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ABSTRACT OF THE THESIS

Understanding Within-Season Changes in Major League Baseball Attendance

by

Tanner Michael Koscinski

Master of Applied Statistics

University of California, Los Angeles, 2019

Professor Frederic R. Paik Schoenberg, Chair

Major League Baseball teams play considerably more games per season than the teams in any

of the other major professional sports leagues in the United States, providing baseball fans

with a large selection of games and frequently resulting in large fluctuations in attendance.

In addition to studying the effect of the home and visiting teams’ season win percentages on

attendance, this paper examines various shorter-term metrics of performance to see which

recent performance metric has the most significant impact on a home team’s game-to-game

attendance numbers. The number of wins in a team’s previous 10 home games is shown to

be statistically significant and the best recent performance metric to estimate attendance;

however, the attendance prediction benefits are not practically much better than a simpler

model that ignores such recent performance. This paper also discusses how the magnitude

of the variation in a team’s attendance numbers can differ from team to team and from

season to season and suggests using a team-season standardized attendance response vari-

able to eliminate this difference in variance issue between low average / low variance, high

average / high variance, and high average / low variance teams. The models with the team-

season standardized response variable consistently outperform models with the traditional

attendance response variable.
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CHAPTER 1

Introduction

A calculation of the average Major League Baseball game attendance per year reveals that

attendance has been declining over the past few years. A decrease in attendance means

not only a decrease in ticket sales revenue, but also smaller profits from concessions and

parking. The league has its television deals as an additional source of income, but the fans

at the stadium make up a vital part of the game. Fans amplify energy and excitement. The

emotion created by a home run is more intense in a sold out stadium than in one that is

half empty. The fans and the players can both feel the difference, and a large and passionate

home crowd can be a great selling point to attract superstar athletes. A loud and supportive

crowd can help provide the energy to keep up good momentum or revitalize a team and spark

a comeback. This is why the crowd at a baseball game is sometimes collectively referred to

as “the 10th man” of the baseball team.

Smith and Groetzinger investigated this attendance benefit and found that an increase

in attendance was associated with a statistically significant increase in the number of hits,

doubles, and home runs for the home team relative to the visiting team, even after they

accounted for changes in attendance due to differences in the likelihood of a home team

victory (2010). They also found that higher attendance increased the number of strikeouts

thrown and decreased the earned run average for the home pitchers relative to the visiting

pitchers. They estimate that an attendance increase of 25% of the stadium capacity results

in an increase in the home team’s probability of winning the game by approximately 5.5%.

Silver estimates that one additional win in a baseball season results in $1.8 million in addi-

tional revenue for a team (2006), and Smith and Groetzinger hypothesize that it is actually

a smart financial decision to decrease ticket sales in order to increase attendance to increase
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the probability of winning more games for home teams that are seeing poor attendance and

are able to accommodate the increase in attendance (2010).

Compared to the other three major professional sports leagues in the United States,

Major League Baseball (MLB) sees higher variations in attendance. This is largely because

MLB teams play 162 games a season, which is about twice as many games as National

Basketball Association (NBA) and National Hockey League (NHL) teams (82 games each)

and about 10 times as many games as National Football League (NFL) teams (16 games).

With such a large supply of games to choose from, and because MLB stadiums are generally

much larger than NBA or NHL arenas, MLB games are less likely to sell out. The large

number of games and relatively large variation in attendance makes Major League Baseball

attendance a good candidate for analysis.

This paper attempts to explore and understand the factors that affect Major League

Baseball attendance within a team’s season. With an increased understanding of what

attracts fans to games, marketing teams will be able to create more effective advertising

campaigns. More advanced ticket pricing methods could be developed to increase profits for

games that are likely to sell out, and promotions, giveaways, and programs with schools or

youth baseball teams can be scheduled on games that are likely to be relatively empty in an

effort to maintain an exciting atmosphere and increase profits from concession sales. Games

could also be scheduled at times that result in higher attendance, but scheduling to optimize

overall television viewers would likely take precedence.
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CHAPTER 2

Goals and Areas of Interest

There are two main ways to analyze Major League Baseball attendance: between-season

(changes in the average attendance from season to season) or within-season (changes in

attendance from game to game). The primary goal of this paper is to gain an overall

understanding of the factors that affect within-season Major League Baseball attendance,

and secondary goals include examining if the significant factors or their effects change when

reducing the analysis to a single team and then further reducing the analysis to a single season

of a single team. The average effects of game scheduling, opponent, and team performance

on attendance figures within a season are explored.

Between-season changes in attendance are not analyzed in this paper, but some factors

that may influence average season attendance that typically have no significant effect on

game-to-game attendance include the state of the economy, general interest in baseball, and

the arrival or departure of superstar athletes (unless there is a mid-season trade). It is also

well known that a team’s performance over the course of a season has a significant positive

impact on the team’s average attendance for the season. This paper examines the effect of

home and visiting team win percentages on game-to-game attendance and also takes a look

at some metrics only concerned with very recent performance.

The differences in the average attendance for each team is likely largely due to location

and stadium; this is not explored here, but previous work by Denaux et al. has concluded

that the per capita income of the home team’s city has a positive effect on attendance (2011).

Regression and mixed-effects models are better suited for providing an understanding of

what factors influence attendance figures than less interpretable machine learning methods,
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so the better predictive capabilities of machine learning is sacrificed. Attendance prediction

accuracy is still of interest, so the accuracy of the created models will be examined. LASSO

(least absolute shrinkage and selection operator) is used to optimize variable selection for

each case. Simpler models are then created to see if the statistically significant variables

are also practically significant. If a simpler model is not practically significantly worse at

predicting attendance, then it is favored since it allows for better interpretability.
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CHAPTER 3

The Dataset

Due to low attendance at their home stadium, the Montreal Expos played over 20 of their

“home” games in San Juan, Puerto Rico in both the 2003 and 2004 seasons. In 2005, the

Montreal Expos moved to Washington, D.C. and became the Washington Nationals. Since

then, several teams have moved to newer stadiums between seasons, but each new stadium

has been relatively close to the old one, and no team has played more than three of their

“home” games in a stadium other than their usual home stadium. For this reason, 2005 is

a good starting point for analyzing attendance.

3.1 Obtaining the Data

The website Retrosheet1 has game logs containing information from every Major League

Baseball game played since 1871. All of the game logs from 2005 through 2018 are used for

this analysis.

Variables in the dataset include attendance, baseball stadium, home and away team,

date, day of week, and if the game took place during the day or at night. In 2015, a matchup

between the Chicago White Sox and the Baltimore Orioles was closed off from the public

due to riots in Baltimore and had an official attendance of zero; this game was removed from

the dataset. Approximately two percent of all games played were part of a double-header.

Because this is a relatively small percent, and double-header games are likely to see different

or distorted attendance numbers, these games are not included in the analysis. As mentioned

1The information used here was obtained free of charge from and is copyrighted by Retrosheet. Interested
parties may contact Retrosheet at “www.retrosheet.org”.
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before, at most three “home” games per season per team were played in a stadium other than

the team’s usual home stadium; these games were also removed. Only regular season games

are analyzed since postseason games naturally see higher attendance and usually sell out;

the rare tie-breaker games at the end of the regular season are also not included. Finally,

the first true home game of each season for each team was removed because these games

typically have festivities and promotions that result in unusually high attendance. The final

dataset contains 32,859 games over 14 seasons. The same 30 teams are in each season, and

each team played between 68 and 80 home games after the removal of these unusual games.

3.2 Definition of Attendance

Major League Baseball requires teams to report attendance as the number of tickets sold

rather than the number of people who actually attended the game; this is in part because of

the way revenue is shared among teams. For this analysis, this way of reporting attendance

is an advantage if the goal is to gain insight into how to increase ticket sales, but this

definition is unfortunate when trying to understand how to increase the number of fans that

actually show up to games. While there is surely not a perfect correlation between ticket

sales and actual attendance, it is safe to assume this is a fairly strong positive correlation,

and an increase in ticket sales is highly likely to lead to an increase in the actual attendance.

Regardless, increasing ticket sales is very desirable.

3.3 Construction of New Variables

The Retrosheet game logs are similar to game box scores and mostly contain detailed in-

formation about each game and very little information about team performance prior to

each game. Because attendance numbers are only affected by events that occur prior to

the beginning of a game, a significant amount of work was put into the construction of new

predictor variables. The following variables were constructed for each game:
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• The home team’s win percentage prior to the start of the game

• The visiting team’s win percentage prior to the start of the game

• The home team’s win percentage in home games prior to the start of the game

• The visiting team’s win percentage in the previous season

• Series game number: the number of consecutive home games that the home team has

played against the same visiting team including the current game

• If the home team and the visiting team are in the same league

• If the home team and the visiting team are in the same division

• The home team’s number of wins in the previous n games for n = 1, 2, . . . , 10

• The home team’s number of wins in the previous n home games for n = 1, 2, . . . , 10

• The home team’s number of runs in the previous n games for n = 1, 2, . . . , 10

• The home team’s number of runs in the previous n home games for n = 1, 2, . . . , 10

• The home team’s number of home runs in the previous n games for n = 1, 2, . . . , 10

• The home team’s number of home runs in the previous n home games for n = 1, 2,

. . . , 10

Note that the last six items each represent 10 different variables. The 67 new explanatory

variables are used to better understand and predict attendance. Many of these new variables

are strongly correlated, so it is necessary to determine which are the best and which should

be discarded.
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CHAPTER 4

Initial Models

The effects of the home team (or the baseball stadium), the year, and the interaction between

the home team and the year on attendance is not of interest, so they can be treated as random

effects. One initial model that is created is a linear mixed-effects regression model with the

interaction between the home team and the year as a random effect. There are 30 different

teams with 14 seasons each, so the model has 30 x 14 = 420 random effect intercepts.

4.1 The Response Variable

It must be decided if the attendance response variable should be transformed or scaled.

One might expect stadiums with higher average attendance numbers to have higher variance

in attendance numbers; however, the Box-Cox transformation method suggests an untrans-

formed response variable. To understand why higher average attendance does not necessarily

correlate with higher attendance variation, imagine a hypothetical scenario. Stadium A has

an average attendance of 10,000 people and Stadium B has an average attendance of 50,000

people. If both stadiums never reach maximum capacity, it would be reasonable to expect

Stadium B to have higher attendance variation. Now imagine the capacity of Stadium A is

15,000 and the capacity of Stadium B is 51,000. Stadium A averages about 67% capacity

while Stadium B averages more than 98% capacity. It is now more reasonable to expect Sta-

dium A to have higher attendance variation. Average attendance has a positive correlation

with the variance of attendance, but the percentage of sold out games has a negative corre-

lation with the variance of attendance, resulting in no recommendation for a transformation

of the response variable.
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Figure 4.1: The standard deviation of the attendance for each of the 14 seasons of each of

the 30 teams is plotted against the mean of the attendance.

