
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Appearance Preserving Prefiltering for Rendering Complex Scenes

Permalink
https://escholarship.org/uc/item/57s955pd

Author
Wu, Lifan

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/57s955pd
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Appearance Preserving Prefiltering for Rendering Complex Scenes

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Computer Science

by

Lifan Wu

Committee in charge:

Professor Ravi Ramamoorthi, Chair
Professor Manmohan Chandraker
Professor Hao Su
Professor Zhuowen Tu
Professor Shuang Zhao

2020

Copyright

Lifan Wu, 2020

All rights reserved.

The Dissertation of Lifan Wu is approved, and it is acceptable in quality and form

for publication on microfilm and electronically:

Chair

University of California San Diego

2020

iii

DEDICATION

To My Family

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

List of Tables . xi

Acknowledgements . xii

Vita . xiv

Abstract of the Dissertation . xv

Chapter 1 Introduction . 1

Chapter 2 Background . 7
2.1 Light Transport . 7

2.1.1 Surface Reflection . 8
2.1.2 Volume Scattering . 8
2.1.3 Path Integral Formulation . 10

2.2 Spherical Harmonics . 12
2.2.1 Definition . 12
2.2.2 Key Properties . 13

Chapter 3 Downsampling Scattering Parameters for Rendering Anisotropic Media . . . 16
3.1 Introduction . 16
3.2 Related Work . 18
3.3 Background . 20
3.4 Our Method . 23

3.4.1 Combining Albedo and Phase Function . 23
3.4.2 Input and Output . 24
3.4.3 Overview . 25

3.5 Determining SGGX Lobes . 25
3.6 Optimizing Lobe Weights . 28

3.6.1 Overview . 28
3.6.2 Voxel Clustering . 29
3.6.3 Optimizing Weight Factors . 30
3.6.4 Handling Multiple Color Channels . 33
3.6.5 Discussion . 35

3.7 Exploiting Modularity . 35

v

3.8 Results . 36
3.8.1 Evaluations and Justifications . 38
3.8.2 Main Results . 41

3.9 Conclusion . 45
3.10 Acknowledgements . 45

Chapter 4 Accurate Appearance Preserving Prefiltering for Rendering Displacement-
Mapped Surfaces . 46

4.1 Introduction . 46
4.2 Related Work . 50
4.3 Preliminaries . 53
4.4 Prefiltering Reflectance Parameters . 57

4.4.1 Downsampling Displacement Maps . 58
4.4.2 Spatially Varying Multi-Lobe BRDF . 59
4.4.3 Scaling Function . 59

4.5 Interreflections . 61
4.5.1 Effective BRDF with Interreflections . 61
4.5.2 Computing the Scaling Function . 62

4.6 Properties of the scaling function . 64
4.7 Implementation . 69

4.7.1 Prefiltering at a Single Scale . 69
4.7.2 Level of Detail . 70

4.8 Results . 71
4.8.1 Evaluations and Justifications . 72
4.8.2 Main Results . 74
4.8.3 Limitations and Future Work . 79

4.9 Conclusion . 80
4.10 Acknowledgements . 81

Chapter 5 Analytic Spherical Harmonic Gradients for Real-Time Rendering with
Many Polygonal Area Lights . 82

5.1 Introduction . 82
5.2 Related Work . 85
5.3 Preliminaries . 87

5.3.1 Reflection Equation and PRT . 87
5.3.2 Zonal Harmonic Factorization . 88
5.3.3 Analytic Spherical Harmonic Coefficients . 89
5.3.4 Differentiating Integrals . 90

5.4 Differentiating Spherical Harmonic Coefficients . 91
5.4.1 Spherical Harmonic Gradient . 92
5.4.2 Reduction to Edge/Arc Integrals . 93

5.5 Analytic Formula . 95
5.5.1 Solving for G(i)

l, j . 95
5.5.2 Summary . 99

vi

5.6 Algorithm . 100
5.6.1 Iterative Evaluation of SH Coefficients and Gradients 101
5.6.2 Gradient-Based Interpolation . 104

5.7 Results . 107
5.7.1 Validation and Evaluation . 108
5.7.2 Main Results . 113
5.7.3 Limitations and Future Work . 115

5.8 Conclusion . 118
5.9 Acknowledgements . 118

Chapter 6 Conclusion and Future Work . 119

Appendix A Appendix for Chapter 3 . 122
A.1 Rendering Gradient Images . 122

Appendix B Appendix for Chapter 4 . 124
B.1 Average slope of a bilinear patch . 124
B.2 Factorization of Rir . 125

Appendix C Appendix for Chapter 5 . 126
C.1 Sharing ZH Lobes Across Bands . 126
C.2 Relation to Prior Work [1] . 126
C.3 Detailed Derivations . 127

C.3.1 Deriving `(t) in Equation (5.17) . 127
C.3.2 Deriving Equation (5.22) . 128

Bibliography . 130

vii

LIST OF FIGURES

Figure 1.1. Micro-appearance model of twill fabric. 2

Figure 1.2. Renderings of scenes with multiple area lights. 2

Figure 1.3. Overview of our contributions in this dissertation. 4

Figure 3.1. Renderings of cloth and furry objects. 17

Figure 3.2. 2D demonstration of the weakening of self-occlusion caused by downsam-
pling spatially varying densities. 19

Figure 3.3. Equal-quality rendering comparison using volumes at original and down-
sampled resolutions. 20

Figure 3.4. Comparison between single- and multi-lobe SGGX fits. 26

Figure 3.5. Illustration of SGGX phase function clustering. 27

Figure 3.6. Illustration of reordering phase function lobes. 30

Figure 3.7. Six views we use for the training renderings. 32

Figure 3.8. Illustration of visible voxel clusters through image pixels. 33

Figure 3.9. Renderings of the original and gradient images. 34

Figure 3.10. Renderings of our downsampled models computed with different exemplar
volumes. 36

Figure 3.11. Determining the number of voxel clusters. 37

Figure 3.12. Effect of jittering voxel clustering. 37

Figure 3.13. Lighting selection in training renderings. 38

Figure 3.14. Renderings of our downsampled models under point light sources. 39

Figure 3.15. Jointly optimizing multiple color channels. 39

Figure 3.16. Plot of the approximation error causes by different numbers of phase
function lobes. 40

Figure 3.17. Optimized results using varying numbers of phase function lobes. 40

Figure 3.18. Main rendering results of our downsampled models. 43

viii

Figure 3.19. Rendering results of our downsampled models computed using modularity. 44

Figure 4.1. Level-of-detail rendering of twill fabric, whose geometric micro-structures
are modeled by a displacement map. 47

Figure 4.2. Equal-time rendering comparison between our prefiltering method and
several baselines. 48

Figure 4.3. Workflow of our method. 49

Figure 4.4. 2D Illustrations of micro-geometry and related illumination effects. 55

Figure 4.5. Illustration of local and global interreflections within a micro-surface. 63

Figure 4.6. Graph showing the fractions of energy carried by the top eight singular
values of the scaling matrix. 65

Figure 4.7. Scaling function slices for different angular resolutions. 66

Figure 4.8. Renderings using our prefiltered model with varying angular resolutions. . 67

Figure 4.9. Renderings using our prefiltered model with varying spatial resolutions. . . 67

Figure 4.10. Visualizations and renderings for comparing our factorization method to
rank-1 SVD. 68

Figure 4.11. Illustration of shell map. 70

Figure 4.12. Level-of-detail rendering of flat cloth modeled by a displacement map. . . . 71

Figure 4.13. White furnace test of our prefiltered models. 72

Figure 4.14. Renderings of a surface with normal-color correlation. 73

Figure 4.15. Displacement maps used in our results. 73

Figure 4.16. Rendering comparisons of prefiltered models with direct illumination. . . . 75

Figure 4.17. Rendering comparisons of prefiltered models with global illumination. . . . 77

Figure 4.18. Rendering comparisons of a wider range of materials with global illumina-
tion. 78

Figure 4.19. A failure example showing the limitation of our prefiltering method. 79

Figure 5.1. Renderings of a glossy scene with 713 polygonal area lights and 1.3M
polygons using our method. 84

ix

Figure 5.2. Illustrations of the spherical projection and gradient. 91

Figure 5.3. Illustration of the change rate of a boundary location. 93

Figure 5.4. Plot of SH coefficients interpolated by different methods. 105

Figure 5.5. Illustration of 3D Hermite interpolation. 106

Figure 5.6. Visualization plots of SH gradients. 109

Figure 5.7. Accuracy comparison of different interpolation methods. 110

Figure 5.8. Plots of SH coefficient computation time at all vertices with increasing
numbers of area lights. 112

Figure 5.9. Performance and accuracy comparison with increasing resolutions of 3D
grids. 113

Figure 5.10. Rendering of a living room illuminated by two textured lights. 114

Figure 5.11. Renderings of glossy reflections caused by complex light sources. 115

Figure 5.12. Renderings of a scene with a double-sided area light source inside its
bounding box. 116

Figure 5.13. Rendering comparison between our method and path tracing. 117

x

LIST OF TABLES

Table 3.1. Definitions of commonly used symbols in Chapter 3. 21

Table 3.2. Optimization settings and time for all results in Figures 3.18 and 3.19. 41

Table 4.1. Comparison between our method and prior related techniques. 50

Table 4.2. Definitions of commonly used symbols in Chapter 4. 54

Table 4.3. Parameters used for prefiltering the input model at a single downsampling
scale. 74

Table 4.4. Precomputation time of our prefiltering method. 75

Table 4.5. Rendering error comparisons in equal time. 76

Table 5.1. Scene configurations of all results. 107

Table 5.2. Performance statistics of all results. 108

xi

ACKNOWLEDGEMENTS

First, I would like to thank my advisor Ravi Ramamoorthi for his patient guidance,

insightful advice, and continuous support. Five years ago, he convinced me to come to UC San

Diego as one of the first students in a new research group. During these five years, he has taught

me to think like a scientist and do things with a high standard. It has been a great privilege to

work with Ravi.

I am sincerely grateful to Shuang Zhao for his support in every aspect. He has always

been available for discussions about technical questions. I would also like to thank my other

committee members, Manmohan Chandraker, Hao Su, and Zhuowen Tu, for the inspiration and

constructive advice they have provided through these years.

I want to thank all my collaborators: Ravi Ramamoorthi, Shuang Zhao, Lingqi Yan,

Guangyan Cai, Frédo Durand, Ioannis Gkioulekas, Alexandr Kuznetsov, Cheng Zhang, Changxi

Zheng, and Yang Zhou. I feel extremely fortunate to have the chance to work with such an

excellent group of people. Special thanks to Lingqi Yan for the numerous hours we spent

discussing exciting ideas.

I would like to thank my lab mates at UC San Diego, Sai Bi, Nima Khademi Kalantari,

Alexandr Kuznetsov, Zhengqin Li, Kai-En Lin, Ishit Mehta, Zak Murez, Mohammad Shafiei,

Tiancheng Sun, Weilun Sun, Jingwen Wang, Zexiang Xu, Jiyang Yu, and Shilin Zhu, for the

countless conversations and the stimulating environment they created. I also want to thank my

friends who have provided invaluable help over the years: Julaiti Alafate, Xiaojian Evans Chen,

Zhao Fu, Yu Guo, Jian Jiang, Yanqin Jin, Wang-Cheng Kang, Suqi Liu, Jianmo Ni, Yao Qin,

Saining Xie, Mengting Wan, Yizhen Wang, Songbai Yan, Zhen Zhai, Chicheng Zhang, Yufei

Zhao and many others. In particular, I want to thank Sai Bi, Yao Qin, Mengting Wan, and

Zexiang Xu for their support in life and work.

I would like to express my gratitude to my internship mentors: Mark Duchaineau at

Google, Marios Papas and Jan Novák at Disney Research Zürich (Jan is at NVIDIA now),

Chris Wyman, Marco Salvi and Aaron Lefohn at NVIDIA. Every internship was a wonderful

xii

experience. I want to thank my undergraduate research advisors, Shi-Min Hu, Tao Ju, and

Kun Xu, for introducing me to computer graphics and teaching me how to conduct research.

Furthermore, I would like to thank Yiqing Zeng, my Olympiad in Informatics (OI) coach at high

school, for showing me the beauty of computer programming.

Finally, I thank my parents Qiushan Wu and Wenzhen Huang for their unconditional love

and unfaltering support. They give me the courage and wisdom to explore and pursue things I

am interested in. This dissertation is dedicated to my family.

This work was supported in part by NSF grants 1451828, 1451830, 1703957, 1813553,

and 1900927, the AWS Cloud Credits for Research, an NVIDIA Graduate Fellowship, the

Ronald L. Graham Chair, and the UC San Diego Center for Visual Computing.

Chapter 3 is based on the material as it appears in ACM Transactions on Graphics, 2016

(“Downsampling Scattering Parameters for Rendering Anisotropic Media”, Shuang Zhao, Lifan

Wu, Frédo Durand, and Ravi Ramamoorthi). The dissertation author was the primary investigator

and author of this paper.

Chapter 4 is based on the material as it appears in ACM Transactions on Graphics, 2019

(“Accurate Appearance Preserving Prefiltering for Rendering Displacement-Mapped Surfaces”,

Lifan Wu, Shuang Zhao, Ling-Qi Yan, and Ravi Ramamoorthi). The dissertation author was the

primary investigator and author of this paper.

Chapter 5 is based on the material to appear in ACM Transactions on Graphics, 2020

(“Analytic Spherical Harmonic Gradients for Real-Time Rendering with Many Polygonal Area

Lights”, Lifan Wu, Guangyan Cai, Shuang Zhao, and Ravi Ramamoorthi). The dissertation

author was the primary investigator and author of this paper.

xiii

VITA

2011–2015 B.Eng. in Computer Science, Tsinghua University

2015–2018 M.S. in Computer Science, University of California San Diego

2015–2020 Ph.D. in Computer Science, University of California San Diego

xiv

ABSTRACT OF THE DISSERTATION

Appearance Preserving Prefiltering for Rendering Complex Scenes

by

Lifan Wu

Doctor of Philosophy in Computer Science

University of California San Diego, 2020

Professor Ravi Ramamoorthi, Chair

Complex materials and lighting conditions can produce remarkably high-quality render-

ings with photorealism. However, efficiently rendering them remains challenging due to the high

complexity of physically based light transport simulation. To improve the efficiency of rendering

complex scenes, one common approach is using prefiltering techniques to precompute simplified

material or lighting models. But usually these prefiltered models cannot preserve their original

appearance accurately, leading to undesired rendering results.

In this dissertation, we present a series of novel appearance preserving prefiltering

techniques. Our goal is to compute prefiltered material and lighting models that have smaller

storage sizes and enable efficient rendering of complex scenes. Images rendered using the

xv

prefiltered model should closely resemble the overall appearance given by the original model.

Our first work addresses the challenge of prefiltering volumetric scattering models. We

present a joint optimization of multiple material scattering parameters, i.e., single-scattering

albedos and phase functions, to accurately prefilter heterogeneous and anisotropic media. Our

method leads to significantly better accuracy compared to traditional linear downsampling and

offers several orders of magnitude storage reduction.

Our second work focuses on prefiltering the reflectance of a displacement-mapped

surface. We represent the prefiltered surface reflectance model as a spatially varying bidirectional

reflectance distribution function (SVBRDF) at a reduced resolution. To express our appearance

preserving SVBRDF efficiently, we decompose it into a spatially varying normal distribution

function (SVNDF) and a novel scaling function that accurately captures micro-scale changes of

shadowing, masking, and interreflection effects. The scaling function can further be computed by

an efficient factorization. Our prefiltering method generalizes well to different types of surfaces

and enables anti-aliased level-of-detail rendering.

Finally, our last work turns to the challenge caused by complex lighting conditions.

Given a scene with many polygonal area lights, we prefilter all the lights into a sparse 3D

grid of spherical harmonic (SH) lighting coefficients and gradients, allowing interpolating SH

coefficients accurately at any intermediate point. This enables scaling real-time precomputed

radiance transfer (PRT) to hundreds of area lights. Our method builds on a novel analytic formula

for SH gradients, which may benefit many other applications beyond rendering.

xvi

Chapter 1

Introduction

Photorealistic rendering is a challenging problem in computer graphics. Given a scene

that contains 3D objects, scattering materials, light sources and camera configurations, our goal

is to create an image that is indistinguishable from a photo taken with the same scene description,

which is known as photorealism. To achieve photorealism, it usually requires physically based

light transport simulation. The simulation includes light propagation and interaction events

such as emitting from sources, traveling through media, interacting with scene objects, and

finally reaching the camera. Accurately simulating light transport is computationally expensive,

especially with complex scene geometries, materials, illumination conditions and camera models,

which can produce various appealing visual effects. In this dissertation, we focus on efficient

rendering techniques for complex materials and illuminations.

To accurately reproduce the appearance of complex materials such as cloth fabrics,

researchers have developed micro-appearance models that explicitly describe the geometric

structures at the microscopic scale (i.e., micro-geometry). These models can produce high-

quality renderings with rich appearance details, especially when camera is at a close view

(Figure 1.1). However, it is challenging to render these micro-appearance models efficiently.

First, they are highly data intensive, because they are usually represented by high-resolution 2D

or 3D textures. Second, a full light transport simulation on these models is very complicated due

to the multiple scattering of light within the micro-geometries. Therefore, it requires significant

1

(a) Micro-geometry (b) Twill fabric renderings at multiple scales

Figure 1.1. Micro-appearance model of twill fabric. (a) We use a displacement map to
represent the micro-geometry of the twill fabric, and visualize it as a mesh. (b) We render
the twill fabric at multiple scales. The micro-appearance model is capable of reproducing
characteristic visual effects such as glossy highlights at the macroscopic level and geometric
details at the microscopic level.

Figure 1.2. Renderings of scenes with multiple area lights.

storage and computation time to render high-quality images with micro-appearance models.

Another challenge in rendering comes from complex illumination conditions. It is

common to have multiple light sources in modern computer graphics applications, as they can

provide more natural and realistic lighting effects (Figure 1.2). But rendering scenes with many

lights can be expensive, because the cost is usually linear in the number of light sources. The

problem becomes even harder for real-time applications, in which the scene objects and light

sources can change dynamically.

There has been much research in the past decades addressing the difficulty of rendering

scenes with complex materials and illuminations. One commonly used technique is prefiltering,

which precomputes simpler material or lighting models that enable more efficient rendering.

However, using prefiltered rendering models usually causes accuracy degradation due to approxi-

2

mations made in the prefiltering processes. Thus, our goal is to apply prefiltering techniques to

complex material and lighting models while preserving the appearance accuracy. That is, images

rendered using the prefiltered models should look almost the same as those rendered using the

original models.

In this dissertation, we first address the prefiltering of complex materials. For complex

surface reflectance or volumetric scattering models, a prefiltering process usually involves

downsampling the original high-resolution texture maps (e.g., 2D displacement maps or 3D

volumetric grids) to lower-resolution ones. Prefiltering these models while accurately preserving

their overall appearance remains challenging [7, 29]. This is because downsampling without

careful consideration usually weakens the intrinsic self-shadowing structures of the micro-

geometries, resulting in brightened appearance. A comprehensive analysis of prefiltering is very

difficult, since the light interactions within the micro-geometries is highly nonlinear when we

take global illumination (i.e., interreflection or multiple scattering) into account. There have

been many prior attempts to solve this appearance prefiltering problem. But they are either

neglecting global illumination effects [17, 25], or limited to micro-geometries that follow certain

statistical distributions [29, 31]. In Chapters 3 and 4, we introduce novel appearance preserving

prefiltering techniques for general micro-geometry configurations under global illumination. Our

new prefiltering techniques not only lead to significant data storage reduction, but also enable

accurate anti-aliased rendering at multiple scales.

Next, we present a prefiltering method for multiple area light sources. We use spherical

harmonic (SH) lighting representations in a precomputed radiance transfer (PRT) framework [89].

Original PRT supports real-time dynamic low-frequency environmental (far-field) lighting,

assuming the light sources are infinitely far away. Recent work [5, 102] has derived analytic

SH lighting coefficients for a uniform polygonal area light, enabling close-up (near-field) area

lighting in PRT. However, these methods require evaluating SH coefficients at each shading

point for each area light. The running time is linear in the number of area lights, so scaling these

methods to multiple area lights is prohibitively expensive. In Chapter 5, we demonstrate a novel

3

(a) Chapter 3 (b) Chapter 4 (c) Chapter 5

Figure 1.3. Overview of our contributions in this dissertation.

technique that prefilters multiple polygonal area lights into a sparse 3D grid of SH coefficients

and gradients, enabling rendering scenes with hundreds of area lights in real-time. Our method

builds on a novel theoretical result: analytic formulae for SH gradients.

To summarize, we develop a series of appearance preserving prefiltering techniques

for efficient rendering of complex materials and lighting conditions. These techniques were

presented at multiple ACM SIGGRAPH conferences [108, 109, 121]. Our specific contributions

include:

Prefiltering volumetric scattering models. Volumetric micro-appearance models have

provided remarkably high-quality renderings, but are highly data intensive and usually require

tens of gigabytes in storage. When an object is viewed from a distance, the highest level

of detail offered by these models is usually unnecessary, but traditional linear downsampling

weakens the object’s intrinsic shadowing structures and can yield poor accuracy. In Chapter 3,

we introduce a joint optimization of single-scattering albedos and phase functions to accurately

prefilter heterogeneous and anisotropic media represented by volumetric micro-appearance

models (Figure 1.3(a)). Our method is built upon scaled phase functions, a new representation

combining abledos and (standard) phase functions. We also show that modularity can be exploited

to greatly reduce the amortized optimization overhead by allowing multiple synthesized models

to share one set of downsampled parameters. Our optimized parameters generalize well to novel

lighting and viewing configurations, and the resulting data sets offer several orders of magnitude

storage savings.

Prefiltering displacement-mapped surfaces. Prefiltering the reflectance of a surface de-

4

scribed by a displacement map while preserving its overall appearance is challenging, as smooth-

ing a displacement map causes complex changes of illumination effects such as shadowing-

masking and interreflection. In Chapter 4, we introduce a new method that prefilters displacement

maps and bidirectional reflectance distribution functions (BRDF) jointly and constructs spatially

varying BRDFs (SVBRDF) at reduced resolutions. These SVBRDFs preserve the appearance of

the input models by capturing both shadowing-masking and interreflection effects. To express

our appearance-preserving SVBRDFs efficiently, we leverage a new representation that involves

spatially varying normal distribution functions (NDF) and a novel scaling function that accurately

captures micro-scale changes of shadowing, masking, and interreflection effects. Further, we

show that the 6D scaling function can be factorized into a 2D function of surface location

and a 4D function of direction. By exploiting the smoothness of these functions, we develop

a simple and efficient factorization method that does not require computing the full scaling

function. The resulting functions can be represented at low resolutions (e.g., 42 for the spatial

function and 154 for the angular function), leading to minimal additional storage. Our method

generalizes well to different types of geometries beyond Gaussian surfaces. Models prefiltered

using our approach at different scales can be combined to form mipmaps, allowing accurate and

anti-aliased level-of-detail (LoD) rendering (Figure 1.3(b)).

Prefiltering multiple polygonal area lights. In Chapter 5, we introduce a novel algo-

rithm that encodes light contributions from multiple uniform polygonal area lights in spherical

harmonic (SH) coefficients and gradients stored on a sparse grid. This enables scaling PRT to

hundreds of area lights with real-time frame rates (Figure 1.3(c)). To achieve this, we develop a

novel analytic formula for the spatial gradients of the SH coefficients for uniform polygonal area

lights. The result is a significant generalization, involving the Reynolds transport theorem to

reduce the problem to a boundary integral for which we derive a new analytic formula, showing

how to reduce a key term to an earlier recurrence for SH coefficients. The implementation

requires only minor additions to existing code for SH coefficients. The theoretical results also

5

hold implications for recent efforts on differentiable rendering. We show that SH gradients

enable very sparse spatial sampling, followed by accurate Hermite interpolation. In addition to

efficient many-light rendering in PRT, the SH gradient formula is a new mathematical result that

potentially enables many other graphics applications.

The dissertation is organized as follows. We first introduce the basic background on light

transport and spherical harmonics in Chapter 2. From Chapters 3 to 5, we present technical

details of our appearance preserving prefiltering methods for rendering volumetric scattering

models, displacement-mapped surfaces, and multiple polygonal area lights, respectively. Finally,

we present our conclusion and discuss future research directions in Chapter 6.

6

Chapter 2

Background

In this chapter, we review the basic background knowledge that is frequently used

throughout this dissertation. We start with a brief review on physically based light transport

(Section 2.1). Then, we introduce spherical harmonics and their key properties (Section 2.2),

which are widely used in rendering applications.

2.1 Light Transport

To create photorealistic images, it is necessary to simulate light transport according to

physical laws. In this dissertation, we use geometric optics models to formulate the behavior of

light, neglecting more complicated wave and quantum phenomena. Geometric optics is usually

sufficient for rendering applications. In addition, we assume that the environment we simulate is

at the steady state. That is, light travels very fast and the radiance distribution in a scene reaches

equilibrium after a very short time. Given these assumptions, we can formulate light radiance as

a 5D function of position and direction, without considering the wavelength (spectral) and time

dimensions.

A key concept of light transport is the interaction between light and scene objects. In

the rest of this section, we first introduce basic theories of surface reflection (Section 2.1.1) and

volume scattering (Section 2.1.2). Next, we briefly review several practical techniques to solve

light transport simulation (Section 2.1.3).

7

2.1.1 Surface Reflection

When light hits a surface, it reflects back to the scene with attenuated energy. Kajiya’s

rendering equation [48] formulates surface reflection as

L(xxx,ωωω) = Le(xxx,ωωω)+
∫

H2
fr(xxx,ωωω ′→ ωωω)Li(xxx,ωωω ′)〈nnn(xxx),ωωω ′〉dωωω

′. (2.1)

In this equation, the quantity L(xxx,ωωω) describes the outgoing radiance along direction ωωω at a

specific point xxx. On the right-hand side, it is the sum of the emitted radiance Le(xxx,ωωω) from

the surface and an integral that expresses the reflected radiance. The domain of integration is

the upper hemisphere H2 on the surface. Within the integrand, the bidirectional reflectance

distribution function (BRDF) fr(xxx,ωωω ′→ ωωω) describes the ratio between reflected radiance and

irradiance at the point xxx, Li(xxx,ωωω ′) denotes the incoming radiance from direction ωωω ′, nnn(xxx) is the

normal direction, and 〈·, ·〉 represents dot product.

Note that by convention, all the directions in the radiance quantities and BRDFs point

away from xxx. Specifically, the relation between the incoming radiance Li and the outgoing

radiance L can be written as

Li(xxx,ωωω) = lim
t→0+

L(xxx+ tωωω,−ωωω). (2.2)

When a scene does not have participating media, i.e., objects are in a vacuum, the

rendering equation can fully capture the light transport process. We are able to compute an image

by solving this equation. In the next section, we will discuss volumetric light transport in scenes

with participating media.

2.1.2 Volume Scattering

Modeling light propagation and interactions inside participating media can give us a large

variety of visual effects that are impossible to be generated with only surface reflection, e.g.,

8

atmospheric effects of fog or translucent appearance of jade. Simulating volume scattering has

become an important component in modern production rendering applications. In Chapter 3, we

use participating media to model the appearance of fabrics and fur. We encourage the enthusiastic

reader to consult the survey of Novák et al. [74] for a comprehensive review of volumetric light

transport simulation.

We start with an introduction to the relevant optical parameters of participating media.

From a statistical point of view, there are particles, which either absorb or scatter light, randomly

distributed in a participating medium. We denote σa and σs as the absorption and scattering

coefficient, respectively. They represent the probability densities of a photon being absorbed

or scattered after traveling a unit distance. In addition, we define the extinction coefficient

σt := σa +σs and the single-scattering albedo α := σs/σt . As an analogue of BRDFs in surface

reflection, we use phase functions fp(ωωω
′→ ωωω) to describe the directional distribution of light

scattered in a medium.

When light travels inside a participating medium, there are four types of light-medium

interaction events: emission, absorption, out-scattering, and in-scattering. The radiative transfer

equation (RTE) [9] describes how the radiance changes by these interaction events:

(ωωω ·∇)L(xxx,ωωω) =−σaL(xxx,ωωω)︸ ︷︷ ︸
absorption

− σsL(xxx,ωωω)︸ ︷︷ ︸
out-scattering

+σsLins(xxx,ωωω)︸ ︷︷ ︸
in-scattering

+σaLe(xxx,ωωω)︸ ︷︷ ︸
emission

, (2.3)

where the in-scattered radiance is an integral over all directions on the unit sphere S2:

Lins(xxx,ωωω) =
∫

S2
fp(xxx,ωωω ′→ ωωω)Li(xxx,ωωω ′)dωωω

′. (2.4)

With the rendering equation (2.1) at surface points as boundary conditions, we can rewrite

the differential RTE as a pure integral equation by integrating both sides of the RTE (2.3). The

9

resulting volume rendering equation is

L(xxx,ωωω) = Q(xxx,ωωω)+
∫ D

0
T (xxx′,xxx)σs(xxx′)Lins(xxx′,ωωω)dτ, (2.5)

where Q(xxx,ωωω) is the source term that accounts for self-emissions on the surface and inside

the medium, D is distance from x to the nearest surface in direction −ωωω , point xxx′ := xxx− τωωω is

between xxx and the surface boundary, and T (xxx′,xxx) is the transmittance between xxx′ and xxx:

T (xxx′,xxx) = exp
(
−
∫

τ

0
σt(xxx− τ

′
ωωω)dτ

′
)
. (2.6)

Incorporating the rendering equation (2.1), we can express the source term Q(xxx,ωωω) as

Q(xxx,ωωω) =
∫ D

0
T (xxx′,xxx)σa(xxx′)Le(xxx′,ωωω)dτ +T (xxx0,xxx)L(xxx0,ωωω), (2.7)

where xxx0 := xxx−Dωωω is the point on the nearest surface.

2.1.3 Path Integral Formulation

To solve the rendering equation (2.1), Veach presented the path integral formulation [99]

by recursively expanding the original integral. Pauly et al. further extended this formulation to

the volumetric rendering equation [80]. In the path integral formulation of (volumetric) light

transport, our goal is to solve an integral

I =
∫

Ω

f (x̄)dµ(x̄) (2.8)

that enumerates over the path space Ω containing all the possible transport paths in a scene. A

transport path x̄ = (xxx0,xxx1, . . . ,xxxk) of length k is expressed by a sequence of vertices that are either

on the surfaces or in the participating media. We denote f (x̄) as the measurement contribution

function of this path. The path throughput measure dµ(x̄) is the product of measures at all the

10

vertices. In particular, the measurement contribution of a path x̄ = (xxx0,xxx1, . . . ,xxxk) [74] can be

expressed as

f (x̄) =W (xxx0,xxx1)Le(xxxk,xxxk−1)G(xxx0,xxx1)T (xxx0,xxx1)
k−1

∏
i=1

fs(xxxi−1,xxxi,xxxi+1)G(xxxi,xxxi+1)T (xxxi,xxxi+1).

