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ABSTRACT OF THE DISSERTATION 

Deep Brain Signal Transmission in Response to Exogenous Stimulation  

in Children with Dystonia 

by 

Jessica Sofie Louise Widmark Hillman 

Doctor of Philosophy in Biomedical Engineering 

University of California, Irvine, 2023 

Professor Terence D. Sanger, Chair 

 

Dystonia is a movement disorder that causes involuntary twisting and repetitive movements, 

which can impede the patient so much that they are unable to lead independent lives or even 

communicate clearly with the people around them. In recent decades, exogenous electrical 

stimulation, including deep brain stimulation (DBS) and peripheral nerve stimulation (PNS), has 

shown promising results in the treatment of movement disorders caused by abnormal neural 

activity. However, as with any tool, exogenous electrical stimulation is only as useful as its 

operator is skilled, and for optimal use, the operator must both know what to do, and how to do so. 

By studying the abnormal signal flow that causes dystonia, we can understand what needs to be 

fixed, and by studying the effects of electrical stimulation on the dystonic brain, we can learn how 

to control the response pattern to generate the desired effect for each individual patient.   

I aimed to contribute to these topics by studying neural recordings from stereo-

electroencephalography (sEEG) electrodes in thalamic nuclei and basal ganglia of pediatric 

patients with dystonia during intracranial and peripheral electrical stimulation. My results were 

multifold, highlighting the complexity of the brain’s response to exogenous stimulation.  
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I found that the initial transient neural response to exogenous stimulations differs from 

long-term steady state responses to constant stimulation, and that DBS evoked potentials (EPs) 

can be affected, in a highly heterogeneous way, by the intake of medications. I discovered novel, 

intricate, yet highly consistent EPs, and unearthed trends in how DBS EPs and their delay, 

amplitude, and even shape depends on the stimulation frequency. I helped generate models to 

describe the observed neural responses and even discover connections between invasive 

neurophysiological recordings and non-invasive imaging methods. 

These results were made possible by my extensive work put into developing methods to 

accurately process the data, remove noise and artifacts, and automate processes wherever 

possible to reduce bias and save time for further analyses. Through these methods alone, I hope to 

have contributed to the field of engineering for an extended time to come. 

While we may still just be scratching the surface, I am confident that my dissertation 

research has at least made a solid dent in the casing that holds the secret to using exogenous 

stimulation to elicit the optimal clinical effect for children with dystonia and other movement 

disorders. 
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INTRODUCTION 

Cerebral palsy, the most common etiology of secondary (non-genetic) dystonia, is the most 

frequent motor disability among children, with an incidence of two (2) out of every 1,000 live 

births [1]. Dystonia is a disorder that causes involuntary twisting and repetitive movements [2] 

that impede these patients’ lives to the extent that many are unable to walk on their own, feed 

themselves, or even communicate clearly. Although many studies have investigated the 

pathophysiology of dystonia [2]–[8], it is still unclear what in the brain gives rise to these 

symptoms, and medications to reduce them are not always effective.  

When this is the case, an alternative method called deep brain stimulation (DBS) has 

proven clinically effective, not only for dystonia [6], [9]–[11], but also for other movement 

disorders [12]. This treatment method delivers electrical pulses to deep brain regions, where they 

are believed to modulate neural activity and help reduce the pathological activity causing the 

symptoms. Although DBS has been used for decades, and despite its clinical success, its 

mechanism of action remains largely unexplained [6]. Similarly, ambiguities exist regarding the 

mechanism of peripheral nerve stimulation (PNS), a method that electrically stimulates peripheral 

nerves through the skin and has been proposed as a noninvasive treatment [13] for dystonia [14]–

[16] and other movement disorders [17]–[19]. This ambiguity, in combination with the difficulties 

determining the sources of the movement disorders to be treated, make it challenging to plan the 

ideal treatment for each patient. Hence, the aim of my research is to create a better understanding 

of signal flow in the dystonic brain and how it responds to electrical stimulation.   

We use DBS and stereo-electroencephalography (sEEG) leads as a tool to not only 

stimulate, but also record the brain’s response as it propagates throughout the brain. Through our 
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work with dystonic patients that have already been selected for DBS treatment, we gain valuable 

insight into the human brain directly, rather than through animal studies or computational models 

alone. Moreover, our innovative procedures provide us with unique opportunities to gather 

intracranial data from awake and unrestrained subjects over a span of days in our 

neuromodulation monitoring unit (NMU) – rather than minutes while the patient is temporarily 

awoken from anesthesia in the operating room, as is an otherwise common procedure [20]. This 

allows us to perform more and longer experimental protocols, providing insight into the brain’s 

transient (initial) as well as steady state (longer term) responses to both intracranial and 

peripheral stimulations. 

In order to extract useful information from the raw data, a fundamental process is data 

treatment. Because we have established a new approach that allows us to record and stimulate 

simultaneously, new signal processing tools needed to be developed, including artifact reduction, 

segment alignment, and modeling. These are topics that I have personally invested significant time 

into, to ensure that my final data interpretation is reliable. 

While the main focus of this dissertation revolves around neural responses to electrical 

stimulation, recorded from intracranial sEEG leads, we simultaneously record other data including 

cortical electroencephalography (EEG) and muscular electromyography (EMG), and also obtain 

anatomical and functional images including computed tomography (CT), magnetic resonance 

imaging (MRI), and diffusion tensor imaging (DTI). This multi-approach project provides me with 

the opportunity to generate even deeper insights into the neurophysiological function of dystonia, 

through collaborations with my fellow lab members who analyze these experiments and data 

types.  
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In the current “golden standard” of DBS therapy, even after the most promising DBS 

implant location has been selected, tedious programming of the ideal stimulation settings awaits 

the patient and their neurologist in the weeks and months after surgery. These programming 

sessions are composed of lengthy trial-and-error testing of different combinations of stimulation 

contacts, frequencies, voltages, and pulse widths. Furthermore, while thalamic stimulation can 

lead to improvements in symptoms within minutes, difficulty arises in basal ganglia targets, as 

DBS in these nuclei may not show beneficial results for the first few weeks or even months of 

stimulation. [6] 

My research aims to make this process of finding the ideal DBS targets and settings more 

straightforward, structured, and successful. In the future, it is possible that the ideal electrical 

stimulation treatment plan for each patient will be chosen by first determining what kind of 

neuromodulation one wants to achieve, and then selecting the stimulation settings that would 

achieve this desired result. However, in order to reach this ideal treatment approach, we must 

bridge the knowledge gaps of understanding (1) the mechanism and signal flow of the disorder to 

be treated and (2) how electrical stimulation modulates this signal flow [12]. While there is still a 

long way to go to bridge these gaps, my dissertation research has taken steps towards them – 

especially the latter – by developing improved and novel data processing tools, analytical 

methods, and models, and using these to gain insight into the dystonic brain and its response to 

exogenous stimulation. In this manner, my dissertation has the potential to provide significant 

contributions not only to the field of neuroscience, but also to engineering and medicine alike. 
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Chapter summaries 

The chapters in this dissertation were structured in a natural progression, starting “from the 

outside” and “moving in”, with Chapter 1 discussing the brain’s response to bursting peripheral 

nerve stimulation and introducing an artifact removal method that allows for confident evoked 

potential (EP) detection. Chapter 2 continues inwards, presenting novel DBS EPs – with higher-

frequency components than the “typical” DBS EP – that are only detectable when recording with 

high-impedance micro-contacts. Chapter 3 proceeds to outline an automated method to detect 

both these kinds of EPs, which makes use of polarity reversed stimulations and the artifact 

removal method presented in Chapter 1. The next two chapters investigate how these detected 

EPs are affected by not only stimulus frequency (Chapter 4), but also medications (Chapter 5). The 

final two chapters then present models to explain the mechanism that elicits oscillatory EPs in the 

basal ganglia (Chapter 6) and to relate DBS EPs with non-invasive imaging methods (Chapter 7).  

These chapters all build on each other to take several very important steps towards our 

ultimate goal of developing non-invasive methods to predict the DBS parameters and locations 

that will elicit the most effective treatment possible for childhood dystonia.  

Summary of Chapter 1: Novel decay artifact removal method reveals increasing consistency of 

thalamic response to repetitive peripheral nerve stimulation  

Using a method that I developed to remove stimulus decay artifacts (Figure 1, top), I analyzed 

thalamic recordings of neural responses to electrical burst stimulation of the median nerve in 12 

pediatric patients with dystonia. We found that the peripheral nerve burst stimulation induced 

increasing consistency of successive evoked responses in the thalamic nuclei for all burst 

frequencies (Figure 1, bottom), which we propose is due to progressive synchronization of small 
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populations of thalamic neurons, causing phase locking. Clinical efficacy could thus be due to 

“synchronization blockade”, in which the synchronized response of the population prevents 

transmission of intrinsic abnormal signals due to tremor or dystonia. Such enhanced 

understanding will increase the potential for use of peripheral stimulation as a noninvasive 

alternative or adjunct to deep brain stimulation. 

 

 

Figure 1. Summary figure for Chapter 1: Novel decay artifact removal method reveals increasing consistency of 

thalamic response to repetitive peripheral nerve stimulation. Top row: Simulated visualizations of the artifacts that my 

model can successfully remove: simple (left) and complex (right) exponential decay artifacts. Bottom row: Correlations 

between adjacent evoked potentials (EPs) increase with time during the stimulation bursts for each stimulus frequency 

and all studied thalamic nuclei. See Figure 1.1 and Figure 1.3 for full figure descriptions. 
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Summary of Chapter 2: Deep brain stimulation reveals high-precision temporal coding in 

basal ganglia and thalamus 

Novel high-frequency evoked potentials (HFEPs) consisting of frequency components up to 6 kHz 

were detected in high-impedance contact recordings from thalamus and/or basal ganglia in all 11 

dystonic subjects included in this study (Figure 2). These HFEPs (Figure 2B), which stand in stark 

contrast to the more common single-oscillation 1-2-kHz DBS EP (Figure 2A,D), are a sign of the 

complexity of the human brain’s response to DBS, and may be the result of local resonant circuits 

or synchronization of multiple axons. Conventional low-impedance electrodes were unable to 

record these HFEPs (Figure 2C), which means that high-impedance electrodes are required to 

accurately probe the human brain’s complex response to DBS. 

 

Figure 2. Summary figure for Chapter 2: Deep brain stimulation reveals high-precision temporal coding in basal 

ganglia and thalamus. Frequency analysis comparison of sample “regular” (A) vs. high-frequency EPs (B), both recorded 

from micro-contacts, and an equivalent “HFEP” recording from macro-contacts (C); bottom row: time-domain EP 

examples; top row: corresponding spectrograms. Corresponding PSDs (D) show the statistically higher power of the 

HFEP in the 2-6-kHz high-frequency band when compared to both the “regular” EP and the macro-contact recording. 

See Figure 2.2 for full figure description. 
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Summary of Chapter 3: An algorithm for automated detection of evoked potentials from 

polarity reversed electrical stimulation 

I developed a novel algorithm for automated detection of polarity reversed EPs (ADPREP), which 

uses the knowledge that switching the polarity of a pair of stimulating contacts reverses the sign 

of the stimulus artifact, but not the sign of the neural response. This algorithm can distinguish EPs 

of varying shapes and sizes with a high level of accuracy, as early as 0.35 ms after stimulation, 

despite large stimulus artifacts – even in same-lead recordings (Figure 3). The algorithm has 

proven useful in initial tests in hundreds of stimulation/recording combinations within the basal 

ganglia and thalamic nuclei during stimulation frequencies up to 250 Hz, and has promising 

applications in other modalities that allow for polarity reversal of the recorded stimulus artifact. 

 

Figure 3. Summary figure for Chapter 3: An algorithm for automated detection of evoked potentials from polarity 

reversed electrical stimulation. Examples of rejected (top) and detected EPs (bottom) using the ADPREP algorithm. All 

examples are taken from different subjects and stimulation/recording combinations (see inserts in each subplot). See 

Figure 3.2 for full figure description. 
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Summary of Chapter 4: Increased deep brain stimulation frequency increases delay, 

decreases amplitude, and reduces high-frequency components in thalamic and basal 

ganglia evoked potentials 

Preliminary results from this study of the effect of DBS stimulation on EPs found stimulation 

frequency to be negatively correlated with EP amplitude and positively correlated with EP delay; 

additionally, as stimulation frequency increases, high-frequency components of EPs seem to be 

suppressed (Figure 4).  These trends may be related to refractory periods and oversaturation of 

neural receptors when stimulations are delivered at shorter intervals. Our findings will help shed 

light on the dystonic brain’s frequency-dependent response to DBS and provide insight into how 

stimulation frequency can be used to generate wanted neural response patterns, in order to elicit 

the most effective clinical response to DBS treatment. 

 

Figure 4. Summary figure for Chapter 4: Increased deep brain stimulation frequency increases delay, decreases 

amplitude, and reduces high-frequency components in thalamic and basal ganglia evoked potentials. The decreased 

amplitude and increased delay for higher stimulation frequencies is clear both in the left plot and in the segment prior 

to 1.5 ms in the right plot. After 1.5 ms, the right plot also exemplifies how higher frequency EP components are 

sometimes suppressed at higher stimulation frequencies. See Figure 4.1 for full figure description. 
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Summary of Chapter 5: Effects of benzodiazepines on deep brain activity and deep brain 

stimulation evoked potentials 

We studied the effect of benzodiazepines (BZD) on deep brain regions both at rest and during DBS 

in pediatric subjects with dystonia. While the resting activity decreased significantly in all studied 

brain regions during BZD treatment (Figure 5, top), the effects on DBS EPs were more complex, 

with EP amplitudes significantly decreasing, increasing, or remaining similar depending on the 

connection (Figure 5, bottom). Our preliminary results indicate that changes in origin or target 

excitability due to BZD lead to changes in the effectiveness of communication between the two 

regions. This could in turn be responsible for changes in the overall pattern of activity, possibly 

interfering with or attenuating the transmission of the signals responsible for dystonia. 
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Figure 5. Summary figure for Chapter 5: Effects of benzodiazepines on deep brain activity and deep brain 

stimulation evoked potentials. Top row: Power spectral density (PSD) analyses for the deep brain nuclei in a sample 

subject: off benzodiazepines (black) versus on benzodiazepines (red). Activity was significantly reduced in all nuclei. 

Bottom row: Directed graphs showing the varied group effects of benzodiazepines on EP amplitude during 25-Hz (left) 

and 55-Hz DBS (right). See Figure 5.2 and Figure 5.4 for full figure descriptions. 

55-Hz DBS 25-Hz DBS 

Off-BZD 

On-BZD 

Off-BZD 

On-BZD 
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Summary of Chapter 6: Modeling oscillatory deep brain stimulation evoked potentials with 

phase oscillator networks 

We developed a network phase oscillator model to describe the mechanism behind DBS evoked 

oscillatory neural responses (EONRs). The model was trained with data from a pediatric primary 

dystonia patient during burst stimulation in globus pallidus internus (GPi). Not only did our model 

provide a good fit to the data (R2=0.80), but when tested on a contrasting data set with different 

stimulation parameters, it was able to predict a response similar to the ground truth, suggesting 

that it captures important features of the network dynamics (Figure 6). Personalized models like 

these, tuned for each individual, could provide a quantitative method for DBS target localization 

and stimulation tuning for DBS treatment of dystonic patients. 

            

Figure 6. Summary figure for Chapter 6: Modeling oscillatory deep brain stimulation evoked potentials with phase 

oscillator networks. Comparison of the empirical data (a & b) and simulations using the phase oscillator network model 

(c & d). The EONRs elicited throughout the bursts shown in a & c are superimposed in b & d (aligned to their 

stimulations) to emphasize how well our model captures the change in neural responses throughout the burst. See 

Figure 6.3 for full figure descriptions. 

b d 

a c 
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Summary of Chapter 7: Diffusion tensor imaging coefficients correlate with deep brain 

stimulation evoked potential amplitudes and delays 

Diffusion Tensor Imaging (DTI), a quantitative analysis method for evaluating white matter 

integrity, was implemented to study the correlation between DBS EP characteristics (amplitude 

and delay) and DTI coefficients: length, volume, and fractional anisotropy (FA) of fiber tracts 

(Figure 7). We completed a linear regression to generate a generalized linear model (GLM), the 

results of which showed that FA, tract length, and tract volume were significantly correlated with 

DBS EP characteristics. As such, our model validates DTI against ground truth electrophysiology, 

providing crucial and novel confirmation that EPs are affected by the brain’s white matter 

integrity. Such a mathematical model has the potential to predict DBS EP characteristics using only 

DTI coefficients, which would open new possibilities for cases when intracranial deep brain 

recordings are not possible or available. Down the line, such a model may even be able to infer 

neurophysiological connectivity, and possibly predict optimal DBS lead implant targets. 
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Figure 7. Summary figure for Chapter 7: Diffusion tensor imaging coefficients correlate with deep brain stimulation 

evoked potential amplitudes and delays. (A) Sample neural recordings from the micro-contacts in ventral oralis 

anterior/posterior (Voa/Vop) during 25-Hz DBS in globus pallidus internus (GPi). (B) Fiber tracking between macro-

contacts in GPi (stimulation) and micro-contact rows in Voa/Vop (recording) in one patient. (C) Scatter plots with trend 

lines showing correlations between EP characteristics and DTI coefficients. See Figure 7.4 for full figure description. 
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Dystonia: etiology 

Dystonia is a movement disorder characterized by limb twisting and repetitive movements, 

abnormal postures, or both, caused by involuntary sustained or intermittent muscle contractions 

[2] (Figure 8). Dystonia is commonly split into two types, depending on the underlying cause. 

When dystonia is the patient’s main impairment, typically of a genetic origin, the term “primary 

dystonia” is used. Contrarily, if the impairment is a result of an outside factor, such as hypoxic-

ischemic or traumatic brain injury, stroke, or toxins, it can be referred to as “secondary dystonia” 

[21]. While the signal flow responsible for dystonia is still unknown, theories include imbalances 

between midbrain dopaminergic and striatal cholinergic signaling, excessive basal ganglia or 

peripheral loop gain, abnormal patterns of subcortical activity, or a lack of focus of intended 

patterns of muscle activity [2]–[8]. In short, the motor symptoms of dystonia are thought to arise 

from abnormal neural activity. 

While we treat and study other disorders, our research focuses mainly on pediatric 

patients with secondary dystonia due to cerebral palsy.  
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Figure 8. Postures, movement difficulties, and gait abnormalities commonly seen among patients with dystonia. The 

children depicted above are all current or previous patients of Dr. Sanger and research participants of the Sanger Lab. 

Deep brain stimulation: for treatment and insight 

While peripheral interventions for dystonia exist, including botulinum toxin, assistive devices, and 

orthopedic surgery, these interventions do not target the source of the impairment. Centrally 

acting drugs, including benzodiazepines, levodopa, and baclofen, contrarily have the ability to 

modulate the abnormal neural activity underlying dystonia [6]. However, these medications come 

with common side effects including drowsiness or anxiety; for example, parents of our patients 

have previously voiced concerns that their child is “not there” while medicated. Moreover, the 

medications are not always effective in relieving the symptoms.  

In these cases, DBS has shown optimistic results through its past few decades of use [6]. 

DBS is a treatment method that involves implanting electrodes into carefully selected brain 

regions, where administered local electrical currents can change the way the brain processes 

information, without altering brain structure. While the mechanism of DBS is not yet fully 

understood, the underlying idea is that the electrical stimulations alter local neuron membrane 
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potentials. Depending on stimulation settings such as location, frequency, voltage, pulse shape, 

and pattern, the stimulation affects the brain differently, and can reduce or increase brain activity, 

locally as well as downstream [22]. 

