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 31 

Abstract: Compressed air energy storage (CAES) is one of the leading large-scale 32 

energy storage technologies. However, low thermal efficiency and low energy storage 33 

density restrict its application. To improve the energy storage density, we propose a 34 

two-reservoir compressed CO2 energy storage system. We present here 35 

thermodynamic and parametric analyses of the performance of an idealized 36 

two-reservoir CO2 energy storage system under supercritical and transcritical 37 

conditions using a steady-state mathematical model. Results show that the 38 

transcritical compressed CO2 energy storage system has higher round-trip efficiency 39 

and exergy efficiency, and larger energy storage density than the supercritical 40 

compressed CO2 energy storage. However, the configuration of supercritical 41 

compressed CO2 energy storage is simpler, and the energy storage densities of the two 42 

systems are both higher than that of CAES, which is advantageous in terms of storage 43 

volume for a given power rating.   44 

Key words: Subsurface energy storage; Compressed CO2 energy storage system; 45 

Utilization of CO2; Two saline aquifers reservoirs；Thermodynamic analysis; 46 

Parametric analysis.47 
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Nomenclature 48 

H enthalpy, kJ/kg 

S entropy, kJ/(kg·K) 

P pressure, MPa 

E   exergy, kW 

T temperature, K 

Ts surface temperature, K 

W shaft work, kW 

Cp specific heat capacity at constant pressure, kJ/(kg·K) 

G geothermal gradient, K/km 

V volume, m3 

m  mass flow rate, kg/s 

Q  heat transfer, W 

Z depth of saline reservoir, m 

Abbreviations  

A-CAES adiabatic CAES 

AA-CAES advanced adiabatic CAES 

C compressor 

CAES compressed air energy storage 

CCES compressed CO2 energy storage 

HE heater 

HS high pressure reservoir 
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LS low pressure reservoir 

PM-CAES porous media CAES 

RE recuperator 

SC-CCES supercritical compressed CO2 energy storage 

SC-CO2 supercritical CO2 

T turbine 

TC-CCES transcritical compressed CO2 energy storage 

TC-CO2 transcritical CO2 

Greek symbols  

βp pore compressibility, Pa-1 

βw change in brine density 

η efficiency 

τ temperature difference，K 

ρ density, kg/m3 

Subscripts  

S isentropic process 

Comp compressor 

1 inlet stream 

2 outlet stream 

T turbine 

NG nature gas 

F fuel 
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tot total 

D destruction 

L loss 
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1. Introduction 49 

In recent years, renewable energy, particularly wind power and solar photovoltaic (PV) 50 

generation has demonstrated robust growth-worldwide motivated by concerns about 51 

energy security and climate change due to CO2 emission levels[1-2]. But Renewable 52 

energy sources (e.g., solar and wind energy) exhibit significant and uncontrollable 53 

intermittency during power production. When these renewable energy sources are 54 

connected to an electrical grid, they can cause serious safety problems for the grid; 55 

hence, it is difficult to deliver power from renewable energy sources that instantly 56 

matches electricity demand[3].  57 

 58 

To solve this dilemma and develop renewable energy sources further, viable energy 59 

storage systems (ESS) are required. For example, an efficient ESS can increase the 60 

penetration of wind power generation by controlling wind power plant output and 61 

storage, in addition to providing ancillary services to the power system[4-5]. 62 

 63 

On a utility scale, compressed air energy storage (CAES) is one of the technologies 64 

with the highest economic feasibility with potential to contribute to a flexible energy 65 

system with an improved utilization of intermittent renewable energy sources[1]. The 66 

feasibility of using CAES to integrate fluctuating renewable power into the electricity 67 

grid has been proven by many researchers[6-9]. Bosio and Verda[ 6] analyzed the 68 

thermo-economics of a CAES system integrated into a wind power plant in the 69 
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framework of the Italian Power Exchange market, which showed that a hydroelectric 70 

power plant (HPP)-CAES system was cost-effective in terms of solving local 71 

imbalances of the grid. Clearly et al.[7] evaluated the economic benefits of CAES in 72 

mitigating wind curtailment. They showed that both wind curtailment levels and 73 

wind-farm total annual generation costs could be decreased. Arabkoohsar et al.[8-9] 74 

simulated and analyzed CAES equipped with a solar heating system. The results 75 

showed that CAES could increase the efficiency and reliability of a PV plant. 76 

 77 

However, the main drawbacks of a CAES system include its low thermal efficiency 78 

(e.g., Huntorf CAES plant efficiency is 42% and AA-CAES efficiency is about 79 

70%[10]), CO2 emissions from combustion of natural gas in the recovery system for 80 

conventional CAES, the need for high temperature thermal storage and temperature 81 

resistant materials for adiabatic CAES (A-CAES). These factors limit further 82 

development of CAES. Although large-scale caverns are also required for CAES as it 83 

is carried out today, porous media systems such as aquifers and depleted natural gas 84 

reservoirs, so-called porous media CAES (PM-CAES) systems, offer much more 85 

storage capacity[11].   86 

 87 

Thermodynamic analyses of CAES systems have been performed to optimize these 88 

systems and improve their thermal efficiency. For example, Buffa et al.[12] conducted 89 

an exergy analysis of A-CAES and found that exergy destruction mostly occurred in 90 

the compressors and coolers. Proczka et al.[13] analyzed the effects of pressure and the 91 
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efficient sizing of pressure vessels on CAES. Zhang et al.[ 14 - 15 ] analyzed the 92 

