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Abstract: Microbial natural products are important for the understanding of microbial interactions,
chemical defense and communication, and have also served as an inspirational source for numerous
pharmaceutical drugs. Tropical marine cyanobacteria have been highlighted as a great source of
new natural products, however, few reports have appeared wherein a multi-omics approach has
been used to study their natural products potential (i.e., reports are often focused on an individual
natural product and its biosynthesis). This study focuses on describing the natural product genetic
potential as well as the expressed natural product molecules in benthic tropical cyanobacteria. We
collected from several sites around the world and sequenced the genomes of 24 tropical filamentous
marine cyanobacteria. The informatics program antiSMASH was used to annotate the major classes
of gene clusters. BiG-SCAPE phylum-wide analysis revealed the most promising strains for natural
product discovery among these cyanobacteria. LCMS/MS-based metabolomics highlighted the most
abundant molecules and molecular classes among 10 of these marine cyanobacterial samples. We
observed that despite many genes encoding for peptidic natural products, peptides were not as
abundant as lipids and lipopeptides in the chemical extracts. Our results highlight a number of
highly interesting biosynthetic gene clusters for genome mining among these cyanobacterial samples.
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1. Introduction

Cyanobacteria are photosynthetic microbes that are abundant in a diverse range of
habitats and support critical life processes in oligotrophic environments via photosynthesis
and/or nitrogen fixation. Apart from their well-known importance in biogeochemical
cycles because of their primary metabolic characteristics, cyanobacteria are also a prolific
and sometimes distinctive source of secondary metabolites known as natural products
(NPs). NPs have been a major inspirational source of new pharmaceutical agents [1].
Despite the advent of new bioprospecting techniques to mine NPs [2], the number of
NPs discovered per year has remained relatively constant over the past decade [3]. The
number of novel structures isolated has also remained constant [3], despite continuing
investigation of under-explored habitats and microbial sources of NPs. As a complement
to new microbial sources, multi-omics can be a powerful tool for prioritizing and directing
the isolation of novel chemical entities from these organisms.

Notwithstanding the vast genetic diversity of cyanobacteria [4] and their different
roles in human and planetary health, genomic investigations have been unevenly dis-
tributed throughout this phylum [5]. We observed that about 61% (1172 out of 1923) of the
available National Center for Biotechnology Information (NCBI) strains that are from the
unicellular genera Prochlorococcus and Synechococcus (subsection II), probably due to their
ease of culturing, small genome sizes and their importance in oceanic nitrogen fixation and
photosynthesis [6]. Moreover, organisms from these genera usually are less contaminated
by associated heterotrophs in laboratory cultures. Finally, it has generally been found that
members of these genera have a small number of biosynthetic gene clusters (BGCs, known
for encoding the NP biosynthetic machinery in microbes). Altogether, these features tend
to facilitate genome sequencing and assembly [7,8]. However, these genera are less relevant
for genome mining and drug discovery efforts due to the low quantity and diversity of
their BGCs. This contrasts with the genus Moorea, renamed to Moorena by Tronholm &
Engene in 2019 [9], which on average, has a four-fold higher biosynthetic potential [10].
Reasons for the relative scarceness of sequenced NP rich cyanobacterial genomes may
result from difficulty in culturing these types of filamentous marine cyanobacteria, the
repetitive elements found in their genomes and their larger genome sizes.

In the present work, we took a multi-omics approach to profile the natural product
potential harbored in 24 marine cyanobacterial genomes and the expressed molecules
found in 10 of these (due to lack of material, not every sequenced sample could also
be analyzed via liquid chromatography tandem mass spectrometry, LC-MS/MS,). Such
a multi-omic approach is less common among cyanobacteria, with most studies being
focused on individual molecules and their associated biosynthetic genes. Our genomic
phylum-wide beta-diversity analysis highlighted the most promising BGCs and the most
natural product diverse strains among cyanobacteria. Metabolomics revealed the major
classes of molecules and library hits were dereplicated via spectral matching. Hence, we
created a reproducible pipeline for omics profiling of microbes that performs a thorough
dereplication and uncovers the most promising BGCs for subsequent genome mining.

2. Results
2.1. Diverse Sampling of Environmental Cyanobacteria

Overall, the SIO/CMBB tropical filamentous marine cyanobacteria collection consists
of environmental samples collected and stored in RNA-later as well as 70 cultures grown in
media and 95 stored on agar slants. For the current project, we sequenced 143 environmen-
tal samples, by Illumina HiSeq 4000, from genetically underexplored cyanobacteria, found
as macroscopic tufts growing in sub-tidal tropical ecosystems around the globe (Figure S1a,
collection sites at Dataset S1, sheet 1), along with 22 purified non-axenic cultures (total of
165 strains). Unfortunately, and most likely due to the issues described above, a majority
of these sequenced genomes were either highly fragmented or very contaminated from
heterotrophic bacteria, and therefore are not reported here. However, by applying the
genome assembly steps outlined below to this combination of environmental and cultured



Mar. Drugs 2021, 19, 20 3 of 16

cyanobacterial samples, we obtained 24 high quality draft genomes (over 90% CheckM
completeness and less than 500 contigs). Of these, 19 derived from environmental samples
and 5 from non-axenic mono-cyanobacterial cultures.