Figure 4.1 shows how the standard deviation of season attendance seems to increase

as the mean of season attendance increases until a mean of about 30,000 people at which

point many of the stadiums begin reaching capacity and the standard deviation of season

attendance decreases. Figure 4.2 makes it easier to see these trends by selecting eight of the

stadiums studied and plotting them in different colors.

It now may seem reasonable to try to account for stadium capacity by changing the

response variable to be attendance as a percent of stadium capacity; however, one can

quickly see this is not helpful by looking at the same scenario as before. If a model predicts

an attendance increase of 5% of stadium capacity, this is equivalent to an increase from

10,000 to 10,500 for Stadium A and an increase from 50,000 to 52,500 for Stadium B. This

9



Figure 4.2: The standard deviation of the attendance for each season studied of eight selected

stadiums is plotted against the mean of the attendance.
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may not be a very significant increase in attendance for Stadium A, but it is five times larger

of an increase for Stadium B, and it is 2.5 times the difference between Stadium B’s capacity

and its average attendance.

An additional issue associated with the use of attendance as a percent of stadium capacity

is that it requires knowledge of the stadium capacity. This seems like it should not be an

issue, but it turns out that the reported stadium capacity is not always correct. For example,

the official Dodger Stadium capacity has always been 56,000, but renovations that occurred

before the 2013 season reduced the true capacity to under 54,000, and the exact number is not

available. To further complicate matters, sometimes teams sell standing room only tickets

or uncover additional seats to go over their usual capacity. It also does not make much sense

to consider stadium capacity for teams that never or almost never reach capacity. Changing

the response variable to be attendance as a percent of stadium capacity would provide little

to no advantage over the raw attendance number.

Most previous research regarding Major League Baseball attendance has decided to use

either the raw attendance number, as in Davis (2009) and Denaux et al. (2011), attendance as

a percent of stadium capacity, as in Smith and Groetzinger (2010), or the natural logarithm of

attendance, as in Ormiston (2004). No method has consistently been used to solve the issue

of different attendance variances for different team-seasons. Davis recognized the existence

of a censoring issue but decided against trying to account for it and instead noticed it as

the probable reason why some variables did not appear to be significant for certain teams

(2009). Denaux et al. decided to eliminate all games with an attendance over the stadium’s

capacity (2011), but this method does not capture any of the many sold out games that

do not actually meet the official capacity nor does it reduce the gap between low average

/ low variance teams and high average / high variance teams. Ormiston determined that

treating a 95% capacity game as a sellout was still not capturing some true sellouts (2004),

so he resorted to considering an at least 90% capacity game as a sellout and then ignored all

team-seasons that were entirely sold out, thereby successfully removing most high average

/ low variance teams. He then took the natural logarithm of attendance to reduce the gap
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between low average / low variance and high average / high variance teams. This is a good

solution, but it can lead to a bit of an exaggerated interpretation of the model’s coefficients.

For example, let Team A and Team B both sell out Stadium 1, but Team A brings in twice

the attendance to Stadium 2 as Team B. Ormiston’s method makes it appear that we can

expect to see, on average, double the attendance when Team A comes to town as opposed

to Team B (which is true if neither team is ever expected to sell out a game), but in reality,

sold out games will reduce this average attendance gap.

This paper uses a method that attempts to eliminate the difference in variance issue

between low average / low variance, high average / high variance, and high average / low

variance teams, that does not rely on unreliable stadium capacity numbers, and that does

not sacrifice much interpretability.

4.2 Standardizing Attendance Within Each Group

An interesting possible solution to the problem of different attendance variances for different

home teams and different seasons is to standardize attendance within each season of each

home team. Not only does this make the distribution of the response variable much more

normally distributed, but this also gives all 420 groups the same mean standardized atten-

dance of zero, eliminating the need for random-effect intercepts. The response variable of

this model is the z-score of the attendance of the game with respect to all of the home games

in that team’s season. This is actually quite easy to interpret and can easily be converted

back to a raw attendance number by providing the home team’s season’s mean and standard

deviation of attendance numbers from the training data. Since this model does not require

specification of a home team or a season when predicting new data, it also has the benefit of

being able to make predictions for arbitrary teams and seasons by producing a z-score that

can be converted to raw attendance numbers by providing the theoretical mean and stan-

dard deviation of attendance. This method can also make accurate predictions for stadiums

that sell out every game; it will produce a z-score that will be multiplied by the standard

deviation of zero and then added to the mean attendance consequently predicting a sold-out
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game. The mixed-effects model will not be able to handle this scenario nearly as well.
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CHAPTER 5

Variable Selection

In addition to the variables already in Retrosheet’s game logs, 67 predictor variables were

created in hopes that some of them would be useful for explaining changes in attendance.

Many of these new variables are very similar, and the goal is not to use all of them but rather

to find the best small subset of them. In particular, most of the 60 variables of the form (wins

/ runs / home runs) in the past (1 / 2 / . . . / 10) (games / home games) are very highly

correlated with one another. These 60 variables will be referred to as “recent performance

variables”. Ten was chosen as the upper limit for the number of previous games to include

because the goal of these variables is to evaluate recent performance, and games further than

10 games back start to represent season performance better than recent performance. The

questions surrounding the recent performance variables are:

1. Is the number of wins, runs, or home runs the best predictor of attendance?

2. Is recent home game performance more or less significant in predicting attendance than

recent overall performance?

3. What is the optimal number of recent games to consider when estimating the effect of

recent performance on attendance?

The 60 recent performance variables add a unique element to this analysis of within-season

attendance. The two most popular ways to evaluate team performance within a season have

been by using either the team’s win percentage or the number of games a team is above

or below a .500 win-loss record. (For example, a team with a 22-24 record is two games

behind.) The first method has higher variability in the beginning of the season while the

14



second method has higher variability at the end of the season. To account for the early season

variability in win percentage, Meehan et al. recommended ignoring the first 10 games of the

season (2007), but that is not very desirable, so this paper instead uses the team’s previous

season’s win percentage as a substitute win percentage for the first 10 games. The variables

that are considered that relate to win percentage are the home team’s win percentage, the

home team’s win percentage at home, the visiting team’s win percentage, and the visiting

team’s win percentage in the previous season.

The effect of game scheduling within the baseball season is predicted by the month, the

game number of the season, or both of these variables.

The visiting team likely affects attendance, and interest lies in answering the following:

1. Which teams draw the biggest and smallest crowds on the road?

2. Is attendance similar or different when playing a team in the same division compared

to a different division?

3. Is attendance similar or different when playing a team in the same league compared to

the other league?

Other variables that are be tested for significance include the series game number, the

day of the week, the day or night indicator, and the interaction between the day of the week

and the day or night indicator.

LASSO (least absolute shrinkage and selection operator) was used for variable selection

to determine which variables are significant predictors of attendance overall, within each

stadium, and within each season of each team. All of the variables just described were avail-

able for selection, and the response variable was the standardized team-season attendance

variable described in the previous section. Ten-fold cross validation was used to minimize

the mean squared error, and variables were considered significant if they had a non-zero

coefficient in the model resulting from choosing the largest value of lambda such that the

error was within two standard errors of the minimum mean cross-validated error. Categor-
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ical variables were considered significant if at least one of their levels was significant; for

example, month is considered significant if June is significant even if May is not significant.

5.1 Variable Selection for One Comprehensive Model

Variable selection was performed on the full set of home games from all 30 teams and all 14

years to identify the factors that affect Major League Baseball attendance within a team’s

season regardless of the home team and season. The following variables were found to be

significant predictors of attendance:

• Month

• Day of week

• Day or night

• The interaction between day of week and day or night

• Game number

• Visiting team

• If the teams are in the same division

• If the teams are in the same league

• Home team’s win percentage

• Visiting team’s win percentage

• Visiting team’s win percentage in the previous season

• Home team’s number of wins in the last nine home games

• Home team’s number of wins in the last 10 home games

16



The questions surrounding the recent performance variables can now be answered. In

general, it appears that the number of recent wins is a better predictor of attendance than

the number of recent runs or home runs. Nine or 10 appears to be a good number of games to

consider when evaluating a team’s recent performance. Recent performance in home games

appears to be a better predictor of attendance than recent performance in both home and

away games, but the team’s overall win percentage in both home and away games is more

significant than its win percentage in home games only.

The visiting team significantly affects attendance, and it does matter if the visiting

team is in the same division or the same league as the home team. The visiting team’s

win percentages in the current season and in the previous season both positively affect

attendance. The New York Yankees as visitors had the largest positive effect on attendance

followed by the Boston Red Sox, Chicago Cubs, and Los Angeles Dodgers. These four teams

come from four of the most populated cities in the United States, so it is difficult to say how

much of their popularity is due to their city and how much is due to their success. Game

scheduling significantly affects attendance. The game number, month, day of week, time of

day, and interaction between the day of week and time of day are all significant.

The series game number does not seem to impact attendance.

5.2 Variable Selection for Different Stadium Models

Between the end of the 2005 baseball season and the beginning of the 2018 baseball season,

seven of the 30 teams in the MLB moved to a different stadium, so 37 different stadiums

were used as the home baseball stadium for a team for at least one season over this 14-year

span. It is possible that different stadiums see factors affect their attendance in different

ways. In particular, it is likely that the effect of the month varies between stadiums because

different parts of the country see different weather patterns over the course of the year. Also,

the effect of the visiting team varies between stadium, especially because of rivalry games.

While having one comprehensive model is better for providing an overall understanding of
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attendance, a separate model for each stadium is more practically useful because individual

stadiums are more concerned about how to increase their own attendance rather than MLB

attendance as a whole. For this reason, it is interesting to perform a separate variable

selection for a model of each stadium.

The stadium-specific variable selection results were similar to the variable selection re-

sults of the comprehensive model. Almost all of the 13 variables that were selected in the

comprehensive model were part of the 12 most frequently included variables in the stadium

models. The number of wins in the last eight home games appeared more frequently in the

stadium models in place of the number of wins in the last nine home games, but the number

of wins in the last 10 home games remained the most significant recent performance variable.

The comprehensive model included the variable identifying if the two teams are in the same

division, but the stadium models did not consider it significant because it no longer explains

any information that is not already explained by the visiting team.

