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Abstract

Many compactifications of higher-dimensional supersymmetric theories have approximate vac-
uum degeneracy. The associatedduli fields are stabitied by non-perturbativeffects which break
supersymmetry. We show that at finite temperature the effective potential of the dilaton acquires a
negative linear term. This destabilizes all moduli fields at sufficiently high temperature. We compute
the corresponding critical tempure which is determined by éhscale of supersymmetry break-
ing, the B-function associated with gaugino condensation and the curvature of the K&hler potential,
Terit ~ /m3/2Mp(3/ )3 4K ""~1/4. For realistic models we fingli; ~ 1011-10'2 GeV, which pro-
vides an upper bound on the temperature of the early universe. In contrast to other cosmological
constraints, this upper bound cannot be circumvented by late-time entropy production.

0 2004 Elsevier B.V. All rights reserved.

PACS:11.25.Mj; 12.60.Jv; 98.80.-k

1. Introduction

Compactifications of higher-dimensional stpenmetric theories generically contain
moduli fields, which are related to approximate vacuum degeneracy. In many models
these fields acquire masses through condensation of fermior Painghich breaks super-
symmetry. Generically, gaugino condensatinodels suffer from the dilaton ‘run-away’
problem[2], which can be solved, for example, by multiple gaugino conden§3}es
non-perturbative string correctiof5].

E-mail addresskoichi.hamaguchi@desy.d&. Hamaguchi).

0550-3213/$ — see front mattér 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.nuclphysb.2004.08.031


http://
elax unhcopy strutbox 
mailto:koichi.hamaguchi@desy.de

W. Buchmiller et al. / Nuclear Physics B 699 (2004) 292-308 293

Moduli play an important role in the effective low energy theory. Their values determine
geometry of the compactified space as well as gauge and Yukawa couplings. Their masses,
determined by supersymmetry breakings aruch smaller than the compactification scale.
Hence, moduli can have important effects at low energies. Cosmologically, they can cause
the ‘moduli problem{6,7], in particular their oscillations may dominate the energy density
during nucleosynthesis, which is in conflict with the successful BBN predictions. For an
exponentially steep dilaton potential, like the @emerated by gaugino condensation, there
is also the problem that during the cosmological evolution the dila§m@y not settle in
the shallow minimum at R& ~ 2, but rather overshoot and run away to infify. These
problems can be cured in several ways [gf).

In this paper we shall discuss a new cosmological implication of the dilaton dynamics,
the existence of a critical temperatufgi: which represents an upper bound on allowed
temperatures in the early universe. If excegdthe dilaton will run to the minimum at
infinity, which corresponds to the unphysical case of vanishing gauge couplings. The ex-
istence of a critical temperature is a consequence of a negative linear term in the dilaton
effective potential which is generated byifeatemperature effects in gauge theofit].

This shifts the dilaton field to larger values and leads to smaller gauge couplings at high
temperature. As we shall see, this effecemually destabilizes the dilaton, and subse-
quently all moduli, at sufficiently high tempestures. In the following we shall calculate

the critical temperaturé&cit beyond which the physically required minimum at Re 2
disappears.

There can be additional temperature-dependent contributions to the dilaton effective po-
tential coming from the dilaton coupling to other scalar fidlts. These contributions are
model dependent and usually have a destabilizing effect on the dilaton, at least in heterotic
string modelq12]. Our results for the critical temperature can therefore be understood as
conservative upper bounds on the allowed temperatures in the early universe.

The paper is organized as follows. In Sectbwe review the dependence of the free
energy on the gauge coupling in §VJ) gauge theories. As we shall see, one-loop correc-
tions already yield the qualitative behaviour of the full theory. In Sec8ove study the
dilaton potential at finite temperature and derive the critical temperdtyydor the most
common models of dilaton stabilization. Sectiis then devoted to the discussion of cos-
mological implications, the generality of the obtained results is discussed in SBcéind
Appendix Agives some details on entropy production in dilaton decays.

2. Gauge couplings at high temperature

The free energy of a supersymmetric @UJ) gauge theory withv, matter multiplets
in the fundamental representation reads

FleT) 2274
&=
with ¢ and 7 being the gauge coupling and temperature, respectively. The zeroth order
coefficient,ag = ch + 2N.Ny — 1, counts the number of degrees of freedom, and the

{ao + a2g” + 0(g%)}, (1)
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one-loop coefficiends is given by (cf.[13])

az:—%( 2~ 1)(N¢ +3Ny). (2)

It is very important thatv, is negative. Hence, gauge interactions increase the free energy,
at least in the weak coupling regime. Consequently, if the gauge coupling is given by
the expectation value of some scalar fieldan) and therefore is a dynamical quantity,
temperature effects will drive the system towards weaker coufillidg

