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Investigating A baryon production in p-Pb collisions in jets and the underlying
event using angular correlations

S. Acharya et al.*
(ALICE Collaboration)

® (Received 5 August 2024; accepted 9 December 2024; published 14 January 2025)

First measurements of hadron-A (h-A) azimuthal angular correlations in p-Pb collisions at \/syy = 5.02 TeV
using the ALICE detector at the Large Hadron Collider are presented. These correlations are used to separate
the production of associated A baryons into three different kinematic regions, namely those produced in
the direction of the trigger particle (near side), those produced in the opposite direction (away side), and those
whose production is uncorrelated with the jet axis (underlying event). The per-trigger associated A yields in these
regions are extracted, along with the near- and away-side azimuthal peak widths, and the results are studied
as a function of associated particle pr and event multiplicity. Comparisons with the DPMJET event generator
and previous measurements of the ¢(1020) meson are also made. The final results indicate that strangeness
production in the highest multiplicity p-Pb collisions is enhanced relative to low multiplicity collisions in both
the jetlike regions and the underlying event. The production of A relative to charged hadrons is also enhanced
in the underlying event when compared to the jetlike regions. Additionally, the results hint that strange quark
production in the away-side of the jet is modified by soft interactions with the underlying event.

DOI: 10.1103/PhysRevC.111.015201

I. INTRODUCTION

The production of strange hadrons is expected to be
enhanced in heavy-ion collisions when compared to mini-
mum bias proton-proton (pp) collisions due to the formation
of a deconfined, partonic phase of matter known as the
quark-gluon plasma (QGP) [1]. This enhancement is caused
by the yield equilibration of strange quarks in the QGP,
made possible by gluon fusion (gg — s5) in the thermalized
medium [2,3]. Strangeness enhancement in heavy-ion colli-
sions with respect to minimum bias pp collisions has been
experimentally verified via the measurement of the relative
strange-hadron to pion yields using multiple detectors at dif-
ferent energies, starting with the Super Proton Synchrotron
(SPS) [4] in the early 1990s, followed by the Relativistic
Heavy Ion Collider (RHIC) [5] in the 2000s, and more re-
cently with the Large Hadron Collider (LHC) in the 2010s
[6]. With the exception of the most peripheral collisions, these
measurements do not show a large dependence on either the
collision centrality or the collision energy [7]. However,
the peripheral measurements hint at a smooth increase in the
degree of strangeness equilibration as a function of collision
centrality, which is not well understood. Theoretical models
which rely heavily on a grand-canonical description of par-
ticle production are able to reproduce the enhancement of
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strange hadron to pion yields for only the most central heavy-
ion collisions [8,9]. To describe the lower-multiplicity Pb-Pb
results, further assumptions (e.g., canonical strangeness sup-
pression [10] or core-corona superposition [11]) are required.
Furthermore, measurements of strange hadron production
in smaller collision systems from the ALICE Collaboration
(pp, p-Pb) and the E910 experiment (p-Au) exhibit a sim-
ilar enhancement relative to low-multiplicity pp collisions
[7,12,13]. In fact, the ratio of strange hadrons to pions
observed in high multiplicity pp and p-Pb collisions is com-
parable with that observed in Pb-Pb collisions, with a smooth
transition occurring across the different collision systems. Ad-
ditionally, the relative amount of enhancement is observed to
scale with the strangeness content of the hadron [6]. These
observations challenge the initial expectation that QGP forma-
tion only occurs in heavy-ion collisions, and suggests that the
underlying physics responsible for strangeness enhancement
is not exclusive to large systems. These measurements in
small systems are typically interpreted phenomenologically
as the result of both initial-state collective dynamics in the
form of color-glass condensate [14] and final-state collective
dynamics in the form of hydrodynamic flow [15]. The latest
Monte Carlo (MC) pp event generators, such as PYTHIAS
[16,17] and its Angantyr tune [18], are able to describe the
strangeness enhancement data from pp collisions using other
phenomenological approaches, such as color reconnection
[19] and string shoving [20]. However, to further understand
the underlying physics responsible for this enhancement, it
is necessary to study the production of strange hadrons as a
function of multiplicity in smaller systems in more detail.
Two-particle angular correlation functions [21,22] have
been used in the past to measure strange particle produc-
tion both in and out of jets [23-25]. By correlating high
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transverse momentum (pr) trigger hadrons (as proxies for the
jet axes) with lower-pr associated particles in both azimuthal
angle (Ag) and pseudorapidity (An), the resulting distribu-
tions exhibit clear peaks about A¢p = 0 and Ag = 7. These
peaks are the result of jet fragmentation, and are generally
referred to as the near-side and away-side peaks, respectively.
The near-side peak region is often connected to associated
particle production within a jet with little to no modifica-
tion through scattering with out-of-jet particles, as selecting
for high-pr trigger hadrons biases the collision event sample
towards those with hard-scattering processes that occur near
the surface of the collision region [26]. The away-side region
corresponds to particle production within the recoiling jet that
has potentially been modified by interactions with the softer
particles produced out of jet. These softer out-of-jet particles
are referred to as the “underlying event” (UE), and they are
mostly uncorrelated in (Ag, An). See Sec. III B for the ex-
perimental definition of the UE utilized in this analysis. The
production of these UE particles is dominated by multiparton
interactions (MPIs) at midrapidity [27,28], and is mostly de-
scribed by soft quantum chromodynamics (QCD) processes.
However, long-range correlations between particle pairs in
Ag, which are usually associated with the development of
anisotropic flow, are also observed in the UE region at high
multiplicities [29], pointing towards a potential link between
the UE and the collective expansion of the medium.

Using these structural features of the correlation distribu-
tion, associated particle production can be partitioned into
hard-scattering processes (i.e., near- and away-side regions)
and softer processes (i.e., UE region), which can help in
exploring the underlying mechanisms responsible for the en-
hancement of strange hadrons as a function of charged particle
multiplicity. Moreover, the correlation distributions can be
used to extract the azimuthal widths of the near- and away-
side jet peaks [30,31], which aid in the study of strange quark
production in the context of jet fragmentation.

In this paper, the production of strange quarks in small
collision systems is explored by measuring two-particle s-A
azimuthal correlation functions in p-Pb collisions at a center-
of-mass energy per nucleon pair ./syy = 5.02 TeV. The A
baryon was chosen for this analysis as it exhibits a significant
enhancement in the A /7 ratio as a function of multiplicity in
p-Pb collisions, while still being abundantly produced such
that statistically significant differential correlation measure-
ments can be studied. Furthermore, the A baryon (m = 1.116
GeV/c?) has a mass similar to that of the ¢(1020) meson
(m =1.020 GeV/cz) [32], making it a good candidate to
explore the differences between open (A) and hidden (¢)
strangeness production. The choice of collision system was
made primarily because the previously measured enhance-
ment is maximal in the multiplicity range that is spanned
nearly entirely by p-Pb (and pp) collisions. Additionally,
the p-Pb system is of interest because it serves as a middle
ground between the hard-process-dominated pp collisions and
the softer, collective-dynamics-dominated Pb-Pb collisions.
This allows for the study of the interplay between hard and
soft processes in the production of strange hadrons, which is
vital to the understanding of the physics behind strangeness
enhancement.