5.3 Variable Selection for Different Team-Season Models

It may not be very reliable to perform separate variable selection for each of the 420 combi-

nations of home team and season because each dataset will only contain between 68 and 80

observations, but a quick examination revealed that the 10 most frequently selected variables

remained the same as before, and the home team’s number of wins in the previous 10 home

games remained in the top two most frequently selected recent performance variables.
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CHAPTER 6

The Regression Models

Based on the variable selection results, models were created with the following 12 variables:

• Month

• Day of week

• Day or night

• The interaction between day of week and day or night

• Game number

• Visiting team

• If the teams are in the same division

• If the teams are in the same league

• Home team’s win percentage

• Visiting team’s win percentage

• Visiting team’s win percentage in the previous season

• Home team’s number of wins in the last 10 home games

A linear regression model with the team-season standardized attendance response variable

was created as well as a linear mixed-effects regression model with the raw attendance number

as the response variable and the home team and season interaction as a random effect. The
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MAPE (Mean Absolute Percentage Error) of each model was calculated, and the performance

of the models were compared.

6.1 The Initial Models

The dataset was randomly split 80/20 into training and testing data. A linear regression

model with the team-season standardized attendance as the response was fit on the training

data with all 12 predictor variables. The observed MAPE on the testing data was 12.92%.

A linear mixed-effects regression model with the raw attendance number as the response

and the home team and year interaction as a random effect was fit on the same training

data with the same 12 predictor variables, and the observed MAPE on the testing data was

14.05%. The linear regression model was able to outperform the mixed-effects model because

the linear regression model accounted for the different variances in attendance for each team

and each season.

6.2 Ignoring Wins in the Last 10 Home Games

A drawback of including the wins in the last 10 home games variable in the model is that

one must know the result of the last 10 home games for the home team’s season. This may

not only be inconvenient to calculate, but it also imposes the requirement that there must

be 10 previous home games in the season. Since the purpose of including this variable in a

model is to gain insight into a team’s recent performance, it would be misleading to include

games from the previous season in the calculation of this variable. Consequently, the first

10 home games of each season for each team will not be able to be included in the models

because these games do not have a value for this variable; this also means one cannot predict

the attendance of the first 10 home games of each season. For this reason, it is very desirable

to be able to drop any recent performance variable from a model if it does not significantly

improve the predictive capabilities of the model. The ANOVA table comparing the linear

regression models with and without the wins in the last 10 home games variable has a p-
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Table 6.1: Prediction Accuracy With and Without Wins in Last 10 Home Games

Standardized Attendance Attendance

With Variable 12.92055% 14.05396%

Without Variable 12.92573% 14.05457%

value of nearly zero, indicating that this variable is highly statistically significant and should

probably not be removed from the model; however, it is also important to consider practical

significance. Table 6.1 shows the MAPE for the testing data for both the linear regression

team-season standardized attendance model and the mixed-effects attendance model with

and without this variable.

Both models saw a MAPE increase of less than 0.01%. This is not practically significant,

so this variable can be removed from the models.

6.3 The Final Models

Because the wins in the last 10 home games variable was dropped from the models, the

models no longer have to exclude the first 10 home games of the season, so the full dataset

was split into 80% training data and 20% testing data, and the models were re-trained and

re-tested on these more complete sets. Since the removal of the wins in the last 10 home

games variable did not result in a practically significant decrease in the predictive capabilities

of the models, other variables were tested to see if they provided practical significance to

the models. In pursuit of the best balance of model simplicity and practically significant

predictive capabilities, the following six variables were also removed from the model: the

game number of the season, if the two teams are in the same division, if the two teams are in

the same league, the visiting team’s win percentage, the home team’s win percentage, and the

visiting team’s win percentage in the previous season. This leaves a relatively simple model

with only four categorical variables (month, day of week, day or night, and visiting team)

plus one interaction term (day of week and day or night). Table 6.2 shows the MAPE for
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Table 6.2: Prediction Accuracy With 11 and 5 Predictors

Standardized Attendance Attendance

With 11 Predictors 13.16% 14.41%

With 5 Predictors 13.58% 14.72%

the 11-predictor and the 5-predictor linear regression team-season standardized attendance

model and the mixed-effects attendance model. As a baseline reference, if only the training

data’s average attendance for each team’s season was used to predict the attendance of each

game in the testing data, the MAPE would be 19.48%.

The linear regression model with the four categorical variables and one interaction term

was able to provide a 30% reduction of that error. In both cases, dropping the six predictor

variables from the model only increased the MAPE by less than half of a percent. To put

these numbers into perspective, for a game with a true attendance of 30,000 people, a MAPE

of 13.58% is equivalent to being off by 4,075 people, and an increase of less than half of a

percent is equivalent to increasing that error by less than 150 people. This increase in error

is statistically significant but not practically significant, so the simpler model is chosen as

the final model.

6.4 Predicting Attendance for a New Season

An obvious practical use of these models would be to use the data from previous seasons

to train the models and then use the models to predict attendance changes within future

seasons. An analysis of the changes in average attendance from season to season is beyond

the scope of this paper, so for a simple example here, the mean and standard deviation

of the attendance in the future season will be assumed to be the same as the most recent

available season. Using only the average attendance of each team in 2017 to predict their

2018 attendance gives a baseline MAPE of 28.34%; this is a pretty high baseline error.

If the true 2018 mean attendance numbers are used to predict 2018 attendance numbers,
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Table 6.3: Prediction Accuracy for 2018 With 2017 and 2018 Mean and Standard Deviation

Standardized Attendance Attendance

With 2017 Mean and SD 22.54% 22.82%

With 2018 Mean and SD 13.46% ?

the baseline MAPE decreases to 20.42%. This brings up another advantage of using the

linear regression model with the team-season standardized attendance as the response over

the mixed-effects model with the raw attendance number as the response. The mixed-effects

model is not designed to predict attendance for seasons that were not included in the training

dataset while the linear regression model does not require a season to be specified; therefore,

if someone is able to supply an accurate estimate of the mean and standard deviation of

a desired or theoretical season, the linear regression model will easily be able to produce

an estimate while the mixed-effects model does not really allow for this information to be

supplied. Table 6.3 shows the MAPE for the prediction of the 2018 attendance for each

model.

Providing an accurate approximation for the true mean and standard deviation of atten-

dance for the desired season can significantly improve the prediction accuracy of the model.

6.5 Predicting Attendance for the 2018 Dodgers Season

If a Major League Baseball team would like to predict the attendance of each of their home

games in the upcoming season, it would be beneficial to fit a model using only data from

that particular team’s home games; this model will have more accurate estimates for how

the month, day of week, time of day, and visiting team affect that home team’s attendance.

The Los Angeles Dodgers will be used as an example. The 2018 season is the most recent

complete season available on Retrosheet at this time, so the 2005 through 2017 Dodgers

seasons are used to fit the models, and the attendance of each game of the 2018 Dodgers

season is predicted. The mean and standard deviation of the attendance of the 2018 season
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is estimated by the 2017 season. The MAPE for the linear regression model is 6.26%,

and the MAPE for the mixed-effects model is 6.55%. The error of the linear regression

model is about 15% smaller than the 7.31% MAPE from using the average 2017 Dodgers

attendance as the prediction for the attendance for each game of the 2018 Dodgers season.

The average attendance at a Dodgers home game in 2018 was 47,042 people, so this prediction

is equivalent to being off by an average of 2,945 fans per game.
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CHAPTER 7

Results

Table 7.1 shows a summary of the linear regression model with the team-season standardized

attendance as the response variable and the month, day of week, day or night indicator, and

visiting team as predictors as well as an interaction term between the day of week and the

day or night indicator.

The baseline levels are March (month), Monday (day of week), day (day or night), and

Los Angeles Angels (visiting team), so the interpretation of the intercept is that, on average,

a team can expect to see an attendance increase of 0.066 standard deviations above their

average attendance for that season when playing a home game in March on a Monday during

the day against the Los Angeles Angels. It is more insightful to look at the effect of one

variable at a time.

July is the month with the highest coefficient of nearly 0.3, meaning that, on average,

while holding all other factors constant, a game scheduled in July will see a 0.3 standard

deviation higher attendance than games scheduled in March. The Major League Baseball

regular season mostly runs from April through September with a very small percent of games

at the end of March and beginning of October. With that in mind, attendance can be nicely

summarized as having a peak in July and seeing a steady decrease when moving away from

July until there is an increase in attendance for the first few and last few games of the season.

Attendance in July is approximately 0.2 standard deviations higher than attendance in June

and August, which is approximately 0.3 standard deviations higher than attendance in May

and September, which is approximately 0.3 standard deviation higher than attendance in

April. This makes sense because the weather is typically better during the summer in most
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Table 7.1: Regression With Team-Season Standardized Attendance
Estimate Std. Error t value Pr(> |t|)

(Intercept) 0.0662 0.1845 0.36 0.7198
April -0.5067 0.1784 -2.84 0.0045∗∗∗

May -0.2162 0.1783 -1.21 0.2251
June 0.1200 0.1783 0.67 0.5011
July 0.2995 0.1783 1.68 0.0931∗

August 0.1087 0.1783 0.61 0.5420
September -0.2205 0.1783 -1.24 0.2162

October -0.0481 0.1852 -0.26 0.7949
Tuesday -0.4994 0.0917 -5.44 0.0000∗∗∗

Wednesday -0.3729 0.0484 -7.70 0.0000∗∗∗

Thursday -0.3302 0.0486 -6.80 0.0000∗∗∗

Friday 0.0347 0.0737 0.47 0.6373
Saturday 0.5667 0.0466 12.16 0.0000∗∗∗

Sunday 0.3190 0.0442 7.22 0.0000∗∗∗

Night -0.6610 0.0453 -14.60 0.0000∗∗∗

Tuesday Night 0.6459 0.0940 6.87 0.0000∗∗∗

Wednesday Night 0.5174 0.0529 9.77 0.0000∗∗∗

Thursday Night 0.5345 0.0544 9.83 0.0000∗∗∗

Friday Night 0.8605 0.0764 11.27 0.0000∗∗∗

Saturday Night 0.9225 0.0515 17.91 0.0000∗∗∗

Sunday Night 0.4487 0.0646 6.94 0.0000∗∗∗

Arizona -0.1759 0.0369 -4.76 0.0000∗∗∗

Atlanta 0.0407 0.0375 1.08 0.2787
Baltimore -0.0981 0.0370 -2.65 0.0081∗∗∗

Boston 0.7051 0.0373 18.93 0.0000∗∗∗

Chicago Cubs 0.4967 0.0372 13.36 0.0000∗∗∗

Chicago White Sox -0.0050 0.0373 -0.13 0.8937
Cincinnati -0.0369 0.0369 -1.00 0.3177
Cleveland -0.0662 0.0371 -1.78 0.0748∗

