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ABSTRACT

Clarifying the Transcriptional Profiles of Malignant Clones and Nonmalignant Cells of the

Microenvironment through Multiscale and Multiomic Analysis of Individual Tumors

Patrick Schupp

Understanding the transcriptional consequences of oncogenic mutations is an important

goal that may reveal new therapeutic targets for diverse cancers. Although single-cell methods

hold promise for this task, it remains non-trivial to isolate and sequence DNA and RNA from the

same cell at scale. Here we present a statistically motivated strategy that utilizes multiscale and

multiomic  analysis  of  individual  human  tumor  specimens  to  deconstruct  intra-tumoral

heterogeneity by clarifying clonal populations of malignant cells and their transcriptional profiles.

By combining deep, multiscale sampling of IDH-mutant astrocytomas with integrative, multiomic

analysis, we reconstruct and validate the phylogenies, spatial distributions, and transcriptional

profiles  of  distinct  malignant  clones.  We  identify  a  core  set  of  genes  that  is  consistently

expressed by the truncal clone, including AKR1C3, whose expression is associated with poor

outcomes in several types of cancer. Some derived clones exhibit significant enrichment with

gene  sets  representing  glioblastoma  subtypes  and  nonmalignant  cell  types,  including

ependymal cells. Importantly, by genotyping nuclei for truncal mutations, we show that existing

strategies  for  inferring  malignancy  from  gene  expression  profiles  of  single  cells  may  be

inaccurate. Furthermore, we find that transcriptional phenotypes of malignancy persist despite

loss  of  the  mutant  IDH1 protein following chr2q deletion  in  a  subset  of  malignant  cells.  In

summary, our study provides a generalizable strategy for precisely deconstructing intra-tumoral

heterogeneity and clarifying the molecular profiles of malignant clones in any kind of solid tumor.

We extend this approach to a metaanalysis of the cell-type specific dysregulation in the

glioma microenvironment. Using the same statistically motivated approach to take advantage of

inherent patterns of cell-type specific coexpression, we characterize the differentially expressed
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cell-type  specific  transcriptome.  We  perform  this  process  on  thousands  of  samples  and

hundreds of datasets from both glioma and normal samples. Finally by taking the difference in

the  in  silico derived differential  expression metrics for  each cell  type in  glioma and normal

contexts, we identify ideal markers of each cell type specifically in glioma but not normal and

validate  and  filter  them  using  orthogonal  datasets.  In  summary,  our  study  provides  a

generalizable strategy for precise identification of cell-type specific dysregulated genes using

abundant bulk transcriptome data for any disease state involving solid tissues.
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Chapter 1

Introduction

The existence of different types of cells is readily apparent due to the 

morphological complexity of multi-cellular life on this planet, however a substantive 

definition of what truly defines a cell-type has eluded biologists. This difficulty is 

especially salient in the study of human tumors, where the identification and 

characterization of malignant cells provides the basis of medical intervention. Despite 

early progress in identifying molecular markers of malignancy, recent studies, especially

using new single-cell RNA-seq approaches, have highlighted the underlying plasticity 

and heterogeneity of malignant cells. This inherent diversity stymies the development of

effective treatments even as the promise of personalized therapies offers a highly labor 

intensive pathway to treatment.

1.1 The difficulty in targeting gliomas

Brain tumors (including the gliomas, which are the most common malignant, 

primary brain tumors) are a particularly difficult tumor to treat as they are inaccessible, 

heterogeneous, and known to phenocopy their surrounding nonmalignant cells1. 

Molecular characterization has been recently embraced by the WHO as the 

predominant classification of the various glioma types2. Mutations in key genes have 

also provided the basis for a number of pharmaceutical treatments3–6. However, some of

these targets are not essential to the tumor, allowing escape from drug pressure. 
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Furthermore, the selected targets are not necessarily most highly expressed in the 

tumor and may also be found elsewhere in healthy tissue, leading to significant side-

effects7–9. Fusion transcripts are the most attractive targets as novel epitopes ensure 

reduced off-target effects, but this approach leaves many potential targets undiscovered

relative to targeting the most highly dysregulated genes10.

Single-cell RNA-sequencing has begun to shed light on this area of differentially 

expressed genes of glioma cells. However, the inability to capture all malignant and 

nonmalignant cell-types means that this method is not yet optimal for identification of 

dysregulated, druggable targets11,12. Furthermore, the field of integrating multiple single-

cell datasets is yet in its infancy and relatively few single-cell datasets have been 

published.

Bulk expression data inherently captures RNA from all cells with minimal bias 

and therefore does not suffer from any cell-type dropout13,14. Because this is a mature 

technology, multiple methods exist by which to aggregate datasets15,16 and the number 

of datasets vastly exceeds that of single-cell data, meaning that more of the inherent 

heterogeneity of malignancies is captured in this data modality. 

However, the deconvolution of malignant and nonmalignant cells remains the 

biggest hurdle. While efforts to deconvolute cell-types from bulk data have been 

published, they do not characterize the altered transcriptional space of malignant cells 

nor the transcriptionally dysregulated microenvironment of malignancies. Because these

methods generally operate on strong priors of what genes drive expression for certain 

cell-types, they are unable to adequately characterize dysregulated genes in the glioma 

context17–19. 
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1.2 A new paradigm for the derivation of therapeutic targets 

for glioma

We propose an unsupervised algorithm based on the premise that there exist 

genes that covary with the cellular abundance of a certain cell-type20. Through iterative 

rounds of clustering on the correlation space of gene expression, we are able to derive 

a set of modules composed of highly correlated gene expression patterns. Summarizing

this module as the average expression of the constituent genes over all samples via its 

first principal component, we are able to derive a vector of relative abundance. Finally, 

we can assign biological meaning to the modules using gene set enrichment analysis 

(GSEA) or manual annotation. Mathematically, the genes which are members of a 

module with cell-type significance are high fidelity genes for that cell-type and their 

expression will reliably track the abundance of the cell-type. Fidelity is also a 

quantifiable metric, and we can thereby rate how well each gene’s expression 

recapitulates the relative abundance of different cell-types.

In Chapter Two, which is a full reproduction of  the manuscript “Deconstructing 

Intratumoral Heterogeneity through Multiomic and Multiscale Analysis of Serial 

Sections” available on BioRXiv, I demonstrate how it is possible to use Whole Exome 

Sequencing (WES) in tandem with amplicon sequencing and methylation arrays to infer 

phylogenies of malignant clones and track their relative abundance across serial 

sections of malignant tissue. These clonal abundance vectors can be matched to the 

abundance of coexpressed gene modules of corresponding expression arrays. We 

match the malignant clonal abundance to relative abundance of cellular expression 

programs specific to cell-types or states. Thereby, we can derive the unique 

3
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transcriptional signature of the constituent malignant clones of a tumor at high resolution

and across the entire tumor piece. 

Due to covariance between malignant clones and tumor purity, GSEA reveals 

that certain clonal expression signatures are partially driven by tumor purity, not solely 

by the clone itself. Because tumor purity is driven largely by the exclusion of normal 

tissue from the tumor, we can use spatially matched normal samples to remove the 

tumor purity signal. We find that we greatly enrich the signal of tumor programs while 

removing enrichment driven by tumor purity.

I repeat the methods with another tumor piece, optimizing the approach and 

orthogonally validating it with multi-omic single-nucleus approaches. Using single-

nucleus RNA- and amplicon-seq technologies I show that we can make incredibly 

accurate estimations of cellular abundance as well cellular transcriptional identity. It is 

important to note that while the single-nucleus data represents four sections 

interspersed throughout the tumor, the bulk data represents nearly 100 sections and 

therefore provides far more data on the relative abundances of the malignant clones 

and nonmalignant cell-types. This translates into greater accuracy in deriving the 

expression programs and fidelity of genes to their cell-type.

In Chapter Three, which is a summary of the manuscript “Metaanalysis of glioma 

samples reveals unique, cell-type specific dysregulated genes of the microenvironment”

currently in preparation, we conduct the largest meta-analysis of adult glioma 

expression data to our knowledge. We use our algorithm to define the highest fidelity 

features for nonmalignant cell-types when they are part of the tumor microenvironment 

or part of healthy tissue. Subsequently, we can compare gene fidelity of these cell-types

4



in these two contexts to determine which genes are dysregulated in nonmalignant cells 

of all gliomas. 

We identify genes which are highly expressed in a nonmalignant cell-type only in 

the tumor microenvironment but not normal tissue, representing an ideal target for 

therapeutic intervention. We extend our analysis by subsetting the data to different 

tumor grades and providing an interactive web-application that makes use of publicly 

available data to provide the community a rich platform for target identification.

In these approaches, which represent a paradigm shift in the definition of cellular 

identity, we are able to track coherent cellular populations through space and identify 

markers which constitute their core cellular programming. This insight allows for the 

accelerated development of drug-targets and deepened understanding of the cellular 

dynamics in disease.
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Chapter 2: Clarifying the Transcriptional Profiles of 

Malignant Clones through Multiscale and Multiomic 

Analysis of Individual Tumors

2.1 Introduction

Advances  in  high-throughput  DNA sequencing  have  revealed  the  most  frequently

mutated genes underlying the most prevalent human cancers1–5. These findings have

catalyzed development of novel therapies that precisely target oncoproteins produced

by recurrent mutations6–9. However, some oncoproteins present difficult drug targets10.

Furthermore, targeted monotherapies that are initially successful often induce acquired

resistance, which can lead to recurrence of more virulent cancer11,12. To address these

challenges,  it  is  necessary  to  expand  the  therapeutic  search  space  beyond

oncoproteins  to  identify  other  molecules  that  distinguish  malignant  cells  from  their

normal counterparts. Therefore, clarifying the transcriptional profiles of malignant cells is

an important goal.

Many  gene  expression  studies  of  human  cancers  have  focused  on  defining

molecular subtypes for patient stratification using bulk tumor specimens13–17. Efforts to

identify gene expression signatures of malignant cells in these data are confounded by

variable  genetic  background,  tumor  purity,  and  cellular  composition,  as  well  as  the

limited  use  of  control  samples.  More  recent  efforts  using  single-cell  methods  hold

greater promise for this task, but it remains non-trivial to isolate and sequence DNA and

RNA from the same cell at scale. As such, malignancy is often inferred for single cells
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from the presence of copy-number variations (CNVs), which are themselves inferred

from single-cell RNA-seq (scRNA-seq) data. However, scRNA-seq data are confounded

by technical factors related to tissue dissociation, sampling bias, noise, contamination,

and sparsity18–22, which muddle the relationships between malignant cell genotypes and

transcriptional phenotypes, particularly for cancers that lack consistent CNVs.

We have shown that variation in the cellular composition of intact tissue samples

drives covariation of transcripts that are uniquely or predominantly expressed in specific

kinds of cells23,24. We have also shown that the correlation between a gene’s expression

pattern and the abundance of a cell type is a proxy for the extent to which the same

gene  is  differentially  expressed  by  that  cell  type23.  These  findings  suggest  that

transcriptional profiles of malignant cells can be identified by correlating genome-wide

expression patterns with variant allele frequencies (VAFs), which represent the fraction

of sequence reads for a given locus that carry an oncogenic mutation, over a large

number of intact tumor samples. The same logic implies that transcriptional profiles of

distinct  malignant  clones  can  be  identified  by  correlating  genome-wide  expression

patterns with clonal abundance, which can be determined through integrative analysis

of VAFs25,26. In principle, such patterns should be highly robust since they derive from

millions  or  even billions  of  cells  and do not  suffer  from the technical  and practical

limitations imposed by quantifying gene expression in single cells. 

Although  such  analyses  are  conceptually  straightforward,  they  are  difficult  to

apply to existing gene expression datasets from bulk human tumor specimens, for many

reasons. First, many of these datasets lack information about mutations in the analyzed

samples. Second, when mutations are analyzed, the most common approach is whole-
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exome  sequencing  (WES),  which  provides  shallow  coverage  (100-200x)  of  coding

regions  that  is  adequate  for  binary  calls  of  common  mutations  but  inadequate  for

precisely estimating VAFs. As a result,  many studies report  mutation frequencies as

dichotomous instead of continuous variables. Third, it is often unclear whether paired

WES and gene expression data derive from exactly the same tumor sample or adjacent

subsamples. Fourth, clonal heterogeneity among tumors from different individuals can

obscure  the  transcriptional  consequences  of  specific  mutations.  And  fifth,  many

datasets are inadequately powered to identify robust correlations.

