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E N V I R O N M E N TA L  S T U D I E S

Precision and bias of carbon storage estimations in 
wetland and mangrove sediments
Exequiel Ezcurra*

Peaty sediments in coastal wetlands play an important role in the sequestration of atmospheric carbon dioxide and its 
belowground storage. Sediment cores are used to quantify organic matter (OM) density, estimated by multiplying the 
bulk density of a core segment by its OM fraction. This method can be imprecise, as repeated samples often differ widely. 
Recent studies have shown that sediment bulk density and OM fraction are not independent but tightly related by a 
function called the ideal-mixing model. Thus, the bulk density of the sediment can be directly estimated from its OM frac-
tion. Statistical theory and simulations demonstrate that the high variance in the product estimation of OM density is the 
result of error propagation in the product of two functionally related variables with independent errors. Estimating OM 
density in wetland sediments using the ideal-mixing model is more precise than the traditionally used product estimate, 
especially in highly organic sediments.

INTRODUCTION
In recent years, a large number of studies have highlighted the 
importance of peaty sediments in coastal lagoons, especially un-
der mangrove forests, for the sequestration of atmospheric CO2 and 
subsequent storage as organic matter (OM) buried in the sediments. 
The relevance of this process in the balance of atmospheric green-
house gasses and the mitigation of climate change is potentially very 
high. To assess buried carbon storage, sediment cores are often used 
to quantify the carbon density (i.e., the mass of carbon in a unit vol-
ume of sediment) of a given sediment layer. Carbon density (CD) in 
a core segment is estimated by multiplying the bulk density (b) of the 
core segment times the relative carbon content of the sample, also 
known as carbon fraction (1). Carbon fraction (c) can be estimated 
with an elemental analyzer (provided carbonates are removed first by 
HCl fumigation), or by estimating OM fraction (o) by loss-on-
ignition, i.e., the percentage mass that is lost after high-temperature 
treatment in a muffle furnace. Both values can be converted if a con-
version factor has been calibrated for those sediments, whose value in 
mangroves is usually close to 2.2 (2). Thus, ĈD = bc, or, alternatively, 
ĈD = bo/2.2. Conversely, the density of OM (OD) is estimated as

Most studies estimating carbon stocks in coastal wetlands, or 
“blue carbon,” multiply the bulk density of the core by its OM frac-
tion to obtain an estimate of OD.

Recent studies (2–6), however, have found that in wetland and 
tropical mangrove sediments, bulk density and OM fraction are 
not independent but, rather, tightly related by a mathematical 
function that has been well known in soil science for over half a 
century (7, 8) and called by some researchers (4–6) the “ideal-
mixing model.” The name derives from the model’s central as-
sumption of “ideal mixing” implying that, in a binary mixture of 
different particle types, each particle type does not disturb the 
packing of the other particle type (9). The ideal-mixing model de-
scribes an inverse functional relationship between soil bulk density 
and OM fraction, under the assumptions that (i) the bulk densities 

of pure OM and pure mineral matter are constant and that (ii) in a 
mixture, the volumes occupied by the organic and mineral compo-
nents are additive (7, 8). If the OM fraction, i.e., the relative mass 
of OM in a mangrove sediment sample, is defined as o (a propor-
tion that varies between 0 and 1), then the relative volume occu-
pied by OM in a sample is o/δp, where δp is the self-packing density 
of pure OM in grams per cubic centimeter. It follows that the rela-
tive mass of mineral particles in the sample will be equal to (1 − o), 
and hence, the relative volume occupied by mineral particles in the 
sample is (1 − o)/δm, where δm is the self-packing density of pure 
mineral sediments. The sum of both components [o/δp + (1 − o)/δm], 
expressed in cm3/g, will give an estimate of the volume occupied 
jointly by the two fractions in a mixture of 1 g. The inverse of this 
calculated joint volume will yield an overall estimation of the appar-
ent density of the sediment sample containing a proportion o of 
pure OM and a proportion 1 − o of inorganic sediments so that the 
equation for the ideal-mixing model becomes

where bmix is the estimated bulk density of the sample. This equation 
can also be written as

Because this model assumes that sediment bulk volume equals 
the summed bulk volumes of organic and mineral components, it 
also assumes that peat accumulation in the sediment creates a 
volume expansion of the sediment equal to its own bulk volume 
(8). Although this hypothesis may not hold strictly in agricultural 
soils, where soil structure and compaction may vary as a result of 
farming activities like tilling or trampling by grazing animals, the 
model has been used with success in large, continental-scale datas-
ets of marshlands and peatlands (2, 4, 5).