Colorado -0.1640 0.0371 -4.42 0.0000∗∗∗

Detroit 0.1243 0.0372 3.34 0.0008∗∗∗

Houston -0.0913 0.0372 -2.45 0.0142∗∗

Kansas City -0.1664 0.0370 -4.49 0.0000∗∗∗

Los Angeles Dodgers 0.3758 0.0371 10.13 0.0000∗∗∗

Miami -0.2133 0.0374 -5.70 0.0000∗∗∗

Milwaukee -0.1292 0.0370 -3.49 0.0005∗∗∗

Minnesota -0.0571 0.0372 -1.54 0.1247
New York Mets 0.2336 0.0370 6.31 0.0000∗∗∗

New York Yankees 0.9298 0.0372 25.02 0.0000∗∗∗

Oakland -0.0854 0.0371 -2.30 0.0213∗∗

Philadelphia 0.0685 0.0371 1.85 0.0650∗

Pittsburgh -0.0676 0.0370 -1.83 0.0679∗

San Diego -0.0824 0.0369 -2.23 0.0255∗∗

Seattle -0.1247 0.0370 -3.37 0.0008∗∗∗

San Francisco 0.2239 0.0372 6.02 0.0000∗∗∗

St. Louis 0.2389 0.0369 6.48 0.0000∗∗∗

Tampa Bay -0.2000 0.0372 -5.38 0.0000∗∗∗

Texas -0.1150 0.0370 -3.11 0.0019∗∗∗

Toronto -0.1497 0.0371 -4.04 0.0001∗∗∗

Washington -0.0461 0.0371 -1.24 0.2143
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Table 7.2: Effect of Day of Week and Day or Night on Standardized Attendance

Mon Tue Wed Thu Fri Sat Sun

Day 0 -0.50 -0.37 -0.33 0.03 0.57 0.32

Night -0.66 -0.02 -0.14 -0.13 0.20 0.26 -0.21

parts of the United States. For perspective, a typical team has an average attendance of

about 30,000 people and a standard deviation of about 6,000 people, so an increase of 0.1

standard deviations is equivalent to an increase of about 600 fans or roughly a 2% increase

in attendance.

It is easiest to understand the effect of the day of the week and the time of the day when

looking at the interaction of these two effects. The coefficients for day of week, day or night,

and the interaction term have been combined and summarized in Table 7.2. The values in

the table represent the standard deviation change in attendance relative to Monday games

that take place during the day.

Saturday day games see the highest attendance numbers, followed by Sunday day games,

Saturday night games, and Friday night games. Monday night games are the least popular,

followed by Tuesday, Wednesday, and Thursday games during the day. It is interesting that

Saturday day games see significantly higher attendance numbers than Saturday night games,

but more Saturday games are scheduled at night rather than during the day; this may be

due to television scheduling preferences.

The baseline level for the visiting team categorical variable is the Los Angeles Angels.

Conveniently, they are a team that has a fairly average impact on attendance, so the coeffi-

cients of the levels of the visiting team variable can loosely be interpreted as the difference

from an average team, even though the true meaning is the difference from the Los Angeles

Angels. There are more large positive numbers of visiting team coefficients than large nega-

tive numbers, indicating that a visiting team can have more of a positive effect on attendance

than a negative effect. The New York Yankees have by far the largest impact on attendance;

teams see an average of nearly a full standard deviation increase in attendance when host-
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ing the Yankees. Hosting the Yankees leads to an attendance increase of approximately 0.2

standard deviations more than hosting the Boston Red Sox, the second most popular team.

The Boston Red Sox are about 0.2 standard deviations higher than the Chicago Cubs, who

are about 0.1 standard deviations higher than the Los Angeles Dodgers, who are more than

0.1 standard deviations higher than every other team.

The R-squared value of this model is 0.3917, meaning that nearly 40% of the variation

in team-season standardized attendance can be explained by this model. As mention earlier,

the observed mean absolute percentage error of this model on testing data was 13.58%. This

relatively simple model with only four predictors plus an interaction term does a good job

at explaining variations in within-season attendance numbers, and it is not practically worse

than more complex regression models with more variables.

Table 7.3 shows a summary of the linear mixed-effects regression model with the raw

attendance number as the response variable and the same predictors variables as the previous

model. This model is slightly less accurate than the previous model because it does not work

as well for teams who have relatively small or large variance in their attendance numbers;

however, the coefficients are easier to interpret because the response is the raw attendance

number rather than the team-season standardized attendance variable. The conclusions

drawn from this model are similar to those from the linear regression model.
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Table 7.3: Mixed-Effects Regression Model Summary
Estimate Std. Error t value Pr(> |t|)

(Intercept) 30,651.110 1,259.899 24.328 0.000∗∗∗

April −3,088.885 1,150.872 −2.684 0.008∗∗∗

May −1,400.612 1,150.275 −1.218 0.224
June 681.831 1,150.329 0.593 0.554
July 1,629.262 1,150.498 1.416 0.157

August 624.637 1,150.354 0.543 0.588
September −1,234.973 1,150.452 −1.073 0.284

October 102.266 1,196.205 0.085 0.932
Tuesday −2,405.690 589.040 −4.084 0.000∗∗∗

Wednesday −1,846.233 311.027 −5.936 0.000∗∗∗

Thursday −1,746.700 311.734 −5.603 0.000∗∗∗

Friday −337.272 493.618 −0.683 0.495
Saturday 3,506.392 299.412 11.711 0.000∗∗∗

Sunday 2,307.544 283.353 8.144 0.000∗∗∗

Night −3,925.985 290.813 −13.500 0.000∗∗∗

Tuesday Night 3,269.309 603.287 5.419 0.000∗∗∗

Wednesday Night 2,756.176 340.614 8.092 0.000∗∗∗

Thursday Night 2,800.158 349.198 8.019 0.000∗∗∗

Friday Night 6,077.077 512.006 11.869 0.000∗∗∗

Saturday Night 6,096.092 331.816 18.372 0.000∗∗∗

Sunday Night 2,060.323 416.172 4.951 0.000∗∗∗

Arizona −683.035 248.156 −2.752 0.006∗∗∗

Atlanta 277.626 253.095 1.097 0.273
Baltimore −643.066 239.329 −2.687 0.008∗∗∗

Boston 4,819.635 240.752 20.019 0.000∗∗∗

Chicago Cubs 3,210.163 250.351 12.823 0.000∗∗∗

Chicago White Sox −291.442 240.966 −1.209 0.227
Cincinnati 83.008 249.160 0.333 0.740
Cleveland −380.127 240.046 −1.584 0.114
Colorado −815.265 249.468 −3.268 0.002∗∗∗

Detroit 832.875 240.374 3.465 0.001∗∗∗

Houston −762.338 244.606 −3.117 0.002∗∗∗

Kansas City −1,131.021 239.651 −4.719 0.000∗∗∗

Los Angeles Dodgers 2,503.880 250.171 10.009 0.000∗∗∗

Miami −1,147.966 251.566 −4.563 0.000∗∗∗

Milwaukee −544.812 249.615 −2.183 0.030∗∗

Minnesota −419.420 240.403 −1.745 0.082∗

New York Mets 1,633.412 249.601 6.544 0.000∗∗∗

New York Yankees 6,694.227 240.223 27.867 0.000∗∗∗

Oakland −724.498 239.018 −3.031 0.003∗∗∗

Philadelphia 683.604 249.584 2.739 0.007∗∗∗

Pittsburgh −248.529 249.642 −0.996 0.320
San Diego −344.562 248.410 −1.387 0.166

San Francisco 1,658.441 250.395 6.623 0.000∗∗∗

Seattle −1,070.141 238.586 −4.485 0.000∗∗∗

St. Louis 1,681.914 248.356 6.772 0.000∗∗∗

Tampa Bay −1,358.580 240.302 −5.654 0.000∗∗∗

Texas −993.935 238.164 −4.173 0.000∗∗∗

Toronto −1,036.69 240.048 −4.319 0.000∗∗∗

Washington 17.495 249.811 0.070 0.945
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CHAPTER 8

Conclusion

This paper attempted to explain and predict attendance by using a linear regression model

with an attendance response variable that was standardized by each team-season. The model

was compared to a linear mixed-effects regression model with each team-season as a random

effect and the raw attendance number as the response variable, and the first model was found

to consistently outperform the mixed-effects model. A team-season standardized attendance

response variable may initially seem more difficult to interpret, but it is more informative

than a raw attendance number. For example, an increase of 4,000 people is significantly

different for a team with an average attendance of 10,000 and standard deviation of 2,000

than a team with an average attendance of 40,000 and a standard deviation of 8,000. A

team-season standardized attendance response variable can better predict attendance for

teams with relatively low or high variation in attendance.

The number of wins in a team’s previous 10 home games was shown to be a statistically

significant predictor of attendance, and it performed better than similar recent performance

variables that involved a fewer number of games, both home and away games, or runs or home

runs in place of wins; however, this variable was not shown to have any practically significant

effect on attendance. Additionally, it was shown that the predictive performance of the

models did not have much of a practical decrease (although the decrease was statistically

significant) when simplifying the models even further. In the end, it was determined that

the visiting team, day of week, time of day, and month can be used to provide a reasonable

estimate of the attendance of a Major League Baseball game.
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CHAPTER 9

Limitations and Future Work

This paper explored the reasons behind changes in within-season attendance. Most of the

factors that were examined in this paper were related to the opponent, the scheduling of the

games, and the performance of both the home and visiting teams. There are many other

factors that likely have both practically and statistically significant effects on attendance but

were not available in the dataset used in this paper. Smith and Groetzinger showed that

temperature not surprisingly had a positive effect on attendance (2010). They also attempted

to estimate the effect of promotions on attendance, but despite seeing large attendance

increases for games with promotions, they were unable to produce significant results due to

the lack of availability of sufficient data.

A seemingly obvious predictor of attendance is the price of the tickets. Unfortunately,

there is no perfect way to estimate this variable. Ticket prices vary from seat to seat,

and close seats can cost several times more than seats in the higher sections. To further

complicate matters, ticket prices for the same seat can fluctuate from day to day, tickets can

be bought from multiple different platforms, re-sale tickets would need to be accounted for

in some way, tickets can frequently be earned through promotions, and sometimes tickets are

given away for free to schools or youth baseball teams. Denaux et al. were able to include a

weighted average ticket price into their model but actually found it to be insignificant (2011),

so it seems ticket prices may not currently vary enough to noticeably impact attendance,

indicating that teams may need to decrease ticket prices more dramatically if they desire to

increase attendance.