thermodynamic effects of thermal energy storage (TES) and the air storage chamber 93 

model on a CAES system. Jubeh and Najjar et al.[16] explored the effects of operating 94 

variables on A-CAES performance. Najjar and Zamout analyzed the effects of dry 95 

regions on the performance of a CAES plant[17]. The operation, experience, and 96 

characteristics of Huntorf CAES were also investigated[18]. Thermodynamic analyses 97 

have shown that, both, decreasing the exhaust temperature and using heat of 98 

compression during expansion can significantly improve CAES efficiency.  99 

 100 

Several novel CAES systems have been proposed that reduce waste heat. A 101 

recuperator was utilized to capture heat from the turbine exhaust, which could reduce 102 

the fuel consumption of the McIntosh plant by 25%[ 19- 20]. Safaei and Keith[17] 103 

proposed a distributed CAES (D-CAES) system that placed compressors near heat 104 

demand loads to recover the heat generated during the compression stage. Liu[2] 105 

proposed a modified A-CAES system that used a pneumatic motor instead of a low 106 

pressure turbine (LT) to reduce the exhaust temperature caused by LT, and the exergy 107 

efficiency can be improved by nearly 3% compared with that of the conventional 108 

A-CAES system. Guo et al.[21] proposed a novel A-CAES system in which an ejector 109 

was integrated into an A- CAES system to recover pressure reduction losses; energy 110 

conversion efficiency could reach 65.36%. Several demonstration A-CAES plants 111 

have been built, such as a 1.5 MW A-CAES in China, where initial experimental tests 112 

are on-going. An A-CAES technology that uses reversible reciprocating piston 113 
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machines is being developed by LightSail Energy Ltd. in the U.S. Other new systems 114 

include a tri-generation system based on compressed air and thermal energy 115 

storage[22], biomass-fueled CAES, isobaric adiabatic CAES with combined cycle[23], 116 

combined cooling, heating and power system based on small-scale CAES[24], CAES 117 

using a cascade of phase change materials[25], CAES combined with solar thermal 118 

capture[26], integrating CAES with diesel engine[27], and compressed carbon dioxide 119 

energy storage[28].  120 

 121 

Although thermal efficiency can be improved by various methods, CAES has low 122 

energy density and requires large-scale storage reservoirs[29]. To overcome these 123 

restrictions, several studies have been conducted on novel energy storage technologies. 124 

For instance, Kim[30] proposed a constant-pressure CAES system combined with 125 

pumped hydro-storage to reduce the cavern volume. Guo et al.[ 31 ] presented a 126 

supercritical compressed air energy storage (SC-CAES). Oldenburg and Pan[11] 127 

modeled a porous media CAES (PM-CAES) system that uses aquifers or depleted 128 

natural gas reservoirs for storage. Underwater compressed air energy storage 129 

(UWCAES) stores the compressed air under water by using a large elastic bladder[32]. 130 

Small scale CAES (SS-CAES) that stores high-pressure air in a tank or an 131 

underground pipeline was also proposed[33]. Each of these novel approaches brings 132 

with it additional requirements and limitations.  133 

 134 

As popularly known, CAES is derived from the Brayton cycles, and gases like CO2 135 
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that are non-ideal at operating conditions are more efficient in a Brayton cycle[34].  136 

 137 

Using CO2 as the working fluid in a compressed gas energy storage system can also 138 

achieve better performance than AA-CAES[35]. At the same time geological CO2 139 

sequestration in deep formations (e.g., saline aquifers, gas and oil reservoirs, and coal 140 

beds) is a promising measure for reducing greenhouse gas emissions[36]. Therefore, 141 

the combination of compressed gas energy storage in the deep subsurface and 142 

large-scale utilization of CO2 is both possible and beneficial.   143 

 144 

Although, some research has been conducted on energy power cycle and energy 145 

storage systems based on CO2 and liquid CO2
[28,35], we are not aware of published 146 

analyses of energy storage systems based on transcritical CO2 (transition from 147 

supercritical to gas) or based on supercritical CO2 throughout the cycle. Therefore, the 148 

innovation of this paper resides in the exergy analysis of a closed-loop gas storage 149 

system, conceived by two of us (Borgia and Oldenburg in January of 2012), which 150 

comprises two reservoirs, in this case in saline aquifers but which could also be in 151 

caverns, located at different depths and uses transcritical and supercritical CO2 as the 152 

working fluid. This novel energy storage system can be used in two different energy 153 

cycles (e.g., transcritical CO2 energy storage cycle, and supercritical CO2 energy 154 

storage cycle) according to the physical state of CO2 in the process. We conducted 155 

energy and exergy analyses to understand the thermal properties of the compressed 156 

CO2 energy storage system. In addition, parametric analysis was performed to 157 
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investigate the effects of the physical conditions of two saline aquifer reservoir (e.g., 158 

energy storage pressure, energy releasing pressure, and pressure of low-pressure 159 

reservoir) on system performance.  160 

 161 

2. System description 162 

The proposed compressed CO2 energy storage system using two saline aquifers as 163 

storage reservoirs is a closed energy-storage cycle. The first reservoir is a 164 

low-pressure reservoir used to store CO2 exhausted from the turbine, whereas the 165 

second reservoir is at higher pressure to store CO2 from the compressor. This energy 166 

storage system, although based on the same principles, can be operated in two 167 

different ways according to the state of CO2, (1) by allowing the CO2 to transition 168 

from supercritical to gaseous conditions in the turbine, which we refer to as the 169 

transcritical compressed CO2 energy storage (TC-CCES) system, and (2) by keeping 170 

the CO2 above the critical pressure throughout the cycle, which we refer to as the 171 

supercritical compressed CO2 energy storage (SC-CCES) system. The schematic and 172 