Due to all these potential settings, benefits of DBS include not only the ability to treat 

dystonia at its source, but also the selectivity of such treatment when stimulating brain region 

sizes of the order of square centimeters. This high selectivity allows us to narrow in on specific 

target regions that have shown clinical efficacy in dystonic patients when lesioned or electrically 

stimulated. Such regions commonly include the basal ganglia and thalamus [23]–[27], two 

structures involved in sensorimotor control. 

Finally, one major added benefit of deep brain electrodes such sEEG leads (also referred to 

as depth leads) is their ability to, in addition to stimulate, record [20]. While long-term implanted 

DBS electrodes are typically used solely for stimulation, some short-term depth leads, such as 

those used in our studies, can be externalized by connecting their proximal extension to an 

amplifier, allowing for both recording and stimulation in the targeted brain region (Figure 9). This 

provides an invaluable opportunity to probe the deep brain regions postulated to be possible 

sources of dystonic symptoms, including basal ganglia and thalamic nuclei. For example, since GPi 

is an input to secondary thalamic nuclei, we can probe transmission of motor signals into these 

nuclei by recording their response to GPi DBS.  
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Figure 9. Visualization of the differences between externalized and implanted deep brain stimulation (DBS) 

systems. While closed-loop implanted DBS systems (using recordings to adjust stimulation settings) exist, most 

implanted DBS systems are open-loop (only stimulation, no recording). Externalized systems, contrarily, have the 

benefit of recording and stimulating simultaneously. 

While electrical stimulation is very different from the brain’s natural activity, exogenous 

stimulations allow us to gain insight into the brain’s hardware and signal flow, its response to 

electrical stimulation, and the mechanism involved. These insights could, in turn, have a significant 

impact on how dystonia is treated, and, in the near future, allow us to provide effective DBS 

treatment at a much greater accuracy than in the current day. 

Peripheral nerve stimulation: a non-invasive alternative to DBS 

A downside of DBS as a treatment for dystonia is its highly invasive nature, requiring brain 

surgery to implant the leads in the target brain regions. To avoid both invasive treatments and 

strong medications, PNS has been proposed as a noninvasive treatment method [13] (Figure 10) 
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to modulate neural activity at the subcortical level in subjects with movement disorders including 

essential tremor (ET) [17], [18], Parkinson’s disease (PD) [19], and dystonia [14], [15].  

 

Figure 10. Visualization of peripheral nerve stimulation (PNS). Stimulation is provided over peripheral nerves, e.g. on 

the wrist (as shown above). Neural responses travel to the brain, where they can have modulatory effects on abnormal 

neural activity in patients with movement disorders. 

Moreover, when used in combination with DBS recordings, PNS allows us to explore the 

transmission of sensory information to primary nuclei in the brain. Prior work has shown that 

there is a robust evoked response to PNS in sensory thalamic nuclei, including the ventral 

intermediate nucleus (VIM) and the ventral posterolateral nucleus (VPL) [16], [28]–[31], likely 

mediated through cerebello- and spinothalamic pathways. This response has led to the conjecture 

that PNS could have a similar effect to thalamic DBS, and might thus ameliorate movement 

disorders where intracranial thalamic stimulation has been effective.  
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However, similarly to DBS, the mechanism of PNS as a treatment is not yet clear, and as 

such, insight into its mechanism of action and effect on the nervous system would aid in the 

development of more effective treatments.  
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GENERAL METHODS 

Patient selection 

Subjects for clinical DBS surgery were chosen based on the inclusion criteria of all of the following: 

presence of movement disorder, significantly limiting or interfering with normal function or care; 

potential stimulation targets, identifiable with MRI; and low success from symptomatic or 

etiologic medical therapy. Prior to the study, the subject and parent(s) consented, or assented as 

applicable, to the research use of electrophysiological data collected during the clinical procedure 

and completed a Health Insurance Portability and Accountability Act (HIPAA) authorization for 

the research use of protected health information. All research use of data was approved by the 

institutional review boards of Children’s Hospital Los Angeles (CHLA) and Children’s Health 

Orange County (CHOC). 

Data from a total of 36 pediatric patients were available for use in my analyses, with 16 

being collected with my help during the course of this dissertation research.  

Data collection 

The experimental protocol took place in the hospitals’ inpatient NMU [20]. During surgery to 

establish optimal permanent DBS lead placement, up to 10 temporary sEEG leads were implanted 

into potential deep brain targets, identified prior to surgery through a collaborative consultation 

between the departments of Neurology and Neurosurgery at CHLA or CHOC. Typical target areas 

included basal ganglia (e.g., GPi and the subthalamic nucleus, STN) and thalamus, with its sensory 

(primary) nuclei (e.g., VIM and VPL) and motor (secondary) nuclei (e.g., ventral oralis 
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anterior/posterior, Voa/Vop, and ventral anterior, VA) (Figure 11). These areas were selected due 

to prior studies of clinical efficacy in dystonic patients when lesioned or electrically stimulated 

[23]–[27]. Each implanted and externalized Ad-Tech MM16C sEEG lead (Ad-Tech Medical 

Instrument Corp., Oak Creek, WI, USA) consisted of 6 low-impedance ring electrodes referred to as 

“macro-contacts”, and 10 small high-impedance circular electrodes referred to as “micro-contacts” 

(Figure 12). These intracranial leads were linked to the amplifier inputs via Tucker-Davis 

Technologies Cabrio™ (TDT, Tucker-Davis Technologies Inc., Alachua, FL, USA) connectors 

modified to include a custom unity-gain preamplifier for each microelectrode to reduce noise and 

motion artifacts. 

 

Figure 11. A 3D rendering based on co-registered CT and MRI images from an individual patient. Implanted sEEG 

electrodes are visualized in common target areas: VIM (pink), Voa/Vop (blue), STN (green), GPi (red), and globus 

pallidus externus (GPe, yellow). 
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In the 2-5 days following lead implantation, after allowing the patient to fully recover from the 

effects of the general anesthesia administered for surgery, clinical and scientific testing and data 

collection were performed with the patient awake and unrestricted. Data were recorded through 

micro-contacts, sampled at ~24 kHz and band-pass filtered at 0.3-9 kHz.  

 

Figure 12. Schematic of the Ad-Tech MM16C externalized sEEG leads used in the NMU. Each lead contains six (6) low-

impedance ring electrodes, referred to as “macro-contacts” (large gray squares), and ten (10) small low-impedance 

circular electrodes (small gray dots), referred to as “micro-contacts”. In our studies, macro-contacts were used for 

stimulation and micro-contacts for recording. 

Recordings were gathered using either a system consisting of a PZ5M 256-channel digitizer, an 

RZ2 processor, and an RS4 high speed data storage (TDT), or a NeuroOmega™ 96-channel system 

(AlphaOmega Co USA Inc., Alpharetta, GA, USA). 

Stimulation protocols 

Electrophysiological brain responses to external stimulation, termed evoked potentials (EPs), are 

commonly classified as either transient or steady state [32]–[35]. This distinction is important 

because the brain is not a linear system; hence, the study of both immediate and prolonged 

responses to external stimuli are important to gain a complete view of the brain’s function [35]. 

Because of this, two main stimulation patterns were used in this dissertation research. Repetitive 

constant stimulation allowed us to study the average, i.e., steady state neural response, whereas 
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stimulation bursts separated by brief periods without stimulation let us probe the initial build-up 

of the brain’s response through each burst, i.e., the transient response. The latter is a less 

commonly used stimulation pattern that allows unique insight into the dynamics of the neural 

response. 

Intracranial constant & burst stimulation  

The constant intracranial testing protocol consisted of stimulations of 90-us, 3-V charge-balanced 

pulses at frequencies ranging from 9-250 Hz (9, 25, 55, 85, 185, or 250 Hz), administered through 

two adjacent macro-contacts (anode and cathode) at a time. Approximately 1200 repetitions or 15 

seconds of stimulation (whichever was greatest) were administered per stimulation frequency, 

after any voltage ramping was complete (relevant only at higher frequencies). Stimulations were 

typically administered through a total of two to three contact pairs on each sEEG lead.  

For artifact cancellation purposes, both “cathodic” and “anodic” stimulations were 

performed for intracranial stimulation. That is, the two stimulation contacts (“A” and “B”) were 

stimulated as A+B- (A=anode; B=cathode), and then B+A- (B=anode, A=cathode), with the results 

averaged in the subsequent data analysis. This polarity reversal technique takes advantage of the 

nonlinearity of the neural response by inverting the polarity of the stimulation artifact, while 

preserving the polarity of the evoked potential. Therefore, the inverted cathodic and anodic 

stimulation artifacts not only help distinguish artifacts from neural responses, but also cancel each 

other out to reduce artifact contamination in the average response – which is especially helpful in 
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recordings with short latency EPs.1 Intracranial constant stimulation data were available from 36 

patients. 

The intracranial burst stimulations were instead provided in 100-ms bursts, separated by 

100 ms without stimulation, with within-burst frequencies ranging between 50-250 Hz, either in 

multiples of 50 Hz (Figure 13), or at frequencies matching constant stimulations (e.g. 55, 85, or 

185 Hz). The repetitive bursts separated by off-stim periods allowed us to study the brain’s 

transient (initial) response to DBS. Intracranial burst stimulation data were available from 12 

patients. 

 

Figure 13. Visualization of burst stimulations. 100-ms bursts of stimulation were separated by 100 ms without 

stimulation. The above examples show within-burst frequencies of 50, 100, 150, 200, and 250 Hz (from the top down).  

 
1  It should be noted that because the cathode acts as the active electrode, and the anode as the returning electrode, 
this polarity reversal technique effectively leads to a slight shift in stimulation location (5 mm, the distance between 
the stimulated macro electrode pairs). Therefore, the final averaged response of the two stimulation types is, in fact, 
an average of stimulations at two different locations, which may lead to slight timing or amplitude differences 
between the two. 
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Peripheral constant & burst stimulation 

Peripheral stimulation was applied to the median nerve at the wrist through 1-cm adhesive disk 

electrodes, with the cathodic electrode placed proximally. Current-controlled stimulations were 

provided through a STMISOLA isolated stimulator (Biopac Systems Inc., Goleta, CA, USA), driven 

by a pulse train generated by a Power1401 digital to analog converter (Cambridge Electronic 

Design Inc., Cambridge, UK).  

Peripheral stimulations consisted of biphasic stimulation pulses, provided both at a 

constant frequency of 5 Hz and in stimulation bursts equivalent to the intracranial burst protocol 

(50-250 Hz; 100 ms on, 100 ms off; Figure 13).  For each stimulation frequency and type, the 

amplitude of the stimulus was slowly increased until a palpable twitch was evoked in the subject’s 

thenar muscles, unless the subject experienced discomfort before this motor threshold; in this 

case, the highest amplitude without patient discomfort was used. Thereafter, four minutes of 

stimulation were performed for each frequency and on each wrist, generating approximately 1200 

stimulation bursts per condition.  

PNS allowed us to study neural transmission from peripheral nerves to sensory thalamic 

motor nuclei, and was available from 26 patients. 

Data treatment 

All data treatment was performed in MATLAB (The MathWorks, Inc., Natick, MA, USA). The 

recorded neural activity was defined as the relative response between two nearby contacts (i.e., 

local bipolar recordings) and was time-averaged and time-locked to a stimulus artifact. To ensure 

accuracy and avoid time delays in synchronization pulses between different equipment, the 
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stimulus time was identified by looking for the occurrence of stimulus artifacts in the recorded 

data.  

The raw data were upsampled, searched for stimulus artifacts, and split into segments (200 

ms wide for burst data, and 11 ms for constant stim data). All ~1000 segments not flagged as 

outliers were then aligned to each other through cross-correlation of an artifact, defined as time 

“0”, and finally averaged. This stimulus-triggered averaging procedure greatly increased the 

signal-to-noise ratio (SNR) of the final average response.  

If both cathodic and anodic stimulations were administered, the above process was 

repeated for both stimulation types, the results of which were finally averaged to obtain a 

stimulus artifact-reduced neural recording. 

Parameters of interest 

After data treatment, neural responses to electrical stimulation could be clearly identified by their 

substantial deviation from baseline neural activity. These EPs were then characterized by their 

peak-to-peak amplitude (P2P), time-to-(first-)peak delay (T2P), and shape (Figure 14). This 

provided quantitative measurements of EPs, which I used in my analyses to investigate how the 

basal ganglia and thalamic neural response to exogenous electrical stimulation differed based on 

stimulation patterns and frequencies, between different stimulation and recording regions, in 

different conditions, and over time.  
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Figure 14. Example of an evoked potential, denoting its delay and amplitude. The T2P delay is measured as the time 

from start of stimulation (time 0) to the (first) EP peak, while the P2P amplitude is measured from peak to peak. This 

EP example is from intracranial stimulation, hence the rapid delay of <1 ms. Median nerve PNS EP delays typically 

range from ~10-20 ms due to the transmission time required from the wrist to the brain. Dashed red and blue lines are 

stimulus-triggered averages of the cathodic and anodic stimulation types, respectively, with shaded standard deviations; 

solid red and blue lines are the signals after removal of decay artifacts (see Chapters 1 & 3 for more details on the decay 

artifact removal method); solid black lines are the average between the decay artifact-reduced cathodic and anodic 

signals. Stars denote the detected positive and negative peaks of the labeled evoked potentials.  

Delay

Amplitude
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CHAPTER 1:  NOVEL DECAY ARTIFACT REMOVAL METHOD REVEALS 

INCREASING CONSISTENCY OF THALAMIC RESPONSE TO REPETITIVE 

PERIPHERAL NERVE STIMULATION 

I here introduce an artifact removal method that enabled us to detect an increasing consistency of 

thalamic neural responses during bursting PNS. This chapter is a reprint of the text and figures 

from my first-author publication “Increasing consistency of thalamic response to repetitive 

peripheral nerve stimulation” from 2021 [36]. My contributions to this paper included 

investigation, data curation, software, formal analysis, validation, writing (original draft as well as 

review and editing), and visualization [37]. Some text and figures have been rearranged or 

omitted to preserve the flow of this dissertation. 

1.1 Abstract  

Objective. Peripheral nerve stimulation has been proposed as a noninvasive treatment for patients 

with movement disorders such as essential tremor, Parkinson’s disease, and dystonia. While the 

outcomes have shown clinical effect, the mechanism behind the effect is not yet clear. The goal of 

this work was to study the brain’s responses to peripheral stimulation bursts and explain the 

therapeutic results. Approach. We performed peripheral stimulation of the median nerve(s) in 12 

pediatric patients undergoing deep brain stimulation for dystonia. Stimulation was given in bursts 

(50-200 Hz stimulation in blocks of 100 ms, separated by 100 ms without stimulation) while 

intracranial activity was simultaneously recorded from stereo-electroencephalography leads 

implanted in thalamic nuclei. After using a novel method to remove stimulus decay artifacts, 

sequences of neural responses during and after the bursts could be analyzed. Results. Peripheral 
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burst stimulation induced increasing consistency of successive evoked responses in thalamic 

nuclei. Significance. We propose that this phenomenon is due to progressive synchronization of 

small populations of thalamic neurons, so that over time there is phase locking of the response in 

an increasing number of neurons in the population. Clinical efficacy could thus be due to 

“synchronization blockade”, in which the synchronized response of the population prevents 

transmission of intrinsic abnormal signals due to tremor or dystonia. Further studies are 

necessary to confirm this model of clinical effect. Enhanced understanding will increase the 

potential for use of peripheral stimulation as a noninvasive alternative or adjunct to deep brain 

stimulation. 

1.2 Introduction 

Neural responses generated by electrical stimulation are commonly mixed with stimulus artifacts 

[38], [39]. While these artifacts can serve as a marker to aid in alignment of neural responses with 

their respective trigger, electrical stimulations often cause problems, not only by saturating the 

recording contacts, but also because the capacitive components in the contacts give rise to a 

capacitive discharge phase, prolonging the time required for the recording contact to return to 

baseline [39]. This complexity of stimulus artifacts may explain why many PNS studies use low-

frequency stimulation (<10 Hz), allowing for ample time between stimuli [31], [40]–[43]. 

However, while the saturation period typically leads to a complete loss of neural 

recordings, neural responses generally can be recorded during the capacitive discharge phase 

after the saturation period. The concern here is instead separating the neural activity from this 

“decay artifact”. Decaying exponential models have been previously implemented to remove decay 

artifacts [44], [45], and have proven more successful at removing artifacts than other common 
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methods, including independent component analysis (ICA).2 Expanding on these models, we here 

present a novel method that incorporates complex exponentials to fit to and accurately remove 

oscillating decay artifacts.3 This method allows us to reduce the stimulus artifact influence and 

avoid noise distorting the recorded neural response.  

The robustness and reliability of the method were tested on sEEG recordings from thalamic 

nuclei during high frequency peripheral stimulation in pediatric patients with movement 

disorders, including generalized dystonia and hemidystonia. The results promote the method’s 

ability to extract clear neural responses, not only after the last pulse in the burst, but also between 

pulses, in studies with high-frequency stimulations. Furthermore, results show a new 

phenomenon of progressive increase in consistency, consistent with a model of neural population 

synchronization in response to repetitive stimulation. 

1.3 Materials & methods 

1.3.1 Patient selection 

Data from 12 pediatric patients (7 male, 5 female, 6-20 years old, median age: 16) were used in 

this study (Table 1.1).  

  

 
2  The stimulus artifact and the evoked potential always correlate, since one causes the other. Hence, ICA is 

inherently not an applicable approach for stimulus artifact removal. 
3  The decay artifact shape is affected by factors including stimulation and recording contacts, and may also vary 

between subjects.  
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Table 1.1. Demographic characteristics of the 12 subjects included in the PNS study.  

Subject Etiology Characteristics Gender Age [Years] Stimulated wrist(s) 

1 Kernicterus  Dystonia F 19 L, R 

2 Stroke, secondary to Hemolytic 

Uremic Syndrome 

Dystonia F 6 L, R 

3 Cerebral Palsy Dystonia M 20 L, R 

4 Cerebral Folate Deficiency  

(diagnosed Cerebral Palsy) 

Dystonia M 8 L 

5 Primary Dystonia (ADCY5) Dystonia M 10 L, R 

6 Unknown (possibly Vasculitis) Left hemidystonia M 15 R 

7 Cerebral Palsy Dystonia F 15 L, R 

8 Cerebral Palsy Dystonia M 20 L, R 

9 Cerebral Palsy Dystonia M 18 L, R 

10 Kernicterus  Dystonia M 19 R 

11 Cerebral Palsy Dystonia F 16 L, R 

12 Primary Dystonia (DYT1) Dystonia F 16 L, R 

Abbreviations: F, female; M, male; L, left; R, right. 

1.3.2 Peripheral burst stimulation 

Peripheral stimulation was applied to the median nerve at the wrist in the manner described 

previously in the General Methods: biphasic pulse stimulations were administered in frequencies 

of approximately 50, 100, 150, and 200 Hz, active in 100-ms bursts, separated by 100 ms without 

stimulation (Figure 13, General Methods). 

1.3.3 Data treatment 

The data were upsampled, searched for stimulus artifacts, and split into ~1000 segments, which 

were finally stimulus-triggered averaged to increase the SNR of the final average response. 
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1.3.4 Artifact removal 

After data treatment, decay artifacts were removed. For non-oscillatory “simple” exponential 

decay artifacts (Figure 1.1A), we concur with [45] that the addition of two separate exponential 

decays is necessary to accurately model the capacitive discharge. Hence, the following simple 

exponential decay artifact model (SEDAM) was used to fit to and remove these types of decay 

artifacts: 

 SEDAM := A1eλ1t + A2eλ2t + C (1.1) 

where A1 and A2 denote the amplitudes and λ1 and λ2 the decay constants of the two exponential 

components, and C denotes the baseline offset.  