Ormiston studied the effect of both the home and visiting starting pitchers on attendance
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and found statistically and practically significant results (2014). He determined that top tier

starting pitchers increased attendance by an average of 8-9% compared to an average pitcher,

and that the starting visiting pitcher can be more significant that the starting home pitcher.

This paper decided against including starting pitcher or other player information because of

the difficulty of identifying the star power of players and the significant increase in model

complexity.

Other suggestions for factors to explore include the weather of the game day, if the

stadium has protection from bad weather, if the game is scheduled on a holiday, if and

where the game is televised, and if a superstar player has been added to the roster or

became injured and cannot play.

It would also be interesting to look into actual attendance versus the number of tickets

sold and factors that influence changes in this ratio, but actual attendance data is not

available, so studies have had to use the official reported attendance. Bad weather likely

increases the gap between actual attendance and tickets sold, but high average ticket prices

probably reduce this gap.

This paper attempted to summarize the factors that influence changes in attendance

within a season in general, but it would interesting to compare the effects of these factors

from team to team. Southern California teams are likely less impacted by the month due to

less dramatic changes in weather, and the day of week and time of day likely have slightly

different effects in different regions of the United States. The effect of the visiting team

surely varies from team to team considering rivalry games see increased attendance in all

sports.

The most practically useful analysis of attendance would be an analysis of a single team

done by someone with access to promotional data and detailed ticket pricing information.

These two variables are of significant interest because they can easily be controlled by the

team. An analysis of a single team would also allow for a more specific understanding of the

effects of the month, day of week, time of day, and particular visiting team on that home

team’s attendance; a team specific analysis would also be better suited to include information
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on the starting home pitcher and other player details.

Finally, linear regression and mixed-effects regression models were used in favor of ma-

chine learning methods because an understanding of how attendance varies was the primary

motivation, but machine learning methods can be used to more accurately predict attendance

if that is the desired goal.
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CHAPTER 10

Code Appendix

10.1 Dataset Creation

The following is the R code that was used to prepare the dataset for this analysis.

# Import datasets and combine.

first_season = 2004

last_season = 2018

data = data.frame()

for (i in first_season:last_season) {

data = rbind(data, read.csv(paste("gl1871_2018/GL", i, ".TXT", sep = ""),

header = F, stringsAsFactors = F))

}

# Florida Marlins became Miami Marlins.

data[data$V4 == "FLO", "V4"] = "MIA"

data[data$V7 == "FLO", "V7"] = "MIA"

# Montreal Expos became Washingtion Nationals.

data[data$V4 == "MON", "V4"] = "WAS"

data[data$V7 == "MON", "V7"] = "WAS"

# Add missing attendance number.

data[data$V1 == 20170621 & data$V7 == "NYA", "V18"] = 39911
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# Create date variables.

data$V1 = as.Date(as.character(data$V1), tryFormats = "%Y%m%d")

data$year = as.numeric(format(data$V1, "%Y"))

data$month = as.numeric(format(data$V1, "%m"))

# Calculate game at home number.

data$id = as.numeric(rownames(data))

data$game_at_home_number = NA

teams = unique(data[, c("V7", "year")])

for (i in 1:nrow(teams)) {

ids = data[data$V7 == teams[i, "V7"] & data$year == teams[i, "year"], "id"]

for (j in 1:length(ids)) {

data[ids[j], "game_at_home_number"] = j

}

}

# Determine winner of each game.

data$winner = NA

for (i in 1:nrow(data)) {

if (data[i, "V11"] > data[i, "V10"]) {

data[i, "winner"] = "H"

} else if (data[i, "V10"] > data[i, "V11"]) {

data[i, "winner"] = "V"

} else {

data[i, "winner"] = "T"

}

}

# Calculate win percentages.

data$visitor_wins = NA
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data$visitor_losses = NA

data$visitor_wins_last_season = NA

data$visitor_losses_last_season = NA

data$home_wins = NA

data$home_losses = NA

data$home_wins_last_season = NA

data$home_losses_last_season = NA

data$wins_at_home = NA

data$losses_at_home = NA

data$wins_at_home_last_season = NA

data$losses_at_home_last_season = NA

for (i in first_season:last_season) {

teams = unique(data[data$year == i, "V4"])

for (j in 1:length(teams)) {

ids = data[data$year == i & (data$V4 == teams[j] | data$V7 == teams[j]),

"id"]

wins = 0

losses = 0

wins_at_home = 0

losses_at_home = 0

for (k in 1:length(ids)) {

if (data[ids[k], "V4"] == teams[j]) {

data[ids[k], "visitor_wins"] = wins

data[ids[k], "visitor_losses"] = losses

if (data[ids[k], "winner"] == "V") {

wins = wins + 1

} else if (data[ids[k], "winner"] == "H") {

losses = losses + 1

}

} else {
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data[ids[k], "home_wins"] = wins

data[ids[k], "home_losses"] = losses

data[ids[k], "wins_at_home"] = wins_at_home

data[ids[k], "losses_at_home"] = losses_at_home

if (data[ids[k], "winner"] == "H") {

wins = wins + 1

wins_at_home = wins_at_home + 1

} else if (data[ids[k], "winner"] == "V") {

losses = losses + 1

losses_at_home = losses_at_home + 1

}

}

}

data[data$year == i + 1 & data$V4 == teams[j],

"visitor_wins_last_season"] = wins

data[data$year == i + 1 & data$V4 == teams[j],

"visitor_losses_last_season"] = losses

data[data$year == i + 1 & data$V7 == teams[j],

"home_wins_last_season"] = wins

data[data$year == i + 1 & data$V7 == teams[j],

"home_losses_last_season"] = losses

data[data$year == i + 1 & data$V7 == teams[j],

"wins_at_home_last_season"] = wins_at_home

data[data$year == i + 1 & data$V7 == teams[j],

"losses_at_home_last_season"] = losses_at_home

}

}

data$visitor_win_percent = data$visitor_wins / (data$visitor_wins +

data$visitor_losses)

data$home_win_percent = data$home_wins / (data$home_wins +
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data$home_losses)

data$win_at_home_percent = data$wins_at_home / (data$wins_at_home +

data$losses_at_home)

data$visitor_win_percent_last_season = data$visitor_wins_last_season /

(data$visitor_wins_last_season + data$visitor_losses_last_season)

data$home_win_percent_last_season = data$home_wins_last_season /

(data$home_wins_last_season + data$home_losses_last_season)

data$win_at_home_percent_last_season = data$wins_at_home_last_season /

(data$wins_at_home_last_season + data$losses_at_home_last_season)

# Calculate game number in the series.

data$series = NA

teams = unique(data[, c("V7", "year")])

for (i in 1:nrow(teams)) {

ids = data[data$V7 == teams[i, "V7"] & data$year == teams[i, "year"], "id"]

data[ids[1], "series"] = 1

for (j in 2:length(ids)) {

if (data[ids[j], "V4"] == data[ids[j - 1], "V4"]) {

data[ids[j], "series"] = data[ids[j - 1], "series"] + 1

} else {

data[ids[j], "series"] = 1

}

}

}

# Calculate home team wins in last n games.

data$wins_in_last_1 = NA

data$wins_in_last_2 = NA

data$wins_in_last_3 = NA

data$wins_in_last_4 = NA
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data$wins_in_last_5 = NA

data$wins_in_last_6 = NA

data$wins_in_last_7 = NA

data$wins_in_last_8 = NA

data$wins_in_last_9 = NA

data$wins_in_last_10 = NA

var_names = c("wins_in_last_1", "wins_in_last_2", "wins_in_last_3",

"wins_in_last_4", "wins_in_last_5", "wins_in_last_6",

"wins_in_last_7", "wins_in_last_8", "wins_in_last_9",

"wins_in_last_10")

for (i in 1:nrow(teams)) {

ids = data[(data$V4 == teams[i, "V7"] | data$V7 == teams[i, "V7"])

& data$year == teams[i, "year"] & data$winner != "T", "id"]

for (j in 2:length(ids)) {

if (data[ids[j], "V7"] == teams[i, "V7"]) {

wins = 0

games = 0

for (k in (j - 1):(j - 10)) {

if (k > 0) {

games = games + 1

if (data[ids[k], "V4"] == teams[i, "V7"] & data[ids[k],

"winner"] == "V"

| data[ids[k], "V7"] == teams[i, "V7"] & data[ids[k],

"winner"] == "H") {

wins = wins + 1

}

data[ids[j], var_names[games]] = wins

}

}

}
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}

}

# Calculate home team wins in last n home games.

data$wins_in_last_1_home = NA

data$wins_in_last_2_home = NA

data$wins_in_last_3_home = NA

data$wins_in_last_4_home = NA

data$wins_in_last_5_home = NA

data$wins_in_last_6_home = NA

data$wins_in_last_7_home = NA

data$wins_in_last_8_home = NA

data$wins_in_last_9_home = NA

data$wins_in_last_10_home = NA

var_names = c("wins_in_last_1_home", "wins_in_last_2_home",

"wins_in_last_3_home", "wins_in_last_4_home",

"wins_in_last_5_home", "wins_in_last_6_home",

"wins_in_last_7_home", "wins_in_last_8_home",

"wins_in_last_9_home", "wins_in_last_10_home")

for (i in 1:nrow(teams)) {

ids = data[data$V7 == teams[i, "V7"] & data$year == teams[i, "year"]

& data$winner != "T", "id"]

for (j in 2:length(ids)) {

wins = 0

games = 0

for (k in (j - 1):(j - 10)) {

if (k > 0) {

games = games + 1

if (data[ids[k], "winner"] == "H") {

wins = wins + 1
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}

data[ids[j], var_names[games]] = wins

}

}

}

}

# Calculate home team runs in last n games.

data$runs_in_last_1 = NA

data$runs_in_last_2 = NA

data$runs_in_last_3 = NA

data$runs_in_last_4 = NA

data$runs_in_last_5 = NA

data$runs_in_last_6 = NA

data$runs_in_last_7 = NA

data$runs_in_last_8 = NA

data$runs_in_last_9 = NA

data$runs_in_last_10 = NA

var_names = c("runs_in_last_1", "runs_in_last_2", "runs_in_last_3",

"runs_in_last_4", "runs_in_last_5", "runs_in_last_6",

"runs_in_last_7", "runs_in_last_8", "runs_in_last_9",

"runs_in_last_10")

for (i in 1:nrow(teams)) {

ids = data[(data$V4 == teams[i, "V7"] | data$V7 == teams[i, "V7"])