T-S diagram of compressed CO2 energy storage (CCES) is shown in Figs. 1 and 2. 173 

 174 

1: During off-peak hours, the working fluid (low-pressure CO2) stored in a shallow 175 

low-pressure reservoir is removed, pressurized, and injected into a deeper 176 

high-pressure reservoir using surplus renewable power, such as that from wind or 177 

solar. 178 
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2: For multi-stage compressor, the heat of compression of the CO2 is absorbed by a 179 

cooling fluid which is stored in a TES system, while the CO2 from the last stage 180 

compressor is directly injected into the high-pressure storage reservoir.  181 

3: During peak hours, the high-pressure CO2 is regulated to a certain pressure through 182 

the throttle valve, and is transported to the recuperator system to absorb the heat 183 

exhausted from the turbine in the TES. 184 

4: The heated high-pressure CO2 is fed into the turbine. 185 

5: The high pressure CO2 expands through the turbine generating shaft work. 186 

6: The exhaust CO2 is stored in the low-pressure reservoir. 187 

 188 

Considering that because of the geothermal gradient the temperature of the 189 

saline-aquifer reservoirs increases with depth, the output CO2 from the compressor 190 

stage can be directly injected into the high-pressure reservoir storing, both heat and 191 

CO2 directly into the rock formation. Therefore, the proposed SC-CCES does not 192 

need a TES to store the compressed heat generated during compression, implying that 193 

the aftercooler is theoretically unnecessary. In our analysis, though, to allow a direct 194 

comparison with CAES and highlight the benefits of the two-reservoir CCES system, 195 

we retain the heater. 196 
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 197 

Fig.1. Schematic illustration of CCES using two saline-aquifer reservoirs. 198 

 199 

a 

 

b 

 

c 

 

d 

 
Fig.2. CCES using two saline aquifers reservoirs. a. The schematic of TC-CCES. b. 200 
The schematic of SC-CCES. c. T-S diagram of TC-CCES. d. T-S diagram of 201 
SC-CCES. C = compressor; RE = recuperator; T = turbine; HE = heater; LS = low 202 
pressure reservoir; and HS = high pressure reservoir. 203 

204 
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3. Theoretical model 205 

The following assumptions are made to simplify the theoretical model of the 206 

compressed CO2 energy storage cycle: 207 

1. The pressure drop and heat loss in the pipes, heat exchanger, TES, and recuperator 208 

are ignored. 209 

2. The compressor and the turbine have a given isentropic efficiency. 210 

3. Changes in kinetic energy and potential energy are negligible relative to the stored 211 

energy. 212 

4. The storage in the two saline aquifers is considered a closed system at hydrostatic 213 

pressure. 214 

5. The mass flow rate of CO2 is the same in the storage and recovery modes of 215 

operation, and for TC-CCES and SC-CCES. 216 

3.1. Compressor model 217 

The isentropic efficiency of compressor ηcomp is, 218 

2s 1
comp

2 1

h h
h h

h
−

=
−

,                           (1)
 

219 

where h1 is inlet enthalpy and h2s is outlet enthalpy during isentropic compression, h2 
220 

is the real enthalpy during compression. 
221 

During isentropic compression, the entropies of the initial and final states are the same, 
222 

i.e., 
223 

2 1ss s= ,                             (2)
 

224 
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The corresponding enthalpy of the outlet stream at the end of isentropic compression 
225 

can be calculated from the property relationship, f, which is derived from the equation 
226 

of state, 
227 

( )2 2 2,s sh f s p= ,                         (3)
 

228 

The actual enthalpy of the pressurized CO2 at the outlet of the compressor can be 229 

calculated using the definition of compression efficiency. Hence, the power consumed, 230 

wcomp, is, 231 

comp 2 1w h h= − ,                           (4)
 

232 

3.2. Heat exchanger model 233 

The properties, such as density, specific heat, and viscosity are observed to undergo 234 

drastic variations within a very narrow range of temperature if the CO2 is under 235 

supercritical pressure, which will have a great effect on system performance. 236 

Therefore, it is essential to divide the heat exchanging process into adequately small 237 

sections, such that property variations in each section are so small that constant 238 

properties can be assumed [37]. 239 

 240 

The inner cooler, pre-cooler, and recuperator function together as the heat exchanger. 241 

For the inner and pre-cooler, we assumed that the upper terminal temperature 242 

difference upperτ∆ , and inner and pre-cooler temperatures are both constant. To obtain 243 

the amount of compressed heat, the overall temperature change for CO2 is divided 244 

into N equal differences τ∆ . The specific heat at constant pressure at each 245 
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intermediate state is determined from the known pressure and temperature. The heat 246 

transfer for each step i and mass flow rate of water are calculated from the following 247 

equations: 248 

( )2 2 2 2CO P,CO , CO , 1 CO ,i i i iQ m C τ τ+= −  ,                     (5)
 

249 

( )water P,water, water, 1 water,i i i iQ m C tt += −  ,                     (6)
 

250 

water
water,out water,in( )