However, for oscillating decay artifacts (Figure 1.1B), the simple exponential does not 

suffice to model and remove the artifact. Hence, we here present a novel artifact removal method, 

which uses the complex exponential αeβt [46], where α and β are complex numbers, and the 

magnitude of α is denoted as A: 

 α = |α|eiθ = Aeiθ (1.2) 

 β = λ + iω0 (1.3) 

Expanding the exponential using Euler’s formula, 

 eiφ= cos(φ) + i sin(φ), (1.4)  

and using the definitions from Equations 1.2 and 1.3, the complex exponential can be separated into 

real and imaginary components: 

αeβt = Aeiθe(λ+iω0)t = Aeλtei(ω0t+θ) = Aeλt(cos(ω0t+θ) + i sin(ω0t+θ)) = 
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 Aeλt cos(ω0t+θ) + i Aeλt sin(ω0t+θ) (1.5) 

 Re(αeβt)                     Im(αeβt) 

For our purposes, only the real component of the complex exponential, corresponding to a 

damped oscillator, is relevant for the modeling of the decay artifact. Similar to the simple 

exponential model, a combination of two real complex exponentials was necessary to accurately 

model all oscillatory decay artifacts in our data, leading to the final definition of the complex 

exponential decay artifact model (CEDAM): 

 CEDAM := A1eλ1t cos(ω01t+θ1) + A2eλ2t cos(ω02t+θ2) + C (1.6) 

where, similar to the simple exponentials, A1 and A2 denote the amplitudes of the two complex 

exponentials, λ1 and λ2 the decay constants of the respective exponential components, ω01 and ω02 

the angular frequencies of the respective sinusoidal components, and θ1 and θ2 their angular 

offsets. C denotes the baseline offset. 

 

Figure 1.1. Simulated visualizations of simple and complex exponential decay artifacts, and how they can corrupt the 

underlying neural response. Common types of decay artifacts (orange traces) can complicate the detection of the 

underlying neural response (yellow) from the raw recording (blue). Plot (A) portrays a recording with a simple 

exponential decay artifact, while (B) shows a complex exponential decay artifact. The gray box highlights the region 

where the stimulus artifact saturates the recording contact, during which the contact is unable to record neural activity. 

(A) (B) 
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Note that in order to prevent overfitting to the neural response, rather than fitting to just the 

decay artifact, the fit should ideally only be based on the segment before the first EP. Using this 

first fit to remove all stimulus artifacts in the burst ensures that the fit is only based on, and hence 

will only remove, components due to the stimulus artifact.4 

Hence, the appropriate decay artifact removal model (simple or complex exponential) was 

fit to the data segment that extended from the end of the first stimulus artifact’s saturated region 

until the (expected) EP or the next stimulation, whichever came first. This fit was then used to 

remove the decay artifacts throughout the whole burst, when suitable.5 After removal of the decay 

artifacts, the saturated regions of the stimulus artifacts (from 0.3 ms before to 2.8 ms after the 

start of the stimulation) were interpolated, and the average segment was high-pass filtered with a 

cutoff of 50 Hz. The saturated regions were thereafter blanked for visualization purposes. R2 

values were calculated between the decay artifact fit and the data segment used for fitting to 

determine goodness of fit (GoF).  

1.3.5 Evoked potential characterization 

Due to differences in impedance and target region accuracy6 between the contacts on each DBS 

lead, some contact recordings displayed clearer EPs than others. Hence, for each subject, 

hemisphere, and recording region, if multiple EPs were visually detected, the contact combination 

with the clearest response was used in the subsequent analysis. 

 
4  This assumes that the decay artifacts of all stimulations in the burst are identical. This is, however, generally a fair 

assumption, considering that they are generated by stimulations of the same shape and size, originating from the 

same contacts, and recorded from the same contacts. 
5  In the rare cases that the first fit was not a good approximation of the subsequent decay artifacts, individual fits 

were implemented and removed. 
6  The length of the DBS lead is typically larger than the target brain region, which may cause some contacts to be 

outside the target region. 
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After visual inspection, an SNR threshold of 0.8 was empirically selected to automate the 

process of including only clear data samples: only those recordings containing at least one EP 

above this threshold after detrending were included in the analysis.  

1.3.6 Analysis methods 

The synchronization change throughout each burst was investigated by calculating the cross-

correlation between each adjacent EP7. The trend of cross-correlation between adjacent EPs 

throughout each burst frequency was determined and tested for a monotonic trend in a 

population analysis using the seasonal Kendall test [47]. 

The analysis above was also repeated after adding white noise to higher-amplitude EPs to 

make all EP SNRs in each burst equal (or equal to 1, whichever was greatest). This allowed us to 

test if any of the observed correlation trends were merely attributed to differences in SNR 

between EPs, and would hence disappear when SNR was equal. 

1.4 Results 

The dual exponential fit methods (SEDAM and CEDAM) successfully modeled and removed the 

decay artifacts of both simple and complex exponential shapes (Figure 1.2), with R2 measures up 

to and greater than 0.99, allowing for clear analysis of the underlying within-burst EPs.  

 
7  To ensure equivalent comparisons, only data regions containing EPs after stimulations (and of equal overlap, if 

applicable) were included in the analysis.  
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Figure 1.2. Removal of simple and complex exponential decay artifacts. Complex (A, B) and simple (C) exponential 

decay artifacts can be accurately removed with the methods described in this paper (left plots), to unveil the underlying 

neural responses (right plots). In each group of plots (A, B & C, respectively), the top left plot shows the underdamped 

oscillatory decay artifact fit (black dashes) under the original data (gray), from 50-Hz (A) and 100-Hz (B & C) 

(B) 

(C) 

(A) 
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stimulation bursts. When the decay artifact is removed, the underlying neural responses can be seen (bottom left plots, 

black tracings). The right-most plots show the EPs from each stimulation in the burst overlayed to highlight their strong 

correlation. The example in (B) in particular demonstrates how basing the fit on the data before the first EP avoids 

overfitting to EPs, removing only decay artifacts and leaving EPs intact. Note: stimulus artifact saturated regions have 

been blanked. Abbreviations: CEDAM/SEDAM, complex/simple exponential decay artifact model.  

For all investigated frequencies and recording regions, significant monotonic increases in cross-

correlation throughout the burst were detected (Figure 1.3, top), indicating progressively 

increasing consistency in EP shape. Even after adding noise to even out the SNRs of the EPs within 

each burst, significant monotonic increases in consistency were seen for all recorded regions and 

frequencies, with only one exception8 (Figure 1.3, bottom). 

 
8  This exception displayed a p-value of .0532, just above the significance threshold of 0.05. 
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Figure 1.3. Correlations between adjacent evoked potentials (EPs) increase with time during the stimulation bursts. 

Correlation trends from all subjects & hemispheres were normalized before calculating mean (lines) and standard 

deviation (shadings) for each stimulation frequency group (subplot titles). In addition to studying the original data 

(top), white gaussian noise was thereafter added to make EP SNRs equal through each burst (bottom). Statistical 

monotonic increases in correlation were seen in all recording locations (VIM, green; VPL, blue; Voa/Vop, red) and over 

all stimulation frequencies, except in the highest frequency of noise-added Voa/Vop results (p=.0532). The significant 

increases in correlation are shown by the positive and significant tau value results from the seasonal Kendall test 

(listed in the bottom of each subplot). The consistent results, even after adding gaussian noise, insinuate that mere 

increased EP amplitude (and hence, SNR) is not the sole reason for the observed correlation increases.  Symbols: τ, 

Kendall’s tau (measure of monotonic strength); *, p<0.05; **, p<0.01; ***, p<0.001; N, number of samples (subjects and 

hemispheres) with clear EPs. 
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1.5 Discussion 

Many studies display difficulties in removing decay artifacts [28], [40]–[43], [48], generating 

unusable data portions that our novel method could greatly reduce. Our results show the 

reliability and accuracy of the presented decay artifact removal method, which allows us to detect 

EPs during high-frequency stimulation. In addition to the very high GoF measures, the similarities 

of the EPs to previous studies (e.g. [40]–[43]) along with the electrical basis of the artifact model, 

differing from typical EP shapes and models, provide even stronger proof of success. We also 

highlight the importance of fitting to the decay artifact portion before the first EP whenever 

possible (Figure 1.2C), which ensures that the fit is only based on, and hence will only remove, 

artifactual components of recordings.  

Using this new method for stimulus artifact removal, we have shown that there is a 

consistent pattern of evoked responses, with increasing consistency in subsequent responses 

within a burst. This phenomenon has not previously been reported for centrally recorded EPs, and 

suggests that the evoked response to short bursts of stimulation may be substantially different 

from the steady state response to prolonged stimulation. While our data do not provide a 

mechanism for this effect, the results are strongly reminiscent of what would be expected by 

progressive synchronization of a population of independent neural responses [40]. In other 

words, subsequent pulses may progressively recruit and align the phases of otherwise 

independent neural oscillators, and the increasing phase-locking with each stimulus would lead to 

increased consistency of the total evoked response.  

Thus, the increasing correlation of the EPs throughout the burst may be a sign of the 

peripheral stimulations inducing progressive synchronization in thalamic nuclei. This 

phenomenon would be expected to cause a “synchronization blockade” in which the induced 



40 

 

regular firing of neural populations at high frequency would prevent propagation of the intrinsic 

pathological signals normally present in that population. Hence, while synchronized neural 

activity has been detected in movement disorders [49], [50], it is possible that artificial 

synchronization helps by “fighting fire with fire”. For example, in the context of ET, artificially 

enhanced synchronization could prevent the tremor frequency from propagating, and could as 

such be responsible for the observed benefit of peripheral stimulation in recent studies [17], [18].  

Regardless of the underlying mechanism, the synchronization of neural firing due to 

peripheral stimulation could at least partially mimic the synchronization of neural firing due to 

local DBS. This suggests potential efficacy of peripheral stimulation as a noninvasive treatment for 

movement disorders such as ET, Parkinson’s disease, and dystonia, which would function at least 

in part by activation of the same treatment mechanism activated by invasive DBS.  

1.6 Conclusion 

Our novel decay artifact removal method has allowed us to demonstrate a previously unreported 

phenomenon: the progressive increase in consistency of thalamic evoked potentials in response to 

peripheral stimulation. While the understanding of this phenomenon may be important for 

elucidating network dynamics within the thalamus, it also provides a potentially noninvasive 

alternative to DBS for disorders that respond to electrical stimulation of thalamic nuclei. 
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CHAPTER 2:  DEEP BRAIN STIMULATION REVEALS HIGH-PRECISION 

TEMPORAL CODING IN BASAL GANGLIA AND THALAMUS 

This chapter presents my novel findings of high-frequency evoked potentials (HFEPs; including 

components with frequencies in the multiple kHz range) in the human brain, lists the numerous 

methods that were conducted to confirm the neural basis of these HFEPs, and explains why these 

findings highlight the importance of using high-impedance electrodes to record high-fidelity 

neural activity. My contributions to this project included investigation, data curation, software, 

formal analysis, validation, writing (original draft as well as review and editing), and visualization 

[37]. 

2.1 Abstract 

Background: Deep brain stimulation (DBS) is an emerging treatment for movement disorders, 

including dystonia. However, the mechanism of DBS, like that of dystonia itself, remains largely 

unexplained. Objective: The objective of this study was to investigate neural responses to DBS in 

patients with movement disorders by characterizing the frequency components recorded from 

both low- and high-impedance contacts. The latter provide significantly greater bandwidth than 

conventional low-impedance DBS contacts, presenting a unique opportunity to record high-

frequency brain activity. Methods: Externalized depth electrodes consisting of both low- (1-5 

kOhm) and high-impedance (70-90 kOhm) contacts were implanted bilaterally in thalamic nuclei 

and basal ganglia in 11 pediatric patients with movement disorders. Stimulations consisting of 90-

us, 3-V pulses were delivered at frequencies ranging from 9-250 Hz through conventional low-

impedance DBS contacts while simultaneously recording from all other contacts. Evoked 
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potentials (EPs) from low- and high-impedance contacts were analyzed and compared in the 

frequency domain. Results: Novel high-frequency evoked potentials (HFEPs), consisting of 

frequency components up to 6 kHz, were detected in high-impedance contact recordings from 

thalamus and/or basal ganglia in all subjects. Conventional low-impedance contacts were unable 

to record these HFEPs, which stand in stark contrast to the more common 1-2-kHz DBS EPs. 

Conclusions: High-impedance recordings are required to detect high-frequency neural activity, 

which may be the result of local resonant circuits or synchronization of multiple axons. Regardless 

of the underlying mechanism, this work shows a level of complexity of the human brain’s response 

to DBS that has not yet been reported elsewhere. 

2.2 Introduction 

While many different designs exist [12], DBS leads are typically made up of large cylindrical 

contacts (on the order of millimeters) distributed along a lead with diameter of 1 mm or more. 

The use of depth electrodes designed for sEEG allows for greater variation in the type and location 

of contacts for recording, including not only large cylindrical contacts, but also smaller microwire 

contacts at multiple locations around the lead. The larger, low-impedance “macro-contacts” on 

DBS and sEEG leads are used for stimulation, whereas both sizes, including the smaller, high-

impedance “micro-contacts”, can be used for recording. While computational studies have 

elucidated the effect of contact size and shape on neural selectivity [51], [52], the differences in in-

vivo neural recordings as a function of depth electrode characteristics have not been widely 

investigated.  

Since electrode contact area is directly proportional to capacitance but inversely 

proportional to resistance, larger contacts exhibit lower resistance and higher capacitance at the 
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electrode-tissue interface, creating low-pass filter properties [53]. In contrast, smaller contacts 

exhibit a higher low-pass cut-off frequency and can, as such, record higher frequency components 

of neural activity. This is similar to the expansion of usable bandwidth when small contact sizes 

are used for cortical surface recording [53].  

Since larger contacts on the order of millimeters are conventional for DBS stimulation and 

recording [44], [48], [54], [55], potentially vital high-frequency neural information may be lost in 

many deep brain recording applications. Hence, the aim of this study was not only to investigate 

the neural responses to DBS in children with dystonia, but also to analyze and compare the 

frequency components of evoked potentials (EPs) recorded from high-impedance and 

conventional low-impedance DBS electrode contacts through frequency domain analysis.  

2.3 Materials & methods 

2.3.1 Patient selection 

Study data were collected from 11 pediatric patients (8 male, 3 female, 10-16 years old, median 

age: 13) with movement disorders, predominantly dystonia (Table 2.1).  
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Table 2.1. Demographic characteristics of the 11 subjects included in the HFEP study. Unless otherwise noted, leads 

were implanted bilaterally.  

Subject Etiology Characteristics Gender Age [yrs] Implanted regions 

1 Unknown (possibly 

vasculitic) 

Left hemidystonia M 15 Left: GPi, Voa/Vop, VIM, VPL  

2 Cerebral Palsy Dystonia F 16 GPi, Voa/Vop, VIM, VA 

3 Lesch Nyhan  Dystonia M 14 GPi, Voa/Vop, VIM, STN, CMP, NA 

4 Tourette Motor and verbal tics M 15 GPi, Voa/Vop, VIM, STN, CMP, NA 

5 Huntington's disease Dystonia M 12 GPi, Voa/Vop, VIM, VA, STN 

6 Cerebral palsy Dystonia F 12 GPi, Voa/Vop, VIM, VA 

7 DYT1 (genetic) Dystonia F 16 VIM, Voa/Vop, STN, VA; Right: 

GPi 

8 H-ABC (genetic) Dystonia, weakness, ataxia M 13 GPi, Voa/Vop, VIM, STN 

9 Dyskinetic cerebral palsy Hyperkinetic dystonia M 12 GPi, Voa/Vop, VIM, VA, STN 

10 GA1 (genetic) Hypertonic dystonia  M 13 GPi, Voa/Vop, VIM, VA, STN 

11 MEPAN (genetic) Hyperkinetic (some hypertonic) 

dystonia, dyskinesia, spasticity 

M 10 GPi, Voa/Vop, VIM, VA, STN 

Abbreviations: F, female; M, male; yrs, years; CMP, centromedian parafascicular complex; GPi, globus pallidus internus; NA, 

nucleus accumbens; STN, subthalamic nucleus; VA, ventral anterior; VIM, ventral intermediate; Voa/Vop, ventral oralis 

anterior/posterior; VPL, ventral posterolateral. 

2.3.2 Stimulation protocol 

Stimulation frequencies ranged from 9-250 Hz through leads implanted in the basal ganglia and 

thalamic nuclei, as described prior under General Methods.  

2.3.3 Data analysis 

Both cathodic and anodic stimulations were used to generate a “polarity-reversed average” with 

reduced stimulus and decay artifacts (Figure 2.1) [56]. Neural activity was measured as the 
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relative response between two nearby micro- or macro-contacts, with each local bipolar recording 

on each lead visually investigated for the existence of an EP.  

 

Figure 2.1. Representative image of polarity reversal from a bipolar micro-contact recording in Voa/Vop during GPi 

stimulation. Reversing the polarity of the pair of stimulating contacts by performing both “cathodic” (dashed red line) 

and “anodic” (dotted blue line) stimulation allows for off-line artifact reduction through averaging of the two signals 

(thick black line). Such a polarity reversal reverses the sign of the stimulus artifact, but not the neural response. This 

technique reduces the stimulus artifact (peaking around 0 ms, but decaying through approximately the 5-ms mark) 

while leaving the EP (between 0.5-4 ms in this example) intact, which in turn increases confidence that the observed EP 

is of neural origin, and not artifactual.  

2.3.4 Analytical methods 

Spectrogram time-frequency analyses of the polarity-reversed averages were generated using a 

short-time Fourier transform with frequency resolution of 400 Hz, normalized by the baseline 

power in each frequency bin. The power in each frequency bin was then averaged over all time 

points to obtain the overall power spectral density (PSD) of the recording. Statistical analyses 

comparing band powers between EPs were conducted using the non-parametric Wilcoxon signed-
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rank test (after failing the normality assumption based on the Lilliefors test). The significance 

threshold was set to 0.05. 

A peak analysis was also conducted to investigate the consistency of EP peaks across 

individual recordings. The MATLAB function findpeaks detected peaks within each of the 1000 

individual stimulation segments with a minimum prominence equal to half the standard deviation 

of each segment. Indices where peaks were frequently detected – more often than twice the 

standard deviation of the peak occurrences at all indices – were noted and compared to the peaks 

of the stimulus-averaged response.  

2.4 Results 

2.4.1 High-frequency evoked potentials 

Neural responses were recorded in all 11 subjects. While some consisted of the commonly 

observed 1-2-kHz DBS EPs, other novel high-frequency evoked potentials (HFEPs) were detected as 

well. In contrast to common DBS EPs, HFEPs consisted of multiple higher-frequency oscillations, 

with examples displaying significantly higher band power in the 2-6-kHz range (Figure 2.2). 

HFEPs were detected in all patients from at least one of the recorded regions: Voa/Vop, VA, VPL, 

VIM, GPi, and STN.  
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Figure 2.2. Frequency analysis comparison of low- vs. high-frequency EPs, recorded from micro-contacts, and an 

equivalent “HFEP” recording from macro-contacts. Spectrograms (top row) display the frequency components in the 

polarity-reversed averages (bottom row) of three EP examples, gathered simultaneously from one subject during STN 

stimulation: (A) a “regular” low-frequency EP, detected through micro-contacts in GPi; (B) a novel HFEP, detected 

through micro-contacts in VIM, and (C) a corresponding macro-contact recording from the same VIM lead, unable to 

detect the high-frequency components of the HFEP displayed in part B. The resultant PSDs are shown in plot D, 

additionally denoting the statistically higher power in the 2-6-kHz high-frequency band (solid red line) of the HFEP, 

when compared to both the regular EP (^, green dashed line) and the macro-contact recording (~, blue dash-dotted 

line); ***, p < .001. Spectrograms and PSDs denote power relative to baseline at each measured frequency band. 