To address these challenges, we describe a novel approach for determining the

transcriptional profiles of malignant clones through multiscale and multiomic analysis of

individual tumor specimens. By amplifying a single tumor specimen into a large number

of standardized biological replicates through serial sectioning, we exploit variation in the

cellular  composition  of  tumor  sections  to  reveal  molecular  signatures  of  distinct

malignant clones and nonmalignant cell types. Using a similar approach, we previously

isolated transcriptional signatures of radial glia27 and inhibitory neurons28 by analyzing

gene  coexpression  relationships  over  serial  sections  of  human  prenatal  neocortical

specimens. Here we deconstruct human IDH-mutant astrocytomas by precisely defining

the evolutionary history and spatial distributions of malignant clones through integrative

analysis  of  single-nucleotide  variants  (SNVs)  and  CNVs.  By  comparing  these

distributions to gene expression data derived from the same tumor sections, we reveal

transcriptional profiles of distinct clones and validate them through comparisons with

normal human brain and analyses of individual nuclei from interpolated tumor sections.

Our findings suggest that a core set of genes is consistently expressed by the truncal
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clone of  human astrocytomas,  offering new therapeutic  targets  and a generalizable

strategy for identifying robust molecular profiles of malignant clones in any kind of solid

tumor.

2.2 Methods

2.2.1 Pseudobulk analysis of scRNA-seq data

Single-cell RNA-sequencing (scRNA-seq) data from Venteicher et al.29 comprising 6243

cells from 10 IDH-mutant adult astrocytomas were downloaded from Gene Expression

Omnibus (https://www.ncbi.nlm.nih.gov/geo/; accession ID = GSE89567). To generate a

pseudobulk gene expression matrix from these data, 10% of all cells were randomly

sampled and expression levels were summed for each gene from all sampled cells (this

process was repeated 100x to generate a matrix with 100 pseudobulk samples). Using

cell-class  labels  provided by  the  authors,  the identities  of  all  cells  comprising  each

pseudobulk sample were tracked. Genome-wide differential  expression analysis was

performed by comparing all sampled malignant cells to all sampled nonmalignant cells

using  a  two-sided  t-test.  In  parallel,  genome-wide  gene  coexpression  analysis  was

performed as described23.  Briefly, genome-wide biweight midcorrelations (bicor) were

calculated  using  the  WGCNA R package30 and  all  genes  were  clustered using  the

flashClust31 implementation  of  hierarchical  clustering  with  complete  linkage and 1 –

bicor as a distance measure. The resulting dendrogram was cut at a static height of

0.277, corresponding to the top 1% of bicor values. All clusters consisting of at least 10

genes  were  identified  and  summarized  by  their  module  eigengene32 (i.e.,  the  first

principal  component  obtained  by  singular  value  decomposition)  using  the

moduleEigengenes function of the WGCNA R package30. Highly similar modules were
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merged  if  the  Pearson  correlation  of  their  module  eigengenes  was  >  0.85.  This

procedure was performed iteratively  such that  the  pair  of  modules with  the highest

correlation > 0.85 was merged,  followed by recalculation of  all  module eigengenes,

followed by recalculation of  all  correlations,  until  no pairs  of  modules exceeded the

threshold. The pseudobulk gene coexpression module most strongly associated with

malignant  cells  was  identified  by  maximizing  the  correlation  between  the  module

eigengene  and  the  actual  fraction  of  sampled  malignant  cells  in  each  pseudobulk

sample.  Genome-wide Pearson correlations to  this  module eigengene (kME values)32

were then calculated and compared to the results of single-cell differential expression

analysis (t-values).

2.2.3 Sample acquisition

The tumor specimen from case one (WHO grade II primary astrocytoma, IDH-mutant)

was obtained from a 40 y.o. female patient following surgical resection at the University

of California, San Francisco (UCSF), along with the patient's blood (UCSF case ID:

SF9495). The tumor specimen from case two (WHO grade II recurrent astrocytoma,

IDH-mutant) was obtained from a 58 y.o. male patient following surgical resection at

UCSF,  along  with  the  patient’s  blood  (UCSF case  ID:  SF10711).  Four  postmortem

control human brain samples from two brain regions (anterior cingulate cortex [ACC]

and entorhinal cortex [EC]) were also obtained from routine autopsies of two individuals

(41  and  75  y.o.  females)  at  UCSF.  Control  samples  were  examined   by  a

neuropathologist  (E.J.H.)  and found to  exhibit  no  evidence of  brain  disease.  Tissue

samples for nucleic acid isolation were immediately frozen on dry ice without fixation.
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For tumor histology, a smaller subsample was formalin-fixed and paraffin-embedded

(FFPE)  using  standard  procedures.  All  tumor  samples  were  obtained  with  donor

consent in accordance with protocols approved on behalf of the UCSF Brain Tumor

Center Tissue Core.

2.2.4 Serial sectioning

Tissue cryosectioning was performed on a Leica CM3050S cryostat  at  -20°C. Each

sample was oversectioned to account for the possibility of low RNA quality or quantity

from some cryosections; after excluding these (see below), most, but not all, analyzed

sections were adjacent to one another. For the first case, 81 sections were cut and

utilized as shown in Fig. 2.2f. For each of the four control samples, ~120 sections were

cut  and  94  were  utilized  for  gene  expression  profiling.  For  the  second  case,  140

sections were cut and utilized as shown in Fig. 2.7f. In addition, the plane of sectioning

for the second case was rotated 90 degrees at the halfway point to provide additional

spatial variation (Fig. 2.7f). These sectioning strategies resulted in 73% power to detect

weak correlations  (|r| > 0.3, P < .05) for case one and 83% power for case two33. To

control  for  differences  in  the  cross-sectional  area  of  each  tissue  sample,  section

thickness was varied as needed to ensure sufficient and comparable amounts of nucleic

acids could be extracted from sections for multiomic analysis. Quality control and usage

information for all sections can be found in  Table 2.1 (case one),  Table 2.12 (control

samples), and Table 2.15 (case two). Frozen sections were collected in RNase-free 1.7

ml tubes (Denville Scientific Inc, South Plainfield, NJ) and stored at -80°C.
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2.2.5 Nucleic acid isolation and quality control

Tissue cryosections were thawed on ice and homogenized by pipette in QIAzol (Qiagen

Inc., Valencia, CA). For control samples, RNA was extracted from each section with the

miRNeasy mini kit (Qiagen Inc., Valencia, CA). For tumor samples, DNA and RNA were

isolated simultaneously from each section with the AllPrep DNA /  RNA /  miRNA kit

(Qiagen  Inc.,  Valencia,  CA).  All  nucleic  acid  isolation  from  tissue  sections  was

performed using a QIAcube automated sample preparation system according to the

manufacturer's  instructions (Qiagen Inc.,  Valencia,  CA).  Sections were processed in

random  batches  of  12  on  the  QIAcube  to  avoid  confounding  section  number  with

potential technical sources of variation associated with nucleic acid isolation.

Frozen  blood  was  thawed  and  resuspended  in  red  blood  cell  lysis  solution

(Qiagen Inc., Valencia, CA). White blood cells were removed by centrifugation at 2000g

for 5 mins and repeated until white blood cells were depleted. Remaining red blood cells

were resuspended in extraction buffer (50 mM Tris [pH8.0], 1 mM EDTA [pH8.0], 0.5%

SDS and 1 mg / ml Proteinase K [Roche, Nutley, NJ]) and incubated overnight at 55°C.

The extracted DNA was  RNAse treated (40 μg / ml) (Roche, Nutley, NJ) for 1 h at 37°C

before being phenol chloroform extracted and ethanol precipitated. The resulting DNA

was resuspended in TE buffer (10 mM 460 Tris, 1 mM EDTA [pH7.6]).

RNA  and  DNA  were  analyzed  using  a  Nanodrop  1000  spectrophotometer

(Thermo Scientific Inc., Waltham, MA) to quantify concentrations, OD 260 / 280 ratios,

and  OD 260  /  230  ratios.  Further  validation  of  RNA and  DNA concentrations  was

performed using  the  Qubit  RNA HS kit  and  Qubit  dsDNA HS kit  on  the  Qubit  2.0

Fluorometer (Life Technologies Inc., Carlsbad, CA). RNA integrity (RIN) was assessed
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using  an  Agilent  2100  Bioanalyzer  (Agilent  Technologies  Inc.,  Santa  Clara,  CA).

Sections for which RIN ≥ 5 (case one median = 7.6, case two median = 8.3), OD 260 /

280 ratio ≥ 1.80 (case one median = 2.03, case two median = 1.94), and concentration

by Nanodrop  ≥ 9 ng / μl (case one median = 25.4 ng / μl, case two median = 9.25 ng /

μl) were selected.

2.2.6 Whole exome sequencing (WES) and data preprocessing

WES was performed at the UCSF Institute for Human Genetics genomics core facility

(San Francisco, CA). Exome libraries were prepared from 1 μg of genomic DNA from

each analyzed section using  the Nimblegen EZ Exome kit  V3 (Roche,  Nutley,  NJ).

Paired-end 100 bp sequencing was performed on a HiSeq2500 sequencer (Illumina

Inc.,  San  Diego,  CA).  The  analysis  of  WES  data  was  performed  as  previously

described34.  Briefly,  paired-end  sequences  were  aligned  to  the  human  genome

(University  of  California,  Santa Cruz build hg19)  using the Burrows-Wheeler  Aligner

(BWA)35. Uniquely aligned reads were further processed to achieve deduplication, base

quality  recalibration,  and  multiple  sequence-realignment  with  the  Picard  suite36 and

Broad Institute Genome Analysis ToolKit (GATK)37. After processing, a mean coverage

of 131-151x and 104-122x was achieved for case one and case two, respectively.

2.2.7 Single-nucleotide variant (SNV) and small insertion / deletion (indel) calling

workflow

SNVs  were  identified  using  MuTect38 and  indels  were  identified  with  Pindel39 using

default settings. SNVs were further filtered to only retain variants with frequency > 0.10
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in at least one tumor section and < 6 variant reads in the patient's blood. Indels were

filtered to only retain variants with > 5 variant reads in a given tumor section and < 13

total reads in the patient's blood. If multiple indels were detected at the same genomic

location, only the indel with the most supporting reads was retained. Identified mutations

were annotated for their  mutational context using ANNOVAR40 and were also cross-

referenced with dbSNP41 (Build ID: 132) and the 1000 Genomes42 (Phase 1). SNV and

indel events were converted to hg38 coordinates and assigned HGVS compliant names

using Ensembl’s Variant Effect Predictor43.

2.2.8 Droplet Digital PCR (ddPCR) 

Variant allele frequencies (VAFs) of the IDH1 R132H mutation were determined in 69

tumor sections from case one and the patient's blood using the PrimePCR IDH1 R132H

mutant assay and the QX100 Droplet Digital PCR system (Bio-Rad Inc., Hercules, CA).

An  initial  serial  dilution  of  a  positive  control  was  performed  to  optimize  the  input

concentration of genomic DNA from each section and to assess the reliability of the

assay. Duplicate reactions were performed to quantify the reproducibility of the assay

(Fig. 2.3b). Data were analyzed and 95% Poisson confidence intervals were calculated

using QuantaSoft software (Bio-Rad Inc., Hercules, CA).

2.2.9 Amplicon sequencing (amp-seq) and data preprocessing

Groups  of  mutations  with  similar  allele  frequency  distributions  in  WES  data  were

identified  by  hierarchical  clustering.  Biweight  mid-correlations  (bicor)  were  used  to

estimate the proximities of somatic mutations and 1-bicor was used as a dissimilarity
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measure. A subset of representative mutations from distinct clusters was validated by

Sanger sequencing and deep sequencing of PCR amplicons (amp-seq) derived from

tumor sections and the patient's blood. Primers were designed using Primer-BLAST44 to

yield an amplicon of around 500 bp (case one) or 100 bp (case two) with the mutation

located  within  the  center  of  the  amplicon  (Tables  2.3  and  2.17).  Amplicons  were

generated for 42 mutations in case one (n = 69 sections; Table 2.3) and 75 mutations in

case two (n = 85 sections;  Table 2.17). For case one, the mutation-containing region

was amplified by PCR using the FastStart high-fidelity PCR system (Roche, Nutley, NJ)

or the GC-Rich PCR system (Roche, Nutley,  NJ) as instructed by the manufacturer

using  specific  annealing  temperatures  (Table  2.3).  The  resulting  amplicons  were

purified using the NucleoSpin gel and PCR cleanup kit  following the manufacturer's

instructions  (Macherey-Nagel  Inc.,  Bethlehem,  PA)  and  submitted  for  Sanger

sequencing with the same primers used to generate the amplicons. For case two, 50ng

of gDNA was used as template per sample in each reaction and 35 cycles of PCR

amplification  were  performed  with  KAPA  HiFi  HotStart  Ready  Mix  (2x,  KAPA

Biosystems,  Wilmington,  MA).  Multiplexed  PCR reactions  were  purified  using  a  2X

volume ratio of KAPA pure SPRI beads (KAPA Biosystems, Wilmington, MA). Purified

PCR reactions were quantified using the Qubit dsDNA HS kit and Qubit 2.0 fluorometer.