One of the most attractive aspects of the ideal-mixing model is 
that it only has two parameters to be estimated for the fitted func-
tion, δp and δm, which correspond to the bulk, self-packing densities 

ÔD = bo (1)
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of pure peat and pure mineral sediments, respectively. These pa-
rameters have a simple and direct ecological interpretation and can 
be obtained from the literature for the estimation of stored carbon 
in mangrove sediments. The close relationship between OM frac-
tion and bulk density can be seen in Fig. 1A, for a pooled dataset of 
mangroves in the Caribbean and Pacific coasts of Mexico and Panama, 
known as “Costa’s dataset” (2). The model, fitted by nonlinear meth-
ods, explained 86% of the variation in the data (r2 = 0.86). Like-
wise, Morris et al. (4) reported a similarly high fit (r2 = 0.73) for the 
ideal-mixing model on a large dataset of coastal wetlands in the 

conterminous United States. Similarly, after testing four alternative 
models, Crnobrna et al. (6) found that the ideal-mixing model pro-
duced the best fit (according to the Akaike information criterion) to 
the relationship between OM fraction and bulk density in tropical 
peatland soils of the upper Amazon Basin. Although various other 
empirical functions have been tried to fit this relationship (3, 4, 6), 
the ideal-mixing assumptions seem to yield, in all published cases, 
the model providing the best fit in wetland sediments.

The ideal-mixing model in Eq. 3 shows the relationship between 
bulk density and the OM fraction in the sediment, used as a 

Fig. 1. Propagation of errors in OM density estimation. Gravimetric bulk density measurements yield statistical estimates of total carbon density that are strongly 
heteroscedastic and show a large dispersion of the data in sediments rich in OM. (A) Bulk density versus OM fraction in 496 sediment cores from mangroves in the 
Caribbean and the Pacific coasts of Panama and Mexico [see (2) for details]. OM fraction predicted 86.1% of the total variation in the bulk density data (r2 = 0.861). 
(B) Despite the close functional relationship between bulk density versus OM fraction, the relationship between OM fraction and OM density (the product of bulk density 
× OM fraction) showed a high dispersion between the predictions of the ideal-mixing model (black line) and the values calculated using gravimetric estimates of bulk 
density (r2 = 0.315).
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predictor. It is feasible, however, to solve Eq. 3 for OM fraction (o) 
and perform the opposite calculation, i.e., to estimate the OM frac-
tion of the sediment using the core’s gravimetric bulk density as a 
predictor. Solving Eq. 3 for o, the OM fraction, we get

where omix is the OM fraction in the sample estimated from bulk 
density through the ideal-mixing model. Because the two pa-
rameters, bulk density and OM fraction, are so closely related, the 
latter can conceivably be used to calculate the former or, alterna-
tively, bulk density can be used to estimate OM fraction. Thus, 
the OM density of the sediments can be calculated in three alter-
native ways: (i) using the product of both estimated parameters 
( ÔD = b. o ), (ii) using only the estimated OM fraction and calcu-
lating bulk density from Eq. 3 ( ÔD = b

mix
. o ), or, alternatively (iii) 

using only the estimated bulk density and calculating OM frac-
tion from Eq. 4 ( ÔD = b. o

mix ). We will call these three alternative 
estimations of OM density (i) the product estimation, (ii) OM 
fraction estimation, and (iii) the bulk density estimation.

The last two procedures can be written in terms of the ideal-
mixing model (Eqs. 3 and 4) to obtain the full equations predicting 
OM density as a sole function of OM fraction

Alternatively, using Eq. 4, it can be estimated as a function of 
bulk density

It is interesting to note that, although the ideal-mixing model 
(Eq. 3) fits the relationship between bulk density and OM fraction 
very well (r2 = 0.861; Fig. 1A), the OM density values calculated us-
ing the product estimation show a poor fit against the OM fraction 
estimation (r2 = 0.315; Fig. 1B). If the three estimates for Costa’s 
dataset are compared pairwise, some noteworthy patterns can be 
found (Fig. 2): (i) The slope of the three estimates does not differ 
significantly from 1 (i.e., the identity function y = x). (ii) Pairwise 
comparisons involving the product estimate have a much higher 
dispersion than the bulk density estimate plotted against the OM 
fraction estimate. (iii) Last, the high dispersion in the data points 
when using the product estimation is not distributed uniformly but 
tends to be larger in highly organic sediments.

The strong heteroscedasticity (unequal distribution of variances) 
in the product estimate is conspicuous. The increasing variance of 
the model residuals with increasing OM fraction in the sediment 
when using the product estimation of OM density seems to be a se-
rious problem in the assessment of blue carbon densities in coastal 
wetlands because it increases the experimental error in those sedi-
ments that contribute most to the quantification of buried carbon.