Shading displays standard error of the mean of the segments averaged to generate the solid lines in the bottom row of 

plots A-C. Stimulation artifacts around 0 ms have been blanked and interpolated for visualization purposes.  

2.4.2 Neural basis of high-frequency evoked potentials 

Experimental artifact reduction and analytical checks highlighted the strong likelihood of a neural 

basis for the observed HFEPs. First, the experimental polarity reversal successfully reduced 

stimulus artifacts, while leaving the EP intact, as expected for a neural response (Figure 2.1). 

Second, stimulations at different frequencies as well as stimulations and recordings through 

different contacts generated similar but slightly varying responses, conforming to the inherent 
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neural variability expected of EPs and differing from the anticipated replicability of artificial 

electrical stimulus artifacts (Figure 2.3). Finally, the high-frequency peaks seen in the average 

response were also consistent in individual recordings (Figure 2.4A). This alignment of common 

peak indices over the peaks of the average response emphasizes the consistency of the 

characteristic HFEP shape across individual recordings, ruling out the possibility that the 

stimulation-averaged EP shape was merely generated by noisy samples. In contrast, the regular 

low-frequency EPs were not found to have such consistent peaks in the individual recordings 

(Figure 2.4B). 

In addition to these checks, the timing of the EPs, with most peaking between 0.5 and 2 ms, 

met the expected timing for neural responses and was much later than the main stimulus artifact, 

which typically only lasted 0.3 ms or less in the micro-contact recordings. 

 

Figure 2.3. Comparisons of high-frequency evoked potentials (HFEPs) recorded from nearby micro-contacts. These 

example recordings are from three different contact pairs (A, B, C) recording from GPi during stimulation in Voa/Vop at 

varying frequencies (gray tracings), in one subject. Note that the HFEPs are consistent between stimulation frequencies, 

with only subtle differences, and exist in multiple nearby bipolar micro-contact recordings. This corroborates that the 

HFEPs are not artifactual, but rather generated by highly consistent neural activity. 
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Figure 2.4. Representative peak analysis of individual recordings compared to overall stimulus-averaged response. 

Examples show an HFEP in Voa/Vop (A) and a “regular” EP in VIM (B), simultaneously recorded from micro-contacts 

during cathodic GPi stimulation. Circles mark indices where peaks were commonly detected, over the time-locked 

average response (line). The size of each circle corresponds to the number of times a peak was found at this index out 

of the 1000 segments that were averaged to create the above traces. 

2.4.3 High- vs. low-impedance contact recordings 

Comparisons of recordings from the high-impedance micro-contacts and low-impedance macro-

contacts confirmed our hypothesis that macro-contacts are unable to record the HFEPs seen in 

micro-contact recordings. The frequency analysis highlighted the variation in frequency 

components, particularly in the high-frequency band (2-6 kHz), in which a representative macro-

contact example had significantly lower power than the corresponding micro-contact recording 

(Figure 2.2). Moreover, the macro-contact recordings were found to contain significantly longer 

stimulus artifacts and artifact tails, further distorting any underlying neural activity (Figure 2.5).  
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Figure 2.5. Representative comparison of micro-contact (left) and macro-contact recordings (right) in VIM during 

STN stimulation. The plots to the left of the lead diagram display bipolar recordings from high-impedance micro-

contacts (small circles on lead, numbered to the side), while the plots to the right display bipolar recordings from low-

impedance macro-contacts (numbered rectangles on lead). The location of the plots in the figure relate to their 

recording location with respect to the lead diagram, i.e., each row shows recordings from approximately the same 

region. Black solid lines: polarity-reversed average; red dashed lines: cathodic stimulation average; blue dotted lines: 

anodic stimulation average; shadings: standard deviation. 

2.5 Discussion 

While DBS EPs with frequencies up to 1-2 kHz are common and have been published elsewhere 

[55], the HFEPs presented in this paper, with clear frequency components up to 6 kHz, have not 
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previously been reported. Other reports of “high-frequency oscillations” (HFOs) in deep brain 

nuclei during DBS have rather referred to frequencies in the range of hundreds of Hz [57]. While 

the shape and extended duration of some of the HFEPs resemble “very fast oscillations” (VFOs) 

recorded in deep brain regions during peripheral nerve stimulation (Figure 1.2 A & C, Chapter 1), 

the frequencies of such responses have only been reported up to 1.5 kHz [36], [40], which is still 

lower than the frequency components of the HFEPs described here. 

While further studies are required to determine the origin of the observed HFEPs, plausible 

mechanisms for such high-precision temporal neural coding include local resonant circuits or 

multiple axons firing with different yet precise delays. The presence of HFEPs is surprising, 

because high-frequency components of the response would be expected to “average out”, due to 

temporal variation when averaging the response to multiple stimuli, as well as the staggered 

timing of responses among a large neuronal population. Preservation of these components hence 

demonstrates highly consistent temporal patterns of responses and neural synchronization. 

Future work would involve incorporating an automatic method for the detection of HFEPs, which 

would allow for precise group analyses to determine any potential associations between HFEPs 

and variables such as stimulus frequency and voltage, stimulation and recording region, 

movement disorder etiology, and clinical efficacy. 

Since electrode contact area is directly proportional to capacitance but inversely 

proportional to resistance [53], the macro-contacts’ lower resistance (1-5 kOhm) and higher 

capacitance at the electrode-tissue interface create low-pass filter properties [53] that provide 

usable data only up to a few hundred Hz. In contrast, the micro-contacts on the Ad-Tech MM16C 

depth electrodes (50-m microwires with 70-90-kOhm resistance) exhibited a higher cut-off 

frequency, which allowed us to record usable data up to at least 6 kHz. Similarly, the higher 
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capacitance at the macro-contact tissue interface could also explain the longer stimulus and decay 

artifacts that distorted the macro-contact recordings. 

Our findings not only show the complexity of DBS-induced neural activity, but also 

emphasize the importance of using high-impedance contacts to detect this full range of evoked 

brain activity. 

2.6 Conclusion 

The HFEPs identified in this study may inform conceptualization of the response to DBS, which is 

typically understood in terms of the magnitude of the effect on the target. Our use of low- as well 

as high-impedance electrode contacts allowed for precise analysis of the DBS response pattern. 

The results indicate that temporal factors could also contribute to the clinical response to DBS. 

Further investigation is warranted, in order to determine the origin of this high-precision 

temporal neural coding as well as its potential association with stimulus frequency, location, 

voltage, and clinical efficacy.  

Ultimately, the existence of the observed HFEPs emphasizes the complexity of the brain’s 

response to repetitive DBS, and aids in elucidating the mechanisms of DBS as well as the 

underlying movement disorder. Our results provide further support for the importance of high-

impedance sEEG depth electrode recordings in understanding and improving the clinical efficacy 

of DBS treatment for childhood dystonia and other movement disorders. 

  



53 

 

CHAPTER 3:  AN ALGORITHM FOR AUTOMATED DETECTION OF EVOKED 

POTENTIALS FROM POLARITY REVERSED ELECTRICAL STIMULATION 

This chapter outlines the algorithm I developed to automate the detection of evoked potentials 

when polarity-reversed electrical stimulation can be incorporated. It uses correlation to separate 

neural responses from artifacts and noise, thereby reducing human bias and saving substantial 

time for the researcher. My contributions to this project included conceptualization, methodology, 

investigation, data curation, software, formal analysis, validation, writing (original draft as well as 

review and editing), and visualization [37]. 

3.1 Abstract 

Background. In neurophysiological research involving neural responses to electrical stimuli, each 

recording must be searched for evoked potentials (EPs) prior to further analysis. Conducting this 

process manually is time consuming for the researcher, and also inserts bias. However, automated 

detection methods often struggle to distinguish between artifacts and neural responses, which can 

have highly complex and varying shapes.  Methods. I have developed a novel algorithm for 

automated detection of polarity reversed EPs (ADPREP), which uses the knowledge that reversing 

the polarity of a pair of stimulating contacts reverses the sign of the stimulus artifact, but not the 

sign of the neural response. Hence, our algorithm searches for any positive correlation between 

the recordings from two polarity reversed stimulations, after removing any stimulus decay 

artifacts. If the peak-to-peak amplitude (P2P) in a positively correlated region surpasses a user-

defined threshold, the recording is labeled as an EP; otherwise, it is not. Neural recordings from 

deep brain nuclei and cortical regions during deep brain stimulation (DBS) in 28 pediatric patients 
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with dystonia were used to test and prove the validity of the method.  Results. The ADPREP 

algorithm is able to distinguish EPs of varying shapes and sizes with a high level of accuracy, as 

early as 0.35 ms after stimulation, despite large stimulus artifacts. The algorithm has proven 

useful in initial tests with DBS data in hundreds of stimulation/recording combinations within the 

basal ganglia and thalamic nuclei, during stimulation frequencies up to 250 Hz.  Conclusion. Our 

automated EP detection algorithm can accurately detect DBS EPs in deep brain nuclei, and has 

promising applications in other stimulation and recording modalities that allow for polarity 

reversal of the recorded stimulus artifact. The algorithm successfully labels EPs of varying shapes 

and sizes, as early as a fraction of a millisecond after stimulation, in a range of stimulus 

frequencies and stimulation-recording pairs – even under large stimulus decay artifacts and in 

same-lead recordings. As such, it has the ability to improve efficacy and minimize human bias, 

setting up for more reliable conclusions to be drawn from the data. 

3.2 Introduction 

When DBS is used in combination with externalized depth electrodes, which can both stimulate 

and record, valuable insight can be obtained into the EPs that represent the brain’s neural 

responses to electrical stimulation [20], [58], [59]. However, with the numerous combinations of 

possible stimulation and recording locations, stimulation pattern and frequency, and other 

parameters, thousands of connections and conditions can be studied – all of which must be 

searched for EPs prior to further analysis and conclusions. Conducting this process manually is 

time consuming for the researcher, and also inserts bias. Automated detection methods often 

struggle to distinguish between artifacts and neural responses, which can have highly complex 

and varying shapes (as shown in Chapter 2).  
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One experimental approach to distinguishing stimulus artifacts from neural responses is 

the use of polarity-reversed stimulations, wherein electrical stimulation is performed through a 

pair of contacts (A & B) in both polarities: with A as the cathode and B as the anode (“cathodic 

stimulation”), and vice versa (“anodic stimulation”) [59], [60]. The method is useful because 

flipping the cathodic and anodic stimulation contacts reverses the sign of the stimulus artifact, but 

not the neural response [60]; hence, neural responses are expected to positively correlate 

between the cathodic and anodic recordings, while artifactual components would correlate 

negatively, or not at all. 

I have developed a novel algorithm for automated detection of polarity reversed EPs 

(ADPREP). This method uses the prior knowledge that in a pair of recordings during polarity 

reversed (cathodic and anodic) stimulations, neural responses would show up as positive 

correlations between the cathodic and anodic recordings, after removal of stimulus artifacts. 

Hence, the ADPREP method starts by detecting and removing decay artifacts after the main 

stimulus artifact by fitting a sum of two exponential decays to each of the recordings during the 

two polarity-reversed stimulation types. If a significantly positive correlation is found between the 

resulting artifact-reduced cathodic and anodic recordings, and the amplitude of the resulting 

average response in this correlated region is greater than a user-defined threshold, the recording 

is labeled as an EP; otherwise, it is not. The EPs can thereafter be characterized by features such as 

their peak-to-peak amplitude (P2P), time-to-(first-)peak delay (T2P), frequency components, and 

more. 

Initial results are promising, proving the ADPREP algorithm’s ability to distinguish EPs of 

many varying shapes and sizes from stimulus artifacts and other noise in the recordings, saving 

time for the user and minimizing human bias. One of the benefits of this method is that it does not 
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require the shape of the EP to be predefined; because of this, the algorithm does not discriminate 

towards or against any EP shapes. Another benefit is the user-defined variables, which can be 

adjusted to match the need of the researcher or project; e.g., the amplitude threshold can be 

lowered or raised to reduce the false negative or false positive rates of EP detection, respectively. 

3.3 Materials & methods 

The main inputs to the ADPREP method are recordings obtained during polarity reversed 

stimulations, from electrodes situated close enough to the stimulating electrode pair to experience 

a reversal of the stimulus artifact between the two stimulation types (cathodic and anodic). The 

algorithm, which is outlined in Figure 3.1, starts by removing any decay artifact after the stimulus 

artifact in each of the two recordings. Next, the correlation between the resulting artifact-reduced 

cathodic and anodic recordings is evaluated using moving correlation windows. If a significantly 

positive correlation is detected above a user-defined threshold, the average response between the 

cathodic & anodic recordings is obtained, and the highest P2P amplitude within the significantly 

positive correlation regions is determined. Finally, if this P2P amplitude surpasses an empirically 

chosen threshold, the average recording is labeled as an EP; otherwise, it is not. 

For a full list of the parameter values, initial conditions, and other restrictions used in our 

dataset, see Table 3.1 & Table 3.2. 
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Figure 3.1. Flowchart of the ADPREP algorithm (left) with examples visualizing the main steps (right). 
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Table 3.1. ADPREP parameter values used for the dataset presented in this chapter. 

Parameter Description Unit Our value(s) 

w Moving correlation window size(s) ms [0.5, 1, 2] 

rmin Correlation threshold (minimum) - 0.5 

Amin Amplitude threshold (minimum) V 10x baselineStd* 

*We defined our "baseline standard deviation" (baselineStd) as the standard deviation of the detrended average signal of 

the cathodic & anodic stimulus-triggered averages from 1.4 to 0.3 ms before the stimulus artifact. 

Table 3.2. SEDAM parameter initial values, lower bounds, and upper bounds used for the dataset presented in this 

chapter. Italicized brackets contain the values when the decay artifact fit is forced to be a “simple” exponential, by 

making the amplitudes of the exponential decays have the same sign (note that sign(A1) is multiplied by A2 in this 

restricted case to force this relationship). Otherwise, the values chosen are the same for both the restricted (forced 

“simple” exponential decay model) and unrestricted cases (both “simple” and “overshoot” exponential decays allowed). 

Para-

meter 

Description Unit Initial value Lower bound Upper bound 

A1 Amplitude of 

exponential decay 1 

V AMDS*sign(dataSeg(indADMS)) -4*AMDS 

[-2*AMDS] 

4*AMDS 

[2*AMDS] 

A2 Amplitude of 

exponential decay 2 

V -AMDS*sign(dataSeg(indADMS)) 

[AMDS] 

-4*AMDS 

[0] 

4*AMDS 

[2*AMDS] 

1 Time constant of 

exponential decay 1 

1/ms -5 -12 -0.01 

2 Time constant of 

exponential decay 2 

1/ms -1 -12 -0.01 

C Baseline offset V dataSeg(end) -abs(dataSeg(end)) abs(dataSeg(end)) 

Abbreviations & variables: abs, absolute value; AMDS, absolute max of the data segment (dataSeg); dataSeg, data segment 

used to fit (and remove) decay artifact and subsequently search for an EP; end, last index in segment; indADMS, index where 

AMDS occurs. 
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3.3.1 Data validity 

To ensure the validity of the assumptions of the polarity reversal approach used in this algorithm, 

the neurophysiological recordings must be obtained from electrodes situated close enough to the 

stimulating electrode pair to experience a reversal of the stimulus artifact between the two 

stimulation types (cathodic and anodic). Examples of such valid recording & stimulation 

combinations include recording from deep brain nuclei (e.g., using sEEG) or cortical regions (e.g., 

using electroencephalography, EEG) during simultaneous deep brain stimulation. Examples from 

the former are presented in this chapter. 

Note that if the recorded data’s signal-to-noise ratio is acceptable, single trial recordings 

may be used. Otherwise, stimulus-triggered averaging can be implemented to increase SNR prior 

to using the ADPREP algorithm. 

3.3.2 Decay artifact removal 

The polarity reversal approach builds on the assumption that when the polarity of the stimulating 

contact pair is switched, the polarity of the stimulus artifact is reversed, whereas that of the neural 

response is not. While the main stimulus artifact can be relatively brief and return to baseline 

prior to the start of the evoked response, so-called decay artifacts may extend for a longer period, 

distorting the neural response [36], [45], [61]. Just like the main stimulus artifact, the polarity of 

the decay artifact depends on the polarity of the stimulation. Because of these opposing polarities 

of the decay artifacts from the polarity reversed stimulations, they can make the correlation 

between the cathodic and anodic recordings seem non-significant or negative, even if there is an 

underlying neural response that is common to both recordings. Therefore, these decay artifacts 

must be removed prior to the ADPREP algorithm’s correlation analysis. 
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The decay artifact removal is based on an approach that fits the data to the sum of two 

double exponentials (as previously presented in Chapter 1) [36]: 

 𝐴1𝑒𝜆1𝑡 +  𝐴2𝑒𝜆2𝑡 +  𝐶  (3.1) 

where A1 and A2 are the amplitudes and λ1 and λ2 the decay constants of the two exponential 

components, and C is the baseline offset. 

In our data, we have encountered not only “regular” exponential decay artifacts, which 

decay towards 0 without crossing the x-axis, but also decay artifacts that “overshoot” the x-axis 

before stabilizing back to baseline (Figure 3.1, top). The SEDAM model (Equation 3.1) can model 

both these types of decay artifacts: when sign(A1) = sign(A2), the resulting SEDAM decay artifact is 

“regular”, whereas when sign(A1)  sign(A2), an “overshoot” decay artifact is modeled. However, 

due to the regression’s high sensitivity to the initial values of A1 and A2, two separate iterations of 

the regression are run. First, the initial values of A1 and A2 have the same sign, and the upper and 

lower boundaries of the coefficients are chosen to force sign(A1) = sign(A2). In the second iteration, 

the initial values of A1 and A2 are of opposite signs, and the relation between the signs of A1 and A2 

is not restricted (i.e., sign(A1)  sign(A2) and sign(A1) = sign(A2) are both allowed). The parameters 

from the regression that generated the best fit (defined by the R2 value) are used to model the 

decay artifact and subtract it from the recording.  

This process is repeated for both the cathodic and anodic signals, to generate artifact-

reduced recordings for use in the subsequent steps of the ADPREP algorithm. 
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3.3.3 Moving correlation 

After decay artifact removal, the artifact-reduced post-stimulation recordings are used to 

determine the correlation between the cathodic and anodic signals. This main part of the ADPREP 

algorithm is built on the assumption that a neural response evoked by a stimulation of a pair of 

nearby contacts would be similarly elicited if the polarity of the stimulating contact pair was 

reversed (i.e., cathodic vs anodic stimulation). Hence, any neural response to the stimulation 

should display a significant positive correlation between the artifact-reduced polarity reversed 

recordings.  

Since neural responses can be brief and may not span the whole recording, moving 

correlation is required (as opposed to determining the correlation between the signals over the 

entire recording). We use the MATLAB File Exchange function movcorr [62] to calculate the 

correlation between the artifact-reduced cathodic and anodic recordings over time; in a similar 

manner to moving average, it calculates the Pearson correlation in a user-defined window at each 

point as it moves over the x-axis, one sample at a time. This allows us to find local correlations that 

may be representative of neural responses evoked by the electrical stimulation.  

As neural responses can have varying frequencies, the width of the moving correlation 

window should be adjusted accordingly. The ADPREP algorithm allows for multiple user-defined 

window sizes, which should be selected based on expected frequency and duration of the neural 

response. The moving correlation is calculated over the recording after the stimulation, for each of 

the window sizes. The time regions that display significant positive correlation above a user-

defined threshold of Pearson’s r – using any or all of the window sizes – will be searched for 

possible EPs. 



62 

 

3.3.4 Peak detection and amplitude threshold 

The possible EP regions located using the above methods are checked for EPs using the MATLAB 

findpeaks function. In the ADPREP algorithm, the function is simply used to find the positive and 

negative peaks with the largest and smallest values, respectively, in each potential EP region. 

Further findpeaks restrictions, such as minPeakWidth or minPeakHeight, are optional. 