In reality, gauge couplings are not small, eg= 1/+/2 at the GUT scale. Thus, higher
order terms in the free energy are relevant. These could change the qualitative behaviour
of the free energy with respect to the gauge coupling. For instance, in the case of a pure
SU(N,) theory, the positivg® term overrides the negatiw@ term for N. > 3. The knowl-
edge of higher order terms is therefore necgsSdnese can be calculated perturbatively up
to orderg®In(1/g), where the expansion in the coupling breaks down due to infrared diver-
genceg13]. The non-perturbative contribution che calculated by means of lattice gauge
theory. For non-supersymmetric gauge theories with matter in the fundamental representa-
tion the free energy has been calculated ughtim(1/¢) [14]. Comparison with numerical
lattice QCD results shows that already tifeterm has the correct qualitative behaviour,
i.e., gauge interactions indeed increaseitbe energy. Furthermore, if terms up to orger
are taken into account, perturbation theory aritida results are quantitatively consistent,
even for couplingg = O(1) [14].

To demonstrate this behaviour, we consider the free energy of a non-supersymmetric
gauge theory as a function of. and Ny using the results of Ref14] and earlier work
[15]. As discussed, it is sufficient to truncate the perturbative expansion at gtdéve
will be interested in the free energy in the vicinity of a fixed couplégg

g =g8o+48g,
f(f,;T) = A(g0) + B(g0)5g + O(85). €)
For our purposes, it is sufficient to keep the dominant linear 8rdg) and neglect higher
order contribution®(8g2), which have the same sighig. 1(a) displays the coefficier®
as a function ofV, with Ny = 0. AnalogouslyFig. 1(b) shows the dependence Bfon
the number of matter multiplet§ ; with N. = 10. Obviously,B is positive and increases
with the number of colours and flavours. This behaviour has to be the same for all non-
Abelian gauge groups. The coefficieBtwill be even larger in supersymmetric theories
due to gauginos and scalars.

3. Dilaton potential at finitetemperature

In this section, we discuss how finite temperature effects modify the dilaton effective
potential. This discussion applies to many string compactifications although details are
model dependent. The major feature of the following analysis is that the dilaton potential
has a minimum at R& ~ 2 which is separated from another minimum atfRe- oo by a
finite barrier (sed-ig. 2). This is a rather generic situation.
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Fig. 1. The coefficients (cf. Eq. (3)) for SU(N,) gauge theory withV ¢ flavours; gg = 1/4/2. (a) Ny =0.
(b) N =10.
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Fig. 2. Typical potential for dilaton stabilization (solid curve). A minimunfat Sy =~ 2 is separated from the
other minimum atS — oo by a finite barrier. For illustration, we also plot a typical run-away potential (dashed
curve).

It is well known that gaugino condensatiorodels generically suffer from the dilaton
‘run-away’ problem. Thatis, the minimum of the supergravity scalar potentialis-atoo,

i.e., zero gauge coupling. The two most popular ways to rectify this problem in the frame-
work of the heterotic string use multiple gaugino condeng&td€] and non-perturbative
corrections to the Kahler potentid7,18] These mechanisms produce a local minimum
at ReS ~ 2. As finite temperature effects due teetimalized gauge and matter fields drive
the dilaton towards weaker coupling, this minimum can turn into a saddle point, in which

case the dilaton would again run away. This puts a constraint on the allowed temperatures
in the early universe.

If the hidden sector is thermalized (¢®]), such constraints are meaningful as long as
the temperature is below the gaugino condensation sdale10'3-10 GeV. Otherwise,
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by analogy with QCD, it is expected that the gaugino condensate evaporates and the dilaton
potential vanishes.

The critical temperature is obtained afidas. The stabilization mechanisms generate
a local minimum of the dilaton potential at Be~ 2, immediately followed by a local
maximum, with a separatiohReS = ©(10~2). Beyond this local maximum, the potential
monotonously decreases to the other minimum as Re co. Since the dilaton interac-
tion ratel's ~ T3/M§ is much smaller than the Hubble parameter, the dilaton field is not
in thermal equilibrium. It plays the rolef@ background field for particles with gauge
interactions since its value determines the gauge coupling

1
8

As a consequence, the complete effective potential of the dilaton field is the sum of the
zero-temperature potenti&ll and the free energ§ of particles with gauge interactions

Vr(ReS) = V(ReS) + F(g = 1/VReS, T). (5)

As the temperature increases, the local minimum and maximuf ofierge into a saddle
point at ReS¢yit. This defines the critical temperatufgii. ReScit andTgit are determined
by the two equatiorls