For both cases, the concentration of each amplicon was adjusted to 0.2 ng/μl. Barcoded

libraries for each section were generated using the Nextera XT DNA Kit (Illumina Inc.,

San Diego,  CA).  After  library  preparation  the  barcoded libraries  were  pooled  using

bead-based normalization supplied with the Nextera XT kit. The pooled libraries were

sequenced with paired-end 250 bp reads in a single flow cell  on an Illumina MiSeq
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(Illumina Inc., San Diego, CA) in case one and an Illumina HiSeq 4000 in case two. In

case one, libraries were sequenced in two runs, whereas all amplicons were sequenced

in the same run for case two. Sequence reads were demultiplexed and basecalled using

“bcl2fastq”  (Illumina  Inc.,  San  Diego,  CA).  FASTQ  files  were  aligned  to  a  custom

genome (based on the amplicon sequences) using BWA-MEM45. The SAMtools suite46

was used to create and index BAM files and create pileup files based on reads with a

base quality score > 30. Read counts supporting the reference or variant within each

amplicon were determined using the read counts function from VarScan 247 and these

counts were used to calculate VAFs.

2.2.10 Downsampling analysis of amp-seq data

Amplicon reads originating from the reference or alternative alleles for  IDH1 or  TP53

were  randomly  downsampled  to  various  coverage  levels  (n  =  1000  random

downsamples per coverage level)  for  each section to quantify the effect of  reduced

coverage on VAF estimates. VAFs were recalculated for each downsampled coverage

level and compared to full coverage VAF estimates over all sections using Pearson’s

correlation or root-mean-square error (RMSE), as illustrated in  Fig. 2.3c-d (case one)

and Fig. 2.8a-b (case two).

2.2.11 Hierarchical clustering of variant allele frequencies (VAFs)

Groups of mutations with similar VAF patterns were identified by hierarchical clustering

over all tumor sections. VAFs were clustered with Ward’s D method and 1 – Pearson’s
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correlation as a dissimilarity measure. The number of clusters was determined from the

consensus of elbow48 and silhouette plot49 methods, using the cluster package in R50.

2.2.12 DNA methylation data production and preprocessing

The sample order of genomic DNA from serial sections of case one was randomized to

avoid confounding section number with potential sources of technical variation. DNA

was  concentrated  with  Genomic  DNA Clean  &  Concentrator  10TM columns  (Zymo

Research,  Irvine,  CA) in  batches of  12 samples,  resulting in  approximately  two-fold

concentration (median concentration after processing: 45ng / μl). The sample order was

randomized again and concentrated DNA was shipped on dry ice to the University of

California,  Los  Angeles  (UCLA)  Neurogenomics  Core  facility  (Los  Angeles,  CA)  for

analysis using Illumina 450K microarrays (Illumina Inc., San Diego, CA). 

Raw  idat  files  were  processed  using  the  ChAMP R  package51.  Initial  probe

filtering was performed using the load.champ R function52–54. Probes with detection P-

value > 0.01 (11,799 probes) or beadcount < 3 in at least 5% of samples were removed

(n = 760), leaving 461,797 probes for analysis. The Illumina 450K microarrays contain

two different assay types (Infinium I and Infinium II). Each assay has different sensitivity

and dynamic range, which means that joint normalization leads to type II bias due to the

lower sensitivity of the Infinium II assay55. We therefore performed beta-mixture quantile

normalization (BMIQ) using the “champ.norm” function from ChAMP, which accounts for

the different assay types56. 

Additional  preprocessing  of  the  methylation  data  was  performed  with  the

SampleNetwork  R  function57,  which  identifies  outlying  samples,  performs  data
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normalization,  and  corrects  for  technical  batch  effects.  The  standardized  sample

network  connectivity (Z.K) criterion was used to exclude one outlying sample (section

#69, whose DNA concentration was substantially lower than other sections), leaving 68

sections. No batch effects associated with ArrayID or ArrayPosition were observed.

2.2.13 Gene expression data production and preprocessing

Total  RNA from case  one  (n  =  69  sections)  was  shipped  on  dry  ice  to  the  UCLA

Neurogenomics Core facility (Los Angeles, CA) for analysis using Illumina HT-12 v4

human  microarrays  (Illumina  Inc.,  San  Diego,  CA).  The  order  of  the  sections  was

randomized prior  to  shipment  to  avoid  confounding  potential  technical  artifacts  with

potential biological gradients of gene expression. Two control samples from the same

pool  of  total  human  brain  RNA (Ambion  FirstChoice  human  brain  reference  RNA

Cat#AM6050, Life Technologies Inc., Carlsbad, CA) were included with each of the five

datasets.  For  each  of  the  five  datasets  (case  one  and  four  control  samples),  all

microarray samples (n = 72 – 96 /  dataset)  were processed in the same batch for

amplification, labeling, and hybridization. Amplification was performed using the Ambion

TotalPrep RNA amplification kit (Life Technologies Inc., Carlsbad, CA). Raw bead-level

data  were  minimally  processed  by  the  UCLA  Neurogenomics  Core  facility  (no

normalization or background correction) using BeadStudio software (Illumina Inc., San

Diego, CA).

For  each  dataset  the  minimally  processed  expression  data  were  further

preprocessed using the SampleNetwork R function57. Using the standardized sample

network connectivity (Z.K) criterion57, the following numbers of outliers were removed
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from each dataset: ACC1 (n = 2), ACC2 (n = 11), EC1 (n = 0), EC2 (n = 2), and case

one (n = 1). Exclusion of outliers resulted in the following numbers of remaining sections

in each dataset: ACC1 (n = 92), ACC2 (n = 83), EC1 (n = 94), EC2 (n = 92), and case

one  (n  =  69).  After  removing  outliers  each  dataset  was  quantile  normalized58 and

technical  batch  effects  were  assessed57.  Significant  batch  effects  (P  <  .05  after

Bonferroni  correction  for  univariate  ANOVA)  were  corrected  using  the  ComBat  R

function59 with  no  covariates  as  follows:  ACC1 =  ArrayID,  ACC2 =  ArrayID,  EC1 =

ArrayID  and  ArrayPosition,  EC2  =  QCBatch  and  ArrayID.  No  batch  effects  were

observed for  case one.  Multiple  technical  batch effects were corrected sequentially.

Analysis  was restricted  to  30,425  probes that  were  re-annotated60 as  having  either

"perfect" (n = 29,272) or "good" (up to two mismatches; n = 1,153) sequence alignment

to their target transcripts. Probes were further collapsed to unique genes (n = 20,019)

by retaining one probe per gene with the highest mean expression over all sections.

For  case  two,  RNA-sequencing  was  used  to  profile  gene  expression  for  all

sections (n = 96). Full-length RNA was made into libraries using the KAPA stranded

mRNA library prep kit (Roche, Nutley, NJ) following the manufacturer’s instructions, with

a mean insert size of 300 bp. One ng of library (composed of library and ERCC spike-in

controls,  Life Technologies Inc.,  Carlsbad, CA) was added as input, and all  libraries

were  normalized  according  to  the  manufacturer's  instructions.  During  this  process

samples were randomized in both section order and plane to avoid conflating biological

and technical covariates. Sequencing was performed on eight lanes of a HiSeq4000 at

the Center for Advanced Technology (CAT) at UCSF with single-end 50 bp sequencing

using dual-index barcoding.
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Reads were assessed with FastQC to ensure the quality of sequencing data by

verifying high base quality scores, lack of GC bias, narrow distribution of sequencing

lengths, and low levels of sequence duplication or adapter sequences61. Next, reads

were subjected to adapter trimming using Cutadapt62 with minimum length = 20 and a

quality cutoff of 20. Reads were subsequently aligned using default settings with the

Bowtie2 program63 to the Genome Reference Consortium Human Build 3764
. Finally, an

expression matrix was generated using the FeatureCounts program with UCSC’s library

of genomic features65 (n = 23,900 features). Genes with zero variance were removed (n

= 30). Data were normalized with the RUVg package, regressing out 10 factors derived

from principal component analysis of the ERCC spike-in control  expression matrix66.

The number of factors was determined empirically by evaluating relative log-expression

(RLE)  plots  and  gene-gene  correlation  distributions.  Finally,  the  SampleNetwork  R

function57 was  used  to  identify  and  remove  six  outlier  sections  based  on  the

standardized sample connectivity criterion (Z.K).

2.2.14 Copy number analysis by qPCR

The copy numbers for TP53 and ACCS in case one were determined by SYBR Green-

based qPCR. Primers were designed using Primer-BLAST44 and positioned immediately

adjacent  to  but  not  including  the  SNV (ACCS F:  TCTCTATGGCAACATCCGGC,  R:

CAGCCATGCAGCAACAGAAG;  RPPH1  F:  CGGAGGGAAGCTCATCAGTG,  R:

CCGTTCTCTGGGAACTCACC,  TERT  F:  CTCGGATCATGCTGAGGACC,  R:

TTGTGCAATTCTGTGCCAGC,  TP53  F:  CAGTCACAGCACATGACGGA,  R:

GGGCCAGACCTAAGAGCAAT). qPCR was performed on genomic DNA from all  69
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tumor sections and the patient's blood using the LightCycler 480 SYBR Green I master

mix  and  LightCycler  480  qPCR  machine  according  to  the  manufacturer's

recommendations (Roche, Nutley, NJ). Measurements were triplicated and data were

analyzed using the standard curve method. Copy numbers were determined for  TP53

and  ACCS and  two  control  genes  on  different  chromosomes:  ribonuclease  P RNA

component  H1  (RPPH1)  and  telomerase  reverse  transcriptase  (TERT)  (data  not

shown). Relative copy number was determined by dividing the mean copy number of

TP53 and ACCS by the mean copy number of each reference gene separately to get a

ratio and multiplying the ratio by two to obtain the diploid chromosome number. The

relative copy number normalized to one of the reference genes (RPPH1) is shown in

Fig. 2.3e.

2.2.15 Copy number variation (CNV) calling (bulk data)

CNVs were quantified using multiple technologies and algorithms to generate reliable

estimates.  Although WES remains the gold-standard method for calling CNVs, DNA

methylation and RNA-seq data provide cost-effective options that can be triangulated

with  sparse  WES  data  to  reduce  false  positives.  Unless  otherwise  noted,  default

parameters were used. For case one we used the champ.CNA function, included with

the ChAMP R package67, to call CNVs from DNA methylation data. For both cases, we

called CNVs from exome data using FACETS68 with critical values of 25 (case one) and

450 (case two). Finally, we used CNVkit with circular binary segmentation to call CNVs

from bulk RNA-seq data69–71.
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2.2.16 Generation of clonal trees with corresponding frequencies

CNVs were filtered to  ensure that  they were called in exome data and either  DNA

methylation data (case one) or RNA-seq data (case two) and covered more than 10% of

a chromosomal arm. CNV coordinates were defined based on the intersection of ranges

from  both  methods  (Tables  2.5  and 2.19).  Using  the  frequencies  of  CNV  /  SNV

mutations and tumor purity estimated from the  TP53 locus as input to PyClone25, we

determined cluster membership for SNP and CNV events. We then used the PyClone

output as the input to the CITUP algorithm26 to generate the most likely clonal tree (i.e.,

the tree with  the  minimum objective value)  and derive clonal  frequencies.  In  cases

where there was an approximate tie between objective values, the tree was manually

chosen  based  on  biologically  plausible  principles.  To  visualize  results  we  used  the

data.tree72 and DiagrammeR73 packages in R.

2.2.17 Gene coexpression network analysis

Genome-wide biweight  midcorrelations (bicor)  were calculated using the WGCNA R

package30 for case one (n = 20,019 genes) and case two (n = 23,870 genes).  All genes

were  clustered  using  the  flashClust31 implementation  of  hierarchical  clustering  with

complete linkage and 1 – bicor as a distance measure. Each resulting dendrogram was

cut at a static height (0.875 for case one and 0.562 for case two) corresponding to the

top  30% and  20% of  values  of  the  correlation  matrix  for  case  one  and  case  two,

respectively. All clusters consisting of at least 15 members for case one or five members

for case two were identified and summarized by their module eigengene32 (i.e. the first

principal  component  obtained  by  singular  value  decomposition)  using  the
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moduleEigengenes function of the WGCNA R package30. Highly similar modules were

merged  if  the  Pearson  correlation  of  their  module  eigengenes  was  >  0.80.  This

procedure was performed iteratively  such that  the  pair  of  modules with  the highest

correlation > 0.80 was merged,  followed by recalculation of  all  module eigengenes,

followed by recalculation of  all  correlations,  until  no pairs  of  modules exceeded the

threshold (case one: Table 2.7; case two: Table 2.22).