(2.9)

Assuming that xxx0 is on the sensor and xxxk is on the light sources, the function W (xxx0,xxx1) indicates

the sensor response value. All the remaining terms are defined as follows, depending on the

location of each path vertex:

ωωωxxx→yyy :=
yyy− xxx
‖yyy− xxx‖

. (2.10)

G(xxx,yyy) :=
D(xxx,yyy)D(yyy,xxx)
‖xxx− yyy‖2 , where (2.11)

D(xxx,yyy) :=




‖nnn(xxx) ·ωωωxxx→yyy‖ if xxx is on a surface,

1 if xxx is in a medium.
(2.12)

Le(xxx,yyy) :=





Le(xxx,ωωωxxx→yyy) if xxx is on a surface,

σa(xxx)Le(xxx,ωωωxxx→yyy) if xxx is in a medium.
(2.13)

fs(xxx,yyy,zzz) :=





fr(yyy,ωωωyyy→xxx,ωωωyyy→zzz) if xxx is on a surface,

σs(yyy) fp(yyy,ωωωyyy→xxx,ωωωyyy→zzz) if xxx is in a medium.
(2.14)

Because of the high complexity of the path integral, it is almost impossible to derive a

general analytic solution. In practice, we utilize Monte Carlo integration to compute this integral

numerically. An estimator of the path integral (2.8) can be written as

〈I〉= 1
N

N

∑
i=1

f (x̄i)

p(x̄i)
. (2.15)

Using this Monte Carlo method, a collection of transport paths x̄i are sampled (i.e., constructed

11

by certain procedures such as path tracing) according to a probability density function p(·). As

the number of path samples increases, the value 〈I〉 will converge to I eventually.

Monte Carlo integration techniques have been commonly used in modern physically

based rendering algorithms due to their simplicity. To evaluate an integral in any dimension, the

Monte Carlo estimator converges at a rate of O(N−1/2), avoiding the curse of dimensionality.

In addition, we can apply many variance reduction techniques such as importance sampling

and control variates. Different estimators can be combined via multiple importance sampling

(MIS) [99] to further reduce variance and accelerate convergence [19, 24, 56].

2.2 Spherical Harmonics

Spherical harmonics (SH) are a set of orthogonal functions defined on the unit sphere S2.

They are analogous to 1D sinusoids in Fourier analysis. Since many rendering concepts involve

spherical functions and integrals (e.g., BRDFs and the rendering equation (2.1)), spherical

harmonics are widely used in rendering applications [83, 89]. In this section, we present a brief

introduction to spherical harmonics and their key properties.

2.2.1 Definition

Let ωωω = (x,y,z) = (sinθ cosφ ,sinθ sinφ ,cosθ) be a unit direction on S2. The real SH

basis functions for l ≥ 0,−l ≤ m≤ l are [68]

Ylm(ωωω) =





√
2Klm sin(|m|φ)P|m|l (cosθ), m < 0,

Kl0P0
l (cosθ), m = 0,

√
2Klm cos(mφ)Pm

l (cosθ), m > 0,

(2.16)

where Pm
l are the associated Legendre polynomials and Klm is the normalization term, given by

Klm =

√
2l +1

4π

(l−|m|)!
(l + |m|)!

. (2.17)

12

In particular, zonal harmonics (ZH) are a subset of SH basis functions for m = 0:

Yl0(ωωω) = KlPl(cosθ), (2.18)

where the normalization Kl =
√

2l+1
4π

and Pl is the Legendre polynomial of degree l. Zonal

harmonics are radially symmetric around the z-axis. To represent a ZH basis function that is

centered around an arbitrary axis ωωωc, we write the rotated ZH using dot products:

Yl0(ωωω ·ωωωc) = KlPl(ωωω ·ωωωc). (2.19)

SH basis functions are usually indexed by l and m. Sometimes it is more convenient to

use a single-parameter indexing: i = l(l +1)+m. For notation simplicity, we will this indexing

scheme in the next section.

2.2.2 Key Properties

SH projection and expansion. Given a real-valued function f defined on S2, we can

compute the SH coefficients Fi by projecting f onto each individual SH basis function Yi:

Fi =
∫

S2
f (ωωω)Yi(ωωω)dωωω. (2.20)

The function f can be expanded as a linear combination of the SH basis functions, weighted by

the SH coefficients:

f (ωωω) =
∞

∑
i=0

FiYi(ωωω). (2.21)

In practice, we typically set a number lmax to limit the number of SH coefficients, i.e.,

0≤ l ≤ lmax. This leads to N = (lmax +1)2 coefficients. Since the high-frequency components

13

of f are truncated, we have a band-limited approximation f̃ of the original function:

f (ωωω)≈ f̃ (ωωω) =
N−1

∑
i=0

FiYi(ωωω). (2.22)

Double product integral. Given two spherical functions expanded with SH basis,

f (ωωω) = ∑
i

FiYi(ωωω), g(ωωω) = ∑
j

G jYj(ωωω), (2.23)

we can compute the integral of their product as

∫

S2
f (ωωω)g(ωωω)dωωω =

∫

S2

(
∑

i
FiYi(ωωω)

)(
∑

j
G jYj(ωωω)

)
dωωω

= ∑
i

∑
j

FiG j

∫

S2
Yi(ωωω)Yj(ωωω)dωωω

︸ ︷︷ ︸
=:Ci j

= ∑
i

∑
j

FiG jδi j

= ∑
i

FiGi. (2.24)

Here, Ci j are the coupling coefficients. Because the SH basis functions are orthonormal, we have

Ci j = δi j, where δi j is the Kronecker delta. Therefore, the double product integral is simply a dot

product of their SH coefficient vectors. It is commonly used for evaluating diffuse reflections in

precomputed radiance transfer (PRT) [89].

Triple product integral. In certain situations, we may need to compute a triple product

integral, e.g., the rendering equation involving lighting, glossy BRDFs, and visibility [72, 89].

14

Given three SH expanded functions f ,g,h as input, we can compute the triple product integral as

∫

S2
f (ωωω)g(ωωω)h(ωωω)dωωω =

∫

S2

(
∑

i
FiYi(ωωω)

)(
∑

j
G jYj(ωωω)

)(
∑
k

HkYk(ωωω)

)
dωωω

= ∑
i

∑
j
∑
k

FiG jHk

∫

S2
Yi(ωωω)Y j(ωωω)Yk(ωωω)dωωω

︸ ︷︷ ︸
=:Ci jk

= ∑
i

∑
j
∑
k

Ci jkFiG jHk. (2.25)

The tripling coefficients Ci jk are known as the Clebsch-Gordan coefficients [38], which have

analytic forms. Although the triple product integral has a more complicated solution than

the double product integral, the coefficients Ci jk are sparse, and it leads to a computational

complexity of O(N5/2) [72]. This enables practical glossy reflections in PRT [72, 89].

15

Chapter 3

Downsampling Scattering Parameters for
Rendering Anisotropic Media

We start with prefiltering the volumetric scattering parameters of participating media. Our

goal is to compute the prefiltered scaled phase functions at reduced resolutions. We formulate

prefiltering as an inverse rendering problem and present a practical optimization algorithm to

solve it. Our method can produce prefiltered material models that accurately preserve the desired

appearance and have significantly smaller data size than the original high-resolution models.

3.1 Introduction

Recently, detailed volumetric models [42, 118] have become increasingly more popular

for handling the appearance of materials with complex 3D structures (e.g., fabric and fur). These

micro-appearance models explicitly capture objects’ microscopic level geometries and have

brought the quality of computer rendered complex materials to the next level.

Unfortunately, efficient use of these high-resolution models remains challenging since

they are usually highly data intensive, and loading these datasets into memory alone can take

minutes. For many computer graphics applications, however, such extreme high-resolution

is unnecessary: especially when the object is viewed from a distance. Greatly downsampled

versions, which require significantly less storage, would suffice in many situations. In Figure 3.1,

for instance, the reference scene involves 4.68×1012 effective voxels taking 25.4 GB of storage.

16

Reference
25.4 GB

Ours
45.6 MB

Relative error: 0% 100%

Figure 3.1. We present a new approach to compute scattering parameters at reduced resolutions.
Many detailed appearance models involve high-resolution volumetric representations (top-left).
Such level of detail leads to high storage but is usually unnecessary especially when the object is
rendered at a distance. However, naı̈ve downsampling often loses intrinsic shadowing structures
and brightens resulting images (see the insets). Our method computes scaled phase functions,
a combined representation of single-scattering albedo and phase function, and provides sig-
nificantly better accuracy while reducing the data size by almost three orders of magnitude
(top-right).

Our models with reduced resolutions (see the second row of insets for levels of downsampling),

on the other hand, result in only 45.6 MB of data.

Although lower-resolution operations have been developed for plain textures and nor-

mal maps [25], they are largely lacking for light scattering parameters [9, 42]. Recently,

Heitz et al. [29] proposed a new phase function formulation which offers easy (trilinear) pre-

filtering and is a valuable first-step toward this direction. However, linear downsampling is

generally insufficient when handling scattering parameters including spatially varying densities

and albedo values. This is because downsampling weakens intrinsic shadowing structures (Fig-

ure 3.2), causing significant brightening of resulting renderings (see the middle row of insets in

Figure 3.1).

In this chapter, we introduce a novel method to improve the accuracy of downsampled

17

scattering parameters. In particular, our approach optimizes single-scattering albedos and phase

functions jointly. Our contributions include:

• We introduce scaled phase functions combining albedos and phase functions (Section 3.4).

• We develop an optimization-based method to downsample scaled phase functions (Sections 3.5

and 3.6).

• We show how modularity can be exploited by reusing a single set of optimized parameters for

multiple objects, significantly reducing the amortized optimization overhead (Section 3.7).

Our approach is model-dependent: unlike traditional prefiltering methods, our technique

takes full input geometries into consideration. Our optimization involves a few training renderings

which can take tens of CPU core hours but is comparable to rendering one high-quality image.

Fortunately, this process only needs to be executed once: the resulting representations can be

reused in different virtual configurations. Furthermore, by exploiting modularity, multiple objects

can share one single optimization. We also release all our downsampled datasets so that the

detailed models in Figures 3.1, 3.18, and 3.19 can be directly used by other researchers.

Our downsampled models offer several orders of magnitude storage saving and greatly

reduce the I/O time, which can be a significant overhead for highly detailed scenes like Figure 3.1.

In addition, our models are less prone to aliasing and usually require fewer sample paths to

achieve similar rendering qualities (Figure 3.3). Lastly, these benefits are “effort-free”: our

technique allows the user to replace original parameters using significantly downsampled versions

without modifying the core rendering algorithm.

3.2 Related Work

Radiative transfer. The scattering parameters considered in this chapter arise from

radiative transfer [9] which originally assumes random media with disorganized micro-structures.

Jakob et al. [42] later relaxed this assumption by modeling anisotropic media with structured

micro-geometries. Heitz et al. [29] has recently proposed a new anisotropic phase function

18

Low density
voxel

High density
voxel

Shadow
volume

(a) Original
Strong self-shadowing

(b) Downsampled
No self-shadowing

Incoming light Incoming light

Figure 3.2. 2D demonstration of the weakening of self-occlusion caused by downsampling
spatially varying densities.

offering fast evaluation and easy (linear) interpolation. We build our framework upon this

state-of-the-art representation.

Micro-appearance models. Recently, a family of micro-appearance modeling tech-

niques [118, 119] have been introduced. These methods represent material geometries at un-

precedented detail using ultra high-resolution volumes. Leveraging anisotropic radiative transfer,

they have provided extremely high-quality renderings. However, the use of large 3D volumes

has yielded multi-gigabyte models. This chapter focuses on greatly reducing the resolution of

these models while maintaining good accuracy (Figures 3.1, 3.18, 3.19).

Handling high-resolution data/appearance. Several techniques [51, 88] have been

developed previously to interpolate voxelized data for efficient 3D visualization. Although

these approaches could be adapted to handle some scattering parameters, they normally offer

limited accuracy. In addition, a number of techniques have been introduced to efficiently handle

surface-based reflectance profiles [7, 44, 95], micro-geometry [14, 43, 105]), or specialized

volumes [70]. Unfortunately, these methods are not easily applicable to our problem.

Altering material properties. This chapter aims to compute a material’s scattering

parameters at reduced resolutions. Previously, a family of techniques focusing on altering

material scattering parameters are similarity relations [120]. These methods, however, need to

19

Rendering time: 14 min

16 spp

Rendering time: 7 min

12 spp

(a) Original (b) (16×)3 Downsampled
Noise level: 2.35×10−4 Noise level: 2.47×10−4

Figure 3.3. Equal-quality renderings using volumes at original (a) and (16×)3-downsampled
(b) resolutions (computed with our method). The lower-resolution representation requires fewer
samples per pixel to obtain a similar resulting noise level (measured using [64]).

be applied independently to each point and generally do not allow changing model resolutions.

Our technique is completely orthogonal and complementary to them.

Inverse rendering. Inverse rendering techniques solve for material optical parameters

given desired object appearance. Some of them are also based on optimizations [22, 26, 50].

However, these methods effectively solve a special case of our problem. That is, they assume

homogeneity (i.e., spatially invariant parameters) and/or simple (single-lobe) phase functions.

Our approach performs a joint optimization of both albedo and phase function, and supports

heterogeneity.

3.3 Background

At the core of the radiative transfer framework [9] lies the radiative transfer equation

(RTE)1

(ωωω ·∇)L(ωωω) =−σtL(ωωω)+σs

∫

S2
L(ωωω ′) f (ωωω ′→ ωωω)dωωω

′, (3.1)

1A source term Q(ωωω) from the RHS of Equation (3.1) is neglected as we focus on nonemissive media. In
addition, spatial dependencies of L, σt , σs, and f are omitted for notational convenience.

20

Table 3.1. Definitions of commonly used symbols in Chapter 3.

Symbol Meaning Def.
σt Extinction coefficient (density) Section 3.3

σs Scattering coefficient Section 3.3

α Single-scattering albedo Section 3.3

f Phase function Section 3.3

f SGGX(S) SGGX function determined by S Section 3.3

f̂ Scaled phase function Section 3.4.1, Equation (3.9)

f j (Normalized) phase function lobe Section 3.4.1, Equation (3.9)

Wj Lobe weight Section 3.4.1, Equation (3.9)

w j Lobe weight factor Section 3.6.2, Equation (3.13)

V (i) Set of input voxels contained in Section 3.5
downsampled voxel i

V (i, j) The j-th cluster of V (i) Section 3.5

mean(·) Mean pixel intensity Section 3.6

meank(·) Restricted mean pixel intensity Section 3.6

where σt (extinction coefficient), σs (scattering coefficient), and f (phase function) are material

scattering parameters, and L is the resulting radiance field. In addition, single-scattering albedo

is defined as the ratio between σs and σt : α = σs/σt . Table 3.1 summarizes all symbols

commonly used in this chapter.

Jakob et al. [42] generalized the RTE (3.1) to capture directional dependencies of the

scattering parameters, yielding the anisotropic RTE

(ωωω ·∇)L(ωωω) =−σt(ωωω)L(ωωω)+σs(ωωω)
∫

S2
L(ωωω ′) f (ωωω ′→ ωωω)dωωω

′. (3.2)

Under this formulation, the medium is modeled as a collection of two-sided small mirrors, or

micro-flakes, whose normal directions mmm follow a statistical distribution D. Then, the scattering

21

parameters in Equation (3.2) are given by σt(ωωω) = ρσ(ωωω), σs(ωωω) = ασt(ωωω),

f (ωωω ′→ ωωω) =
1

σ(ωωω ′)

∫

S2
p(mmm,ωωω ′→ ωωω)〈ωωω ′,mmm〉D(mmm)dmmm, (3.3)

where ρ indicates the density of micro-flakes, α denotes the directionally independent albedo,

p is the scattering profile for each micro-flake, and σ(ωωω) =
∫
S2〈ωωω,ωωω ′〉D(ωωω ′)dωωω ′ provides the

projected area of the micro-flakes in direction ωωω . This generalized framework collapses to the

standard isotropic case (Equation (3.1)) when D is set to uniform [42]. In addition, it has been

shown to be capable of closely capturing the appearance of complex materials such as fabrics

and fur [29, 42, 118, 119].

Recently, Heitz et al. [29] introduced an SGGX-based representation for the micro-flake

normal distribution:

D(mmm) :=
1

π
√
|S|(mmmT S−1mmm)2

, (3.4)

where S is a 3×3 symmetric positive definite matrix. This distribution has been demonstrated to

offer similar representative power as state-of-the-art models [42, 118] while being less expensive

computationally. In the rest of this chapter, we use f SGGX(S) to denote the SGGX phase function

determined by S via Equations (3.3) and (3.4).

Interpolation of SGGX phase function. To represent the average of SGGX phase

functions determined by matrices S1,S2, . . . ,Sn with one SGGX function with the matrix S̃, Heitz

et al. [29] demonstrated that using the arithmetic average of those matrices, namely setting

S̃ =
1
n

(
n

∑
i=1

Si

)
, (3.5)

can lead to a good approximation.

Interpolation of density and albedo. Previously, Kraus and Bürger [51] demonstrated

that independently interpolating (i.e., averaging) density and single-scattering albedo generally

22

yields very poor results. Instead, given n extinction coefficients σ
orig
t,1 , . . . , σ

orig
t,n and corre-

sponding albedo α
orig
1 , . . . , α

orig
n , it is better to set the interpolated extinction coefficient σ̄t and

albedo ᾱ using:

σ̄t =
1
n

n

∑
i=1

σ
orig
t,i and ᾱ =

∑
n
i=1 σ

orig
t,i α

orig
i

∑
n
i=1 σ

orig
t,i

. (3.6)

This simple scheme, however, can still lead to limited accuracy. We use Equation (3.6) to create

all naı̈ve downsampling results.

3.4 Our Method

In this work, we aim to numerically compute downsampled representations of heteroge-

neous, anisotropic media with SGGX phase functions.

As demonstrated in prior work [50, 118], material appearance is insensitive to small

changes of density σt (at a fixed resolution), and the relationship between the two is highly

complex. Thus, we focus on computing albedos and phase functions with densities downsampled

via Equation (3.6).2

3.4.1 Combining Albedo and Phase Function

Because our goal is to compute albedos α and phase functions f at reduced resolutions,

it is desirable to have a framework combining these quantities. Given that σs(ωωω) = ασt(ωωω), the

anisotropic RTE (3.2) can be rewritten as

(ωωω ·∇)L(ωωω) = σt(ωωω)

[
−L(ωωω)+

∫

S2
L(ωωω ′) f̂ (ωωω ′→ ωωω) dωωω

′
]
, (3.7)

where

f̂ (ωωω ′→ ωωω) := α f (ωωω ′→ ωωω), (3.8)

2It is also possible to compute and use downsampled albedos and phase functions using original (non-
downsampled) densities. Our method is completely orthogonal and complementary to this aspect.

23

is a scaled version of the phase function f and is allowed to integrate to less than one. Our

method focuses on numerically computing f̂ at reduced resolutions. In particular, we treat f̂ as a

linear combination of m SGGX lobes. That is,

f̂ (ωωω ′→ ωωω) =
m

∑
j=1

Wj f j(ωωω
′→ ωωω), (3.9)

where f j is the j-th SGGX lobe and Wj ∈ (0,1] denotes the weight of this lobe and satisfies

∑
m
j=1Wj ≤ 1.

Given a scaled phase function (Equation (3.9)), the corresponding effective albedo αeff

and phase function f eff can be obtained easily with

α
eff =

m

∑
j=1

Wj, f eff =
f̂

αeff . (3.10)

When m = 1, the lobe weight W1 simply equals the effective albedo αeff and f eff ≡ f1. When

m > 1, each weight Wj affects both αeff and f eff.

3.4.2 Input and Output

Our approach takes voxelized representations of anisotropic media as input, where each

voxel i stores:

• Optical density σ
orig
t,i , single-scattering albedo α

orig
i ;

• SGGX phase function f orig
i determined by 3× 3 symmetric positive definite matrix Sorig

i .

Namely, f orig
i = f SGGX(Sorig

i).

The output of our approach is another volume with lower resolution, where each voxel i contains:

• Downsampled density σ̄t,i given by Equation (3.6);

• Scaled phase function f̂i determined by m SGGX lobes fi,1, fi,2, . . . , fi,m (which in turn are

given by matrices Si,1, Si,2, . . . , Si,m) and m weights Wi,1, Wi,2, . . . , Wi,m ∈ (0,1].

24

3.4.3 Overview

The rest of this chapter focuses on finding a proper scaled phase function f̂i for each

downsampled voxel i. That is, we need to determine the SGGX lobes fi, j (which is equivalent to

finding Si, j ∈ R3×3) as well as the lobe weights Wi, j for 1≤ j ≤ m. Since there can be millions

of voxels each of which has m unknown matrices Si, j and m unknown weights Wi, j, the problem

is extremely under-constrained in general. To make it tractable, we start with determining fi, j

locally based on constituent (input) phase functions (Section 3.5), and then optimize the weights

Wi, j globally (Section 3.6).

3.5 Determining SGGX Lobes

The m SGGX lobes fi,1, fi,2, . . . , fi,m of a downsampled voxel i describe the patterns

under which light scatters inside this voxel. Let V (i) denote the set of input voxels (at the original

resolution) that are contained in downsampled voxel i. Then, how light scatters is ultimately

determined by the input phase functions f orig
i′ with i′ ∈V (i). We aim to find SGGX functions

fi,1, fi,2, . . . , fi,m capturing the accumulated scattering profile given by the input phase functions

f orig
i′ .

The previous phase function downsampling approach [29] focuses on the special case

of m = 1. In this case, fi,1 needs to approximate ∑i′∈V (i) f orig
i′ and can be obtained directly via

Equation (3.5). Namely, fi,1 = f SGGX(Si,1) with Si,1 =
(

∑i′∈V (i) Sorig
i′

)
/n.

Although using a single SGGX function to approximate the average of multiple SGGX

functions works adequately in many cases (Figure 3.4, Example 1), it can lead to limited accuracy

for highly anisotropic materials (Figure 3.4, Example 2).

25

Example 1 (Velvet)︷ ︸︸ ︷

D(S1) D(S2) D(S3) D(S4)

1
4

∑4
i=1D(Si)

(a) Reference

D
(

1
4

∑4
i=1 Si

)

(b) 1-Lobe fit

1
2 D
(

1
2

∑2
i=1 Si

)
+ 1

2 D
(

1
2

∑4
i=3 Si

)

(c) 2-Lobe fit

Low

High

Example 2 (Twill)︷ ︸︸ ︷

D(S1) D(S2) D(S3) D(S4)

1
4

∑4
i=1D(Si)

(a) Reference

D
(

1
4

∑4
i=1 Si

)

(b) 1-Lobe fit

3
4 D
(

1
3

∑3
i=1 Si

)
+ 1

4 D(S4)

(c) 2-Lobe fit

Low

High

Figure 3.4. Comparison between single- and multi-lobe SGGX fits. In each example, the
goal is to fit the reference (a) which equals the average of four SGGX lobes given by S1, S2, S3,
and S4 (visualized in dashed box). Although the single-lobe fit (b) works well in Example 1, it
fails to capture the high anisotropy in Example 2. The two-lobe fit (c), in contrast, works much
better in this case. See Figure 3.17 for corresponding rendered images.

26

fi1 fi2

fi3
fi4

orig orig

origorig

Downsampled voxel i

(a) (b)

fi,1

fi,2

Downsampled voxel i
Input

voxel i1

Input
voxel i3

Input
voxel i2

Input
voxel i4

Figure 3.5. An example downsampled voxel i containing four input voxels (i.e., V (i) =
{i1, i2, i3, i4}) is shown in (a), and a fitted two-lobe result in (b). The four input phase functions
are partitioned into two clusters V (i,1) = {i1} (in orange) and V (i,2) = {i2, i3, i4} (in yellow)
based on their shapes. The resulting two-lobe representation is then obtained by applying
Equation (3.5) to each cluster. Note that this step only determines the shape of each lobe: their
weights will be optimized globally in Section 3.6.

Phase Function Clustering. To allow m > 1, we partition the input phase functions

{ f orig
i′ : i′ ∈V (i)} into m clusters and apply Equation (3.5) to each cluster. That is, we set

fi, j = f SGGX

(
1

|V (i, j)| ∑
i′∈V (i, j)

Sorig
i′

)
, (3.11)

where V (i, j)⊂V (i) denotes the set containing the indices of all input SGGX phase functions

belonging to the j-th cluster. Figure 3.5 illustrates an example of this process. We compute the

clustering V (i,1), V (i,2), . . . , V (i,m) using K-means with Sorig
i′ treated as 9D vectors.

To determine the value of m, one can start with m = 1 and iteratively increase m until the

approximation error, i.e., the L2 difference between fi, j and
(

∑i′∈V (i, j) f orig
i′

)
/n, stops decreasing

rapidly. In practice, we also limit m to 3 for a good balance between model size and result

accuracy. See Section 3.8.1 for more details.

27

3.6 Optimizing Lobe Weights

With the SGGX lobes fi,1, fi,2, , . . . , fi,m determined at each downsampled voxel i, the

remaining task for obtaining the scaled phase function f̂i is to compute the corresponding weight

vector WWW i := (Wi,1, Wi,2, . . . ,Wi,m).

Solving for m weights for each downsampled voxel is still a challenge due to the large

number of unknowns. Fortunately, we have a good initial guess to start with: the (linearly)

downsampled albedo ᾱi which can be computed using Equation (3.6) for each voxel i. Since

the scaled phase function is defined as the product of albedo and (normalized) phase function

(Equation (3.9)), the naı̈ve downsampling approach is equivalent to setting

W naı̈ve
i, j = ᾱi|V (i, j)|/|V (i)|, (3.12)

where |V (i, j)|/|V (i)| captures the weight of fi, j due to phase function clustering (see Equa-

tion (3.11) and Figure 3.5). In this case, it is easy to verify that αeff
i = ∑

m
j=1W naı̈ve

i, j = ᾱi.

3.6.1 Overview

The rest of this section focuses on finding weight factors for each downsampled voxel that

can lead to good accuracy. These weight factors scale the lobe weights given by Equation (3.12).

Because the number of downsampled voxels can be very large (in millions), solving for one set

of weight factors per voxel is impractical. Instead, we partition the voxels into K clusters and

search for one set of weight factors wwwk := (wk,1, wk,2, . . . , wk,m) for each cluster k. Then, for

each downsampled voxel i, the lobe weights become

Wi, j =W naı̈ve
i, j wc(i), j = ᾱi

|V (i, j)|
|V (i)|

wc(i), j, (3.13)

where c(i) ∈ {1,2, . . . ,K} indicates the index of the cluster to which voxel i belongs.

We describe in Section 3.6.2 how to cluster the voxels and reorder the phase function

28

lobes fi, j so that each weight factor wi, j controls a set of lobes with similar shapes. Then,

Section 3.6.3 introduces our main algorithm that numerically optimizes wwwk for each voxel

cluster k.

3.6.2 Voxel Clustering

We cluster the voxels by applying K-means to the downsampled albedos ᾱi. Our experi-

ments indicate that a small number (e.g., two to five) of clusters can lead to high-quality results

in practice.

When voxel cluster boundaries go across areas with smoothly varying albedos, the

rendered images can occasionally contain visible seams. To ease this problem, we jitter the

clusterings by slightly perturbing each ᾱi when performing K-means. Please see Section 3.8.1

for examples.

Lobe ordering. Since each weight factor wwwk is shared among multiple voxels (i.e., those

with c(i) = k), the ordering of phase function lobes matters. Intuitively, we need to reorder the

lobes fi,1, fi,2, . . . , fi,m for each i so that those with the same indices from different voxels have

similar shapes (see Figure 3.6).

For each voxel cluster, we pick an arbitrary voxel i as a reference and keep its lobe order-

ing fixed. Then, for each of the other voxels i′, we search a permutation π∗i′ of {1,2, . . . ,m} such

that the L2 difference between corresponding SGGX normal distributions D (which determines

actual phase function lobes) is minimized. Namely,

π
∗
i′ = argmin

π

m

∑
j=1

∫

S2

[
Di, j(mmm)−Di′,π(j)(mmm)

]2 dmmm. (3.14)

We then use π∗i′ to reorder the lobes of voxel i′. In practice, since the number of lobes m is usually

very small, π∗i′ can be computed in a brute-force manner.

29

Downsampled voxel 1 (reference)

Lobe 1 Lobe 2 Lobe 3

f1,1 f1,2 f1,3

(a) Before lobe reordering (b) After lobe reordering

Downsampled voxel 2 (original)

Lobe 1 Lobe 2 Lobe 3

f2,1 f2,2
f2,3

Downsampled voxel 1 (reference)

Lobe 1 Lobe 2 Lobe 3

f1,1 f1,2 f1,3

Downsampled voxel 2 (reordered)

Lobe 1 Lobe 2 Lobe 3

f2,1 f2,2 f2,3

Figure 3.6. We reorder the phase function lobes so that those with identical indices have
similar shapes. In this example, after reordering the lobes of voxel 2 using π∗2 = (3,1,2), the
shape of f1, j matches that of f2, j for j = 1,2,3.

3.6.3 Optimizing Weight Factors

We now present our method to search for proper weight factors www1, www2, . . . , wwwK (where

K is the number of voxel clusters). Our goal is to make the resulting object appearance to closely

match the ground truth under identical smooth lighting conditions.3

To obtain the optimal weight factors, we minimize an error metric based on differences

between images rendered with original and downsampled parameters. Specifically, we perform

training renderings with a number of lighting and viewing configurations, yielding a pair of

images Ir (ground truth) and Ĩr (approximated) for each configuration r. Notice that the latter

image Ĩr is a function of the weight factors www1, . . . , wwwK that we are looking for.

Training scene setup. To generate the training renderings I and Ĩ, we need to design

lighting and viewing configurations. For ensuring our solved albedo values generalize well to

3Here the smoothness assumption about lighting is a common practice when deriving approximate material
properties and is used by the diffusion approximation [39] as well as similarity relations [120].