The h-A correlation functions are used to measure A
production in and out of jets by extracting the per-trigger
yields in each kinematic region as a function of p} and
event multiplicity. These results are then compared to similar
measurements of inclusive charged hadrons (4-h angular cor-
relations), allowing for the study of strangeness enhancement
via the per-trigger yield ratio A/h (=A/m) as a function
of multiplicity in the context of jet and UE production. To
further investigate the fundamental mechanisms responsible
for strangeness production, the near- and away-side jet widths
are also extracted from the s-A correlation distributions and
compared to those obtained from the dihadron sample. Ad-
ditionally, the differences between open (|S| # 0, where |S]|
is the net strangeness) and hidden (|S| = 0) strangeness pro-
duction are explored using previously published A-¢(1020)
angular correlation measurements in p-Pb collisions [23].
These measurements are additionally compared with the DP-
MIET (v3.0-5) Monte Carlo event generator [33], which uses
the dual parton model (DPM) [34] to describe interactions
between nuclei, and is capable of simulating pp, p-Pb, and
Pb-Pb collisions.

The article is organized in the following way. Section II
outlines the experimental setup, the data sample, and the data
selection criteria. Section III describes the analysis procedure,
with Sec. IV detailing the systematic uncertainties associated
with this procedure. Finally, Sec. V presents the results of
the analysis, and Sec. VI summarizes the conclusions of this
study.

II. EXPERIMENTAL SETUP

The data used for the measurements presented in this paper
were collected with the ALICE detector during the LHC Run
2 data taking campaign (2015-2018). The ALICE detector
is composed of a forward muon spectrometer and a central
barrel system located within a 0.5 T solenoidal magnetic
field oriented along the beam axis. More information about
the ALICE detector and its performance can be found in
[35-37]. The measurements presented in this paper mostly
rely on data reconstructed with the central barrel detectors,
namely the inner tracking system (ITS), the time projection
chamber (TPC), and the time of flight (TOF) detector. The
ITS [38] is the innermost detector of ALICE and, during Run
2, was composed of six cylindrical layers of silicon detectors.
The ITS was used to reconstruct both primary and secondary
vertices, as well as for the tracking of charged particles. The
TPC [39] is a gas-filled chamber capable of reconstructing
charged particle tracks in three dimensions. Additionally, it
allows for charged particle identification via specific energy
loss measurements (dE/dx) [40]. The TOF [41] detector is
a large array of multigap resistive plate chambers (MRPCs)
capable of measuring the time of flight of charged particles
with a timing resolution of around 60 ps. The TOF detector is
used in conjunction with the TPC to improve charged particle
identification via time-of-flight measurements.

Finally, the VO, a detector composed of two arrays of
scintillator counters (VOA, VOC) located on either side of
the nominal interaction point in the pseudorapidity ranges
2.8 <n <5.1(VOA)and —-3.7 < n < —1.7 (VOC) [42], was
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used for both determining the event activity (multiplicity) of
the collisions and providing the trigger for the data acquisition
system.

A. Event selection

The dataset analyzed in this paper consists of p-Pb col-
lisions at /syy = 5.02 TeV, recorded in 2016. The data
were collected using a minimum bias trigger, which requires a
coincident signal in both the VOA and VOC detectors. Further-
more, each event in this analysis is required to have a primary
vertex (PV) within 10 cm of the nominal collision point
along the beam axis to ensure uniform central barrel detector
performance. Moreover, each event is required to contain at
least three reconstructed charged hadrons within midrapidity
(In] < 0.8) with a pr greater than 0.15 GeV/c to fit the min-
imum criteria for a correlation measurement. After the event
selection, the total number of analyzed events is ~4 X 108,
corresponding to an integrated luminosity of ~2 nb~! [43].

To measure the correlation distribution dependence on
charged particle multiplicity, the selected events are further
categorized into three multiplicity classes: 0-20%, 20-50%,
and 50-80%. These classes are determined by event activity
within the VOA detector (Pb facing), with 0-20% correspond-
ing to the 20% of events with the highest VOA signal. These
three classes were chosen to evenly distribute the A signal
in each class to reduce statistical fluctuations in the corre-
sponding correlation distributions. For events generated using
DPMIJET, the multiplicity classes are determined by the number
of charged primary particles produced within the n acceptance
of the VOA detector.

B. Track selection and A reconstruction

To measure the #-A and h-h correlation functions required
for separating jet and UE associated production, three dif-
ferent types of particles are needed: high-momentum trigger
particles which serve as a proxy for the jet axis, associated
A’s, and associated charged hadrons. All measured pseudora-
pidities (1) are referred to the laboratory frame.

The trigger hadrons are reconstructed in the pseudorapidity
range |n| < 0.8 using information from both the ITS and
the TPC. To ensure that the trigger hadron sample contains
high-quality tracks, the number of crossed pad rows in the
TPC is required to be >70 (out of a maximum of 159) and
the ratio of the number of crossed rows to the number of
findable clusters—possible assignable clusters to a track—
must be >0.8. In addition, tracks that share more than 40% of
their clusters with other tracks are rejected. In order to select
primary particles, the distance of closest approach (DCA) to
the PV is required to be <2.4 cm in the transverse plane
and <3.2 cm along the beam axis. Finally, the goodness of
fit (x?) per cluster must be smaller than 36 for the track fit
in the ITS and 4 for the fit in the TPC. All selected trigger
hadrons are required to have transverse momentum 4.0 < pr
<8.0 GeV/c to ensure that the trigger sample is dominated
by jet fragmentation products. The upper bound of 8.0 GeV/c
was chosen such that the trigger reconstruction efficiency can
be computed using a simulated MC sample (see Sec. III).
In this momentum range, the contamination from secondary

TABLE I. Topological selection criteria applied to A candidates.

Selection criterion Value
[n| <0.8
Decay radius (cm) >0.2
DCA,, of pion track to PV (cm) >0.06
DCA,, of proton track to PV (cm) >0.06

DCA,, between daughter tracks (no) <l1.5
c0S(Bpointing) >0.9
Invariant mass (GeV/cz) 1.102 < My, < 1.130

particles is less than 1%. The numbers of trigger hadrons
in the 0-20%, 20-50%, and 50-80% multiplicity classes are
5.3 x 10%,4.3 x 10%, and 1.8 x 10°, respectively. Of the total
selected events, only around 10% contain a trigger hadron,
with <1% of events containing more than one trigger hadron.
All trigger hadrons within an event are used to calculate the
correlation functions.

The associated hadrons in the dihadron correlation are also
reconstructed in the pseudorapidity range |n| < 0.8 using se-
lection criteria nearly identical to those of the trigger hadrons
with two differences. The first is a much stricter, pr-dependent
DCA selection criterion along the transverse plane of the
form DCA,, < [0.0105 + 0.0350 x p;"'] cm, where pr is
measured in GeV/c. The second is the requirement of a hit
in one of the two innermost layers of the ITS. Both of these
requirements are imposed to ensure the selection of primary
hadrons. All associated hadrons were selected in the momen-
tum ranges 1.5 < pr <2.5 GeV/c (lower pt) and 2.5 < pr
<4.0 GeV/c (higher pr).

