3(M<5) and _problem atO(M*8)—two orders inM higher than in the
smaIILtJar do not actin a secula_r fashion, sio that the_a}ssumpt'%rresponding two-dimensional problem—and so in both
[J=J"[=0(M¥) holds over timesO(M ™). In addition, it proplems there is significant scattering by flow ov@f1)
must be possible to define a vortex center that propagat@goustic wavelengths, as well as flow on the scale of the
smoothly, with order-unity velocity but relatively smaller ac- yortex. Finally, the method presented here can be applied to
celeration. It is certainly possible to meet both of these conthe two-dimensional case and the results match those of FLS,
ditions if the flow in the vortex is both laminar and stable to showing that the leading-order result for the scattered sound
small-amplitude perturbations. However, for unstable flowsfield holds also for unsteady flows in two dimensions.
it may be that the dynamics of the vortex is sensitive to the ~ The solution to three-dimensional problems is poten-
perturbations introduced by the incident acoustic wave, andally more important to applications and experiments than
s0(136) may not hold. the two-dimensional ones. The solutiti32) takes a simple
A further limitation of the present analysis is that the form and could form the basis for experimental work. As in
Lighthill radiation emitted spontaneously by the vortex isthe two-dimensional problem, in which the dominant re-
formally larger in amplitude-©(M?3) in the farfield—than sponse was determined by the circulation, any attempts to
the scattered wave field which @(M*5). Lighthill radia- ~ use inverse measurements to probe the inner structure using
tion is expected to occur for almost all vortical flows, and solong-wavelength acoustic waves are limited by the fact that
an attempt to measure sound scattered from a vortex is likelfhe dominant response here is determined entirely by another
to be swamped by noise being emitted by the vortex. It mayntegrated property of the vortex, namely the vortex dipole
be possible to select a frequency at which Lighthill radiationm™oment.
is negligible, so that the scattered wave field can be detected,
despite the fact that its magnitude is a fadB(M ) smaller =~ ACKNOWLEDGMENTS
[aﬁd pgwgr a facto@(M 2% smglleﬂ than that'of the Light-. This work was started at the Woods Hole Oceanographic
hill rad|a_t|or_1. Also, if the acoustic frequency is low, the dif- Institution 1999 Summer School for Geophysical Fluid Dy-
ference in time scales between generated and scattered sOYighics. The order of authors is the reverse of the order in
may also make distinguishing the two possible. FLS, which was determined by a random event. Rupert Ford
Vortices that are stationary, or propagate without agied suddenly on March 30, 2001, without seeing reviews of

change of shape, do not exhibit Lighthill radiation. One suchhe original version of the manuscript, which was revised by
example is Hill's vortex. In Part ff we calculate the scat- Stefan Llewellyn Smith.
tered sound field using the full asymptotic procedure de-
scribed here. We show that, for Hill's spherical vortex, the \ppENDIX A: FAREIELD FOR Uo
assumptior{136) is valid, and so the scattered sound field for _ .
Hill's vortex is correctly predicted by the acoustic analogy  In this appendix, we show that
approximation, even for time®(M ~1). 1
There are two principal differences between the present Up=— Ef O(E )XV (171 =& V™t
case of scattering by a three-dimensional vortex and the
much studied case of scattering by a two-dimensional vortex + ¢ g’:nggr‘l)d3§’ +0(r 9 (A1)
filament. One difference is that, in the three-dimensional b din the f fth i ¢ lar field
case, an expression for the scattered field in the wave regio‘ﬁig detexpr_esse In the o_rm(: t_te gradient of a scalar field,
exists that is valid for all scattering angles. This contrastg"¢ G€tErMIne an expression for . . _
. . . ) . . . To treat the first of the two terms ifAl), it proves
with the two-dimensional case, in which a special parabolic-
. . . .. “helpful to note that
shaped region exists about the forward scattering direction.
The other difference is that in the three-dimensional case the 4 d _ [
scattered field can be expressed as a sum of monopole, 1= ga_gi[gi &wi(§)]= o &)+ ékwi(9)].

pole, and quadrupole wave fields, whereas in the two- (A2)
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Hence, we have

Eljk 0&, fd 3 w](f )§| (95

1 d 1
=27 ik &_gfkj dsg,(iwj(g)
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§ 58 9"

1
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2
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43&%5 )fdf[fxwfum

(I -Vr ), (A3)

T 4n déi

wherel is given by(12).
To treat the second of these two, we use a similar devic
We first observe that
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Hence
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where
1
=—§f ElEXo(E)]d". (AB)
Thus
1 I -
=2-va-vr 14+ :VVr H+0(r %, asr—o,
(A7)

as required.

APPENDIX B: EVALUATION OF @°®,/dt?| o125

We shall first evaluatel®l/dt? to O(M?26). To do this,
we have

S. G. Llewellyn Smith and R. Ford

1d

1
3 _ 3
>dt XX wd°x= 2[ XX[VX{(u—v)Xw}]d°x

= J uv-ud3x.

This is valid providedu?=o(r ~2) asr—o, which is valid
up to O(M25). Then

Ju
3 . 3
dt2 f V-ud x+qu—atdx.

0 andug;=0, we have

(B1)

(B2)

Now, usingV-uy=

doUg doUz1
j V- u21d3x+f uoV-

d®x.

)
dt o(M25)

(B3)
The first of the two integrals on the right-hand side of
(B3) vanishes, becaudg= [uyd3x= 3/ xXwd*x=1 is con-
served to leading order in time. The second can be simplified

%o o0 give

d?l

a2 (B4)

= w’poyl.
o(M25)

Now, recalling thatR depends on time througR=|X
Xc|, the first derivative ofb, with respect to time is

by 1d|V1 1IMV'VV1
ot 4xdt \R] 4z U VU\R/)

4
SinceV is independent of by assumption, it follows that
the only contribution to?®,/t?> at O(M?5) comes from
differentiatingl again with respect to time in the first term on
the right-hand side ofB5), and so

(B5)

1 d?l
™ di2

D,
at?

1 2
Y ﬁ =w p01¢)2. (BG)

o(M25) o(M26)
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