The fact that bulk density and OM fraction in mangrove sedi-
ments can be so tightly related and yet the product of the two can 
show such high dispersion in the data when used to predict carbon 
density (a simple product of both bulk density and OM fraction) may 

seem, at first glance, somewhat perplexing. Why is it that two func-
tionally related variables, with independent random errors, increase 
their dispersion so noticeably when multiplied together? Two possible 
hypotheses can be proposed to explain this phenomenon. An initial, 
or null, hypothesis is that wetland sediments are intrinsically highly 
variable and the high dispersion of the product estimate of OM den-
sity reflects a true feature of the sediment samples. An alternative 
hypothesis is that the high variability observed in OM density sam-
ples using the product estimate is the result of sample-error propaga-
tion in the statistical product, a conjecture explored (but not 
demonstrated rigorously) by Sternberg-Rodríguez et al. (2). If 
this second hypothesis was true, then it would support the use of the 
ideal-mixing model—a simple, one variable estimator of OM densi-
ty—over the traditionally used product estimate and could, in turn, 
transform the way we measure OM density in wetland sediments 
globally for carbon sequestration and storage estimates.

In this study, we will test the hypothesis that the high variance of 
the residuals in the product estimate of OM density when compared 
to the estimates derived from the ideal-mixing model is the result of 
the way the propagation of errors operates when calculating the 
product of two functionally related variables with independent ran-
dom errors. To test this, we will analyze error propagation in the 
three different procedures that can be used to estimate OM density 
in wetland sediments: (i) the product estimation (Eq. 1), (ii) the OM 
fraction estimation (Eq.  5), and (iii) the bulk density estimation 
(Eq. 6). The propagation of errors for each estimate will be analyzed 
using two alternative and independent approaches: (i) statistical 
theory derivations and (ii) numerical simulations.

The theoretical estimation of error propagation is based on Cramér’s 
theorem (10), which states that, given a function F used to calculate 
the value of a result variable w from two predictor variables x and y, 
then the variance of w can be calculated from the partial derivatives 
of F with respect to x and y multiplied by the variances of y and x 
(see Materials and Methods for a detailed description of the proce-
dure). Cramér’s derivation is still the most robust and commonly 
used approach for the calculation of error propagation in engineer-
ing and for instrumentation (11–13).

RESULTS
Propagation of errors using statistical theory
Propagation of errors in the product estimation of OM density
The traditionally used product estimation of OM density is cal-
culated as ÔD = bo . Its partial derivatives are ∂OD/∂b = o, and 
∂OD/∂o = b. Following Cramér’s theorem, we can apply these de-
rivatives to Cramér’s equation (see text S1) to get the following

where rbo is the correlation coefficient between b and o, and ε is the 
relative error, or error coefficient, of the sample (i.e., the ratio be-
tween the standard error of the sample and its expected value). For 
simplicity, we are assuming that the relative error of both variables b 
and o is the same. A full derivation is provided in text S1.

That is, the relative error of calculating OM density through the 
multiplication of bulk density and carbon fraction is larger than ε, the 
relative error of each of the intervening variables. This multiplicative 
effect of the error propagation is buffered in low-carbon sediments by 
the negative correlation between b and o because, as shown in Fig. 1, 

o
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δp
(
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)

b
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δm − δp
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ÔD =
δp
(

δm − b
)

(

δm − δp
) (6)

st. err. (ÔD) = ε ÔD
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at this extreme of the gradient, bulk density and OM fraction have a 
strong negative slope (with a correlation coefficient in our dataset of 
r ≅ 0.8). However, for peaty sediments, with o values larger than 20%, 
the ideal-mixing model curve becomes near horizontal and the cor-
relation coefficient between bulk density and OM fraction becomes 
very low, so that in peaty sediments st. err. (ÔD) ≅

√

2 ε ÔD.
Propagation of errors in OM fraction estimation of OM density
If the bulk density of the sediment is estimated from the OM frac-
tion o, then the formula for OM density becomes OD = bmix o. In 
this method, the bulk density (bmix) is estimated through the ideal-
mixing model (eq. 3). As shown in text S2-a, using the quotient rule, 
the derivative with respect to o, the predictor variable, is

Now, incorporating this derivative into Cramér’s error propaga-
tion model, we get (see text S2-b)

Note that, as the sediment decreases in OM fraction, its bulk 
density bmix also decreases because the bulk density of peat-rich 
sediments is much lower than that of mineral sediments. Thus, the 
theory predicts that the precision of the ideal-mixing model esti-
mate will increase in OM-rich sediments.
Propagation of errors in bulk density estimation of OM density
Let us now recall Eq. 6, a univariate function that predicts the sedi-
ment’s OM density solely from its bulk density. The derivative of this 
equation with respect to b (see text S3-a) is

Inserting this derivative into Cramér’s error propagation model 
(text S3-b), we get

In this case, as in the previous one, as sediments become more 
organic (i.e., when b → δp) the term b

δm − b
 decreases and the error 

diminishes. Inversely, as sediments become less organic (i.e., when 
b → δm), the term b

δm − b increases, and the error expands rapidly.
Precision of the estimators
We have analyzed error propagation in three alternative methods of 
estimating OM density in a sediment core. The first one, product 
estimation, uses two sample parameters: bulk density multiplied by 
OM fraction. The other two methods estimate OM density using 
only a single parameter from the core sample, either OM fraction or 
bulk density: The second method estimates OM density by means of 
OM fraction only, using the ideal-mixing model as a predictor of 
bulk density. Last, the third method estimates OM density using the 
core’s bulk density as a predictor and calculates OM fraction as a 
function of bulk density, also using the ideal-mixing model.