The associated A baryons (A + A) are reconstructed in the
pseudorapidity range |n| < 0.8 via the decay channel A —
p+ m~, which has a branching ratio (BR) of 64.1% [32].
Following techniques similar to those presented in Refs. [44]
and [45], the A baryons are reconstructed by exploiting their
characteristic V-shaped weak decay topology. The daughter
proton and pion tracks are identified via specific energy loss in
the TPC and their timing information from the TOF detector.
The daughter protons (pions) are required to fall within £2¢
(£30) of the expected mean value for the TPC and TOF
signal. More details about this procedure can be found in
Refs. [12,46]. If there is no signal in the TOF detector from
the daughter track due to the detector’s smaller acceptance,
only the TPC signal is used for particle identification. The
A daughter track quality requirements are similar to those of
the trigger hadron, but the DCA to the PV is required to be
>0.06 cm in the transverse plane for both daughter particles.
The pairs of identified proton and pion tracks are combined
into A candidates, which are then selected by requiring the
invariant mass of the pair to be within 14 MeV/c? of the
known A mass of 1.116 GeV/c? [32]. To reduce the combi-
natorial background, further requirements on the topological
variables associated with the A decay are applied. These re-
quirements are summarized in Table I. The decay radius is
the distance between the secondary vertex (the point where
the A decays) and the PV. The DCA,, between the daughter
tracks is measured in terms of its resolution o. The pointing
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Invariant mass distributions of A candidates in events with a trigger hadron for the lower (1.5 < pr <2.5 GeV/c, left) and higher

(2.5 < pr <4.0 GeV/c, right) associated momentum ranges. A double-sided crystal ball + linear background function is used to fit the data.
The signal and side-band (SB) regions are highlighted in green and orange, respectively. The SB region is used to subtract the combinatorial

background from the correlation distributions.

angle Opoining 18 the angle between the vector defined by the
PV and the secondary vertex, and the momentum vector of
the A candidate. The requirements presented in Table I are
less strict than in previous analyses [24,47] and are chosen to
maximize the A signal while maintaining a low (<10%) back-
ground level. Similarly to the associated charged hadrons, the
A baryons are selected within the momentum intervals 1.5 <
pr <2.5GeV/cand 2.5 < pr <4.0 GeV/c. The multiplicity-
integrated invariant mass distributions of A candidates in
events with a trigger hadron for the lower and higher asso-
ciated momentum ranges are shown in Fig. 1. To constrain the
combinatorial background, the distributions are fitted with the
sum of a double-sided crystal ball function [48] and a linear
background function. The double-sided crystal ball function
is chosen to account for the tails in the invariant mass distri-
bution, which exhibit non-Gaussian behavior. The extracted
A signal from these distributions is around 3.2 x 10° in the
lower-pr range and 1.3 x 10 in the higher-pr range. To max-
imize the available A signal, the A-baryon sample includes
those that have decayed from the &~ and E° baryons (and
their antiparticles), which contributes approximately 15% to
the total A sample in the given momentum ranges [49].
The sample also includes A baryons which decayed from
Q~ baryons, which constitute less than 1% of the total A
sample and are therefore negligible relative to the systematic
uncertainties presented in Sec. IV. The A-baryon sample from
DPMIET also contains both primary and secondary A baryons,
with proportions similar to the data.

III. ANALYSIS DETAILS
A. Angular correlation functions

The observables used in this analysis are derived from two-
particle angular correlation functions, which can be defined
in multiple ways as discussed in Ref. [50]. The focus of this
analysis is the associated particle production in and out of jets,

quantified by the per-trigger normalized associated particle
yield,

1 B(O. O)S(A(p’ An)7
B(Ag, An)
ey

where the single-particle efficiency correction factors 1/&gig
and 1/e,50c are applied for each trigger-associated pair. The
angular separations A¢ and An are measured between a
high-momentum charged hadron trigger (), which serves as
a proxy for the jet axis, and a lower momentum associated
hadron (A, h).

The quantity S(Ag, An) is the raw distribution of trigger-
associated pairs,

Cyien(Agp, An) =

corr
‘]Vtrig Etrig X Eassoc

d2N pair

S(Ag, Ap) = —par
(Ap A = GX o dan

2
where Ny, is the number of trigger-associated pairs produced
within the same event with angular separation (Ag, An). Both
Euig and E,450c are obtained using a MC sample generated with
DPMIET (v3.0.5) [33] and propagated through the ALICE de-
tector using GEANT 3 [51]. The trigger and associated particle
efficiency factors are calculated separately as a function of pr,
n, and event multiplicity by comparing the reconstructed and
generated particle distributions. The weight 1/(euig X €assoc)
is applied for each pair in the raw distribution as it is being
filled. The trigger and associated charged hadron efficiencies
are around 80% for all pt ranges, and the A efficiency varies
from 35% at the lowest pr range to 50% at the highest. A plot
of S(Ag, An) after the single-particle efficiency corrections
for h- A pairs can be seen in the left panel of Fig. 2. The trigger
efficiency weight 1/&y;, is also applied to the single-particle
trigger hadron distribution in data to obtain N;lf’g” , which is the
total number of triggers in the event sample.

In Eq. (1), B(Ag, An) is the distribution generated by
combining trigger and associated particles that are produced
in separate events, often called the mixed-event distribution
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FIG. 2. Examples of the h-A single-particle efficiency-corrected same-event distribution S(A¢, An) (left), mixed-event distribution
B(Ag@, An) (middle), and fully corrected correlation function Cyiela(Ag, An) (right), taken in the 20-50% multiplicity class.

[52-54]. This distribution is also corrected for single-particle
efficiency in the same manner as S(Ag, An). The factor
B(0,0)/B(A¢, An) is used to correct for the finite accep-
tance along n as both the trigger and associated particles
are required to be within |n| < 0.8. As the single particle n
distributions are uniform in the selected range, the mixed-
event distribution has a characteristic triangular shape along
An, which is purely due to detector geometry as no physi-
cal correlations are present. The quantity B(A¢, An)/B(0, 0)
represents the probability that a particle pair with angular
separation (Ag, An) is found given that the trigger particle
is within |n| < 0.8, and is used to correct for pair acceptance
and pair efficiency. A plot of the mixed-event distribution can
be seen in the middle panel of Fig. 2.

While Eq. (1) is applicable for both the dihadron and s-A
correlation functions, the s-A case requires additional correc-
tions that are not present in the dihadron case.

First, the topological selection criteria for the A reconstruc-
tion result in a small amount of combinatorial background. To
remove it from the /#-A correlation distribution, an additional
distribution is made from the same selection criteria, but with
the A mass region shifted to the right such that 1.135 <
My, < 1.150 GeV/c? as shown by the orange highlighted
“side-band” region in Fig. 1. The correlation distribution in
the side-band region is divided by the integral of the invariant
mass distribution within the same region. The resulting corre-
lation distribution is then scaled by the integral of the back-
ground in the signal region, which is obtained from the linear
background fit shown in Fig. 1. Finally, the side-band correla-
tion distribution is subtracted from the nominal distribution.