2.2.18 Module enrichment analysis

The WGCNA measure of module membership,  kME, was calculated for all genes with

respect  to  each  module.  kME is  defined  as  the  Pearson  correlation  between  the

expression pattern of  a  gene and a module eigengene and therefore quantifies the

extent to which a gene conforms to the characteristic expression pattern of a module32

(case  one: Table  2.8; case  two: Table  2.23).  For  enrichment  analyses,  module

definitions  were  expanded  to  include  all  genes  with  significant  kME values,  with

significance  adjusted  for  multiple  comparisons  by  correcting  for  the  false-discovery

rate74. If a gene was significantly correlated with more than one module, it was assigned

to the module for which it had the highest kME value. Enrichment analysis was performed

for all modules using a one-sided Fisher's exact test as implemented by the fisher.test R

function.

2.2.19 Lasso modeling of gene expression

The machine learning variable-selection method lasso (least absolute shrinkage and

selection operator) and group lasso were performed using the R package Seagull 75–77.
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Modeling was performed for each case with gene expression patterns as dependent

variables and clonal frequency vectors as independent variables. For case one, clone 2

was excluded from modeling due to its low frequency and clone 6 was excluded since it

was defined by a single CNV. Because clone 1 corresponds to the tumor purity vector,

which represents the major vector of variation in this dataset, many genes experience

inflated correlations to clone 1. To counteract this effect group lasso was performed. The

truncal  clone (clone 1) was placed in its own group and all  remaining clones to be

modeled  were  placed  in  a  separate  group.  This  procedure  improved  modeling

performance for  case one (Fig.  2.5f-g)  but  not  case two (Fig.  2.10f-g),  which may

reflect the greater variance in tumor purity for case one. As such, modeling results for

case two presented in the manuscript derive from the regular lasso model. For each

gene,  models  were  bootstrapped  (n  =  100)  to  address  collinearity  among  clonal

frequency  vectors78 (as  shown  in  Fig.  2.5h and  Fig.  2.10h).  We  also  generated

empirical null distributions for model performance by permuting each gene’s expression

profile prior to bootstrapping (n = 100).

When performing group-lasso modeling, only models with one surviving clonal

frequency vector (not including the truncal clone) were considered. When performing

lasso  modeling,  only  models  with  one  surviving  clonal  frequency  vector  were

considered. To quantify model stability, we calculated the number of times out of 100

bootstraps that the most frequent surviving independent variable was the sole surviving

variable. This stability metric was calculated for all gene models, including the permuted

models. From the resulting distributions of stability values, a 5% FDR threshold was

determined. For case one, the stability value of 73 represents the point beyond which
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5% or fewer of the models were permuted models. Similarly, for case two the 5% FDR

threshold for the stability metric was 45. Gene set enrichment analysis was performed

via a one-sided Fisher’s exact test for all genes with significant model stability for the

same  clonal  frequency  vector  (Tables  2.6  and 2.20  for  case  one  and  case  two,

respectively), with genes separated by the sign of the coefficient for the independent

variable (Tables 2.10 and 2.24 for case one and case two, respectively).

2.2.20 Differential gene coexpression analysis

Using  the  WGCNA  R  package30,  pairwise  biweight  midcorrelations  (bicor)  were

calculated among all 30,425 high-quality probes over all sections (n = 69–94) in each of

five datasets (case one + four normal human brain samples), generating five identically

proportioned  correlation  matrices  (30,425  X  30,425).  These  correlations  were  then

scaled  to  lie  between  [0,1]  using  the  strategy  of  Mason  et  al.79.  To  identify  gene

coexpression relationships that were present in tumor but absent or weaker in normal

human  brain,  each  scaled  bicor  matrix  produced  from  normal  human  brain  was

subtracted80 from the scaled bicor  matrix  produced from case one,  resulting in four

“subtraction matrices'', or SubMats. The consensus of the four SubMats was formed by

taking the minimum value at each point in the four matrices using the parallel minimum

(pmin) R function, and the resulting “Consensus SubMat'' was used as input for gene

coexpression analysis (Fig. 2.6a). By definition, gene coexpression modules identified

with this strategy will consist of groups of genes with expression patterns that are highly

correlated in the astrocytoma but not in any of the normal human brain samples (Fig.

2.6a).
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Probes  in  the  Consensus  SubMat  were  clustered  using  the  flashClust31

implementation of a hierarchical clustering procedure with complete linkage and 1 –

Consensus SubMat as a distance measure. The resulting dendrogram was cut at  a

static height of ~0.38, corresponding to the top 2% of values in the Consensus SubMat.

All clusters consisting of at least 10 members were identified and summarized by their

module eigengene32 using the moduleEigengenes function of the WGCNA R package30.

Highly  similar  modules  were  merged  if  the  Pearson  correlation  of  their  module

eigengenes was > 0.85. This procedure was performed iteratively such that the pair of

modules with the highest correlation > 0.85 was merged, followed by recalculation of all

module  eigengenes,  followed  by  recalculation  of  all  correlations,  until  no  pairs  of

modules exceeded the threshold. The WGCNA30 measure of intramodular connectivity

(kME)  was  calculated  for  all  probes  (n  =  47,202)  with  respect  to  each  module  by

correlating  each probe's  expression  pattern  across all  69  tumor  sections with  each

module eigengene.

2.2.21 Single-nucleus DNA-sequencing and analysis

Three sections from case two (sections 29 and 113 / 115, which were combined) were

analyzed  by  MissionBio,  Inc.  (MissionBio,  San  Francisco,  CA)  using  their  Tapestri

microfluidics platform for single-nucleus DNA amplicon sequencing81. Using an in-house

protocol, 4,433 (section 29) and 3,736 (sections 113 / 115) nuclei were extracted and

recovered for analysis with the Mission Bio AML panel, which includes primers flanking

one  IDH1 and two  TP53 loci. In addition, chr17 chromosomal copy number changes

and  TP53  zygosity  were  inferred  from  a  germline  heterozygous  intronic  mutation
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upstream  of  TP53  G245V  that  happened  to  fall  within  the  targeting  panel

(NC_000017.11:g.7674797T>A). Sequencing was performed on a MiSeq (Illumina Inc.,

San Diego, CA), yielding an average of 6,801 (section 29) or 6,433 (sections 113 / 115)

reads per nucleus, with alignment rates of ~90%. Hierarchical clustering of nuclei for

mutations of interest was performed separately for section 29 and sections 113 / 115

using complete linkage and Euclidean distance, with k = 4 chosen based on silhouette49

and  elbow  plots48.  Genotype  calls  for  the  clusters  were  manually  annotated  as

described in Fig. 2.8f and Table 2.21.

2.2.22 Single-nucleus RNA-sequencing and analysis

2.2.22.1 Library prep and sequencing

Four sections (17, 53, 93, 117) from case two were used to generate single-nucleus

RNA-seq  (snRNA-seq)  data.  Our  approach  was  adapted  from  TARGET-Seq82,  a

protocol  utilizing  dual-indexing of  sample  barcodes  and  unique molecular  identifiers

(UMIs) of captured transcripts. Briefly, for each section, lysis was performed by dounce

homogenization with staining of nuclei  by Hoescht3342 and subsequent flow-sorting

into three 96-well  plates per  section.  Each plate was randomized and subsequently

processed individually and in random order. We used the SmartScribe kit (Takara Bio

USA, San Diego, CA) for RT-PCR, followed by PCR with the SeqAmp PCR kit (Takara

Bio USA, San Diego, CA). Unlike TARGET-Seq, the RT reaction was performed using

only polyA primers (Table 2.26). ERCC spike-in control RNA was added to the wells

according  to  manufacturer’s  instructions  to  facilitate  identification  and  correction  of

batch  effects.  Wells  for  each  plate  were  pooled  in  equivolume  proportions  and  an
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Agilent  2100 Bioanalyzer  (Agilent  Technologies  Inc.,  Santa Clara,  CA) was used to

assess  sample  quality  and cDNA concentrations  were  quantified  using  a  Qubit  2.0

Fluorometer with the dsDNA-High Sensitivity kit (Life Technologies Inc., Carlsbad, CA),

yielding mean cDNA concentration of 1ng/ul. Concentrations were normalized prior to

tagmentation (Nextera Kit, Illumina Inc., San Diego, CA) and amplification of 3’ ends, as

in TARGET-Seq82. Sequencing was performed using the 150-cycle high-throughput kit

on an Illumina NextSeq550 at SeqMatic (Fremont, CA) with dual-indexed sequencing

and read parameters as in TARGET-seq.

2.2.22.2 Data preprocessing

snRNA-seq raw reads were demultiplexed and basecalled using “bcl2fastq” (Illumina

Inc., San Diego, CA). Barcodes were filtered using the “umi_tools” package83 whitelist

function, with a Hamming distance of 2 and the density knee method to determine the

number of true barcodes. 809 / 1152 nuclei (70.2%) passed this initial quality control

step. Reads were assessed with FastQC to ensure the quality of sequencing data by

verifying high base-quality scores, lack of GC bias, narrow distribution of sequencing

lengths, and low levels of sequence duplication or adapter sequences61. Next, reads

were subjected to adapter trimming using the Trimmomatic algorithm84 with a minimum

length of 30, a minimum quality of 4 with a 15 bp sliding window, and otherwise default

settings. A mean of 445,082 reads / nucleus was achieved at this stage. Reads were

subsequently  aligned  using  ENCODE  RNA-seq  settings  (except  for

outFilterScoreMinOverLread,  which  was  set  to  0)  with  the  STAR  program85 to  the

Genome Reference Consortium Human Build 3864. Finally, an expression count matrix
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was  generated  using  the  FeatureCounts  program86 with  Gencode’s  library  of  gene

features  (version  21)87,  subset  using  the  “gene”  attribute  (n  =  60,708  features).

Deduplication of UMIs was performed using a custom R script,  resulting in a mean

number of 206,638 unique reads / nucleus, a 46% deduplication rate. Features with

counts  less  than  one  in  more  than  90%  of  cells  were  removed  (n  =  57,021  final

features).   Data were normalized with the RUVg package, regressing out 10 factors

derived from PCA of the ERCC spike-in control expression matrix66. Normalized counts

were further processed using the Sanity package19, with 1000 bins and a minimum and

maximum  variance  of  0.001  and  1000,  respectively.  Internuclear  distance  was

determined using the Sanity_distance function with a signal to noise parameter of 1 and

inclusion of error bars.

2.2.22.3 snRNA-seq clustering and differential expression analysis

snRNA-seq data were hierarchically clustered using the hclust function in R with Ward’s

method  and  the  distance  metric  derived  by  Sanity19.  This  distance  metric  uses  a

Bayesian approach by giving less weight to gene expression estimates with large error

bars  when calculating  cell  distances.  The optimal  number  of  clusters  (k  = 12)  was

determined  using  elbow48 and  silhouette  plots49 with  the  cluster  package  in  R50.

Differential  expression  analysis  (t.test)  was performed between each cluster  and all

other  clusters  using  Sanity-adjusted  expression  values  for  all  genes.  The  resulting

distributions  of  t-values  were  then  compared  for  genes  comprising  the  bulk

coexpression  modules  most  strongly  associated  with  each  malignant  clone  /

nonmalignant cell type and all other genes (white and black distributions, respectively, in
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Fig.  2.11a-j;  significance  was  evaluated  with  a  one-sided  Wilcoxon  rank-sum test).

Module  genes  were  defined  as  those  that  were  significantly  correlated  with

corresponding  bulk  coexpression  module  eigengenes  as  determined  by  the  FDR

threshold74.  If  a  gene  was  significantly  correlated  with  more  than  one  module

eigengene, it was assigned to the module for which it had the highest kME value.

2.2.22.4 CNV calling

The  snRNA-seq  count  matrix  was  used  as  input  to  CopyKat88.  Nuclei  snRNA-seq

clusters determined to be non-malignant by snAmp-seq were used as normal control

cells. “KS.cut” was set to 2, “ngene.chr” was set to 20, and Ensembl gene names were

used.  InferCNV89 was  provided  with  a  vector  of  nonmalignant  cells  (as  previously

determined) based on clustering and snAmp-seq in “subclusters” mode, with a cutoff

parameter of 1, and denoising turned on, “ward.D” as clustering method, “qnorm” as

subcluster partition method, and tumor subcluster p-value of 0.05. The Hidden Markov

model was not used. The program CaSpER90 was run with the raw snRNA-seq count

matrix  as  input  and  default  settings,  again  using  snRNA-seq  clusters  of  nuclei

determined to  be malignant  by  snAmp-seq as negative controls.  For  each of  these

algorithms, the outputs were clustered based on Euclidean distance using Ward’s D

method. Clusters with no CNV signal were labeled nonmalignant while all other clusters

were presumed to represent malignant cells. 