The error functions for the three methods (i.e., Eqs. 1, 5, and 6) 
are plotted together in Fig. 3 as a function of OM fraction, i.e., the 
“peatiness” of the sediment. The theory predicts that the dispersion 

�OD

�o
=

b2
mix

δm
(8)

st. err. (ÔD) = ε
b
mix

δm
ÔD (9)

�OD

�bg
=

− δp

δm − δp
(10)

st. err. (ÔD) = ε
b

δm − b
ÔD (11)

Fig. 2. Dispersal of errors in three alternative estimators of OM density. Pair-
wise comparisons of the three OM density estimators show the increased disper-
sion in the estimated values when using the product model: (A) product versus OM 
fraction estimates (r = 0.75), (B) product versus bulk density estimates (r = 0.54), 
and (C) bulk density versus OM fraction estimates (r = 0.93). In all three cases, the 
slope of the major axes fitted to the data cluster did not differ significantly from 
that of the identity function, marked as a black line, indicating that the three mod-
els do not differ in their mean expected values but differ in their residual variation, 
a measure of precision. A slope test on the residual-versus-predictor regression 
showed strong and positive heteroscedasticity in plot A (t = 9.66, df 494, P < 0.0001), 
suggesting that precision in the product estimation decreases with increasing OM 
in the sediment. In contrast, both for the OM fraction and the bulk density esti-
mates, precision increased significantly toward the peatier sediments (t = 9.76, 
df 494, P < 0.0001 and t = 6.78, df 494, P < 0.0001, respectively).
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of the residuals will increase monotonically in the product estimate, 
the two-variate model most commonly used in blue carbon compu-
tation, as the OM fraction increases. Using bulk density alone as a 
predictor will give lower errors than the product model for peaty 
sediments but, when OM fraction is lower than 10%, its relative er-
ror will increase rapidly and become much higher than that of the 
product model. Overall, the lowest errors in peaty sediments were 
given by the single-variate estimation using OM fraction as the pre-
dictor of OM density. Note in the figure, however, that in mineral 
sediments with less than 4% OM fraction, the theory predicts that 
the product estimate will work as well as, or slightly better than, the 
ideal-mixing model estimate based on OM fraction.

These analytical results confirm the empirical findings of 
Sternberg-Rodríguez et al. (2) in the sense that estimating OM (or 
carbon) in peaty wetlands using only OM fraction provides more 
precise estimations than the product estimation method and opens 
the door to estimating carbon storage in sediment data that contains 
OM or carbon fraction but no reliable bulk density estimate.

Numerical simulation
Three approaches were used to calculate the OM density on each 
core using three different numerical simulations: (i) The first meth-
od estimated OM density (OD) using the simple cross-product of 
the sample’s OM fraction × its gravimetric bulk density ( ̂OD = b o ). 
(ii) The second method estimated ÔD using only the sample’s OM 
fraction and estimating bulk density through the ideal-mixing mod-
el, as in Eq.  5. (iii) The last method estimated ÔD using only the 
sample’s bulk density and estimating the OM fraction through the 
inverse ideal-mixing model, as in Eq. 6.

In all simulations, the ideal-mixing model fit was used assuming 
the true values of the parameters had been estimated accurately: 
δp = 0.085 and δm = 1.65 g/cm3, i.e., the same parameter values used 
to generate the simulated sampling data. In the following section, 

the problems that arise in the estimation process when these values 
are not accurately known will be discussed. The results of the three 
models (Fig. 4) agreed well with the analytical derivations. Although 
the simulated bulk density followed a close relationship to the OM 
fraction (Fig. 4A), the dispersion of the residuals was high in the 
product estimation, which multiplies the estimated bulk density by 
the estimated OM fraction (Fig. 4B). With this method, the simu-
lated estimate of OM density becomes very imprecise in highly or-
ganic, peaty sediments. The estimate based on bulk density only 
(Fig. 4D) gave lower errors than the product model, especially in 
peaty sediments, but in low OM fraction sediments, its error in-
creased rapidly. The lowest residual errors around the predicted val-
ues, and hence the highest precision, were observed when using the 
OM fraction as the single predictor of OM density (Fig. 4C).