After this subtraction, the h-A correlation distribution is
corrected for the branching ratio of the A decay by scaling
the distribution by 1/BR, where BR is the branching ratio. To
correct for the A baryons that are excluded by the nominal
mass window, the -A distribution is scaled by 1/ fg;,, where
fsig 1s the fraction Agignai/Aotar. In this fraction, Agigna is the
number of A candidates within the nominal mass window, and
Aorar 18 the total number of A candidates, both obtained via
integrating the invariant mass distribution after removing the
combinatorial background. As the invariant mass window for
the signal region encompasses nearly the entire A peak, fig is
very close to unity (~0.98).

Finally, the correlation distribution is corrected for h-A
pairs that are lost in the Kalman filtering procedure

during track reconstruction. Indeed, higher-quality tracks
(those reconstructed with more clusters in the TPC and
ITS) are favored over lower-quality ones whenever ambiguity
arises from clusters being shared between the two tracks. This
results in a deficit of reconstructed /- A pairs at small ApAn
due to the merging of the tracks of the trigger particle and
of the proton produced in the A decay. This effect, already
observed in previous analyses [55,56], is more substantial in
this case due to (1) the large decay length of the A, resulting
in less detector information to reconstruct the daughter tracks,
and (2) the asymmetry in the A decay products (% ~7T)
causing the daughter proton to occupy a similar phaseﬂ space
as the A (i.e., they share similar ¢ and 5). Thus, if a trigger
particle and a A decay proton are reconstructed as a single
track, a h-A pair will be lost at small AgpAn. The magnitude
of this effect is pr dependent and varies from up to 10%
in the 1.5 < pyr < 2.5 GeV/c range and up to 20% in the
2.5 < pr < 4.0 GeV/c range. Following a procedure similar
to that in Ref. [56], this effect is corrected for via scaling the
correlation distribution by

Creso(Ag, AT)
Cgen(A(pv AT]) ,

where C22%) is the efficiency-corrected correlation distribution
calculated in MC using reconstructed trigger hadrons and A
candidates with the same selection criteria as in data. Addi-
tionally, the reconstructed A candidate is required to have a
corresponding generated A, which is used for all calculations
involving kinematic quantities. This removes any extraneous
effects due to combinatorial background or detector resolu-
tion. In Eq. (3), Ceen is the correlation distribution calculated
in MC using generated trigger hadrons and A candidates.
The template vy, (Ag, An) is applied for each associated pr
interval in this analysis. This template has been verified to be
independent of event multiplicity and choice of MC generator
for this analysis. This effect has also been observed in the
dihadron case; however, the effect is found to have a much
smaller influence on the results (<1%) and is thus neglected
in this analysis.

A plot of the fully corrected distribution Cy;eia(Ag, An)
for h-A pairs can be seen in the right panel of Fig. 2. The
peaks observed around Agp =0 and A¢ = 7 in the fully
corrected correlation function define the aforementioned near-
and away-side regions, respectively, which lie on top of the

Upair(A(p’ An) = 3
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jet-independent UE. To minimize the statistical fluctuations
in the h-A correlation functions, all two-dimensional correla-
tion functions in this analysis are projected onto Ag within
the range —1.2 < An < 1.2 to obtain the one-dimensional

azimuthal distribution

d, pair

dAg °

B. Underlying event fit

To extract the near- and away-side widths and the per-
trigger yields in each kinematic region from the azimuthal
correlation distributions, the underlying event contribution
must be quantified. Previous measurements from ALICE in-
dicate the presence of a nonzero elliptic flow (v,) contribution
from both the trigger and associated A (h) particles [29],
resulting in an underlying event contribution that is not flat
along Ag. To account for this, the underlying event fitting
function

U(Ap) = A(1 + 205203 cos(2A¢)) 4)

is used. This function is fit to the A distribution in the regions
(=%, =3)U (%, Z)U (4=, ), which are assumed to have
little to no jet contribution. The values of vy and v3**° are
taken for each associated pr range as a pp-weighted average
of the ALICE measurements (either charged hadron or A from
[57]) and are fixed during the fitting procedure, while the
pedestal A is allowed to vary. Cross-checks were performed at
|An| > 1.2 to verify that the weighted v, values are consistent
with the data from this analysis. For these cross-checks, the
resulting A¢ distributions in this Azn range were fit using
Eq. (4) with the v, values fixed to the weighted ones, and the
fits were found to be consistent with the data.

C. Yield and width extraction

After obtaining the underlying event fit U (A¢), the associ-
ated particle yields in the jetlike and UE regions are extracted

using
_ /2 deair .
Yoear = U(Ap) |dAg,
-2 dA(p
3n/2 dN. air
Vasay = / ( b _ U(Acp))dm 5)
72 dAg
and
3/2
Yor = f U(Ag)dAp, ©)
—/2

where the subscripts near, away and UE refer to the near-side,
away-side, and underlying event regions, respectively.
In order to quantify the widths of the near- and away-side
peak regions, the Ag distributions are fit using the function
e’(near coS(A@—finear) e’(away COS(A‘p_N-away)

F(A(P) = U(A(p) + ZTCIO(Knear) + 27TIO(Kaway) ’
@)

which is composed of two von Mises functions describing
the near- and away-side peaks. Von Mises functions [58] are
the circular analogs of Gaussian distributions and provide the
best fit to the 2 -periodic Ag distributions for this analysis.

The quantities kyear and kayay are a measure of the collimation
of the near- and away-side peaks, respectively, and Iy is the
zeroth-order modified Bessel function. The underlying event
fit U(Ag) is fixed to the function obtained from the fits
described in the previous section. Due to symmetry consid-
erations, the means finear and fLaway are also fixed to 0 and 7,
respectively. The widths of the peaks are then quantified via

I W
Onearaway = \/ —21n T Genearaway ) @)

Iy (Knear,away ) '

where I and I, are the zeroth- and first-order modified Bessel
functions, respectively.

IV. SYSTEMATIC UNCERTAINTIES

The primary observables in this analysis (A¢ distributions,
yields in each region, near- and away-side widths) could all be
affected by systematic uncertainties that arise from the various
steps in the analysis procedure. These include the trigger and
associated hadron track selection, particle identification for
the A daughter tracks, the topological selections applied to the
A candidates, the choice of the signal and side-band invariant
mass windows for the A-A distributions, the estimation of
the UE, and the fitting procedure used to extract the widths.
The uncertainties corresponding to each of these sources are
estimated separately by varying the corresponding selection
criteria, or by using an alternative to the nominal approach in
the case of the UE estimation and fitting procedure. For each
variation of a selection criterion, the effect on the extracted
yields (Ypear, Yaway, Yug) and near- and away-side widths (opear,
Oaway) 18 determined by repeating the analysis procedure with
the modified analysis configuration. To determine whether a
given variation results in a statistically significant deviation
from the nominal value, a check is performed following the
procedure discussed in Ref. [59]. If a variation results in a
deviation from the nominal value that falls below the threshold
set in this analysis at 1o (where o is computed as specified in
Ref. [59]), the variation is considered to be statistically con-
sistent with the nominal value and is thus excluded from the
systematic uncertainty calculation. Summaries of the primary
sources of systematic uncertainty for each of the observ-
ables obtained from the A-A correlation distributions in the
most central (0-20%) and least central (50-80%) multiplicity
classes are given in Tables II and III, respectively. The total
systematic uncertainty is obtained by summing the individual
contributions in quadrature. For the dihadron distributions,
only the systematic uncertainties associated with tracking, UE
estimation, and the fitting procedure are considered.