2.2. Genomics Assembly Pipeline and Phylogenomics

The current taxonomic distribution of 1923 publically available cyanobacterial genomes
from NCBI RefSeq database (including our 24 samples) (May 2020) is heavily biased toward
subsection II. Strains from this subsection tend to be less promising for drug discovery due
to the low abundance and diversity of BGCs in their genomes [10]. Here, we developed a
reproducible genomic pipeline for assembly and initial mining of cyanobacterial genomes.
This pipeline sequentially performs assembly by metaSPAdes [11], taxonomic binning
using GC content and DarkHorse [12] taxonomic assignments, and quality control analysis
to yield 24 high quality genomes that can be used for more in depth investigations, such
as biodiversity assessment and comparative genomics of cyanobacterial natural product
BGCs. For one of our cultures, Leptolyngbya sp. SIOISBB (collection code ISB3NOV948B
CUL), which is currently under development as a heterologous host for expression of
marine BGCs, we complemented the short read sequencing with long reads from Nanopore
MinION® in order to obtain the complete genome. For a second culture, Moorena sp.
SIO1ASIH (collection code ASI16JUL142 CUL), which is the producer of a related suite
of compounds produced by a unique and combinatorial biosynthetic logic (vatiamides
A-F) [13], we complemented the short read sequencing with PacBio RS® in order to reduce
the draft genome to 24 contigs. Lastly, for a third culture, Leptolyngbya sp. SIO1E4_02 (col-
lection code ASX22JUL142CUL), we obtained 6 contigs using a hybrid assembly between
HiSeq 4000 short reads and nanopore MinION® long reads.

Cyanobacterial phylogeny has been and continues to be challenging, in large part due
to previous assignments that used morphological characteristics and lacked a genetic basis.
Figure 1 illustrates the phylogenetic assignments for the 24 high quality draft genomes
reported herein, and includes 6 Moorena, 10 Okeania, 4 Symploca, 2 Leptolyngbya, 1 Oscillatoria
and 1 Spirulina. As can be observed in Figure 1, the Moorena, Leptolyngbya and Symploca
clades are tightly defined. In contrast, the Okeania clade appears to be more diverse (higher
degree and number of branches) and its clade includes as the closest relatives Trichodesmium
erythraeum IMS101 and Trichodesmium sp. LADK01. It appears that the genera Okeania and
Trichodesmium arose from a recent common ancestor; this might explain why the latter genus
appears inside the Okeania clade (Figure 1). MUMmer [14] genome alignments (Figure S2)
between the two aforementioned Trichodesmium and two of the closest Okeania (SIO3I5 and
SIO2F4) show that there is no clear distinction in the genetic architecture of Okeania and
Trichodesmium. All plots in Figure S2 exhibit good synteny, although, these four genomes
contain many contigs, making it difficult to properly assess synteny. Additionally, these
two genera are distinct regarding their previously characterized natural products (example,
Okeania produces malyngamides and Trichodesmium does not) [15]. The addition of more
Trichodesmium genomes to the NCBI database will help to construct a more complete picture
of the differences and similarities between these genera and their phylogeny.



Mar. Drugs 2021, 19, 20 4 of 16Mar. Drugs 2021, 19, x 4 of 17 
 

 

 

Figure 1. Phylogenomic analyses of completed cyanobacterial genomes using 29 conserved genes from Calteau et al. [16]. 

Tips were labeled either according to phylogenomic cladding and 16S rRNA identity, where our 24 high quality genome 

are indicated by red arrows. Bootstrap values are labeling the branches. Moorea was renamed to Moorena in 2019; however, 

because the NCBI records are still labeled as Moorea, we use the latter name in this phylogenomic tree. 