For statistical comparison of the three graphs (Fig. 4, B to D), the 
value of each point was decomposed into three variance elements: 
(i) the sum of the squared differences between each replicate and the 
mean of the core (i.e., the within core error or “pure error” in statis-
tical terms) (14), (ii) the sum of squares of the difference between 
the mean of each core and the predictions of the ideal-mixing mod-
el (i.e., the “lack of fit” error) (14), and (iii) the sum of squares of the 
differences between the predictions of the ideal-mixing model and 
the overall mean OM density of the whole dataset (the model fit). 
The results (Table 1) show that (i) the total variance of the simulated 
data is much higher in the product estimation than in the single-
variable estimations and that (ii) the pure error term, or variation 
between replicates of the same sample, is also much higher in the 
product estimation, confirming both the predictions of the theory 
and the trends observed in the graphs.

Accuracy and precision of the estimates
Precision is a measure of how close repeated measurements are to each 
other. Highly precise measurements are closer together than 

Fig. 3. Theoretical error dispersal in three alternative estimators of OM density. Error functions for the three estimation methods plotted as a function of OM fraction: 
The predicted dispersion of the residuals increases monotonically in the cross-product model (blue line). Using bulk density alone as a predictor (black line) gives lower 
errors than the product model for peaty sediments, but its relative error increases rapidly in low-OM sediments. The lowest errors, overall, were predicted when using OM 
fraction as the predictor of OM density.
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low-precision measurements. The variance of repeated samples, or the 
sum of the squared residuals of a model, is a measure of statistical pre-
cision: the lower the variation, the higher the precision of the esti-
mator. Clearly, of the three methods explored for the calculation of 
OM density, the single-variable estimation using OM fraction repre-
sents the most precise approach. Accuracy, on the other hand, assesses 
whether a series of measurements are correct on average. It relates 
to the central tendency, or expected value, of a large number of 

measurements and not to their dispersion. If the expected value of 
the estimates differs from the true value, then the measure is con-
sidered inaccurate or biased. Of the three methods used, the two 
single-variable predictors of OM density depend critically on the a 
priori estimation of the two parameters of the ideal-mixing model: 
δp, the bulk density of pure peat, and δm, the bulk density of pure 
mineral sediments. Thus, the accuracy of the estimate of total OM 
and total carbon based on the ideal-mixing model depends very 

Fig. 4. Numerical simulation of error propagation. Simulated sampling corroborates the error distribution of both observed data and analytically predicted errors. 
(A) Bulk density versus OM fraction in 420 simulated sediment cores (r2 = 0.921). (B) Carbon density, calculated as the product of simulated bulk density × simulated OM 
fraction, showed a high dispersion between the predictions of the ideal-mixing model (black line) and the values calculated using gravimetric estimates of bulk density 
(r2 = 0.303). (C) The dispersion in the simulated data when using only OM fraction as a predictor decreased markedly, showing a high precision of the estimates through-
out the range of OM fraction values (r2 = 0.976). (D) When using only simulated gravimetric bulk density as a predictor of OM density, the fit to the model was also high 
(r2 = 0.922) but the dispersion of the estimates increased in sediments low in OM.

Table 1. Decomposition of variances. Sum-of-squares decomposition of the model data is depicted in Fig. 4 (B to D) (see text for a description of how each 
source of variation was calculated). Because the ideal-mixing model is nonlinear, the variances are only approximately additive, i.e., the total sum of squares is 
close, but not identical, to the sum of the three sources of variation.

Cross-product OM fraction Bulk density

Sum of squares Proportion of 
variation

Sum of squares Proportion of 
variation

Sum of squares Proportion of 
variation

Model 0.1191 0.367 0.1191 0.982 0.1192 0.929

Lack of fit 0.0075 0.022 0.0001 0.001 0.0006 0.005

Pure error 0.2069 0.621 0.0021 0.017 0.0085 0.066

Total 0.3614 -​ 0.1222 -​ 0.1291 -​
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strongly on the accuracy with which the model parameters δp and δm 
are estimated.

The impact of under- or overestimating the ideal-mixing model 
parameters δp and δm can also be evaluated analytically following 
Crámer’s theorem (11) as was done for the random sampling errors. 
Calculating the partial derivatives of ÔD with respect to the ideal-
mixing parameters δp and δm, and plugging these derivatives into 
Cramér’s equation (text S4-a and -b), we can calculate the relative 
bias (εOD) in the estimation of ÔD given certain systematic errors 
(εm and εp) in the parameters δp and δm

This expression is plotted in Fig. 5A, assuming a 10% bias in the 
estimates of both δp and δm. If the relative error of the estimation is 
the same for both parameters εm = εp = ε, then the equation be-
comes (text S4-c)

It can be shown (see text S4-d) that the term in parentheses 
equals one for any value of ÔD , so that the relative error in the esti-
mate of ÔD is equal to, but never larger than, the bias error in the 
estimation of δp and δm.