After finding the peaks in each possible EP region, the region with the greatest P2P 

amplitude is assumed to contain the (main) neural response. In the final step, the P2P amplitude is 

compared to a user-defined minimum amplitude threshold, which can be set to a firm value (e.g., 

10 V) or require a certain SNR (as in our sample dataset, Table 3.1). If the P2P surpasses the 

amplitude threshold, the located peaks are labeled as representative of an EP. However, if any of 

the above thresholds were not met, the recording is labeled as not containing an EP. 

3.3.5 Sample data 

The data used to develop the ADPREP algorithm and generate sample results for this chapter are 

bipolar recordings from sEEG micro-electrodes in deep brain structures (thalamus and basal 

ganglia) during DBS of thalamic or basal ganglia nuclei, from a total of 28 subjects. 

3.4 Results 

The ADPREP algorithm can distinguish EPs of varying shapes and sizes with a high level of 

accuracy, as early as 0.35 ms after stimulation, despite large stimulus artifacts (even in same-lead 

stimulation & recordings). The algorithm has proven useful in its initial tests during DBS in 

hundreds of stimulation/recording combinations within the basal ganglia and thalamic nuclei 

(sEEG recordings), during stimulation frequencies up to 250 Hz, in 28 subjects to date. Sample 
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results are displayed in Figure 3.2, selected to show the wide range of EPs that the algorithm can 

detect (even under large decay artifacts) and exemplify rejected recordings that may have been 

labeled as EPs by methods that only use the cathodic and anodic signals independently, or the 

average between them. 

 

Figure 3.2. Examples of rejected and detected EPs using the ADPREP algorithm. The top and bottom rows show 

sample rejected and detected EPs, respectively, using the user-defined variables listed in Table 3.1 & Table 3.2. Dashed 

red and blue lines are stimulus-triggered averages of the cathodic and anodic stimulation types, respectively, with 

shaded standard deviations; dashed black lines are the average between the original cathodic and anodic signals. 

Similarly, solid red and blue lines are the signals after removal of decay artifacts, and solid black lines are the average 

between the decay artifact-reduced cathodic and anodic signals. Stars denote the detected positive and negative peaks 

of the labeled evoked potentials. All examples are taken from different subjects and stimulation/recording 

combinations, as denoted in the annotation in each subplot (stimulation→recording region). Y-axis: recorded voltage 

[V]; x-axis: time after stimulation [ms]. 
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3.5 Discussion 

The benefits of the ADPREP algorithm compared to other EP detection methods are multifold.  

Firstly, the algorithm does not assume a specific EP waveform, which means it does not 

discriminate towards or against any particular shapes – any neural response that is common to 

both stimulation polarities can be labeled as an EP. Secondly, since the algorithm is simply based 

on correlation, it is potentially applicable to any kind of bipolar stimulation that allows for polarity 

reversal, when the recording electrodes are close enough to the stimulation electrodes to register 

the polarity reversal of the stimulus artifact (i.e., the ADPREP algorithm is not restricted deep 

brain recordings during DBS, the setup tested in this chapter). Thirdly, the user-defined constants 

and thresholds allow the user to tailor the algorithm to their particular application, e.g., by 

selecting the moving correlation window size(s) to match the frequency and duration of the 

expected EPs, or lowering or raising the amplitude threshold to reduce the false negative or false 

positive rates, respectively. Finally, the automated algorithm vastly improves efficacy and 

minimizes human bias by reducing the influence of the user, which sets each study up for more 

reliable further analysis. 

As with any method, the ADPREP algorithm also comes with limitations. Firstly, because 

the cathode acts as the active electrode in the stimulating pair, and the anode as the returning 

electrode, the polarity reversal technique effectively leads to a slight shift in stimulation location, 

corresponding to the distance between the stimulated electrode pairs (5 mm, in our case of using 

the macro-contacts of the Ad-Tech MM16C sEEG leads). Therefore, the final averaged response of 

the two stimulation types is, in fact, an average of stimulations at two slightly different locations, 

which may lead to timing or amplitude differences between the two recordings. Furthermore, in 

its current version, the algorithm is designed to detect one EP per recording and stimulation, and 
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in the case of multiple possible EPs, the one with the largest P2P amplitude is selected. These 

assumptions could be addressed in future versions, e.g. by redefining how the algorithm should 

select between multiple possible EPs, and/or allowing for the labeling of more than one EP per 

recording. Moreover, while the method should work for any set of stimulating electrodes that 

allow for polarity reversal and with recording electrodes that are proximal enough to experience a 

reversed polarity of the stimulus artifact, it has so far only been tested in deep brain sEEG 

recordings during DBS. Tests with other stimulating and recording modalities, such as EEG, must 

be conducted before it can be conclusively stated which applications the ADPREP algorithm is 

compatible with. 

3.6 Conclusion 

Our algorithm for automated detection of polarity reversed evoked potentials (ADPREP) utilizes 

polarity reversal of the stimulating electrode pair to distinguish neural responses from stimulus 

artifacts and other noise. It has proven useful in detecting DBS EPs in deep brain nuclei (basal 

ganglia and thalamus) and has promising applications in other stimulation and recording 

modalities that allow for polarity reversal of the recorded stimulus artifact. While the algorithm 

can be further developed, e.g. to allow for detection of multiple EPs per recording, it has already 

proven successful in labeling EPs of varying shapes and sizes, as early as a fraction of a millisecond 

after stimulation, in a range of stimulus frequencies and stimulation-recording pairs in deep brain 

nuclei, in more than two dozen pediatric patients with dystonia – even under large stimulus decay 

artifacts and in same-lead recordings. As such, it is a valid option to improve efficacy and minimize 

human bias, setting up for more reliable analyses and conclusions from the datasets. 
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CHAPTER 4:  INCREASED DEEP BRAIN STIMULATION FREQUENCY INCREASES 

DELAY, DECREASES AMPLITUDE, AND REDUCES HIGH-FREQUENCY 

COMPONENTS IN THALAMIC AND BASAL GANGLIA EVOKED POTENTIALS 

This chapter presents preliminary findings of the effects of DBS frequency on EP delay, amplitude, 

and frequency components. My contributions to this project included investigation, data curation, 

software, formal analysis, validation, writing (original draft as well as review and editing), and 

visualization [37]. 

4.1 Abstract 

Background. This study aimed to shed light on the mechanism of action of DBS as a treatment for 

dystonia by investigating the effect of DBS frequency on EPs recorded in deep brain structures of 

dystonic patients.  Methods. Externalized sEEG leads were implanted bilaterally in 10 pediatric 

patients with dystonia selected for DBS treatment, with up to 6 leads per hemisphere placed in 

target areas in the thalamus and basal ganglia. Stimulations were administered at frequencies 

ranging from 9-250 Hz, while simultaneously recording from high-impedance micro-contacts, 

allowing us to detect high-frequency neural components in the kHz range. Each EP was 

characterized by its amplitude, delay, and frequency components, which were then compared 

between stimulation frequencies.  Results. Preliminary results found stimulation frequency to be 

negatively correlated with EP amplitude and positively correlated with EP delay. Additionally, as 

stimulation frequency increased, high-frequency components of EPs seemed to reduce.  Discussion. 

These trends of decreased amplitude, increased delay, and “low-pass filtering” of EPs at higher 

DBS frequencies may be related to refractory periods and oversaturation of neural receptors when 
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stimulations are delivered at shorter intervals. Group analyses should be conducted to confirm 

these preliminary results, along with developing qualitative and/or computational models to 

explain the neural mechanism behind these frequency dependencies.  Conclusion. These findings 

will help shed light on the dystonic brain’s frequency-dependent response to DBS and provide 

insight into how stimulation frequency can be used to generate wanted neural response patterns, 

to in turn elicit the most effective clinical response to DBS treatment.  

4.2 Methods 

Externalized sEEG leads were implanted bilaterally in 10 pediatric patients with dystonia selected 

for DBS treatment. Up to 6 leads per hemisphere were placed in target areas including the 

thalamus and basal ganglia. Stimulations ranging between 9 and 250 Hz were delivered through 

macro-contacts while simultaneously gathering neural recordings through high-impedance micro-

contacts from all leads. 

Each recording was visually investigated for the existence of an EP, which, if found, was 

characterized by its amplitude, delay, and frequency components. These characteristics were then 

compared between stimulation frequencies. 

4.3 Results 

Preliminary results alluded to a clear effect of stimulation frequency on EP delay, amplitude, and 

frequency components (Figure 4.1). Stimulation frequency was found to be negatively correlated 

with peak-to-peak EP amplitude, but positively correlated with delay (time to first peak) – that is, 

higher stimulation frequencies typically evoked smaller and more delayed neural responses. 
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Moreover, for high-frequency EPs (HFEPs), the higher-frequency components seemed to reduce at 

higher stimulation frequencies, inferring a possible cerebral “low-pass filtering” effect. 

 

Figure 4.1. Example of the impact of stimulation frequency on EP delay and amplitude (left) and shape (right). The 

above figures show neural responses evoked by DBS at frequencies varying from 9-250 Hz (darker to lighter traces) in 

two different recording locations (left & right). The left plot is a clear example of the amplitude of the neural response 

decreasing, and the delay increasing, for higher stimulation frequencies. The right plot portrays the reduced EP 

amplitude and increased delay in the segment before 1.5 ms, but thereafter also exemplifies how higher-frequency EP 

components are sometimes suppressed at higher stimulation frequencies. Y-axis: voltage [V]; x-axis: time [ms] after 

stimulation (not shown). 

4.4 Discussion 

This chapter reports novel findings in the relationship between DBS frequency and neural 

responses in patients being treated for movement disorders. Such an analysis has, to our 

knowledge, not been conducted previously.  

These trends of decreased amplitude, increased delay, and “low-pass filtering” of EPs at 

higher DBS frequencies may be related to refractory periods and oversaturation of neural 

receptors when stimulations are delivered at shorter intervals. However, group analyses with 
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statistical tests must be conducted to confirm these preliminary results. Moreover, a multivariate 

regression study would be beneficial to determine whether these trends are more prominent in 

e.g. particular stimulation and/or recording regions, anti- or orthodromic connections, or certain 

subjects. Future work could also involve developing qualitative and/or computational models 

with the aim to explain the neural mechanism behind this frequency dependency.  Another study 

of interest would involve comparing these frequency effects to our clinical stimulation data, to 

determine if there is any correlation between the DBS EPs at different frequencies and the most 

effective clinical frequency for each subject. This could be a potential first step in implementing 

neurophysiological findings to provide optimal DBS treatments for patients with movement 

disorders. 

4.5 Summary & conclusion 

We studied the effects of deep brain stimulation (DBS) frequency on evoked potential (EP) 

amplitude, delay, and frequency components in thalamus and basal ganglia in 10 pediatric 

patients with dystonia. Preliminary results show that increased stimulation frequency evokes 

smaller and more delayed neural responses, with diminished high-frequency components. These 

findings provide novel insight into how DBS pulse patterns affect the neural response, and will 

help improve our understanding of how to use stimulation frequency to generate wanted neural 

response patterns and elicit the most effective clinical response to DBS treatment.  
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CHAPTER 5:  EFFECTS OF BENZODIAZEPINES ON DEEP BRAIN ACTIVITY AND 

DEEP BRAIN STIMULATION EVOKED POTENTIALS 

This chapter presents preliminary findings of the effects of benzodiazepines on deep brain 

regions. It is based on a draft for a co-first-author publication, in which the contributions between 

us two first-authors were evenly split. My focus was on the effects of benzodiazepines on DBS EPs, 

while my co-author analyzed the local field potentials (LFPs) and wrote the parts of the paper not 

pertaining to the DBS EPs. My particular contributions included investigation, data curation, 

software, formal analysis, writing (part of the original draft as well as review and editing), and 

visualization [37].  

5.1 Abstract 

Background. Dystonia is a movement disorder in which intermittent or sustained muscle 

contractions cause repetitive movements and abnormal postures. Benzodiazepines (BZD) are 

commonly used to treat these symptoms in combination with other pharmacotherapy by 

increasing inhibition at GABA receptors. When medications alone do not reach the desired clinical 

effect, DBS is another treatment method that delivers electrical pulses into regions in the motor 

pathways. While many studies have investigated the effects of benzodiazepines on cortical 

activity, no data is currently available on its effects on deep brain regions, nor on these regions’ 

responses to DBS. Hence, we asked: Do benzodiazepines have a significant impact on deep brain 

regions? Methods. Neural data were recorded from deep brain nuclei in three male pediatric 

subjects with dystonia, undergoing a previously described procedure to clinically assess possible 

targets for deep brain stimulation, in two conditions: “on-BZD” versus “off-BZD” (baseline). 



71 

 

Recordings were gathered through pairs of externalized sEEG electrodes in basal ganglia, 

thalamus, and the pedunculopontine nucleus (PPN), both during rest and during DBS. Local field 

potentials (LFPs) during rest were characterized through power spectral density (PSD) analyses. 

EPs were compared in amplitude between the “on-BZD” and “off-BZD” conditions through paired 

tests. Results. PSDs showed consistent reductions in activity during benzodiazepine treatment, 

over all studied brain regions and for all three subjects. The benzodiazepine effects on DBS EPs 

were more complex, but common themes were seen between the two stimulation frequencies, 

including larger STN EPs during GPi DBS, and smaller VIM EPs and STN EPs during VIM DBS. 

Discussion & conclusion: Our preliminary results from 3 subjects indicate that changes in origin or 

target excitability due to benzodiazepines lead to changes in the effectiveness of communication 

between the two regions. This could, in turn, be responsible for changes in the overall pattern of 

activity, possibly interfering with or attenuating the transmission of the signals responsible for 

dystonia.  

5.2 Introduction 

Benzodiazepines (sometimes shortened BZD) are a class of medications frequently used in the 

treatment of hyperkinetic movement disorders, including the hyperkinetic components of 

dystonia. The mechanism of benzodiazepine action is not known, but the medication seems to act 

at pharmacologically specific binding sites by linking to GABA receptors, which have a 

heterogeneous distribution in the human central nervous system. In this chapter, we show 

changes in DBS EPs linked to when patients are on benzodiazepine treatment, versus not. The use 

of temporary sEEG electrodes for evaluation of DBS targets gives us the opportunity to examine 

the transfer of activity between different deep brain regions. We report changes in DBS EPs in 
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three subjects who received DBS both while they were on prescribed benzodiazepine treatment, 

and when they had been off the medication for at least 24 hours.  

The management of dystonia is complex, and clinicians are currently challenged by a 

paucity or, at best, inconsistency of evidence to inform management strategies. In control 

conditions, one could hypothesize that the benzodiazepines would link to GABA receptors 

contained in GPi and therefore increase the inhibitory GPi output to thalamus. Consequently, the 

thalamic output to the cortex would be reduced, and thus, the motor neurons would reduce the 

activity at the muscle level. However, while many studies have investigated the effects of 

benzodiazepines on cortical activity, such as increased beta band power [63]–[65], no data is 

currently available on its effects on deep brain regions, nor on how these regions’ responses to 

DBS are affected. As such, the effects of benzodiazepines on dystonic patients are still unknown, 

but are likely to affect the entire motor pathway, especially the abnormal GPi output activity in 

these patients.  

We seek to describe the effects of benzodiazepines on multiple deep brain structures 

involved in motor control, and do so by recording from basal ganglia (STN and GPi), thalamic 

nuclei (Voa/Vop, VIM and VA), and the pedunculopontine nucleus (PPN) in three awake dystonic 

subjects at rest, comparing between conditions of on-benzodiazepines (on-BZD) and off-

benzodiazepines (off-BZD, baseline). 
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5.3 Materials & methods 

5.3.1 Patient selection  

Retrospective analysis of data from three pediatric subjects, undergoing staged procedure to 

determine optimal area for implantation of DBS leads for the treatment of dystonia, were utilized 

in this case study (Table 5.1). 

Table 5.1. Demographic characteristics of the 3 subjects included in the benzodiazepine study. 

Subject Etiology Charac-

teristics 

Gender Age 

(yrs) 

Implanted regions 

(bilateral) 

“On-BZD”  

DBS times  

Benzodiazepine doses 

1 Glutaric 

Aciduria 

Type I 

Hypertonic 

dystonia  

M 13 GPi*, STN, VA*, 

VIM, Voa/Vop 

Day A: 12-1pm 

 

Day B: 4pm 

Day C: 10:30am 

Day A: 8:43am & 12:08 (2 mg 

diazepam, IV) 

Day B: 2:34pm (1.5 mg diazepam, IV) 

Day C: 9:08am (1.5 mg diazepam, IV) 

2 KMT2B 

(genetic) 

Chorea, 

dystonia 

M 10 GPi, STN, VA, VIM, 

Voa/Vop, PPN 

3-4:30pm 7:20am (5 mg diazepam, IV) 

6:44am (3 mg diazepam, enteral) 

3 Cerebral 

palsy 

Tremor, 

dystonia 

M 14 GPi, STN, VA, VIM, 

Voa/Vop, PPN 

6pm 3:20pm, 4:32pm & 9:11pm (0.5 mg 

clonazepam, enteral) 

* For subject 1, one lead in GPi and another in VA (both in the right hemisphere) were dislocated between the 

benzodiazepine and baseline conditions. Hence, they were excluded from the analysis. 

Abbreviations: BZD, benzodiazepines; M, male; IV, intravenous; GPi, globus pallidus internus; STN, subthalamic nucleus; 

VA, ventral anterior; VIM, ventral intermediate; Voa/Vop, ventral oralis anterior/posterior; PPN, pedunculopontine 

nucleus. 

5.3.2 Surgical procedure 

For each subject, up to 6 temporary sEEG leads were implanted in each hemisphere into target 

regions including VA, Voa/Vop, VIM, STN, GPi, and PPN (Table 5.1).  
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5.3.3 Electrophysiological recording 

All passive data were recorded from micro-contacts during two intervals of five minutes in the 

NMU. One of the intervals was the baseline condition, corresponding to a resting period without 

benzodiazepine treatment (off-BZD) after having been off benzodiazepines for at least 24 hours 

prior. The other interval was the on-BZD condition, corresponding to a resting period after the 

patient had been treated with benzodiazepines.  

Data were also recorded during DBS in both conditions (see details below). Table 5.1 

describes the patient etiologies, symptoms, genders, ages, implanted regions, and administered 

benzodiazepine doses in relation to the on-BZD DBS times. 

5.3.4 Stimulation protocol 

DBS was administered through pairs of macro-contacts at 25 and 55 Hz, and the stimulation 

protocol was typically repeated through multiple contact pairs on each DBS lead.  

5.3.5 Data analysis 

5.3.5.1Power spectral density 

The unavoidable realities of mechanical, physical, and thermal noise decrease the SNR of raw data 

recordings, making it difficult to detect neural activity. Therefore, prior to power spectral density 

(PSD) analysis of the passive recordings, we used orthogonal multilevel wavelet decomposition 

(MWD) [66] for signal filtering. Before analysis, data portions that held obvious electrical artifacts 

were rejected, based on visual inspection. Data recorded from micro-contacts within deep brain 

targets (visually confirmed through neuroimaging) were used for the analysis in the frequency 
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domain, using fast Fourier transform (FFT) based methods [67]. The power spectra were 

normalized with respect to their standard deviations (z-score).  

Finally, PSD grand averages were taken of the 300 seconds of passive recordings across all 

micro-contacts within brain targets, in both conditions (on-BZD and off-BZD). The nonparametric 

Wilcoxon signed-rank test was used to compare the spectral features between the two conditions. 

A frequency band of 1-50 Hz was chosen to include the alpha and beta frequencies (8-35 Hz), 

which have been found to be associated with movement in Parkinson’s disease and dystonia 

patients. The significance threshold was set to 0.05, with Bonferroni correction for multiple 

comparisons. 