A. Selection criteria

The systematic uncertainty associated with the topological
selection criteria for A reconstruction has been studied in
great detail in previous analyses using the same dataset and
similar selection criteria [12,47]. It is found to be multiplicity
independent and varies from 3.2% in the lowest associated pr
interval to 3.0% in the highest interval. The biases in the near-
and away-side widths that may be introduced by varying the
topological selection criteria are considered by randomly and

015201-6



INVESTIGATING A BARYON PRODUCTION ...

PHYSICAL REVIEW C 111, 015201 (2025)

TABLE II. Summary of the systematic uncertainties for the #-A Ag distribution, the extracted yields in each region, and the near- and
away-side peak widths in the 0-20% multiplicity class with 2.5 < p’{ assoe < 4.0GeV/c.

Source Ag dist. Yiear Yaway Yue Onear Oaway
A topological selection 3.0% 3.0% 3.0% 3.0% 3.1% 6.1%
A daughter PID 0.8% 0.9% 0.9% 0.8% 2.2% 2.0%
A signal mass window 0.4% 0.7% 0.5% 0.4% 3.4% 0.5%
A side-band mass window 0.4% 0.4% 0.3% 0.4% 1.7% 1.0%
Material budget 0.6% 0.6% 0.6% 0.6%

UE estimation 9.1% 10.4% 1.4%

Full fit routine 3.5% 9.0%
Total 3.2% 9.7% 10.9% 3.3% 6.4% 11.1%

independently varying the value of the correlation function in
each Ag bin by £10, where o is the systematic error associ-
ated with the topological selection criteria from Refs. [12,47].
The widths are then extracted using the nominal procedure.
The resulting variation in the widths is found to be 3.1% in the
near side and 6.1% in the away side, and these values are taken
as the systematic uncertainty associated with the topological
selection criteria for both the near- and away-side widths.

The uncertainty due to the A daughter proton and pion
identification using the TPC and TOF signals is estimated by
varying the allowed deviation from the expected signal in the
TPC and TOF (see Sec. II for more details). These variations
include both a more strict requirement (1.3¢ for protons, 1.8
for pions) and a looser requirement (2.8c for protons, 4.2¢c
for pions). The variations are found to have a small effect on
the Ag distributions and per-trigger yields (0.5-2% across all
pr and multiplicity class); however, the effect on the near-
and away-side widths is found to be much larger (up to 4%
on the near side and 10.8% on the away side). Requiring a
signal for both the proton and pion tracks in the TOF detector
was also considered as a possible variation, but the resulting
effect on all observables was found to be within the Barlow
threshold (<1o) and thus is not included in the systematic
uncertainty.

Possible biases arising from the choice of invariant mass
regions (signal, side band) for the A candidates are considered
by varying these regions from their nominal values. The signal
region (green highlighted area in Fig. 1) is varied from its de-
fault value to the more narrow regions 1.108 < My, < 1.124
GeV/c? and 1.112 < M, < 1.120 GeV /c?. These variations

result in deviations of 0.4—1.1% from the nominal A¢ distri-
butions and per-trigger yields. The resulting deviations from
the default values of the extracted near- and away-side widths
are larger, ranging from 1% to 3.9%. Wider invariant mass
signal regions were also considered, but as the original region
captures nearly all of the A signal these variations were found
to have a negligible effect on all observables. The side-band
region (orange highlighted area in Fig. 1) is varied in three
ways. The first is by narrowing the region to 1.135 < M,,; <
1.145 GeV/c?, the second by shifting the region to 1.140 <
My, < 1.145 GeV/c2 while maintaining its nominal width,
and the third by shifting the region to 1.086 < M,; < 1.098
GeV/cz, which lies on the left side of the A peak in the
invariant mass distribution. The resulting deviations from the
nominal Ag distributions and per-trigger yields are found to
be 0.3-1.7%, and the deviations from the original extracted
widths are found to be 1.0-5.4% for the near side and up to
10% for the away side.

The systematic uncertainty for the material budget has also
been studied in detail in previous ALICE analyses of the same
dataset and nominal requirements [12]. In the case of the A,
this value is found to be multiplicity independent and amounts
to 0.6% in the lowest pr interval and to 1.1% in the highest
interval. These values are taken as the systematic uncertainty
for both the h-A Ag distributions and the per-trigger yields.
Furthermore, the systematic uncertainty for the material bud-
get on all observables obtained from the dihadron correlations
is taken to be zero, as the material budget uncertainties associ-
ated with charged hadrons across the entire pr range reported
in [12] are found to be negligible.

TABLE III. Summary of the systematic uncertainties for the #-A Ag distribution, the extracted yields in each region, and the near- and
away-side peak widths in the 50-80% multiplicity class with 2.5 < p-’ﬁ assoc < 4.0GeV/c.

Source Ag dist. Yoear Yaway Yue Onear Oaway
A topological selection 3.0% 3.0% 3.0% 3.0% 3.1% 6.1%
A daughter PID 2.0% 2.1% 2.1% 1.7% 1.4% 10.8%
A signal mass window 1.1% 1.3% 1.0% 0.7% 2.5% 3.9%
A side-band mass window 1.6% 1.7% 1.7% 1.4% 0.6% 5.7%
Material budget 1.1% 1.1% 1.1% 1.1%

UE estimation 2.9% 4.9% 0.7%

Full fit routine 1.5% 5.4%
Total 4.3% 5.2% 6.5% 3.9% 4.6% 15.2%
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B. Underlying event estimation

To estimate the systematic uncertainty on the yields as-
sociated with the determination of the underlying event
contribution, the following UE variations are considered.
First, the nominal UE fit function U (Ag) is fit in the more
restricted region (=%, —3Z) U (3£, 2) U (4Z, 3L) to further
minimize the contribution from the jet components. Second,
to test the effects of a flat UE assumption, constant average
functions U; and U, are used instead of U (Ag), with the U;
average taken in the nominal region (=%, —Z)U (%, Z)U
(“T”, 37”) and the U, average taken in the more restricted
region(—7, —%”) U (3?”, 5?”) U (”T”, 37”). Finally, as negative
contributions to the near- and away-side yields are unphysical,
the function

ANpair

Uhp) if g —U(dg) > 0,
UPUS(A(»D) = {% othel‘(\pNise ®
¢

is used, where U(Ag) is the UE function obtained by the
nominal fitting procedure. The resulting uncertainties in the
extracted yields due to these variations are found to vary
between 4% and 10% for the near side, 3—10% for the away
side, and 1-2% for the UE. Extracting the yields by fitting
the entire Ag distribution with both a von Mises—based and a
Gaussian-based function was also considered, but the results
were found to be statistically consistent with the nominal
procedure and are thus excluded from the final systematic
uncertainty.