V' (ReScrit) + F'(1/v/ReSeit, Terit) =0, (6)
V" (ReScrit) + F"(1/+/ReSerit, Terit) =0, @)

where ‘prime’ denotes diffrentiation with respect to Re
We are only interested in the local behaviour of the potential arourith,Re~ 2, where
we can expand the free eneryg, T) as in Eq(3) with

SReS
2(ReSmin)%/2"

This produces a linear term in Bewith a negative slope proportional to the fourth power
of the temperature

ég = (8)

F(g=1/VReS,T)= AT4—8ReS§T4+O((8 ReS)?), 9)
where
B
-1 - -
T 2ReSmn o

Note, that validity of the linear approximation is based on the rela@@rbetween the
gauge coupling and the dilaton field. In case of an arbitrary fungtieng(ReS) it does
not necessarily hold.

1 In the case of more than one solution, the maxitigt is the critical temperature.
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In the linear approximation the equations for the critical value of the dilaton field and
the critical temperature become ((8), (7), (9))

V" (ReSerit) =0, (11)
Terit = (£ V' |Resg) Y (12)

At Sciit, Which lies betweerSmin and Smax, the slope of the zero-temperature dilaton po-
tential is maximal. It is compensated by the negative slope of the free energy at the critical
temperaturelii. For temperatures aboviyi: the dilaton is driven to the minimum at
infinity where the gauge coupling vanishes.

We can now proceed to calculating the critical temperature in racetrack and Kahler sta-
bilization models. In what follows, we will assume zero vacuum energy, which can be
arranged by adding a constant to the scalar potential. The hidden sector often contains
non-simple gauge groups, e.g., in the case of nontrivial Wilson lines. Then gaugino con-
densation can occur in each of the simple fac{8is Given the right gauge groups and
matter content, the resulting superpotential can lead to dilaton stabilization at the realis-
tic value of S [16]. For simplicity, we shall restrict ourselves to the case of two gaugino
condensates.

The starting point is the superpotential of gaugino condengation

W(S, T)=n(T)"°2(9), (13)
wheren is the Dedekind;-function and
38 38
2(8) = - d —— ). 14
(S) dleXIO( 2/31) + 2eXp< 2/32) (14)

7T is the overall T-modulus parametrizing the size of the compactified dimensions. We
assume that condensates form for two groups(MaY and SUN2), with My and M
matter multiplets in the fundamental and antirflamental represeti@ns. The parameters

d; and thes-functionsp; are then given byi(= 1, 2)

Bi = % (15)
4 — (%Mi 3 Ni) (32123 MmN/ @) (%Mi>Mi/(3N,-—M,-)- 6
Together with the Kéhler potential
K=K(S+S8) —3In(T+7), (17)
the superpotential for gaugino condensation yields the scalar potdijal
h%ﬁ{%gmswsm%(@?2@2@—3)@2}, (18)

2 For simplicity, we neglect the Green—Schwarz term which would be an unnecessary complication in our
analysis.
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where subscripts denote differentiation with respect to the specified arguments, and the
functionG3, is defined via the Dedekingt-function as

A T n'(T)
Gz——<@+4n n(T)>' (19)

It is well known that the T-modulus settles at a valfie~ 1 in Planck units, inde-
pendently of the condensing gauge gro{®]. Further, in the case of two condensates,
minimization in ImS simply leads to opposite signs for the two condensate3.ifrrom
Eqg.(18)we then obtain a scalar potéad which only depends om = ReS, the real part of
the dilaton field

V(x)=aek 4 9’+1K/9 Z—b.Qz (20)
K" 2 ’
wherea >~ b ~ 3 and
3x 3x
2 =diexpl —— | —doexpl —— ). 21
0 =drexp(~ 75 ) - oo~ 5 ) @)

The dilaton is stabilized at a poingin where the first derivative of the potential

1
V' = 2aeX (9’ + EK/fz)

1 K’ K" 4 K/Z
« {<9/+_m)(4_ —2—> + _9"—( —|—b—2>[2}, (22)

2 K" K//Z K K"
vanishes, and the dilaton mass term is positive
V//
mé=2—| >0 (23)
K//
Xmin

In the following we shall determine the critical temperature for two models of dilaton
stabilization. The scales of dilaton mass and critical temperature are set by the gravitino
mass

Mw?| (24)

and the scale of supersymmetry breakimtsusy = ,/m3;2, measured in Planck units.

2 K 2
m3/2:€ _n:ae |Q| |

.
Xmi Xmin

3.1. Critical temperature for racetrack models

Consider first the case with the standard Kahler potential
K(S+8)=—In(S+9), (25)

and two gaugino condensates, the so-called ‘racetrack mo#&ejs3. The first derivative
of the scalar potentigP0) then becomes

1 4
v’=2ae’<<9’+ EK/Q) (F_Q”— (b—l)[z). (26)
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Fig. 3. Dilaton potential forN1, No) = (7,8) and (M1, Mp) = (8,15). (@): T =0, (b): T = Tgit. In (b) the
dilaton independent termTé‘rit has been subtracted (cf. HJ)).