& data$year == teams[i, "year"], "id"]

for (j in 2:length(ids)) {

if (data[ids[j], "V7"] == teams[i, "V7"]) {

runs = 0

games = 0

for (k in (j - 1):(j - 10)) {
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if (k > 0) {

games = games + 1

if (data[ids[k], "V4"] == teams[i, "V7"]) {

runs = runs + data[ids[k], "V10"]

} else {

runs = runs + data[ids[k], "V11"]

}

data[ids[j], var_names[games]] = runs

}

}

}

}

}

# Calculate home team runs in last n home games.

data$runs_in_last_1_home = NA

data$runs_in_last_2_home = NA

data$runs_in_last_3_home = NA

data$runs_in_last_4_home = NA

data$runs_in_last_5_home = NA

data$runs_in_last_6_home = NA

data$runs_in_last_7_home = NA

data$runs_in_last_8_home = NA

data$runs_in_last_9_home = NA

data$runs_in_last_10_home = NA

var_names = c("runs_in_last_1_home", "runs_in_last_2_home",

"runs_in_last_3_home", "runs_in_last_4_home",

"runs_in_last_5_home", "runs_in_last_6_home",

"runs_in_last_7_home", "runs_in_last_8_home",

"runs_in_last_9_home", "runs_in_last_10_home")
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for (i in 1:nrow(teams)) {

ids = data[data$V7 == teams[i, "V7"] & data$year == teams[i, "year"], "id"]

for (j in 2:length(ids)) {

runs = 0

games = 0

for (k in (j - 1):(j - 10)) {

if (k > 0) {

games = games + 1

runs = runs + data[ids[k], "V11"]

data[ids[j], var_names[games]] = runs

}

}

}

}

# Calculate home team home runs in last n games.

data$home_runs_in_last_1 = NA

data$home_runs_in_last_2 = NA

data$home_runs_in_last_3 = NA

data$home_runs_in_last_4 = NA

data$home_runs_in_last_5 = NA

data$home_runs_in_last_6 = NA

data$home_runs_in_last_7 = NA

data$home_runs_in_last_8 = NA

data$home_runs_in_last_9 = NA

data$home_runs_in_last_10 = NA

var_names = c("home_runs_in_last_1", "home_runs_in_last_2",

"home_runs_in_last_3", "home_runs_in_last_4",

"home_runs_in_last_5", "home_runs_in_last_6",

"home_runs_in_last_7", "home_runs_in_last_8",
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"home_runs_in_last_9", "home_runs_in_last_10")

for (i in 1:nrow(teams)) {

ids = data[(data$V4 == teams[i, "V7"] | data$V7 == teams[i, "V7"])

& data$year == teams[i, "year"], "id"]

for (j in 2:length(ids)) {

if (data[ids[j], "V7"] == teams[i, "V7"]) {

hr = 0

games = 0

for (k in (j - 1):(j - 10)) {

if (k > 0) {

games = games + 1

if (data[ids[k], "V4"] == teams[i, "V7"]) {

hr = hr + data[ids[k], "V26"]

} else {

hr = hr + data[ids[k], "V54"]

}

data[ids[j], var_names[games]] = hr

}

}

}

}

}

# Calculate home team home runs in last n home games.

data$home_runs_in_last_1_home = NA

data$home_runs_in_last_2_home = NA

data$home_runs_in_last_3_home = NA

data$home_runs_in_last_4_home = NA

data$home_runs_in_last_5_home = NA

data$home_runs_in_last_6_home = NA
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data$home_runs_in_last_7_home = NA

data$home_runs_in_last_8_home = NA

data$home_runs_in_last_9_home = NA

data$home_runs_in_last_10_home = NA

var_names = c("home_runs_in_last_1_home", "home_runs_in_last_2_home",

"home_runs_in_last_3_home", "home_runs_in_last_4_home",

"home_runs_in_last_5_home", "home_runs_in_last_6_home",

"home_runs_in_last_7_home", "home_runs_in_last_8_home",

"home_runs_in_last_9_home", "home_runs_in_last_10_home")

for (i in 1:nrow(teams)) {

ids = data[data$V7 == teams[i, "V7"] & data$year == teams[i, "year"], "id"]

for (j in 2:length(ids)) {

hr = 0

games = 0

for (k in (j - 1):(j - 10)) {

if (k > 0) {

games = games + 1

hr = hr + data[ids[k], "V54"]

data[ids[j], var_names[games]] = hr

}

}

}

}

# Calculate wins_in_last_n and wins_in_last_n_home variables for tie games.

ties = data[data$winner == "T", c("V7", "year", "V9", "game_at_home_number",

"id")]

var_names = c("wins_in_last_1", "wins_in_last_2", "wins_in_last_3",

"wins_in_last_4", "wins_in_last_5", "wins_in_last_6",

"wins_in_last_7", "wins_in_last_8", "wins_in_last_9",
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"wins_in_last_10")

for (i in 1:nrow(ties)) {

ids = data[(data$V4 == ties[i, "V7"] | data$V7 == ties[i, "V7"])

& data$year == ties[i, "year"], "id"]

for (j in 1:10) {

wins = 0

for (k in (ties[i, "V9"] - j):(ties[i, "V9"] - 1)) {

if (data[ids[k], "V4"] == ties[i, "V7"] & data[ids[k], "winner"] == "V"

| data[ids[k], "V7"] == ties[i, "V7"] & data[ids[k],

"winner"] == "H") {

wins = wins + 1

}

}

data[ties[i, "id"], var_names[j]] = wins

}

}

var_names = c("wins_in_last_1_home", "wins_in_last_2_home",

"wins_in_last_3_home", "wins_in_last_4_home",

"wins_in_last_5_home", "wins_in_last_6_home",

"wins_in_last_7_home", "wins_in_last_8_home",

"wins_in_last_9_home", "wins_in_last_10_home")

for (i in 1:nrow(ties)) {

ids = data[data$V7 == ties[i, "V7"] & data$year == ties[i, "year"], "id"]

for (j in 1:10) {

wins = 0

for (k in (ties[i, "game_at_home_number"] - j):

(ties[i, "game_at_home_number"] - 1)) {

if (data[ids[k], "winner"] == "H") {

wins = wins + 1

}
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}

data[ties[i, "id"], var_names[j]] = wins

}

}

# Create Divisions.

data[data$V4 %in% c("ARI", "COL", "LAN", "SDN", "SFN"), "visiting_division"] =

"NW"

data[data$V7 %in% c("ARI", "COL", "LAN", "SDN", "SFN"), "home_division"] = "NW"

data[data$V4 %in% c("CHN", "CIN", "MIL", "PIT", "SLN"), "visiting_division"] =

"NC"

data[data$V7 %in% c("CHN", "CIN", "MIL", "PIT", "SLN"), "home_division"] = "NC"

data[data$V4 %in% c("ATL", "MIA", "NYN", "PHI", "WAS"), "visiting_division"] =

"NE"

data[data$V7 %in% c("ATL", "MIA", "NYN", "PHI", "WAS"), "home_division"] = "NE"

data[data$V4 %in% c("ANA", "HOU", "OAK", "SEA", "TEX"), "visiting_division"] =

"AW"

data[data$V7 %in% c("ANA", "HOU", "OAK", "SEA", "TEX"), "home_division"] = "AW"

data[data$V4 %in% c("CHA", "CLE", "DET", "KCA", "MIN"), "visiting_division"] =

"AC"

data[data$V7 %in% c("CHA", "CLE", "DET", "KCA", "MIN"), "home_division"] = "AC"

data[data$V4 %in% c("BAL", "BOS", "NYA", "TBA", "TOR"), "visiting_division"] =

"AE"

data[data$V7 %in% c("BAL", "BOS", "NYA", "TBA", "TOR"), "home_division"] = "AE"

data[data$V4 == "HOU" & data$year <= 2012, "visiting_division"] = "NC"

data[data$V7 == "HOU" & data$year <= 2012, "home_division"] = "NC"

data$same_league = data$V5 == data$V8

data$same_division = data$visiting_division == data$home_division

# Save the full dataset.
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#write.csv(data, "gl2004_2018_full.csv", row.names = F)

#data = read.csv("gl2004_2018_full.csv", stringsAsFactors = F)

# Remove unnecessary variables.

data = data[, c(1:5, 7:9, 13, 17, 18, 102, 104, 162:163, 165, 179:249)]

# Name unnamed variables.

names(data)[c(1:13)] = c("date", "game_of_day", "day_of_week", "visiting_team",

"visiting_league", "home_team", "home_league",

"home_game_number", "day_or_night", "park_id",

"attendance", "vp_id", "hp_id")

# Ignore the game that was closed to the public.

data = data[!is.na(data$attendance), ]

# Ignore games before the 2005 season.

data = data[data$year >= 2005, ]

# Ignore the home games played in a different stadium.

data = data[!(data$park_id %in% c("FTB01", "LBV01", "MNT01", "SJU01", "SYD01",

"TOK01", "WIL02")), ]

data = data[!(data$home_team == "BAL" & data$park_id == "STP01"), ]

data = data[!(data$home_team == "CIN" & data$park_id == "SFO03"), ]

data = data[!(data$home_team == "CLE" & data$park_id == "MIL06"), ]

data = data[!(data$home_team == "HOU" & data$park_id %in% c("MIL06", "STP01")),

]

data = data[!(data$home_team == "MIA" & data$park_id %in% c("SEA03", "MIL06")),

]

data = data[!(data$home_team == "TBA" & data$park_id == "NYC20"), ]

data = data[!(data$home_team == "TOR" & data$park_id == "PHI13"), ]
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# Ignore double-headers.

data = data[data$game_of_day == 0, ]

# Ignore tie-breaker games.

data = data[data$game_at_home_number != 82 | data$home_game_number != 163, ]

# Ignore the first true home game of the season.

data = data[data$game_at_home_number != 1, ]

data = data[data$home_team != "OAK" | data$year != 2008 |

data$game_at_home_number != 3, ]

data = data[data$home_team != "OAK" | data$year != 2012 |

data$game_at_home_number != 3, ]

data = data[data$home_team != "ARI" | data$year != 2014 |

data$game_at_home_number != 3, ]

# Set the max of series to be 4 since few series are longer than 4 games.

data[data$series > 4, "series"] = 4

# Set win percents to percents last season for first 10 games.

data[data$home_game_number <= 10, "visitor_win_percent"] =

data[data$home_game_number <= 10, "visitor_win_percent_last_season"]

data[data$home_game_number <= 10, "home_win_percent"] =

data[data$home_game_number <= 10, "home_win_percent_last_season"]

data[data$game_at_home_number <= 10, "win_at_home_percent"] =

data[data$game_at_home_number <= 10, "win_at_home_percent_last_season"]

# Standardize attendance within team-year.

d1 = tapply(data$attendance, list(data$home_team, data$year), mean)

d2 = tapply(data$attendance, list(data$home_team, data$year), sd)
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for (i in 1:nrow(d1)) {

for (j in 1:ncol(d1)) {

data[data$home_team == rownames(d1)[i] & data$year ==

as.numeric(colnames(d1)[j]), "mean_attendance"] = d1[i, j]

data[data$home_team == rownames(d2)[i] & data$year ==

as.numeric(colnames(d2)[j]), "sd_attendance"] = d2[i, j]

}

}

data$z_attendance = (data$attendance - data$mean_attendance) /

data$sd_attendance

# Re-order the variables.

data = data[, c(11, 6, 10, 14:15, 3, 9, 8, 16, 4, 84, 87, 5, 86, 85, 7, 13, 12,

23, 1, 17:22, 24:83, 88:90)]

# Save the dataset.

write.csv(data, "gl2005_2018.csv", row.names = F)
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10.2 Variable Selection

The following is the R code that was used to perform variable selection.