εOD =
ÔD

δm

(

1 − o

o

)

εm +
ÔD

δp
εp

(12)

εOD = ε

[

ÔD

δm

(

1 − o

o

)

+
ÔD

δp

]

(13)

Fig. 5. Precision and bias of the ideal-mixing model. (A) Analytically derived relative bias (systematic error as a proportion of the OM density value) given a 10% sys-
tematic error in the estimation of the ideal-mixing model parameters δp (blue line) and δm (red line). The black line shows the additive effect of both errors occurring si-
multaneously. (B) Simulated deviation of the OM density estimates given a 10% overestimation of both δp and δm (red dots) or a 10% underestimation of both parameters 
(blue dots).



Ezcurra﻿, Sci. Adv. 10, eadl1079 (2024)     21 August 2024

S c i e n c e  A d v a n c es   |  R esear     c h  A r t i c l e

8 of 10

DISCUSSION
Sediment bulk density and OM fraction are not independent vari-
ables; rather, they are narrowly associated by the ideal-mixing model, 
an inverse nonlinear relationship that depends on two parameters: the 
self-packing density of OM (δp) and the self-packing density of 
mineral sediments (δm). Because of this relationship, the ideal-
mixing model provides an alternative to the traditional product es-
timation of carbon density in wetland and mangrove sediments. As 
demonstrated in this study, the product estimation commonly used 
to calculate OM (or carbon) density in sediment can be very impre-
cise because of the way sampling errors propagate in the product of 
two variables with independent random errors. Using the product 
method, repeated sampling of the same core can yield widely differ-
ent results simply as a result of error propagation in the product of 
bulk density × OM fraction. In contrast, the estimation of OM den-
sity using the ideal-mixing model shows a much higher precision; 
repeated sampling of the same core will consistently yield similar 
results, especially in peaty or highly organic sediments.

Apart from the analytical and numerical results shown here, the 
high precision of the single-variable estimators, especially the OM 
fraction estimation, can be empirically tested using a simple spread-
sheet. Let us assume, for example, a sediment core with an OM frac-
tion o = 0.40 (or 40% OM) and a bulk density b = 0.23 g/cm3, with 
parameter values for the ideal-mixing model δm =  1.6 g/cm3 and 
δp = 0.1 g/cm3. The product estimate of OM density (Eq. 1) will be 
0.092 g/cm3. Using the ideal-mixing model, the OM fraction esti-
mate (Eq. 5) and the bulk density estimate (Eq. 6) will both estimate 
0.091 g/cm3, very close to the product value. Now, let us assume that 
the OM fraction has an overestimation error of 10%, so now 
o = 0.44. The product estimate will yield 0.1012 g/cm3, exactly 10% 
larger than the true value, but the OM fraction estimate will yield 
0.0926 g/cm3, only 1.3% larger than the true value. If we now as-
sume an overestimation error of 10% for both OM fraction and bulk 
density, then the product estimate will yield an error of 21%, while 
the single-variable estimators will yield errors of 1.32% for the OM 
fraction estimator and −1.68% for the bulk density estimator. That 
is, the ideal-mixing model tends to dampen any error in the mea-
surement of the predictor variables, especially in peaty sediments. 
The reason for this lies in the very low slope of the OM density curve 
when plotted against the OM fraction. Above 30% OM fraction, as 
the proportion of OM increases, the bulk density decreases and 
the total carbon density tends to remain relatively constant, around 
0.9 g/cm3. This pattern was first noticed by Holmquist et al. (5), who 
noted that, in peaty sediments, as average bulk density increased, 
average OM fraction decreased, such that the two patterns offset 
each other and average carbon mass varied little.

This study demonstrates that because of the way statistical errors 
propagate in the traditionally used product method (multiplying 
bulk density by OM fraction estimates), the alternative and simpler 
one-variate ideal-mixing model will yield substantially more precise 
results. The ideal-mixing model, additionally, has potentially a high-
er degree of universality because it can allow researchers to use ex-
isting databases containing sediment OM or carbon fraction even if 
no bulk density estimates have been included.

Throughout this study, we have assumed that bulk density and 
OM fraction samples were measured with similar errors (ε). How-
ever, it is well known in soil science that the determination of 
bulk density from soil core samples is costly, difficult, and time-
consuming, and the error in estimating bulk density from standard 

cores is around four times larger than the error observed in bulk 
densities estimated from carefully extracted large-diameter sample 
rings (15). Because of the high error and methodological difficulties 
involved in the accurate estimation of bulk density, soil scientists 
often resort to estimating it indirectly using a series of empirical 
functions known as pedotransfer functions (15). Because of the 
large errors involved in the estimation of bulk density from soil 
cores, it is likely that in reality, the relative errors of the bulk density 
estimates are larger than those of the OM fraction estimate. If this 
was the case, then eliminating the need for a bulk density estimate in 
the calculation of blue carbon stocks would add a strong additional 
element in favor of the use of the ideal-mixing model.