It has been showf16] that the local minimum is determined by the vanishing of the first
factor, (2x 2" (x) — §2(x))lxpn = O.

We now have to evalua{@6) at the point of zero curvatur&,” = 0. Differentiation by
x brings down a power of 328) > 1. Away from the extrema, where cancellations occur,
we therefore have the following hierarchy,

12|« 12« 2" < |2"]. (27)
This implies for the first and second derivative of the potential
4
V' ~2aeX —2'Q", (28)
K//
4
= 2aeKF(Q”2 +2'2"). (29)
For the slope of the potential at the critical point one then obtains the convenient expression
4 (Q/)ZQW
~ K
V/|Xcrit ~ —2ae FT (30)

For xmin < x < xmaxOne has

3 3
Q/ ~ Q, Q/// ~ QN, (31)
2PBmax 2fmin
whereBmax (Bmin) is the larger (smaller) of the twg-functions. This yields for the slope
of the potential

4 3 \?/ 3
V| ~2aeK—< ) ( )92. 32
| ot K" 2/3max 2lgmin ( )
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Sinces2 does not vary significantly betweegin andxcit, one finally obtains (cf(24))

1/ 3\ 3
Ve ~—( ) (—>m2 : 33
| ' K" ,Bmax ,Bmin 3/2 ( )

Using Eq.(12) we can now write down the critical tgperature. Notéhat in racetrack
modelsBmin andBmax are usually very similar. Introducing = (ﬂminﬁéax)l/3, one obtains

3\3/4 1/4
Ttrit ~ m3/2<g> (%) . (34)

We have determinef,; also numerically. The result agrees with E84) within a factor
~ 2. The factor, /m3,2 appears since the scale of the scalar potential is se%pzy Theg-

function factor corrects for the steeess of the scalar potential, whergagk” )4 =

O(1). With m3/2 ~ 100 GeV,8 ~ 0.1 andMp = 2.4 x 10'8 GeV, one obtains

Terit ~ 10 Gev, (35)

as a typical value of the critical temperature.

A straightforward calculation yields for the dilaton mass
.9 1
- B1p2 K"
As aresult, the dilaton mass is much larger than the gravitino mass and lies in the range of

hundreds of TeV. This fact will be important for us later when we discussthwdulus
problem.

ms m3y2. (36)

3.2. Critical temperature for Kéhler stabilization

As a second example we consider dilaton stabilization through non-perturbative correc-
tions to the Kahler potentiaF{g. 4). In this case a single gaugino condensate is sufficient
[17,18] Like instanton contributions, such corrections are expected to vanish in the limit of
zero coupling and also to all orders of pertatige expansion. A common parametrization
of the non-perturbative corrections reads

oK — ¢Ko 4 oKm.
Kb = cx P/ (37)

with Ko = —In(2x), x = ReS, and parameters subjectkd’ > 0 andp, ¢ > 0. For a single
gaugino condensate, one has

Q =dexp<—§—;), (38)

where 3(28) = 87?/N andd = —N/(32r%e) for a condensing SWV) group with no
matter. Note that the scalar potential is independent of.Im
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Fig. 4. Dilaton potential for Kahler stabilizatioe.= 5.7391,p = 1.1, ¢ =1, andN =6 [19]. (a): T =0, (b):
T = Tgrit- In (b) the dilaton independent tennﬁrc‘},it has been subtracted (cf. H)).

The scalar potential and its derivative are given by the simple expressions

_ ., K02 i /_E 2_ )
Vx)=ae" $2 (K” (K ﬂ) b, (39)

oy —acka?(k— V(L (k- 3\ - K (g3 _
V'(x)=ae™ 2 (K ﬂ)(K”(K ﬁ) (K”)2<K 13) b+2>. (40)

It has been showifil7,19] that realistic minima are associated with the singularity at
K” =0. That is, by tuning the parametersp, ¢ it is possible to adjusk” = 0 at some
valuex where the potential then blows up. By perturbing the parameters slightly, one ob-
tains a finite potential with positive but smal”, and the singularity smoothed out into a
finite bump. The bump is located approximately at the point of minikifgland the local
minimum of the potential at ~ 2 lies very close to it, with a separatién = O(10°2).
For realistic casesk’(x ~ 2) « 3/8, and the extrema of the potential around 2 are
associated with the zeros of the last bracket in @@). As explained above, in practice
K" is a very small parameter such that one can expand in powdf$.0Fhen, the extrema
appear due to cancellations between the two ‘singular’ terms and we have the approximate
relation
"
I]i// = _g' (41)
Due to the spiky shape of the potential, the point of vanishing curvatite; 0, is very
close to the local maximum. On the other hand, the cancellations betweepkteahd
1/(K")? terms in Eq(40) are not precise at this point and one can approximate their sum
by the larger term. Using the fact thEtands2 do not vary significantly betweetin and
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Xcrit, ONE Obtains from Eq$24) and (41)