Figure 1. Phylogenomic analyses of completed cyanobacterial genomes using 29 conserved genes from Calteau et al. [16].
Tips were labeled either according to phylogenomic cladding and 16S rRNA identity, where our 24 high quality genome are
indicated by red arrows. Bootstrap values are labeling the branches. Moorea was renamed to Moorena in 2019; however,
because the NCBI records are still labeled as Moorea, we use the latter name in this phylogenomic tree.
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The 24 high quality draft genomes obtained in this study ranged in size from 7.1
to 9.8 Mbp, with the average size of 8.42 Mbp. The GC content varied from 36.8% to
52.1%. The number of scaffolds ranged from 3 up to 471. The total number of BGCs
ranged from a genome with 10 BGCs up to an exceptional genome with 46 BGCs, an
average of 21.1 BGCs per genome (see statistics in Table 1; for more detailed statistics and
metadata on the scaffolded genomes, refer to Dataset S1, sheet 1). We also performed a
Mash [17] whole-genome comparative analysis between the 24 assembled strains and the
1899 cyanobacteria genomes present in the NCBI database, where the cutoff threshold was
the same as reported by Ondov et al., 2016 [17] (distance ≤ 0.05 and p-value ≤ 10−10). We
observed that 7 out of the 24 genomes (NCBI RefSeq ID includes JAAHFU01, JAAHHN01,
JAAHGO01, JAAHGS01, JAAHFN01, JAAHGL01 and JAAHII01, genomes colored red in
Table 1) were considered singletons in the analysis (i.e., did not network with any other
genome from NCBI). The remaining 17 genomes matched to one of our lower quality draft
genomes published in the NCBI database (we uploaded to NCBI the 51 additional draft
genomes from other tropical marine cyanobacteria that are not part of this manuscript).
For these 7 singleton genomes, this analysis indicates that they are “rare” compared to
available entries in public databases, and hence they provide valuable insights on the
metabolic capacities of a broader range of cyanobacteria as well as represent targets for
future genome mining.

Table 1. Summary statistics and metadata for the 24 high quality genomes obtained in this characterization of tropical
filamentous marine cyanobacteria. All genomes have at least 98% CheckM completeness. For more detailed statistics
and other metadata, refer to Dataset S1, sheet 1. “ID” = identifier; “Frag.” = fragmented; “Comp.” = complete; “BGC” =
biosynthetic gene cluster. Most “rare” genomes from Mash analysis are colored in red.

Collection Code Genome ID # of Scaffolds Frag./Comp. BGC Taxonomic ID NCBI
Accession

1 ISB3NOV948BCUL SIOISBB 3 0/11 Leptolyngbya JAAHII01
2 ASI16JUL142CUL SIOASIH 25 5/41 Moorena JAAHIH01
3 NAC09DEC082ENV SIO1I7 110 5/12 Okeania JAAHGF01
4 SPB31JAN131ENV SIO3A2 132 23/8 Moorena JAAHHC01
5 NAC18DEC082ENV SIO3A5 164 17/11 Moorena JAAHHD01
6 ASI16JUL149ENV SIO1A7 183 6/8 Oscillatoria JAAHFN01
7 PAB18MAY117ENV SIO2C2 184 8/6 Okeania JAAHGM01
8 PAB05APR064ENV SIO1H4 192 11/3 Okeania JAAHGB01
9 PRL23MAR111ENV SIO1F9 198 5/6 Okeania JAAHFW01
10 PRM25MAR112ENV SIO1G6 205 20/12 Moorena JAAHFZ01
11 ASY22JUL141ENV SIO1C2 246 16/11 Symploca JAAHFP01
12 PAB17MAY117ENV SIO2B3 250 14/2 Okeania JAAHGH01
13 PAB07APR054ENV SIO1H5 263 13/3 Okeania JAAHGC01
14 PAB03APR065ENV SIO1H2 279 11/2 Okeania JAAHGA01
15 PAP14JUN083ENV SIO3C6 290 6/11 Symploca JAAHHJ01
16 PAC17FEB109ENV SIO2C9 318 14/8 Okeania JAAHGO01
17 PAL11AUG091ENV SIO2F5 334 18/1 Okeania JAAHGU01
18 PAL01AUG091ENV SIO2G4 339 16/3 Okeania JAAHGW01
19 PNG21MAY053ENV SIO2E9 384 16/5 Symploca JAAHGS01
20 PLP20MAR122ENV SIO3E8 387 23/7 Moorena JAAHHM01
21 PNG22APR061CUL SIO3F7 399 22/7 Moorena JAAHHP01
22 ASG15JUL146CUL SIO3F2 454 10/0 Spirulina JAAHHN01
23 PAB17MAY115ENV SIO2C1 471 25/4 Symploca JAAHGL01
24 ASX22JUL142CUL SIO1E4_02 12 3/17 Leptolyngbya JAAHFU01

2.3. Genome Mining Pipeline

The 1923 cyanobacterial genomes analyzed in this phylum-wide study were scanned
for BGC potential using antiSMASH v5.1.2 [18]; this identified a total of 12,323 BGCs.
These BGCs were compared via domain similarity using BiG-SCAPE v1.0 [19] which
groups homologous BGCs into gene cluster families (GCFs). The networking threshold