5.3.5.2Evoked potential and connectivity analysis 

My automated EP detection method (ADPREP) was implemented to detect any evoked potentials 

in the recordings during DBS. When an EP was detected in both conditions, on-BZD and off-BZD, 

the sample pair of EP P2P amplitude values was included in the final statistical comparison of EP 

amplitudes between the two conditions. Non-normal difference distributions were tested for 

significant differences using the Wilcoxon signed-rank test, while normal difference distributions 

were analyzed using the paired t-test. The significance threshold was set to 0.05.  

5.4 Results 

Both the power spectra and the EPs from 25 and 55 Hz DBS showed differences between the two 

conditions (on-BZD vs off-BZD), throughout multiple deep brain regions in thalamus, basal 

ganglia, and the striatum (PPN).  
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5.4.1 Frequency band analysis from basal ganglia and thalamic nuclei recordings  

In order to identify the effects of benzodiazepines on the brain’s activity during rest, power 

spectral density (PSD) analyses were conducted to compare the differences between the two 

conditions for each hemisphere. The power spectra show the grand average across all 

microelectrode recordings for basal ganglia and thalamic nuclei recordings during 5 minutes for 

both conditions. A strong reduction of the power in the benzodiazepine condition (on-BZD) 

compared to baseline (off-BZD), *p<0.05, was seen in all targeted deep brain structures, for all 

three subjects in the alpha and beta bands. Figure 5.1, Figure 5.2, and Figure 5.3 show the PSDs of 

brain signals from the GPi, VA, Voa/Vop, VIM, STN and (for two of the subjects) PPN. Only 

frequencies from 1 to 50 Hz are displayed, as no significant differences were seen at higher 

frequencies.  

Figure 5.1 shows the PSDs for subject 1 based on sEEG recordings from GPi, STN, VA, VIM 

and Voa/Vop, bilaterally. These data show a strong reduction of the amplitude during the on-BZD 

condition compared to baseline (off-BZD). The greatest power drop is seen around 8 Hz, whereas 

the power recovers over 20 Hz. This is true for both conditions, although the on-BZD condition 

contains less power (lower amplitude) than the off-BZD condition – for both hemispheres and for 

all deep brain structures. The bar graphs show the clear differences in power between off-BZD 

(black bars) and on-BZD (red bars); *p<0.05 (Bonferroni-corrected). For this subject, in both 

hemispheres, the max reduction from off-BZD to on-BZD was seen in STN.  

Similar results were seen in subject 2 (Figure 5.2). There is a strong reduction of the power 

(*p<0.05, Bonferroni-corrected) within on-BZD compared to baseline (off-BZD). However, in 

contrast to subject 1, all deep brain structures in subject 2 were decreased at the same level; 

power values around 0.8 are reached in the off-BZD (baseline) condition, and around 0.2 in the on-
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BZD condition. Another contrast to subject 1 is the frequency with the largest power drop, which 

is around 25 Hz; moreover, no ripples or waves are seen in the PSD in the surrounding 

frequencies.  

Finally, subject 3 showed an overall reduction in the on-BZD condition as well (Figure 5.3). 

The largest power drop was noted at approximately 25 Hz, without recovering waves – similar to 

subject 2, but in contrast to subject 1. For subject 3, there were significant reductions in power in 

GPi, VA and Voa/Vop during the on-BZD condition (*p<0.05, Bonferroni-corrected). For STN and 

VIM, there were instead slight increases of power, but these were non-significant (p>0.05).  

5.4.2 Effects of benzodiazepines on deep brain stimulation evoked potentials 

While we saw some variability in the DBS EP amplitude results between stimulation frequencies, 

subjects, and hemispheres, there were also common trends between the whole-brain group 

analyses at 25 & 55 Hz (Figure 5.4, left & right, respectively). These common themes included 

larger STN EPs during GPi DBS, and smaller VIM EPs and STN EPs during VIM DBS. In addition, 25 

Hz (but not 55 Hz) DBS elicited larger EPs in Voa/Vop during Voa/Vop stimulation and PPN 

stimulation, and smaller EPs in STN during VA stimulation, while the subjects were on 

benzodiazepines.  



78 

 

 

Figure 5.1.  Power spectral density (PSD) analyses for basal ganglia and thalamic nuclei while the subject was on 

benzodiazepines (on-BZD) versus the baseline condition (off-BZD): Subject 1. Both hemispheres are shown (left 

column: left hemisphere; right column: right hemisphere). Top two rows: The PSDs show the average and standard 

deviation for all microelectrodes, placed bilaterally in GPi (black traces and shading), STN (orange), VA (yellow), VIM 

(purple), and Voa/Vop (green). Off-BZD results are displayed on the top row; on-BZD on the middle row. Vertical axis: 

power (dB/Hz). Horizontal axis: frequency (Hz). Bottom row: Bar graphs depict the averages and standard deviations 

of the PSD amplitudes between the two conditions, on-BZD (red bars) versus off-BZD (black bars), for each brain 

region, from 1 to 50 Hz. There is a significant difference between the two conditions (*p<0.05) in all targeted deep 

brain regions. Vertical axis: normalized power difference (dB/Hz). Horizontal axis: targeted deep brain structure.  
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Figure 5.2. Power spectral density (PSD) analyses for basal ganglia and thalamic nuclei while the subject was on 

benzodiazepines (on-BZD) versus the baseline condition (off-BZD): Subject 2. There is a significant difference between 

the two conditions (*p<0.05) in all targeted deep brain regions. (Same description as Figure 5.1.) 
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Figure 5.3. Power spectral density (PSD) analyses for basal ganglia and thalamic nuclei while the subject was on 

benzodiazepines (on-BZD) versus the baseline condition (off-BZD): Subject 3. There is a significant difference between 

the two conditions (*p<0.05) in all targeted deep brain regions, except right VIM and left & right STN. (Same description 

as Figure 5.1.) 
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Figure 5.4. Directed graphs showing the group effects of benzodiazepines on EP amplitude during 25 & 55-Hz 

stimulation. Results are from the group analysis of all three subjects; left: 25-Hz DBS, right: 55-Hz DBS. The arrows 

point from each nucleus where DBS was administered, to each nucleus where recordings were available (and an EP 

may have been elicited). Red/green arrows denote connections where the amplitudes of the EPs significantly 

decreased/increased when benzodiazepines were administered; orange/gray arrows symbolize connections where EP 

amplitudes were not significantly affected/no clear EPs were seen.  

5.5 Discussion 

In contrast to protocols published to date, our procedure allows for simultaneous recording from 

multiple targets in awake patients without the influence of anesthesia [20]. Therefore, it allows us 

to describe the effects from benzodiazepines on targeted deep brain regions at rest, as well as 

during electrical stimulation of deep brain nuclei.  

The basal ganglia compose a complex system that sends and receives feedback to the 

cortex through thalamus and striatum. STN and the striatum receive cortical inputs, while GPi 

55-Hz DBS 25-Hz DBS 
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sends information to the thalamus, which modulates cortical activity. The "rate model" of basal 

ganglia function suggests that high activity in GPi is required in order to inhibit movement at rest 

[68]. How alterations of this circuit result in dystonic muscle contractions is still not understood, 

nor how the treatments are affecting the deep motor pathways in dystonia.  

Previous publications have studied frequency patterns in pallidum, in dystonic patients 

with clinically successful outcomes, and presented findings that have tried to elucidate the 

pathophysiology underlying dystonia [10]. Such mechanisms include pathological firing rates in 

the GPi [69] as well as theta and beta band activity in GPi [70] and the STN [71]. Although the 

action mechanism of pallidum in the pathophysiology of dystonia is under debate, the presence of 

peaks in alpha and beta bands in basal ganglia is likely to be a sign of the pathophysiology 

underlying dystonia. In alignment with prior studies, our results display peaks in these frequency 

bands in all subjects.  

Overall, the PSD analysis unveiled a strong reduction in amplitude in the on-BZD condition 

for all subjects. Based on the benzodiazepine binding site (e.g., presynaptic GABA receptors), we 

could expect a decrease of GPi output, and consequently, an increase of motor thalamic nuclei 

output (Voa/Vop and VA) to the cortex. However, if the benzodiazepine binding site is on receptor 

nuclei (e.g., postsynaptic GABA receptors linked to thalamic nuclei), we could expect a decrease of 

thalamic nuclei output due to hyperpolarization, while the GPi output remains unaltered. Here, 

our results show a decrease of GPi and thalamic activity under the influence of benzodiazepines, 

leading us to believe that the effects of benzodiazepines are mixed over both pre- & postsynaptic 

GABA receptors. This would strongly reduce activity in both basal ganglia and thalamic nuclei, 

since these receptors have a heterogeneous distribution along the motor pathway.  
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However, one of our most interesting findings is that the reduction of amplitude is even 

greater in STN than in GPi. This contrasts with our expectations, based on the multitude of GABA 

receptors in the pallidum. Here, we could postulate that on one hand, there is reduced thalamic 

excitation to the cortex and downstream reduced excitation of STN via the hyperdirect pathway, 

and therefore, we see a decrease in STN activity. On the other hand, recordings from nonhuman 

primates [72] and Parkinson’s disease [73] are consistent with the hypothesis of high GPi activity 

at rest; this large GPi output to thalamus (through the orthodromic pathway) is reduced by the 

benzodiazepines, as our results show. However, an alteration in the function and connectivity of 

GPi could depolarize alternative pathways, such as antidromic connections (e.g., GPi to STN), 

sending a larger inhibitory signal to STN, as shown in Figure 5.4 (green arrow). Therefore, this 

could provide a plausible explanation about a larger reduction of STN activity than GPi activity in 

the on-BZD condition. These hypotheses all suggest a mechanism for effectiveness of GPi DBS to 

treat dystonia. 

Based on the PSD analysis, we initially expected to find a general decrease in DBS EP 

amplitude in the on-BZD condition. However, what we saw was more complex than that, with EPs 

that increased, decreased, or showed no significant change in size, depending on the connection 

(Figure 5.4). However, after further consideration of the complexity of the brain’s connectivity, 

and the multitude of combined excitatory and inhibitory connections, a varied response should 

perhaps have been expected. The mechanism of benzodiazepines is not entirely straightforward 

either: while benzodiazepines have a generally inhibitory effect, certain kinds of benzodiazepines 

target GABAa receptors, which are post-synaptic, whereas others target GABAb receptors, which 

are presynaptic. This is of importance when studying anti- vs. orthodromic connections, since DBS 
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seems to be able to elicit antidromic EPs, possibly by depolarizing the presynaptic axons coming in 

from other areas into the region that is being stimulated. 

Regardless, studying the effects of benzodiazepines on DBS EPs can provide important 

information, since the EP amplitude can be considered a measure of the neurological (but not 

necessarily clinical) effect of DBS on a region (increased or decreased excitation or inhibition). I.e., 

increased amplitudes would signify an increased response to DBS, and vice versa. 

Benzodiazepines are not expected to alter brain structure and physical connectivity during the 

timescale associated with the results reported here; therefore, changes in DBS EPs are likely to be 

due to changes in excitability at either the DBS stimulation site, or at the EP site. Interestingly, 

despite the widespread expected effects of BZD on deep brain circuitry, in many cases there is no 

change in DBS EPs size, indicating either that these areas are unaffected by BZD, or that changes in 

the connectivity as measured by DBS EPs are not the mechanism responsible for changes in 

information processing due to benzodiazepines.  

Contrary to the increased amplitude of EPs in STN during GPi DBS, we saw a reduction in 

EP amplitudes stemming from VIM DBS, in both VIM and STN. These changes could both be 

related to inhibition of thalamus: e.g., if the benzodiazepines hyperpolarize VIM neurons and 

increase inhibition of the nucleus, this could make depolarization in VIM from DBS more difficult, 

leading to a smaller response in VIM during VIM DBS. Consequentially – despite the fact that there 

is no known direct neurological pathway between VIM and STN – any EPs elicited in STN during 

VIM DBS would be expected to follow a trend similar to that of the VIM “self-EPs”, as less 

excitability in the source nucleus would translate to less information being transmitted to other 

regions. 
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Regarding the source of the increased GPi-STN EP amplitudes: the reduced STN EP 

amplitudes during VIM DBS, contrasting the increased STN EP amplitudes during GPi stimulation, 

allude to STN not being the common source of change. Namely, it seems more likely that STN EPs 

are impacted differently from different stimulation locations due to the change in excitability in 

those source nuclei, rather than experiencing a general change in excitation in STN itself. Similar 

logics could also postulate explanations for the significant benzodiazepine effects that were seen 

solely during the 25-Hz DBS (Figure 5.4, left). 

The common trends found from the group analyses of the two different DBS frequencies 

are a promising sign of the reliability of our results. Nevertheless, a larger pool of subjects would 

be necessary to generate more significant and trustworthy results. Moreover, additional EP 

measurements such as delay and/or frequency components may also help generate a clearer 

understanding of the impact of benzodiazepines on DBS EPs. Similar studies in other subject 

demographics would also be insightful to understand which, if any, of these trends are unique to 

dystonic subjects, and which others may be a good representation of healthy brain activity.  

Limitations in this study include the different underlying diseases and areas of brain injury 

among our subjects, as well as the inconsistency of medication types, dosages, and timings (Table 

5.1). Our data are also limited by recordings from electrodes that are placed solely in potential 

DBS targets – full understanding may require additional recordings from striatum, cortex, and 

other brainstem targets. However, while these would help the data interpretation, they may not be 

feasible in humans.  
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5.6 Conclusion 

Benzodiazepines have widespread effects throughout the brain, potentially acting at GABA 

receptors co-localized on many cells with inhibitory (hyperpolarizing) inputs.  The effects of 

benzodiazepines on ameliorating hyperkinetic movement disorders are likely multifactorial. Our 

results suggest that in some cases, changes in effective connectivity between deep brain regions 

could contribute to the mechanism of benzodiazepine action. In particular, we conjecture that 

changes in origin or target excitability will lead to changes in the effectiveness of communication 

between the two regions that could be responsible for changes in the overall pattern of activity, 

possibly interfering with or attenuating the transmission of the signals responsible for dystonia. 

Further research will be needed to confirm this finding in additional subjects, and to determine 

the relative importance of this effect compared to other mechanisms of benzodiazepine action.  
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CHAPTER 6:  MODELING OSCILLATORY DEEP BRAIN STIMULATION EVOKED 

POTENTIALS WITH PHASE OSCILLATOR NETWORKS 

This chapter is a reprint of my co-first-author publication with the same name, accepted for 

publication in the 11th International IEEE EMBS Conference on Neural Engineering (NER 2023) 

proceedings [74]. It presents a phase oscillator network model to describe oscillatory DBS EPs 

detected in the basal ganglia (and thalamus) during GPi DBS. Project contributions were split 

evenly with my co-first author Dr. Jonathan Realmuto: I focused on data collection and curation, 

while Dr. Realmuto developed the computational model. My particular contributions included 

investigation, data curation, software, formal analysis, and writing (part of the original draft, as 

well as review and editing) [37]. Some text from the original publication has been rearranged or 

omitted to preserve the flow of this dissertation. 

6.1 Abstract 

Deep brain stimulation is a highly effective therapy for an increasing number of neurological and 

psychiatric disorders. However, the optimal electrode placement and stimulation parameters are 

not the same for each individual; thus, careful planning and tuning is required. This process can be 

time-consuming and is usually heuristically guided by clinician experience. Personalized models 

tuned for each individual, which capture important features of the underlying network dynamics, 

would provide a quantitative method for target localization and stimulation tuning. Towards this, 

we present a preliminary investigation on modeling deep brain evoked responses with a network 

phase oscillator model. The model provides a forward dynamic simulation with the stimulation 

signal as input and average response of each subpopulation as output. The parameters of the 
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model include the coupling strength within and between subpopulations, and the topology of the 

network. We train the model using averaged data from a pediatric primary dystonia patient 

during a burst stimulation protocol in the pallidum. Our model provides a good fit to the data with 

an R-squared of 0.80. Using a contrasting data set with different stimulation parameters, we show 

that our model also provides a similar response to data it has not been trained on, suggesting it 

captures important features of the network dynamics. 

6.2 Introduction 

Deep brain stimulation (DBS) has emerged as an important treatment paradigm for a variety of 

neurological and psychiatric disorders, including Parkinson’s disease, essential tremor, dystonia, 

obsessive-compulsive disorder, depression, and epilepsy [75]. A typical intervention requires 

analysis of the patient’s physiology and etiology, planning of the DBS targets, and, after 

implantation, careful tuning of the stimulation parameters. Predicting the responses to different 

stimulation targets and parameters would aid clinicians in target selection and parameter 

optimization, and is therefore of critical clinical significance. 

Evoked oscillatory neural responses (EONR) have recently been observed in Parkinson’s 

disease (PD) in STN and globus pallidus (GP) during STN stimulation [44], [48], [57], [76]. The 

mechanism responsible for this behavior remains unclear, with some proposed theories involving 

patterns of inhibition and excitation [77] and interactions between STN and connected structures, 

such as the pallidum [78], [79]. The EONR is a promising biomarker that could guide in electrode 

implantation surgery, locate the most effective stimulation contacts post-implantation, and 

provide a feedback signal for closed-loop DBS [44], [57]. 



89 

 

We have observed a similar phenomenon in a primary dystonic patient, localized around 

STN and Voa/Vop, with a smaller response observed in VIM during GPi stimulation. These 

responses share many of features as previously reported EONRs in PD patients, including the 

stereotyped “resonant” response (where the amplitude increases and sharpens across consecutive 

pulses), the amplitude range, and the latency until the peak of the response. 

Our aim was to explore a network phase oscillator model for use in forward dynamic 

simulations of DBS. Phase oscillator models, typically abstracted in the form of the famed 

Kuramoto oscillator [80], provide the mathematical framework for collective synchronization and 

phase transitions [81], and have been used to describe feedback loops between excitation and 

inhibition in large neuronal networks [82], explain neuronal inhibition [83] and phase-locking 

mechanisms in DBS [84], and replicate empirical relationships of cortical oscillations [85]. We 

introduce a new multi-population phase oscillator network, trained on empirical EONRs, to realize 

a forward dynamic simulation of the underlying network and subsequently probe the model with 

a different set of stimulation parameters. 

6.3 Computational methods 

6.3.1 Model overview 

Our model is a variation of the Kuramoto phase oscillator [80], including positive and negative 

coupling [86] and interactions between subpopulations [87]. The coupling strength parameter 

models excitatory (positive values) and inhibitory (negative values) interactions. Excitatory 

interactions tend to synchronize, while inhibitory interactions tend to desynchronize. We 

partition the network into distinct subpopulations, each one modeling a specific target in the deep 
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brain, and each consisting of an equal number of phase oscillators. Each subpopulation influences 

the other subpopulations through network interactions (projections), i.e., directed connections 

between the oscillators of one subpopulation to the oscillators of another subpopulation. We 

restrict the coupling strength to be the same for the connections within each subpopulation and 

for all subpopulation-to-subpopulation connections. Lastly, in order to model the DBS stimulation, 

we allow for coupling with the stimulation pulses through a final coupling parameter. A summary 

of the multi-scale model is provided in Figure 6.1. The phase dynamics of the nth node within 

subpopulations σ is: 

𝜙𝑛
𝜎̇ = 𝜔𝜎 − 𝑘𝜎 ∑ 𝐴𝑛𝑚

𝜎

𝑁

𝑚=1

sin(𝜙𝑛
𝜎 − 𝜙𝑚

𝜎 ) − ∑ 𝑘𝜎𝛾 ∑ 𝐴𝑛𝑚
𝜎𝛾

sin(𝜙𝑛
𝜎 − 𝜙𝑚

𝛾
+ 𝜑𝜎𝛾)

𝑁

𝑚=1𝛾∈𝒩𝜎

− 𝑘𝑢
𝜎 sin(𝜙𝑛

𝜎 + 𝜑𝜎) 𝑢 

  (6.1) 

where φσ is the phase of the nth oscillator within the subpopulation σ, ωσ is subpopulation σ’s 

natural frequency, kσ is the local coupling strength within the subpopulation, N is the number 

of oscillators in the subpopulation, Aσ is the local network adjacency matrix, Nσ is the set of 

subpopulations that have projections onto subpopulation σ, kσγ is the projection coupling strength 

of subpopulation γ onto subpopulation σ, Aσγ is the network adjacency matrix of subpopulation γ 

onto subpopulation σ, ϕσγ is the constant phase shift between the oscillator in subpopulation σ 

and the oscillators in subpopulation γ, kσ is the coupling strength between the subpopulation σ 

and the DBS stimulation, ϕσ is the constant phase shift between the DBS stimulation and the 

oscillators in subpopulation σ, and u is the stimulation signal, which in practice is a binary signal 
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u 

encoding the stimulation pulses. The connectivity within and between each subpopulation is 

encoded using directed adjacency matrices whose elements are Anm = 1 for a connection 

(interaction) from oscillators m to n, and 0 otherwise. The output of each oscillator is sinusoidal, 

and the response of each subpopulation is the average response over all subpopulation oscillators: 

 𝑦𝜎 =
1

𝑁
∑ 𝑅𝑒{𝐾𝑁

𝑛=1 𝑒𝑖𝜙𝑛
𝜎

} (6.2) 

with i=-1, K the amplitude, and Re{·} the real part.  