# Import the dataset.

data = read.csv("gl2005_2018.csv", stringsAsFactors = F)

data$year = as.character(data$year)

data$month = as.factor(data$month)

data$day_of_week = factor(data$day_of_week, levels

= c("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"))

data = na.omit(data)

# Standardize attendance within team-year.

d1 = tapply(data$attendance, list(data$home_team, data$year), mean)

d2 = tapply(data$attendance, list(data$home_team, data$year), sd)

for (i in 1:nrow(d1)) {

for (j in 1:ncol(d1)) {

data[data$home_team == rownames(d1)[i] & data$year ==

as.numeric(colnames(d1)[j]), "mean_attendance"] = d1[i, j]

data[data$home_team == rownames(d2)[i] & data$year ==

as.numeric(colnames(d2)[j]), "sd_attendance"] = d2[i, j]

}

}

data$z_attendance = (data$attendance - data$mean_attendance) /

data$sd_attendance

# Look at which predictors are significant overall.

library(glmnet)

set.seed(1)

d = data[, c(89, 5:8, 10, 12, 14, 19, 21:24, 27:86)]

x = model.matrix(z_attendance ~ . + day_of_week * day_or_night - 1, d)
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y = d$z_attendance

m = cv.glmnet(x, y)

coef(m, s = 2 * (m$lambda.1se - m$lambda.min) + m$lambda.min)

predictors = data.frame()

p = coef(m, s = 2 * (m$lambda.1se - m$lambda.min) + m$lambda.min)

for (j in 1:length(p@i)) {

r = data.frame(predictor = p@Dimnames[[1]][p@i[j] + 1], beta = p@x[j],

stringsAsFactors = F)

predictors = rbind(predictors, r)

}

predictors$variable = predictors$predictor

predictors[substr(predictors$variable, 16, 27) == "day_or_night",

"variable"] = "day_or_night:day_of_week"

predictors[substr(predictors$variable, 1, 5) == "month", "variable"] = "month"

predictors[substr(predictors$variable, 1, 11) == "day_of_week",

"variable"] = "day_of_week"

predictors[substr(predictors$variable, 1, 13) == "visiting_team",

"variable"] = "visiting_team"

unique(predictors$variable)

# Look at which predictors are significant for each stadium.

parks = sort(unique(data$park_id))

park_predictors = data.frame()

set.seed(1)

for (i in 1:length(parks)) {

d = data[data$park_id == parks[i], c(89, 5:8, 10, 12, 14, 19, 21:24, 27:86)]

x = model.matrix(z_attendance ~ . + day_of_week * day_or_night - 1, d)

y = d$z_attendance

m = cv.glmnet(x, y)

p = coef(m, s = 2 * (m$lambda.1se - m$lambda.min) + m$lambda.min)
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for (j in 1:length(p@i)) {

r = data.frame(park_id = parks[i], predictor = p@Dimnames[[1]][p@i[j] + 1],

beta = p@x[j], stringsAsFactors = F)

park_predictors = rbind(park_predictors, r)

}

}

sort(table(park_predictors$predictor), decreasing = T)

round(sort(table(park_predictors$predictor) * 100 / length(parks),

decreasing = T))

park_predictors$variable = park_predictors$predictor

park_predictors[substr(park_predictors$variable, 16, 27) == "day_or_night",

"variable"] = "day_or_night:day_of_week"

park_predictors[substr(park_predictors$variable, 1, 5) == "month",

"variable"] = "month"

park_predictors[substr(park_predictors$variable, 1, 11) == "day_of_week",

"variable"] = "day_of_week"

park_predictors[substr(park_predictors$variable, 1, 13) == "visiting_team",

"variable"] = "visiting_team"

d = unique(cbind(park_predictors$park_id, park_predictors$variable))

round(sort(table(d[, 2]) * 100 / length(parks), decreasing = T))

# Look at which predictors are significant for each year for each team.

seasons = unique(cbind(data$home_team, data$year))

season_predictors = data.frame()

set.seed(1)

for (i in 1:nrow(seasons)) {

d = data[data$home_team == seasons[i, 1] & data$year == seasons[i, 2],

c(89, 5:8, 10, 12, 14, 19, 21:24, 27:86)]

x = model.matrix(z_attendance ~ . + day_of_week * day_or_night - 1, d)

y = d$z_attendance
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m = cv.glmnet(x, y)

p = coef(m, s = 2 * (m$lambda.1se - m$lambda.min) + m$lambda.min)

for (j in 1:length(p@i)) {

r = data.frame(home_team = seasons[i, 1], year = seasons[i, 2],

predictor = p@Dimnames[[1]][p@i[j] + 1], beta = p@x[j],

stringsAsFactors = F)

season_predictors = rbind(season_predictors, r)

}

}

sort(table(season_predictors$predictor), decreasing = T)

round(sort(table(season_predictors$predictor) * 100 / nrow(seasons),

decreasing = T), 1)

season_predictors$variable = season_predictors$predictor

season_predictors[substr(season_predictors$variable, 16, 27) == "day_or_night",

"variable"] = "day_or_night:day_of_week"

season_predictors[substr(season_predictors$variable, 1, 5) == "month",

"variable"] = "month"

season_predictors[substr(season_predictors$variable, 1, 11) == "day_of_week",

"variable"] = "day_of_week"

season_predictors[substr(season_predictors$variable, 1, 13) == "visiting_team",

"variable"] = "visiting_team"

d = unique(cbind(season_predictors$home_team, season_predictors$year,

season_predictors$variable))

round(sort(table(d[, 3]) * 100 / nrow(seasons), decreasing = T), 1)
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10.3 Model Fitting and Prediction

The following is the R code that was used to fit the models and make predictions.

# Import the dataset.

data = read.csv("gl2005_2018.csv", stringsAsFactors = F)

data$year = as.factor(data$year)

data$month = as.factor(data$month)

data$day_of_week = factor(data$day_of_week, levels

= c("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"))

# Split dataset into training and testing data.

set.seed(1)

ids = sample(1:nrow(na.omit(data)), round(0.8 * nrow(na.omit(data))))

train = na.omit(data)[ids, ]

# Standardize attendance within team-year.

d1 = tapply(train$attendance, list(train$home_team, train$year), mean)

d2 = tapply(train$attendance, list(train$home_team, train$year), sd)

for (i in 1:nrow(d1)) {

for (j in 1:ncol(d1)) {

data[data$home_team == rownames(d1)[i] & data$year ==

as.numeric(colnames(d1)[j]), "mean_attendance"] = d1[i, j]

data[data$home_team == rownames(d2)[i] & data$year ==

as.numeric(colnames(d2)[j]), "sd_attendance"] = d2[i, j]

}

}

data$z_attendance = (data$attendance - data$mean_attendance) /

data$sd_attendance

train = na.omit(data)[ids, ]

test = na.omit(data)[-ids, ]
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# Calculate error for full model.

m = lm(z_attendance ~ . + day_of_week * day_or_night,

train[, c(89, 5:8, 10, 12, 14, 21:22, 24, 46)])

test$predicted = predict(m, test)

test$predicted = test$mean_attendance + test$predicted * test$sd_attendance

mean(abs((test$attendance - test$predicted) / test$attendance))

# 0.1292055

library(lme4)

m = lmer(paste("attendance ~", paste(names(train[c(5:8, 10, 12, 14, 21:22, 24,

46)]), collapse = " + "),

"+ day_of_week * day_or_night + (1 | home_team:year)"), train)

test$predicted = predict(m, test)

mean(abs((test$attendance - test$predicted) / test$attendance))

# 0.1405396

# Calculate error for model without recent performance variable.

m = lm(z_attendance ~ . + day_of_week * day_or_night,

train[, c(89, 5:8, 10, 12, 14, 21:22, 24)])

test$predicted = predict(m, test)

test$predicted = test$mean_attendance + test$predicted * test$sd_attendance

mean(abs((test$attendance - test$predicted) / test$attendance))

# 0.1292573

m = lmer(paste("attendance ~", paste(names(train[c(5:8, 10, 12, 14, 21:22,

24)]), collapse = " + "),

"+ day_of_week * day_or_night + (1 | home_team:year)"), train)

test$predicted = predict(m, test)

mean(abs((test$attendance - test$predicted) / test$attendance))

# 0.1405457
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# Test for statistical significance.

anova(lm(z_attendance ~ . + day_of_week * day_or_night,

train[, c(89, 5:8, 10, 12, 14, 21:22, 24)]),

lm(z_attendance ~ . + day_of_week * day_or_night,

train[, c(89, 5:8, 10, 12, 14, 21:22, 24, 46)]))

# Split full dataset into training and testing data.

set.seed(1)

ids = sample(1:nrow(data), round(0.8 * nrow(data)))

train = data[ids, ]

# Standardize attendance within team-year.

d1 = tapply(train$attendance, list(train$home_team, train$year), mean)

d2 = tapply(train$attendance, list(train$home_team, train$year), sd)

for (i in 1:nrow(d1)) {

for (j in 1:ncol(d1)) {

data[data$home_team == rownames(d1)[i] & data$year ==

as.numeric(colnames(d1)[j]), "mean_attendance"] = d1[i, j]

data[data$home_team == rownames(d2)[i] & data$year ==

as.numeric(colnames(d2)[j]), "sd_attendance"] = d2[i, j]