1 /3\3 1 /3\°
V/|XCri1NaeKF<E> 92”F<E> mg/z, (42)

where K” is evaluated at the local maximummax. Note that this result is identical
to Eqg. (33) which we have obtained for racetrack models. However, for these models
1/(K")Y4 = /x = O(1), whereas nowK” is a very small, but otherwise essentially free
parameter.

Using Eq.(12) we find the same expression for the critical temperature as in racetrack
models

3\34/ &\
Tcrit“’«/’”B/Z(g) (F) ) (43)

SinceK” is small in realistic models, the upper bound on allowed temperatures relaxes
compared to racetrack models. As before, B8) agrees within a factor 2 with numer-

ical results. A typical value of the itical temperature is obtained fatz» ~ 100 GeV,

g ~0.1andK” ~ 1074,

Terit ~ 102 GeV. (44)
For the dilaton mass one obtains
3\% 1
e (E) K" )

Again, we find that the dilaton is much heavier than the gravitino.

4. Implicationsfor cosmology

As we have seen in the previous section, the dilaton gets destabilized at high tempera-
ture. The maximal allowed temperature is giveniy; ~ 101-10'2 GeV. In this section,
we study implications of this bound for cosmology.

Most importantly,T¢it represents a model independepper bound on the temperature
of the early universe,

T < Tcrit . (46)

This bound applies to a large class of theories, with weakly coupled heterotic string models
being the most prominent representatives. It is worth emphasizing that the dilaton desta-
bilization effect is qualitatively different from the gravitif@20] or moduli problemg6,7]
in that it cannot be circumvented by invoking other effects in late-time cosmology such as
additional entropy production. Once the dilaton goes over the barrier, it cannot come back.
The present bound applies to any radiation dominated era in the early universe, even if
additional inflationary phases occur afterwards. TherefGg not only provides an upper
bound on the reheating temperatdigeof the last inflation, but also can be regarded as an
absolute upper bound on the temperature of the radiation dominated era in the history of
the universe.
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4.1. S-modulus problem and thermal leptogenesis

In addition to theébound discussed above, one can haveh&r, more model dependent,
constraints on temperatures occurring at various stages of the evolution of the universe. In
this subsection, we discuss one of them, related t&theodulus problem.

Even if the reheating temperature does not exceed the critical one, thermal effects shift
the minimum of the dilaton potential. Due to this shiftstarts coherent oscillations after
reheating. Since the energy density stored in the oscillations behaves like non-relativistic
matter, posc x R 3, with R being the scale factor, it grows relative to the energy density
of the thermal bathgprag oc R=4, until § decays. Its lifetime can be estimated(@s) 1 ~
M3/m3 ~0.004 s(mg/100 TeV) 3. In the examples studied in SectiBnns >> 10 TeV,
so thatS decays before BBN. Thus, there is no centional moduli problem, i.e., dilaton
decays do not spoil the BBN prediction of the abundance of light elements.

However, even for these large masses, coherent oscillatiofisnafy affect the history
of the universe via entropy productif®, 7]. Let us estimate the initial amplitude of these
oscillations. At a given temperatuife < Tgit, the dilaton potential around the minimum
can be recast as

Vr == -/ T4 —, 47
T=omsd E2K"" Mp (“7)

wherep = Mp,/ K" /2 Re&(S — Smin).- The minimum of the potential is at

[ 2 14
(D)1 ~ WW (48)

Thus, atT = Tk, the displacement @ from its zero temperature minimum is estimated
asA¢|r, ~ ()1, Then, the entropy produced in dilaton decays is fgggendix A),

A= Safter - 1 TR 5 106 GeV /2 (49)
o Shefore é:ZK// 1010 GeV nmgs ’

The decay occurs at temperatures of order 10 MeV, i.e., after the baryon asymme-
try and the dark matter abundance have been fixed. Thus, we see th@} far
1019 GeV (mg/10° GeV)/109£2K")1/5, the baryon asymmetry and relic dark matter den-
sity get significantly diluted.