C. Full fitting function

Obtaining the widths of the near- and away-side peaks from
the Ag distributions requires a full fit of the distribution with
a fit function F(Ag) that well describes both the near- and
away-side peak regions and the UE. The nominal choice of
the components of F(Ag) [Eq. (7)] was made to maximize
the fit stability across all pair combinations, pr ranges, and
multiplicity classes. However, several other fit functions for
extracting the widths are considered in this analysis. The first
alternative parametrization replaces the von Mises compo-
nents of F'(Ag) with Gaussian functions, which is the more
standard procedure for extracting the widths of the jetlike
regions. Two additional Gaussian functions are also added
(with means fixed at w — 27 and 0 + 27) to better reflect
the periodic nature of the data. The extracted widths are then
obtained directly from the fitted Gaussian functions via their
o parameters. The widths obtained from this variation are
found to be systematically lower than those obtained from
the nominal procedure by 1-3% (near side) and 4-7% (away
side) across all pair combinations, pr ranges, and multiplicity
classes. The other two variations of F(A¢) use the constant
average functions U; and U, from above in lieu of the nominal
U (Ag) term (while maintaining the von Mises components).
The widths extracted using U are again found to be systemat-
ically lower than from the nominal technique, with deviations
of 1-2% (near side) and 4-10% (away side) across all pair
combinations, pr ranges, and multiplicity classes. Using U,
results in less deviation from the nominal technique (1-2%
for the near side, 3—6% for the away side).

TABLE IV. The values of (dN,/dn) <05 and the corresponding
total uncertainties for each multiplicity class in minimum bias (MB)
events and events with a trigger hadron with py > 4 GeV/c.

Mult. class (AN /dm)MB, (dNep /) om0
0-20% 35.6 £ 0.9 424£09
20-50% 215405 27.6+0.5
50-80% 12.040.3 17.7 + 0.4

V. RESULTS

A. Per-trigger A¢ distributions

The final per-trigger A-A and h-h Ag distributions are
obtained from the 0-20%, 20-50%, and 50-80% VOA multi-
plicity classes in the trigger momentum range 4.0 < p}{mg <

h,A

8.0 GeV/c and associated momentum ranges 1.5 < p <

T, assoc
2.5 and 2.5 < pA < 4.0 GeV/c. These associated pr
ranges are referred to as the “lower” and “higher” range,
respectively. The h-A and h-h correlations and their corre-
sponding fits in the lower and higher associated pr ranges
can be seen in Figs. 3 and 4, respectively. The y-axis scale
of the plots is tuned to allow a direct comparison of the cor-
relations in the different centrality classes and to emphasize
the relative contribution to each distribution from the UE. The
UE fit function is calculated using the procedure described in
Sec. III B.

In the lower associated momentum range, the UE pedestals
for both the #-A and h-h distributions are found to increase by
around a factor of 3 from the lowest to the highest multiplicity
class (0.05 to 0.17 in the h-A case, 0.35 to 1 in the dihadron
case). The higher associated momentum range exhibits a sim-
ilar increase in the UE pedestal with increasing multiplicity,
but the i- A pedestal increases by a factor of 4 instead of 3. The
UE pedestal is also found to be higher in the lower associated
pr range than in the higher range by around a factor of 3 in
the A-A case and 4 in the h-h case for each multiplicity class.
Furthermore, the relative contribution to the total distribution
from the UE with respect to jet production increases with
increasing multiplicity in both pr intervals, with the lower-pr
interval exhibiting a larger relative contribution from the UE
than the higher-p interval across all multiplicity classes. The
latter observation suggests that associated production in the
UE region is truly “softer” than production in the near- and
away-side regions, as expected.

B. Per-trigger yields and yield ratios

To compare with previous results [7,12], the VOA mul-
tiplicity classes have been converted to charged particle
multiplicity by computing the charged particle pseudorapidity
density (dN.,/dn) for each multiplicity class in events with a
trigger hadron, considering only charged hadrons with || <
0.5 and pr >0.15 GeV/c. The computation was performed
using techniques similar to those reported in Ref. [60]. The
values of (dN,/dn) for each multiplicity class in minimum
bias (MB) and triggered events can be seen in Table IV. For
the MB events, the values are also taken from Ref. [12].
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FIG. 3. The h-A (top) and h-h (bottom) A distributions for each multiplicity class with 4.0 < pryi, < 8.0GeV/cand 1.5 < pragoc < 2.5
GeV/c, with statistical (systematic) uncertainties shown as vertical lines (shaded boxes). The multiplicity classes are plotted from the most
central (left) to the least central (right). The total fit to the data [Eq. (7)] is shown as a solid line, and the UE estimate with the v, assumption

is shown as a dashed line.

As the high-pt trigger hadron requirement biases the event
sample towards higher multiplicities, the values of (dN,/dn)
are higher in the triggered events than in the MB events by
around 46 for each multiplicity class.

The per-trigger yields in the near- and away-side regions of
the Ag distributions (Ypear, Yaway) are shown in each associated
pr range as a function of multiplicity for both the 4-A and di-
hadron correlations in Fig. 5. The same yields as predicted by
DPMIET are also shown, with their ratios to the data presented
in the bottom panels. A dashed line at unity is drawn to help
better visualize the deviations between data and the model.
The h-A yields measured in data and predicted by DPMJET are
scaled by a factor of 20 to increase visibility.

Across both associated pr ranges, the h-A yields show a
substantial increase with respect to multiplicity for both the
near- and away-side regions. This is in stark contrast to the
dihadron yields, which exhibit no significant increase as a
function of multiplicity in both associated pr ranges. The
increase can be quantified by calculating the percent change
in the per-trigger yields from the lowest to the highest mul-
tiplicity class, which is shown for each momentum range
in Table V. The uncertainties reported are calculated using
both the systematic and statistical uncertainties summed in
quadrature, and the significance is obtained by calculating
the deviation in the percent change from zero in terms of
the total uncertainty. The significances obtained from the 4-A

TABLE V. The percent change in the per-trigger yields from the lowest to the highest multiplicity class in the lower and higher associated
momentum ranges. The uncertainties reported are obtained using the systematic and statistical uncertainties summed in quadrature. The
reported significance is the number of standard deviations away from zero percent change.

Lower (higher) p}}’ﬁsm significance

Region Percent change for lower (higher) pl}:ﬁssoc

h-A near side 479 + 16.8 (46.6 & 14.6) 290 (3.20)
h-A away side 71.0+22.5(46.2+17.9) 320 (2.60)
h-h near side 04+£7.5(-3.9£4.3) 0.10 (—0.90)
h-h away side 11.7+£12.3 (1.0 £ 7.0) 0.90 (0.10)
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FIG. 4. The h-A (top) and h-h (bottom) A distributions for each multiplicity class with 4.0 < prgi, < 8.0GeV/cand 2.5 < pragoc < 4.0

GeV/c, with statistical (systematic) uncertainties shown as vertical lines (shaded boxes). The multiplicity classes are plotted from the most
central (left) to the least central (right). The total fit to the data [Eq. (7)] is shown as a solid line, and the UE estimate with v, assumption is

shown as a dashed line.

yields across both regions and pr ranges are all close to 30.
However, the dihadron yields see no statistically significant
increase in both regions across both momentum ranges. In the
lower-pr range, for both the i-A and h-h cases, the percent
changes in the away-side yields are systematically higher than
the changes in the near-side yields. However, the significance
of the difference in the percent change is only around 0.8¢ for
both cases, indicating that the observed differences between
the near- and away-side increases in this pt interval are not
statistically significant.