 

Figure 6.1. Details of the proposed phase oscillator network model. (a) Each oscillator emits a sinusoidal 

response y with phase ϕ and amplitude K. The phase dynamics ϕ˙ evolve according to Equation 6.1. (b) Each 

subpopulation σ consists of N oscillators interacting according to the adjacency matrix Aσ with coupling strength 

kσ. The total response yσ of subpopulation σ is the average oscillator response over all oscillators within the 

subpopulation. (c) We consider three subpopulations (A, B, and C) influencing each other with subpopulation-to-

subpopulation adjacency matrices Aσγ , coupling strength kσγ , and phase shift ϕσγ (for subpopulation γ onto 

subpopulation σ). The oscillators in subpopulation A are coupled to the stimulation with coupling strength kA and 

phase φA.  
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6.3.2 Network topology 

The network topology was designed through preliminary investigations. We sought a responsive 

and highly coupled network without all-to-all connections, which are computationally expensive. 

Starting with a directed ring network, where the oscillators of each subpopulation are arranged in 

a ring and each project to one neighbor (e.g., counterclockwise neighbor), we found that this often 

resulted in chimera states [88], where clusters of oscillators will synchronize together, even if the 

local coupling parameter is negative (desynchronizing), but out of phase with other clusters. To 

avoid this behavior, we added a second projection from each oscillator to its farthest neighbor. 

The final network design can be seen in  6.1b and is described by: 

 A̅ nm = {
1,     if 𝑚 = (𝑛 + 1) mod 𝑁   or   𝑚 =

𝑛+𝑁

2
mod 𝑁

0,     otherwise                                                               
 (6.3) 

In this work, the network connections all take this form: Aσ = Aσγ = A¯, ∀γ ∈ Nσ, for each 

subpopulation σ. 

6.3.3 Model setup and optimization 

The number of subpopulations were chosen to replicate the empirical recordings, which are 

described in detail in the next section, and thus includes three subpopulations (σ ∈ {A, B, C}), 

corresponding to the target structures GPi, VIM, and VO/STN (Figure 6.1a). Each subpopulation 

had N = 8 oscillators. Only subpopulation A (GPi) is allowed stimulation coupling with strength 

parameter kA. The constant phase delays were assumed to be symmetric, so that ϕσγ = ϕγσ. 

Given these assumptions, there were 18 parameters to fit to the empirical data. The parameters 

were optimized by minimizing the following cost function: 



93 

 

 𝐽 = ∑ (𝑦GPi(𝑡) − 𝑦𝐴(𝑡))
2

𝑡∈𝒯 + (𝑦VIM(𝑡) − 𝑦𝐵(𝑡))
2

+ (𝑦VO/STN(𝑡) − 𝑦𝐶(𝑡))
2
 (6.4) 

which is the squared error taken only during the EONR activity, parameterized by the set T, e.g., an 

index mask that identifies the regions of interests. Since the problem is nonconvex, with many 

local minima, we alternated between a gradient based solver (fmincon in Matlab) and a derivative 

free search (patternsearch in Matlab). All simulations are numerically integrated using a first 

order Euler method with a time step matching the sampling frequency of the processed data. 

6.4 Experimental methods 

6.4.1 Patient selection 

Data from 1 pediatric patient (female, 16 years old) with primary dystonia (DYT1) was used in this 

case study. 

6.4.2 Electrode placement 

Seven (7) temporary Ad-Tech MM16C depth electrodes (Ad-Tech Medical Instrument Corp., Oak 

Creek, WI, USA; Figure 6.2b, top), consisting of 6 low-impedance macro-contacts, and 10 high-

impedance micro-contacts, were implanted temporarily into potential DBS targets in the thalamus 

(VIM, VA, and Voa/Vop, also denoted as “VO”) and basal ganglia (GPi and STN). The patient in this 

study also had previously implanted permanent leads bilaterally in GPi, consisting of 4 macro-

contacts (Medtronic 3387, Figure 6.2b, bottom). 
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Figure 6.2. Visuals of the leads and the brain regions they were implanted in. (a) Front (left) and back (right) views of 

the DBS lead implant locations. White portions on the black leads represent the low-impedance macro-contacts (gray 

rectangles on leads in (b)). The image was generated by normalizing a postoperative computed tomography scan onto 

a preoperative magnetic resonance imaging scan, in combination with regions of interest from an adult template. 

Acronyms: globus pallidus interna (GPi), ventral intermediate (VIM), subthalamic nucleus (STN), ventral oralis 

anterior/posterior (VO).  (b) Detailed schematic of the two types of electrodes implanted. Top: The Ad-Tech MM16C 

electrode, used as temporary leads (same as in Figure 12, General Methods). Bottom: The Medtronic 3387 electrode, 

previously implanted in the subject (permanent leads).  
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6.4.3 Stimulation parameters and data acquisition 

Stimulations consisted of passive charge-balanced 3.5-V, 150-Hz pulses with 5-Hz burst frequency 

(100-ms stimulation periods separated by 100-ms intervals without stimulation). The 

stimulations were applied bilaterally, with 180-degree phase shift in timing, in the permanent GPi 

leads with 120-microsecond pulse width through contacts 1-2+ in the left hemisphere and 60-

microsecond pulses through contacts 1-Case+ in the right hemisphere. Twenty seconds of 

concurrent bilateral stimulation were performed, generating approximately 100 stimulation 

bursts. The second stimulation protocol consisted of the same stimulation parameters, except with 

constant (non-bursting) 185-Hz stimulation; this data included 1000 cycles. All data were 

recorded concurrently during stimulation through all micro-contacts with a sampling frequency 

of 22 kHz, and subsequently bandpass filtered at 0.3-9 kHz.  

6.4.4 Data post-processing 

In this study, we analyzed the stimulation and responses from the right hemisphere. All ~100 

segments were aligned and stimulus-triggered averaged, and the index mask (e.g., in Equation 6.4) 

was determined as the time span after an artifact until the index before the start of the subsequent 

pulse. Next, independent component analysis (ICA) was used for source separation. The ICA 

procedure was conducted independently for each electrode (eight bipolar channels per electrode 

were selected for ICA). After ICA, the signals were centered to have zero mean and were visually 

inspected, with the channel from the following electrodes chosen based on the amplitude and 

clarity of the response as the ground truth for the model training: GPi, VIM, and VO/STN (the 

VO/STN electrode spans both structures). 
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6.5 Results & discussion 

After model optimization, the forward dynamic simulation provides a remarkably similar 

response when compared with the empirical data, as can been seen by comparing Figure 6.3 a 

& b with c & d. The model adequately captures the EONRs, including the “resonant” behavior, 

where the amplitude increases and sharpens with consecutive stimulation pulses, and captures 

the “ringing” effect after the last cycle. With an R-squared value of 0.8, our model explains a large 

portion of the variance within the original data. Using the same optimized model parameters, we 

simulated a second set of empirical data, where the stimulation was held constant (not bursting) at 

185 Hz. The original data is shown in Figure 6.3 e & f, and the simulation is shown in Figure 6.3 g 

& h. Note that in neither the model nor the data is there an EONR apparent for the 185 Hz 

constant stimulation. 
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Figure 6.3. Comparison of the empirical data and simulations using the phase oscillator network model. (a) Empirical 

response during 150 Hz burst stimulation. Colored portions of the traces represent the time regions of interest, e.g., the 

EONRs. (b) Superimposed EONRs aligned to each pulse (time is encoded in trace shading, darker to lighter shades). (c) 

b d 

f h 

e g 

a c 
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Simulated response of the 150 Hz stimulation. (d) Simulated EONRs, superimposed and aligned to each pulse. (e) 

Empirical response during 185 Hz stimulation. (f) Superimposed responses aligned to pulse. (g) Simulated response 

of the 185 Hz stimulation. (h) Simulation responses, superimposed and aligned to each pulse. Colored regions: time 

regions of interest. Red traces: GPi; pink traces: VIM; blue traces: VO/STN. Note: The stimulation artifact from the 

contralateral stimulations, which were phase shifted by 180 degrees relative to the ipsilateral stimulation, can be seen 

in the two empirical data sets, at the 3.33 millisecond mark in (b), and 2.70 millisecond mark in (f). 

6.6 Conclusions 

We introduced a network phase oscillator model for dynamic simulations of DBS. Using empirical 

data, possibly related to a recently discovered biomarker, we showed that the parameters of the 

model could be optimized to produce a remarkably similar forward dynamic simulation, resulting 

in a good model fit to the empirical data (R-squared = 0.80). Using a second empirical data set, 

which was generated under different stimulation conditions, we showed that our model provides 

reasonable agreement with the data, arguing that the model captures important features of the 

individual neural network. Our results suggest that the phase oscillator model should be further 

investigated for potential applications in model-based DBS.  
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CHAPTER 7:  DIFFUSION TENSOR IMAGING COEFFICIENTS CORRELATE WITH 

DEEP BRAIN STIMULATION EVOKED POTENTIAL AMPLITUDES AND DELAYS 

This chapter presents preliminary results from our study of the relations between diffusion tensor 

imaging coefficients and evoked potential characteristics. The project was a collaboration among 

several lab members, and I will co-first-author the resulting paper. My main contributions are 

related to the DBS evoked potential data (peak-to-peak amplitude and time-to-first-peak delay) 

for all subjects, including all data processing leading up to it: investigation, data curation, software, 

formal analysis, validation, and visualization [37]. I also assisted in writing the paper, in particular 

playing a significant role in the editing of the paper.  

7.1 Abstract 

Background. Diffusion tensor imaging (DTI) is a quantitative analysis method for evaluating white 

matter integrity. Although both DBS EPs and DTI are valuable methods for studying neural 

connectivity between brain regions, the relationship between the characteristics gathered by the 

two approaches has not yet been studied.  Objective. The objective of this study was to investigate 

the relations between DTI coefficients and DBS EP characteristics.  Methods. Stimulations of 9 or 

25 Hz were delivered through pairs of macro-contacts while simultaneously recording from 

micro-contacts. DTI was also conducted for each patient in order to study the correlation between 

DBS EP characteristics (amplitude and delay) and DTI coefficients: length, volume, and fractional 

anisotropy (FA) of the fiber tracts. Finally, we completed a linear regression to generate a 

generalized linear model (GLM), with the anatomical feature variables (calculated through the DTI 

analysis) as the inputs, and the EP characteristics as the outputs.  Results. Our results show that 
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FA, tract length, and tract volume are significantly correlated with DBS EP characteristics. These 

results suggest that DBS signals travel across tracts to affect both local and distant brain regions, 

and the magnitude of the effect of DBS is, at least in part, determined by the integrity of the white 

matter tracts connecting the stimulation site to potential target regions.  Conclusion. We have 

generated a model that validates DTI against ground truth electrophysiology. Our results provide 

crucial and novel confirmation that EPs are affected by the brain’s white matter integrity and that 

this relationship can, at least crudely, be quantitatively demonstrated by a GLM. Such a 

mathematical model has the potential to predict DBS EP characteristics (e.g., amplitude and delay) 

using only DTI coefficients, which would open new possibilities for cases when intracranial deep 

brain recordings are not possible or available. Down the line, such a model may even be able to 

infer neurophysiological connectivity and possibly predict optimal DBS lead implant targets. 

7.2 Introduction 

A prerequisite for a beneficial outcome of DBS treatment is the accurate identification of the 

chosen brain target. Magnetic resonance imaging (MRI) can be used for stereotactic targeting in 

deep brain stimulation surgery; however, the accuracy of the electrode implantation in the target 

nuclei is not entirely reliable when only the anatomical image is used. To address this issue, 

standard brain atlases can be incorporated to predict the location relative to defined landmark 

coordinates, such as the anterior and posterior commissures. However, the accuracy of adult-

based atlases in children with acquired brain injury is not assured, especially when considering 

the distortion and asymmetry of the injured brain.  

With the development of multiple-contact leads for high-density recordings, and the 

growing capacity for streaming continuous data from multiple contacts simultaneously, the 
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popularity of local field potentials (LFPs), including EPs, has increased. These neural responses 

are transferred between brain regions through white matter tracts, which is why the loss of white 

matter integrity is often a major cause of neurological impairment [89], [90]. Diffusion tensor 

imaging (DTI) has been undisputedly praised as the best quantitative analysis method for 

evaluating such white matter integrity [91]. 

This project focuses on exploring the signal pathway of DBS treatment of patients with 

dystonia, a form of dyskinetic cerebral palsy (CP) that is associated with white matter injury [1]. If 

this relationship of signal transfer and white matter integrity can be described mathematically, 

this would be a leap forward in quantifying the relationship between cerebral neurophysiological 

signals and the underlying anatomical features of the brain.  

7.3 Materials & methods 

7.3.1 Subject selection 

Twelve pediatric patients undergoing deep brain stimulation (DBS) implantation for the treatment 

of dystonia were recruited to participate in the present study (see Table 7.1 for patient 

demographics).  
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Table 7.1. Demographic characteristics of the 12 subjects included in the DTI-EP correlation study.  

Subject Etiology Gender Age [years] Implanted regions 

1 Cerebral Palsy F 15 VA/VoaVop/VIM/GPi1 

2 Cerebral Palsy F 12 VA/VoaVop/VIM/GPi1 

3 Cerebral Palsy M 20 VoSTN/VIM/VPL/GPi 

4 Cerebral Palsy M 18 VA/VoaVop/VIM/GPi1 

5 Cerebral Palsy F 14 VA/VoaVop/VIM/GPi1 

6 Cerebral Palsy F 16 VA/VoaVop/VIM/GPi2/GPi1 

7 Cerebral Palsy F 12 GPi1/GPi2/VoaVop/VA/VIM 

8 H-ABC (genetic) M 13 Vo/Vo-VIM-STN/VIM/GPi1/GPi2 

9 Kernicterus  M 15 VA/VoSTN/VIM/GPi1/GPi2 

10 Cerebral Palsy (dyskinetic) M 12 VA/VoSTN/VIM/GPi1/GPi2 

11 Glutaric Aciduria Type I M 13 VA/VoSTN/VIM/GPi1/GPi2 

12 KMT2B (genetic) M 10 VA/VoSTN/VIM/GPi1/GPi2 

Abbreviations: F, female; M, male. 

7.3.2 Stimulation protocol 

Stimulations consisting of 90-us, 3-V pulses, at 9 or 25-Hz frequencies, were administered through 

two adjacent macro-contacts (anode and cathode) at a time. 

7.3.3 Evoked potential detection 

The ADPREP algorithm described in Chapter 3 was used to automate the detection of DBS EPs. 

Only EPs determined by this algorithm were included in the analysis of this project. Detected EPs 

were characterized by their peak-to-peak amplitude (P2P) and time-to-(first-)peak delay (T2P), 

and grouped within each micro-contact row for further analysis. 
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7.3.4 Image data acquisition  

Preoperative T1-weighted structural MRI volumes were acquired from a MAGNETOM 3T MRI 

scanner (SIEMENS Medical System, Erlangen, Germany) for precise anatomical localization. The 

settings consisted of: repetition time (TR) 1800 ms, echo time (TE) 2.25 ms, flip angle 8°, voxel 

size 1 x 1 x 1 mm3, and field of view (FOV) 240 x 240 mm2. Preoperative diffusion-weighted 

imaging (DWI) sequences suitable for tractography were also acquired.  Two echo planar imaging 

(EPI) sequences with opposite phase-encoded polarity calibration scans (anterior-posterior 

commissure, AC-PC, and posterior-anterior commissure, PC-AC) were acquired to correct the 

magnetic inhomogeneities. The parameters of the EPI sequence consisted of: TR 9000 ms, TE 113 

ms, flip angle 90°, voxel size 2.5 × 2.5 × 2.5 mm3, and FOV 250 x 250 mm2. Two DTI scans were 

obtained with a b-value of 1000 s/mm2 and 30 & 6 gradient directions in the anterior-to-posterior 

(AP) & posterior-to-anterior (PA) phase encodings, respectively, for future TOPUP distortion 

correction use. The entire brain was covered using 55 slices in each of the two scans. 

Postoperative computed tomography (CT) volumes were acquired from a GE (GENERAL 

ELECTRIC Healthcare, Milwaukee, WI, USA) scanner, providing images with a size of 512 x 512 x 

320 mm to confirm electrode localization.  

7.3.5 Image correction and registration 

The phase-encoding direction is associated with two major artifacts: aliasing and motion. Aliasing 

occurs when the size of the anatomy exceeds the defined field-of-view (FOV) in the phase-

encoding direction, which causes the anatomy outside the FOV to be folded in over the main part 

of the image. Although there are methods to remove artifacts such as phase-oversampling, 

sometimes additional phase-encoding measurements are required [92], [93]. To solve this 
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discrepancy, two diffusion MRI scans were acquired with AP and PA encoding directions for 

correction of phase encoding distortion. Although the distortions were improved when the EPI 

sequences were fitted between them, some distortions still remained and were further corrected 

with the TOP-UP algorithm [92], [94]. Furthermore, motion artifacts were corrected through 

Eddy-current corrections [95]. Once the distortions had been corrected, both CT and DWI volumes 

were realigned to the same plane, setting the origin of the image at the midpoint of the AC-PC line 

in the T1-weighted volumes.  

7.3.6 Visualization of atlas  

To visualize the atlas data with the electrode reconstruction results, the atlas data was read by the 

toolbox in standard nifti file format. Atlas data can be visualized as either 2D-slice views (sliced 

overlays on the MRI) or 3D-reconstructions. Here, we implemented the DISTAL atlas [96] in the 

DSI Studio visualization software. For the atlas visualization into individual or MNI space, we 

selected the nuclei of interest (such as GPi, STN, Voa/Vop, VA, VIM, and PPN) and thereafter 

applied a linear spatial transformation (Flirt tool from FSL). Through our work, we enabled the 

novel visualization of a binary atlas with data from children with injured brains, either in the DSI 

Studio package or FSLEYES, software programs that are widely used by the neuroimaging 

community (Figure 7.1). 
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Figure 7.1. Deep brain structure atlas in MNI space. This image shows regions in the thalamus (VIM, Voa/Vop, and 

VA), basal ganglia (GPi [part of the pallidum] and STN), and brainstem (PPN).   

7.3.7 DBS electrode trajectory reconstruction 

To ensure optimal DBS treatment outcome, exact electrode placement is required. Moreover, to 

analyze the relationship between electrode location and clinical results, a precise reconstruction 

of electrode placement is necessary, posing specific challenges to the field of neuroimaging.  