N

i
i

Q
m

h h
=

−

∑ 

  ,                       (7)
 

251 

For the recuperator, we assumed that lower terminal temperature difference, lowerτ∆ , is 252 

constant. Also the enthalpy change for hot streams is divided into N equal differences 253 

Δh. The cooling working fluid temperatures of preheater and recuperator at each 254 

intermediate state can be determined using the CoolProp database from the known 255 

enthalpy and pressure. 256 

3.3. Aquifer CO2 storage model 257 

To inject CO2 into a saline aquifer reservoir, the CO2 pressure has to be at least as 258 

high as the initial groundwater pressure in the reservoir. In the present study, the CO2 259 

pressures in the low-pressure reservoir and high-pressure reservoir are assumed to 260 

exhibit hydrostatic variation with depth at a constant pressure gradient. 261 

 262 

The geothermal gradient (underground temperature increases with depth) will control 263 

the temperature of the reservoir. Using values for the surface temperature and 264 

geothermal gradient, the underground temperature as a function of depth can be 265 
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determined by, 266 

s=T T Gz+ ,                             (8) 267 

where Ts is the surface temperature; G is the geothermal gradient; z is the depth. 268 
 269 

We assume the saline aquifer is a closed-storage formations[36]. To estimate aquifer 270 

storage reservoir volume, VS, the following equation is used,   271 

( )
2

2

CO
S

P W CO

M
V

Pβ β ρ
=

+ ∆
,                         (9)

 
272 

where MCO2 and 2COρ  are respectively the mass and density of CO2 at reservoir 273 

conditions; Δp is the pressure buildup from beginning to the end of injection; βp is the 274 

pore compressibility; βw is the change in brine density. 275 

3.4. Turbine model 276 

The calculation method for the actual expansion is the same as that for compression. 277 

The isentropic efficiency of the turbine can be calculated using, 278 

3 4
t

3 4

sh h
h h

h
−

=
−

,                           (10)
 

279 

The entropies of the initial and final states are the same during isentropic expansion, 
280 

i.e.,  
281 

4 3ss s= ,                           (11)
 

282 

The corresponding enthalpy of the outlet stream at the end of isentropic expansion can 
283 

be calculated from the property relationship, f, which is derived from the equation of 
284 

state. That is, 
285 

( )4 4 4,s sh f s p= ,                         (12)
 

286 

The actual enthalpy of the pressurized CO2 at the outlet of the compressor can be 287 
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calculated using the definition of expansion efficiency. Thus, expansion work can be 288 

calculated using, 289 

T 3 4w h h= − ,                          (13)
 

290 

4. Performance`criteria 291 

To analyze the performance of compressed CO2 energy storage using two saline 292 

aquifers as reservoirs, exergy efficiency, exergy destruction, round-trip efficiency, and 293 

energy storage density are introduced as the performance criteria of the overall system 294 

and the main components[2,38]. 295 

4.1. Energy analysis 296 

4.1.1. Round-trip efficiency 297 

To facilitate comparisons of the novel energy storage system to other electrical 298 

storage devices, the round-trip efficiency of energy storage is defined as[38-39], 299 

T
,1

C NG F
RT

E
E E

η
η

=
+

,                         (14) 300 

where ET represents the electricity output; EC represents the electricity input; ηNGEF 301 

represents the amount of electricity that could have been made from the natural gas 302 

input EF, if that fuel had been used to make electricity in a stand-alone power plant at 303 

efficiency ηNG instead of to fire an energy storage unit, ηNG = 47.6%[38]. 304 
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4.1.2. Energy storage density 305 

Determining the amount of electrical energy that can be produced per unit volume of 306 

storage capacity (EGEN/VS) is essential to evaluate the geological requirements for 307 

compressed gas energy storage. The energy produced per unit volume for compressed 308 

CO2 energy storage with two saline reservoirs is, 309 

( )( )2 2t P W 1,CO 1 2,CO 2
GEN S 2

w P P
E V

β β ρ ρ+ ∆ + ∆
= ,                (15)

 
310 

4.2. Exergy analysis 311 

The general exergy balance for the overall system is[40-41],  312 

F,tot P D, Lk
k

E E E E= + +∑    ,                         (16) 313 

where F,totE , PE , D,k
k

E∑  , and LE represent the total amount rate of fuel exergy, product 314 

exergy, exergy destruction, and exergy loss associated with the overall considered 315 

system, respectively. 316 

 317 

The general exergy balance of the kth component of the overall system can be 318 

expressed as follow: 319 

D F, P,,k k kE E E= −   ,                            (17) 320 

where D,kE , ,F kE , and ,P kE  represent the exergy destruction rate, the fuel exergy, 321 

and the product exergy rate within the kth component, respectively. Exergy efficiency 322 

is defined as, 323 

pF,tot D, L
ex

F,tot F,tot

k EE E E
E E

η
− −

= =∑ ,                    (18) 324 
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Exergy destruction in each component of the system can be calculated using the 325 

equations listed in Table 1. To compare the exergy destruction of dissimilar 326 

components, the exergy destruction ratio of the kth component is defined as 327 

,                             (19) 328 

 Table 1. Exergy calculation in each component of the novel system. 329 

Component Schematic view    

Compressors 

 

W   

Storage 

cavern  

   

Heater 
 

   

Heat 

exchanger 
 

   

Turbine 

 