For instance, successful thermal leptogenf&l$ requiresTy > Ti ~ 3 x 10° GeV
[22]. For Tg 2 Ti, the baryon asymmetry can be enhancedrRy 7, , but later it gets
diluted by a factorx T,‘?. Hence, there is only a narrow temperature range where thermal
leptogenesis is compatible with the usual mechanisms of dilaton stabilization. We note
further that, in this range of temperatures, the bound on the light neutrino masses tightens.
For instanceTk < 3 x 10'° GeV implies m; <0.07 eV, which is more stringent than the
temperature-independent constraimt,< 0.1 eV [24].

3 Here we have used Fig. 10 of R§22], my < i1 [23], andm3 — m? ~ Am2.
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Concerning dark matter, we note that in WIMP cold dark matter scenarios, at the time
of the dilaton decay the pair annihilation pesses have frozen out so that the entropy
production reduce€cpm.? This effect could be welcome in parameter regions where oth-
erwise WIMPs are overproduced. Entropy production could also contribute to the solution
of the gravitino problem.

It is important to remember that the T-moduli problem remains. Thermal effects shift
all moduli from their zero temperature minimagreby inducing theilate coherent oscil-
lations. Unlike the dilaton, other moduli typically have masses of ordgs and thus tend
to spoil the BBN predictions.

In summary, there exists a range of reheating temperatur€§,Ta.fﬁ)§ TR < Terits
which are cosmologically acceptable, but fehich the history of the universe is con-
siderably altered, in particular via significant entropy production at late times.

4.2. Further constraints on inflation models

In this subsection we discuss some implications of the thermal effects at earlier times,
before the reheating process completes. Thegdhree important stages in the inflationary
scenario: inflation, the inflaton-oscillation epoch, and the radiation dominated epoch (see
Fig. 5).

During inflation, the energy density of the universe is dominated by the potential energy
of the inflatony . After the end of inflation, inflaton starts its coherent oscillations. The
energy density of the universe is still dominated by the inflaggruntil the reheating
process completes and radiatioreegy takes over with temperatufe= Tx. The nonzero
energy density of the inflaton induces additional SUSY breaking eff2éisHence, one
may expect that the dilaton potential is also affected by the finite energy of the inflaton
during thesey-dominated eras.

. . . L I ..
P F inflation €= inflaton oscillations == radiation =

1 .
dominates

I dominate

x T4

max

4
x T 4

Fig. 5. Three epochs in inflationary models: inflatianflaton oscillation domination and radiation domina-
tion [26].

4 WIMP dark matter may be directly produced by moduli def25].



W. Buchmiller et al. / Nuclear Physics B 699 (2004) 292-308 305

Further, in thex-oscillation era there is radiation with temperatdre (T2MpH )4
[26], whereH is the Hubble parameter. Although its energy density is small compared to
that of inflaton (se&ig. 5), it affects the dilaton potential as we have discussed in Se8tion
Since the maximum temperatufgay in the x -oscillation era is generically higher than the
reheating temperatufg, one expects stronger constraints frégux < Tcrit-

Whether it is radiation or inflaton that affects the dilaton potential more, depends on the
coupling between dilaton and inflaton. As this is model dependent, below we consider the
three possible cases:

(i) destabilizing dilaton—inflaton coupling he inflaton—dilaton coupling drives the dila-

(ii)

(iii)

ton to larger values and may let it run away to infinity. This puts severe constraints
on the inflation model. Some models can be excluded independently of the reheating
temperature.

stabilizing dilaton—inflaton couplingrhe inflaton effects move the dilaton to smaller
values. In this case, the previously obtained bound on the reheating tempé&yature

Terit provides the most stringent constraint. Note that the shift of the dilaton may
cause a large initial amplitude of its oscillation, which can result in a late-time entropy
production as discussed in Sectibi

negligible dilaton—inflaton couplingn this case, the effect of radiation during the

x -oscillation era (preheating epoch) is dominant. The maximal radiation temperature
can be expressed in terms of the reheating temperg}e

Tmax = (T2MpHint)Y/%, (50)

where Hjns is the Hubble expansion rate during inflatidhsax must be below the
critical temperature, or the dilaton will run away to weak coupling. This constraint
translates into a bound on the reheating temperature dependifigion

T4 \Y? Teit  \? (101 GeV\/?
T <—Ct_)  ~6x 10 GeV ent , 51
R~ (MpHm) x 101 GeVv Hing (51)

as shown irFFig. 6. The upper bound ofiy now becomes much severer. For instance,
taking Terit ~ 10! GeV and typical values dffins in some inflation mode®(cf. [29]),
we obtain the following bounds:
chaotic inflation: Hins ~ 1012 GeV, T < 10° GeV,
hybrid inflation: ~ Hinf ~ 10°P-10? GeV, Ty < 10™-10° GeV,
new inflation:  Hint ~ 10°-102GeV, T <10-10° GeV.
These bounds apply if already during the preheating phase particles with gauge in-

teractions form a plasma with temperatdigax and the dilaton is near the physical
minimum.