30

different settings, we perform the fitting using multiple lighting and viewing configurations. In

particular, we render the object from the six directions (i.e., X-, X+, Y-, Y+, Z-, Z+) defined

by its bounding box (Figure 3.7). For each view, we render the object using a few spherical

harmonic lightings (see Section 3.8.1 for more details).

Error metric. To measure the difference between Ir and Ĩr for each configuration r, we

utilize a generalized version of the L2 distance between mean pixel intensities. Given a rendered

image I, let mean(I) denote the average intensity of all (foreground) pixels in I. Previous

work [50, 118] uses this measure to define their error metrics as

∑
r

c2
r
(
mean(Ĩr)−mean(Ir)

)2 (3.15)

with cr = max(mean(Ir), 0.05)−1 being a normalization factor. This metric works well when

Ĩr is affected by a small set of spatially invariant parameters, but has difficulties handling more

general situations with parameter heterogeneity. In particular, the measure mean(Ĩr) only tells

if the whole image Ĩr is too dark or too bright with little information on which voxel clusters

are causing the problem, making it difficult to tell which weight factor needs to be corrected.

Consequently, the optimization is prone to local minima.

We generalize mean(I) and define the restricted mean pixel intensity meank(I) as the

average intensity evaluated among pixels to which downsampled voxels from cluster k are

“directly” visible (see Figure 3.8). This leads to our error metric:

EL2(www1, . . . ,wwwK) := ∑
r

c2
r

K

∑
k=1

(
meank(Ĩr)−meank(Ir)

)2
. (3.16)

Our desired weights www∗1, . . . , www∗K minimize Equation (3.16). Namely,

(www∗1, . . . , www∗K) = argmin
www1, ..., wwwK

EL2(www1, . . . , wwwK). (3.17)

31

X+ Y+ Z+

X- Y- Z-

Figure 3.7. Six views we use for the training renderings.

We solve this optimization problem using stochastic gradient descent (SGD).

Gradient estimation. To solve Equation (3.17) using SGD, the key is to obtain an

unbiased evaluation of the partial derivative of the error metric (Equation (3.16)) with respect to

wk, j for any 1≤ k ≤ K and 1≤ j ≤ m. It holds that

∂EL2

∂wk, j
= 2∑

r,k′
cr
[
meank′(Ĩr)−meank′(Ir)

] ∂meank′(Ĩr)

wk, j

= 2∑
r,k′

cr
[
meank′(Ĩr)−meank′(Ir)

]
meank′

(
Ĩ′r,k, j

)
,

(3.18)

where Ĩ′r,k, j is the gradient image with respect to wk, j in which each pixel p has intensity

Ĩ′r,k, j(p) = (∂ Ĩr/∂wk, j)(p). We use path tracing to obtain an unbiased evaluation of Ĩ′r,k, j. Please

refer to Appendix A.1 for more details. Figure 3.9 shows an example of original and gradient

images.

Stochastic gradient descent. With the gradient values, we can apply stochastic gradient

descent (SGD) to find weight factors www1, . . . , wwwK minimizing Equation (3.16). We use www(0)
k =

(1, . . . ,1) for all k = 1,2, . . . ,K as the initial guesses. In each iteration, we update each weight

32

Voxel cluster 1

Voxel cluster 2

Image
plane

pixel 1

pixel 2Camera
center

pixel 3

Figure 3.8. We define restricted mean pixel intensity that separates errors caused by different
voxel clusters and yields better convergence of the optimization. In this 2D example has three
pixels and two voxel clusters, mean1() is computed over pixels 1 and 2 because (at least part of)
voxel cluster 1 is visible through these two pixels. Similarly, mean2() involves pixels 2 and 3.

factor wk, j via:

w(t+1)
k, j = w(t)

k, j−δt
∂EL2

∂wk, j

∣∣∣∣
w(t)

k, j

, (3.19)

where δt is the step size of iteration t. The step size gradually decreases during iterations. In

theory, δt needs to satisfy ∑
∞
t=1 δt = ∞ and ∑

∞
t=1 δ 2

t < ∞ for ensuring convergence. We follow

the common practice [50] of using the divergent harmonic series by setting

δt = ak, j/(t +bk, j), (3.20)

where ak, j and bk, j are constants. How to obtain the values for these constants is discussed in

Section 3.8.1.

3.6.4 Handling Multiple Color Channels

All our derivations up to this point are for a single wavelength. In principle, when the

input has colored scattering parameters, our downsampling pipeline needs to be executed per

channel.

33

Original image

Voxel cluster 1
Voxel cluster 2

Gradient images

Lobe 1 Lobe 2

Figure 3.9. Original and gradient images rendered with our approach. This fabric contains
differently colored warp (in pink) and weft (in yellow) yarns. Our method uses two voxel clusters
(i.e., one for each type of yarn) and two phase function lobes per voxel. The corresponding
gradient images successfully capture the main color of each cluster as well as anisotropy of
the lobes. Furthermore, the varying average intensities of the gradient images demonstrate the
correlation between voxel clusters and lobe weights: voxels in cluster 1 have high weights for
lobe 1, and vice versa.

In practice, however, we found that the input parameters are usually semi-colored: only

albedos vary between color channels while densities and phase functions stay constant. In this

case, we keep SGGX lobes fi, j and weight factors wi, j single-channel and introduce an extra

colored scaling factor sssk := (sR
k ,s

G
k ,s

B
k) for each voxel cluster k, so that the lobe weights Wi, j

originally defined in Equation (3.13) become colored with

W clr
i, j = sc(i) ᾱ

clr
i
|V (i, j)|
|V (i)|

wc(i), j for clr ∈ {R,G,B}, (3.21)

where c(i) denotes the index of the cluster to which voxel i belongs, and ᾱclr
i is the corresponding

(i.e., red, green, or blue) component of the downsampled albedo at voxel i. We optimize

34

sss1, . . . , sssK together with the weight factors wwwi, j using SGD as this is more efficient than

optimizing wwwi, j for each color-channel separately (see Section 3.8.1 for an example).

3.6.5 Discussion

When m = 1 and K = 1, the scaled phase function at each voxel i becomes f̂i = ᾱi w fi,1,

and the optimization reduces to searching for a global weight factor w which effectively scales

all albedos uniformly. Furthermore, if the input model has homogeneous albedo α , namely

ᾱi ≡ α for all i, the search for w becomes equivalent to finding an altered albedo α̃ := αw. This

is precisely what previous methods [50, 118] do. Our method, on the other hand, is much more

general and allows multiple lobes and voxel clusters as well as heterogeneous input albedos.

Voxel clustering. Our voxel clustering (Section 3.6.2) relies purely on downsampled

albedo ᾱi for each voxel i. This simple scheme has yielded high-quality results for all our experi-

ments (see Section 3.8). In the future, more sophisticated features capturing spatial locations

and/or phase functions can be used for handling input with higher degrees of correlations.

3.7 Exploiting Modularity

Many micro-appearance models consist of multiple blocks each of which comes form a

predefined set of exemplars. For instance, Zhao et al. [119] introduced a structure-aware synthesis

algorithm that automatically constructs highly complex fabric models based on exemplars with

elementary weave patterns.

We exploit such modularity to accelerate the optimization of lobe weights. Our high-level

idea is to directly downsample the exemplars (using techniques introduced in Sections 3.5 and 3.6)

as precomputation. Then, to obtain a synthesized model at lower-resolution, we can directly

replace its blocks with our downsampled versions. Because a synthesized model is normally

much larger (in terms of the number of blocks) than the corresponding exemplars, it is more

efficient to downsample the latter. More importantly, this allows many models synthesized from

35

Figure 3.10. Two (16×)3-downsampled results synthesized with the same design but differently
stacked exemplar volumes (whose tiled versions are shown as insets). The two exemplar stacking
schemes have lead to visually identical results.

one set of exemplars to share one precomputation, greatly reducing the amortized downsampling

overhead.

Downsampling exemplars. We downsample all exemplars together by stacking them

(randomly) into a single exemplar volume and downsampling it using techniques introduced in

Sections 3.5 and 3.6. Doing so has the following benefits. First, it guarantees downsampled voxels

from different exemplars to have similar scaled phase functions if they contain similar input

albedo and phase functions. This consistency is important for avoiding visible discontinuities

in synthesized results. Second, it offers better performance than optimizing each exemplar

separately.

In theory, because of high-order multiple scattering across neighboring exemplars, dif-

ferent ways of stacking can lead to varying optimization results. Fortunately, as demonstrated

in Figure 3.10, we found that this hardly happens in practice: downsampled parameters using

different stacking schemes generally yield visually identical results. Therefore, we compose the

exemplar volume by stacking together individual exemplars in a randomized manner.

3.8 Results

Using our technique described in Sections 3.5, 3.6 and 3.7, scaled phase functions (or,

equivalently, albedos and phase functions) can be computed at greatly reduced resolutions. This

36

(8×)3 (8×)3 (8×)3

(a) Reference (b) 1 cluster (c) 2 clusters (d) 4 clusters
Rel. err: 0.105 Rel. err: 0.071 Rel. err: 0.067

Figure 3.11. Determining the number of voxel clusters. A hairy ball made with two materials
(a). Each of these materials requires a distinctive albedo scaling to match the ground truth. If
using only one cluster, the two materials are forced to be treated equally, resulting in poor
accuracy (b). Using two clusters with our clustering scheme, each of the two materials will be
handled separately, offering better accuracy (c). Going beyond two clusters (d), on the other
hand, has limited benefits.

section shows results generated using our method. In Section 3.8.1, we empirically evaluate

and justify several components of our approach. Then, in Section 3.8.2 we show downsampled

results for a range of objects represented with high-resolution anisotropic volumes.

Seam

(8×)3 (8×)3

(a) Reference (b) No jittering (c) With jittering

Figure 3.12. Avoiding visible seams by jittering voxel clustering. When the input has smoothly
changing albedos (a), neighboring voxel clusters can have clear boundaries that may yield visible
seams (b). To ease this problem, we slightly jitter the clusters so that their boundaries become
fuzzier (c).

37

1 2 3 4 5 6 7 8 9 10
Iteration #

0.06

0.07

0.08

0.09

0.10

0.11
L 2

 E
rro

r
Band-0 (1 Basis)
Band-1 (4 Bases)
Band-2 (9 Bases)

Reference

Figure 3.13. Selecting training lighting. The errors are evaluated between a reference image
and those rendered using optimized parameters after a certain number of SGD iterations. An
area light source is used to generate all these renderings. The results indicate that going beyond
four SH bases offers little improvement for accuracy. The small differences between L2 errors
for band-1 and band-2 are mostly due to Monte Carlo noise.

3.8.1 Evaluations and Justifications

Voxel clustering. As described in Section 3.6.2, our method groups downsampled voxels

into K clusters to make the optimization of weight factors tractable. In our experience, using

one to five clusters generally provides a good balance between accuracy and performance (see

Figure 3.11). We also jitter the voxel clustering for input with continuously changing albedos to

ease potential seams (Figure 3.12).

Lighting in training renderings. We use four SH lightings (i.e., first two bands) for

our training renderings. Figure 3.13 shows an example where we optimized the homogeneous

twill (Figure 3.3) using one, four, and nine SH lightings (corresponding to band-zero, one, and

two) and the six views shown in Figure 3.7. The L2 errors are computed between the reference

image and ones rendered using parameters obtained after a certain number of SGD iterations.

The results indicate that using more than four SH bases yields little benefit in terms of accuracy.

Thus, we use four SH lightings for our training renderings.

38

(16×)3 (16×)3

(a1) Reference (b1) Ours (a2) Reference (b2) Ours

Figure 3.14. Although our training renderings use smooth SH lightings, the optimized param-
eters generalize well to harsh lighting conditions. These two examples use local point light
sources which lead to sharp shadow boundaries on the ground.

Harsh lighting. We use SH lighting for the training renderings to allow the optimized

parameters to generalize well to arbitrary smooth lighting conditions. In theory, when these

parameters are rendered under harsh lighting, the resulting accuracy can degrade. However,

we did not observe such cases in practice: our optimized parameters generalize well even to

extremely high-frequency lightings (see Figure 3.14 for two examples).

Handling multiple color channels. As described in Section 3.6.4, we optimize one

extra term sk for each voxel cluster k to handle semi-colored input where only single-scattering

albedo varies between different color channels. As shown in Figure 3.15, this is more efficient

than optimizing wwwi, j for each color-channel separately while providing similar accuracy.

(16×)3 (16×)3

(a) Reference (b) Joint opt. (c) Independent opt.

Figure 3.15. For semi-colored input, optimizing multiple color channels jointly (b) is more
efficient than optimizing each channel independently (c) while yielding similar resulting accuracy.

39

1 2 3
Number of Lobes

0
2
4
6
8

L 2
 E

rro
r (

×1
0−4

)
Twill
Velvet

Figure 3.16. Approximation error (measured in L2) decreases as the number of phase function
lobes increases.

(a) Reference (b) Ours (1-lobe) (c) Ours (2-lobe)

(32×)3 (32×)3

0.0 / 2.1GB 0.0374 / 55.3KB 0.0382 / 119.3KB

(16×)3 (16×)3

0.0 / 1.9GB 0.0868 / 0.4MB 0.0637 / 0.9MB

(8×)3 (8×)3

0.0 / 2.7GB 0.0824 / 5.7 MB 0.0641 / 9.9MB

Figure 3.17. Optimized results using varying numbers of phase function lobes. Relative
error and data size are shown below each image. For each example, optimizations corresponding
to (b) and (c) take similar time to converge. For the velvet (the top row), one lobe suffices. For
the twill (the bottom two rows) with high anisotropy, on the other hand, using two lobes has led
to superior accuracy.

40

Table 3.2. Stochastic gradient descent settings (i.e., number of voxel clusters K and number of
phase function lobes per voxel m) and optimization time (in CPU core hours) for all results in
Figures 3.18 and 3.19. Our optimization time is comparable to the rendering time (shown in the
last column) for one image at 720p.

Object m K # Iter. Opt. time Render time

Bunny 1 1 8 12 8

Twill (homogeneous) 2 1 20 33 23

Velvet 1 1 15 35 74

Hairy ball 1 5 20 40 30

Twill (heterogeneous) 2 2 25 45 30

Damask 3 3 30 60 51

Number of phase function lobes. As discussed in Section 3.5, we determine the num-

ber of phase function lobes m by iteratively increasing m until the approximation error stops

descending rapidly. In particular, we stop increasing m when the L2 error with (m+1) lobes is

greater than 50% of that with m lobes. Figure 3.16 shows how the approximation error changes

with the number of lobes for the example from Figure 3.4. Based on the aforementioned scheme,

we use two lobes for the twill while one for the velvet. Figure 3.17 contains the corresponding

renderings justifying our choices of lobe counts. Further, we limit m to 3 in all our experiments

for a good balance between model size and result accuracy. Lastly, notice that when using only

one lobe (i.e., m = 1), our method effectively optimizes only the downsampled albedos α̃i.

3.8.2 Main Results

We evaluate the effectiveness of our approach using six examples. We tune ak, j and

bk, j in Equation (3.20) manually using a subset of lighting/viewing conditions so that the error

metric (Equation (3.16)) changes neither too quickly (resulting in oscillation) nor too slowly

(leading to slow convergence). The overhead for this extra tuning is less than 10% of the total

optimization time. Since we use low-resolution (around 100p) and noisy training renderings,

the total optimization time for each object is comparable to the rendering time for one image at

41

720p. Our optimization configurations and performance numbers are summarized in Table 3.2.

The values of all step sizes ak, j, bk, j as well as optimized weight factors wk, j and colored scaling

factors sk are available as supplemental material of the original publication [121]. We use a

modified version of the Mitsuba renderer [41] to generate all regular and gradient images.

Figure 3.18 shows lower-resolution volumes generated with our approach. The first three

examples have homogeneous albedos while the last two have heterogeneous ones. Each object

is rendered under two environmental lightings that are significantly more complicated than our

training ones (i.e., four SH lightings).

The first row of Figure 3.18 contains a hairy bunny. After downsampling at (4×)3,

our optimized parameters using one lobe per voxel generalize well to different environmental

lightings. The second row of Figure 3.18 shows a shiny twill fabric originally represented with

4.76×1011 effective voxels. Because of the highly anisotropic nature of this material, we use

two lobes per voxel. Our result, which contains only 1.07×108 effective voxels, achieves more

than three orders of magnitude storage saving and successfully preserves this material’s glossy

appearance under both local (left) and global (right) lighting. The third row of Figure 3.18

contains a highly scattering velvet with 7.77×1011 effective voxels. The velvet’s highly detailed

surface structure caused naı̈ve downsampling to have very poor accuracy. Our model computed

with one lobe per pixel, on the other hand, has 2.03×107 effective voxels and maintains good

accuracy while providing four orders of magnitude data reduction. The quality of our optimized

parameters for this model is further demonstrated in the supplemental video of the original

publication [121]. In the fourth row, we show a hairy ball with gradually changing colors. Our

optimization uses five voxel clusters with jittering (visualized in the insets) and one lobe per

voxel. The result achieves good accuracy while reducing the storage by almost three orders of

magnitude. The bottom row of Figure 3.18 contains another complex twill scene with differently

colored warps and wefts (identical to Figure 3.9). This heterogeneity results in distinctive

dual-colored anisotropic highlights. Our result based on two voxel clusters and two-lobe phase

functions maintains the appearance of this object well even at the yarn-level.

42

Lighting 1︷ ︸︸ ︷ Lighting 2︷ ︸︸ ︷
Ours Reference Naı̈ve Ours Reference Naı̈ve

B
un

ny

(4×)3-downsampled. Data size: 2.6 GB (reference) / 41.8 MB (ours).

Tw
ill

(16×)3-downsampled. Data size: 1.9 GB (reference) / 0.9 MB (ours).

V
el

ve
t

(32×)3-downsampled. Data size: 2.1 GB (reference) / 55.3 KB (ours).

H
ai

ry
B

al
l

(8×)3-downsampled. Data size: 7.9 GB (reference) / 17.2 MB (ours).

Tw
ill

(8×)3-downsampled. Data size: 2.7 GB (reference) / 9.9 MB (ours).

Figure 3.18. Main results. Our reduced-resolution representations provide good accuracy
under general lighting with up to four orders of magnitude storage saving. Environmental
lightings used in these renderings are visualized in the top-right corner of individual reference
images. Those without lighting visualizations use local area light sources. Please refer to
Table 3.2 for optimization and rendering times.

43

Lighting 1︷ ︸︸ ︷ Lighting 2︷ ︸︸ ︷
Ours Reference Naı̈ve Ours Reference Naı̈ve

D
am

as
k

1

(16×)3-downsampled. Data size: 9.7 GB (reference) / 5.8 MB (ours).

D
am

as
k

2

(16×)3-downsampled. Data size: 9.7 GB (reference) / 5.8 MB (ours).

Figure 3.19. Exploiting modularity. The two downsampled damask fabrics sharing one opti-
mization offer good accuracy and three orders of magnitude storage saving. The corresponding
environmental lightings are shown in top-right corners of the reference images. Please refer to
Table 3.2 for optimization and rendering times.

Figure 3.19 shows downsampled results from two damask fabrics synthesized from a

single set of 120 example blocks. We downsample the exemplars using three voxel clusters and

three lobes per voxel. This precomputation takes 60 core hours. Then, the two downsampled

damasks are obtained by stacking the pre-downsampled example blocks. Based on the single

precomputation, our approach results in good accuracy while reducing the amount of data by

three orders of magnitude.

Limitations and future work. Our method is based on optimization and does not explic-

itly reason about how downsampling scattering parameters affects light transport in participating

media. A theoretical analysis on this topic would be valuable and may inspire future improve-

ments to our optimization framework.

44

3.9 Conclusion

We have introduced an optimization-based approach to compute scaled phase functions,

a combined representation of single-scattering albedo and phase function, for downsampling

voxelized anisotropic media. Our method starts with determining phase function lobes locally by

clustering input phase functions. Then, we optimize lobe weight factors globally via stochastic

gradient descent. The resulting representation can offer several orders of magnitude reduction in

storage while maintaining good accuracy. In addition, we demonstrated that modularity can be

exploited for synthesized models to greatly reduce amortized downsampling overhead.

3.10 Acknowledgements

This chapter is based on the material as it appears in ACM Transactions on Graphics,

2016 (“Downsampling Scattering Parameters for Rendering Anisotropic Media”, Shuang Zhao,

Lifan Wu, Frédo Durand, and Ravi Ramamoorthi). The dissertation author was the primary

investigator and author of this paper.

45

Chapter 4

Accurate Appearance Preserving Prefilter-
ing for Rendering Displacement-Mapped
Surfaces

In addition to volumetric scattering models, complex materials can also be modeled by

detailed surfaces. In this chapter, we demonstrate a new approach to prefilter opaque surfaces

whose micro-scale geometric details are represented by high-resolution displacement maps. To

accurately match the appearance, we extend the effective BRDF to capture the interreflection

effect within the micro-geometry, and use it as an indicator of appearance accuracy. This avoids

the expensive iterative optimization used in Chapter 3, allowing efficient prefiltering. The key

component of our method is a novel scaling function that captures micro-scale changes of

shadowing, masking, and interreflection effects. Our method generalizes well to different types

of micro-geometries beyond Gaussian or GGX surfaces.

4.1 Introduction

High-resolution displacement maps are commonly used to describe detailed micro-

geometries that can produce richly diverse appearances. Compared to normal mapping, dis-

placement mapping is more physically consistent and can offer more realistic self-shadowing

and silhouettes. However, such realism comes at the cost of difficult prefiltering: smoothing

a displacement map usually weakens its intrinsic shadowing and results in brightened overall

46

Figure 4.1. We present a new approach to prefilter high-resolution displacement maps while
preserving the input appearance. High-resolution displacement maps can produce rich geometric
details (top-left) but they are difficult to prefilter. Our prefiltered model handles the change of
shadowing, masking and interreflections caused by downsampling the displacement map. At a
single scale, although the detailed micro-structures are different (see ours (64×)2 at left), our
prefiltered model preserves the original appearance accurately when we view the object from
a distance (see the right image). We can also combine our models at multiple downsampling
scales to form a mipmap, enabling accurate and anti-aliased LoD rendering.

appearance. Therefore, rendering a high-resolution displacement map without introducing severe

aliasing generally requires significant super-sampling, which is computationally expensive.

Previous displacement mapping techniques such as LEAN [77] and LEADR [17] can

produce anti-aliased renderings of rough surfaces. However, they assume the normals of the input

surfaces to have Beckmann distributions, which is usually violated in practice and fundamentally

limits the accuracy of these methods (Figure 4.2(f)). To handle a wider range of surfaces, some

bi-scale appearance models [40, 107] precompute the overall surface reflectance by averaging

light reflections at the micro-scale. This yields one spatially macro-scale effective BRDF with

no spatial variation, which has difficulties in reproducing micro-scale details at close-up views.

Both approaches neglect interreflection and can lead to significant energy loss.

In this chapter, we introduce a novel method to prefilter displacement-mapped (opaque)

surfaces while accurately preserving their overall appearances under both direct and global

illuminations (e.g., Figures 4.1 and 4.2). Given a high-resolution displacement map and an

isotropic base micro-BRDF, we seek displacement maps and accompanying surface reflectance

models that have reduced resolutions and closely preserve the macro-scale appearance of the input

model. To this end, we leverage a generalized version of the effective BRDF formulation [107]

47

(a) Disp.
map

(b) Reference
1000 spp, 500s

(c) Original
50 spp, 26s

(d) Naı̈ve
80 spp, 27s

(e) Ours
35 spp, 26s

(f) LEADR
70 spp, 26s

Figure 4.2. Equal-time renderings with only direct illumination. Given a high-resolution
displacement map (a) and a highly glossy base BRDF as input, directly rendering using them
results in aliased results (c). Simply downsampling the displacement map to a lower resolution but
keeping the original base BRDF leads to inaccurate appearance (d). Our method (e) prefilters the
displacement map and the base BRDF while preserving the input appearance (b), which produces
accurate and anti-aliased renderings. Using the microfacet BRDF proposed in LEADR [17]
generates inaccurate appearance (f) since the Gaussian surface assumption is violated. We show
the ground truth NDF visualization of this displacement map in the top-right inset of (a), and the
NDF estimated from LEADR in the top-right inset of (f), which is very different.

that takes both shadowing-masking and interreflection effects into account. Based on this

formulation, we directly match the effective BRDFs of the input model and our prefiltered

variants.

Our method (Figure 4.3) starts with downsampling the input displacement map. This

is achieved via an optimization that aims to preserve the surface’s meso-scale geometries (e.g.,

normals) and minimize potential energy loss. The resulting surface, when coupled with the input

reflectance model, generally leads to a different appearance (see Figure 4.2(d) for an example)

due to the change of shadowing structures, distribution of normals, and interreflections caused by

the downsampling. The main focus of this chapter, therefore, is to find proper surface reflectance

models (i.e., BRDFs) so that, when coupled with the downsampled geometries, they closely

resemble the appearance of the input.

To fully preserve the detailed appearance of the input model using the downsampled

geometry, a 6D spatially varying effective BRDF is generally required. Unfortunately, explicitly

expressing this SVBRDF requires significant computation and storage, negating the benefits of

displacement map downsampling. Instead, we decompose the 6D function into a 4D spatially

varying normal distribution function (SVNDF) [25] and a novel scaling function. The SVNDF,

48

Figure 4.3. Workflow of our method. We convert a high-resolution displacement map and
base BRDF (top-left) to a low-resolution one and prefiltered SVBRDF (top-right). The prefiltered
SVBRDF is obtained as a product of the SVBRDF from a multi-lobe NDF (bottom-left) and a
6D scaling function (bottom-right). This 6D function can be further factorized as the product of
a single 2D spatial scaling function and a single 4D angular scaling function.

which neglects both shadowing-masking and interreflection, primarily encodes spatial variations

of the effective BRDFs and can be represented as 2D spatially varying parametric distributions.

The scaling function, in contrast, accounts for the shadowing-masking and interreflection effects

and is vital for matching the input appearance. To efficiently describe this scaling function,

which is 6D itself, we factorize it into a 2D spatial scaling function of surface location and a

4D angular scaling function of direction (e.g., Figure 4.10). Further, we exploit the fact that the

scaling functions are usually low-frequency and smooth in practice to introduce a simple and

efficient factorization method to compute them from a sparse set of samples. With a resolution

up to 42 for the spatial function and 154 for the angular one, our scaling functions only consume

200–400 KB of storage, making our prefiltered models compact and practically useful. Our

contributions include:

• We develop a novel method to prefilter the surface reflectance of a high-resolution displacement

map while accurately preserving the overall appearance (Figures 4.1, 4.16, 4.17, 4.18). This is

achieved by first downsampling the displacement map to minimize the meso-scale average

49

Table 4.1. We compare our method with LEADR [17], bi-scale appearance models [40, 107]
and multi-scattering microfacet models [31, 59, 110]. Our method can handle both shadowing-
masking and interreflections but is not limited to Gaussian/GGX surfaces, at the expense of some
precomputation.

Method LEADR bi-scale microfacet ours

Shadowing and masking 3 3 3 3

Interreflections 7 7 3 3

General surfaces 7 3 7 3

No Precomputation 3 7 3 7

surface slopes (Section 4.4.1), then separating a 6D SVBRDF into a SVNDF (Section 4.4.2)

and a scaling function (Section 4.4.3).

• To match the target appearance, we utilize two scaling functions. One captures only shadowing-

masking (Section 4.4.3) and the other effectively handles both shadowing-masking and in-

terreflection (Section 4.5.2). To model interreflection within the micro-geometry, which

is generally missing in previous work, we introduce a generalized formulation of effective

BRDFs (Section 4.5.1).

• We show the scaling function can be factorized as the product of a single spatial scaling

function and a single angular scaling function. Exploiting their low-frequency property and

smoothness, we present a simple and efficient method to compute the spatial and angular

scaling functions (Section 4.6).

• To enable level-of-detail (LoD) rendering, we present a linear interpolation method that

provides smooth transitions between our models prefiltered at varying scales (Section 4.7.2).

4.2 Related Work

We review several main research areas in the following paragraphs. Comparison between

our method and the most related techniques is summarized in Table 4.1.

Surface appearance prefiltering. We refer readers to the survey of Bruneton and

50

Neyret [7] for a comprehensive review of surface appearance prefiltering techniques. Tra-

ditional normal/BRDF map filtering methods [18, 25, 49, 95, 97, 111] ignore shadowing and

masking effects. Tan et al. [94] approximate shadowing and masking using horizon map distri-

butions. LEADR [17] extends from LEAN mapping [77] by incorporating a physically based

shadowing-masking term derived from microfacet theory. In LEADR, they use one-lobe NDFs

for simplicity and efficiency in a real-time rendering context. We use multi-lobe NDFs to achieve

better accuracy, especially at glossy highlights (Figure 4.16). Recently, Loubet and Neyret [66]

propose a hybrid mesh-volume model to construct LoDs of complex objects. They leverage

volumetric models to handle self-occlusions caused by micro-geometries, while our method

generates pure surface reflectance models that are simpler and more efficient to use. In addition,

none of these methods take interreflections into account, since interreflections combined with

shadowing and masking are complicated to analyze and prefilter.

Bidirectional texture functions (BTF)[8, 16] capture spatially varying and view-dependent

surface appearance. Generating 6D BTF data requires expensive precomputation and a large

amount of storage. Although BTF filtering methods [44, 67, 106] provide a direct solution

to surface appearance prefiltering, the high dimensionality limits their practical applications.

Our method separates a full 6D function into a 4D SVNDF and a 6D scaling function. The

latter scaling function can be further factorized into a single 2D spatial scaling function and a

single 4D angular scaling function, which is cheaper to compute and compact to store. Complex

shadowing-masking and interreflections can be captured by the spatial and angular scaling

functions accurately.

Bi-scale material design. A series of works model object’s macro-scale appearance by

manipulating its micro-scale details [27, 40, 105, 107]. Westin et al. [105] explicitly simulate ray

tracing on micro-geometry. Heidrich et al. [27] speed up the simulation on height fields using

precomputed visibility. Wu et al. [107] propose an interactive bi-scale material editing system.

They precompute rotated BRDF values and bidirectional visible normal distribution functions

51

(BVNDF) and compress them as low-rank matrices. This work has been extended to edit highly

glossy materials by using mixtures of spherical Gaussians (SG) or anisotropic spherical Gaus-

sians (ASG) [40, 112]. The shadowing-masking term is controlled by the weights of SG/ASG

lobes. Most of these bi-scale appearance modeling techniques focus on the average large-scale

appearance and do not consider spatial variation. In addition, the interactive approaches have

no interreflection components. Recently, several methods for rendering glinty surfaces have

been developed by simulating specular reflection on micro-surfaces [12, 43, 113, 114]. Zirr and

Kaplanyan [123] propose a bi-scale microfacet model to render micro-details in real-time. Their

methods focus on spatially varying NDFs, neglecting shadowing-masking and interreflections.