 W  

5. Results and discussions 330 

The simulations for the parametric analysis of the compressed transcritical and 331 

supercritical CO2 energy storage are carried out using a MATLABTM with the 332 

thermodynamic properties of the working fluid calculated through CoolProp[42]. The 333 

design parameters and detailed conditions for the simulation and analysis of the 334 
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compressed gas energy storage are summarized in Table 2. 335 

5.1. Thermodynamic analysis 336 

The detailed results of the analysis of compressed CO2 energy storage using two 337 

saline aquifers as reservoirs are presented in Tables 3 and 4, which show the 338 

thermodynamic parameters at each node of the two storage systems, respectively. A 339 

summary of the results of the energy and exergy analyses are provided in Table 5. The 340 

round-trip efficiency and exergy efficiency of compressed transcritical CO2 energy 341 

storage is better than those of the compressed supercritical CO2 energy storage. 342 

Moreover, the compressed transcritical CO2 energy storage has a higher energy 343 

density (EGEN/VS) than the compressed supercritical CO2 energy storage. In addition, 344 

the energy densities (EGEN/VS) of the two systems can reach 497.68 kWh/m3 345 

(transcritical CO2) and 255.20 kWh/m3 (supercritical CO2), which are better compared 346 

with that for CAES (EGEN/VS = 2-20 kWh/m3)[38] because more energy can be stored 347 

in a given reservoir. The reason that the energy storage density using transcritical CO2 348 

is much larger than that of supercritical CO2 comes from the fact that the output work 349 

of compressed transcritical CO2 energy storage is more than two times larger than that 350 

of compressed supercritical CO2 energy storage. According to Eq. (15), the energy 351 

storage density is mainly a function of wt under the same reservoir conditions. The wt 352 

of transcritical compressed CO2 energy storage and supercritical compressed CO2 353 

energy storage are 254.82 kW and 123.58 kW, respectively. Therefore, the energy 354 

storage density using transcritical CO2 is about two times as large as that of 355 



22 
 

supercritical CO2 under a pressure of 40 MPa.  356 

 357 

Fig. 3 shows the exergy destruction ratio of the different components of the 358 

compressed CO2 energy storage under simulation conditions. For the compressed 359 

transcritical CO2 energy storage, 54.37% of the irreversibility takes place in the heater, 360 

11.98% in the low pressure reservoir, 10.93% in the compressor, 9.78% in the turbine, 361 

9.52% in the recuperator, 3.42% in the high pressure reservoir. However, for the 362 

compressed supercritical CO2 energy storage, the largest exergy destruction is 363 

contributed by high pressure reservoir, which exceeds 33.37% of the total exergy 364 

destruction of the system. Secondly the heater brings larger exergy destruction, which 365 

accounts for 20.98% of total exergy destruction.  366 

Table 2. Parameters setting in the compressed CO2 energy storage with two reservoirs. 367 
Parameter Value Unit 

Ambient temperature  308.00 K 
Pressure drop in throttle valve in compression process 0.50 MPa 

Inlet temperature 313.00 K 
Outlet pressure of compressor train 25.00 MPa 

Temperature of cooling water 308.00 K 
Pressure drop in throttle valve in expansion process 5.00 MPa 

Outlet temperature of heater 873.00 K 
Outlet pressure of turbine train in supercritical cycle 8.00 MPa 
Outlet pressure of turbine train in transcritical cycle 2.00 MPa 

Isentropic efficiency of compressor 0.85 / 
Isentropic efficiency of turbine 0.87 / 

SCO2 Depth of low pressure reservoir 760.00 M 
SCO2 Depth of high pressure reservoir 3000.00 M 
TCO2 Depth of low pressure reservoir 200.00 M 
TCO2 Depth of high pressure reservoir 3000.00 M 
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Table 3. Thermodynamic data for the material streams of the compressed transcritical 368 
CO2 energy storage. 369 

Streams 
Material 
stream 

T(K) p(MPa) h(kJ/kg) s(kJ/kg⋅K) e(kJ/kg) 

1 CO2 308.05 1.50 501.50 2.23 153.86 
2 CO2 405.37 4.49 580.00 2.26 223.17 
3 CO2 313.00 4.49 473.80 1.96 209.00 
4 CO2 413.74 13.43 541.34 1.98 268.86 
5 CO2 313.00 13.43 289.61 1.27 237.68 
6 CO2 345.89 40.18 328.34 1.28 271.07 
7 CO2 382.16 20.00 446.52 1.69 267.18 
8 CO2 587.11 20.00 744.79 2.33 392.83 
9 CO2 540.60 12.62 704.10 2.34 279.87 
10 CO2 873.00 12.62 1101.81 2.91 505.91 
11 CO2 669.75 2.00 873.09 2.96 345.20 
12 CO2 387.16 2.00 574.82 2.39 174.06 

 370 
Table 4.Thermodynamic data for the material streams of the compressed supercritical 371 

CO2 energy storage. 372 

Streams 
Material 
stream 

T(K) p(MPa) h(kJ/kg) s(kJ/kg⋅K) e(kJ/kg) 

1 CO2 307.83 7.40 400.71 1.66 228.07 
2 CO2 432.61 40.18 484.96 1.69 302.86 
3 CO2 382.16 20.00 446.52 1.69 267.18 
4 CO2 699.02 20.00 882.22 2.54 437.04 
5 CO2 873.00 20.00 1097.20 2.81 568.41 
6 CO2 763.71 8.04 973.57 2.84 437.31 
7 CO2 387.16 8.04 537.87 2.05 243.42 