Mar. Drugs 2021, 19, 20 6 of 16

was selected by performing a cutoff calibration using BGCs from the MIBiG database [20].
For such, we used families containing two or more previously characterized BGCs from
the MIBiG database (containing 2057 BGC entries) [20]. Using Tanimoto scoring [3], we
performed a comparison of the annotated structures and structural similarity between the
MIBiG gene pathways. By inspecting different cutoffs, depicted on the x axis of Figure 2a,
we observed the average Tanimoto structural similarities (Figure 2a, y axis) between two or
more MIBiG BGCs that were networked together in the same family. Hence, we observed
that the best BiG-SCAPE similarity score cutoff was 0.7 (0.3 distance in Figure 2a). This
cutoff selected during the MIBiG validation was then applied to the remainder of the
dataset, generating a gene cluster similarity network. In this case, the gene cluster network
contained 7085 BGCs from the entire cyanobacteria phylum (several BGCs did not network
under the selected networking conditions) plus 2057 BGCs from MIBiG, yielding 1084 gene
cluster families (GCFs).
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Figure 2. (a) Cutoff comparison networking the expert-annotated biosynthetic gene clusters from MIBIG database, high-
lighting the best outcome for the cutoff of 0.3 distance (70% similarity). Top violin plot illustrates the distribution of the
average similarity scores and bottom box plot also illustrates these scores but focusing on the number of outliers per cutoff.
(b) Principal Coordinate Analysis (PCoA) for beta-diversity scores from 1650 genomes that were networked (including the
24 marine cyanobacterial genomes generated in this project). The blue group represents the most diverse samples in the
dataset (samples for which the beta-diversity was over 95%; includes a total of 654 cyanobacterial genomes including the
24 reported herein; genomes listed at Dataset S1, sheet 3) and the red group represents low diversity samples (genomes
with an average beta-diversity score below 95%; includes a total of 996 cyanobacterial genomes).

Because 274 genomes only had singletons and thus they did not network using
the selected cutoff, a total of 1649 genomes could be networked. We then considered
which classes of GCFs predominate among all cyanobacteria, as well as which classes of
GCFs are found in our 24 marine cyanobacteria. This analysis revealed that the category
of “Unknown” biosynthetic class predominated among the full cyanobacteria genome
dataset (Figure 3a), followed by bacteriocins, nonribosomal peptides, and terpenes. Deeper
manual interrogation of these unknown GCFs revealed that while their BGCs are very
different from known BGCs, they do use the same broad enzymatic families and thus
are recognizable as encoding for NPs. This underscores the observation that the broad
set of cyanobacteria have many BGCs that are still poorly understood, and will likely
yield the discovery of many novel natural products. Interestingly, the same analysis of the
24 marine cyanobacteria being newly reported herein do not have the category “unknown”
as their major GCF type. Rather, NRPS metabolites, bacteriocins/cyanobactins, terpenes
and type I PKS products, as well as hybrids, are the major classes in these filamentous
marine cyanobacteria. As it is uncertain what the “unknown’s” truly represent in these
analyses, it remains unclear if fundamentally new types of scaffolds still await discovery.
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From another perspective, the GCF categories present from the phylum wide analysis
generally match those in the 24 marine samples described herein, except for the categories
hybrid bacteriocin-lanthipeptide, cyclodipeptide synthase (CDPS) and ectoine.
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Figure 3. (a) Histogram counting all gene cluster families separated by common biosynthetic class (classification accord-
ing to BiG-SCAPE and cutoff of at least 10 occurrences in all cyanobacteria). (b) A similar histogram to panel A using
only the 24 marine cyanobacteria newly reported herein and with a cutoff of at least 2 occurrences in these cyanobacte-
ria. NRPS = nonribosomal peptide synthetase; T1PKS = type 1 polyketide synthase; T3PKS = type 3 polyketide synthase;
CDPS = cyclodipeptide synthase; hglE-KS = heterocyst glycolipid synthase.

Next, using the same gene cluster similarity network, we accessed the distribution
of GCFs in these samples and calculated diversity scores, including beta-diversity using
Jaccard similarity. In this analysis, beta-diversity illustrates the percent difference between
pairs of samples in terms of their shared BGCs (pairwise measurement defined as the
intersection over the total of the two cyanobacterial strains A and B). In a phylum-wide
analysis (1923 cyanobacterial genomes and 1650 networked genomes), cyanobacteria that
exhibited a low average beta-diversity and a small number of BGCs in their genomes
appeared to be the most likely to yield the rediscovery of previously characterized NP
scaffolds. A Principal Coordinate beta-diversity analysis (PCoA plot from Figure 2b)
clearly identified a group that harbors the most diverse distribution of GCFs, containing
an average dissimilarity score of over 95%. All 24 marine cyanobacteria here investigated
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belonged to the group with high beta-diversity, confirming that tropical filamentous marine
cyanobacteria are indeed a good source for the discovery of new metabolites. Moreover,
this analysis reveals that there are an additional 630 genomes (Figure 2b, samples colored
in blue and genomes listed in Dataset S1, sheet 3) from under-explored cyanobacteria that
could be rich sources of novel natural product scaffolds.