Sensitivity and specificity were calculated using the snAmp-seq data as ground

truth. True positives (TP) were defined as the intersection of malignant calls by the CNV

calling algorithm and the snAmp-seq data. True negatives (TN) were defined as the
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intersection of  nonmalignant calls by the CNV calling algorithm and the snAmp-seq

data. False negatives (FN) and false positives (FP) were similarly defined. Nuclei with

insufficient data were excluded from the analysis. Sensitivity was defined as: TP / (TP +

FN), while specificity was defined as: TN / (TN + FP). Accuracy was defined as (TP +

TN) / (TP + FP + TN + FN).

2.2.22.5 UMAP and trajectory analysis

UMAP was performed for all nuclei (n = 809) with a starting seed of 15, 30 neighbors, a

spread of 3, a minimum distance of 2, and 1 – Pearson correlation as a distance metric

using the “uwot” R package91 after selecting the first 30 principal components of the

Sanity-corrected  expression  matrix  including  all  genes.  UMAP was  also  performed

separately for all  cells associated with malignant clusters using the Sanity-corrected

expression matrix. After selecting the first 15 principal components, the “uwot” package

was used with a seed of 15, 20 neighbors, a spread of 3, a minimum distance of 2, and

1-Pearson correlation as the similarity metric. All  other settings were left as defaults.

Trajectory analysis was performed with the Slingshot R package92 on the UMAP plot.

The “simple” distance method was used and all  other parameters were left as their

default values.

2.2.22.6 Gene set enrichment analysis

Enrichment analysis (one-sided Fisher’s exact test) was performed for each snRNA-seq

cluster using genes that were differentially expressed in that cluster relative to all other
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clusters  using a one-sided Wilcoxon rank-sum test.  Resultant  p-values were further

FDR-corrected to q-values74. Gene sets used for enrichment analysis are listed in Table

2.9.

2.2.22.6 Amp-seq genotyping

Single-nucleus  amplicon-seq  (snAmp-seq)  was  adapted  from  the  TARGET-seq

protocol82.  Primers flanking the following mutations (marking the truncal  clone) were

designed with Primer393: IDH1 R132H, TP53 G245V, and RUFY1 K218N (Table 2.26).

To overcome lack of heterogeneity in sequencing, random spacers were added to the

beginning (5’ end) with 0 - 5 nucleotides from the sequence CGTAC. Finally, a common

sequence was added to the 5’ end of the primer for a second round of PCR (Table

2.26). We selected wells that passed QC for snRNA-seq analysis and processed each

plate  separately  and  in  random order.  Amplification  of  the  first  round  of  PCR was

performed with the KAPA 2G Ready Mix (Roche Inc., Nutley, NJ) with the same PCR

program as for TARGET-Seq82. The program “Barcrawl”94 was used to create custom

dual-index barcodes for the amplification PCR. At this stage 10% of wells were checked

using an Agilent 2100 Bioanalyzer (Agilent Inc., Santa Clara, California) to determine

whether products of appropriate size were produced. All wells were quantified with a

Qubit  2.0  Fluorometer  using  the  dsDNA-High Sensitivity  kit  (Life  Technologies  Inc.,

Carlsbad, CA) and normalized prior to the next step. The second round of PCR used

custom  sequencing  primers  that  were  partially  complementary  to  the  previous

sequences, with custom dual-index barcodes generated from BarCrawl94 and Illumina
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P5 / P7 sequences. Sequencing was performed using a 300 cycle Miseq v2 Nano kit on

a MiSeq (Illumina Inc., San Diego, CA).

snAmp-seq data were demultiplexed and basecalled using “bcl2fastq” (Illumina

Inc.,  San HDiego, CA). Reads were assessed with FastQC to ensure the quality of

sequencing  data  by  verifying  high  base  quality  scores,  lack  of  GC  bias,  narrow

distribution of sequencing lengths, and low levels of sequence duplication or adapter

sequences61. Next, reads were subjected to adapter trimming using the Trimmomatic

algorithm84 with a minimum length of 30, a minimum quality of 4 with a 15 bp sliding

window, and otherwise default  settings84.  Reads were subsequently aligned with the

STAR program to a custom version of the genome containing only the amplicons of

interest. Default parameters were altered such that no multiple alignments or splicing

events were allowed. The median number of reads per nucleus for each amplicon was

(IDH1 R132H: 177; TP53 G245V: 246; RUFY1 K218N: 209). Read counts supporting

the reference or variant allele within each amplicon were determined using the read

counts  function  from VarScan  247 and  these counts  were  used  to  calculate  variant

frequencies. Nuclei were sorted into three categories: called nuclei (calls by VarScan 2

of two or more mutant or two or more wild-type [WT] calls of the three loci with either

one or zero indeterminate calls), discrepant nuclei (two WT and one mutant call), and

insufficient  data  nuclei  (two or  more  loci  in  which  VarScan 2  was  unable  to  call  a

genotype). The breakdown for these categories is as follows: 75% called nuclei, 1%

discrepant nuclei, and 24% insufficient data nuclei (Table 2.27).
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2.2.23 Inter-case analysis

Combined Pearson correlations to tumor purity for the 15,288 genes shared between

case one and case two were determined by calculating the weighted average of the z-

scores produced by Fisher’s transformation, dividing this value by the joint standard

error, and applying the inverse Fisher transformation23. To define significant genes for

enrichment analysis (Fig. 2.16a-b), a minimum absolute value for Pearson’s correlation

of > 0.3 or < -0.3 was required in both cases along with an FDR-corrected q-value of <

0.05. Enrichment analysis was performed as described above, with gene sets listed in

Table  2.9.  Significant  positively  correlated  genes  were  subjected  to  protein-protein

interaction (PPI) analysis using the STRING database95. We used the STRINGdb95,96,

network97, intergraph98, and ggnetwork99 packages to visualize the results of STRING

PPI analysis. The “physical” network flavor and minimum score of 900 was utilized to

guarantee that all depicted interactions were actual PPIs with experimental evidence.

Clusters with more than five members were chosen from the set of interaction clusters

generated  from all  genes  that  had  positive  correlations  and  passed  the  correlation

cutoffs listed above. Enrichment analysis of PPI clusters was performed as described

above, with gene sets listed in Table 2.9.

2.2.24 Histology and immunostaining

Tumor tissue was fixed in 10% neutral-buffered formalin, processed, and embedded in

paraffin.  Tumor  sections  (5 μm)  were  prepared  and  stored  at  -20ºC  prior  to  use.

Hematoxylin  and eosin staining was performed using standard methods.  As part  of

clinical  evaluation,  the  proliferative  index and TP53 mutation  status  were  estimated
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based on review of  immunostained slides  for  KI67 or  TP53,  respectively.  Briefly,  in

regions with increased signal the percent of tumor cells staining was estimated based

on review of ten 200x fields.

Anti-AKR1C3  was  selected  based  on  statistical  considerations  pursuant  to

bioinformatic analyses and after preliminary validation of efficacy in human tissue via

The  Human  Protein  Atlas100 (http://www.proteinatlas.org).  Primary  antibodies  and

conditions  were  IDH1 R132H (DIA-H09,  Dianova,  mouse  clone  H09,  dilution  1:50);

AKR1C3  (Catalog#  AB84327,  Abcam,  rabbit  polyclonal,  dilution  1:600  for  single

immunohistochemistry  and  1:1200  for  dual  immunofluorescence);  and  TP53  (1:25,

Novocastra, catalog # P53-D07-L-CE-H). Heat antigen retrieval was performed in Tris-

EDTA at  pH8.  Following  antigen  retrieval,  sections  for  immunohistochemistry  were

treated with 3% methanol-hydrogen peroxide at 22°C for 16 min. 

All  immunostaining  and  multiplex  immunostainings  were  performed  using  a

Discovery XT autostainer or Benchmark XT (Ventana Medical Systems, Inc., USA). For

signal detection, the Multimer HRP kit (Ventana Medical Systems, Inc., USA) followed

by either  DAB or  fluorescent  detection  kits  were  used.  Fluorophores  with  the  least

autofluorescence on FFPE tissue were selected to minimize false positives: Cyanine 5

(Cy5)  (DISCOVERY  CY5  Kit,  Cat#760238,  Roche  Diagnostics  Corporation,

Indianapolis, USA) and rhodamine (DISCOVERY Rhodamine Kit, Cat#760233, Roche

Diagnostics Corporation, Indianapolis, USA). Slides were then counterstained with DAPI

(Sigma Aldrich, USA) at 5 μg/ml in PBS (Sigma Aldrich, USA) for 15 minutes, mounted

with prolong Gold antifade mounting media reagent (Invitrogen, USA) and stored at -

20ºC prior to imaging. Positive and negative controls were included for each marker.
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Images of stained slides were acquired using either a light microscope (Olympus BX41

microscope using  UC90 Cooled CCD 9 Megapixel  camera)  or  Zeiss  Cell  Observer

epifluorescence microscope equipped with an AxioCam 506M camera and an Excellitas

X-Cite 120Q light source and processed with Photoshop CS6 (Adobe systems, San

Jose, CA). Nonmalignant tissue analyzed in Fig. 2.16 was obtained from a patient with

epilepsy and corresponds to normal tissue adjacent to epileptic foci.

2.2.25 Data analysis and figure production

Unless otherwise stated, all analyses were performed in the R computing environment

(https://www.r-project.org).  Figures  were  produced  with  the  aid  of  the  R  packages

ggplot2101,  data.table102,  RColorBrewer103,  gridExtra104,  ComplexHeatmap105,  Circlize106,

and ggsignif107.

2.22.26 Data and code availability

All data are publicly available for download under NCBI Bioproject ID PRJNA953039.

Code for processing data and producing figures featured in this manuscript is available

on  GitHub:  https://github.com/oldham-lab/Deconstructing-Intratumoral-Heterogeneity-

through-Multiomic-and-Multiscale-Analysis…
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2.3 Results

2.3.1 Rationale

Intuitively, genes whose expression patterns correlate most strongly with the abundance

of  a  cell  type should  include optimal  biomarkers.  This  intuition  can also  be proven

mathematically and empirically.  Fig. 2.1a-c illustrates a hypothetical example in which

the goal is to identify optimal transcriptional markers of malignant cells in a human brain

tumor.  A  conventional  strategy  would  involve  physically  isolating  individual  cells,

transcriptionally  profiling  them  by  single-cell  RNA-seq  (scRNA-seq),  inferring  the

malignancy of individual cells from the scRNA-seq data based on the presence of driver

mutations (CNVs and/or SNVs), and performing differential expression analysis for each

gene between all malignant and nonmalignant cells (for example, using a t-test;  Fig.

2.1b).  Fig. 2.1c  shows an alternative analytical path that leads to the same place: by

correlating  expression  levels  of  the  same  hypothetical  gene  from  Fig.  2.1b  with  a

dichotomous  variable  denoting  malignant  cell  abundance  (1=malignant  cells,

0=nonmalignant cells), the resulting statistical significance is identical to that obtained

by differential expression analysis.