 373 
Table 5. Results of the material streams of the transcritical and supercritical 374 

compressed CO2 energy storage. 375 

Term Unit 
Value of 

TC-CCES 
Value of 

SC-CCES 
C1 power kW/kg 78.37 83.81 
C2 power kW/kg 67.46 - 
C3 power kW/kg 38.56 - 
T1 power kW/kg 103.62 123.58 
T2 power kW/kg 151.20 - 

Thermal energy input kJ/s 457.70 240.73 
Round-trip efficiency % 63.35 62.28 

Exergy efficiency % 53..02 51.56 
EGEN/VS kWh/m3 497.68 255.20 
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 376 
Fig. 3. The exergy destruction ratio of main components. a. transcritical compressed 377 
CO2 energy storage. b. supercritical compressed CO2 energy storage. C = compressor; 378 
RE = recuperator; T = turbine; HE = heater; LS = low pressure reservoir; and 379 
HS = high pressure reservoir. 380 

5.2. Sensitivity analysis of key thermodynamic parameters  381 

Based on above analysis, the main advantage of CCES using two saline aquifers 382 

reservoirs is the high energy-storage density. Energy storage pressure (outlet pressure 383 

of last-stage compressor), release pressure (inlet pressure of first stage-turbine), and 384 

pressure of the low-pressure reservoir (outlet pressure of last-stage turbine) are 385 

primary and significant parameters that influence the energy storage density. 386 

Therefore, conducting a parametric analysis to understand the effects of these various 387 

parameters on the performance of the storage system is essential, and parameters 388 

range of variation are shown in Table 6.389 
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Table 6. The parameters of the compressed CO2 energy storage system. 390 

Parameters Range of variation 

Energy storage pressure /MPa 40-56 

Energy releasing pressure /MPa 10-26 

Pressure of low pressure reservoir /MPa 2-10 

5.2.1. Effects of the energy storage pressure 391 

Fig. 4 illustrates the effect of the energy storage pressure on round-trip efficiency and 392 

exergy efficiency. The round-trip efficiency and exergy efficiency of the TC-CCES 393 

and SC-CCES increase along with the increase in the energy storage pressure. 394 

Moreover, the round-trip efficiency and exergy efficiency of SC-CCES are higher 395 

than those of TC-CCES when the energy storage pressure is higher than 44 MPa. And 396 

the round-trip efficiency is even higher than the exergy efficiency. The reason is that 397 

for the round-trip efficiency, the input energy is electricity which includes the 398 

consumption electricity of compressors and the conversion terms, as shown in Eq. 399 

(14). However, for the exergy efficiency, the input exergy consists of two terms: 400 

electricity exergy and thermal exergy, as shown in Eq. (18). According to the second 401 

law of thermodynamics, the thermal exergy calculated by the input thermal energy 402 

multiplied by the Carnot efficiency. The Carnot efficiency will be larger than the ηNG, 403 

when the other exergy destructions happened in power plant are considered. Therefore, 404 

the round-trip efficiency is higher than the exergy efficiency. 405 
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 406 
Fig. 4. Effect of energy storage pressure on round-trip efficiency and exergy 407 

efficiency. 408 

 409 

The effect of energy storage pressure on energy storage density is shown in Fig. 5. An 410 

increase in the energy storage pressure increases net energy output during discharge, 411 

which can increase energy storage density. According to Eq. (15), energy storage 412 

density is determined by the work output during expansion and the volume of the 413 

two-saline aquifers reservoirs. A high energy storage pressure will reduce the required 414 

volume of the high-pressure reservoir, whereas the change in the work output is 415 

opposite to that of required volume. Therefore, energy storage density will increase 416 

along with the increase in the energy storage pressure for TC-CCES and SC-CCES. 417 
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 418 
Fig. 5. Effect of the energy storage pressure on the energy storage density. 419 

 420 

Fig. 6 shows the effect of the energy storage pressure on the exergy destruction rate of 421 

the main components in TC-CCES and SC-CCES, respectively. The results of the 422 

exergy analysis indicate that exergy destruction is mainly contributed by HE and RE 423 

in TC-CCES, and the largest exergy destruction is contributed by HS, HE and RE in 424 

SC-CCES. Moreover, the rate of RE exergy destruction decreases with the increase in 425 

the energy storage pressure, whereas the change in the HE exergy destruction rate is 426 

opposite to that of RE in the two energy storage systems. The outlet pressure of the 427 

turbine is constant; hence, the outlet temperature of the turbine will decrease with the 428 

increase in the energy storage pressure, which will result in a smaller temperature 429 

difference in RE. A low outlet temperature of the turbine will lead to a low inlet 430 

temperature of HE; hence, the temperature difference will be increased. Therefore, 431 

more heat is needed to heat the CO2 in the heater. The exergy destruction of RE is 432 
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mainly contributed by the temperature difference between hot and cold working fluids. 433 

The exergy destruction of HE is not only contributed by the temperature difference, 434 

but also by the amount of heat put into the heater. Consequently, the exergy 435 

destruction rate of RE will decrease with the increase in the energy storage pressure, 436 

whereas that of HE will exhibit the opposite trend. The exergy destruction rate of C, T, 437 