5 In curvaton scenariof28] the values oftiys are much less constrained.
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Fig. 6. Upper bounds on the reheating temperaturefgy = 1011 GeV and 182 Gev assuming a small infla-
ton—dilaton coupling (case (iii)). The darker region is excludedTtgs = 1012 GeV; for Tyt = 10 GeV the
lighter region is excluded as well.

5. Conclusions

At finite temperature the effective potentidl the dilaton acquires locally a negative
linear term. As we have seen, this important fact is established beyond perturbation theory
by lattice gauge theory results. As a consequence, at sufficiently high temperatures the
dilaton S, and subsequently all other modulifields, are destabilized and the system is driven
to the unphysical ground state with vanishing gauge coupling. We have calculated the
corresponding critical temperatufg.; which is larger than the scale of supersymmetry
breaking,Msysy = \/Mpm3z/2 = O(101° GeV), but significantly smaller than the scale of
gaugino condensation, = [d exp(—3S/(28))1Y3Mp = 1013-10 GeV. This is the main
result of our paper.

Our result is based on the well understood thermodynamics of the observable sector.
In contrast, the temperature of gaugirandensation can place a bound on the tempera-
ture of the early universe only under théditional assumption that the hidden sector is
thermalized.

The upper bound on the temperature in the radiation dominated phase of the early uni-
verse,T < Teit ~ 10111012 GeV, has important cosmological implications. In particular,
it severely constrains baryogenesis medsrais and inflation scenarios. Models requir-
ing or predictingl > Tt are incompatible with dilaton stabilization. In contrast to other
cosmological constraints, this upper bound cannot be circumvented by late-time entropy
production.

We have also discussed more model dependent cosmological constraints. Even if
T < Tgit, the S-modulus problem restricts the allowed temperature of thermal leptoge-
nesis and makes the corresponding upper bourdjbhneutrino masses more stringent.
Furthermore, depending on the assumed coupling between dilaton and inflaton, stronger
bounds can apply to the reheating temperature.
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Our discussion has been based on the assumption that moduli are stabilized by non-
perturbative effects which break supersymmetry. Thus the barrier separating the realistic
vacuum from the unphysical one with zero gauge couplings is related to supersymme-
try breaking. Recently, an interesting classtifng compactifications has been discussed
where fluxes lead to moduli stabilization angpsrsymmetry breaking (see, for example,
[30-32). Realistic, metastable de Sitter vacuaoalksquire non-perturtie contributions
to the superpotential from instanton effects or gaugino condengatidrit remains to be
seen how much fluxes can modify the criticaligerature in realistic string compactifica-
tions.
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Appendix A. Evolution of ¢ and entropy production

In the following, we derive the dilution factor, E49). The dilaton starts coherent os-
cillations soon after the radiation dominated era begins. This is because the effect of the
temperature term in E@¢47) disappears very quickly and whép— (o) 7| 2 (¢)r the po-
tential becomes essentially quadratic. As can be verified numerically, the initial amplitude
of subsequent oscillations is close to the initial displacement of the dilaton from its zero
temperature minimumaeg|r, ~ (¢)7,. The Hubble friction is very small at these times,
H<mg.

The ratio of posc to the entropy density before the dilaton decays is given by (cf.
Eq.(48)),

Posc

N

~ my$)F, 213
before s(Tr) (2”2/45)g*(TR)§2K”m§MF2,

(A1)

The ratio stays constant singgsc o< s o« R—3. Just after the dilaton decays, the ratio of
Prad tos is

Prad
)

3 3 /2 —1/4
= ZTd ~ Z(ﬁ&(ﬂ)) v T'sMp. (A.2)

after

If posc/s > prad/s, the dilaton decay causes large entropy production. Ugigdiafter >
Posdbefore We oObtain Eq(49). Note that there are large numerical uncertainties in this ex-
pression due to the dependence on initial conditions. In extreme scensigas, be close

to one. However, the resulting uncertaintyd is usually rather small since it appears
with the fifth power.