Additionally, we created a rarefaction curve for the presence/absence of GCFs in these
genome-sequenced cyanobacteria. Figure S3a illustrates that the slope of the fitted curve
decreases considerably with an increasing number of sequenced genomes, indicating that
not many more cyanobacterial genomes are necessary in order to sample the total diversity
of cyanobacterial BGCs (e.g., to reach a slope close to zero). Nonetheless, 61% (1172 out
of 1923) of the available NCBI strains are from the unicellular genera Prochlorococcus and
Synechococcus (cyanobacteria with few BGCs per genome) and that might bias this analysis.
This bias is also suggested by the fact that the beta-diversity analysis identified many under-
explored cyanobacteria. However, removal of Prochlorococcus and Synechococcus genomes
from this analysis (Figure S3b) resulted in the same general trend (this second curve also
reaches a plateau). More sequencing of under-explored cyanobacteria is necessary to clarify
if the rarefaction curve for GCFs is truly reaching a plateau.

2.4. Metabolomics Pipeline

We collected high-resolution LC-MS/MS spectra so as to examine the metabolomes of
a subset (10 of 24) of these genome sequenced tropical marine cyanobacteria. We analyzed
the MS/MS spectra obtained in our runs using the well-established automatic annotation
metabolomics platform Global Natural Products Social Molecular Networking (GNPS) [21].
The GNPS platform (http://gnps.ucsd.edu) harbors several tools, including the follow-
ing used in the current study: (1) classical molecular networking with dereplication via
spectral match, generating predicted structures; (2) MolNetEnhancer [22] that includes
the in silico tools Network Annotation Propagation [23] and DEREPLICATOR+ [24], both
also predicting structures for the molecules without spectral match; (3) followed by chemi-
cal class annotation of the predicted structures with ClassyFire [25] (incorporated to the
MolNetENhancer pipeline). (4) Download of the highly annotated network and visual-
ization in Cytoscape [26]. As observed in Figure 4, the number of annotated nodes in
the MolNetEnhancer network was not very high but the use of in silico tools significantly
improved the number of predictions made via GNPS. The annotation rate via spectral
match was only 4.7% (68 out of 1442 nodes were annotated, a third of the annotation rate
found in public GNPS datasets). However, in silico tools annotated 87 out of 96 molecular
families (only 9 families are colored red for “no match”, singletons not counted). This
indicates that these expressed metabolites belong to known structure classes that have
already been well explored in these cyanobacterial genera. For every spectral match, we
manually evaluated each MS/MS mirror plot to validate the library hit. We excluded
from the network (Figure 4) common contaminants and the annotated molecules that
were also present in the LC-MS/MS blanks. We observed several genus specific molecular
families (names in red in Figure 4). Predicted molecules without a common name (for
example, common names like veraguamide, apramide, dolastatin and so on) were labeled
by their most detailed ClassyFire prediction. Full International Union of Pure and Applied
Chemistry (IUPAC) names can be found at Dataset S1, sheet 2 and predicted structures in
Figure S4). These genus specific molecules included veraguamide A and K [27], “clerodane
diterpenoid”, “chromone” and “8-O-methylated flavonoid” in Okeania; tumonoic acid G
and I [28], lyngbyastatin 3 [29], dolastatin D [30] and hoiamide A-B [31,32] in Symploca;
apramide A [33], carriebowmide [34], “ingenane diterpenoid” and “dihydroxy bile acid”
in Moorena (see all library hits in Dataset S1, sheet 2 and for predicted structures for the
molecular classes in quotations, see Figure S4). Several other molecules isolated from
Moorena are present in the GNPS database, however, it appears that they were not detected
in our samples, except for barbamide [35] (a genus specific compound that was a singleton
classified as “no match” and therefore it was not included in Figure 4). Leptolyngbya had

http://gnps.ucsd.edu
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no genus specific metabolites annotated in the GNPS database. While there are several
metabolites known to be produced by Leptolyngbya [36], only six of them are present in the
GNPS database (dolastatin 12 [37], palmyrolide A [38], phormidolide [39], scytonemin [40],
shinorine [41] and stilbene [42]), and these were not detected in our analyses. Spirulina and
Oscillatoria were not sampled for LC-MS/MS.
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3. Discussion

The Mash whole-genome comparison indicates that 29% of the genomes that we
sampled in this study are unique (compared to genomes in NCBI) in terms of their genomic
content, including BGCs. This result is consistent with our previous reports that the
genus Moorea (renamed to Moorena) is distinctive from other cyanobacteria, especially
regarding its natural product potential [7]. Other genera included in this study, such as
Okeania, Leptolyngbya and Oscillatoria, have also been reported as abundant producers of
natural products [36,43]. This contrasts with the genus Spirulina which is not reported
as a prolific metabolite producer. The hypothesis that the former cyanobacterial genera
represent an untapped natural product potential was confirmed by our presence/absence
BGC beta diversity analysis. This analysis included all 1649 cyanobacterial genomes,
and indicated that all 24 of the marine cyanobacterial genomes presented here possessed
high average beta diversity. The major classes observed among the GCFs found in the
24 marine cyanobacteria were peptides (NRPS, bacteriocins and cyanobactins), terpenes,
lipids (T1PKS) and lipopeptides (NRPS-T1PKS hybrids). These results taken together
indicate that these 24 marine strains have a vast and under-explored genetic potential for
the discovery of new natural products, and the high abundance of NRPS BGCs are a good
target for genome mining.