Once the CT scans were warped to the structural MRI volume and realigned to the AC-PC 

axis, the projection images were calculated. Due to the complexity of visualizing multiple DBS 

electrodes in the individual anatomy, we here introduce a new approach to place the electrode 

accurately based on projection images.  
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We calculated the maximum intensity projection (MIP), which consists of a projection of 

the voxel values – specifically, the highest attenuation value – onto a 2D image [97]. As a result, for 

each X-Y coordinate, only the pixel with the highest Hounsfield number along the Z-axis is 

represented, so that in a single bidimensional image, all dense structures in each volumetric area 

are observed. This approach generated a new semi-automatic method for localizing the DBS 

electrodes from the projection images, allowing us to obtain the spatial coordinates of the 

electrodes in a precise manner. Once the projection images were calculated to reconstruct the lead 

trajectory, the distal part (tip) of the electrodes could not be distinguished from contrast CT scans 

into structural MRI, so a linear interpolation was used to reconstruct the tip of the electrodes, 

corresponding to the first row of micro-contacts (Figure 7.2).  

The volume of tissue activated (VTA) is a conceptual measure of tissue volume where the 

electrical stimulation of axons has elicited additional action potentials. Much work has been done 

in this field, and models with increasing sophistication have been introduced in recent years. In 

contrast, some more clinically oriented papers have aimed to use fast heuristics to determine the 

rough extent of the VTA based on stimulation parameters, without actually creating a spatial 

model. On a spectrum between a simple and highly sophisticated model, we used the metal 

artifacts of the macro-contacts to estimate the DTI source seeds (the sources of the upcoming 

tractography analysis). A histogram segmentation was applied in post-surgery CT scans with a 

threshold set to detect metal artifacts [98], in order to create the binary mask that finally provided 

the spatial localization of the macro-contacts of all DBS leads. 

Since we also included electrophysiological data in the form of DBS EPs, we created target 

regions for the micro-contact rows as well. These regions were modeled as spheres around each 

micro-contact row in the area that we anticipated the micro-contacts to be recording from (Figure 

https://radiopaedia.org/articles/pixel?lang=us
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7.2c). As the deep brain structures in children are smaller than in the adult brain, the diameter of 

these spheres was chosen to be 3 mm, according to the gray scales of CT volumes. 

7.3.8 Seed selection 

The macro-contact metal artifacts from the CT scans were visualized in DSI Studio and fused with 

the deep brain atlas. In order to select the seeds, we conducted a conjunction analysis between the 

deep brain atlas (normalized into MNI or individual structural MRI) and the metal artifacts. In this 

way, the macro-contact regions located within each nucleus were identified (Figure 7.3). 

 

Figure 7.2. sEEG leads with sample macro-contact source regions and micro-contact target regions. The lead was 

reconstructed from CT scans using projection images and visualized in the DSI Studio package. (A) Lead specifications 

of the Ad-Tech MM16C sEEG lead. (B) Macro-contact source regions (red) detected from CT metal artifacts. (C) Micro-

contact target regions (blue spheres) represent the estimated region that each micro-contact row can record from. (D) 

Representation of a reconstructed sEEG electrode with both macro- (red) and micro-contact regions (blue) visualized.  
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Figure 7.3. Visualization of the steps to determine source and target regions for tractography analysis. (A) DISTAL 

atlas normalized to individual anatomy, showing leads (gray) in deep brain regions corresponding to globus pallidus 

internus (GPi, red) and ventral oralis anterior/posterior (Voa/Vop, blue). (B) Spatial conjunction analysis between the 

CT scan and deep brain regions to determine which parts of the DBS electrode that are placed within GPi and Voa/Vop. 

(C) Source (red) and target (blue) region selection based on the conjunction analysis between the CT scan and atlas.  

7.3.9 Diffusion tensor imaging 

DWI was used to reconstruct the DTI [99], a method previously used to study fiber orientations 

and quantify diffusion characteristics. Q-space diffeomorphic reconstruction [100] was used for 

DTI fiber tracking in DSI Studio [101]. Quantitative anisotropy (QA) coefficients [102] were used 
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to  determine the fiber tracking threshold. In each macro-contact region (Figure 7.2b), seeds were 

randomly generated with an average number of 1000 seeds per voxel, with a step size of 0 (1 mm3 

voxel distance), a turning angle of 10°, and QA > 0.0, in order to detect more fiber tracts. 

Fiber tracking was performed between all stimulating and recording regions, for all 

subjects. 

7.3.10 Generalized linear model 

The characteristics of each fiber tract can be quantified by DTI coefficients (including tract length, 

tract volume, and FA), while EPs can be characterized by their peak-to-peak amplitude (P2P) and 

time-to-(first-)peak delay (T2P). We aimed to explain the relationship between these EP 

characteristics and DTI coefficients with generalized linear models (GLM). These linear models 

were defined as follows:  

 𝑃2𝑃 = 𝐶𝐹A ∗ 𝐷𝑇𝐼𝐹𝐴 + 𝐶𝑙 ∗ 𝐷𝑇𝐼𝑙 + 𝐶𝑉 ∗ 𝐷𝑇𝐼𝑉 + 𝐶𝑖nt (7.1) 

 𝑇2𝑃 = 𝐶𝐹A ∗ 𝐷𝑇𝐼𝐹𝐴 + 𝐶𝑙 ∗ 𝐷𝑇𝐼𝑙 + 𝐶𝑉 ∗ 𝐷𝑇𝐼𝑉 + 𝐶𝑖nt (7.2) 

where, for each model, DTIFA, DTIl, and DTIV  are the DTI coefficients of FA value, tract length, and 

tract volume, respectively; CFA, Cl, and CV are the estimation coefficients relating these DTI 

coefficients to the EP characteristics (P2P amplitude and T2P delay); and Cint is the intercept of the 

model. 

7.4 Results  

To quantify the relationships between EPs and anatomical features, we calculated the averages of 

the DTI coefficients, including FA, fiber tract length, and fiber tract volume, using the tract analysis 
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tool provided by DSI Studio. All values were interpolated by a 3D linear model on the tract lines. 

(We did not use the number of tracts in our analysis, as this value is easily affected by the user-

selected fiber tracking parameters.) 

7.4.1 Individual analysis 

For visualization purposes, individual analysis was performed on one subject prior to the group 

analysis (Figure 7.4), focusing on the connection between GPi and Voa/Vop, a neural connection 

that is important in the control of movement. In these individual results, we saw a clear relation 

between FA (a main marker of brain white matter integrity) and the T2P & P2P values. FA was 

found to be positively correlated with P2P amplitude, and negatively correlated with T2P, both 

statistically significant. This highlights how white matter integrity affects signal transfer: a high 

integrity neural pathway seems to enable a stronger and faster signal transmission, and vice 

versa.  
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Figure 7.4. Sample results from the DTI-EP correlation analysis in one subject, between GPi and Voa/Vop. (A) Neural 

recordings from micro-contacts in Voa/Vop during 25-Hz GPi DBS. (B) Fiber tracking between macro-contacts in GPi 

(stimulation) and micro-contact rows in Voa/Vop (recording). Yellow, green, pink, and blue fibers correspond to tracts 

from macro-contacts 1 & 2 (the macro-contact pair closest to the tip of the lead) in GPi to micro-contacts 1-3 (first row 

from the tip of the lead), 4-6 (second row), 7-8 (third row), and 9-10 (fourth row), respectively, in Voa/Vop. (C) Scatter 

plots with trend lines showing correlations between EP characteristics (T2P & P2P; left & right columns, respectively) 
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and DTI coefficients (FA, length, and volume of fiber tracts, from top to bottom). Each data point represents one of the 

four different connections from the macro-contacts in GPi to the micro-contacts in Voa/Vop (different colored tracts in 

subplot B). Note how P2P amplitude seems to correlate positively with FA and fiber volume, but negatively with fiber 

length, while the opposite is true for T2P delay.  

7.4.2 Group analysis  

The group analysis results of the linear models relating DTI coefficients to EP amplitude (P2P) and 

delay (T2P) are displayed in Table 7.2. P2P displayed significant positive correlations with FA and 

tract volume, but a negative correlation with tract length (Table 7.2, left block). Conversely, T2P 

displayed significant negative correlations with FA and tract volume (Table 7.2, right block; no 

significant correlation with tract length).  

Table 7.2. Generalized linear model results: EP amplitude (P2P, left block) and delay (T2P, right) vs. DTI coefficients. 

DTIFA, DTIl, DTIV: DTI coefficients of FA value, tract length, and tract volume, respectively. CFA, Cl , CV: estimation coefficients 

relating DTI coefficients to EP characteristics (P2P amplitude and T2P delay). Cint: intercept of model. SE: Standard error. 

Significant estimates shown in bold. Distribution: normal. 2115 observations; 2111 error degrees of freedom.  

Estimated Dispersion: 3500 (P2P), 1410 (T2P). F-statistic vs. constant model: 42.4 (P2P), 11.6 (T2P); both p < 0.001.  

7.5 Discussion 

In this combined imaging and electrophysiology study, we determined the characteristic 

relationship between the anatomical features described by the tractography (DTI) and 

 
 

 𝑃2𝑃 = 𝐶𝐹𝐴 ∗ 𝐷𝑇𝐼𝐹𝐴 + 𝐶𝑙 ∗ 𝐷𝑇𝐼𝑙 + 𝐶𝑉 ∗ 𝐷𝑇𝐼𝑉 + 𝐶𝑖𝑛𝑡  𝑇2𝑃 = 𝐶𝐹𝐴 ∗ 𝐷𝑇𝐼𝐹𝐴 + 𝐶𝑙 ∗ 𝐷𝑇𝐼𝑙 + 𝐶𝑉 ∗ 𝐷𝑇𝐼𝑉 + 𝐶𝑖𝑛𝑡 

  Estimate SE tStat p-value Estimate SE tStat p-value 

CFA 78.059 10.057 7.762 < 0.001 -1.0616 0.20172 -5.2626 <0.001 

Cl -0.24556 0.036891 -6.6564 < 0.001 -0.0004514 0.00073997 -0.61005 0.54189 

CV 0.010145 0.0047645 2.1292 < 0.05 -0.0003003 9.56E-05 -3.1426 <0.05 

Cint 2.4077 4.9727 0.48419 0.6283 1.9435 0.099744 19.485 <0.001 
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electrophysiology (DBS EPs) of pediatric patients with dystonia. At present, for 12 patients 

undergoing DBS surgery, we not only continuously collected the in-vivo electrophysiological 

signals of the patients, but also used tractography to detect the signal conduction path, thereby 

determining the relationship between the evoked potentials and anatomical features.  

The outcome of DBS treatment critically depends on the accurate localization of DBS target 

areas [103], such as GPi, STN, VIM, VA and Voa/Vop. The localization of these regions relies on 

indirect methods, which in turn may rely on standard coordinates (MNI), without considering 

individual differences in thalamic locations and structures [104]–[106]. This may lead to different 

– and non-optimized – outcomes after DBS surgery [107]–[109]; thus, there is an urgent need for 

reliable and precise methods for determining DBS targets. Although some techniques for MRI 

imaging have been proposed [106], [109], none of them have been applied to clinical procedures 

[108]. 

Typical DBS targets include sub-regions of globus pallidus and the thalamus, which can be 

complex to identify through structural MRI. We have solved this problem for the first time by 

segmenting the voxels of the pallidum and thalamus in grayscale in individual space, and 

thereafter normalizing them into MNI space. An entire pipeline has been presented here for the 

neuroimaging of pediatric brains in particular. We introduced a semi-automated procedure to 

reconstruct our leads based on projection images. Analysis of a group of patients (N = 12) showed 

that the procedure can improve the trajectory localization based on postoperative CT-images. 

Moreover, we used nonlinear and linear spatial transformations to warp the CT-image and DTI 

volumes into an individual structural MRI (which works for both T1 and T2 weighted images) and 

normalized them into MNI space without loss of information during the spatial transformation.  
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We presented a novel way to reconstruct and visualize multiple DBS electrodes in the well-

known and widely used DSI Studio package, with DTI and structural MRI images. Furthermore, the 

atlas for deep brain regions was added to DSI Studio to obtain specific locations for each lead, for 

both macro-contacts and rows of micro-contacts. With these innovations, we are able to track the 

fibers from specific contacts for both individual as well MNI space, providing information about 

the fiber tracts in deep regions of children with brain injury, which has not been done before.  

To test the reliability of our process, tracking between sEEG leads was performed for a 

group of 12 pediatric patients with dystonia. As a result of the tracking, values for FA, length and 

volume of tracts were calculated. The DTI coefficients were used to relate the tractography results 

with EPs recorded during 9- or 25-Hz intracranial DBS through a GLM. 

As expected, the results showed a significant correlation between DTI coefficients and 

electrophysiological characteristics. The GLM showed that EP amplitude (P2P) was positively 

related to FA and tract volume; inversely, EP delay (T2P) was negatively related to both of these 

measures. Additionally, P2P was found to be negatively related to tract length (T2P showed no 

significant relation to tract length). 

The inverse relations that P2P and T2P have to FA and tract volume (P2P showing positive 

relations to both while T2P showed negative relations to both) met some expectations set forth 

from the results presented in Chapter 4: when stimulation frequency increases, EP delay (T2P) 

tends to increase, while EP amplitude (P2P) decreases. This suggests some sort of inverse relation 

between T2P and P2P, at least in terms of stimulation frequency; as such, we may expect to see 

such an inverse relation with regard to physiological measurements as well.  

FA is a measure of anisotropic movement of water molecules in fiber tracts, and is as such a 

good indicator of white matter integrity (with larger FA values representing good integrity) [110]. 
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Hence, our results imply that the strength and time required for the transmission of the electrical 

signal are affected by the integrity of the white matter of the brain: high-quality white matter 

(characterized by large FA values) allows neural signals to arrive with shorter delays and larger 

amplitudes, and vice versa. It is also intuitive that fiber tracts with greater volume would lead to 

faster transmission, as this is in line with cable theory: larger diameter axons have less electrical 

resistance, and can as such transmit action potentials faster [111]. This decreased resistance may 

also lead to a reduction in potential data loss along the way, hence causing the retention of EP 

amplitude. Similarly, one could expect that data loss happens gradually throughout the 

transmission of the EP through the fiber tracts, resulting in smaller amplitudes the farther an EP 

must travel; as such, the negative relation between P2P and tract length could be expected. 

The one non-significant relation between the EP characteristics and the DTI coefficients, EP 

delay (T2P) versus tract length, may be the one we had first expected to be significantly 

correlated. Namely, EP delay is related to fiber length and conduction velocity through the 

equation of delay=length/velocity; hence, longer fiber tracts should lead to longer EP delays. This 

should as such translate to a positive relation between T2P and tract length – but no significant 

relation was detected in our GLM models. However, this postulation assumes constant conduction 

velocity, which, as we have already discussed, is not a universally true assumption. It is hence 

possible that other factors such as variation in conduction velocity, sample size, and dystonic 

pathology in the subject group may explain why this relation was not noted in our analysis.  

Apart from this, the significant results in this study could be logically explained based on 

physiological expectations, which makes us optimistic that these findings may be true not only for 

dystonic patients, but potentially also in healthy brains. However, as our methods to collect 

information about the intracranial EP delays and amplitudes are invasive, we are currently unable 
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to confirm this generalization. Nevertheless, we hope that non-invasive methods may be 

developed to allow us to do so in the future. 

7.6 Conclusion 

We have demonstrated that a quantification of the relationship between electrophysiological 

signals and white matter integrity is possible using techniques such as DTI and sEEG recordings 

during DBS. Through the development of GLMs, we validated the methods of tractography against 

ground truth electrophysiology, and discovered significant correlations between the 

characteristics of neural tracts and neural responses to electrical stimulation in deep brain 

structures.  

Future work in this project involves increasing sample size, including additional model 

input variables, and incorporating models of machine learning and deep learning to investigate 

and understand these findings further. Improvements like these may provide a version of our 

mathematical model with the potential to predict DBS EP characteristics (e.g., amplitude and 

delay) using only DTI coefficients. Such an ability to infer DBS EPs from DTI coefficients of fiber 

tracts would open up new possibilities for cases when intracranial deep brain recordings are not 

possible or available. The proposed mathematical model may then be used not only to describe 

the relationship between DBS EPs and the connectivity of white matter, but potentially also 

indicate which of the DTI indices is most predictive of electrical connectivity, and noninvasively 

predict optimal DBS lead implant targets.   
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SUMMARY & CONCLUSION 

This dissertation aimed to study signal flow and the effects of electrical stimulation in dystonic 

basal ganglia and thalamic nuclei. Each of these areas of increased knowledge will provide vital 

information for the development of ideal stimulation treatments for movement disorders. While 

further investigation is required, I have shed light onto signal flow in the human brain and the 

mechanism of dystonia by developing experimental and data-processing techniques with which to 

probe the human brain connectome. 

Recordings were gathered from sEEG leads to detect neural responses evoked by 

intracranial and peripheral stimulation in the dystonic brain. In order to observe both the steady 

state and transient neural responses, stimulations were delivered both as continuous pulse trains 

(providing insight into the average neural response) and intermittent stimulation bursts (allowing 

us to study the initial build-up of the neural response throughout the bursts). Stimulations at 

different rates were also administered to determine the effect of stimulation frequency on 

connectivity. 

Findings from burst stimulations showed that transient responses differ from steady state, 

revealing increasing EP correlations throughout peripheral bursts, and increasing amplitudes of 

oscillatory EPs throughout intracranial bursts. We hypothesized that these trends are the result of 

successive neural recruitment to repetitive stimulations, and developed a Kuramoto-based model 

to explain the latter finding on the basis of couplings between neural populations. While steady 

state responses from constant stimulation trains were found to evoke highly intricate and 

consistent neural responses, the delay, amplitude, and even shape of the response appears to be 

frequency dependent. Moreover, I found that DBS EPs are affected by the intake of medications in 
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a surprisingly heterogeneous pattern, and also noticed correlations between our invasive 

neurophysiological recordings and non-invasive imaging methods. 

Through my extensive work developing codes, I have created methods to accurately 

process our data, remove noise and artifacts, and automate processes that could otherwise insert 

human bias and take valuable time that could be put to better use deciphering patterns and 

drawing conclusions from the data. This has allowed me to study the temporal and spatial 

electrophysiological effects of DBS in human deep brain structures in an in-depth and reliable 

manner that is unique in comparison to many other studies with limited experimental time and/or 

access to human data.  

This dissertation research has provided insight into the neural response to electrical 

stimulation in patients with movement disorders, leading to a greater understanding of both the 

signal flow in deep brain regions and how electrical stimulation can modulate this flow. Both of 

these components are crucial in the development of more effective electrical stimulation 

treatments, not only for dystonic patients, but also for other diseases currently treated by such 

methods (including epilepsy, PD, and ET), as well as psychiatric disorders currently under 

investigation for DBS treatment (such as depression, Alzheimer’s disease, and obsessive-

compulsive disorder) [12]. Further understanding of the brain’s response to electrical stimulation 

will also enable better use of closed-loop DBS, an area of increasing interest [12]. My new 

analytical methods, signal processing tools, and models, developed in order to answer these 

clinical questions, have hereby also added an important contribution to the signal processing and 

engineering fields. 

Electrical stimulation has the potential to effectively treat brain disorders. However, as 

with any tool, it is only as useful as its operator is skilled, and for optimal use, the operator must 
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both know what to do, and how to do so. By studying the abnormal signal flow that causes 

dystonia, we can determine what needs to be fixed, and by studying the effects of electrical 

stimulation, we can learn how to control the response pattern to generate the desired effect for 

each individual patient. While this dissertation cannot not fully answer these questions, it has 

made significant progress to guide the development of new stimulation protocols to increase 

treatment efficacy for children with dystonia and other movement disorders. 
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