308 W. Buchmilller et al. / Nuclear Physics B 699 (2004) 292-308

References

[1] H.P. Nilles, Phys. Lett. B 115 (1982) 193;
S. Ferrara, L. Girardello, H.P. Nilles, Phys. Lett. B 125 (1983) 457;
M. Dine, R. Rohm, N. Seiberg, E. Witten, Phys. Lett. B 156 (1985) 55.
[2] M. Dine, N. Seiberg, Phys. Lett. B 162 (1985) 299.
[3] N.V. Krasnikov, Phys. Lett. B 193 (1987) 37.
[4] S.H. Shenker, The Strength ofoNperturbative Effects in String Theory, RU-90-47, Workshop on Random
Surfaces, Quantum Gravity and Strings, Cargese, France, 1990.
[5] T. Banks, M. Dine, Phys. Rev. D 50 (1994) 7454.
[6] G.D. Coughlan, W. Fischler, E.W. Kolb, S. Raby, G.G. Ross, Phys. Lett. B 131 (1983) 59.
[7] T. Banks, D.B. Kaplan, A.E. Nelson, Phys. Rev. D 49 (1994) 779;
B. de Carlos, J.A. Casas, F. Quevedo, E. Roulet, Phys. Lett. B 318 (1993) 447.
[8] R. Brustein, P.J. Steinhardt, Phys. Lett. B 302 (1993) 196.
[9] M. Dine, Phys. Lett. B 482 (2000) 213.
[10] W. Buchmiuiller, K. Hamaguchi, M. Ratz, Phys. Lett. B 574 (2003) 156.
[11] G. Huey, P.J. Steinhardt, B.A. Ovrut, D. Waldram, Phys. Lett. B 476 (2000) 379.
[12] T. Barreiro, B. de Carlos, N.Nunes, Phys. Lett. B 497 (2001) 136.
[13] J.1. Kapusta, Finite Temperature Fieldedry, Cambridge Univ. Press, Cambridge, 1989.
[14] K. Kajantie, M. Laine, K. Rummukagn, Y. Schréder, Phys. Rev. D 67 (2003) 105008.
[15] P. Arnold, C.X. Zhai, Phys. Rev. D 50 (1994) 7603;
P. Arnold, C.X. Zhai, Phys. Rev. D 51 (1995) 1906;
C.X. Zhai, B. Kastening, Phys. Rev. D 52 (1995) 7232.
[16] B. de Carlos, J.A. Casas, C. Mufioz, Nucl. Phys. B 399 (1993) 623.
[17] J.A. Casas, Phys. Lett. B 384 (1996) 103.
[18] P. Binetruy, M.K. Gaillard, Y.Y. Wu, Nucl. Phys. B 493 (1997) 27;
P. Binetruy, M.K. Galllard, Y.Y. Wu, Phys. Lett. B 412 (1997) 288.
[19] T. Barreiro, B. de Carlos, E.Copeland, Phys. Rev. D 57 (1998) 7354.
[20] M.Y. Khlopov, A.D. Linde, Phys. Lett. B 138 (1984) 265;
J.R. Ellis, J.E. Kim, D.V. Nanopoulos, Phys. Lett. B 145 (1984) 181;
T. Moroi, H. Murayama, M. Yamaguchi, Phys. Lett. B 303 (1993) 289.
[21] M. Fukugita, T. Yanagida, Phys. Lett. B 174 (1986) 45.
[22] W. Buchmidiller, P. Di Bari, M. Plumacher, hep-ph/0401240.
[23] M. Fujii, K. Hamaguchi, T. Yanagida, Phys. Rev. D 65 (2002) 115012.
[24] W. Buchmiiller, P. Di Bari, M. Plumacher, Nucl. Phys. B 665 (2003) 445.
[25] T. Moroi, L. Randall, Nucl. Phys. B 570 (2000) 455.
[26] E. Kolb, M. Turner, The Early Universe, Addison-Wesley, Redwood City, CA, 1990.
[27] M. Dine, L. Randall, S. Thomas, Phys. Rev. Lett. 75 (1995) 398.
[28] D.H. Lyth, D. Wands, Phys. Lett. B 524 (2002) 5;
T. Moroi, T. Takahashi, Phys. Lett. B 522 (2001) 215;
T. Moroi, T. Takahashi, Phys. Lett. B 539 (2002) 303, Erratum.
[29] T. Asaka, K. Hamaguchi, M. Kawasial. Yanagida, Phys. Rev. D 61 (2000) 083512.
[30] S.B. Giddings, S. Kachru, J. Polchinski, Phys. Rev. D 66 (2002) 106006.
[31] S. Kachru, R. Kallosh, A. Linde, S.P. Trivedi, Phys. Rev. D 68 (2003) 046005.
[32] M. Grafa, T.W. Grimm, H. Jockers, J. Louis, hep-th/0312232.



	Dilaton destabilization at high temperature
	Introduction
	Gauge couplings at high temperature
	Dilaton potential at finite temperature
	Critical temperature for racetrack models
	Critical temperature for Kähler stabilization

	Implications for cosmology
	S-modulus problem and thermal leptogenesis
	Further constraints on inflation models

	Conclusions
	Acknowledgements
	Evolution of phi and entropy production
	References