Although  the  t-test  and  correlation  produce  identical  results  when  the

independent variable is dichotomous, this is not the case when the independent variable

is continuous. However, we have shown via pseudobulk analysis of scRNA-seq data

from normal adult human brain that: i) the correlation between the expression pattern of

a gene and the [continuous] abundance of a cell type accurately predicts differential

expression of that gene in that cell  type, and ii) cell-type-specific gene coexpression

relationships  accurately  predict  cellular  abundance  in  pseudobulk  samples23.  To
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determine whether these findings extend to malignant cells, we repeated this analysis

using scRNA-seq data from 10 adult human astrocytomas29 (Fig. 2.1d). Genome-wide

gene coexpression analysis of pseudobulk samples obtained by randomly aggregating

scRNA-seq data revealed a malignant  cell  coexpression module whose eigengene32

(i.e., first principal component, which summarizes the characteristic expression pattern

of  the  module  over  all  samples)  closely  tracked  the  actual  abundance  of  sampled

malignant cells (Fig. 2.1e-f). Furthermore, the genes that were most significantly up-

regulated  in  malignant  cells  per  differential  expression  analysis  of  the  underlying

scRNA-seq  data  (Fig.  2.1d)  also  had  the  highest  correlations  to  malignant  cell

abundance in pseudobulk data (Fig. 2.1g). These results show that gene expression

profiles  of  malignant  cells  can  be  revealed  by  correlating  genome-wide  expression

patterns with malignant cell abundance in heterogeneous tumor samples.
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Figure 2.1 | Rationale: Differential expression in malignant vs. nonmalignant cells
accurately  predicts  correlation  to  malignant  cell  abundance  in  pseudobulk
samples.
a-d) Analysis schematic. An adult malignant glioma consisting of malignant cells (pink)
interspersed with nonmalignant cells (a). b) Single-cell RNA-seq (scRNA-seq) reveals a
hypothetical  gene  (gene  X)  that  is  significantly  up-regulated  in  malignant  vs.
nonmalignant cells. (Figure caption continued on the next page.)
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(Figure  caption  continued  from the previous page.)  c) Correlating  the  same gene’s
expression  pattern  with  a  binary  vector  encoding  malignant  cell  abundance  (1  =
malignant, 0 = nonmalignant) produces identical results. d) Left: scRNA-seq data from
10 adult human IDH-mutant astrocytomas29 were randomly sampled and aggregated to
create 100 pseudobulk samples. Right (top): Genome-wide differential expression (DE)
was analyzed for all sampled cells. Right (bottom): Genome-wide gene coexpression
was analyzed for all pseudobulk samples. Each pseudobulk module was summarized
by its module eigengene (PC1), which was compared to malignant cell abundance, and
the correlation between each gene and each module eigengene (module conformity, or
kME) was calculated. e) A pseudobulk malignant cell module featuring the top 15 genes
ranked by kME. By correlating the module eigengene to pseudobulk tumor purity (f), we
see  that  this  module  is  driven  by  variation  in  malignant  cell  abundance  among
pseudobulk samples.  g) The correlation between gene expression and malignant cell
abundance  (pseudobulk  kME)  predicts  the  extent  of  DE identified  via  scRNA-seq  of
malignant vs. nonmalignant cells.

2.3.2 Case 1: clonal composition 

To put  these ideas into  practice,  we obtained a resected specimen from a primary

diffuse glioma that was removed from the left cerebral hemisphere of a 40 y.o. female

who  presented  with  language  deficits  (Fig.  2.2a-c).  Molecular  pathology  revealed

evidence for mutations in  IDH1 and TP53 (Fig. 2.2d-e), no evidence for chromosome

1p/19q  codeletion  (data  not  shown),  and  KI67  labeling  of  6%  (data  not  shown),

consistent with a CNS WHO grade 2 astrocytoma, IDH-mutant. We reasoned that sub-

sampling (via serial sectioning) would introduce variation in cellular composition across

sections,  which  would  in  turn  drive  covariation  of  molecular  markers  for  distinct

subpopulations of malignant and nonmalignant cells. We therefore cut 81 cryosections

along the tumor specimen’s longest axis (Fig. 2.2f), followed by automated DNA/RNA

extraction from each section (Table 2.1).  To identify mutations and characterize the

clonal landscape, we performed WES on DNA isolated from sections 14, 39, 69, and the

patient's blood. Mutations detected in blood or in genes with very low tumor expression

levels were excluded. Of the remaining 33 mutations (Table 2.2), including an in-frame
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deletion  in  ATRX,  which  is  often  mutated  in  IDH-mutant  astrocytomas108,  18  were

validated  by  Sanger  sequencing,  five  were  validated  by  deep  sequencing  of  PCR

amplicons spanning each mutation (amp-seq; Table 2.3), and ten (mostly indels) could

not be validated (Table 2.2). Among the 23 validated mutations, 16 were detected by

WES  in  all  three  tumor  sections  and  seven  were  detected  in  only  one  section,

suggesting clonal heterogeneity among malignant cells (Fig. 2.3a).
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Figure  2.2  |  Multiomic  analysis  of  serial  tumor  sections  reveals  the  clonal
composition of a primary grade 2 IDH-mutant astrocytoma (case 1).
(Figure caption continued on the next page.)
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(Figure caption continued on the next page.) Axial T2  (a)  and axial FLAIR (b) images
demonstrate  a  round,  well-defined  T2  and  FLAIR  hyperintense  intraaxial  left
temporoparietal  mass  that  is  non-enhancing  and  consistent  with  a  low-grade  glial
neoplasm. c) Image of the frozen tumor sample prior to cryosectioning and nucleic acid
isolation. d-e) Immunostaining for IDH1 R132H (d) and TP53 (e). Images: 400x. Scale
bars: 50 μm. f) Schematic of serial sectioning strategy and section usage plan. Amp-seq
=  deep  sequencing  of  PCR  amplicons  spanning  mutations  identified  by  exome
sequencing.  g)  Hierarchical clustering of mutations, using 1 – Pearson correlation of
amp-seq variant allele frequencies (VAFs) over all tumor sections (n = 69) as a distance
measure,  reveals  three  clusters.  Amp-seq  was  performed  in  two  sequencing  runs
(denoted by bold and regular fonts). h-k) VAF patterns comprising cluster 1 (h,i), cluster
2 (j), and cluster 3 (k). Cluster 1 was split to illustrate the effects of high (h) and low (i)
coverage.  l) Clone phylogeny (with arbitrary branch lengths) derived from integrated
analysis  of  SNVs  (from  amp-seq  data)  and  CNVs  (from  DNA methylation  data).
Percentages  represent  the  average  abundance  of  each  cellular  fraction  over  all
analyzed  sections  (n  =  68).  m) Estimated  cellular  fractions  for  all  clones  and
nonmalignant cells over all sections (n = 68).

To determine the relative abundance and spatial distributions of cells carrying

mutations  within  the  tumor  specimen,  we  quantified  VAFs  for  validated  somatic

mutations in each tumor section. We first used droplet digital PCR (ddPCR) to quantify

VAFs for IDH1 R132H and observed that this method was highly reproducible (Fig.

2.3b). However, given the limited amount of DNA from each tumor section (Table 2.1), it

was not feasible to quantify all VAFs in this fashion. We therefore tested whether amp-

seq yielded VAFs for IDH1 R132H that were comparable to those obtained by ddPCR.

We observed high concordance between these methods (Fig. 2.3b) and subsequently

used  amp-seq  to  quantify  VAFs  for  all  validated  somatic  mutations  over  all  tumor

sections, with theoretical VAF detection sensitivity of < 1%.
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Figure 2.3 | Mutation validation (case 1).
a) Nonsynonymous mutations were identified by exome sequencing of tumor sections
14, 39, 69, and the patient’s blood. Green track: variant allele frequencies (VAF) for
each mutation in each section. Black tracks: mutation validation by Sanger sequencing
and amp-seq, which is more sensitive. Blue track: gene mutation frequencies in TCGA
astrocytomas (n = 286). Red track: mean expression percentiles for each gene over all
tumor  sections.  b)  Amp-seq  and  droplet-digital  PCR  (ddPCR)  yielded  consistent
estimates of IDH1 R132H variant frequencies (n = 69 tumor sections; rep. 1 and rep. 2
denote technical replicates using the same input DNA). Shaded areas represent two
standard errors.  c-d)  Downsampling of amp-seq reads for IDH1 R132H (c)  and TP53
L145P (d) was performed in each tumor section to achieve desired coverage levels (x-
axis). For each downsampling (n = 1,000), the root mean square-error (RMSE; top) and
Pearson’s correlation (bottom) was calculated with respect to the true VAF (calculated
using all reads) over all sections (n = 69). e) Relative copy number was determined by
SYBR  Green  qPCR  for  TP53 and  ACCS loci  using  genomic  DNA from  69  tumor
sections  and  blood.  The  mean  of  triplicate  measurements,  normalized  to  RNaseP
(RPPH1) copy number, is shown. Shaded areas represent two standard errors. f) Top:
Concordant  estimates  of  chr17p  loss-of-heterozygosity  (LOH)  in  the  same  tumor
sections  (n  =  3)  were  obtained from exome data  by  analyzing  changes in  B-allele
frequencies and from amp-seq data by analyzing TP53 L145P VAF, which is equivalent
to chr17p LOH frequency since both events are truncal.  Bottom: Concordant estimates
of CNV frequencies in the same tumor sections (n = 3) were obtained using FACETS 68

and ChAMPS67 to analyze exome and DNA methylation data, respectively. 

Amp-seq was performed in two sequencing runs: an initial run consisting of 25 

amplicons (mean coverage: 3.0x103 reads/mutation/section) and a second run 

consisting of nine amplicons (mean coverage: 1.7x104 reads/mutation/section). To 

analyze the stability of amp-seq-derived VAFs, we downsampled reads spanning IDH1 

R132H or TP53 L145P and calculated the root-mean-square-error (RMSE) and Pearson

correlation between VAFs from full and downsampled read depths. This analysis 

revealed monotonic improvement in VAF estimates as a function of read depth (Fig. 

2.3c-d). Notably, VAFs derived from 100-200x coverage were far noisier than VAFs 

derived from full coverage, indicating that conventional WES data are inadequate for 

precisely estimating VAFs and malignant cell abundance.
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We performed unsupervised hierarchical clustering of amp-seq data to identify

mutations with similar VAF patterns within the tumor sample (Fig. 2.2g and Table 2.4).

This analysis revealed three distinct clusters. Cluster 1 included 15 mutations with VAFs

that  decreased  in  the  latter  sections  of  the  tumor  sample,  which  were  separated

according to sequencing run to display the effects of read depth (Fig. 2h,i). Cluster 2

included four mutations with VAFs that  increased in the latter sections of  the tumor

sample (Fig. 2.2j). Cluster 3 included three mutations 

with VAFs that peaked in the middle sections of the tumor sample (Fig. 2.2k).

Table  2.1  |  Mutations  detected  using  exome  sequencing  along  with  their
consequence and incidance in TCGA astrocytoma cases.

Gene Chr Consequence Protein Mean VAF TCGA VAF

TP53 17 missense_variant Leu145Pro 0.6629 0.6433

ATRX X inframe_deletion Glu1464del 0.4180 0.5411

TEC 4 missense_variant Phe92Leu 0.3824 NA

IDH1 2 missense_variant Arg132His 0.3770 0.3378

IAPP 12 missense_variant Asn55Ser 0.3254 NA

PASD1 X missense_variant Thr679Ala 0.3458 NA

GDPD2 X missense_variant Ala104Thr 0.4209 0.1509

CTNNA3 10 missense_variant Asp364Gly 0.3653 0.5106

C2 6 missense_variant Arg162Gln 0.3545 0.1991

H4C12 6 missense_variant Gly102Asp 0.3343 NA

PLA2G4D 15 missense_variant Ala692Val 0.3105 0.3438

TBCC 6 missense_variant Arg12Ser 0.3344 NA

MUC16 19 missense_variant Ile7543Phe 0.3211 0.2177

FAM193B 5 missense_variant Pro556Ala 0.3469 NA

SUSD4 1 stop_gained Gln37Ter 0.2961 NA

MUC21 6 missense_variant Glu409Asp 0.1267 NA

ACCS 11 missense_variant Ala197Thr 0.2202 0.2111

OR7C2 19 frameshift_variant Phe104SerfsTer12 0.2720 NA

RECQL 12 frameshift_variant Val41SerfsTer14 0.3214 NA

GPR173 X missense_variant Ala41Thr 0.1907 NA

PKD2 4 inframe_deletion Glu102del 0.1223 NA

PHF8 X 3_prime_UTR_variant 0.0356 NA

IL7R 5 frameshift_variant Arg267GlyfsTer28 0.0850 NA

WASL 7 inframe_deletion Pro303del 0.0450 NA
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Gene Chr Consequence Protein Mean VAF TCGA VAF

CSAG1 X frameshift_variant Lys65ArgfsTer86 0.0207 NA

ADGRG6 6 missense_variant Cys41Phe 0.0390 NA

BRINP1 9 missense_variant Arg622Gln 0.0510 NA

CTNND2 5 inframe_deletion Lys817del 0.0359 NA

NTRK1 1 missense_variant Glu377Gly 0.0444 NA

OR52N2 11 missense_variant Arg236His 0.0436 NA

PCLO 7 missense_variant Ser506Pro 0.0357 0.1144

SLC20A2 8 missense_variant Arg611His 0.0476 0.4178

ZFYVE16 5 missense_variant Asp874Asn 0.0435 NA

Focusing on the sequencing run with higher coverage,  we observed that five

mutations in cluster 1 (including IDH1 R132H) had VAFs over all tumor sections that

were statistically indistinguishable (Fig. 2.2h). Two other mutations (TP53 L145P and

ACCS A197T) followed a similar pattern but at different scales. For example, VAFs for

TP53 L145P were two-fold higher than VAFs for IDH1 R132H (Fig. 2.2h). We tested the

hypothesis  that  CNVs might  underlie  these patterns  by  performing  qPCR for  these

genes in each tumor section and the patient's blood. We observed approximately diploid

copy  numbers  for  both  genes  in  all  analyzed  sections  (Fig.  2.3e),  indicating  that

observed VAFs for these mutations are unlikely to result from CNVs. Instead, VAFs for

TP53 L145P appear to reflect copy-neutral loss of heterozygosity for chromosome 17p

(chr17p LOH) that occurred early in the tumor's evolution (but after the L145P point

mutation). Notably, the frequencies of chr17p LOH (derived from B-allele frequencies)

were highly concordant between WES and amp-seq data (r=0.99,  Fig. 2.3f  [top]). In

contrast, the lower VAFs for ACCS A197T suggest that this mutation appeared after the

other mutations comprising cluster 1.