}

}

data$z_attendance = (data$attendance - data$mean_attendance) /

data$sd_attendance

train = data[ids, ]

test = data[-ids, ]

# Calculate error for baseline.

mean(abs(test$attendance - test$mean_attendance) / test$attendance)

# 0.1948383
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# Calculate error for full model without recent performance variable.

m = lm(z_attendance ~ . + day_of_week * day_or_night,

train[, c(89, 5:8, 10, 12, 14, 21:22, 24)])

test$predicted = predict(m, test)

test$predicted = test$mean_attendance + test$predicted * test$sd_attendance

mean(abs((test$attendance - test$predicted) / test$attendance))

# 0.13155

m = lmer(paste("attendance ~", paste(names(train[c(5:8, 10, 12, 14, 21:22,

24)]), collapse = " + "),

"+ day_of_week * day_or_night + (1 | home_team:year)"), train)

test$predicted = predict(m, test)

mean(abs((test$attendance - test$predicted) / test$attendance))

# 0.1440838

# Calculate error for final subset model.

m = lm(z_attendance ~ . + day_of_week * day_or_night, train[, c(89, 5:7, 10)])

test$predicted = predict(m, test)

test$predicted = test$mean_attendance + test$predicted * test$sd_attendance

mean(abs((test$attendance - test$predicted) / test$attendance))

# 0.1358207

m = lmer(attendance ~ visiting_team + month + day_of_week * day_or_night

+ (1 | home_team:year), train)

test$predicted = predict(m, test)

mean(abs((test$attendance - test$predicted) / test$attendance))

# 0.1471885

# Test for statistical significance.

anova(lm(z_attendance ~ . + day_of_week * day_or_night, train[, c(89, 5:7, 10)])

, lm(z_attendance ~ . + day_of_week * day_or_night,

58



train[, c(89, 5:8, 10, 12, 14, 21:22, 24)]))

# Use the most recent year as testing data.

train = data[data$year != 2018, ]

# Standardize attendance within team-year.

d1 = tapply(train$attendance, list(train$home_team, train$year), mean)

d1[, ncol(d1)] = d1[, ncol(d1) - 1]

d2 = tapply(train$attendance, list(train$home_team, train$year), sd)

d2[, ncol(d2)] = d2[, ncol(d2) - 1]

for (i in 1:nrow(d1)) {

for (j in 1:ncol(d1)) {

data[data$home_team == rownames(d1)[i] & data$year ==

as.numeric(colnames(d1)[j]), "mean_attendance"] = d1[i, j]

data[data$home_team == rownames(d2)[i] & data$year ==

as.numeric(colnames(d2)[j]), "sd_attendance"] = d2[i, j]

}

}

data$z_attendance = (data$attendance - data$mean_attendance) /

data$sd_attendance

train = data[data$year != 2018, ]

test = data[data$year == 2018 & data$month != 3, ]

# Calculate error for baseline.

mean(abs(test$attendance - test$mean_attendance) / test$attendance)

# 0.2834097

# Calculate error for attendance of new year.

m = lm(z_attendance ~ . + day_of_week * day_or_night, train[, c(89, 5:7, 10)])

test$predicted = predict(m, test)
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test$predicted = test$mean_attendance + test$predicted * test$sd_attendance

mean(abs((test$attendance - test$predicted) / test$attendance))

# 0.2253636

m = lmer(attendance ~ visiting_team + month + day_of_week * day_or_night

+ (1 | home_team:year), train)

test$year = 2017

test$predicted = predict(m, test)

mean(abs((test$attendance - test$predicted) / test$attendance))

# 0.2282362

# Use the true mean and standard deviation of test attendance for prediction.

d1 = tapply(data$attendance, list(data$home_team, data$year), mean)

d2 = tapply(data$attendance, list(data$home_team, data$year), sd)

for (i in 1:nrow(d1)) {

for (j in 1:ncol(d1)) {

data[data$home_team == rownames(d1)[i] & data$year ==

as.numeric(colnames(d1)[j]), "mean_attendance"] = d1[i, j]

data[data$home_team == rownames(d2)[i] & data$year ==

as.numeric(colnames(d2)[j]), "sd_attendance"] = d2[i, j]

}

}

data$z_attendance = (data$attendance - data$mean_attendance) /

data$sd_attendance

train = data[data$year != 2018, ]

test = data[data$year == 2018 & data$month != 3, ]

# Calculate error for baseline.

mean(abs(test$attendance - test$mean_attendance) / test$attendance)

# 0.2042132
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# Calculate error for attendance of new year.

m = lm(z_attendance ~ . + day_of_week * day_or_night, train[, c(89, 5:7, 10)])

test$predicted = predict(m, test)

test$predicted = test$mean_attendance + test$predicted * test$sd_attendance

mean(abs((test$attendance - test$predicted) / test$attendance))

# 0.1345861

# Only use Dodgers data.

data = data[data$home_team == "LAN", ]

# Split Dodgers dataset into training and testing data.

set.seed(1)

ids = sample(1:nrow(data), round(0.8 * nrow(data)))

train = data[ids, ]

# Standardize attendance within team-year.

d1 = tapply(train$attendance, list(train$home_team, train$year), mean)

d2 = tapply(train$attendance, list(train$home_team, train$year), sd)

for (i in 1:nrow(d1)) {

for (j in 1:ncol(d1)) {

data[data$home_team == rownames(d1)[i] & data$year ==

as.numeric(colnames(d1)[j]), "mean_attendance"] = d1[i, j]

data[data$home_team == rownames(d2)[i] & data$year ==

as.numeric(colnames(d2)[j]), "sd_attendance"] = d2[i, j]

}

}

data$z_attendance = (data$attendance - data$mean_attendance) /

data$sd_attendance

train = data[ids, ]

test = data[-ids, ]
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# Calculate error for Dodgers baseline.

mean(abs(test$attendance - test$mean_attendance) / test$attendance)

# 0.1066077

# Calculate error for Dodgers model.

m = lm(z_attendance ~ . + day_of_week * day_or_night, train[, c(89, 5:7, 10)])

test$predicted = predict(m, test)

test$predicted = test$mean_attendance + test$predicted * test$sd_attendance

mean(abs((test$attendance - test$predicted) / test$attendance))

# 0.09098148

m = lmer(attendance ~ visiting_team + month + day_of_week * day_or_night

+ (1 | year), train)

test$predicted = predict(m, test)

mean(abs((test$attendance - test$predicted) / test$attendance))

# 0.09194041

# Use the most recent year as testing data.

train = data[data$year != 2018, ]

# Standardize attendance within team-year.

d1 = tapply(train$attendance, list(train$home_team, train$year), mean)

d1[, ncol(d1)] = d1[, ncol(d1) - 1]

d2 = tapply(train$attendance, list(train$home_team, train$year), sd)

d2[, ncol(d2)] = d2[, ncol(d2) - 1]

for (i in 1:nrow(d1)) {

for (j in 1:ncol(d1)) {

data[data$home_team == rownames(d1)[i] & data$year ==

as.numeric(colnames(d1)[j]), "mean_attendance"] = d1[i, j]

data[data$home_team == rownames(d2)[i] & data$year ==
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as.numeric(colnames(d2)[j]), "sd_attendance"] = d2[i, j]

}

}

data$z_attendance = (data$attendance - data$mean_attendance) /

data$sd_attendance

train = data[data$year != 2018, ]

test = data[data$year == 2018 & data$month != 3, ]

# Calculate error for Dodgers baseline.

mean(abs(test$attendance - test$mean_attendance) / test$attendance)

# 0.07311782

# Calculate error for Dodgers attendance of new year.

m = lm(z_attendance ~ . + day_of_week * day_or_night, train[, c(89, 5:7, 10)])

test$predicted = predict(m, test)

test$predicted = test$mean_attendance + test$predicted * test$sd_attendance

mean(abs((test$attendance - test$predicted) / test$attendance))

# 0.06262847

m = lmer(attendance ~ visiting_team + month + day_of_week * day_or_night

+ (1 | year), train)

test$year = 2017

test$predicted = predict(m, test)

mean(abs((test$attendance - test$predicted) / test$attendance))

# 0.06547658

# Use the true mean and standard deviation of test attendance for prediction.

d1 = tapply(data$attendance, list(data$home_team, data$year), mean)

d2 = tapply(data$attendance, list(data$home_team, data$year), sd)

for (i in 1:nrow(d1)) {

for (j in 1:ncol(d1)) {
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data[data$home_team == rownames(d1)[i] & data$year ==

as.numeric(colnames(d1)[j]), "mean_attendance"] = d1[i, j]

data[data$home_team == rownames(d2)[i] & data$year ==

as.numeric(colnames(d2)[j]), "sd_attendance"] = d2[i, j]

}

}

data$z_attendance = (data$attendance - data$mean_attendance) /

data$sd_attendance

train = data[data$year != 2018, ]

test = data[data$year == 2018 & data$month != 3, ]

# Calculate error for Dodgers baseline.

mean(abs(test$attendance - test$mean_attendance) / test$attendance)

# 0.07415232

# Calculate error for Dodgers attendance of new year.

m = lm(z_attendance ~ . + day_of_week * day_or_night, train[, c(89, 5:7, 10)])

test$predicted = predict(m, test)

test$predicted = test$mean_attendance + test$predicted * test$sd_attendance

mean(abs((test$attendance - test$predicted) / test$attendance))

# 0.06181666

64



BIBLIOGRAPHY

[1] Davis, M. C. (2009). Analyzing the relationship between team success and MLB atten-
dance with GARCH effects. Journal of Sports Economics, 10(1):44–58.

[2] Denaux, Z. S., Denaux, D. A., and Yalcin, Y. (2011). Factors affecting attendance of
Major League Baseball: Revisited. Atlantic Economic Journal, 39(2):117–127.

[3] Meehan, J. W. Jr., Nelson, R. A., and Richardson, T. V. (2007). Competitive balance and
game attendance in Major League Baseball. Journal of Sports Economics, 8(6):563–580.

[4] Ormiston, R. (2014). Attendance effects of star pitchers in Major League Baseball.
Journal of Sports Economics, 15(4):338–364.

[5] Silver, N. (2006). Is Alex Rodriguez Overpaid?. In J. Keri (Ed.), Baseball by the Numbers
(174-98). New York: Basic Books.

[6] Smith, E. E. and Groetzinger, J. D. (2010). Do fans matter? The effect of attendance
on the outcomes of Major League Baseball games. Journal of Quantitative Analysis in
Sports, 6.

65