MolNetENhancer (including molecular networking) was useful for exploring three
significant issues. First, what previously known or highly related molecules are present
in these samples? Secondly, are there genus specific molecules? And finally, are the
classes observed in our samples consistent with the literature and consistent with known
GCF classes? Interestingly, we did not observe many peptidic NPs in the metabolomic
analysis, in contrast to their abundance in the BGC analysis (RiPPs and NRPS). Rather,
by metabolomic analysis, we observed many more lipid-like molecules (Figure 4). This
might have one of a number of reasons. For example, it is possible that the peptide NPs
are excreted (diketopiperazines have been reported as signaling molecules) [44], expressed
in low quantities below our detection limits, or are not as efficiently extracted given our
protocols which favors lipid-like molecules. Alternatively, it may be that these peptides are
simply not expressed under the conditions of growth at the time of extraction whereas the
NRPS-T1PKS and T1PKS metabolites are being expressed.

The fact that a majority of the molecular families revealed by the mass spectrometry
analysis (90%) had a spectral match or an in silico annotation suggests that discovery
of additional novel scaffolds in these 10 samples will be limited. However, this genetic
analysis also indicated that many of these same GCFs are under-explored in terms of
the actual NP that is produced. One could envision that as heterologous expression of
cyanobacterial natural products becomes more reliable and accessible (i.e., we recently
expressed a large marine cyanobacterial pathway in Anabaena PCC 7120) [45], these rare
BGCs from diverse marine strains can be targeted for heterologous expression, isolation
and structural characterization of novel natural products, and pharmacological description.

In conclusion, we were able to enrich the diversity of genomic information for natural
product rich cyanobacteria by providing 24 new high quality draft genomes, 7 of which
appear to be highly unique compared to those in the current NCBI database. We demon-
strated via a phylum-wide analysis that prioritization of samples using beta-diversity
can highlight “natural product diversity hotspots” in a given dataset. Our metabolomic
analysis revealed several of the most abundant metabolic classes that are expressed and
retained in the biomass of these samples. The DNA sequence and metabolomics informa-
tion generated in this study improves understanding of the natural product potential of
tropical marine cyanobacteria and enables prioritization of samples for a genome mining
approach to natural product discovery.
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4. Materials and Methods
4.1. Collection, DNA Extraction and Sequencing

Samples were collected via SCUBA diving or snorkeling in shallow benthic environ-
ments (less than 20 meters) from different coastlines around the globe (Figure S1). In each
case, the collected biomass was preserved in RNA-later for subsequent sequencing or 1:1
isopropanol:seawater for mass spectrometry analysis. Given that Moorena and Okeania
can form macroscopic tufts in seawater, we focused on collecting samples that matched
the morphology from these two genera. When possible, we obtained purified cultures
using standard microbiology and microscopy techniques, generating 4 non-axenic mono-
cyanobacterial cultures used in this study [46]. RNA-later samples and cultured biomass
were processed via freezing with liquid nitrogen, followed by grinding and extraction
according to the “QIAGEN Bacterial Genomic DNA Extraction Kit” protocol, incubation
times extended for 1 h and the volume of Proteinase K used was 10 µL (10 mg/mL). For
details on the extraction procedure, see reference [46].

DNA libraries were generated using a miniaturized version of the Kapa HyperPlus
Illumina-compatible library prep kit (Kapa Biosystems®, Wilmington, MA, USA). DNA
extracts were normalized to 5 ng total input per sample in an Echo 550 acoustic liquid
handling robot (Labcyte Inc, San Jose, CA, USA). Next, we used a Mosquito HTS liquid-
handling robot (TTP Labtech Inc, Melbourn, United Kingdom) for 1/10 scale enzymatic
fragmentation, end-repair, and adapter-ligation reactions. Sequencing adapters were based
on the iTru protocol [47] in which short universal adapter stubs are ligated first and then
sample-specific barcoded sequences added in a subsequent PCR step. Amplified and
barcoded libraries were then quantified by the PicoGreen assay and pooled in approxi-
mately equimolar ratios before being sequenced on an Illumina HiSeq 4000 instrument to
>30X metagenomic coverage. Two samples were complemented with long read sequence.
Leptolyngbya sp. SIOISBB was sequenced with Nanopore MinION® using 1D2 Sequencing
Kit (R9.5) (ligation-based). Moorena sp. SIOASIH was sequenced PacBio RS® using a 10 kb
library prep. Leptolyngbya sp. SIOASX libraries were prepared using the Genomic DNA by
Ligation kit (SQK-LSK109, Oxford, UK), incubation times during ligation attachment were
extended to 20 min at 37 degrees Celsius, and “Long Fragment Buffer” was used during
final AMPure bead purification to preserve DNA fragments longer than 3 kb. Libraries
were then sequenced for 48 h using the Nanopore MinION® (Flow Cell R9.4.1) with flow
cells being flushed and reloaded with additional material from the library to be sequenced
for more 24 h.