To  determine  the  clonal  composition  and  evolutionary  history  of  the  tumor

specimen more precisely, we analyzed genome-wide CNVs and their relationships to
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SNVs quantified by amp-seq. CNVs were called from WES (n=3 sections) and DNA

methylation (n=68 sections) data using FACETS68 and ChAMPS67, respectively, yielding

highly concordant frequencies for copy number changes (r=0.92, Fig. 2.3f [bottom] and

Table 2.5).  Through combined analysis of SNV and CNV frequencies over all  tumor

sections, we produced an integrated model of tumor evolution. Specifically, we used

PyClone25 to jointly analyze SNV and CNV frequencies, which identified seven distinct

clusters  and  their  overall  prevalence.  Subsequently,  the  evolutionary  history  of  the

tumor  specimen  was  reconstructed  using  CITUP26,  which  produced  the  most  likely

phylogenetic tree (Fig. 2.2l) and frequencies of six malignant clones over all sections

(Fig. 2.2m and Table 2.6). These analyses confirmed the truncal nature of mutations in

IDH1 and  TP53108,  while  revealing  wide  variation  in  the  purity  of  individual  tumor

sections (range: 38.3 - 84.8%; Table 2.6).

2.3.3 Case 1: gene expression

Because DNA and RNA were co-isolated from the same tumor sections (Fig. 2.2f), we

explored the relationships between clonal abundance and bulk gene expression data.

We  first  performed  genome-wide  gene  coexpression  analysis  to  identify  groups  of

genes with similar expression patterns, which may reflect variation in the abundance of

malignant  clones  and  nonmalignant  cell  types.  We  identified  38  modules  of

coexpressed  genes  (arbitrarily  labeled  by  colors),  which  were  summarized  by  their

eigengenes and hierarchically clustered (Table 2.7, Fig. 2.4a-c).  As we have shown

previously23,24,27,28, many modules were significantly enriched with markers of distinct cell

types (Fig. 2.5a-d). By comparing cumulative clonal abundance (Fig. 2.2m) to module
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eigengenes  over  all  tumor  sections,  we  identified  five  gene  coexpression  modules

whose expression patterns closely tracked the abundance of clone 1 (turquoise: r =

0.97, Fig. 2.4d), clone 3 (blue: r = 0.84, Fig. 2.4e), clone 4 (black: r = 0.83, Fig. 2.4f),

clone 5 (midnightblue: r = 0.71,  Fig. 2.4g), and clone 6 (steelblue: r = 0.69, data not

shown). We did not identify a module that was significantly correlated with clone 2,

which represented only 0.001% of cells (Fig. 2.2l).
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Figure  2.4  |  Gene  coexpression  modules  are  highly  correlated  with  clonal
abundance (case 1).
a) Hierarchical clustering of gene coexpression modules over all tumor sections (n =
69).  b)  Module eigengenes (ME) illustrate the relative expression levels of genes in
each module over all tumor sections. c) The number of genes used to form each ME. d-
g)  Top  left:  MEs  with  the  strongest  correlations  to  clonal  abundance  (defined
cumulatively).  Locally  weighted  smoothing  (LOESS)  lines  are  shown;  correlation  is
based on data points. Bottom left: the 12 genes with the highest correlations to the ME
(kME). Right: enrichment analysis of gene coexpression modules using published gene
sets. FDR-corrected p-values (q-values) from one-sided Fisher’s exact tests are shown.
Positive  values  represent  enrichments  of  genes  that  were  significantly  positively
correlated to the ME, while negative values represent enrichments of genes that were
significantly  negatively  correlated  to  the  ME.  Gene  sets  representing  chromosomal
gains or losses include all genes within affected regions (as described in Fig. 2.2 and
Table 2.5). See Table 2.9 for descriptions and sources of featured gene sets.

To  characterize  these  modules,  we  performed  enrichment  analysis  with

biologically relevant gene sets (Fig. 2.4d-g). We first asked whether genes within clonal

CNV  boundaries  (Fig.  2l and  Table  2.5)  were  significantly  enriched  (for  gains)  or

depleted (for deletions) in the bulk coexpression modules most strongly associated with

each clone (Table 2.8). Notably, all such gene sets were significantly enriched in the

appropriate module and expected direction (e.g., chr7 gain for clone 1 [Fig. 2.4d], chr2p

deletion  for  clone 3 [Fig.  2.4e],  and chr10p gain  for  clone 5 [Fig.  2.4g]).  We next

analyzed publicly available gene sets from diverse sources (Table 2.9). We found that

the largest (turquoise) module, which closely tracked the abundance of clone 1 (i.e.,

tumor purity), was significantly enriched with markers of oligodendrocyte progenitor cells

(OPCs)  and  radial  glia,  genes  comprising  the  ‘classical’  subtype  of  glioblastoma

proposed by Verhaak et al.17 and numerous gene sets related to microglial infiltration

and  activation.  The  second  largest  (blue)  module,  which  tracked  clone  3,  was

significantly enriched with neuronal gene sets as well as genes that are down-regulated

pursuant to  IDH1  mutations. The black module, which tracked clone 4, was enriched
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with  astrocyte  markers  as  well  as  genes  that  are  differentially  regulated  during

development  and  glioma.  The  midnightblue  module,  which  tracked  clone  5,  was

enriched with markers of smooth muscle cells, genes comprising the ‘mesenchymal’

subtype of glioblastoma17,109, and gene sets related to epithelial-mesenchymal transition

and invasiveness.  The steelblue  module,  which tracked clone 6,  was enriched with

markers of non-resident immune cells (data not shown).
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Figure 2.5 | Linear modeling of gene expression using clonal frequencies reveals
concordant gene-set enrichments with coexpression modules (case 1).
(Figure caption continued on the next page.)
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(Figure caption continued from the previous page.)  a-d)  Left: snapshots of additional
gene  coexpression  modules  enriched  for  markers  of  nonmalignant  cell  types
(expression patterns for the top 12 genes ranked by kME are shown). Right: heatmaps of
gene set enrichment results for each module. Modules included genes that were most
specifically and significantly correlated (after FDR correction) to the module eigengene
(ME), and enrichment was assessed with a one-sided Fisher’s exact test (followed by
FDR correction;  see panel  i  for  legend).  e)  Correlation  heatmap for  the  cumulative
frequency vectors of identified clones.  f-g) Lasso regression75 was used to model the
expression of all genes (n = 20,018) as a function of clonal frequencies over all tumor
sections (n = 69). Violin plots illustrate the distributions of t-values for all models where
the indicated clone was the only  explanatory variable  that  survived lasso selection.
Permutations were performed by randomly scrambling clonal frequencies (n = 100) prior
to lasso regression. Real and permuted clonal frequency vectors were bootstrapped (n
= 100) to address collinearity. P-values denote the significance of the Anderson-Darling
test, which evaluates whether two distributions are likely to be derived from the same
distribution.  f) Results of a standard lasso model.  g) Results of a group lasso model
where the truncal clone (equivalent to tumor purity) was placed in a separate group due
to its strong effect on gene expression (Fig. 2.4c); note the general improvement in
Anderson-Darling test P-values. h) Density plot showing the number of times (out of 100
bootstraps) that the same explanatory (clonal frequency vector) variable was retained
by the  group lasso regression model,  or  ‘stability’.  Only  group lasso models  where
retained explanatory variables included the truncal clone and up to one other clone
were considered. The vertical line demarcates the point to the right of which only 5% of
values belong to the permuted distribution, i.e. a 5% FDR rate. i)  Enrichment analysis
(one-sided Fisher’s exact test) of genes that were significantly (FDR < .05) and stably
(FDR  <  .05)  associated  with  each  clone.  Gene  sets  are  described  in  Table  2.9.
Heatmap depicts -log10 FDR-corrected p-values (q-values; shared legend for a-d) after
comparing each gene set to all genes with stability > 73 for a given clone (one-sided
Fisher’s exact test). Positive values represent enrichments for genes with significant
positive correlations  to  the  ME (a-d)  or  significant  positive  modeling coefficients  (i),
while  negative  values  represent  enrichments  for  genes  with  significant  negative
correlations to the ME (a-d) or significant negative modeling coefficients (i).

To further characterize the transcriptional signatures associated with each clone,

we  used  multiple  linear  regression  to  model  genome-wide  expression  levels  as  a

function of  clonal  abundance.  To account  for  collinearity  and the dominant  effect  of

clone 1, we used a group lasso model with bootstrapped clonal abundance vectors (real

or permuted) as predictors (Fig. 2.5e-i).  We restricted our focus to genes that were

significantly and stably modeled by a single clone (in addition to clone 1, per the group

lasso model,  Table  2.10).  Enrichment  analysis  of  these genes  largely  recapitulated
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enrichment  analysis  of  gene  coexpression  modules  associated  with  each  clone,

including the associations of different clones with different cell types (Table 2.11  and

Fig. 2.5i).

The associations of different clones with different cell  types suggest two non-

mutually  exclusive  possibilities.  First,  different  clones  may  preferentially  express

different  cell-type-specific  transcriptional  programs.  Second,  different  clones  may

preferentially  associate  with  different  nonmalignant  cell  types  in  the  tumor

microenvironment,  leading  to  correlated  gene  expression  patterns.  Although  such

possibilities are ideally studied at the level of individual cells, all sections from this case

were consumed during  bulk  data production.  However,  we reasoned that  bona fide

transcriptional  signatures  of  malignant  clones should be absent  from non-neoplastic

human brains. To test this hypothesis, we profiled gene expression in 361 cryosections

from four neurotypical adult human brain samples (Table 2.12) and performed genome-

wide differential coexpression analysis by subtracting normal correlations from tumor

correlations,  such that tumor-specific gene coexpression relations would be retained

(Fig.  2.6a,  Table  2.13,  Table  2.14).  This  analysis  revealed  tumor-specific  gene

coexpression  modules  that  tracked  the  abundance  of  distinct  clones  and  largely

recapitulated the transcriptional signatures described in Fig. 2.4 and Fig. 2.5, including

preserved  enrichment  of  clone-specific  CNV  gene  sets  (Fig.  2.6b-e).  However,

enrichment  results  for  nonmalignant  cell-type-specific  gene  sets  became  less

significant, with the exception of OPCs and radial glia for clone 1, which became more

significant (Fig. 2.6b-e). These results suggest that derived clones may occupy distinct
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microenvironments, while the truncal clone retains signatures of progenitor cells that

may reflect the cell of origin.
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Figure 2.6 | Differential coexpression analysis of glioma and normal human brain
preserves gene coexpression modules associated with malignant clones (case 1).
(Figure caption continued on the next page.)
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(Figure caption continued from the previous page.) a) Genome-wide gene coexpression
relationships were calculated for each of the five tissue specimens (one astrocytoma
and four  normal  brain  controls)  over  all  tissue sections,  resulting  in  five  correlation
matrices with the same dimensions. Unbiased differential  coexpression analysis was
performed as illustrated. ACC = anterior cingulate cortex; EC = entorhinal cortex.  b-e)
Left: differentially coexpressed module eigengenes (ME) with the strongest correlations
to clonal abundance (defined cumulatively). Locally weighted smoothing (LOESS) lines
are  shown;  correlation  is  based  on  data  points.  Right:  enrichment  analysis  of
differentially coexpressed module genes using published gene sets. FDR-corrected p-
values  (q-values)  from  one-sided  Fisher’s  exact  tests  are  shown.  Positive  values
represent enrichments of genes that were significantly positively correlated to the ME,
while negative values represent enrichments of genes that were significantly negatively
correlated to the ME. Gene sets representing chromosomal gains or losses include all
genes within affected regions (as described in Fig. 2.2 and Table 2.5). See Table 2.9
for descriptions and sources of featured gene sets.