The results presented here, however, depend critically on the 
existence of a strong and predictable relationship between OM 
fraction and bulk density. This relationship has been explored in 
at least five studies in highly organic sediments (2–6) and found 
to be robust, but clearly, more research is needed to confirm its 
universality. The central assumption of the ideal-mixing model, as 
proposed by its original developer W. A. Adams (7), implies “that 
the bulk volume of a soil containing organic matter approximates 
to the summed self-packing volumes of the mineral and organic 
components.” Empirically, published studies have shown this to 
be generally correct, but, apart from trampling and compaction 
potentially induced by human activities, other factors could also 
conspire to break the relationship, such as dissolved organic car-
bon loss from a site or fine-grained mineral sediment transport 
into the site. Furthermore, it must be also noted that all the cur-
rently published studies using the ideal-mixing model in wetland 
sediments have been done in mature wetland ecosystems and 
mangrove forests where, presumably, a relatively stable rate of 
biomass growth and soil accretion has been attained. Little is 
known about this relationship in recently restored wetlands, as 
newly accreted soils with high OM contents require some time for 
compaction to take place. Researchers using this method in such 
sites should test the fit of the model to their own OM and bulk 
density data. Further research may add important information to 
confirm the universality of the ideal-mixing model. Last, sample 
depth per se could potentially have an impact on compaction 
(thus affecting bulk density), as deeper sampling points will have 
a larger sediment column above them. For sediment samples less 
than 1 m deep, two studies (2, 5) found no significant effect when 
testing the ideal-mixing model for an additional effect of depth on 
the predicted bulk density values. This, of course, does not en-
tirely rule out that deeper samples may show a detectable effect of 
depth on bulk density, which becomes relevant when assessing 
stocks at depths greater than 1 m.

Although beyond the scope of this study, it must be noted that 
there is still considerable uncertainty and potential variability associ-
ated with the quantification of OM or organic carbon. There is a risk 
of losing carbon in the form of CO2 during the drying of highly peaty 
samples. If an elemental analyzer is used to measure total carbon, 
then inorganic forms of carbon need to be eliminated by HCl fumi-
gation; otherwise, the amount of organic carbon in the sample may 
be seriously overestimated and the ideal-mixing model relationship 
may be lost. If estimating OM is through loss-on-ignition methods, 
sizeable errors can be introduced in the OM estimate from incorrect 
oven temperature, burn time, or individual sample size, as well as clay 
content-dependent correction factors for structural water loss (16). 
Further research comparing the relative errors and uncertainties in 
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bulk density and OM fraction estimates could add important points 
of refinement to the ideal-mixing model approach.

Despite its higher precision, estimating OM density (or carbon 
density) with the ideal-mixing model is prone to sampling bias. Be-
cause the model depends on the parameters δp and δm (the self-
packing density of OM and mineral sediments, respectively), the 
estimation is sensitive to under- or overestimations of δp in highly 
organic sediments. However, as shown in the preceding section, the 
bias in the estimation of OM density will never be higher, in relative 
or proportional terms, than the bias in the estimation of the param-
eters. The published values for δp range from 0.081 to 0.098 g/cm3 
with a mean value of 0.088 g/cm3, while the published values for δm 
range from 1.575 to 1.990 g/cm3 with a mean value of 1.745 g/cm3 
(2–5). Thus, taking some conservatively low estimates of the self-
packing densities of pure peat and pure mineral sediments, say, of 
0.08 g/cm3 for δp and 1.6 g/cm3 for δm, to plug into the ideal-mixing 
model equation will yield very precise and conservative estimations 
of OM and/or carbon stored in the sediment.

The dilemma in choosing between the two-variate product esti-
mation of OM density against the single-variate prediction using the 
ideal-mixing model highlights the difference between the statistical 
concepts of precision and accuracy. Because of error propagation, 
the product estimation is very imprecise, but because of the need for 
two external parameters, the ideal-mixing model prediction can be 
biased if the parameters are not estimated accurately. In quantitative 
terms, however, the bias of the ideal-mixing model is relatively low 
compared to the increased precision the model can achieve, and this 
bias can be managed by choosing realistic and slightly conservative 
values for the two intervening parameters: the self-packing density 
of pure peat (δp) and that of pure mineral sediments (δm).