LS, HS is caused by the pressure difference, the pressure difference is higher, the 438 

exergy destruction is larger. Therefore, the exergy destruction rate will increase with 439 

the increase in energy storage pressure when the outlet pressure of turbine is constant. 440 

a 

 

b 

 
Fig. 6. Effect of energy storage pressure on exergy destruction rate. a. transcritical 441 
compressed CO2 energy storage. b. supercritical compressed CO2 energy storage. 442 

C = compressor; RE = recuperator; T = turbine; HE = heater; LS = low pressure 443 
reservoir; and HS = high pressure reservoir. 444 

5.2.2. Effects of energy releasing pressure 445 

The effect of the energy releasing pressure on round-trip efficiency, exergy efficiency, 446 

and energy storage density is illustrated in Figs. 7 and 9. The round-trip efficiency and 447 

exergy efficiency of TC-CCES and SC-CCES both increase with the increase in 448 

energy-release pressure. However, the variation in energy release pressure has a larger 449 

effect on the round-trip efficiency and exergy efficiency of SC-CCES. Moreover, the 450 
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performance of SC-CCES is better than that of TC-CCES when energy releasing 451 

pressure is larger than 21 MPa.  452 

 453 

Fig. 7 shows that transcritical CO2 is better under a releasing pressure of ~20-22 MPa, 454 

but SC-CCES becomes better under a high pressure. The reason is that the CO2 455 

enthalpy will decrease with the increase in pressure at the same temperature. 456 

Moreover, the enthalpy difference between different pressures also gradually 457 

decreases along with the increase in pressure (cf. Fig. 8).  458 

 459 
Fig. 7. Effect of energy releasing pressure on round-trip efficiency and exergy 460 

efficiency. 461 
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 462 

Fig. 8. The h-T curves for CO2. 463 

 464 

In Fig. 7, the outlet pressure of turbine is constant, so that the input work is constant 465 

in the compression process, the input thermal energy and output work will change 466 

with the variations of releasing pressure. For supercritical CO2, less thermal energy is 467 

needed and more output work is produced with the increase in releasing pressure, and 468 

the increasing rate of output work is also higher than that of transcritical CO2. When 469 

the releasing pressure is lower, the supercritical CO2 need more heat energy and 470 

produce less output work compared with transcritical CO2. Therefore, transcritical 471 

CO2 is better when the releasing pressure is low, but supercritical CO2 becomes better 472 

at high pressure. 473 

 474 

Fig. 9 shows the effect of energy releasing pressure on energy storage density. As 475 

shown in the preceding analysis, energy storage density is determined by the work 476 
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output of the turbine train, as well as the outlet pressure of the turbine train and the 477 

compressor train. The increase in energy release pressure will increase the work 478 

output of the turbine train, and the pressure difference in the high-pressure reservoir 479 

will be reduced which results in smaller volume requirement for the high-pressure 480 

reservoir; hence the energy storage densities of TC-CCES and SC-CCES both 481 

increase with increase in energy release pressure. 482 

 483 
Fig. 9. Effect of energy releasing pressure on energy storage density. 484 

 485 

The effect of energy releasing pressure on the exergy destruction rate of the main 486 

components is shown in Fig. 10. For TC-CCES and SC-CCES, a greater portion of 487 

exergy destruction occurred in He and RE, and they also have the similar trend with 488 

the variations in energy releasing pressure. The exergy destruction rate of RE in 489 

TC-CCES and SC-CCES decreases with the increase in the energy releasing pressure, 490 

whereas that of HE exhibits the opposite trend.  491 

 492 
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From Fig. 10, we can find that the significant differences between TC-CCES and 493 

SC-CCES are that (1) the transcritical exergy destruction rate is larger than that of 494 

supercritical CO2 except in the HS component, and (2) the highest exergy destruction 495 

rate happens in different components. 496 

  497 

The lower exergy destruction rate of supercritical CO2 is caused by the fact that for 498 

supercritical CO2, both the input energy and output work are lower than that of 499 

transcritical CO2, so that the exergy destruction rate of supercritical CO2 is lower.  500 

 501 

The reason that the highest exergy destruction rate happened in different components 502 

in transcritical versus supercritical CO2 is that the injection temperature of the 503 

high-pressure reservoir is much different between the transcritical CO2 and 504 

supercritical CO2. As shown in Fig. 2, and in Tables 3 and 4, we can find that the 505 

injection pressure of the high-pressure reservoir is equal for the transcritical CO2 and 506 

supercritical CO2, but the injection temperature of supercritical CO2 is higher than 507 

that of transcritical CO2. So there is a higher exergy destruction rate in the HS in the 508 

compressed supercritical CO2 energy storage system. 509 
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a 

 

b 

 
 510 

Fig. 10. Effect of energy release pressure on exergy destruction rate. a. Transcritical 511 
compressed CO2 energy storage. b. Supercritical compressed CO2 energy storage. 512 

 C = compressor; RE = recuperator; T = turbine; HE = heater; LS = low pressure 513 
reservoir; and HS = high pressure reservoir. 514 