The per-trigger near- and away-side yields predicted by
DPMIET are mostly consistent with data in the dihadron case.
This can be seen in the model/data ratio, with both the near-
and away-side ratios remaining close to unity across the entire
multiplicity range. The h-A yields, however, are not well
described by the model. Both the near- and away-side A-A
yields predicted by DPMJET are lower than data by a factor of
2-2.5 depending on multiplicity in both momentum ranges,
and there is no significant increase in these yields as a function
of multiplicity.

To better understand the differences between A and
charged hadron production both in and out of jets, the per-
trigger yield ratios R[.A/ b= Y/"A / Yih'h (i = near side, away
side, UE) are measured as a function of multiplicity in both
associated momentum ranges. These ratios serve as a proxy

for the A/m ratio in each region, and are shown in Fig. 6.
Linear fits to the data are shown as dashed lines, with slopes
and corresponding uncertainties reported in Table VI. The
same ratios predicted by DPMJET are shown, with their ratios
to the data presented in the bottom panels.

A remarkable feature of these results is the clear separa-
tion between the yield ratios in each region across the entire
multiplicity range in both momentum ranges, with the UE
ratio being the largest, followed by the away-side ratio, and
finally the near-side ratio. This indicates that most of the rela-
tive A production is occurring in the UE, which is consistent
with the idea that strange-quark production is maximal in this

TABLE VI. The slopes obtained from the linear fits to the per-
trigger pairwise (h-A)/(h-h) yield ratios as a function of multiplicity
in both associated momentum ranges. The fits are made using the
statistical and systematic uncertainties summed in quadrature. All fits
are such that x2/ndf < 1.

h, A . h, A
LOWGI—p T,assoc ngher—p T,assoc

Region slope (x1073) slope (x1073)
Near side 1.1+£04 1.6 +04
Away side 1.6 £0.6 1.8+£0.7
UE 09+0.1 22402
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FIG. 5. The per-trigger pairwise yields Year, Yaway as a function of charged particle multiplicity for the 4-A (square markers) and - (circle
markers) correlations in the lower (left) and higher (right) associated pr ranges. The statistical (systematic) uncertainties are shown as vertical
lines (boxes). The same yields predicted by DPMIET are shown as shaded bands, with the width of the band representing the uncertainty of the
model. The s-A yields (data and DPMJET) have been scaled by a factor of 20 to increase visibility. The ratios of the model to the data are also
shown as shaded bands in the bottom panels, where the width of the band represents the uncertainty of the ratio. A dashed line is drawn at

unity for reference.

soft regime. This is further supported by the fact that the away-
side ratio is larger than the near-side ratio, as A production on
the away side is likely due to both the fragmentation of the
away-side jet coupled with the possible production of strange
quarks due to soft inelastic scattering against UE particles.
Interestingly, DPMIJET is able to produce this ordering in the
ratios, but neither the magnitude nor the centrality dependence
of the ratios are well described. In the lower-pr range, the
near- and away-side ratios predicted by DPMIJET are lower than
data by around a factor of 2 at the lowest multiplicities, which
increases to a factor of 3 at the highest multiplicities. The
higher-pr interval shows a similar trend in the model/data
ratios for both the near and away sides, but the magnitude of
the deviation is smaller (*40% at the lowest multiplicities,
~60% at the highest). The UE ratios predicted by DPMJET
are also lower than data by around a factor of 3 across the
entire multiplicity range in both momentum ranges, with the
deviations being slightly larger at higher multiplicities.

The near- and away-side slopes reported in Table VI are
all more than 20 greater than zero, hinting that there is an
enhancement of relative A production in jets as a function
of multiplicity. This result is consistent with previous mea-
surements of the ¢(1020) meson in jets [23], where a similar
enhancement of the ¢/h ratio is observed in the near- and
away-side regions. This further supports that the production
of strange quarks is enhanced in jets in central p-Pb collisions

when compared to peripheral collisions in the momentum
ranges considered. The UE slopes are also not compatible
with zero, and the larger values of the UE ratios overall still
suggest that a significant portion of the observed enhancement
in the A/ ratio with respect to multiplicity in Refs. [7,12] is
due to soft production from the UE. Interestingly, the slopes
for the UE region in the higher-pr range are larger than in
the lower-pr range by over a factor of 2. This difference
between the lower- and higher-pr intervals could be due to an
enhanced baryon production in the higher-pr range, similar
to that observed in Ref. [47]. The slopes calculated using the
ratios obtained from DPMIJET are all approximately zero, and
are thus not shown in the table.

C. Near- and away-side peak widths

To gain more insight into the underlying mechanisms re-
sponsible for strangeness production in jets, the widths of
the near- and away-side peaks are extracted from the h-A
and h-h Ag distributions using Eqs. (7) and (8). Plots of
these widths as a function of multiplicity for both associated
momentum ranges are shown in Fig. 7, along with the same
widths predicted by DPMIJET. A ratio of the model to the data
is also presented in the bottom panels of the figure.

Expectedly, the near-side widths exhibit a slight decrease
(around 10%) from the lower-momentum range to the higher
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FIG. 6. The per-trigger pairwise yield ratios Rf\

= YA /¥y (i = near side, away side, UE) as a function of multiplicity in the lower

(left) and higher (right) associated momentum ranges. The statistical (systematic) uncertainties are shown as vertical lines (boxes). Linear fits
to the data are given as dashed lines. The ratios predicted by DPMJET are presented as shaded bands, with the width of the band representing

the uncertainty of the model. The ratios of the model to the data are also
band represents the uncertainty of the ratio.

for both the h-A and h-h cases, indicating that higher mo-
mentum associated particles are more collimated along the jet
axis. An interesting result comes from comparing the 4-A and
h-h away-side peak widths in data, which are found to be the
same within systematic uncertainties across all multiplicity
and momentum ranges, although the uncertainties are very
large. This contrasts with the A-A near-side widths, which
are around 20 larger than the h-h widths across the entire
multiplicity range for both momentum ranges. For the h-h
near-side widths, DPMIJET describes the data well across both
momentum ranges, with a <5% (10)% deviation from data
seen in the lower (higher) momentum range. DPMIJET also
predicts the h-A near-side width to be larger than the h-h
width, though the values of the h-A widths are much lower
than they are in data. One explanation for these differences
between the h-h and h-A near-side widths, which are both
observed in data and expected by DPMJET, could be due to the
presence of gluon jets, which are generally wider than quark
jets [61]. As gluon jets exhibit an increased production of A
baryons [62], selecting on A production—as is the case with
the h-A correlations—would bias the sample towards gluon
jets, resulting in a larger near-side width when compared to
the dihadron case.