4.2. Genome Assembly Pipeline

The 24 metagenomic samples were assembled with metaSPAdes 3.12.0 [11]. As-
sembled contigs were annotated with Prokka 1.11 [48] and the phylogenetic assignment
for each annotated gene was predicted via DarkHorse 2.0 [12,49]. Only contigs that fol-
lowed minimal requirements were binned in: one or more cyanobacterial genes, and; GC
content smaller or equal to 58% (determined via QUAST analysis [50] of high GC draft
metagenomes). The 24 draft genomes were successfully scaffolded using MEDUSA [51]
and high quality reference genomes from the NCBI database. Once scaffolded, the quality
control via CheckM [52] approved all 24 high-quality draft genomes (over 90% com-
pleteness). Leptolyngbya sp. SIOISBB long reads were process for base calling with Al-
bacore 2.0.2 (https://github.com/dvera/albacore), trimmed with PoreChop 1.0 (https:
//github.com/rrwick/Porechop) and assembled with Canu 1.6 [53]. Moorena sp. SIOASIH
long reads were part of a hybrid assembly with metaSPAdes 3.12.0, followed by binning and
quality control as described above for the short reads. Leptolyngbya sp. SIOASX reads were
processed using Unicycler Hybrid Assembler [54] and the assembled metagenome was
then binned using MetaBat2 (https://bitbucket.org/berkeleylab/metabat/src/master/)
and each bin was given a phylogenetic assignment and checked for completeness using
CheckM [52]. Mash [17] was used to compare whole genomes.

https://github.com/dvera/albacore
https://github.com/rrwick/Porechop
https://github.com/rrwick/Porechop
https://bitbucket.org/berkeleylab/metabat/src/master/
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4.3. Phylogenomics

We selected the same set of conserved 29 housekeeping genes used in Leao et al.
(2017) [7] and Calteau et al. (2014) [16] for phylogenomic analysis. The homologs of these
housekeeping genes were identified in our strains via Diamond search v0.8.31.93 [55].
Once identified and extracted, the set of 29 genes were aligned using MUSCLE v3.8 [56]
and trimmed via trimAl v1.2 [57] (both in standard settings). Once the alignments were
complete, we concatenated the housekeeping genes. A phylogenetic tree was reconstructed
based on the concatenated ribosomal protein sequences extracted from the cyanobacterial
genomes, using maximum likelihood (ML) implemented in IQ-TREE 1.6.10 [58]. Amino
acid substitution model was determined using ModelFinder [59] as part of IQ-TREE, which
chose LG + R10 (LG substitution matrix, plus FreeRate model with 10 rate categories) as
the best model. Phylogenetic reconstruction was performed using this model and IQ-TREE
default settings. Branch supports were provided using 100 replicates of classical bootstrap,
and the out-group was Melainabacteria SM1 D11. The overall shape and clades of the tree
were consistent with previous studies. The genomes selected to be part of the tree were as
follow: the set of 107 complete genomes from Leao et al. (2017) [7], 51 low quality marine
filamentous cyanobacterial draft genomes published at NCBI, and the 24 high quality
tropical marine cyanobacterial draft genomes reported in this study.

4.4. Gene Cluster Networking and Diversity Analysis

The 24 high quality scaffolded drafts (along with 1649 cyanobacterial genomes that
we were able to download from NCBI) were investigated for their biosynthetic gene clus-
ters (BGCs). Their predicted BGCs via antiSMASH v3.0.5 [60] were networked using
BiG-SCAPE [19] to obtain pairwise similarity scores between the BGCs. The similarity
cutoff calibration was determined by checking the networking performance for annotated
BGCs from the MIBiG database (Minimum Information about a Biosynthetic Gene cluster
database [20]). As observed in Figure 2a, the best cutoffs included 0.7 similarity (0.3 dis-
tance), which corresponded to 99% structural similarity between the annotated metabolites
in MIBiG. By selecting a cutoff, we converted a similarity metric into presence/absence of
gene families (group of homologous BGCs). We built a pairwise Brays-Curtis beta-diversity
dissimilarity matrix among all tested strains (using skbio.diversity package in python,
http://scikit-bio.org/), including the 1649 previously published NCBI cyanobacterial
genomes. Subsequently, we calculated the average Brays-Curtis beta-diversity per strain
and built a Principal Coordinate Analysis (PCoA) plot to highlight samples with high
diversity scores (over 95% average Brays-Curtis beta-diversity). A custom python script
identifying gene cluster families (GCFs) as present/absent was created and all different
GCFs were summed to produce the rarefaction curve in Figure S3.