Microfacet models. Microfacet models describe the aggregate reflectance from a sta-

tistical representation of rough surfaces, i.e., the orientations of microfacets, resulting in a

number of physically based BRDFs [15, 78, 101]. The Smith model [28, 90] gives an accurate

approximation of the microfacet shadowing-masking function with the assumption of indepen-

dence between heights and normals. In particular, the shadowing-masking function has analytic

solutions if Gaussian or GGX surfaces are given. Ashikmin et al. [4] derive a 4D BRDF from

a 2D NDF, in which the shadowing-masking term is numerically computed from the NDF.

LEADR [17] assumes Gaussian surfaces and leverages the Smith model to handle masking and

shadowing effects. Recent works [31, 59, 110] extend microfacet theory by modeling multiple

scattering inside the micro-surface. Though microfacet models enable efficient computation

of shadowing-masking and interreflections, they are limited by Gaussian surfaces, GGX sur-

faces or V-grooves. Our method can handle general surfaces without assumptions for specific

micro-geometries.

Inverse rendering. Inverse rendering optimizes for scene parameters that produce the

best match to target appearance. Previous methods [21, 22, 26, 50, 121] require global inverse

rendering, which solves for a number of scattering parameters and involves expensive Monte

Carlo path tracing during iterative optimizations. We just need to perform standard normal

52

mapping and precompute simpler effective BRDFs once to obtain the prefiltered scattering

parameters. Unlike inverse rendering techniques that depend on specific scene configurations,

our model can generalize to different lighting and viewing conditions as we match the effective

BRDFs rather than rendered images.

Height field rendering. Rendering displacement-mapped surfaces closely relates to

height field rendering. Self-shadowing on height fields can be computed in real-time by deter-

mining horizon angles for a set of azimuthal directions [92, 96]. Fast height field rendering

with global illumination [76] approximates visibility and indirect radiance using low-order SH

basis functions, which cannot capture high-frequency reflection and shadowing effects. In these

methods, height fields are attached on a planar base surface. Our method allows perturbing

displacements on a general surface representation such as triangular meshes.

4.3 Preliminaries

In this section, we provide preliminaries of displacement mapping, normal mapping, and

effective BRDFs. Table 4.2 summarizes all symbols commonly used in this chapter.

Displacement mapping. Displacement maps provide an efficient way to describe de-

tailed micro-geometries. Mathematically, a displacement map is a function h : [0,1]2→ R that

specifies the distance which individual surface points are shifted along the normal directions. To

be precise, given a texture-mapped base surface and a displacement map, the resulting geometry

is obtained by moving each surface point with texture coordinate (u,v) along its normal direction

for a distance of h(u,v). Further, a surface patch P ⊆ [0,1]2 denotes a small and locally flat

region of the base surface. For notational simplicity, the patch area is normalized using some

filter kernel kP1 (i.e.,
∫
P kP(ppp)dppp = 1). For each ppp ∈ P , we denote its final position (perturbed

by displacement mapping) and micro-normal as xxxm(ppp) and ωωωm(ppp), respectively. Lastly, the

micro-geometry given by a base patchP and a displacement map can be expressed by a collection

1We use a box filter in this chapter.

53

Table 4.2. Definitions of commonly used symbols.

Symbol Meaning Def.
P Surface patch Section 4.3

G(P) Micro-geometry defined by a surface
patch (subset) P of a displacement map

Section 4.3

f Isotropic base BRDF Section 4.3

f eff(G, f)
Effective BRDF determined by
micro-geometry G and base BRDF f

Section 4.3, Equation (4.6)

Gorig
Micro-geometry defined by the original
high-resolution displacement map

Section 4.4

forig Original input base BRDF Section 4.4

Glow
Micro-geometry defined by the
low-resolution displacement map

Section 4.4

flow Prefiltered spatially varying base BRDF Section 4.4
f ′low Spatially varying multi-lobe BRDF Section 4.4.2, Equation (4.11)

f eff
ir Effective BRDF with interreflections Section 4.5.1, Equation (4.17)

R,Rir
6D scaling function
without/with interreflections

Section 4.4.3, Equation (4.12)
Section 4.5.2, Equation (4.20)

T,Tir
2D spatial scaling function
without/with interreflections

Section 4.4.3, Equation (4.14)
Section 4.6, Equation (4.21)

S,Sir
4D angular scaling function
without/with interreflections

Section 4.4.3, Equation (4.14)
Section 4.6, Equation (4.21)

of micro-positions and micro-normals: G(P) = {(xxxm(ppp),ωωωm(ppp)) | ppp ∈ P}.

Meso-geometry. For a surface patch P , we define a local tangent frame under which the

macro-normal ωωωg of the patch equals to (0,0,1). Then, the meso-scale geometry of G(P) can

be described with the average slope:

s̃ss =
∫

P
sssm(ppp)kP(ppp)dppp, (4.1)

where sssm(ppp) = (−xm/zm, −ym/zm) is the micro-slope with xm, ym, and zm given by the micro-

normal at ppp (i.e., (xm,ym,zm) = ωωωm(ppp)) under the local tangent frame.

Normal mapping. Provided a displacement map, we can extract the normal distribution

54

Figure 4.4. Illustrations of micro-geometry and related illumination effects. They are
shown in 2D for simplicity, but fully developed in 3D.

function (NDF) [17] for any given surface patch P via

D(ωωω) =
∫

P

δ (ωωω−ωωωm(ppp))
〈ωωωm(ppp),ωωωg〉

kP(ppp)dppp, (4.2)

where 〈·, ·〉 represents the dot product clamped to 0, and δ denotes the Dirac delta function. A

physically valid NDF must satisfy

∫

H2
D(ωωω)〈ωωω,ωωωg〉dωωω =

∫

P
kP(ppp)dppp = 1, (4.3)

where H2 denotes the unit hemispherical domain. It means that the projected area of the

micro-geometry onto the macro-normal ωωωg should be equal to the area of the base surface patch.

An NDF D can be approximated by a mixture of von Mises-Fisher (vMF) lobes [25],

D(ωωω)≈
m

∑
i=1

αiγ(ωωω;κi,µµµ i), (4.4)

where αi represents the lobe’s amplitude. Each vMF lobe with bandwidth κi and the center direc-

55

tion µµµ i is defined as γ(ωωω;κi,µµµ i) =
κi

4π sinhκi
exp(κi(ωωω ·µµµ i)). This vMF-based parameterization

allows efficient description of spatially varying NDFs (SVNDFs).

From an NDF D and an isotropic base BRDF f , the composite multi-lobe BRDF can be

formulated as [25]

ρ(ωωω i,ωωωo;D, f) =
1

cosθi

∫

H2
f (Rωωω(ωωω i),Rωωω(ωωωo))〈ωωω,ωωω i〉D(ωωω)dωωω. (4.5)

Note that ωωω i and ωωωo are in the macro-scale tangent frame defined by the macro-normal ωωωg.

We need a rotation function Rωωω(·) to transform ωωω i and ωωωo to the local frame defined by the

micro-normal ωωω . The multi-lobe BRDF keeps the orientations of the micro-normals, but neglects

both shadowing-masking and interreflections caused by the micro-geometry.

Effective BRDFs. To include shadowing-masking effects, the effective BRDF f eff is

used to describe the overall reflectance of a patch P [107]. It depends on the micro-geometry

G(P) and the micro-BRDF f . The effective BRDF can be viewed as the average of the cosine-

weighted and shadowed micro-BRDFs weighted by the visible projected area along the viewing

direction ωωωo:

f eff(ωωω i,ωωωo;G, f) =
1

AG(ωωωo)

∫

P
f (xxxm(ppp),ωωω i,ωωωo)〈ωωωm(ppp),ωωω i〉

V (xxxm(ppp),ωωω i)AG(ppp,ωωωo)kP(ppp)dppp, (4.6)

where V (xxx,ωωω) denotes the binary visibility function (indicating whether a ray starting from point

xxx along direction ωωω is occluded), and AG(ppp,ωωωo) is the visible projected area along ωωωo given by

AG(ppp,ωωωo) =
〈ωωωo,ωωωm(ppp)〉
〈ωωωg,ωωωm(ppp)〉

V (xxxm(ppp),ωωωo). (4.7)

The total visible projected area of G(P) is the normalization factor of the weighted average [17,

56

28],

AG(ωωωo) =
∫

P

〈ωωωo,ωωωm(ppp)〉
〈ωωωg,ωωωm(ppp)〉

V (xxxm(ppp),ωωωo)kP(ppp)dppp =
〈ωωωo,ωωωn〉
〈ωωωg,ωωωn〉

, (4.8)

where ωωωn denotes the meso-scale normal direction.

The effective BRDF (Equation (4.6)) has the cosine term and the visibilities baked in and

captures the shadowing-masking caused by micro-scale self-occlusions. We will generalize the

formulation in Section 4.5.1 to capture interreflections.

4.4 Prefiltering Reflectance Parameters

Our method takes as input a high-resolution displacement map horig and an isotropic base

micro-BRDF forig (which could be spatially varying, e.g., Figure 4.14). We denote Gorig(P) as

the micro-geometry defined by the original displacement map on a surface patch P . Then, we

prefilter the input model and obtain a lower-resolution displacement map hlow (with Glow(P)

representing its micro-geometry on P) associated with a new spatially varying BRDF flow. Our

goal is to have the appearance of the prefiltered model closely resemble the input. Notice that,

even if the input base BRDF forig is spatially invariant, the prefiltered reflectance flow may need

to have spatial variations to accurately reproduce the detailed appearance of the input model.

To this end, our technique starts with computing the downsampled displacement map hlow

by minimizing differences of the meso-scale slopes (Section 4.4.1). Then, we seek a prefiltered

SVBRDF flow that preserves the original appearance for the downsampled displacement map.

This, however, is nontrivial as flow generally needs to be spatially varying. We introduce a novel

two-step approach to compute flow. First, for each base patch of the downsampled displacement

map hlow, we compute its corresponding patch NDF from the original displacement map horig.

Each patch NDF implies a spatially varying multi-lobe BRDF without considering shadowing-

masking and interreflections. This step generates a spatially varying base BRDF f ′low as an initial

solution (Section 4.4.2). Then, we scale f ′low by a 6D scaling function R(xxx,ωωω i,ωωωo) to match

57

the effective BRDFs (Section 4.4.3). The final prefiltered SVBRDF flow = R · f ′low is able to

reproduce the original appearance. Our method is also illustrated in Figure 4.3.

Although the scaling function R(xxx,ωωω i,ωωωo) is 6D, we will show in Section 4.6 that R can

be factorized into a 2D spatial function of location xxx and a 4D angular function of directions ωωω i

and ωωωo. Further, these functions are usually smooth in practice, and therefore can be computed

efficiently as low-resolution tabulated functions, allowing our prefiltered models to be compactly

represented.

4.4.1 Downsampling Displacement Maps

As stated in Section 4.3, displacement maps are defined mathematically as continuous

2D scalar functions. In practice, we represent displacement maps as piecewise linear functions

using 2D textures. Specifically, the original high-resolution displacement map horig is defined at

each vertex of a dense grid: {(u ·2−l,v ·2−l)} for u,v = 0, . . . ,2l . The prefiltered low-resolution

displacement map hlow uses a coarse grid {(u ·2−l′,v ·2−l′)} for u,v = 0, . . . ,2l′ with some l′ < l.

Obtaining hlow requires specifying the displacement values at the vertices of the coarse

grid. For every patch Puv = [u ·2−l′,(u+1) ·2−l′]× [v ·2−l′,(v+1) ·2−l′] covering a grid cell

of hlow, our goal is to find out the optimal heights at its four corners (i.e., grid points) such that

the average slope s̃ssuv of the bilinear patch closely matches the reference slope s̃ss∗uv of the original

micro-surface Gorig(Puv). The reference average slope s̃ss∗uv can be calculated using Equation (4.1).

On the other hand, the average slope of the bilinear patch Puv is

s̃ssuv =

(
h11 +h10−h01−h00

2
,

h11 +h01−h10−h00

2

)
, (4.9)

where h00,h10,h01,h11 denote the displacement values at the four cell corners. Please refer to

Appendix B.1 for the derivation. To minimize the differences between the two average slopes

robustly, we further introduce a regularization term for local smoothness, yielding the final

58

objective function:

L(hlow) = ∑
u

∑
v
‖s̃ssuv− s̃ss∗uv‖

2 +w
∥∥∥∆hlow

(u
2l′ ,

v
2l′

)∥∥∥
2
, (4.10)

where ∆ is the Laplacian operator and w = 0.01 is the weight of the regularization term. By min-

imizing this objective function using least-squares, the optimal solution gives the downsampled

displacement map hlow and its corresponding micro-geometry Glow.

4.4.2 Spatially Varying Multi-Lobe BRDF

For a cell from the coarse grid of the downsampled displacement map hlow and its

corresponding patch Puv, the patch NDF Duv(ωωω) defined in Equation (4.2) provides a compact

approximation of the original micro-geometry Gorig(Puv). Previous works such as LEADR [17]

typically assume the NDFs to follow Beckmann distributions. Our method, in contrast, does not

enforce any restriction on the NDFs and is therefore more general. We use the normal mapping

technique [25] to fit an NDF with a mixture of vMF lobes (Equation 4.4), resulting in a spatially

varying NDF (SVNDF) at a lower resolution. The SVNDF is technically 4D but can be described

compactly using spatially varying vMF parameters (stored as 2D textures).

From these NDFs that approximate Gorig and the original base micro-BRDF forig, we use

Equation (4.5) to formulate the initial multi-lobe BRDF for each patch Puv:

f ′low(xxx,ωωω i,ωωωo) = ρ(ωωω i,ωωωo;Duv, forig). (4.11)

Here the micro-position xxx is within the patch Puv.

4.4.3 Scaling Function

Although the multi-lobe SVBRDF f ′low is a good start for matching the input appearance,

it is incomplete as it neglects the shadowing-masking and interreflection effects. To address this

problem, we first consider the single-bounce case (i.e., direct illumination that only involves

59

shadowing and masking). We will discuss the multiple-bounce case that handles interreflections

in Section 4.5.

To capture shadowing and masking, we multiply the initial multi-lobe SVBRDF f ′low with

another scaling function R. Suppose R has a spatial resolution of M2, we uniformly subdivide

the base surface into M2 patches. Let Pxxx denote the patch containing xxx. We define the scaling

function R(xxx,ωωω i,ωωωo) as the ratio2 between the original effective BRDF (Equation 4.6) and the

prefiltered effective BRDF over Pxxx:

R(xxx,ωωω i,ωωωo) =
f eff (ωωω i,ωωωo;Gorig(Pxxx), forig

)

f eff
(
ωωω i,ωωωo;Glow(Pxxx), f ′low

) , (4.12)

The final prefiltered base SVBRDF can then be expressed as

flow(xxx,ωωω i,ωωωo) = R(xxx,ωωω i,ωωωo) f ′low(xxx,ωωω i,ωωωo). (4.13)

It is easy to verify that the final effective BRDF f eff(Glow, flow) (with ωωω i and ωωωo omitted for

notational simplicity) over Pxxx equals the original effective BRDF, since the single-bounce

effective BRDF is linear in the scaling factors, i.e., f eff(Glow,R · f ′low) = R · f eff(Glow, f ′low). The

identical effective BRDFs indicate a good match of aggregate reflectance between the original

and the prefiltered models.

Due to the high dimensionality of the scaling function R, it is challenging to obtain and

store. We will show in Section 4.6 that R can be accurately approximated as the product of a

function T (xxx) of location and a function S(ωωω i,ωωωo) of directions:

R(xxx,ωωω i,ωωωo)≈ T (xxx) ·S(ωωω i,ωωωo) . (4.14)

We first generalize our scaling function to interreflections in Section 4.5. Then, in Section 4.6,

we develop the factorization above and show that the factorized scaling functions T and S can be

2In practice, we need to add a small ε to avoid division by zero.

60

computed directly without fully computing the 6D function R.

4.5 Interreflections

We now describe how to capture interreflection effects using a scaling function similar

to Equation (4.12). We first generalize the effective BRDF formulation (Equation (4.6)) to

measure the average surface reflectance with interreflections (Section 4.5.1). Then, we provide

an approximate solution to the scaling function with interreflections handled (Section 4.5.2).

4.5.1 Effective BRDF with Interreflections

The effective BRDF formulation depicted in Section 4.3 models only direct (i.e., single-

bounce) illumination of the micro-geometry. This leads to significant energy loss due to the

neglect of interreflections within the micro-geometry. To address this problem, we adapt Veach’s

path integral formulation [99] to express effective BRDFs with interreflections.

A ray that bounces within the micro-geometry G = {(xxxm,ωωωm)} can be described by

a light transport path x̄ = (xxx1,xxx2, . . . ,xxxk) as well as the viewing direction ωωωo and the lighting

direction ωωω i. Notice that, unlike the traditional formulation where the endpoints of a path

respectively lay on the light source and the sensor, all the path vertices xxx1, . . . ,xxxk are located

on the micro-surface in our case. The path contribution h(x̄) is given by the product of BRDF

terms and cosine terms, followed by a visibility term at the last path vertex xxxk along the lighting

direction ωωω i:

h(x̄) =V (xxxk,ωωω i)
k

∏
j=1

f (xxx j,ωωω j→ j+1,ωωω j→ j−1)〈nnn(xxx j),ωωω j→ j+1〉, (4.15)

where ωωω i→ j := xxx j−xxxi
‖xxx j−xxxi‖ indicates the normalized direction from xxxi to xxx j (with ωωω1→0 := ωωωo and

ωωωk→k+1 := ωωω i), and nnn(xxx j) denotes the micro-normal at xxx j.

We define the path space Ω(xxx,ωωω i,ωωωo) as a collection of light transport paths x̄ =

(xxx1, . . . ,xxxk) with xxx1 = xxx, and the viewing and illumination directions given by ωωωo and ωωω i,

61

respectively. At a given position xxxm(ppp) ∈ G, the reflectance including interreflections aggregates

contributions from all the valid paths:

r(xxxm(ppp),ωωω i,ωωωo) =
∫

Ω(xxxm(ppp),ωωω i,ωωωo)
h(x̄)dµ(x̄), (4.16)

where dµ(x̄) denotes the path throughput measure, which is a product of solid angle measures

on the path directions.

According to Equations (4.6) and (4.16), we express the multi-bounce effective BRDF as

the average path contribution over G weighted by the visible projected area along ωωωo:

f eff
ir (ωωω i,ωωωo;G, f) =

1
AG(ωωωo)

∫

P
r(xxxm(ppp),ωωω i,ωωωo)AG(ppp,ωωωo)kP(ppp)dppp. (4.17)

Under this formulation, the single-bounce effective BRDF (Equation (4.6)) becomes a special

case where each path x̄ is restricted to contain only one vertex.

4.5.2 Computing the Scaling Function

Following a similar idea as Section 4.4.3, we scale the initial multi-lobe SVBRDF f ′low

by a scaling function Rir:

flow(xxx,ωωω i,ωωωo) = Rir(xxx,ωωω i,ωωωo) f ′low(xxx,ωωω i,ωωωo), (4.18)

so that the resulting multi-bounce effective BRDF (Equation (4.17)) of the prefiltered model

matches that of the input. Namely, f eff
ir (Glow, flow) = f eff

ir (Gorig, forig). Since f eff
ir is nonlinear

in Rir due to multiple scattering (i.e., f eff
ir (Glow,Rir · f ′low) 6= Rir · f eff

ir (Glow, f ′low) in general), Rir

cannot be obtained using Equation (4.12). Although one can optimize Rir iteratively using inverse

rendering methods [50, 121], the optimization would be very expensive, if not impractical, due

to the large number of unknowns involved.

Instead, we seek Rir without performing global optimizations. To this end, we make a

62

Figure 4.5. Local and global interreflections. Our method tries to match local interreflections
using a scaling function, while the path tracer handles distant (global) interreflections.

simplifying assumption: the high-order components in f eff
ir (Glow, flow) are negligible. In other

words,

f eff
ir (Glow, flow)≈ f eff(Glow, flow). (4.19)

This is because the high-order component mainly consists of distant interreflections (i.e., those

across multiple surface patches at the reduced resolution) that are supposed to be handled with

explicit path tracing (see the blue arrows in Figure 4.5). The local interreflection, on the other

hand, is usually weakened due to the downsampling of an object’s micro-geometry, which we

compensate using the scaling function Rir (see the red arrows in Figure 4.5).

Under this formulation, our goal is to match f eff
ir (Gorig, forig) and Rir · f eff(Glow, f ′low),

yielding the scaling function:

Rir(xxx,ωωω i,ωωωo) =
f eff
ir
(
ωωω i,ωωωo; Gorig(Pxxx), forig

)

f eff
(
ωωω i,ωωωo; Glow(Pxxx), f ′low

) . (4.20)

In Section 4.8, we show that the simplification usually has minimal affect on accuracy (Fig-

63

ures 4.17, 4.18).

4.6 Properties of the scaling function

Upon establishing the scaling function Rir (Equation (4.20)), our problem of prefiltering

displacement-mapped surfaces boils down to efficiently representing and computing this func-

tion,3 which, unfortunately, is nontrivial as Rir is 6D and generally too expensive to compute and

store in brute-force ways.

We tackle this challenge by factorizing the 6D scaling function Rir(xxx,ωωω i,ωωωo) into a single

spatial scaling function Tir(xxx) and a single angular scaling function Sir(ωωω i,ωωωo). In practice, both

Tir and Sir are smooth (i.e., low-frequency). We exploit their smoothness to achieve efficient

factorization using only a sparse sampling of Rir (without explicitly precomputing the full 6D

function). In the rest of this section, we provide more details on our factorization method.

Rank-1 factorization. Our experiments indicate that the scaling functions are typically

low-rank (Figure 4.6). To demonstrate this property, we compute the full 6D scaling functions for

two example models: “silk” with only direct illumination; and “twill” with global illumination

(details for these models are described in Section 4.8.2). In both cases, the scaling matrices

Rir are tabulated with a resolution 162×152×152 (162 for xxx, 152 for ωωω i, 152 for ωωωo).4 After

excluding the directions near grazing angles (θ > 75◦),5 we reshape Rir into a 256×114 matrix,

which is then decomposed using singular value decomposition (SVD). For both examples, the

greatest singular value carries over 95% of the total energy (see Figure 4.6), suggesting that the

scaling function Rir can indeed be accurately approximated by a rank-1 factorization:

Rir(xxx,ωωω i,ωωωo)≈ Tir(xxx) ·Sir(ωωω i,ωωωo). (4.21)

3We use the notation Rir in the multiple-bounce case since it is more general. The properties also hold for R in
the single-bounce case.

4This resolution is adequate due to the smoothness of Rir, which will be discussed later in this section.
5Numerical evaluation of the scaling functions is unstable near grazing angles.

64

Figure 4.6. Graph showing the fractions of energy carried by the top eight singular values of
the scaling matrix.

Angular smoothness. We now seek the optimal resolution for the scaling function

Rir(xxx,ωωω i,ωωωo) that provides a good balance between accuracy and data size, starting with the

angular resolution N. Specifically, we use the concentric mapping [87] to warp a unit hemisphere

onto a unit square. Then, both ωωω i are ωωωo are sampled from a regular 2D grid with resolution N2.

Because an effective BRDF captures the aggregate reflectance over a micro-surface, it

generally has low angular frequency. Thus, the scaling function, as the ratio of two effective

BRDFs, is also expected to be low-frequency angularly. Figure 4.7 shows 2D slices of the scaling

functions (with ωωω i changing and the other parameters fixed) for different angular resolutions

N = 5,15,25 and 45 (as references). The results indicate that N = 15 provides good accuracy,

which is further supported by renderings in Figure 4.8. Therefore, we choose the resolution of

N = 15 for all main results in this chapter.

Spatial smoothness. To determine the spatial resolution M, we perform a similar experi-

ment by comparing renderings using resolutions of M = 1,4,16. As shown in Figure 4.9, the

results indicate that increasing the spatial resolution has diminishing benefits. This is because

the scaling function varies in a very smooth fashion spatially. We thus use M = 4 in most of our

results (unless we state explicitly). In certain cases, even using M = 1 (that causes the scaling

function Tir to be constant-valued) can offer sufficient accuracy.

Efficient factorization. Although computing the full 6D scaling function Rir and decom-

65

Silk Twill
θ

o
=

0◦
θ

o
=

30
◦

θ
o
=

60
◦

N=5 N=15 N=25 N=45 N=5 N=15 N=25 N=45

Figure 4.7. Scaling function slices (with only ωωω i changing and the other parameters fixed)
for different angular resolutions. Using N = 15 provides adequate accuracy for describing the
scaling functions.

posing it using SVD provides optimal factorization results, doing so is very costly since both

steps require massive computation. We introduce a simple and efficient factorization method that

constructs Tir(xxx) and Sir(ωωω i,ωωωo) from sparse samples of Rir.

According to Equation (4.21), Tir(xxx) can be computed by averaging the 6D scaling

function Rir over the angular domain:

Tir(xxx) =
1
C

∫

H2

∫

H2
Rir(xxx,ωωω i,ωωωo)dωωω i dωωωo, (4.22)

where

C =
∫

Pall

∫

H2

∫

H2
Rir(xxxm(ppp),ωωω i,ωωωo)kPall(ppp)dωωω i dωωωo dppp, (4.23)

is a normalization factor, and Pall = [0,1]2 covers the whole displacement map. To obtain Tir as

a tabulated function, we estimate its value at each bin using Monte Carlo integration based on a

sparse (joint) sampling of xxx (among all locations within the bin), ωωω i, and ωωωo. We provide more

implementation details in Section 4.7.

On the other hand, the angular scaling function Sir(ωωω i,ωωωo) can be obtained by averaging

66

(a) Reference (b) N = 5 (c) N = 15 (d) N = 25
(16×)2 (16×)2 (16×)2

MSE (×10−4) : 2.112 0.867 0.689

(8×)2 (8×)2 (8×)2

MSE (×10−4) : 6.739 2.835 2.216

Figure 4.8. Using varying angular resolutions. Increasing angular resolution improves
rendering accuracy, but at the expense of larger computational and storage overhead (with a
fixed spatial resolution of M = 1). We use a resolution of N = 15, which shows the best tradeoff
between accuracy and storage/performance. The insets (and those in the next figures 4.9, 4.10(e,
f)) show 10× squared errors compared to the reference images.

(a) Reference (b) M = 1 (c) M = 4 (d) M = 16
(16×)2 (16×)2 (16×)2

MSE (×10−4) : 0.867 0.731 0.755

(8×)2 (8×)2 (8×)2

MSE (×10−4) 2.835 2.562 2.264

Figure 4.9. Using varying spatial resolutions. Increasing spatial resolutions results in more
accurate rendering results, but the improvement is diminishing after M = 4 (errors may become
slightly larger because of Monte Carlo noise). We find that M = 4 is adequate in most cases, and
even using M = 1 yields high-quality results. Bottom-right insets visualize the 2D spatial scaling
functions for different resolutions.

Rir spatially:

Sir(ωωω i,ωωωo) =
∫

Pall

Rir(xxxm(ppp),ωωω i,ωωωo)kPall(ppp)dppp. (4.24)

As a tabulated function, Sir can be computed in a similar way as Tir using Monte Carlo integration.

67

(a1) Reference scaling matrix

(b1) Our factorization

(c1) Rank-1 SVD

(d1) Reference (e1) Our factorization (f1) Rank-1 SVD

(a2) Reference scaling matrix

(b2) Our factorization

(c2) Rank-1 SVD

(d2) Reference (e2) Our factorization (f2) Rank-1 SVD
Figure 4.10. Factorization comparison. We compare our factorization method to rank-1 SVD
in terms of scaling function reconstruction (a–c) and rendered images (d–f). We show 6D scaling
functions (they are reorganized as scaling matrices) in (a). Even without explicitly computing
the full 6D functions, the reconstruction error of our factorization (b) is similar to the error given
by rank-1 SVD (c). Both errors are small because of the low-rank nature of the scaling matrices.
The insets in (b, c) show the relative error maps of the reconstructed matrices compared to the
reference matrices. The colored error bar is shown on the top-right. In terms of visual quality,
using the factorized spatial scaling function T and angular scaling function S computed by our
method reproduces the reference appearance accurately.

68

It is easy to verify that our definitions of Tir and Sir in Equations (4.22) and (4.24)) are

consistent with Equation (4.21). Please see Appendix B.2 for more details.

Figure 4.10 compares factorization results obtained using our method and SVD (that uses

full Rir). Our method offers similar reconstruction errors as SVD does, which is demonstrated in

Figure 4.10(b, c). Further, the corresponding renderings shown in Figure 4.10(d–f) indicate that

the loss in visual quality caused by our method is negligible.

4.7 Implementation

We now provide details of our implementation. First, we provide details on how our

technique works at individual scales (Section 4.7.1). Then, we describe how mipmaps of

our prefiltered models can be created, enabling anti-aliased level-of-detail (LoD) rendering of

displacement-mapped models (Section 4.7.2).

4.7.1 Prefiltering at a Single Scale

Provided a high-resolution displacement map horig and a downsampling scale, we first

optimize for the downsampled displacement map using least-squares (Section 4.4.1) and compute

the initial spatially varying multi-lobe BRDF f ′low (Section 4.4.2). As in prior work [25], we use

six vMF lobes per patch NDF. Then, we seek the scaling function Rir so that the final SVBRDF

flow = Rir · f ′low preserves the appearance of the input model (Sections 4.4.3 and 4.5.2). This is

achieved using our efficient factorization of Rir (Section 4.6).

To estimate the value of Tir at each tabulation bin, we use 5000 pairs of (ωωω i,ωωωo) with

both directions independently sampled from a cosine-weighted distribution. For evaluating the

scaling function Rir via Equation (4.20), we trace 2500 paths to estimate the effective BRDFs

(Equation 4.17). Lastly, we normalize Tir such that it averages to one. To estimate the scaling

function Sir of directions, we use 16 stratified samples for ppp and 2500 light transport paths for

Rir. We find these sampling rates are sufficient to reproduce accurate appearances.