5.2.3. Effects of pressure of low pressure reservoir 515 

Fig. 11 shows the effect of the pressure of the low-pressure reservoir on the round-trip 516 

efficiency and exergy efficiency of TC-CCES and SC-CCES. It indicates that the 517 

pressure of the low-pressure reservoir exerts a larger influence on round-trip 518 

efficiency and exergy efficiency for TC-CCES and SC-CCES. The round-trip 519 

efficiency and exergy efficiency will firstly decrease, and then increase with increase 520 

in pressure of the low-pressure reservoir. This phenomenon is caused by the 521 

properties of CO2. As shown in Fig. 12, both input work of the compressor and output 522 

work of the turbine decrease along with increase in pressure of the low-pressure 523 

reservoir, but the reduction of output work is greater than the decrease of input work 524 

of the compressor. Thus the system performance decreases when the storage system 525 

runs at transcritical state. Moreover, when the system runs at supercritical state, the 526 

compressibility factor of supercritical CO2 ranges from 0.2-0.5, which means that less 527 
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compression work can be consumed in the compression process[43]. Therefore, the 528 

reduction of input work will dramatically decrease compared with that at transcritical 529 

state. Fig. 13 shows the variations in energy storage density with the increase in 530 

pressure of low pressure reservoir. It illustrates that the energy storage density 531 

decreases with the increase in pressure of low pressure reservoir. Fig. 14 shows the 532 

effect of pressure of low pressure reservoir on exergy destruction rate, which indicates 533 

that the exergy destruction rates of HE decrease along with the increase in pressure of 534 

the low-pressure reservoir. And when the pressure of the low pressure reservoir is 535 

higher than 8 MPa, there is a larger decrease in exergy destruction rate of each 536 

component except HS.  537 

 538 

The phenomenon we have observed is that performance of SC-CCES can be 539 

explained by the properties of supercritical CO2 and configurations of the energy 540 

storage system. Because of the larger mass density and configurations of SC-CCES 541 

relative to transcritical CO2, the input work in compression and the temperature 542 

difference in the heater can be reduced. Moreover, the output work in expansion will 543 

be increased due to the higher inlet temperature and pressure of the turbine and the 544 

higher exhaust temperature caused by a lower pressure ratio will reduce the amount of 545 

heat in the heater. Therefore the round-trip efficiency, exergy efficiency, and energy 546 

storage density will increase, whereas the exergy destruction rate of heater decreases. 547 

 548 

For Figs. 11-14, the pressure range 6.5-8 MPa shows a different mechanism, which is 549 



35 
 

caused by the thermodynamic properties of CO2. For CO2, the critical point is 550 

7.39 MPa and 304.25 K. the thermodynamic properties of CO2 and supercritical CO2 551 

are very different. Especially around the critical point, the thermodynamic properties 552 

of CO2 will greatly change with changes in P and T[43]. Therefore, the compression 553 

work can be substantially decreased, as shown in Fig.12.  554 

 555 
Fig. 11. Effect of pressure of low pressure reservoir on round-trip efficiency and 556 

exergy efficiency.557 
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 558 
Fig. 12. Effect of pressure of low pressure reservoir on power input and output. 559 

 560 

 561 
Fig. 13. Effect of pressure of low pressure reservoir on energy storage density. 562 
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 563 
Fig. 14. Effect of pressure of low pressure reservoir on exergy destruction rate. 564 
C = compressor; RE = recuperator; T = turbine; HE = heater; LS = low pressure 565 
reservoir; and HS = high pressure reservoir. 566 

6. Conclusions 567 

A thermodynamic analysis is carried out of a system consisting of transcritical and 568 

supercritical compressed CO2 energy storage using two saline aquifers as reservoirs, 569 

including energy analysis, exergy analysis, and parametric analysis. The main 570 

conclusions are summarized as follows: 571 

 572 

(1)  According to the energy and exergy analysis, the proposed compressed CO2 573 

energy storage system with two saline aquifers as reservoirs has a larger energy 574 

storage density (497.68 kWh/m3 for transcritical CO2 and 255.20 kWh/m3 for 575 

supercritical CO2 compared to CAES (2-20kWh/m3) and an acceptable round-trip 576 
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efficiency (63.35% for transcritical CO2 and 62.28% for supercritical CO2) and exergy 577 

efficiency (53.02% for transcritical CO2, and 51.56% for supercritical CO2) compared 578 

with conventional CAES (81.7%[38]).  579 

 580 

(2) The use of compressed transcritical CO2 for energy storage results in a higher 581 

round-trip efficiency, exergy efficiency and energy storage density, but the 582 

configuration of SC-CCES is simpler compared with TC-CCES.  583 

 584 

(3) The energy release pressure has a positive effect on the three indicators including 585 

round-trip efficiency, exergy efficiency, and energy storage density forTC-CCES and 586 

SC-CCES. The performance of the two energy storage systems will become better 587 

with the increase in energy release pressure. 588 

 589 

(4) The pressure of the low-pressure reservoir has a large effect on round-trip 590 

efficiency and exergy efficiency, especially when the pressure is below 8 MPa. 591 

Specifically, for TC-CCES, the round-trip efficiency and exergy efficiency 592 

dramatically decrease, whereas the energy storage density will decrease along with 593 

the increase in pressure of low pressure reservoir. 594 

We note that for the TC-CCES, the low-pressure reservoir needs to be much shallower 595 

and larger than the supercritical CO2 energy storage reservoir. Therefore it may pose 596 

larger potential environmental impacts, (for instance to potable groundwater), than the 597 

second system. Also, the hazard of induced seismicity and triggered seismicity may 598 
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exist in both cyclic injection processes. These issues and others such as, how to 599 

reduce brine production to a minimum,, or the hydro-geo-mechanical limitations of 600 

the saline aquifer reservoirs, and the optimal cycling time given that transient pressure 601 

gradients will exist around the injection and production wells[11] are key questions 602 

outside the scope of this study that should be addressed in the future.  603 
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