4.5. Extraction and UHPLC-MS/MS Analysis

We generally utilized a similar analysis by UHPLC-MS/MS as described in Luzzato-
Knaan et al., 2017 [61]. Ten (10) biomass samples preserved for chemical extraction were
extracted 5 to 8 times with CH2Cl2:MeOH 2:1, and dried in vacuo. The chemical extracts
were analyzed with an UltiMate 3000 UHPLC system (Thermo Scientific, Waltham, MA,
USA) using a Kinetex 1.7 mm C18 reversed phase UHPLC column (50 × 2.1 mm) and Maxis
Impact Q-TOF mass spectrometer (Bruker Daltonics, Billerica, MA, USA) equipped with
an Electrospray Ionization (ESI) source, run in the positive mode. Injections were made of
3.3 µg per sample. The chromatographic gradient was 5% solvent B (ACN/H2O/formic
acid 98%/2%/0.1%) with solvent A (H2O/ACN/formic acid 98%/2%/0.1%) for 1.5 min,
a step gradient of 5% to 50% B in 0.5 min, held at 50% B for 2 min, a second gradient of
50–100% B in 6 min, held at 100% B for 0.5 min, 100–5% B in 0.5 min and kept at 5% B for
0.5 min at a flow rate of 0.5 mL/min throughout the run. MS spectra were acquired as
previously described in Garg et al., 2015 [62].

http://scikit-bio.org/
http://scikit-bio.org/
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4.6. GNPS Molecular Networking

We used classical molecular networking [21] combined with the in silico tools Network
Annotation Propagation [23] and DEREPLICATOR+ [24] to annotate structures that were
the query for the chemical ontology tool ClassyFire [25]. Parameters for the molecular
networking were a cosine equal to or greater than 0.7, minimum matched fragment ions
of 4, minimum cluster size of 2, library search minimum matched peaks of 4 and search
analogs turned off.

The classical molecular network job is available at https://gnps.ucsd.edu/ProteoSAFe/
status.jsp?task=9c4f6a15087743f7a97907c3229c4711 and MolNetEnhancer network job is
available at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=80716381d0694b80aa3
95c750f1f21dc; the job can cloned for reproduction purposes. The final network is also
available at the folder outputs in the GitHub repository.

The structures from Figure S4 come from enhancing a GNPS classical molecular
network with MolNetEnhancer. Classical molecular networking compare molecules that
have a fragmentation spectrum with themselves and with the molecules in the GNPS
library (generating library spectral matches). For enhancing a classical molecular network,
we separately ran (for the same set of LC-MS/MS files) the tools for in silico prediction,
Network Annotation Propagation and Dereplicator+. Once these two in silico analysis
were completed, we ran MolNetEnhancer that uses ClassyFire on the predicted structures
from both GNPS library hits and the in silico tools to derive the chemical ontology for
each structure. ClassyFire uses structural features to automatically annotate a molecular
structure into one of the over 4800 different categories, including predictions that vary
from Kingdom, SuperClass and so on until fairly detailed categories. MolNetEnhancer
produce an output-file that contains a network very similar to Figure 4, with node colors
pre-populated according to the predicted ClassyFire SuperClass that was inferred using
the aforementioned structures. The nodes table of the MolNetEnhancer network contains
the full ClassyFire predicted ontology, predicted structure and other GNPS information.
This node table was pasted in Dataset S1, sheet two.

Our work can be reproduced by accessing the jupyter notebooks (in the GitHub
repository), cyanobacterial genomes (all deposited at the NCBI database), the LCMS files
(in the MassIVE database) and the links for the network jobs (in the GNPS platform).

Supplementary Materials: The following are available online at https://www.mdpi.com/1660-3
397/19/1/20/s1, Dataset S1: sheet one, an extended version of Table 1 containing a summary of
statistics and metadata for the 24 high quality genomes; sheet two, output node table from MolNetEn-
hancer; sheet three, table with most promising genomes according to the beta-diversity analysis;
Figure S1: Geographic locations for 165 collected metagenomic marine cyanobacterial samples. Loca-
tions include American Samoa, Guam, Panama, Curaçao, Papua New Guinea, Indonesia, Marion
Bay, Millennium Atoll, Palmyra Atoll, Puerto Rico, Saipan, Salton Sea, South China Sea (more details
on Dataset S1, sheet 1); Figure S2: MUMmer genome alignments between two Okeania (SIO2F4 and
SIO3I5) and two Trichodesmium (IMS101 and LADK01) samples. All plots display a linear trend
between the pair of genomes, indicating good synteny between the four strains; Figure S3: Rar-
efaction curve from the presence/absence of GCFs. Actual counts are represented in the blue line
and fitted curve is indicated in orange. Both curves (a for all investigated cyanobacterial genomes
and b for all cyanobacterial except Prochlorococcus and Synechococcus genomes) indicate that only a
few hundred more cyanobacterial genomes are necessary to be sequenced to reach the total BGC
diversity; Figure S4: Predicted structures for molecules named after their most detailed molecular
classes (complete IUPAC name is detailed in Dataset S1, sheet 2, according to their CCMS code).
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