We implement our method based on the Mitsuba physically based renderer [41]. Running

69

Figure 4.11. Shell map illustration. We deform a flat displacement map to a general shape
using shell maps.

on a workstation equipped with a six-core Intel i7-5930K CPU, computing the factorized

functions Tir and Sir takes 20–30 minutes for each input model.

Shell mapping. We use shell mapping [81] to deform a flat displacement map to a

general shape (Figure 4.11), instead of explicitly displacing a base mesh. In fact, objects in our

scenes are perturbed by extreme high-resolution displacement maps (resolution up to (200K)2,

tiled by (1K)2 base displacement maps) to describe very small geometric details. Creating an

explicit displacement mesh is not practical.

Importance sampling. Our final prefiltered SVBRDF flow equals to the product of two

functions Rir and f ′low. Due to the smoothness of the scaling function Rir, we simply follow f ′low

when importance sampling flow. That said, product importance sampling [13, 32] could be used

to further improve the sampling quality.

4.7.2 Level of Detail

To enable anti-aliased rendering at multiple scales, we prefilter the input model at several

downsampling scales. The resulting models effectively form a mipmap. At each mipmap level,

we compute and store the lobe parameters as well as the scaling functions Tir and Sir, in addition

to the downsampled displacement map. To balance computational and storage overhead and

rendering performance, our mipmap uses a sparser set of levels compared to conventional texture

mipmaps. In other words, the scales of two contiguous levels of our mipmaps usually differ

70

(a) Reference (b) Original (c) LoD (linear)
Noise level: 0.0162 0.0138

Figure 4.12. LoD rendering. The reference (a) is rendered using a high-resolution displacement
map and 5K spp. The baseline result (b) is rendered using the same displacement map but (10×)-
lower spp. Our equal-time low-spp LoD rendering (c) closely matches the reference (a) at
multiple scales, and suffers from less noise (measured using Liu et al. [64], lower is better)
compared to the baseline (b). The mipmap levels are shown in inset.

by more than 2×. For example, the mipmap of the “silk” model includes (16×)2- and (64×)2-

downsampled versions (besides the original model), and the mipmap of “twill” has (8×)2 and

(64×)2 downsampled versions.

At render time, we use ray differentials [37] to compute each pixel’s footprint on the

original displacement map and determine the desired mipmap levels. To interpolate between

two levels, we trace paths on two different models and linearly interpolate the path contributions.

Please refer to Figures 4.1, 4.12 and the accompanying video in the original publication for

results rendered with this method.

4.8 Results

We now show results generated using our method: Section 4.8.1 contains experimental

evaluations and justifications; Section 4.8.2 demonstrates the effectiveness of our technique via

a few examples. Finally, we discuss limitations of our methods and future research directions

(Section 4.8.3).

71

Tw
ill

(8
×
)2

N
oi

se
(6

4×
)2

(a) Environmental light (b) Constant light with R (c) Constant light with Rir

Figure 4.13. White furnace test. We prefilter displacement maps with a non-absorptive
BRDF. Using the scaling function R handling only direct illumination (i.e., single bounce) leads
to significant energy loss. Taking interreflections into account, the object rendered with the
multi-bounce scaling function Rir becomes almost invisible, showing negligible energy loss.

4.8.1 Evaluations and Justifications

Energy conservation. We demonstrate that our prefiltered models conserve energy via

white furnace tests (Figure 4.13). Given a non-absorptive base BRDF and a constant environment

light, our prefiltered models without interreflections (Figure 4.13(b)) lose a significant amount of

energy, while those capturing interreflections (Figure 4.13(c)) preserve most of the energy. The

effective albedos of our prefiltered models in Figure 4.13(c) are 0.988 (twill) and 0.999 (noise).

The ground truth effective BRDFs are energy conserving as they are determined by

explicitly simulating light transport within the micro-surfaces. Theoretically, our prefiltered

models as approximations of the ground truth effective BRDFs are not guaranteed to conserve

energy. Limited energy loss is mainly due to neglecting distant interreflections. In practice,

however, we do not observe any problem with energy conservation.

Reciprocity. Our effective BRDFs (Equation 4.17) are reciprocal when weighted by visi-

ble projected area (similar to the microflake reciprocity constraints proposed by Heitz et al. [29]):

72

(a) Reference (b) Ours (Rir · f ′low) (c) Multi-Lobe (f ′low)

Figure 4.14. Correlated surface. We prefilter a two-color sawtooth (i.e., V-groove) surface.
Thanks to the scaling function Rir, our prefiltered model can effectively capture the normal-color
correlation and accurately reproduce the appearance.

(a) Twill (b) Silk (c) Bump (d) Noise (e) Logo (f) Relief

Figure 4.15. Displacement maps used in our results.

f eff
ir (ωωω i,ωωωo;G, f)AG(ωωωo) = f eff

ir (ωωωo,ωωω i;G, f)AG(ωωω i). (4.25)

Since we aim to match the effective BRDFs given by the input models, our prefiltered models

are approximately reciprocal.

Correlated surfaces. Our prefiltering method can handle surfaces with correlations.

Figure 4.14 shows a synthetic two-color sawtooth example where the surface normals and colors

are strongly correlated. The baseline multi-lobe BRDFs f ′low disregard this correlation and

produce wrong appearance. Our result, on the other hand, captures this correlation properly and

preserves the reference appearance accurately.

73

Table 4.3. Model Information. We list the detailed parameters used for prefiltering the input
model at a single downsampling scale. We also provide the data size of our prefiltered models.

Original model Our prefiltered model

Name Reso. Tiling
Total size

(KB)

Base

BRDF

Downsampling

scale

Total size

(KB)

hlow

(KB)

f ′low

(KB)

T/Tir

(KB)

S/Sir

(KB)

Twill (1K)2 1002 3502 glossy (8×)2 2377 65 1915 1 396

Silk (1K)2 2002 2724 glossy (16×)2 1085 17 478 1 589

Bump (1K)2 42 4015 diffuse (16×)2 704 17 484 1 202

Noise (1K)2 1002 3954 diffuse (64×)2 239 2 34 1 202

Logo6 (1K)2 (1K)2 723 glossy (1K×)2 589 ∼0 2 1 586

Relief (4K)2 12 33114 glossy (16×)2 8367 238 7619 0 (M=1) 510

4.8.2 Main Results

We use two sets of scenes to demonstrate the effectiveness of our method. The scene

objects and their detailed parameters (before and after prefiltering) are summarized in Table 4.3.

We also present the precomputation time of our prefiltering method in Table 4.4. The first

set contains two fabric examples (Figures 4.2, 4.16, and 4.17). The “twill” and “silk” models

(Figure 4.15(a, b)) are extracted from detailed volume data [118]. The resulting surface micro-

geometries are highly complex and can cause severe aliasing. The “plane” scene in Figure 4.2

contains a flat twill fabric. The “twill” scene in Figures 4.16 and 4.17 (top row) uses the

same fabric but shell-mapped. The “silk” scene in Figures 4.16 and 4.17 (bottom row) has

another shell-mapped silk fabric. Although we use isotropic glossy BRDFs in these scenes,

the rendered images still show anisotropic glossy highlights because of the complex structured

micro-geometries.

Another set of scenes contains objects with more diverse materials. In Figure 4.18 (top

row), we show the “ball” scene that has a bumpy ball on a rough floor. The ball is represented

by the “bump” model (Figure 4.15(c)), while the floor is represented by the “noise” model

(Figure 4.15(d)). Both models use diffuse base BRDFs. In Figure 4.18 (middle row), we show

6We provide only parameters of the small-scale displacement map, since the large-scale one remains unchanged
when downsampling.

74

Table 4.4. We list the precomputation time for each individual step of our prefiltering method.
Time is measured in minutes.

Name Total time hlow and f ′low T or Tir S or Sir
Twill 22 1 7 14
Silk 22 1 7 14
Bump 24 1 3 20
Noise 22 1 4 17
Logo 36 1 12 23
Relief 26 1 0 25

Reference Ours (R · f ′low) Naı̈ve (forig) Multi-Lobe (f ′low) LEADR

Tw
ill

(8×)2-downsampled.

Si
lk

(16×)2-downsampled.

Figure 4.16. Direct illumination results. Our method accurately matches the reference even
with significant downsampling, and is much more accurate than naive downsampling, multi-lobe
BRDFs without taking shadowing-masking or interreflections into account, and LEADR. The
insets (and those in the next figures 4.17, 4.18) show 10× squared errors compared to the
reference images.

the “logo” scene that is represented by a bi-scale displacement map (Figure 4.15(e)). The

large-scale displacement map describes the overall shape, while the small-scale displacement

map (which is a tiled version of the large-scale one) accounts for the detailed micro-geometry.

In Figure 4.18 (bottom row), we show the “relief” scene that is represented by a composite

displacement map (Figure 4.15(f), which is resampled to keep the image aspect ratio). It is

constructed by adding procedural Perlin noise on a height field converted from a gray scale

image. In this example, we use a spatial scaling function with resolution M = 1 since it leads to

sufficient accuracy.

75

Table 4.5. Equal-time performance. Our prefiltered models not only reduce the storage size,
but also bring benefits in rendering. Given equal time (around 60s for 50–100 spp), rendering
using our models results in anti-aliased images, which have lower MSE than those rendered
using the original models.

Scene Twill Silk Ball Logo Relief

Original model’s MSE (×10−3) 1.095 1.269 2.055 2.072 2.946

Our model’s MSE (×10−3) 0.571 0.622 1.850 0.498 1.692

Direct illumination. Figure 4.16 contains rendered images generated through the inter-

mediate steps of our method with the effective BRDFs capturing only direct illumination (i.e.,

neglecting micro-scale interreflections). Directly using original BRDFs forig with downsam-

pled micro-geometries (the third column) leads to significantly different appearances. Using

the spatially varying multi-lobe BRDF f ′low without our scaling function R = ST (the fourth

column) performs better, but the results are still notably brighter than the references as changes

of shadowing and masking are neglected. By applying a further correction using R = ST , our

models well preserve the input appearances. Additionally, we compare our prefiltered models

with those generated using LEADR [17], which are derived from single-lobe Beckmann NDFs

and Smith’s shadowing function. These models fail to reproduce the appearance of the input

since the assumption of Gaussian surfaces does not hold (see the top insets in Figure 4.2(a, f)).

Further, the single lobe representation used by LEADR also limits the result accuracy, especially

for glossy base BRDFs.

Global illumination. The results in Figures 4.17 and 4.18 are rendered with full global

illumination. In this case, directly using forig (the third column) still yields poor accuracy. Using

multi-lobe BRDFs f ′low improves the glossy highlights quality but cannot fully capture the change

of interreflections. Our full model with f ′low and the scaling functions Rir = SirTir resembles the

input appearance accurately. To demonstrate the effectiveness and generality of our technique,

we also show rendering results under different lighting and viewing configurations in Figure 4.17

and the accompanying video of the original publication.

76

Reference Ours (Rir · f ′low) Naı̈ve (forig) Multi-Lobe (f ′low)
Tw

ill

(8×)2-downsampled.

Si
lk

(16×)2-downsampled.

Figure 4.17. Global illumination results. The four columns on the left are rendered under
local area lights, while the four columns on the right are rendered under environmental lightings
(environment maps are visualized as insets of the reference images) from a different view.
Our method is able to capture interreflections well, closely matching the reference. Naive
downsampling and the multi-lobe BRDFs do not model interreflections and have significant
errors, while LEADR does not perform well even for direct illumination and is not designed for
interreflections (and is therefore not shown here).

Performance and storage. Tables 4.3 and 4.4 summarize the storage size and precompu-

tation time of our prefiltered models, and Table 4.5 shows equal-time mean squared error (MSE)

comparisons. Our prefiltered models can offer significant storage reduction at a single downsam-

pling scale. Breaking down individual components of our model, the multi-lobe SVNDFs are

77

Reference Ours Naı̈ve Multi-Lobe
B

al
l

Ball: (16×)2-downsampled. Floor: (64×)2-downsampled.

L
og

o

(1K×)2-downsampled.

R
el

ie
f

(16×)2-downsampled.

Figure 4.18. Global illumination results. We show results of more materials. Images rendered
using our prefiltered models best match the references.

most storage-consuming (except “noise” and “logo” as they are greatly downsampled) while our

scaling functions T and S only introduce minimal overhead.

Our model also benefits rendering performance by reducing ray tracing cost. We demon-

strate this by rendering a few high-resolution models and their prefiltered counterparts (generated

with our method) in equal-time and compare MSEs of the results (see Table 4.5). Using our

prefiltered models leads to lower errors in all the scenes and anti-aliased renderings with better

visual qualities (see Figure 4.2(c, e)). In the accompanying video of the original publication,

78

Direct illumination Global illumination

(a1) Reference (a2) Ours (b1) Reference (b2) Ours

Figure 4.19. Failure case. Our method accurately handles direct illumination, but is unable to
match the appearance with global illumination, since distant interreflections are not handled with
sufficient accuracy.

we demonstrate that our prefiltered models preserve input appearance accurately and reduce

flickering significantly.

4.8.3 Limitations and Future Work

Figure 4.19 shows a failure example where our method does not accurately reproduce the

original appearance caused by interreflections. This “statue” scene contains a (4K)2 displacement

map and a moderately glossy base BRDF. We downsample it by (16×)2 and use a spatial scaling

function of resolution M = 1. Compared to the “relief” scene, the vertical displacements in this

scene are much greater. In this case, distant interreflections can only be partially handled by

explicit path tracing. Since our method neglects these interreflections (for enabling efficient

computation of Sir and Tir), the results have visible accuracy loss shown as darkening at the

steep edges (see (b1) and (b2)). On the other hand, although our method produces inaccurate

edge appearance, the overall surface reflectance (i.e. average image intensity) still matches the

reference because the two effective BRDFs are matched by our scaling functions. For direct

illumination results ((a1) and (a2)), the accuracy is not affected.

Since our method considers micro-geometries and base BRDFs jointly, which is neces-

79

sary for accurately handling complex light transport effects such as shadowing-masking and

interreflections, changing the micro-geometry or base BRDF requires recomputing our prefiltered

models. In the future, our technique may be combined with material editing techniques such as

Hašan and Ramamoorthi [26] to allow changing the base BRDF with a single precomputation.

Interreflection is an effect that is well known to be challenging to analyze due to its high

nonlinearity. A theoretical or data-driven analysis can be an interesting topic to explore. To

balance accuracy and efficiency, we use relatively low resolutions for the spatial and angular

scaling functions empirically. We leave how to determine the optimal resolutions as future work.

We assume the base BRDFs to be isotropic because the anisotropic micro-geometries are

capable of reproducing anisotropic appearance. Using anisotropic base BRDFs would increase

the model expressiveness but at the price of more expensive precomputation. We leave this

extension for future exploration.

Additionally, as our technique only introduces minimal storage overhead, it may benefit

real-time and interactive rendering applications.

4.9 Conclusion

We introduce a novel method to prefilter the surface reflectance generated by high-

resolution displacement maps while accurately preserving the input appearance. Our prefiltered

models leverage SVBRDFs expressed by a SVNDF coupled with a 6D scaling function that cap-

tures the change of shadowing-masking and interreflection effects caused by the downsampling

of micro-geometries. We further introduce an efficient approach to factorize this 6D function into

a 2D function of location and a 4D function of direction. Our models are capable of producing

accurate appearance that matches the original one. In practice, our prefiltered models offer

significant storage reduction and efficient anti-aliased rendering. Additionally, multiple models

generated using our technique with varying downsampling scales can be combined to form a

mipmap, allowing LoD rendering of detailed surfaces in an efficient and consistent manner.

80

4.10 Acknowledgements

This chapter is based on the material as it appears in ACM Transactions on Graphics, 2019

(“Accurate Appearance Preserving Prefiltering for Rendering Displacement-Mapped Surfaces”,

Lifan Wu, Shuang Zhao, Ling-Qi Yan, and Ravi Ramamoorthi). The dissertation author was the

primary investigator and author of this paper.

81

Chapter 5

Analytic Spherical Harmonic Gradients
for Real-Time Rendering with Many
Polygonal Area Lights

Next, we address the challenge of prefiltering complex lighting conditions, in particular,

illumination from multiple polygonal area lights. The computational cost of accumulating

contributions from many area lights is usually linear in the number of lights. To avoid the

expensive computation at every shading point, we prefilter all the lights into a sparse 3D grid that

stores spherical harmonic (SH) lighting coefficients and gradients. With the help of SH gradients,

the SH lighting coefficients at any intermediate shading point can be accurately interpolated with

a cost that is independent of the number of lights. Our prefiltering method builds on a novel

analytic formula for SH gradients. This enables rendering scenes with hundreds of area lights

using precomputed radiance transfer (PRT) in real-time.

5.1 Introduction

In this chapter, we present a novel technique to prefilter multiple polygonal area lights

into a sparse 3D grid of spherical harmonic (SH) lighting coefficients and gradients, allowing

scaling precomputed radiance transfer (PRT) [89] to hundreds of area lights. PRT and SH

lighting enable dynamic low-frequency environments with realistic highlights and real-time

shading, including soft shadows. Hence, they are widely used in real-time applications like

82

games and even in offline rendering [79]. However, the PRT method has often been limited to

distant environment maps, since area light SH coefficients differ at each vertex on the object.

Recent work [102] has derived an analytic formula for SH coefficients for a uniform

polygonal area light (building on earlier work on irradiance tensors [3, 91]), demonstrating area

lights in PRT. A similar approach has also been applied to SH integrals for both offline and

real-time rendering [5]. However, those methods require computing the SH coefficients at each

integration point (each vertex in PRT), for each light, which precludes easily scaling to large

numbers of lights.

An important observation is that the light field from area lights, and hence its SH

coefficients, is smooth spatially. This suggests that the spatial gradients of SH coefficients are a

critical quantity. Although gradients and differential methods have recently received significant

attention [61, 117], there has so far been little previous work in analytically computing SH

gradients (as opposed to SH coefficients). One reason may be the challenge of generalizing the

SH coefficient derivation, which is already complex, with additional complexity from computing

derivatives along each spatial direction.

In this work, we address this long-standing challenge, deriving an analytic formula for the

spatial gradients of SH coefficients from a uniform polygonal area light. We further show how

gradient-based interpolation can enable very sparse spatial sampling, and efficient prefiltering

of multiple light sources with minimal overhead (see Figure 5.1). Our specific contributions

include:

Derivation of analytic SH gradient formula. Our main contribution is the derivation

of a novel analytic formula for SH gradients. While both area lights and spherical harmonics are

widely used in rendering, to our knowledge, there has been no previous work on finding analytic

SH gradients for them. This is a new result, which is a significant generalization of that for SH

coefficients. We believe the result has implications for many problems in rendering and beyond.

In particular, we show how to reduce the problem to a boundary integral (Section 5.4), where

83

Figure 5.1. We present an analytic formula for spherical harmonic (SH) gradients from uniform
polygonal area lights, and show how this new theoretical result enables scaling Precomputed
Radiance Transfer (PRT) to hundreds of area lights. We first compute the lighting SH coefficients
and gradients on a sparse 3D grid. To evaluate SH coefficients for any intermediate point
(vertex), we exploit SH gradients and use accurate Hermite interpolation. Here we render a
glossy scene with 713 polygonal (triangular) lights and 1.3M polygons at 36fps. Each light
transforms independently (in terms of color, location, orientation etc.), enabling the appearance
of textured lights or more complex patterns, and causing significant changes in glossy highlights
(compare left and right images).

a key term can be reduced to an earlier SH coefficient recurrence (Section 5.5). Our practical

Algorithm 2 in Section 5.6.1 is simple, requiring only a few simple modifications to existing

code for computing analytic SH coefficients.

Gradient-based interpolation. We demonstrate gradient-based interpolation from a

sparse set of samples. An overview of our method is in Algorithm 1 in Section 5.6. We develop

a Hermite cubic interpolant that is consistent with the analytic gradients (Section 5.6.2 and

Algorithm 4), and more accurate than previous Taylor-series based numerical approaches [1].

Even for rendering with one area light source, we demonstrate a 2× speedup over explicit

analytic computation of SH coefficients at each vertex. Our major benefit is for handling multiple

area lights, where we can linearly accumulate SH coefficients and gradients for all lights on a

sparse grid with minimal overhead, followed by gradient-based interpolation.

Efficient real-time prefiltering of multiple area lights. We implement our approach

within a real-time PRT system. We can prefilter hundreds of uniform polygonal area lights

into SH coefficients and gradients in real-time, which was not previously possible (Section 5.7,

84

Figures 5.1, 5.10, and 5.11). This approach also enables easily breaking a high-resolution

textured light source into uniform polygonal luminaires, which can be handled with our method.

5.2 Related Work

PRT and spherical harmonics. SH have been widely used in both real-time and offline

rendering, going back to the work by Cabral et al. [8]. In particular, they have widely been used

in practice for PRT [89], enabling soft shadows and other light transport effects. Approaches

based on all-frequency relighting [71] can be more accurate but have not gained widespread

practical adoption because of the high precomputation and storage costs. Other analytic methods

for area lights, such as the work by Heitz et al. [30], do not consider shadows. There have been

many subsequent developments in PRT; we describe only the closest previous work and refer

readers to a survey [60, 82] for a more thorough introduction.

Annen et al. [1] proposed spherical harmonic gradients for mid-range illumination,

improving on simply interpolating a small number of locations for incident illumination [89].

However, they did not derive an analytic gradient formula, and required 2D numerical integration

over the area light source, with complexity still scaling linearly with the number of lights. In

Section 5.4 and Appendix C.2, we show that their result is essentially a different parameterization;

our approach enables reduction to a boundary integral with an analytic form.

Zhou et al. [122] introduced dynamic scenes and near-field lights for all-frequency

relighting. Using gradients enables sparser representations, which in turn enable scaling with only

a small overhead to hundreds of lights, which was not previously possible. Since our algorithm

only pertains to the lighting, other benefits such as dynamic scenes, or any other PRT transport

algorithm, can easily be included. Other all-frequency area light methods include the wavelet

propagation approach [93] which also handles texture, but the results require approximations

and some operations like out-of-plane light rotation are not permitted. Their method is again

limited to a single or small number of lights.

85

Ren et al. [85] break lights and geometry into spheres and use spherical harmonic

exponentiation to enable real-time soft shadows in more complex dynamic scenes. However,

the spherical approximation is not generally suitable for planar area lights (even using multiple

spheres is a poor approximation of a planar surface from all directions). Moreover, analytic

formulae are provided only for sphere lights. Note that none of the above-mentioned papers

compute analytic spherical harmonic gradients, and this computation may also benefit these

approaches in the future.

Illumination gradients. Irradiance and radiance caching [54, 55, 104] are important

techniques for global illumination. Greger et al. [23] introduced the irradiance volume to

precompute and store the irradiance distribution function in a volumetric grid. Shading at

arbitrary points is computed by trilinearly interpolating from the irradiance volume. In our work,

we precompute and store SH coefficients and gradients in the grid, and perform more accurate

Hermite interpolation using the gradients.

A series of works [45, 47, 52, 53, 103] exploit irradiance and radiance gradients to enable

sparse sampling of (ir)radiance caching points and accurate value interpolation. They use Monte

Carlo integration to evaluate those gradients numerically. In contrast, we derive analytic formulae

for SH gradients. More recently, second-order derivatives (Hessians) have been used for error

control of the first-order approximation using gradients [46, 69, 86]. It is worth exploring analytic

forms of higher order derivatives in the future.

Holzschuch and Sillion [33] developed analytic radiosity gradients with constant and

linear emitters. They used Stokes’ theorem to separate the radiosity gradient into two parts: a

contour integral and a surface integral. We achieve similar results using the Reynolds transport

theorem [57]. Their follow-up work [34] presented analytic second-order derivatives of the

radiosity function, enabling error bounding for hierarchical radiosity algorithms. However, their

analysis of the radiosity method only handles diffuse surface patches, while our SH gradients

86

apply to incident lighting and can also be used for glossy surfaces.

Differentiable rendering. Building on early approaches to gradient light transport [2,

84], recent efforts enable differentiating paths including shadows [61] and radiative trans-

port [117], with different parameterizations [65]. Our method can also be viewed as a differen-

tiable rendering technique, and indeed makes use of the Reynolds transport theorem [57], also

used in the work by Zhang et al. [117]. However our goals are very different: we compute SH

gradients for PRT, deriving a novel analytic formula. Insights from our work can be relevant in

the future for differentiable rendering and machine learning applications [63].

Numerical/Automatic differentiation. For gradient computations, it is possible to use

numerical finite differencing. However, this requires finding the appropriate step size, and

can be noisy and inefficient, as noted in the papers above. It is also possible to use automatic

differentiation (for example, as used in the work by Li et al. [62]). However, the results are

not optimized, and are less efficient than our analytic gradients. Moreover, we present an

explicit analytical derivation, with novel insights, which cannot be achieved with automatic

differentiation.

5.3 Preliminaries

We first introduce basic background on PRT, zonal harmonic factorization, area lights

and differentiating integrals.

5.3.1 Reflection Equation and PRT

The simplest version of precomputed radiance transfer (PRT) tries to solve the reflection

equation at spatial position xxx,

B(xxx) =
∫

S2
Li(xxx,ωωω i)T (xxx,ωωω i)dωωω i, (5.1)

87

where B(xxx) is the reflected radiance or image intensity,1 Li(xxx,ωωω i) is the incoming lighting at

xxx from direction ωωω i, and we integrate over the sphere of incoming directions. T (xxx,ωωω i) is the

transport function which is precomputed at each vertex in PRT, and encapsulates the BRDF,

cosine term and visibility.

In this chapter, our focus is on lighting, i.e., efficient SH projections of Li, rather than

the transport T . Any general PRT method can be used to handle the transport function without

modifications to the relevant code. In general, Li and T are expanded in (real) spherical harmonics

Ylm(xxx), which are orthonormal basis functions on the unit sphere. Therefore, the integral reduces

to a simple summation,

B(xxx) =
lmax

∑
l=0

l

∑
m=−l

Llm(xxx)Tlm(xxx), (5.2)

where Llm and Tlm are spherical harmonic coefficients for the lighting and transport respectively

(with L = ∑l,m LlmYlm and T = ∑l,m TlmYlm). We typically consider lmax = 8 in this chapter,

involving 81 SH terms; the summation can be computed at each vertex xxx as a dot-product of

lighting and transport coefficient vectors in graphics hardware for each color channel.

In the original PRT formulation for distant environment maps, lighting is independent of

spatial position xxx and the lighting coefficients Llm can be computed once for each frame, while

transport coefficients Tlm(xxx) are precomputed and stored. In our case, for near-field area lighting,

Llm(xxx) changes at each spatial location.

5.3.2 Zonal Harmonic Factorization

Zonal harmonics (ZH) are a subset of SH basis functions for m = 0 (see definition in

Section 2.2.1). As pointed out by Nowrouzezahrai et al. [75], any SH basis function Ylm can be

1For notational simplicity, we assume diffuse reflections and drop dependence of reflected direction ωωωo in B and
T . In general, we can also handle non-diffuse reflections B(xxx,ωωωo) using a glossy PRT extension (see Figure 5.1).
Since we focus only on lighting Li, any PRT framework can be supported, including interreflections and dynamic
scenes.

88

sparsely factorized into a weighted sum of rotated ZH basis functions,

Ylm(ωωω) = ∑
j

α
m
l, jYl0(ωωω ·ωωω l, j), (5.3)

where ωωω l, j represents the central direction of each rotated ZH lobe and αm
l, j is its corresponding

weight. Theoretically, to represent each band-l SH basis function, 2l +1 rotated ZH lobes are

required. However in practice, the ZH lobes can be shared across all bands (Appendix C.1),

resulting in a sparse weight matrix αm
l, j and faster SH rotation.

5.3.3 Analytic Spherical Harmonic Coefficients

Given a polygonal light source A with unit intensity, we denote its projection onto a unit

sphere centered at the shading point xxx as Q(xxx). The SH coefficients of this area light source with

respect to xxx are given by integrating the SH basis functions over Q,

Llm(xxx) =
∫

Q(xxx)
Ylm(ωωω)dωωω. (5.4)

By applying the zonal harmonic factorization (Equation (5.3)) to Ylm, the SH coefficients can be

rewritten as

Llm(xxx) =
∫

Q(xxx)

(
∑

j
α

m
l, jYl0(ωωω ·ωωω l, j)

)
dωωω

= ∑
j

α
m
l, j

∫

Q(xxx)
Yl0(ωωω ·ωωω l, j)dωωω

︸ ︷︷ ︸
=:Ll, j(xxx)

. (5.5)

Therefore, computing Llm(xxx) boils down to computing the ZH coefficients Ll, j(xxx). Belcour et

al. [5] further represented the ZH coefficient as the sum of cosine-power integrals and found

analytic solutions for these integrals over spherical polygons. Wang and Ramamoorthi [102]

derived analytic ZH coefficients by applying Stokes’ Theorem to convert surface integrals to

boundary integrals. The boundary integrals are further solved using the recurrence relations

89

of Legendre polynomials, which are also used in our derivation. However, our approach is

different, in terms of finding the SH gradients, which we reduce to a novel boundary integral

by differentiating the surface integral for ZH coefficients. A crucial insight helping us to find

the analytic formula is in reducing a key term to the earlier ZH coefficient recurrence, which

involves minimal overhead to evaluate coefficients and gradients jointly.

5.3.4 Differentiating Integrals

In this work, our goal is to find the SH spatial gradients ∇xxxLlm(xxx), which we will often

denote simply as ∇Llm(xxx). This reduces to differentiating the integral on the right-hand side

(RHS) of Equation (5.4). To this end, we leverage the Reynolds transport theorem which

originates in fluid mechanics [57] and generalizes the Leibniz integral rule for differentiation

under the integral operator.

Let Ω(π) be an n-dimensional manifold parameterized by π . We are interested in

differentiating the integration of a function f over the region Ω(π). The partial derivative with

respect to π can be expressed as

∂π

(∫

Ω(π)
f dΩ(π)

)
=
∫

Ω(π)
ḟ dΩ(π)+

∫

∂Ω(π)
〈nnn, ẋxx〉 f d∂Ω(π), (5.6)

where ∂π := ∂

∂π
and ḟ := ∂π f . The differentiation result has two parts. The first one is an integral

on the original domain Ω(π). The other one is a boundary integral on the (n−1)-dimensional

region ∂Ω(π). For its integrand, we define ẋxx := ∂πxxx, nnn is the normal direction at each xxx ∈ ∂Ω(π)

and points towards the exterior by convention, and 〈·, ·〉 is the dot product of two vectors.

Recent work in differentiable rendering [61, 117] have already shown the significance

of the boundary integral for correctly evaluating geometric derivatives. Later in Sections 5.4

and 5.5, we will see the boundary integral also leads to significant formula simplification and

enables the analytic derivation.