DPMIJET also underpredicts both the - A and h-h away-side
widths by around 40% across both momentum ranges. One
explanation for this discrepancy could be that the away-side
jet in data is subject to more collisional broadening than in

015201

shown as shaded bands in the bottom panels, where the width of the

the model due to the soft scattering against the UE particles,
which are underpredicted by DPMJET. If this were the case, the
discrepancy between data and DPMJET should increase with
increasing multiplicity. However, as the away-side widths are
consistent with flat behavior with respect to multiplicity due
to the large systematic uncertainties, this possible explanation
cannot be confirmed.

D. Comparison with the ¢(1020)

Comparing the jetlike and UE production of A baryons
with other strange hadrons can provide further insight into
the mechanisms responsible for strangeness production in
p-Pb collisions. The ¢(1020) meson is of particular interest
because even though it has a net strangeness |S| = 0, it has
been observed to exhibit a similar enhancement in production
as a function of multiplicity as other hadrons with nonzero
strangeness [63]. Due to their similar masses (AM < 100
MeV/cz), the ¢(1020) is an excellent candidate to compare
directly with the A in order to better understand the differ-
ences between open (|S| # 0) and hidden (|S| = 0) strange
hadron production. Furthermore, the baryon-to-meson ratio is
mostly independent of collision centrality in p-Pb collisions
in the momentum intervals considered in this analysis [12],
indicating that any observed trends versus multiplicity are
likely due to the strangeness content of the hadrons rather than
the differing hadronization mechanisms. Using previously
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published results on ¢(1020) production in and out of jets
in p-Pb collisions at /syy = 5.02 TeV [23], the per-trigger
pairwise yield ratios R? = ¥/*/Y/"® (i = near side, away
side, UE) are obtained as a function of multiplicity, and are
shown in Fig. 8 for both the lower and higher associated pr
ranges. The h-¢ yields and their corresponding systematic and
statistical uncertainties are taken directly from the published
results. The uncertainties for ¥/* and Yih'd’ are treated as
uncorrelated when computing the uncertainties in the ratios.
The UE yields are extracted using the techniques described
in Sec. III B. The same ratios predicted by DPMJET are also
presented, with their ratios to the data shown in the bottom
panels.

Interestingly, the A /¢ near-side ratios appear to be system-
atically higher than the ratios in the UE, with the significance
of the difference varying from 0.90 where the ratios are the
closest, up to 2.50 when they are most separated. This hints
at a relative enhancement (suppression) of A (¢) production
along the jet axis. As strangeness in QCD can only be pro-
duced in the form of s5 pairs, one possible explanation of this
effect is that when these pairs are produced from an initial
hard scattering of the form gg — ss (i.e., the lowest order
pQCD diagram for quark-based strangeness production from
Ref. [1]), the s and 5 will likely never hadronize into the same
¢ due to their separation in phase space. The ratios predicted
by DPMIET provide further evidence for this explanation, as
the model also shows that the near-side ratios are enhanced
relative to the UE ratios across the entire multiplicity range.
However, DPMJET does not predict the differences between the
near- and away-side A /¢ ratios observed in data, in which the
near-side ratios are systematically higher than the away-side
ones. This could be explained by an increase of strange-quark
production in the away-side due to soft scattering against
the UE particles that are underpredicted in the model. These
strange quarks would occupy a similar phase space as the
strange quark produced from the initial fragmentation, in-
creasing the chances for an ss pair to hadronize into a ¢.
While the values of the near- and away-side ratios in the
lower associated momentum range decrease with increasing
multiplicity, the uncertainties are very large. As a result, no
definitive conclusions can be drawn about the multiplicity
dependence of the A /¢ ratios in the jet and in the UE.

VI. CONCLUSION

This article presents the first results of A production in
p-Pb collisions at /syy = 5.02 TeV in the jet and in the
underlying event extracted through angular correlation mea-
surements, using a high-pr charged hadron as a proxy for the
jet axis. Both the per-trigger yields in each kinematic region
and the widths of the near- and away-side peaks are extracted
from the azimuthal correlation functions and studied as a
function of associated-particle pr and event multiplicity. The
associated A yields show an increase with increasing multi-
plicity with a significance of about 30 for both the near and
away sides, whereas the charged hadron associated yields in
the near and away sides do not exhibit a statistically significant
multiplicity dependence.

The per-trigger pairwise yield ratios RiA " and RiA /% (i =

near side, away side, UE) are also studied as a function of
associated-particle pr and multiplicity. The A /A ratios exhibit
a clear ordering in each region for the entire multiplicity range
in both pr ranges, with the UE ratios being larger than the
away-side ratios, which are larger than the near-side ratios.
The A /h ratios in each region also increase with multiplicity,
with slopes that are greater than zero by over 2o for both
momentum ranges. The A /¢ ratios in the near-side jet region
are measured to be systematically higher than both the away-
side and UE ratios, hinting at a suppression of ¢ mesons with
respect to the A along the jet axis relative to those produced
out of jet. Furthermore, the A /¢ ratios show no significant
dependence on multiplicity in both associated-particle mo-
mentum ranges. The A/h results suggest that, while strange
quark production occurs mostly in the UE, the observed en-
hancement of strangeness in high-multiplicity p-Pb and Pb-Pb
collisions when compared to low-multiplicity pp collisions
is at least partially driven by jetlike processes. Additionally,
the A/¢ results provide some insight into the phase-space
separation of s§ pairs in the jet and UE regions, and suggest
that s (5) quarks produced along the jet axis may be less likely
to hadronize with another 5 (s) quark to form a ¢ meson when
compared to those produced out of jet.

The h-A and h-h near-side peak widths reveal a large
dependence on pr, with the peaks becoming more collimated
as momentum increases. The widths of the away-side jets are
found to be independent of both pr and multiplicity, with
the larger systematic uncertainties preventing exclusion of flat
behavior. Comparing the widths of 4-A and h-h correlations
reveals that the #-A near-side widths are significantly (>20)
larger than the A-h near-side widths, hinting at a bias towards
gluon jets in the h-A sample. However, the away-side widths
are found to be consistent within uncertainties between the
two samples.

All measured observables are compared with predictions
from the DPMJET model. The predicted near- and away-side
yields are found to be in relatively good agreement with data
in the dihadron case, but the h-A yield predictions deviate
from data by a large (>40%) margin. DPMJET also fails
to predict any of the observed multiplicity dependence for
the h-A near- and away-side yields. However, the model is
able to closely predict the near-side widths of the dihadron
distributions across all multiplicity and momentum ranges,
although it underpredicts both the s-A near-side widths and
the away-side widths for both (A, &) cases. The model also
predicts a difference between the h-A and h-h near-side
widths, which is observed in data as well. The per-trigger
A/h and A /¢ yield ratios are consistently underpredicted by
DPMJET, and exhibit no multiplicity dependence. Even still,
DPMJET manages to predict the ordering of the A/h ratios
in each region (UE > away-side jet > near-side jet) and the
enhancement of the near- and away-side A/¢ ratios when
compared to the UE region.

Using the data collected during LHC Run 3 (2022-2025),
the measurements presented in this paper can be extended
by utilizing similar techniques to study the production of
multistrange hadrons (e.g., = and Q7) in p-Pb collisions.
Such measurements would provide further insight into the
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production mechanisms of strange hadrons in small collision
systems, and would help to constrain the models used to
describe these systems.
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