As a conclusion, some practical recommendations can be offered 
for practitioners interested in assessing OM density in coastal wet-
lands for purposes such as quantifying blue carbon stocks, estimat-
ing atmospheric CO2 sequestration in coastal ecosystems, calculating 
emissions inventories of greenhouse gasses, and performing restora-
tion initiatives in mangroves and coastal lagoons. In previous stud-
ies with mangrove sediments (2), we have found that the conversion 
of OM fraction to carbon fraction can be approximated by dividing 
OM fraction by a factor of 2.2. This value, however, could vary in 
other wetland sediments or even in other mangroves. If OM frac-
tion, estimated through loss-on-ignition, is used to estimate carbon 
fraction, then this relationship must be verified. Overall, it seems 
clear that estimating OM or carbon density in wetland sediments 
using the ideal-mixing model is more precise (and much simpler) 
than the traditionally used product estimate, especially in undis-
turbed sediments. In disturbed or heavily trampled sediments, it is 
advisable to take first a few samples measuring both OM fraction 
and bulk density, to fit the ideal-mixing model to the two variables 
and, using this preliminary data cluster, then estimate the self-
packing density of pure peat (δp) and pure mineral sediments (δm), 
as well as analyzing the statistical fit of the model under these condi-
tions. Using either the OM fraction or carbon fraction as a single 
and precise estimator of carbon density in coastal sediments can 
yield precise results; however, incorporating more paired OM frac-
tion and bulk density sample points into published data repositories 
will certainly increase the ability of the scientific community to un-
derstand the dynamics of carbon and substrate density properties in 
mangrove sediments. Last, it is important to note again that the 
ideal-mixing model opens the possibility of revisiting sediment data 

repositories for different regions of the world, even if they lack bulk 
density estimates. This may allow the incorporation of large amounts 
of data into our current knowledge of carbon stocks in coastal wet-
lands, a group of ecosystems of immense importance in the global 
balance of atmospheric greenhouse gasses.

MATERIALS AND METHODS
Analytical calculation of error propagation
Cramér’s theorem (10) states that, given a function F used to calcu-
late a result variable w from two predictor variables x and y, so that 
w = F(x, y), then the variance of w can be calculated from the partial 
derivatives of F with respect to x and y multiplied by the standard 
error of x and y, so that

Following Cramér’s derivation, the derivatives with respect to 
their predictor variables (o and b) were calculated for each of the 
three models used to estimate OM density in wetland sediments. 
These derivatives were then plugged into Cramér’s equation to cal-
culate how the variances of the predictor variables propagated onto 
the variance of OM density ( ÔD).

Numerical simulation of error propagation
The theoretical derivations on the propagation of errors were test-
ed numerically using a Monte Carlo simulation approach. A nu-
merical database for 21 simulated cores was constructed, each core 
coming from a simulated “site” with decreasing amounts of OM 
fraction at 5% intervals from 1 to 100% peat (100, 95, 90, … 15, 
10, 5, and 1%), to cover all the range of possible OM fractions 
observed in wetland sediments. Using the ideal-mixing model, 
the theoretical bulk density for each level of OM fraction was 
calculated. Within each core, 20 simulated resamples (or repeat-
ed samples) were taken assuming that, even if sampling was per-
fect, each sample could differ slightly from the rest because of 
heterogeneity in the sediment. Thus, random variation, or “white 
noise,” was added to the values of OM fraction and bulk density 
in the simulated cores, assuming a coefficient of variation (i.e., 
SD relative to the mean) of 0.1, or 10%, within each core. To pre-
vent negative values in the randomization, a Gamma distribution 
was used, which will behave as a Normal distribution when the 
mean is high, but will acquire an asymmetrical shape when the 
mean is low, being bound only to the realm of positive real num-
bers. Thus, a vector of OM fraction and a vector of bulk densities 
were constructed, each of length 420 (21 levels of OM × 20 repeat 
samples within each vector). These vectors were considered the 
statistical population data, containing the “true” data.

The two vectors were then sampled by adding random varia-
tion to each repeated measure. As before, a Gamma distribution 
was used to maintain the randomized statistics within the realm 
of positive numbers, assuming, in this case, a coefficient of vari-
ation of 0.2 (20%) induced on both measures by sampling error. 
The result was a sample vector of OM fraction and a sample 
vector of bulk densities, each also of length 420, but departing 
from the true data as a result of the generated random sampling 
errors. These latter vectors were considered the statistical sam-
ple data.
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The OM density on each core was then calculated using three 
different approaches: (i) The first method was the traditionally used 
estimation of OM density ( ̂OD ) using the simple cross-product of 
the sample’s OM fraction × its gravimetric bulk density ( ̂OD = b o ). 
(ii) For the second method, ÔD was calculated using only the 
sample’s OM fraction and estimating bulk density through the ideal-
mixing model as in Eq. 5. (iii) For the last method, ÔD was calcu-
lated using only the sample’s bulk density and estimating the OM 
fraction through the inverse ideal-mixing model, as in Eq. 6. In all 
simulations, the ideal-mixing model was fitted assuming that the 
true values of the parameters (δp = 0.085 and δm = 1.65 g/cm3) had 
been estimated accurately, i.e., the same parameter values used to 
generate the sampling data. Last, by repeating the simulations with 
different values of δp and δm, the sensitivity of the ideal-mixing 
model estimation to the errors in the estimation of the two param-
eters was evaluated.

Supplementary Materials
This PDF file includes:
Text S1 to S4
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