90

(a) (b)

Figure 5.2. (a) Illustration of the spherical projection for a triangle light. (b) When the shading
point xxx moves by ẋxx (equivalent to the area light moves by −ẋxx), the projected spherical polygon
also changes accordingly.

5.4 Differentiating Spherical Harmonic Coefficients

In this section, we will use the Reynolds transport theorem to differentiate the SH

coefficients for area lights, showing that SH gradients can be computed from boundary integrals.

In Section 5.5 we will further derive our key result, an analytic formula. In Section 5.6 we

develop our SH gradient (jointly with SH coefficients) evaluation algorithm and the gradient-

based interpolation method, showing how to handle multiple area light sources. While the

derivation is somewhat involved, the actual algorithm involves only a few simple modifications

to previous code for SH coefficients. Readers interested primarily in implementation may wish

to first browse Section 5.6 and Algorithms 1 and 2.

Let A = (ppp1, ppp2, . . . , pppN) be a uniform polygonal light source with N points in R3 and

xxx be the shading point where we want to evaluate the incident radiance (see Figure 5.2(a)).

Note that Q(xxx) = (ωωω1,ωωω2, . . . ,ωωωN) is a spherical polygon obtained by projecting A onto the unit

sphere S2 centered at xxx (see Figure 5.2(a)), where ωωω i =
pppi−xxx
‖pppi−xxx‖ . Both Q(xxx) and its boundary

(which consists of arcs on S2) ∂Q(xxx) = {ω̂ωω iωωω i+1 | i = 1, . . . ,N} may vary with xxx.

91

5.4.1 Spherical Harmonic Gradient

Given a shading point xxx = (x,y,z), we define the SH gradient as the spatial gradients with

respect to xxx,

∇Llm(xxx) = (∂xLlm(xxx),∂yLlm(xxx),∂zLlm(xxx)). (5.7)

Without loss of generality, we will focus on one of the spatial partial derivatives ∂zLlm(xxx) in the

following derivations. The other gradient components can be evaluated in the same way.

To evaluate the SH coefficient in Equation (5.4), the SH basis function is integrated over

a varying domain Q(xxx) as the shading point xxx changes. By applying the Reynolds transport

theorem to the right-hand side (RHS) of Equation (5.4), we can write the partial derivative as

∂z

∫

Q(xxx)
Ylm(ωωω)dωωω =

∫

Q(xxx)
∂z[Ylm(ωωω)]dωωω +

∫

∂Q(xxx)
〈nnn⊥, ω̇ωω〉Ylm(ωωω)d`(ωωω). (5.8)

The first integral on the RHS vanishes, because the SH basis function is independent of

the shading point position so ∂z[Ylm(ωωω)] = 0.

The second integral is due to the moving boundary ∂Q(xxx) as xxx varies (see Figure 5.2(b)).

For every ωωω ∈ ∂Q(xxx), d`(ωωω) represents the arc length measure. The normal vector nnn⊥ is in the

tangent space of ωωω ∈ S2 and perpendicular to the boundary curve. We denote ω̇ωω as the change

rate of the boundary location ωωω with respect to z, i.e. ω̇ωω = ∂zωωω . Let yyy ∈ ∂A be a point on the

polygonal light boundary. Further, the shading point xxx has a change rate ẋxx = (0,0,1). We can

establish the following relation between the change rates (see Figure 5.3),

ω̇ωω = ∂z

(
yyy− xxx
‖yyy− xxx‖

)
=
−ẋxx
‖yyy− xxx‖

−ωωω

〈
ωωω,

−ẋxx
‖yyy− xxx‖

〉
. (5.9)

92

Figure 5.3. Evaluating the change rate of ωωω . We first project −ẋxx to the unit sphere, then obtain
ω̇ωω by extracting the component of −ẋxx

‖yyy−xxx‖ that is perpendicular to ωωω .

5.4.2 Reduction to Edge/Arc Integrals

The previous subsection shows that the spatial partial derivative can be simplified as

∂zLlm(xxx) =
∫

∂Q(xxx)
〈nnn⊥, ω̇ωω〉Ylm(ωωω)d`(ωωω), (5.10)

which is a 1D integral on the spherical polygon edges.

We now decompose the boundary integral into a sum of arc integrals for each arc

ω̂ωω iωωω i+1 ∈ ∂Q(xxx),

∂zLlm(xxx) =
N

∑
i=1

∫

ω̂ωω iωωω i+1

〈nnni, ω̇ωω〉Ylm(ωωω)d`(ωωω)

︸ ︷︷ ︸
=:G(i)

lm

. (5.11)

For every ωωω ∈ ω̂ωω iωωω i+1, it has the same normal direction

nnni =
ωωω i×ωωω i+1

‖ωωω i×ωωω i+1‖
. (5.12)

Further, the edge integral can be parameterized with the radian angle t ∈ [0,Ti] as

ωωω(t) = ωωω i cos t +λλλ sin t, (5.13)

93

where Ti = arccos(ωωω i ·ωωω i+1) and λλλ = nnni×ωωω i. The direction change rate ω̇ωω(t) can be evaluated

using Equation (5.9). The arc length measure d`(ωωω) is equal to dt since the sphere radius is one.

In summary, we can rewrite the arc integrals in Equation (5.11) as simple 1D integrals:

G(i)
lm =

∫ Ti

0
〈nnni, ω̇ωω(t)〉Ylm(ωωω(t))dt. (5.14)

At this point, it would be possibly to simply evaluate G(i)
lm efficiently using 1D numerical

quadrature rules.2 However, we will go even further, deriving a fully analytic recurrence formula

in Section 5.5.

Discussion. The reduction of area light computations to edge integrals over the bounding

arcs is common, but previous work has used Stokes’ theorem for polynomial or spherical

harmonic coefficients [91, 102]. Our use of the Reynolds transport theorem to reduce the

gradients to boundary integrals is a novel approach, to the best of our knowledge.

Annen et al. [1] developed a semi-analytic solution to SH gradients. We show in Ap-

pendix C.2 that their results can also be derived from the Reynolds transport theorem, but using

a different parameterization. In their case, the integration domain is independent of the varying

parameters. As a result, the boundary integral (second integral on the RHS of Equation (5.8))

becomes zero after differentiating with the Reynolds transport theorem. On the other hand, we

use a parameterization such that the integration domain varies while the integrand is independent.

Therefore, the integral of the differentiated quantity (first integral on the RHS of Equation (5.8))

is zero.

Although both methods result in equivalent solutions, they have different algorithmic

implications. In the work by Annen et al. [1], they need to numerically integrate functions in

2D, even though the integrand can be evaluated analytically or by automatic differentiation.

On the other hand, our parameterization results in dimension reduction. The 1D integrals can

2Note that the integrand is smooth and low-dimensional (1D), so Monte Carlo sampling is not required; a
standard integration rule like Simpson’s or a higher-order quadrature scheme could be employed. This may be
desirable in some applications.

94

not only be evaluated numerically in a more efficient way, but also lead to analytic solutions.

Different applications may prefer specific parameterizations. For example, in differentiable

rendering [61, 65, 117], one wants to avoid the boundary integration as much as possible, because

the gradient estimation requires additional effort for edge sampling. Further, the edge integrals

they evaluated are too complex to have analytic solutions. In contrast, we prefer to reduce SH

gradients to edge integrals. The dimension reduction on the integral domain makes the analytic

derivation much easier.

5.5 Analytic Formula

In this section, we will show how to solve SH gradients analytically. First, we use ZH

factorization [75], see Equations (5.3) and (5.5), to rewrite Equation (5.14) in terms of ZH

integrals (we focus on one edge in the following derivations),

G(i)
lm = ∑

j
α

m
l, j

∫ Ti

0
〈nnni, ω̇ωω(t)〉Yl0(ωωω(t) ·ωωω l, j)dt

︸ ︷︷ ︸
=:G(i)

l, j

. (5.15)

The weights αm
l, j and central directions ωωω l, j of the ZH lobes can be precomputed. Now, the

problem reduces to how to evaluate the integral G(i)
l, j analytically.

The input of our method includes the edge endpoints pppi and pppi+1, the shading point xxx, its

change rate ẋxx that equals (0,0,1) when differentiating with respect to z, and the central direction

ωωω l, j of the j-th ZH lobe. Briefly, the derivation involves simplifying the integrand, rearranging

terms and reducing to the known recurrence relations of Legendre polynomials.

5.5.1 Solving for G(i)
l, j

Transforming to local frame. We seek to represent the integrand of G(i)
l, j by a function

of t, i.e., g(t) = 〈nnni, ω̇ωω(t)〉Yl0(ωωω(t) ·ωωω l, j), and simplify it as much as possible. First, we translate

the edge pppi pppi+1 by−xxx so that the shading point is at the origin. We denote the distances from the

95

shading point to the edge endpoints as `i = ‖pppi− xxx‖ and `i+1 = ‖pppi+1− xxx‖. The arc ω̂ωω iωωω i+1 is

represented by two unit vectors ωωω i and ωωω i+1. Then, we build a local frame (ωωω i,λλλ i,nnni), where nnni

and λλλ i are defined in Equations (5.12) and (5.13). We transform all the related vectors ωωω i,ωωω i+1,

and ωωω l, j into this local frame by a rotation operatorR(uuu) = (uuu ·ωωω i,uuu ·λλλ i,uuu ·nnni). One benefit is

that expressions of ωωω(t) are simpler after rotation: R(ωωω(t)) = (cos t,sin t,0), because the edge

is completely in the xy-plane and ωωω i aligns with the x-axis. Moreover, the function value g(t) is

unchanged since the dot product is invariant under rotation.

Simplifying 〈nnni, ω̇ωω(t)〉. To evaluate this term, we can expand and simplify it using

Equation (5.9):

〈nnni, ω̇ωω(t)〉=
〈

nnni,
−ẋxx

‖yyy(t)− xxx‖

〉
−〈nnni,ωωω(t)〉

〈
ωωω(t),

−ẋxx
‖yyy(t)− xxx‖

〉
=− 1
‖yyy(t)− xxx‖

〈nnni, ẋxx〉, (5.16)

because nnni is perpendicular to ωωω(t). Assuming nnni = (nx,ny,nz), we know that 〈nnni, ẋxx〉= nz. Then,

it remains to find `(t) = ‖yyy(t)− xxx‖. We denote yyy(t) = xxx+ `(t)ωωω(t) as the intersection point of

pppi pppi+1 and the ray with direction ωωω(t) starting at xxx. The solution can be found by solving a

linear system,

`(t) =
(

sin t
`i+1
− sin(t−Ti)

`i

)−1

sinTi. (5.17)

Recall that `i and `i+1 are the distances to area light vertices pppi and pppi+1 respectively, from

the shading point xxx (corresponding to `(0) and `(Ti)). We provide the detailed derivation in

Appendix C.3.1.

To sum up, Equation (5.16) can be written as

〈nnni, ω̇ωω(t)〉=− nz

sinTi

(
sin t
`i+1
− sin(t−Ti)

`i

)
. (5.18)

Simplifying Yl0(ωωω(t) ·ωωω l, j). Given a precomputed central direction ωωω l, j, we denote the

96

vector after rotation asR(ωωω l, j) = (cx,cy,cz). The ZH basis function can be written as

Yl0(R(ωωω(t)) ·R(ωωω l, j)) = KlPl(cx cos t + cy sin t). (5.19)

Finally, plugging Equations (5.18) and (5.19) back in Equation (5.15), we have

G(i)
l, j =

nzKl

`i sinTi

∫ Ti

0
sin(t−Ti)Pl(cx cos t + cy sin t)dt −

nzKl

`i+1 sinTi

∫ Ti

0
sin(t)Pl(cx cos t + cy sin t)dt. (5.20)

Rearranging terms. Despite our simplifications to the integrand, it remains nontrivial

to evaluate the integrals in Equation (5.20) analytically. Fortunately, for h(t) = cx cos t + cy sin t,

the integral
∫

hPl(h)dt does have a closed-form solution, which can be derived using integration

by parts [102]. Therefore, our goal is to rearrange the integrand so that it reduces to this integral.

We first combine the linear combination of sine and cosine waves to a single sine wave

with a scaled amplitude A and a phase shift T ′,

h(t) = cx cos t + cy sin t = Asin(t +T ′), (5.21)

where A =
√

c2
x + c2

y and T ′ = arctan(cx/cy). Using trigonometric identities, the first integral on

the RHS of Equation (5.20) can be reformulated as

cos(Ti +T ′)
A

Cl−
sin(Ti +T ′)

A
El, (5.22)

where Cl =
∫ Ti

0 hPl(h)dt and El =
∫ Ti

0 (d
dt h)Pl(h)dt. We provide the derivation details in Ap-

pendix C.3.2. The second integral can be solved in the same way. Finally, Equation (5.20) can

97

be simplified as

G(i)
l, j =

nzKl

A`i sinTi
(Cl cos(Ti +T ′)−El sin(Ti +T ′))−

nzKl

A`i+1 sinTi
(Cl cosT ′−El sinT ′).

(5.23)

Analytic formula for El . Notice that the analytic solution to El can be directly derived

using a change of variable dh = (d
dt h)dt,

El =
∫ Ti

0
(

d
dt

h)Pl(h)dt =
∫ h(Ti)

h(0)
Pl(h)dh =

1
2l +1

[Pl+1(h)−Pl−1(h)]
∣∣∣∣
cx cosTi+cy sinTi

cx

. (5.24)

Here we use the following recurrence relation of the Legendre polynomials: (2l + 1)Pl(h) =

d
dh(Pl+1(h)−Pl−1(h)). 3

Recurrence formula for Cl . Unlike El , it is difficult, if not impossible, to derive a direct

representation for Cl . However, our key insight is in reducing the integral expressions to this

specific form. Indeed, Wang and Ramamoorthi [102] have developed a recurrence formula for

Cl and associated edge integrals,

Cl =
1

l +1
[
(cx sinTi− cy cosTi)Pl(h(Ti))+ cyPl(cx)+(c2

x + c2
y−1)Dl + lBl−1

]
, (5.25)

where the edge integrals Bl and Dl are given by Bl =
∫ Ti

0 Pl(h)dt and Dl =
∫ Ti

0
d

dhPl(h)dt. Their

associated recurrence formulae are,

Bl =
2l−1

l
Cl−1−

l−1
l

Bl−2, (5.26)

Dl =(2l−1)Bl−1 +Dl−2. (5.27)

3The identity still holds for l = 0 if we define P−1(h)≡ 0.

98

The base cases4 for l = 0 are

B0 = Ti, D0 = 0. (5.28)

5.5.2 Summary

Based on Equations (5.11) and (5.15), the SH gradient evaluated at one point xxx can be

expressed as

∂zLlm = ∑
i

∑
j

α
m
l, jG

(i)
l, j = ∑

j
α

m
l, j

(
∑

i
G(i)

l, j

)

︸ ︷︷ ︸
=:Gl, j

. (5.29)

We have just derived an analytic formula for G(i)
l, j (Equation (5.23)), reducing it to simpler

integrals of the Legendre polynomials which are easier to solve.

Analytic SH Coefficients. The edge integrals Bl , Cl and Dl are not only used for evalu-

ating SH gradients, but also building blocks for computing SH coefficients [102]. Therefore, we

can simultaneously compute SH coefficients and gradients without much overhead. For com-

pleteness, we provide analytic formulae for SH coefficients, which are rewritten and simplified

from previous work with respect to our notation.

Similar to Equation (5.29), we can decompose one SH coefficient into the contributions

from each individual ZH lobe as Llm = ∑ j αm
l, jLl, j. Denoting H(i)

l, j as the intermediate quantity

for the individual contribution from the j-th ZH lobe and the i-th edge,

H(i)
l, j = czKlBl, (5.30)

the ZH coefficient Ll, j (Equation (5.5)) is given by the following recurrence formula,

Ll, j =
2l−1

l(l +1)∑
i

H(i)
l−1, j

︸ ︷︷ ︸
=:Hl−1, j

+
(l−2)(l−1)

l(l +1)
Ll−2, j. (5.31)

4Additionally, we define B−1 ≡ 0 and D−1 ≡ 0.

99

The base case for l = 0 is basically the solid angle subtended by the polygon [3], scaled by K0,

L0, j = K0

[
N

∑
i=1

arccos
(

ωωω i×ωωω i−1

‖ωωω i×ωωω i−1‖
· ωωω i×ωωω i+1

‖ωωω i×ωωω i+1‖

)
− (N−2)π

]
. (5.32)

We also define L−1, j ≡ 0 for completeness.

Although previous work and ours both reduce to the same set of edge integrals, the

derivation techniques are quite different. Previous work (Equations (5.30) and (5.31)) uses

Stokes’ Theorem to convert the surface integrals for SH coefficients to the edge integrals. On

the other hand, our reduction is based on differentiation of surface integrals under a specific

parameterization, followed by term rearrangements with algebraic identities.

5.6 Algorithm

Based on the analytic formulae presented in Section 5.5, we demonstrate a practical

algorithm to evaluate SH coefficients and gradients simultaneously, given a shading point and

one polygonal light (Section 5.6.1). However, it is still challenging to handle a scene with many

area lights, since the method scales linearly in the number of lights.

Fortunately, SH coefficients vary smoothly as the shading point moves. Based on this

observation, we develop an efficient algorithm to evaluate the lighting coefficients in the PRT

framework, especially when there are multiple uniform polygonal area lights. Our method is

outlined in Algorithm 1. We evaluate SH coefficients and gradients for all lights on a sparse

grid (Lines 2–8 of Algorithm 1), followed by interpolating SH coefficients of PRT vertices in

between (Lines 9–16). In terms of interpolation, we present a gradient-based, tricubic Hermite

interpolation method within a 3D grid (Section 5.6.2), which is more accurate than the trilinear

interpolation and previous Taylor-series based interpolation [1]. The computation time of

interpolation is independent of the number of lights, allowing us to render a scene with hundreds

of area lights in real-time.

100

Algorithm 1. Evaluation of lighting coefficients for every vertex
1: function LIGHTCOEFFFORPRT
2: // SH Evaluation on a 3D grid
3: Build a uniform 3D grid of resolution M3

4: for each grid point xxx do
5: for each area light in the scene do
6: Accumulate Llm(xxx) and ∇Llm(xxx) . Algorithm 2
7: end for
8: end for
9: // Gradient-based Interpolation for PRT vertices

10: for each vertex vvv do
11: Find its eight adjacent grid points
12: for each SH basis (l,m) do
13: Fetch Llm and ∇Llm at the eight grid points
14: Hermite interpolate Llm(vvv) . Algorithm 4
15: end for
16: end for
17: end function

5.6.1 Iterative Evaluation of SH Coefficients and Gradients

We demonstrate the iterative evaluation of both SH coefficients and gradients in Algo-

rithm 2. The algorithm takes a shading point xxx, a polygon {pppi} with N points, the weights {αm
l, j}

and central directions {ωωω l, j} of the precomputed ZH lobes up to degree lmax as input. It outputs

(lmax+1)2 SH coefficients {Llm} and SH gradients (spatial partial derivatives) {∂xLlm}, {∂yLlm},

{∂zLlm}. 5

Precomputation. First, we precompute the required quantities for each polygon vertex

and edge. Note that the order of polygon vertices does matter. Specifically, the dot product of the

face normal (ppp1− ppp0)× (ppp2− ppp0) and ppp0− xxx should be positive. In Lines 2–4 of Algorithm 2,

we translate the polygon vertices pppi by −xxx, compute the distances `i between the vertices and

the shading point, and obtain ωωω i by projecting the vertices onto the unit sphere. Then, we build

a local frame (ωωω i,λλλ i,nnni) for each polygon edge (Line 6) and compute its subtended angle Ti

(Line 7).

5For conciseness, we only show one of the partial derivatives in Algorithm 2. To obtain the other two partial
derivatives, we only need to replace nz by nx/ny (lines 15 and 22) and ∂z by ∂x/∂y (lines 33 and 36).

101

Algorithm 2. SH coefficients and gradients for one polygonal light

1: function SHCOEFFANDGRAD(xxx, N, {pppi}, lmax, {αm
l, j}, {ωωω l, j})

2: for i = 0 to N−1 do . Precomputation for each vertex
3: pppi = pppi− xxx, `i = ‖pppi‖, ωωω i = pppi/`i
4: end for
5: for i = 0 to N−1 do . Precomputation for each edge
6: nnni =

ωωω i×ωωω i+1
‖ωωω i×ωωω i+1‖ , λλλ i = nnni×ωωω i

7: Ti = arccos(ωωω i ·ωωω i+1)
8: end for
9: for j = 0 to 2lmax do . Iterate over 2lmax +1 ZH lobes

10: ωωωc = ωωω lmax, j . Share ZH lobes, Appendix C.1
11: {Hl, j}= 0 . Initialization for ZH coefficients
12: {Gl, j}= 0 . Initialization for ZH gradients
13: for i = 0 to N−1 do . Iterate over N edges
14: cx = ωωωc ·ωωω i, cy = ωωωc ·λλλ i, cz = ωωωc ·nnni . Rotation
15: nz = nnni[z] . 〈nnni, ẋxx〉
16: A = (c2

x + c2
y)

1/2, T ′ = arctan(cx/cy) . Equation (5.21)
17: ({Bl},{Cl},{El}) = RECURRENCE(cx,cy,Ti, lmax)
18: . Algorithm 3
19: for l = 0 to lmax do
20: Kl =

√
2l+1
4π

. SH Normalization factor
21: Hl, j += czKlBl . Equation (5.30)
22: Gl, j += G(nz,Kl,A, `i, `i+1,Ti,T ′,Cl,El) . Equation (5.23)
23: end for
24: end for
25: L0, j = K0× SOLIDANGLE(N,{ωωω i}) . Base case, Equation (5.32)
26: for l = 1 to lmax do
27: Ll, j =

2l−1
l(l+1)Hl−1, j +

(l−2)(l−1)
l(l+1) Ll−2, j . Equation (5.31)

28: end for
29: end for
30: for l = 0 to lmax do . ZH factorization
31: for m =−l to l do
32: Llm = 0
33: ∂zLlm = 0
34: for j ∈ { j |αm

l, j 6= 0} do . Sparse weights
35: Llm += αm

l, jLl, j

36: ∂zLlm += αm
l, jGl, j . Equation (5.29)

37: end for
38: end for
39: end for
40: return ({Llm},{∂zLlm})
41: end function

102

Algorithm 3. Iterative evaluation of edge integral recurrences
1: function RECURRENCE(cx, cy, Ti, lmax)
2: B0 = Ti, C0 = cx sinTi− cy cosTi + cy . Base cases
3: D0 = 0, E0 = cx cosTi + cy sinTi− cx
4: for l = 1 to lmax do
5: Bl =

2l−1
l Cl−1 +

l−1
l Bl−2 . Equation (5.26)

6: Dl = (2l−1)Bl−1 +Dl−2 . Equation (5.27)
7: Cl = C(cx,cy,Ti, l,Dl,Bl−1) . Equation (5.25)
8: El = E(cx,cy,Ti, l) . Equation (5.24)
9: end for

10: return ({Bl},{Cl},{El})
11: end function

Evaluation of individual ZH coefficients and gradients. Starting from Line 9 of Al-

gorithm 2, we evaluate the ZH coefficients (indicated in the orange background) and gradients

(indicated in the purple background) for up to (2lmax +1) ZH lobes. We use ωωωc to indicate the

central direction of the j-th ZH lobe (Line 10), given the lobe sharing strategy in Appendix C.1.

The contributions to ZH coefficients and gradients will be accumulated for every polygon edge

(Lines 13–24).

For each edge, the local coordinates (cx,cy,cz) of ωωωc in the edge’s local frame are

calculated in Line 14. We calculate the values nz,A and T ′ in Lines 15 and 16, which are

required for the gradient evaluation. The edge integrals Bl,Cl and El are evaluated iteratively

(Line 17) from l = 0 to lmax. We demonstrate the computation of the recurrence formulae

(Equations (5.24)–(5.27)) in Algorithm 3. For each band l, the values Hl, j (Line 21) and the ZH

gradients Gl, j (Line 22) are updated based on Equations (5.30) and (5.23) respectively.

Finally, the ZH coefficients Ll, j are evaluated in Lines 25–28, based on another recurrence

formula related to Hl, j (Equations (5.31) and (5.32)).

ZH factorization. The final step is to reconstruct SH coefficients and gradients from the

evaluated ZH coefficients Ll, j and gradients Gl, j (Lines 30–39). The ZH factorization weights

αm
l, j are precomputed according to the work by Nowrouzezahrai et al. [75]. The sparsity of

103

Algorithm 4. Tricubic Hermite interpolation from function values fi and gradients ∇ fi =
(∂x fi,∂y fi,∂z fi) of the eight adjacent grid points i = 0,1, . . . ,7

1: function TRICUBICHERMITE(ppp, gridSize, { fi}, {∇ fi})
2: (xR,yR,zR) = gridSize . Size of a grid voxel
3: (x,y,z) = ppp . Vertex coordinates inside the grid voxel
4: for i = 0 to 3 do . Interpolate along the x-axis
5: gi = HERMITE1D(x,{0, f2i,∂x f2i},{xR, f2i+1,∂x f2i+1})
6: Interpolate ∇gi linearly based on ∇ f2i and ∇ f2i+1
7: end for
8: for i = 0 to 1 do . Interpolate along the y-axis
9: hi = HERMITE1D(y,{0,g2i,∂yg2i},{yR,g2i+1,∂yg2i+1})

10: Interpolate ∇hi linearly based on ∇g2i and ∇g2i+1
11: end for
12: q(x,y,z) = HERMITE1D(z,{0,h0,∂zh0},{zR,h1,∂zh1})
13: return q(x,y,z) . Interpolate along the z-axis
14: end function
15: function HERMITE1D(x, {xL, fL, f ′L}, {xR, fR, f ′R})
16: x∆ = xR− xL, s = (fR− fL)/x∆

17: a = fL, b = f ′L, c = s− f ′L
x∆

, d =
f ′L+ f ′R−2s

x2
∆

. Equation (5.35)

18: return a+b(x− xL)+ c(x− xL)
2 +d(x− xL)

2(x− xR) . Equation (5.33)
19: end function

weights is maximized, so the SH reconstruction is efficient.

Summary. Evaluating ZH coefficients and gradients (Lines 9–29 of Algorithm 2) takes

O(Nl2
max) time and reconstructing SH values with the ZH factorization (Lines 30–39) takes

O(l3
max) time. Note that the last ZH factorization step is quite fast, since the weights αm

l, j are

sparse. The overall storage required is O(l2
max). Both the time and space complexity are the same

as in previous work [102]. In terms of implementation, computing SH gradients along with SH

coefficients only requires minimal effort (lines in Algorithm 2 with the purple background).

5.6.2 Gradient-Based Interpolation

Given SH coefficients and gradients evaluated on a 3D grid, we can interpolate for any

inside point (vertex in PRT) according to its eight adjacent grid points. Note that the interpolation

time only depends on the highest SH degree lmax and is independent of the number of lights,

104

1 2 3
x

−0.05

0.00

0.05

0.10

0.15

Y l
m

(x
)

Reference
Trilinear
Taylor
Hermite

Figure 5.4. Given a rectangular area light and a shading point, we plot the SH coefficients for
(l,m) = (7,2) as the shading point moves along the x-axis. The reference curve (blue solid line)
is densely sampled at 2000 points. Alternatively, we evaluate SH coefficients and gradients at
10 points (blue dots) and interpolate the coefficients in between. The trilinear interpolation (red
dashed line) and the Taylor-series based interpolation (cyan dashed line) [1] result in insufficient
accuracy, while the cubic Hermite interpolation result (black dashed line) matches the reference
almost perfectly.

making our method scalable to many lights.

In terms of interpolation methods, one can interpolate SH coefficients trilinearly, without

using SH gradients at all. Previous work [1] uses an interpolation method based on Taylor series.

They approximate the coefficients by the first-order Taylor polynomial from each adjacent grid

point, then combine the results using the inverse distance weighting [103]. Both interpolation

methods result in limited accuracy (see Figures 5.4 and 5.7). Instead, we use a more principled

Hermite interpolation [98], approximating the interpolant as a tricubic polynomial. We first

provide details of the cubic Hermite interpolation in 1D. Then, we discuss its extension to 3D.

1D cubic Hermite interpolation. Suppose the function we are going to interpolate f (x)

is continuous on [xL,xR] and we know its values fL, fR and the first-order derivatives f ′L, f ′R at

the endpoints, respectively. The cubic Hermite interpolant q(x) is a cubic polynomial with four

105

Figure 5.5. Illustration of 3D Hermite interpolation.

unknown coefficients a,b,c and d [98],

q(x) = a+b(x− xL)+ c(x− xL)
2 +d(x− xL)

2(x− xR), (5.33)

satisfying

q(xL) = fL, q(xR) = fR, q′(xL) = f ′L, q′(xR) = f ′R. (5.34)

We can obtain the four unknown coefficients by solving this linear system (Equation (5.34)),

a = fL, b = f ′L, c = (s− f ′L)/x∆, d = (f ′L + f ′R−2s)/x2
∆, (5.35)

where x∆ = xR− xL and s = (fR− fL)/x∆. We demonstrate it in Lines 15–19 of Algorithm 4.

The 1D curve plot in Figure 5.4 indicates the accuracy benefit comparing to other interpolation

methods.

3D tricubic Hermite interpolation. Tricubic Hermite interpolation can be done by

performing the 1D cubic Hermite interpolation along the three axes progressively (see Figure 5.5).

For any intermediate points, the SH coefficients are Hermite interpolated but we need to know

the SH gradients (first-order derivatives) as well. In theory, applying Hermite interpolation to

106

Table 5.1. Scene configurations of all results.

Scene Triangles Lights

Dragon & Bunny Figure 5.1 1.28M 723

Monkey Figure 5.7 71.2K 118

Plants Figure 5.8 190K 2

Asian Dragon Figure 5.9 1.42M 181

Room Figure 5.10 1.71M 344

Buddha Figure 5.11 422K 210

the first-order derivatives requires the second-order derivatives, which will involve extra cost to

evaluate. For efficiency, we interpolate SH gradients trilinearly and get satisfactory results.

