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ABSTRACT
Let N(a, t) be the number of cells of age less that a in a population

of mortal, d_i&iding cells at time t. If probabilities of death and division
afe' giv'eﬁ as functions of éell age; then N(a, t) is a random variable. The
mean and variance of this random variable have the following aéymptotic
behavior as functions o_f time: If th‘e_popula’ci'on tends to decfease, the
mean and variance tend to zexv"vo; if the population tends to increase, the
mean and standard deviation tend to increase exponentially, ‘both with the
same exponent; otherwise th‘ev mean tends to a Constaht and the variance

tends to increase in proportion to time.
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INTRODUC TION

In an earblievr paper (Nooney, 1967), I disc.ﬁssed_ the agev distributions'
of continuous populations of éells. from a deter.ministic viewpoint. The
present note treats the stochastic case, in which the death andl éivision
schedules are random functions of cell age. In this case, the number of |
cells of age less than a in a population at time t is a random variable
called the age distribution. The méan and variénc‘e of that random variable
are diécussed here. The method of the ge.nerati_.ng function used by

Harris (1963) allows the extension of my previous results on the mean age

"distribution to certain discontinuous probability distributions for death or

- division as well as to discrete populations. In addition, I obtain the .

asymptotic form of the variance.

As wé shall see, the gross asymptotic behavior of the mean and
variance of the age distribution depends on theb gross survival character
of the population: If the popuiation tends to decrease; then the mean and
variance tend to zero in time; if the population tends to increase, then the '
mean and standard deviation tendto increase exponentially in time, both
with the same exponent; otherwise the mean tends to a constant with res-
pect-to time, and the variance tends to increase in propor‘tion to time.

It is true also that only for- an asymptotically exponentially growing
population can the normalized standard deviation (standard devigtion div-
ided Aby mean) remain bounded in time. For 6_ther populations the actual
age distribution is likely to be: very alfferent from the mean, and the mean
age distribution becomes a progresswely worse basis for analysis of the

population as time increases. Unfortunately the latter cases include

populations of bounded size, which are of major biological interest.
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The derivation of the foregoing results is based on an examination
of the age distributions in populations each arising from a single cell.
The :assumed independence of cells permits the easy extension to arbi-

trary initial populations .

THE PROBABILITY-GENERATING FUNCTION

Let .P(a) be the probability that a cell would divide at an age not
exceeding a if no cell death were to occur, and let Q(a) be thevprobabil-
ity that a cell would die at an age not exceeding a if no cell division were
to occur. Division means replacement by two replicas of age zero; death
means removal from the population. ' I assume that P 1is not a lattice
‘distribution and that P(o) = Q(o) = 0. The behavior of each cell is
assumed to be described by P and Q and to be independent of other
cells. | |
| Consider the descendants of a cell aged y at timg: zero. Let
'n(x,y,t) be the number of these cells of age not exceeding x at time t.
Following Harris (1963), set

I oo
F(S, X5 Vs t) = Z sh‘Pr {-n(x’ Y’,t) = h} -
and call F the probability-generating function. Note that F(1, X, y,t) = 1.
Defining m(x, y, t) and v(x, y, t) to be the mean and variance, respectively,

of the random variable n(x,y,t),.we may write (Feller, 1950)

m(x, VL t) = Fs(iy X5 Y t), | (1)

vix,y,t) = {mix, vy, t)]z +mx,y,t) + F (L x,y,t). | (2)
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The probability-generating function satisfies the function equation,

F(S,X, Y’t) :Q(Y+t)‘Q(Y) S
+ -0y +t) +Q(MIL -Ply + ) + P(y)] T(y +t - %)
+slt-aly+)+QWIL-Ply+ )+ Pt - Ty +t+x)]  (3)

t
+ f [F(S,x,O.t-u)]zli -Qly +u) +Q(y)] dP(y +u),
u=0 :

J(t) =
'LO, t <0

The first two terms on the right-hand side represent the proba‘bili‘ty that

where _ .Ji , t> 0

the ojriginal cell (aged vy :at tim_e-z‘ero) dies before time t. 'I;he third and
fourth terms represent the probability that the origif;_al cell survives with-
out dividing uhtil time t under the respective condition.s ytt=x, and
.y+t'<_x. ‘The last term accounts for the remaining possibility: The cell

divides not later than time t. In writing the last term we use the fact -

that [F(s,x,0,t-u)] % is the probability-generating function for the process

starting at time t-u with two cells of age zero.