We provide the pseudocode of the 3D tricubic Hermite interpolation in Algorithm 4. For

a point ppp in a grid voxel with size (xR,yR,zR), we translate it so that the bottom-left corner is

at (0,0,0). First, we interpolate along the x-axis (Lines 4–7), calculating the function values

g0, . . . ,g3 by the 1D Hermite interpolation and gradients ∇g0, . . . ,∇g3 by the linear interpolation

(see the blue points in Figure 5.5). We then interpolate along the y-axis (Lines 8–11) and

obtain the values h0,h1 and ∇h0,∇h1 (see the red points in Figure 5.5). Finally, we compute the

interpolant value q(x,y,z) by interpolating along the z-axis (Line 12).

Note that theoretically, the interpolation result depends on the order of the individual 1D

steps. However in practice, we do not observe significant differences when we change the order.

5.7 Results

We implement Algorithms 1–4 in GPU shaders and compute SH lighting coefficients for

each vertex in a scene. The lighting coefficients are used in a PRT system, which is implemented

within the Falcor open-source real-time rendering framework [6]. We run our algorithm on a

few scenes with multiple polygonal area lights using an NVIDIA RTX 2080 Ti GPU. The scene

configurations and performance statistics are summarized in Tables 5.1 and 5.2, respectively. We

release our code and data in the supplementary material of the original publication.

107

Table 5.2. Performance statistics of all results. We compare running time and image mean
absolute errors (MAE) to those by Wang and Ramamoorthi [102], which we treat as the Reference.
Note that the total running time of our method also includes other necessary operations such as
rasterization. We also provide the running time of evaluating only SH coefficients to highlight
the low overhead of SH gradient evaluation.

Scene
Grid

Reso.

Eval.

coeff.

Coeff.

& grad.
Interp. Total FPS

MAE

(×10−3)
Ref.

Speed

up

Dragon & Bunny 83 16.5 20.2 6.6 27.9 35.8 0.18 110K 3943×
Monkey 83 1.3 1.8 0.4 3.3 303 0.29 177 35×
Plants 83 0.08 0.1 2.1 3.1 323 0.17 9.4 3×
Asian Dragon 83 2.3 3.0 8.1 12.7 78.7 1.35 3.22K 254×
Room 83 4.3 5.8 10.3 17.7 56.5 0.34 6.85K 387×
Buddha 83 4.8 5.7 6.0 12.7 78.7 0.07 28.6K 2252×

5.7.1 Validation and Evaluation

Validation of Analytic SH Gradients. To validate our derivation of analytic SH gradi-

ents, we compare SH gradients evaluated using our method (Algorithm 2) and finite differences

(FD) based on the work by Wang and Ramamoorthi [102]. Given a rectangular area light with

the bottom-left corner at (−5,−5,1) and the top-right corner at (5,5,1), the ∂x-component

of SH gradients is evaluated in another square region whose bottom-left corner is at (3,3,0)

and top-right corner is at (6,6,0). We visualize the derivatives as 2D false-colored images

in Figure 5.6. Our analytic formulae agree with the numerical FD results, except for some

negligible differences caused by the FD step size δ (we choose δ = 10−3). Note that computing

derivatives with the central FD requires SH coefficient evaluation at multiple points (two for each

axis), while our SH gradient evaluation can come along with a single SH coefficient evaluation,

causing minimal overhead. We compare the performance numbers of these two methods with a

CPU-based C++ implementation; our method is 3× faster than FD.

Interpolation Methods. We have already demonstrated in Figure 5.4 that the Hermite

interpolation is most accurate in 1D cases. In terms of its 3D extension, we compare renderings

using different interpolation methods in Figure 5.7. Hermite interpolation results in an order of

108

-0.5 0.50
l=

6,
m
=
−

3
l=

7,
m
=

2

(a) FD (b) Ours (c) 20× Abs. diff.

Figure 5.6. We show visualization plots of SH gradients (∂x-component) for (l,m) = (6,−3) in
the top row and (l,m) = (7,2) in the bottom row. Images in column (a) are computed using finite
differences (FD) based on the work by Wang and Ramamoorthi [102], and images in column
(b) are computed with our method (Algorithm 2). In these images, each pixel stores a partial
derivative value encoded in false colors; The (20×) absolute differences between FD results and
our results are given in column (c), indicating the correctness of our derivation and algorithm.

magnitude smaller error than that of trilinear interpolation and Taylor-series based interpolation.

Note that Taylor-series based interpolation [1] requires SH gradients, thus can also benefit from

our analytic SH gradient evaluation. Although the mean absolute error (MAE) numbers are

relatively small, there are regions with significant inaccuracies in other methods. Checking the

error maps in Figure 5.7(b–d), the result using Hermite interpolation has significantly fewer

pixels with large differences from the reference. Further, we check and plot the image intensity

values along a scan line in Figure 5.7(e). The black curve representing Hermite interpolation is

almost identical to the reference blue curve, while the red and cyan curves, representing trilinear

and Taylor-series based interpolation respectively, deviate from the reference.

109

(a) Reference
MAE (×10−3)

(b) Hermite
0.29

(c) Trilinear
4.14

(d) Taylor
3.05

0 200 400 600 800 1000 1200 1400 1600
Pixel

0.2

0.3

0.4

0.5

0.6

0.7

In
ten

sit
y

Reference
Trilinear
Taylor
Hermite

(e) Scan line intensity plot

Figure 5.7. Accuracy comparison of different interpolation methods: (b) tricubic Hermite
interpolation, (c) trilinear interpolation, and (d) Taylor-series based interpolation [1]. The
reference image (a) is rendered by computing the lighting SH coefficients at every vertex. We
achieve almost the same image quality (b) by computing SH coefficients and gradients in a 3D
grid with resolution 83, and Hermite interpolating the light coefficients for each vertex. The
(10×) absolute error images are given in the bottom-left insets, as well as the corresponding
mean absolute error (MAE) numbers. We also plot image intensity curves (e) for different
interpolation methods along a scan line (illustrated in the inset of (a)).

110

Scalability with Multiple lights. In Figure 5.8(a), we compare the total lighting coef-

ficient computation time for all vertices (time for other stages in the rendering pipeline such

as rasterization is excluded) with the previous method [102]. The running time of the previous

method goes up linearly with the number of lights as expected, while our method has only a

small time cost even with 512 lights. This is because the expensive computation for every light

is done on a sparse grid in our method. Our technique can render a scene with hundreds of area

lights in real-time, which was not previously possible. We further analyze the performance of

our method and plot the running time of each step in Figure 5.8(b). The SH coefficient and

gradient evaluation time scales linearly with the increasing number of lights, but the performance

impact is mitigated since we use a sparse grid. The Hermite interpolation for each vertex requires

essentially constant time.

Grid Resolution. We demonstrate how the grid resolution influences the rendering

performance and accuracy in Figure 5.9. Even though the result with resolution 43 already yields

good visual quality (inspection of error images shows subtle differences in shading on the dragon

and floor), the image accuracy improves as the grid resolution becomes higher. But using a finer

grid also requires longer computation time and larger storage overhead. To balance performance

and accuracy, we use a resolution of 83 in all the results.

Relation to Source Radiance Fields. In previous work [122], source radiance fields

(SRF) are precomputed and stored for efficient incident radiance evaluation. To support dynamic

lighting, a 5D SRF is required for each area light, causing additional storage overhead that scales

linearly in the number of lights. However, our method only stores SH coefficients and gradients

at sparse grid points, which is independent of the number of lights. Moreover, the source radiance

fields at intermediate points are interpolated, which can also benefit from our gradient-based

interpolation.

111

(a) Time comparison to previous work

1 2 8 32 128 512
Number of area lights

0

500

1000

1500

2000

Ru
nn

in
g

tim
e (

m
s)

4.0 8.2 33.4 128.0

516.0

2070.0

2.2 2.2 2.3 2.6 4.2 11.0

[Wang and Ramamoorthi 2018]
Ours

(b) Running time for each step of our method

1 2 8 32 128 512
Number of area lights

0

2

4

6

8

Ru
nn

in
g

tim
e (

m
s)

0.1 0.1 0.1 0.5 2.0

8.8

2.1 2.1 2.2 2.1 2.22.2

Grid evaluation
Hermite interpolation

Figure 5.8. Plots of SH coefficient computation time at all vertices with increasing numbers
of area lights. The scene is shown in the inset of (a); we gradually subdivide the rectangular
area light up to 512 triangles. (a) Previous work scales linearly in the number of area lights, so
they cannot handle many lights in real-time. On the other hand, our method is insensitive to
the increase in the number of lights, since we only need to compute the light coefficients and
gradients on a sparse grid. (b) Breaking down the running time of our method, we can see the
time for grid evaluation is also linear in the number of lights (but still efficient because of the
sparse grid), while Hermite interpolation costs essentially constant time.

112

(a) Reference
MAE (×10−3)

(b) Resolution 43, 10.9 ms
16.6

(c) Resolution 83, 12.1 ms
1.35

(d) Resolution 163, 34.4 ms
0.15

Figure 5.9. Performance and accuracy comparison with increasing resolutions of 3D grids. The
bottom-left insets show (5×) absolute error images.

5.7.2 Main Results

We now present additional results of rendering more complex scenes. Please see the

supplementary video in the original publication for animated versions of Figures 5.1, 5.10,

and 5.11, rendered at real-time frame rates (35–80 fps)

Textured Lights. Given a textured area light, we break the light source into smaller

polygons (triangles) that are each uniformly emissive. We show an example in Figure 5.10, in

which a room is illuminated by a blue and a pink textured light (see the bottom-left inset of

113

Figure 5.10. A living room illuminated by two textured lights. Light sources and scene layout
are illustrated in the inset figure.

Figure 5.10). Compared to the previous method [102], we can render this scene with hundreds

of lights (and 1.7M polygons) in real-time, achieving a more than two orders of magnitude speed

up.

Glossy Reflection. We also show two examples with glossy materials in Figures 5.1

and 5.11. We compute the glossy reflection by extending Equation (5.1) to a triple product SH

integral of lighting, BRDF and precomputed cosine-weighted visibility [72, 89]. Since the time

complexity of the triple product integral computation is O(l5
max) [72], we bandlimit the lighting

and visibility SH coefficients with lmax = 4. Phong BRDFs are used in all these examples,

represented by SH coefficients with lmax = 8. Our method focuses on evaluating the lighting SH

coefficients only, and is orthogonal to the glossy PRT framework.

In Figure 5.1, we show images rendered with three textured lights of gradually changing

colors. These textured lights are made up of more than seven hundred uniform triangular light

sources in total, and each of them is allowed to move independently, ultimately forming a

114

Figure 5.11. Glossy reflections caused by more complex light sources. Light sources and scene
layout are illustrated in the inset figure.

pattern which is not even strictly a textured light source (Figure 5.1(right)). Colors of the glossy

highlights change significantly as we transform the lights. Even though there are hundreds of

independent dynamic lights, we are still able to render this scene in real-time, which might

be challenging for source radiance fields [122], since it requires precomputation for each light

source.

In Figure 5.11, we illuminate a Buddha model on the ground with two lights of irregular

shapes (see the insets). The left light is a blue snow flake and the right one is a colorful fractal

triangle. As we rotate the lights, the glossy highlights on the buddha change from purple to green.

The highlights on the ground also vary according to the light transformation.

5.7.3 Limitations and Future Work

On regions close to the light source or at grazing angles, there can be high-frequency

lighting variations that require a fine grid for accurate SH interpolation. Figure 5.12 shows a

scene with a double-sided area light inside its bounding box. The shading that is on the ground

and close to the light’s grazing angle looks blurry when the grid resolution is 83. We will

115

(a) Resolution 83 (b) Resolution 163

(c) Resolution 323 (d) Reference

Figure 5.12. An example with a double-sided area light source inside the scene. Due to the
high-frequency light variations, we need finer grids for accurate SH interpolation.

have more accurate interpolation results given grids with higher resolutions. Using multi-level

adaptive grids [23] may further improve the performance and accuracy in such cases.

Our method is based on PRT using spherical harmonics, which approximates path tracing

and captures only low-frequency effects due to the band-limited SH. In Figure 5.13, we compare

our result to the image rendered using path tracing. There are some subtle differences at the

shadows on the ground and the plant leaves near the light source. Nevertheless, we match the

result generated by Wang and Ramamoorthi [102] almost perfectly, which also uses PRT. How

to improve the accuracy of all-frequency effects using spherical harmonic PRT is orthogonal to

our work and beyond the scope of this work. We also hope our work can inspire future research

on real-time path tracing.

In this work, we focus on accurate analytic formulae for SH gradients. In certain

116

(a) Path tracing ≈ (b) PRT (Ours) = (c) PRT (Wang and
Ramamoorthi 2018)

Figure 5.13. Comparison against path tracing. Our result (b) is close to the image rendered
using path tracing (a) in spite of subtle differences at the shadows on the ground and the plant
leaves near the light source, while it matches the result of Wang and Ramamoorthi [102] almost
perfectly.

cases, e.g., the light source is far away, one sample per pixel for numerical integration could

be sufficient and faster than analytic evaluation. Switching between numerical and analytic

evaluations according to some heuristics [115] might be potentially helpful. In addition, applying

analytical approximations [58] might make the gradient evaluations more efficient.

Note that non-uniform or textured lights can be handled by our method, simply by

breaking the light source into smaller uniform components. With techniques demonstrated in

prior analytic methods [3, 10, 11], it might be possible to extend our analytic SH gradients

for piecewise linear area light sources. Moreover, we are currently limited to uniform angular

emission rather than, for example, spotlights. We seek to lift this limitation in the future, perhaps

by developing fast boundary numerical integration schemes.

Finally, note that we do not currently address multiple lights shadowing each other

(although PRT methods that support dynamic shadows can partially address this situation). We

believe the boundary integral formulation of this work could also generalize occluded irradiance

gradients [2] to SH gradients by incorporating polygon depth clipping.

117

5.8 Conclusion

We have presented a novel technique of prefiltering multiple area lights, which enables

scaling PRT to hundreds of independent area lights in real-time. Our prefiltering method is based

on a novel analytic derivation for SH gradients from uniform polygonal area lights, showing

how to reduce the calculations to a boundary integral and ultimately to an earlier recurrence

for SH coefficients. The derivation fills an important gap in both SH and PRT methods, as

well as more recent differential rendering techniques. While the derivation is complicated, the

actual implementation is simple, requiring only a few additional lines of code beyond those for

SH coefficients. We show how gradients can be used for Hermite interpolation with very high

accuracy and sparse grid sizes. Crucially, we can accumulate the contributions of hundreds of

lights with only minor overhead.

Prefiltering many area lights in PRT represents only one possible application of SH

gradients. They could also be used for importance sampling the radiance field from multiple area

lights in offline rendering, and for extensions such as path guiding. We simply need to sample

the Hermite-interpolated SH lighting at each shading point or pixel. Given that SH gradients are

a fundamental mathematical quantity, we believe there are many other interesting possibilities in

rendering and beyond.

5.9 Acknowledgements

This chapter is based on the material to appear in ACM Transactions on Graphics, 2020

(“Analytic Spherical Harmonic Gradients for Real-Time Rendering with Many Polygonal Area

Lights”, Lifan Wu, Guangyan Cai, Shuang Zhao, and Ravi Ramamoorthi). The dissertation

author was the primary investigator and author of this paper.

118

Chapter 6

Conclusion and Future Work

We have presented three different appearance preserving prefiltering techniques for

efficient rendering of volumetric scattering models, displacement-mapped surfaces, and multiple

polygonal area lights, respectively. Our first work exploits an optimization based approach to

compute downsampled scattering parameters. It requires gradient image estimation and iterative

optimization, which takes tens of CPU core hours. Our second work uses the effective BRDFs as

a proxy indicator of appearance matching and allows computing the prefiltered models directly

without expensive iterative optimizations. The key component of our prefiltered models is the

novel scaling function that captures the change of shadowing-masking and interreflection effects

caused by the downsampling of micro-geometries. Our last work leverages analytic formulae for

spherical harmonic lighting coefficients and gradients, enabling prefiltering the contributions

of hundreds of area lights at real-time frame rates. Although these three approaches tackle the

challenge of prefiltering for rendering complex scenes in different ways, our prefiltered models

offer a compact scene representation and are capable of preserving the original appearance

accurately.

We have demonstrated not only the theoretical analysis of prefiltering but also practical

algorithms. This dissertation has taken one step forward towards general and efficient appearance

preserving prefiltering methods for rendering complex scenes. We believe our work can inspire

future research in this direction and benefit many other applications in photorealistic rendering

119

and beyond. Here, we discuss the following possible future directions:

Level-of-detail rendering. Level-of-detail (LoD) rendering is necessary for large scenes

such as cities and forests, or for performance-critical applications such as video games and

virtual reality. In Chapters 3 and 4, we have presented promising LoD rendering results of objects

represented by regular 3D volumetric scattering parameters or 2D displacement maps. However

in general, scene objects are usually described by triangular meshes. Compared to regular 2D or

3D grids, the mesh representation is irregular and non-uniform, thus causes extra difficulty for

prefiltering. It is even harder to preserve the appearance for meshes associated with texture maps.

Finding a continuous and consistent (i.e., not showing popping artifacts when switching between

two consecutive mipmap levels) prefiltering method for general mesh representation remains

very challenging.

Multi-scale appearance modeling. Micro-appearance models can provide detailed ge-

ometric and scattering configuration and reproduce accurate appearance at all scales. The

high-quality realism comes at the cost of enormous data size and long computation time. In

contrast, microfacet models describe surface geometry in a statistical manner, which are compact

and efficient to use. But they are only capable of producing appearance at the macroscopic scale,

lacking spatial variety. The prefiltering methods in Chapters 3 and 4 take the first step to blend

the advantages of these two types of appearance models. Our prefiltered models can accurately

resemble the appearance at intermediate levels. One major drawback is that our prefiltering is

material-dependent, requiring precomputation for each individual material. Possible extensions

include using a material-independent data-driven approach, or designing a multi-scale statistical

surface reflectance model with better generality. In addition, it is necessary to consider wave

effects when the size of geometric details is close to the wavelength of light.

Inverse rendering. Inverse rendering provides a bridge across computer graphics and

computer vision. It is a principled approach to solve many problems in visual computing such as

appearance matching and 3D reconstruction. Prefiltering is one application of inverse rendering:

120

given a reference image, we aim to find the optimal prefiltered model that closely matches the

input appearance. This inverse problem is ill-conditioned in general, since there are a large

number of unknown variables and potential local minima involved. Without a careful design of

scene and optimization configurations, it is difficult to converge. In Chapter 3, we regularize the

inverse problem by reducing the number of unknown variables using voxel clustering, and set

optimization hyperparameters manually. It is worth further exploring the theoretical properties

of this inverse problem and practical algorithms that can accelerate convergence.

Differentiable rendering. A major challenge in inverse rendering is computing deriva-

tive with respect to arbitrary scene parameters. In Chapter 5, we have demonstrated analytic

SH gradients and their use in real-time PRT. Higher-order derivatives of SH coefficients in

analytic form may further improve the accuracy. Although in general, it is intractable to derive

analytic derivatives for light transport due to the high complexity. Differentiable rendering

using Monte Carlo estimators, which we have used in Chapter 3, focuses on derivatives with

respect to scattering parameters. Several recent techniques [61, 65, 117] address derivatives with

respect to geometric parameters, which are more difficult to solve due to the discontinuities at the

boundaries. Though the estimation of general scene derivatives has so far been computationally

expensive, it can become more practical with better sampling strategies and variance reduction

techniques [116]. Since the estimated gradient images are usually noisy due to the limited sample

budget, it may be useful to apply state-of-the-art denoising methods [20, 100] as a post process.

Prefiltering approaches based on inverse rendering will also benefit from from high-performance

differentiable rendering systems [35, 36, 73].

121

Appendix A

Appendix for Chapter 3

A.1 Rendering Gradient Images

Under the path tracing framework, the intensity Ĩr(p) of pixel p in image Ĩr is estimated

by a path integral

Ĩr(p) =
∫

Ω

f (x̄)dx̄, (A.1)

where Ω is the space containing all light paths connecting pixel p and a light source and

f (x̄) denotes the contribution of light path x̄. Let x̄ = (xxx0,xxx1, . . . ,xxxn+1) with segment (xxx0,xxx1)

intersecting pixel p on the virtual sensor and xxxn+1 lying on a light source. For each 1≤ v≤ n,

let iv denote the index of the downsampled voxel containing point xxxv. It holds that

f (x̄) =

(
n

∏
v=1

Tv σ̄t, iv Fv

)
Le(xxxn+1,xxxn), (A.2)

where Le denotes the attenuated incoming radiance, Tv is the transmittance between xxxv−1 and xxxv,

σ̄t, iv is the downsampled density at voxel iv, and Fv is the scaled phase function at xxxv evaluated

with incoming and outgoing directions respectively given by xxxv−1 and xxxv+1:

Fv := f̂iv

(
xxxv− xxxv−1

‖xxxv− xxxv−1‖
→ xxxv+1− xxxv

‖xxxv+1− xxxv‖

)
. (A.3)

122

Let w be a weight factor for some voxel cluster and lobe. Then,

Ĩ′r(p) :=
∂

∂w
Ĩr(p) =

∫

Ω

∂ f
∂w

(x̄)dx̄. (A.4)

The problem then boils down to differentiating f (x̄) with respect to w. We assume without loss of

generality that w affects the scaled phase functions Fv for 1≤ v≤ n0. Then f (x̄) = g(x̄)∏
n0
v=1 Fv,

where g(x̄) captures all terms in Equation (A.2) that do not depend on w. It follows that

∂ f
∂w

(x̄) = g(x̄)
∂

∂w

n0

∏
v=1

Fv = g(x̄)
n0

∑
v=1

[
∂

∂w
Fv ∏

v′ 6=v
Fv′

]
, (A.5)

where ∂

∂wFv can be obtained via Equations (A.3), (3.9) and (3.13). In practice, we compute

Equation (A.4) using unidirectional path tracing.

123

Appendix B

Appendix for Chapter 4

B.1 Average slope of a bilinear patch

Let h00,h10,h01,h11 be the height values at the four corners of a unit patch [0,1]2. Then,

the height at any point (u,v) within the patch can be obtained via a bilinear interpolation:

h(u,v) = (1−u)(1− v)h00 +u(1− v)h10 + v(1−u)h01 +uvh11. (B.1)

The slope at each point can be computed as

xs(u,v) =
h(u+∆u,v)−h(u,v)

∆u
= h10−h00 + v(h00 +h11−h10−h01), (B.2)

ys(u,v) =
h(u,v+∆v)−h(u,v)

∆v
= h01−h00 +u(h00 +h11−h10−h01). (B.3)

So the average slope of the bilinear patch is

xs̃ =
∫ 1

0

∫ 1

0
xs(u,v)dudv =

1
2
(h11 +h10−h01−h00), (B.4)

ys̃ =
∫ 1

0

∫ 1

0
ys(u,v)dudv =

1
2
(h11 +h01−h10−h00). (B.5)

124

B.2 Factorization of Rir

Expanding Tir(xxx) as Equations (4.22), (4.23) and Sir(ωωω i,ωωωo) as Equation (4.24) gives

Tir(xxx)Sir(ωωω i,ωωωo) =

∫
H2
∫
H2 Rir(xxx,ωωω i,ωωωo)dωωω i dωωωo∫

Pall

∫
H2
∫
H2 Rir(xxxm(ppp),ωωω i,ωωωo)kPall(ppp)dωωω i dωωωo dppp

×
∫

Pall

Rir(xxxm(ppp),ωωω i,ωωωo)kPall(ppp)dppp (B.6)

As Rir(xxx,ωωω i,ωωωo) ≈ Tir(xxx) · Sir(ωωω i,ωωωo), we can simplify this formula by factoring out Rir and

regrouping the terms:

Tir(xxx)
∫
H2
∫
H2 Sir(ωωω i,ωωωo)dωωω i dωωωo∫

Pall
Tir(xxxm(ppp))kPall(ppp) [

∫
H2
∫
H2 Sir(ωωω i,ωωωo)dωωω i dωωωo] dppp

×Sir(ωωω i,ωωωo)
∫

Pall

Tir(xxxm(ppp))kPall(ppp)dppp

=
Tir(xxx)

∫
H2
∫
H2 Sir(ωωω i,ωωωo)dωωω i dωωωo[∫

Pall
Tir(xxxm(ppp))kPall(ppp)dppp

]
[
∫
H2
∫
H2 Sir(ωωω i,ωωωo)dωωω i dωωωo]

×Sir(ωωω i,ωωωo)
∫

Pall

Tir(xxxm(ppp))kPall(ppp)dppp

=
Tir(xxx)∫

Pall
Tir(xxxm(ppp))kPall(ppp)dppp

Sir(ωωω i,ωωωo)
∫

Pall

Tir(xxxm(ppp))kPall(ppp)dppp

= Tir(xxx)Sir(ωωω i,ωωωo). (B.7)

Therefore, the rank-1 factorization is consistent with our definition of Tir and Sir.

125

Appendix C

Appendix for Chapter 5

C.1 Sharing ZH Lobes Across Bands

To enable efficient ZH factorization, Nowrouzezahrai et al. [75] presented a ZH lobe

sharing strategy. For SH basis functions up to degree lmax, the central directions of ZH lobes are

{ωωω0,0 = ωωω1,0 = ωωω2,0 = ωωω3,0 = · · ·= ωωω lmax,0,

ωωω1,1 = ωωω2,1 = ωωω3,1 = · · ·= ωωω lmax,1,

ωωω1,2 = ωωω2,2 = ωωω3,2 = · · ·= ωωω lmax,2,

. ,ωωω lmax,2lmax}. (C.1)

Specifically, the band-l SH will use a set of 2l +1 central directions {ωωω l,0, . . . ,ωωω l,2l}.

C.2 Relation to Prior Work [1]

Annen et al. [1] developed a semi-analytic solution to SH gradients. They integrate the

SH basis functions over the area domain A of the polygonal light source, which is independent

of the varying shading point xxx. By changing the solid angle measure to the area measure in

Equation (5.4), the SH coefficients can be rewritten as

Llm(xxx) =
∫

[0,1]2
Ylm(sss(uuu))

〈nnn(yyy(uuu)),−sss(uuu)〉
‖yyy(uuu)− xxx‖2 |detJyyy|duuu. (C.2)

126

Note that yyy : [0,1]2→ A is a transformation that warps a unit square to a polygon and Jyyy denotes

the corresponding Jacobian matrix. The normalized direction vector sss(uuu) = yyy(uuu)−xxx
‖yyy(uuu)−xxx‖ is from the

shading point xxx to a point yyy(uuu) on the area light. In the change-of-measure term 〈nnn(yyy(uuu)),−sss(uuu)〉
‖yyy(uuu)−xxx‖2 ,

we indicate nnn(yyy(uuu)) as the surface normal.

To differentiate the integral in Equation (C.2), we can directly move the differentiation

operator into the integration,

∂zLlm(xxx) =
∫

[0,1]2
∂z

[
Ylm(sss(uuu))

〈nnn(yyy(uuu)),−sss(uuu)〉
‖yyy(uuu)− xxx‖2 |detJyyy|

]
duuu. (C.3)

This is a special case of the Reynolds transport theorem. The boundary integral vanishes since the

integration domain is static. The integrand in Equation (C.3) can be computed either analytically

or using automatic differentiation. But the 2D integral needs to be evaluated numerically, and

has no known analytic form.

C.3 Detailed Derivations

C.3.1 Deriving `(t) in Equation (5.17)

After transforming the edge pppi pppi+1 into the local frame (ωωω i,λλλ i,nnni), the edge is in the

xy-plane so we can omit the z-coordinate and solve for `(t) in 2D. The 2D local coordinates

of the edge endpoints are pppi = (`i,0) and pppi+1 = (`i+1 cosTi, `i+1 sinTi). We want to know the

travel distance ` of the ray with direction (cos t,sin t) starting from (0,0), before hitting the edge.

The geometric relation can be described in the following linear system,





`cos t = (1− k)`i + k`i+1 cosTi,

`sin t = k`i+1 sinTi.
(C.4)

127

After eliminating k, we have

`(`i sin t− `i+1 sin(t−Ti)) = `i`i+1 sinTi

⇒ `(t) =
(

sin t
`i+1
− sin(t−Ti)

`i

)−1

sinTi. (C.5)

C.3.2 Deriving Equation (5.22)

Let h = cx cos t + cy sin t = Asin(t +T ′), where A =
√

c2
x + c2

y and T ′ = arctan(cx/cy).

We use a change of variable u = t +T ′. Then, the first integral on the RHS of Equation (5.20)

can be rewritten as

∫ Ti

0
sin(t−Ti)Pl(cx cos t + cy sin t)dt =

1
A

∫ Ti+T ′

T ′
Asin(u− (Ti +T ′))Pl(Asinu)du (C.6)

Using the angle difference identity for sine, the formula becomes

1
A

∫ Ti+T ′

T ′
Asin(u)cos(Ti +T ′)Pl(Asinu)du − 1

A

∫ Ti+T ′

T ′
Acos(u)sin(Ti +T ′)Pl(Asinu)du.

(C.7)

Since h = Asin(u) and u = t +T ′, we know that d
duh = Acos(u) and d

dt u = 1. Therefore, the

formula can be further simplified as

cos(Ti +T ′)
A

∫ Ti+T ′

T ′
hPl(h)du − sin(Ti +T ′)

A

∫ Ti+T ′

T ′
(

d
du

h)Pl(h)du

=
cos(Ti +T ′)

A

∫ Ti

0
hPl(h)dt

︸ ︷︷ ︸
=:Cl

− sin(Ti +T ′)
A

∫ Ti

0
(

d
dt

h)Pl(h)dt
︸ ︷︷ ︸

=:El

. (C.8)

Using the same technique, the second integral on the RHS of Equation (5.20) can be

128

expressed as

∫ Ti

0
sin(t)Pl(cx cos t + cy sin t)dt

=
1
A

∫ Ti+T ′

T ′
Asin(u−T ′)Pl(Asinu)du

=
1
A

∫ Ti+T ′

T ′
Asin(u)cos(T ′)Pl(Asinu)du − 1

A

∫ Ti+T ′

T ′
Acos(u)sin(T ′)Pl(Asinu)du

=
cos(T ′)

A

∫ Ti

0
hPl(h)dt

︸ ︷︷ ︸
=:Cl

− sin(T ′)
A

∫ Ti

0
(

d
dt

h)Pl(h)dt
︸ ︷︷ ︸

=:El

. (C.9)

129

Bibliography

[1] Thomas Annen, Jan Kautz, Frédo Durand, and Hans-Peter Seidel. Spherical Harmonic
Gradients for Mid-Range Illumination. Rendering Techniques (Proceedings of the Euro-
graphics Symposium on Rendering), pages 331–336, 2004.

[2] James Arvo. The Irradiance Jacobian for Partially Occluded Polyhedral Scenes. SIG-
GRAPH, pages 343–350, 1994.

[3] James Arvo. Applications of Irradiance Tensors to the Simulation of Non-Lambertian
Phenomena. SIGGRAPH, pages 335–342, 1995.

[4] Michael Ashikhmin and Peter Shirley. An Anisotropic Phong BRDF Model. Journal of
Graphics Tools, 5(2):25–32, 2000.

[5] Laurent Belcour, Guofu Xie, Christophe Hery, Mark Meyer, Wojciech Jarosz, and Derek
Nowrouzezahrai. Integrating Clipped Spherical Harmonics Expansions. ACM Transac-
tions on Graphics, 37(2):19:1–19:12, 2018.

[6] Nir Benty, Kai-Hwa Yao, Petrik Clarberg, Lucy Chen, Simon Kallweit, Tim Foley,
Matthew Oakes, Conor Lavelle, and Chris Wyman. The Falcor Rendering Framework,
2020. https://github.com/NVIDIAGameWorks/Falcor.

[7] Eric Bruneton and Fabrice Neyret. A Survey of Nonlinear Prefiltering Methods for
Efficient and Accurate Surface Shading. IEEE TVCG, 18(2):242–260, 2012.

[8] Brian Cabral, Nelson Max, and Rebecca Springmeyer. Bidirectional Reflection Functions
from Surface Bump Maps. Computer Graphics (Proceedings of SIGGRAPH), pages
273–281, 1987.

[9] Subrahmanyan Chandrasekhar. Radiative Transfer. Dover Publications Inc., 1960.

[10] Min Chen and James Arvo. A Closed-Form Solution for the Irradiance Due to Linearly-
Varying Luminaires. Rendering Techniques (Proceedings of the Eurographics Workshop
on Rendering), pages 137–148, 2000.

130

https://github.com/NVIDIAGameWorks/Falcor

[11] Min Chen and James Arvo. Simulating Non-Lambertian Phenomena Involving Linearly-
Varying Luminaires. Rendering Techniques (Proceedings of the Eurographics Workshop
on Rendering), pages 25–38, 2001.

[12] Xavier Chermain, Frédéric Claux, and Stéphane Mérillou. A Microfacet-Based BRDF
for the Accurate and Efficient Rendering of High-Definition Specular Normal Maps. The
Visual Computer (Proceedings of CGI), 2018.

[13] Petrik Clarberg, Wojciech Jarosz, Tomas Akenine-Möller, and Henrik Wann Jensen.
Wavelet Importance Sampling: Efficiently Evaluating Products of Complex Functions.
ACM Transactions on Graphics (Proceedings of SIGGRAPH), 24(3):1166–1175, 2005.

[14] Robert L Cook, John Halstead, Maxwell Planck, and David Ryu. Stochastic Simplification
of Aggregate Detail. ACM Transactions on Graphics, 26(3):79:1–79:8, 2007.

[15] Robert L Cook and Kenneth E Torrance. A Reflectance Model for Computer Graphics.
Computer Graphics (Proceedings of SIGGRAPH), pages 7–24, 1982.

[16] Kristin J Dana, Bram Van Ginneken, Shree K Nayar, and Jan J Koenderink. Reflectance
and Texture of Real-World Surfaces. ACM Transactions on Graphics, 18(1):1–34, 1999.

[17] Jonathan Dupuy, Eric Heitz, Jean-Claude Iehl, Pierre Poulin, Fabrice Neyret, and Victor
Ostromoukhov. Linear Efficient Antialiased Displacement and Reflectance Mapping.
ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), 32(6):211:1–211:11,
2013.

[18] Alain Fournier. Normal Distribution Functions and Multiple Surfaces. Graphics Inter-
face ’92 Workshop on Local Illumination, pages 45–52, 1992.

[19] Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidovič, and Philipp Slusallek. Light Trans-
port Simulation with Vertex Connection and Merging. ACM Transactions on Graphics
(Proceedings of SIGGRAPH Asia), 31(6):192:1–192:10, 2012.

[20] Michaël Gharbi, Tzu-Mao Li, Miika Aittala, Jaakko Lehtinen, and Frédo Durand. Sample-
Based Monte Carlo Denoising Using a Kernel-Splatting Network. ACM Transactions on
Graphics (Proceedings of SIGGRAPH), 38(4):125:1–125:12, 2019.

[21] Ioannis Gkioulekas, Anat Levin, and Todd Zickler. An Evaluation of Computational
Imaging Techniques for Heterogeneous Inverse Scattering. In European Conference on
Computer Vision, pages 685–701, 2016.

[22] Ioannis Gkioulekas, Shuang Zhao, Kavita Bala, Todd Zickler, and Anat Levin. Inverse Vol-
ume Rendering with Material Dictionaries. ACM Transactions on Graphics (Proceedings
of SIGGRAPH Asia), 32(6):162:1–162:13, 2013.

131

[23] Gene Greger, Peter Shirley, Philip M Hubbard, and Donald P Greenberg. The Irradiance
Volume. IEEE Computer Graphics and Applications, 18:32–43, 1998.

[24] Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. A Path Space Extension
for Robust Light Transport Simulation. ACM Transactions on Graphics (Proceedings of
SIGGRAPH Asia), 31(6):191:1–191:10, 2012.

[25] Charles Han, Bo Sun, Ravi Ramamoorthi, and Eitan Grinspun. Frequency Domain
Normal Map Filtering. ACM Transactions on Graphics (Proceedings of SIGGRAPH),
26(3):28:1–28:12, 2007.

[26] Milovš Hašan and Ravi Ramamoorthi. Interactive Albedo Editing in Path-traced Volumet-
ric Materials. ACM Transactions on Graphics, 32(2):11:1–11:11, 2013.

[27] Wolfgang Heidrich, Katja Daubert, Jan Kautz, and Hans-Peter Seidel. Illuminating Micro
Geometry Based on Precomputed Visibility. SIGGRAPH, pages 455–464, 2000.

[28] Eric Heitz. Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs.
Journal of Computer Graphics Techniques, 3(2):32–91, 2014.

[29] Eric Heitz, Jonathan Dupuy, Cyril Crassin, and Carsten Dachsbacher. The SGGX Mi-
croflake Distribution. ACM Transactions on Graphics (Proceedings of SIGGRAPH),
34(4):48:1–48:11, 2015.

[30] Eric Heitz, Jonathan Dupuy, Stephen Hill, and David Neubelt. Real-Time Polygonal-
Light Shading with Linearly Transformed Cosines. ACM Transactions on Graphics
(Proceedings of SIGGRAPH), 35(4):41:1–41:8, 2016.

[31] Eric Heitz, Johannes Hanika, Eugene d’Eon, and Carsten Dachsbacher. Multiple-
Scattering Microfacet BSDFs with the Smith Model. ACM Transactions on Graphics
(Proceedings of SIGGRAPH), 35(4):58:1–58:14, 2016.

[32] Sebastian Herholz, Oskar Elek, Jiřı́ Vorba, Hendrik Lensch, and Jaroslav Křivánek.
Product Importance Sampling for Light Transport Path Guiding. Computer Graphics
Forum (Proceedings of the Eurographics Symposium on Rendering), 35(4):67–77, 2016.

[33] Nicolas Holzschuch and François Sillion. Accurate Computation of the Radiosity Gra-
dient with Constant and Linear Emitters. Rendering Techniques (Proceedings of the
Eurographics Workshop on Rendering), pages 186–195, 1995.

[34] Nicolas Holzschuch and François Sillion. An Exhaustive Error-Bounding Algorithm for
Hierarchical Radiosity. Computer Graphics Forum, 17:197–218, 1998.

[35] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley,

132

and Frédo Durand. DiffTaichi: Differentiable Programming for Physical Simulation. In
International Conference on Learning Representations, 2019.

[36] Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Du-
rand. Taichi: A Language for High-Performance Computation on Spatially Sparse
Data Structures. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia),
38(6):201:1–201:16, 2019.

[37] Homan Igehy. Tracing Ray Differentials. SIGGRAPH, pages 179–186, 1999.

[38] Teturo Inui, Yukito Tanabe, and Yositaka Onodera. Group Theory and Its Applications in
Physics. Springer-Verlag, 1990.

[39] Akira Ishimaru. Wave Propagation and Scattering in Random Media, volume 2. Academic
press New York, 1978.

[40] Kei Iwasaki, Yoshinori Dobashi, and Tomoyuki Nishita. Interactive Bi-Scale Editing of
Highly Glossy Materials. ACM Transactions on Graphics (Proceedings of SIGGRAPH
Asia), 31(6):144:1–144:7, 2012.

[41] Wenzel Jakob. Mitsuba renderer, 2010. http://www.mitsuba-renderer.org.

[42] Wenzel Jakob, Adam Arbree, Jonathan T Moon, Kavita Bala, and Steve Marschner. A
Radiative Transfer Framework for Rendering Materials with Anisotropic Structure. ACM
Transactions on Graphics (Proceedings of SIGGRAPH), 29(4):53:1–53:13, 2010.

[43] Wenzel Jakob, Miloš Hašan, Ling-Qi Yan, Jason Lawrence, Ravi Ramamoorthi, and Steve
Marschner. Discrete Stochastic Microfacet Models. ACM Transactions on Graphics
(Proceedings of SIGGRAPH), 33(4):115:1–115:10, 2014.

[44] Adrian Jarabo, Hongzhi Wu, Julie Dorsey, Holly Rushmeier, and Diego Gutierrez. Effects
of Approximate Filtering on the Appearance of Bidirectional Texture Functions. IEEE
TVCG, 20(6):880–892, 2014.

[45] Wojciech Jarosz, Craig Donner, Matthias Zwicker, and Henrik Wann Jensen. Radiance
Caching for Participating Media. ACM Transactions on Graphics, 27(1):7:1–7:11, 2008.

[46] Wojciech Jarosz, Volker Schönefeld, Leif Kobbelt, and Henrik Wann Jensen. Theory,
Analysis and Applications of 2D Global Illumination. ACM Transactions on Graphics,
31(5):125:1–125:21, 2012.

[47] Wojciech Jarosz, Matthias Zwicker, and Henrik Wann Jensen. Irradiance Gradients in the
Presence of Participating Media and Occlusions. Computer Graphics Forum (Proceedings
of the Eurographics Symposium on Rendering), 27(4):1087–1096, 2008.

133

[48] James T Kajiya. The Rendering Equation. Computer Graphics (Proceedings of SIG-
GRAPH), 20(4):143–150, 1986.

[49] Anton S Kaplanyan, Stephen Hill, Anjul Patney, and Aaron E Lefohn. Filtering Distribu-
tions of Normals for Shading Antialiasing. Proceedings of High Performance Graphics,
pages 151–162, 2016.

[50] Pramook Khungurn, Daniel Schroeder, Shuang Zhao, Kavita Bala, and Steve Marschner.
Matching Real Fabrics with Micro-Appearance Models. ACM Transactions on Graphics,
35(1):1:1–1:26, 2015.

[51] Martin Kraus and Kai Bürger. Interpolating and Downsampling RGBA Volume Data.
Proceedings of Vision, Modeling and Visualization, pages 323–332, 2008.

[52] Jaroslav Křivánek, Kadi Bouatouch, Sumanta Pattanaik, and Jiřı́ Žára. Making Radiance
and Irradiance Caching Practical: Adaptive Caching and Neighbor Clamping. Rendering
Techniques (Proceedings of the Eurographics Symposium on Rendering), pages 127–138,
2006.

[53] Jaroslav Křivánek, Pascal Gautron, Kadi Bouatouch, and Sumanta Pattanaik. Improved
Radiance Gradient Computation. SCCG ’05: Proceedings of the 21th spring conference
on computer graphics, pages 155–159, 2005.

[54] Jaroslav Křivánek, Pascal Gautron, Greg Ward, Henrik Wann Jensen, Eric Tabellion, and
Per H Christensen. Practical Global Illumination with Irradiance Caching. In SIGGRAPH
Courses, 2008.

[55] Jaroslav Křivánek, Pascal Gautron, Sumanta Pattanaik, and Kadi Bouatouch. Radiance
Caching for Efficient Global Illumination Computation. IEEE TVCG, 11(5):550–561,
2005.

[56] Jaroslav Křivánek, Iliyan Georgiev, Toshiya Hachisuka, Petr Vévoda, Martin Šik, Derek
Nowrouzezahrai, and Wojciech Jarosz. Unifying Points, Beams, and Paths in Volumetric
Light Transport Simulation. ACM Transactions on Graphics (Proceedings of SIGGRAPH),
33(4):103:1–103:13, 2014.

[57] L Gary Leal. Advanced Transport Phenomena: fluid mechanics and convective transport
processes, volume 7. Cambridge University Press, 2007.

[58] Pascal Lecocq, Arthur Dufay, Gael Sourimant, and Jean-Eudes Marvie. Analytic Approx-
imations for Real-Time Area Light Shading. IEEE TVCG, 23(5):1428–1441, 2017.

[59] Joo Ho Lee, Adrian Jarabo, Daniel S Jeon, Diego Gutierrez, and Min H Kim. Practical
Multiple Scattering for Rough Surfaces. ACM Transactions on Graphics (Proceedings of

134

SIGGRAPH Asia), 37(6):275:1–275:12, 2018.

[60] Jaakko Lehtinen. A Framework for Precomputed and Captured Light Transport. ACM
Transactions on Graphics, 26(4):13:1–13:22, 2007.

[61] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. Monte Carlo Ray Tracing
through Edge Sampling. ACM Transactions on Graphics (Proceedings of SIGGRAPH
Asia), 37(6):222:1–222:11, 2018.

[62] Tzu-Mao Li, Jaakko Lehtinen, Ravi Ramamoorthi, Wenzel Jakob, and Frédo Du-
rand. Anisotropic Gaussian mutations for Metropolis Light Transport Through Hessian-
Hamiltonian Dynamics. ACM Transactions on Graphics (Proceedings of SIGGRAPH
Asia), 34(6):209:1–209:13, 2015.

[63] Hsueh-Ti Derek Liu, Michael Tao, Chun-Liang Li, Derek Nowrouzezahrai, and Alec
Jacobson. Beyond Pixel Norm-Balls: Parametric Adversaries using an Analytically
Differentiable Renderer. In International Conference on Learning Representations, 2019.

[64] Xinhao Liu, Mitsuru Tanaka, and Masatoshi Okutomi. Noise Level Estimation Using
Weak Textured Patches of a Single Noisy Image. IEEE ICIP, pages 665–668, 2012.

[65] Guillaume Loubet, Nicolas Holzschuch, and Wenzel Jakob. Reparameterizing Discontinu-
ous Integrands for Differentiable Rendering. ACM Transactions on Graphics (Proceedings
of SIGGRAPH Asia), 38(6):228:1–228:14, 2019.

[66] Guillaume Loubet and Fabrice Neyret. Hybrid Mesh-Volume LoDs for All-Scale Pre-
Filtering of Complex 3D Assets. Computer Graphics Forum (Proceedings of Eurograph-
ics), 36(2):431–442, 2017.

[67] Wan-Chun Ma, Sung-Hsiang Chao, Yu-Ting Tseng, Yung-Yu Chuang, Chun-Fa Chang,
Bing-Yu Chen, and Ming Ouhyoung. Level-of-Detail Representation of Bidirectional
Texture Functions for Real-Time Rendering. Proceedings of the Symposium on Interactive
3D Graphics and Games, pages 187–194, 2005.

[68] Thomas MacRobert. Spherical Harmonics: An Elementary Treatise on Harmonic Func-
tions with Applications. Dover Publications, 1948.

[69] Julio Marco, Adrian Jarabo, Wojciech Jarosz, and Diego Gutierrez. Second-Order
Occlusion-Aware Volumetric Radiance Caching. ACM Transactions on Graphics,
37(2):20:1–20:14, 2018.

[70] Johannes Meng, Marios Papas, Ralf Habel, Carsten Dachsbacher, Steve Marschner,
Markus Gross, and Wojciech Jarosz. Multi-scale Modeling and Rendering of Granular
Materials. ACM Transactions on Graphics (Proceedings of SIGGRAPH), 34(4):49:1–

135

49:13, 2015.

[71] Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. All-Frequency Shadows using Non-
Linear Wavelet Lighting Approximation. ACM Transactions on Graphics (Proceedings of
SIGGRAPH), 22(3):376–381, 2003.

[72] Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. Triple Product Wavelet Integrals for
All-Frequency Relighting. ACM Transactions on Graphics (Proceedings of SIGGRAPH),
23(3):475–485, 2004.

[73] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. Mitsuba 2: A
Retargetable Forward and Inverse Renderer. ACM Transactions on Graphics (Proceedings
of SIGGRAPH Asia), 38(6):203:1–203:17, 2019.

[74] Jan Novák, Iliyan Georgiev, Johannes Hanika, and Wojciech Jarosz. Monte Carlo Methods
for Volumetric Light Transport Simulation. Computer Graphics Forum (Proceedings of
Eurographics - State of the Art Reports), 37(2), 2018.

[75] Derek Nowrouzezahrai, Patricio Simari, and Eugene Fiume. Sparse Zonal Harmonic
Factorization for Efficient SH Rotation. ACM Transactions on Graphics, 31(3):23:1–23:9,
2012.

[76] Derek Nowrouzezahrai and John Snyder. Fast Global Illumination on Dynamic Height
Fields. Computer Graphics Forum (Proceedings of the Eurographics Symposium on
Rendering), 28(4):1131–1139, 2009.

[77] Marc Olano and Dan Baker. LEAN Mapping. Proceedings of the Symposium on Interactive
3D Graphics and Games, pages 181–188, 2010.

[78] Michael Oren and Shree K Nayar. Generalization of Lambert’s Reflectance Model.
SIGGRAPH, pages 239–246, 1994.

[79] Jacopo Pantaleoni, Luca Fascione, Martin Hill, and Timo Aila. PantaRay: Fast Ray-Traced
Occlusion Caching of Massive Scenes. ACM Transactions on Graphics (Proceedings of
SIGGRAPH), 29(4), 2010.

[80] Mark Pauly, Thomas Kollig, and Alexander Keller. Metropolis Light Transport for
Participating Media. Rendering Techniques (Proceedings of the Eurographics Workshop
on Rendering), pages 11—-22, 2000.

[81] Serban D Porumbescu, Brian Budge, Louis Feng, and Kenneth I Joy. Shell Maps. ACM
Transactions on Graphics (Proceedings of SIGGRAPH), 24(3):626–633, 2005.

[82] Ravi Ramamoorthi. Precomputation-Based Rendering. Foundations and Trends in

136

Computer Graphics and Vision, 3(4):281–369, 2009.

[83] Ravi Ramamoorthi and Pat Hanrahan. A Signal-Processing Framework for Inverse
Rendering. SIGGRAPH, page 117–128, 2001.

[84] Ravi Ramamoorthi, Dhruv Mahajan, and Peter Belhumeur. A First Order Analysis of
Lighting, Shading, and Shadows. ACM Transactions on Graphics, 26(1), 2007.

[85] Zhong Ren, Rui Wang, John Snyder, Kun Zhou, Xinguo Liu, Bo Sun, Peter-Pike Sloan,
Hujun Bao, Qunsheng Peng, and Baining Guo. Real-time Soft Shadows in Dynamic
Scenes using Spherical Harmonic Exponentiation. ACM Transactions on Graphics
(Proceedings of SIGGRAPH), 25(3):977–986, 2006.

[86] Jorge Schwarzhaupt, Henrik Wann Jensen, and Wojciech Jarosz. Practical Hessian-Based
Error Control for Irradiance Caching. ACM Transactions on Graphics (Proceedings of
SIGGRAPH Asia), 31(6):193:1–193:10, 2012.

[87] Peter Shirley and Kenneth Chiu. A Low Distortion Map between Disk and Square. Journal
of Graphics Tools, 2(3):45–52, 1997.

[88] Ronell Sicat, Jens Kruger, Torsten Moller, and Markus Hadwiger. Sparse PDF Volumes
for Consistent Multi-Resolution Volume Rendering. IEEE TVCG, 20(12):2417–2426,
2014.

[89] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed Radiance Transfer for Real-
Time Rendering in Dynamic, Low-Frequency Lighting Environments. ACM Transactions
on Graphics (Proceedings of SIGGRAPH), 21(3):527–536, 2002.

[90] Bruce Smith. Geometrical Shadowing of a Random Rough Surface. IEEE Transactions
on Antennas and Propagation, 15(5):668–671, 1967.

[91] John Snyder. Area Light Sources for Real-Time Graphics. Technical Report MSR-TR-96-
11, 1996.

[92] John Snyder and Derek Nowrouzezahrai. Fast Soft Self-Shadowing on Dynamic Height
Fields. Computer Graphics Forum, 27(4):1275–1283, Computer Graphics Forum (Pro-
ceedings of the Eurographics Symposium on Rendering).

[93] Bo Sun and Ravi Ramamoorthi. Affine Double and Triple Product Wavelet Integrals for
Rendering. ACM Transactions on Graphics, 28(2):14:1–14:17, 2009.

[94] Ping Tan, Stephen Lin, Long Quan, Baining Guo, and Harry Shum. Filtering and
Rendering of Resolution-Dependent Reflectance Models. IEEE TVCG, 14(2):412–425,
2008.

137

[95] Ping Tan, Stephen Lin, Long Quan, Baining Guo, and Heung-Yeung Shum. Multires-
olution Reflectance Filtering. Rendering Techniques (Proceedings of the Eurographics
Symposium on Rendering), pages 111–116, 2005.

[96] Ville Timonen and Jan Westerholm. Scalable Height Field Self-Shadowing. Computer
Graphics Forum (Proceedings of Eurographics), 29(2):723–731, 2010.

[97] Michael Toksvig. Mipmapping Normal Maps. Journal of Graphics Tools, 10(3):65–71,
2005.

[98] Charles F Van Loan. Introduction to Scientific Computing: A Matrix-Vector Approach
Using MATLAB. Prentice Hall, 1996.

[99] Eric Veach. Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis,
Stanford University, 1997.

[100] Thijs Vogels, Fabrice Rousselle, Brian McWilliams, Gerhard Röthlin, Alex Harvill,
David Adler, Mark Meyer, and Jan Novák. Denoising with Kernel Prediction and Asym-
metric Loss Functions. ACM Transactions on Graphics (Proceedings of SIGGRAPH),
37(4):124:1–124:15, 2018.

[101] Bruce Walter, Stephen R Marschner, Hongsong Li, and Kenneth E Torrance. Microfacet
Models for Refraction through Rough Surfaces. Rendering Techniques (Proceedings of
the Eurographics Symposium on Rendering), pages 195–206, 2007.

[102] Jingwen Wang and Ravi Ramamoorthi. Analytic Spherical Harmonic Coefficients for
Polygonal Area Lights. ACM Transactions on Graphics (Proceedings of SIGGRAPH),
37(4):54:1–54:11, 2018.

[103] Gregory J Ward and Paul S Heckbert. Irradiance Gradients. Third Eurographics Workshop
on Rendering, pages 85–98, 1992.

[104] Gregory J Ward, Francis M Rubinstein, and Robert D Clear. A Ray Tracing Solution for
Diffuse Interreflection. Computer Graphics (Proceedings of SIGGRAPH), 22(4):85–92,
1988.

[105] Stephen H Westin, James R Arvo, and Kenneth E Torrance. Predicting Reflectance
Functions from Complex Surfaces. Computer Graphics (Proceedings of SIGGRAPH),
pages 255–264, 1992.

[106] Hongzhi Wu, Julie Dorsey, and Holly Rushmeier. Characteristic Point Maps. Computer
Graphics Forum (Proceedings of the Eurographics Symposium on Rendering), 28(4):1227–
1236, 2009.

138

[107] Hongzhi Wu, Julie Dorsey, and Holly Rushmeier. Physically-Based Interactive Bi-Scale
Material Design. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia),
30(6):145:1–145:10, 2011.

[108] Lifan Wu, Guangyan Cai, Shuang Zhao, and Ravi Ramamoorthi. Analytic Spherical
Harmonic Gradients for Real-Time Rendering with Many Polygonal Area Lights. ACM
Transactions on Graphics (Proceedings of SIGGRAPH), 39(4):134:1–134:14, 2020.

[109] Lifan Wu, Shuang Zhao, Ling-Qi Yan, and Ravi Ramamoorthi. Accurate Appearance
Preserving Prefiltering for Rendering Displacement-Mapped Surfaces. ACM Transactions
on Graphics (Proceedings of SIGGRAPH), 38(4):137:1–137:14, 2019.

[110] Feng Xie and Pat Hanrahan. Multiple Scattering from Distributions of Specular V-grooves.
ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), 37(6):276:1–276:14,
2018.

[111] Chao Xu, Rui Wang, Shuang Zhao, and Hujun Bao. Real-Time Linear BRDF MIP-
Mapping. Computer Graphics Forum (Proceedings of the Eurographics Symposium on
Rendering), 36(4):27–34, 2017.

[112] Kun Xu, Wei-Lun Sun, Zhao Dong, Dan-Yong Zhao, Run-Dong Wu, and Shi-Min
Hu. Anisotropic Spherical Gaussians. ACM Transactions on Graphics (Proceedings of
SIGGRAPH Asia), 32(6):209:1–209:11, 2013.

[113] Ling-Qi Yan, Miloš Hašan, Steve Marschner, and Ravi Ramamoorthi. Position-Normal
Distributions for Efficient Rendering of Specular Microstructure. ACM Transactions on
Graphics (Proceedings of SIGGRAPH), 35(4):56:1–56:9, 2016.

[114] Ling-Qi Yan, Miloš Hašan, Wenzel Jakob, Jason Lawrence, Steve Marschner, and Ravi
Ramamoorthi. Rendering Glints on High-Resolution Normal-Mapped Specular Surfaces.
ACM Transactions on Graphics (Proceedings of SIGGRAPH), 33(4):116:1–116:9, 2014.

[115] Hong Yuan, Derek Nowrouzezahrai, and Peter-Pike Sloan. Irradiance Rigs. Journal of
Graphics, GPU, and Game Tools, 16(1), 2012.

[116] Cheng Zhang, Bailey Miller, Kai Yan, Ioannis Gkioulekas, and Shuang Zhao. Path-Space
Differentiable Rendering. ACM Transactions on Graphics (Proceedings of SIGGRAPH),
39(4):143:1–143:19, 2020.

[117] Cheng Zhang, Lifan Wu, Changxi Zheng, Ioannis Gkioulekas, Ravi Ramamoorthi, and
Shuang Zhao. A Differential Theory of Radiative Transfer. ACM Transactions on
Graphics (Proceedings of SIGGRAPH Asia), 38(6):227:1–227:16, 2019.

[118] Shuang Zhao, Wenzel Jakob, Steve Marschner, and Kavita Bala. Building Volumetric

139

Appearance Models of Fabric Using Micro CT Imaging. ACM Transactions on Graphics
(Proceedings of SIGGRAPH), 30(4):44:1–44:10, 2011.

[119] Shuang Zhao, Wenzel Jakob, Steve Marschner, and Kavita Bala. Structure-aware Synthesis
for Predictive Woven Fabric Appearance. ACM Transactions on Graphics (Proceedings
of SIGGRAPH), 31(4):75:1–75:10, 2012.

[120] Shuang Zhao, Ravi Ramamoorthi, and Kavita Bala. High-order Similarity Relations
in Radiative Transfer. ACM Transactions on Graphics (Proceedings of SIGGRAPH),
33(4):104:1–104:12, 2014.

[121] Shuang Zhao, Lifan Wu, Frédo Durand, and Ravi Ramamoorthi. Downsampling Scat-
tering Parameters for Rendering Anisotropic Media. ACM Transactions on Graphics
(Proceedings of SIGGRAPH Asia), 35(6):166:1–166:11, 2016.

[122] Kun Zhou, Yaohua Hu, Stephen Lin, Baining Guo, and Heung-Yeung Shum. Precomputed
Shadow Fields for Dynamic Scenes. ACM Transactions on Graphics (Proceedings of
SIGGRAPH), 24(3):1196–1201, 2005.

[123] Tobias Zirr and Anton S Kaplanyan. Real-Time Rendering of Procedural Multiscale
Materials. Proceedings of the Symposium on Interactive 3D Graphics and Games, pages
139–148, 2016.

140

	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Background
	Light Transport
	Surface Reflection
	Volume Scattering
	Path Integral Formulation

	Spherical Harmonics
	Definition
	Key Properties

	Downsampling Scattering Parameters for Rendering Anisotropic Media
	Introduction
	Related Work
	Background
	Our Method
	Combining Albedo and Phase Function
	Input and Output
	Overview

	Determining SGGX Lobes
	Optimizing Lobe Weights
	Overview
	Voxel Clustering
	Optimizing Weight Factors
	Handling Multiple Color Channels
	Discussion

	Exploiting Modularity
	Results
	Evaluations and Justifications
	Main Results

	Conclusion
	Acknowledgements

	Accurate Appearance Preserving Prefiltering for Rendering Displacement-Mapped Surfaces
	Introduction
	Related Work
	Preliminaries
	Prefiltering Reflectance Parameters
	Downsampling Displacement Maps
	Spatially Varying Multi-Lobe BRDF
	Scaling Function

	Interreflections
	Effective BRDF with Interreflections
	Computing the Scaling Function

	Properties of the scaling function
	Implementation
	Prefiltering at a Single Scale
	Level of Detail

	Results
	Evaluations and Justifications
	Main Results
	Limitations and Future Work

	Conclusion
	Acknowledgements

	Analytic Spherical Harmonic Gradients for Real-Time Rendering with Many Polygonal Area Lights
	Introduction
	Related Work
	Preliminaries
	Reflection Equation and PRT
	Zonal Harmonic Factorization
	Analytic Spherical Harmonic Coefficients
	Differentiating Integrals

	Differentiating Spherical Harmonic Coefficients
	Spherical Harmonic Gradient
	Reduction to Edge/Arc Integrals

	Analytic Formula
	Solving for Gl,j(i)
	Summary

	Algorithm
	Iterative Evaluation of SH Coefficients and Gradients
	Gradient-Based Interpolation

	Results
	Validation and Evaluation
	Main Results
	Limitations and Future Work

	Conclusion
	Acknowledgements

	Conclusion and Future Work
	Appendix for Chapter 3
	Rendering Gradient Images

	Appendix for Chapter 4
	Average slope of a bilinear patch
	Factorization of Rir

	Appendix for Chapter 5
	Sharing ZH Lobes Across Bands
	Relation to Prior Work Annen:2004:spherical
	Detailed Derivations
	Deriving (t) in Equation (5.17)
	Deriving Equation (5.22)

	Bibliography