By differentiating Eq. (3) with respect to s and using Eq. (1), we

find .
,m(x,'y, t)=[1-Qy+t)+ QY] {1 -Ply +t) + P(y)][1 - T(y +t - x)]
. _ (4)
+2 [ mix, d,t_-u)[i -Q(y+u)+Q(y)] dP(y +u).
' u=0 , :

By differentiating Eq. (3) twice with respect to s and using Eq. (1), we

obtain

Fss(i,x, yot)=2 [ {{m(x, c,t-u)]2 +FSS(1,x,o,t-u)}
: u=o

’ (5)
X [1-Q(y+u) +Q(y)] dP(y +u).
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Now set wi(x,y,t) = Fsst(i,x, v, t) + [m(x, y, t)]z. Then from Eq. (5)

t .
_w(x, v t) = {m(x, Vs t)]2+ 2 [ wix, o, t-u){1 -Q(y+u)+Q(y)]dP(y+u) (6)
u=o '

and from Eq. (2),

vix, v, t) = w(x, v, t) - Z[m(x, v, t)] 24 m(x, y, t). (7)

ASYMPTOTIC BEHAVIOR
In Ecis. (4) and (6), set y=0 and find the renewal equations

L ) t - )
m(x, o, t) =[1 -Q(t)]{1 -P(t)][1 - J(t -x)] +2 [ m(x,0,t=u){1 -Q(u)] dP(u) (8)
. . ] u=o .

and

t ' .
w(x, o, t) = [m(x, o, t)] 242 ] wix, 0, t-u){1 - Q(u)] dP(u). (9)
. u=o0 .

The asymptotic behaviors of m and w are influenced by the 'kernel of
these renewal équa_t.ions, and we s}‘lall distingﬁish three cases, according
as 2 f [1 -Q(u)]dP(u) is (i) less than, rl (ii) equal to, or (iii) greafer
than u;xliz;. For cases (ii) and (iii), we shall é_ssume the existenée of

.

0

c=2 [ ul1-Q(u)]dP(u).
u=o

In case (i), a result of Paley and Wiener (Bellman and Cooke, 1963)
shows that both m(x, o, t) and w(x, o, t) tend to zero as t tends to infihity.
Equations (4) and (6) then show that m(x, y, t) and ‘w(x, y» t) tend to zero for
each x and y. Finally, Eq. (7) shows that v(x, y,t) also tends tovzero

for each x and y.
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In case (ii), a theorem of Ikehara (Beilma;n and Cooke, 1963)

applied to m(x, o, t)et permits the conclusion

X
lim m(x,o0,t) = g— [ 1 -0]1 -P(u)] du. (10)
u:

t—=> o o
We set p.o(x) = lim m(x, o,t). The application of a Tauberian theorem of

Hardy and Littlewood (Bellman and Cooke, 1963) to Eq. (9) permits the

conclusion,

lim wi(x, o,t)t-i = -3? [p (x)]z.

t—> w ©

Now let Ia,y)=2 [ e *%[4 —Q(y+ul)+Q(y)]dP(Y+u)-
' u=o0 :

We then find from Eq. (4)

lim mx,y,t)= b (x) 1o, ¥),

t >

_and from Egs. (6) and (7),

-1

lim v(x, vy, t)t-1 = lim w(x,y,t)t "~ = 1
t —> o0 t > ¢

[ (x)] % Lo, y).

In case (iii) we again call on the theorem of Ikehara to find

X .
¢t ' ' | f e-au 1 - Q )] [1 -P(u)]d
lim m(x, o, t)e = 2 = : - - ’
t = e 2 [ue ™1 -Q(u)] aP(u)
u=o ' ,

where o >0 is uniquely determined by the requirement, I(a, o)=1. Now

let p (x)= lim m(x, o, t)e *t,

The result of Paley and Wiener then shows
t o :
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2
| b (x)]
lim wi{x, o, t)e—zat - —
t =00 1 - I(ZC!., O)

Turning again to Eqs. (4) and (6), we see that

lim m(x,y, t)e-at

t >0

= g () Io, ¥,
and

lim w(x v t)e 2% = [ (x)]2(22%Y) L 10, )]

£ o> o0 . Mg, V1 -1I(2a,0)

Equation (7) then yields

-

-2at - [Hu(x)] 2 %"ﬁ‘y’)—o) - [i(a, Y)] 2

lim v(x,y,t)e
t >

- ARBITRARY INITIAL POPULATION
Let N(x, t) be the number of cells bf age not excegding x in.a
population at time t. Then N(x, o) describes the initial population. Since
the cells are assumed to behave independently of one another, we may

write the mean M(x, t) and the variance V(x, y, t) of the random variable

N(x, t) as
M(X, t) = f m(x: Y» t) dN(Y’ 0)
y=o
and . o
V{x, t) = f v(x, Y t) dN(Ys.O)'
y=o

Insertion into these expressions of the derived asymptotic values for m
and v yields the asymptotic values for M and V: In case (i), M(x,t)

and V(x, t) tend to zero as t tends to infinity; in case (ii), lim M(x,t)
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and lim V(x, t)t"1 exist and are different from zero; in case (iii),

t oo ¢ | 2at .
lim M(x, t)e'o' and lim V{x,t)e 0% exist and are different from zero
t > o t > o0 .

for the o determined by I(a,o0) = 1.
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