2.3.4 Case 2: clonal composition

To test our strategy on a more complex case, we obtained a resected specimen from a

recurrent diffuse glioma that was removed from the right cerebral hemisphere of a 58

y.o. male (Fig. 2.7a-c) approximately 28 years after the primary resection. Molecular

pathology revealed evidence for mutations in IDH1 and TP53 (Fig. 2.7d-e), no evidence

for chromosome 1p/19q codeletion (data not shown), and KI67 labeling of 4% (data not

shown),  consistent  with  a  recurrent  CNS  WHO  grade  2  astrocytoma,  IDH-mutant.

Building on our observations from case 1, we applied the same strategy to case 2, with

five modifications. First, we increased power by analyzing more sections (Table 2.15).

Second, we rotated the sample 90° halfway through sectioning to capture intra-tumoral

heterogeneity in orthogonal planes (Fig. 2.7f). Third, we inferred CNVs from RNA-seq

data instead of DNA methylation data. Fourth, we increased the average sequencing

depth for amp-seq data. And fifth, we analyzed single nuclei from interpolated sections

to validate predictions from bulk sections (Fig. 2.7f).
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To identify somatic mutations, we performed WES on DNA from two sections in

each plane (22, 46, 85, 123;  Table 2.16) and the patient's blood. 227 mutations were

identified  and  74  were  selected  for  amp-seq  by  clustering  WES  VAFs  to  reveal

candidate  mutations  most  likely  to  mark  distinct  clones  (Table  2.17).  Of  these,  58

mutations were verified by amp-seq (Table 2.18). As with case 1, downsampling reads

spanning  IDH1  R132H  or  TP53  G245V  revealed  monotonic  improvements  in  VAF

estimates  as  a  function  of  read depth  (Fig.  2.8a-b).  We therefore  restricted  further

analysis of amp-seq data to 27 mutations with high coverage over all tumor sections or

strong VAF correlations to other mutations (Fig. 2.8c). Hierarchical clustering of these

amp-seq data (Table 2.18) revealed five clusters of mutations with similar VAF patterns

within the tumor sample (Fig. 2.7g-l), suggesting multiple malignant clones.
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Figure  2.7  |  Multiomic  analysis  of  serial  tumor  sections  reveals  the  clonal
composition of a recurrent grade 2 IDH-mutant astrocytoma (case 2).
(Figure caption continued on the next page.)
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(Figure caption continued from the previous page.) Axial T2  (a)  and axial FLAIR  (b)
images demonstrate a non-enhancing, expansile, infiltrating glioma centered in the right
insula and involving the basal ganglia, inferior frontal lobe, and temporal lobe. Cystic
degeneration was present in the tumor. c) Image of the frozen tumor specimen prior to
cryosectioning and nucleic acid isolation.  d)  The tumor was determined to harbor the
IDH1 R132H mutation based on immunostaining with an antibody specific to the mutant
protein.  e) TP53 immunostaining demonstrated nuclear expression with an estimated
staining index of 20%. All histological images were captured at 400x. Scale bars denote
50 μm. f) Schematic of serial sectioning strategy and section usage plan. g) Hierarchical
clustering of mutations, using 1 – Pearson correlation of amp-seq VAFs over all tumor
sections  (n  =  85)  as  a  distance  measure,  reveals  five  clusters.  h-l) VAF  patterns
comprising cluster 1  (h), cluster 2  (i), cluster 3  (j), cluster 4  (k), and cluster 5  (l).  m)
Controlling for gene dosage reveals discordance of IDH1 R132H VAF with respect to
truncal  ATRX and  TP53 mutations,  which  is  explained  by  a  subclonal  deletion  of
chromosome  2q  (including  IDH1)  that  occurred  after  the  IDH1  point  mutation.  (n)
Heatmap  of  the  chromosome  2q  deletion  event  frequency  (as  determined  by
FACETS68),  with LOESS fit line (black) and smoothed 95% confidence interval (gray
envelope).  o) Clone phylogeny (with arbitrary branch lengths) derived from integrated
analysis of SNVs (from amp-seq data) and CNVs (from RNA-seq data). Percentages
represent the average abundance of each cellular fraction over all analyzed sections (n
= 85).  p) Estimated cellular  fractions for  all  clones and nonmalignant  cells  over  all
sections. Black vertical line denotes orthogonal sample rotation.

Because  mutations  in  IDH1,  TP53,  and  ATRX are  considered  diagnostic  for

astrocytoma108, we expected these to be truncal and were therefore surprised that IDH1

R132H fell  in a separate cluster from mutations in  TP53 and  ATRX (Fig. 2.7j-k).  To

explore this discrepancy, we analyzed VAFs for all three mutations after controlling for

gene dosage. This analysis revealed greater discordance between VAFs for IDH1 and

TP53  /  ATRX mutations in sectioning plane 1 vs. sectioning plane 2 (Fig. 2.7m). We

also observed that all genes in mutation cluster 4 (including IDH1) are located on chr2q.

These observations suggested that the discrepancy between  IDH1 and  TP53 /  ATRX

mutation VAFs might be explained by a subclonal deletion in chr2q pursuant to the IDH1

R132H mutation,  as  has been previously  reported110–112.  To  test  this  hypothesis,  we

quantified CNVs from WES (n=4 sections) and RNA-seq (n=90 sections) data using

FACETS68 and CNVkit69, respectively, which yielded highly concordant frequencies for
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copy number changes (r=0.97,  Fig. 2.8d and  Table 2.19), including a chr2q deletion

event. As expected, frequencies of the chr2q deletion event were substantially higher in

sectioning plane 1 vs. sectioning plane 2 (Fig. 2.7n) and almost perfectly correlated with

the observed discordance between IDH1 and TP53 / ATRX mutation VAFs (r=0.98, Fig.

2.8e).
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Figure 2.8 | Mutation validation (case 2).
a-b)  Downsampling of amp-seq reads for IDH1 R132H (a) and TP53 G245V (b) was
performed in each tumor section to achieve desired coverage levels (x-axis). For each
downsampling  (n =  1,000),  the root  mean square-error  (RMSE;  top)  and Pearson’s
correlation (bottom) was calculated with respect to the true VAF (calculated using all
reads)  over  all  sections  (n  =  85).  c) Nonsynonymous  mutations  were  identified  by
exome sequencing of tumor sections 22, 46, 85, 123, and the patient’s blood. Green
track: variant allele frequencies (VAF) for each mutation in each section. Black track:
mutations  validation  by  amp-seq.  Blue  track:  gene  mutation  frequencies  in  TCGA
astrocytomas (n = 286). Red track: genome-wide mean expression percentiles over all
sections (n =  90).  d) Concordant  estimates of  CNV frequencies in  the same tumor
sections (n = 4) were obtained using FACETS68 and CNVkit69 to analyze exome and
RNA-seq  data,  respectively.  e) Concordant  estimates  of  chromosome  2q  deletion
frequencies in the same tumor sections (n = 85) were obtained using amp-seq (Fig.
2.7m) and RNA-seq, which was analyzed by CNVkit. f) Clone phylogeny (with arbitrary
branch  lengths)  derived  from  single-nucleus  amp-seq  (snAmp-seq)  of  mutations
affecting the IDH1 and TP53 loci for section 29 (n = 4,433 nuclei) and sections 113/115
(n = 3,736 nuclei). Clone names are derived from  Fig. 2.7o, and the percentages of
nuclei assigned to each clone are shown.

Through  combined  analysis  of  SNV  and  CNV  frequencies  over  all  tumor

sections,  we  generated  an  integrated  model  of  tumor  evolution  using  the  same

approach described for case 1, including the most likely phylogenetic tree (Fig. 2.7o)

and frequencies of five malignant clones over all sections (Fig. 2.7p and Table 2.20).

Compared to case 1, there was substantially less variation in the purity of individual

tumor sections (range: 71.4 - 81.6%;  Table 2.20). We confirmed the truncal nature of

mutations in IDH1, TP53, and ATRX, along with gains of chr7, chr8, and chr9. To more

closely examine the sequence of early mutational events, we performed single-nucleus

DNA  sequencing  using  MissionBio’s  Tapestri  microfluidics  platform81.  We  took

advantage of an existing panel of cancer genes, which included primers flanking one

IDH1  and two  TP53 loci.  We were also able to infer chr17 and chr2q copy-number

changes using mutations that fell within the targeting panel. We analyzed 4,433 nuclei

from plane  1  (section  29)  and  3,736  nuclei  from plane  2  (sections  113  and  115).
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Clustering nuclei  from each plane revealed clonal  frequencies that  broadly matched

those obtained by bulk analysis (Fig. 2.8f, Table 2.21).  Interestingly, we observed a

subpopulation of clone 1 (clone 1a: 4.1 - 6.6%) with IDH1 R132H -/+ and TP53 G245V

-/+/+  genotypes  (Fig.  2.8f).  These  genotypes  suggest  that  TP53 LOH  occurred

mechanistically in this case through duplication of the mutant allele prior to loss of the

wild-type  allele,  and  may  also  explain  the  slightly  lower  VAFs  for  TP53  G245V

compared to the mutation in ATRX (Fig. 2.7j).

Table 2.2 | Top 64 mutations detected using exome sequencing along with their
consequence and indicance in TCGA astrocytoma cases.

Gene Chr Consequence Protein
Mean
VAF TCGA VAF

TP53 chr17 missense_variant Gly245Val 0.8005 0.643

ATRX chrX splice_acceptor_variant 0.7717 0.541

MAGEA12 chrX missense_variant Ala28Val 0.7387 NA

CASP1 chr11 missense_variant Arg161His 0.4261 NA

PAX7 chr1 missense_variant His335Tyr 0.4082 NA

ADGRE1 chr19 stop_gained Ser101Ter 0.3944 NA

MYH3 chr17 missense_variant Glu410Val 0.3837 0.358

CACNA1I chr22 missense_variant Ser897Asn 0.3824 0.309

EPB41L3 chr18 missense_variant Thr759Ser 0.3816 0.551

CDKN1A chr6 missense_variant Arg54Cys 0.3803 NA

F2RL1 chr5 missense_variant Thr301Ile 0.3785 NA

IDH1 chr2 missense_variant Arg132His 0.3681 0.338

WDR90 chr16 missense_variant Arg596Cys 0.3632 NA

C14orf37 chr14 missense_variant Asn428Ser 0.3594 0.624

DLGAP4 chr20 missense_variant Gln403His 0.3524 NA

RUFY1 chr5 missense_variant Lys218Asn 0.3420 0.342

ZNF175 chr19 missense_variant Glu388Gln 0.3380 NA

HOXD4 chr2 missense_variant Ile200Leu 0.3348 NA

PALB2 chr16 missense_variant Thr993Met 0.3340 NA

LRP2 chr2 missense_variant Ile581Thr 0.3248 0.329

OR11L1 chr1 stop_gained Arg54Ter 0.3230 NA

SLC39A6 chr18 missense_variant Arg351Gln 0.2966 NA
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Gene Chr Consequence Protein
Mean
VAF TCGA VAF

OR52H1 chr11 missense_variant Ala269Thr 0.2714 NA

LPAR1 chr9 missense_variant Met64Ile 0.2712 NA

TSPAN13 chr7 missense_variant Ala32Val 0.2430 NA

TTN chr2 missense_variant Arg35013His 0.2173 0.286

HRCT1 chr9 missense_variant Leu100His 0.1972 NA

FAM90A1 chr12 missense_variant Arg123Lys 0.1912 0.312

TNS3 chr7 missense_variant Ile305Thr 0.1830 0.223

VSIR chr10 missense_variant Arg116Cys 0.1660 NA

SSH1 chr12 stop_gained Glu525Ter 0.1588 NA

PPIG chr2 missense_variant Arg355His 0.1484 NA

ZSCAN10 chr16 missense_variant Arg706Trp 0.1399 NA

MUC17 chr7 missense_variant Ile3060Ser 0.1323 0.137

CHRM3 chr1 missense_variant Gly358Ala 0.1248 0.213

TMCO4 chr1 splice_region_variant 0.1243 NA

KRTAP5-1 chr11 missense_variant Ser105Cys 0.1228 NA

MLX chr17 missense_variant Arg88Cys 0.1160 NA

CYP2D6 chr22 missense_variant Arg329Leu 0.1115 NA

HS3ST4 chr16 missense_variant Thr416Pro 0.1074 0.196

GALNT2 chr1 missense_variant Asp115Asn 0.1030 NA

FUT9 chr6 missense_variant Trp318Arg 0.1022 NA

SLC39A7 chr6 missense_variant Gly457Val 0.0976 NA

TRIB2 chr2 missense_variant Asn316Ser 0.0947 NA

KMT2B chr19 missense_variant Arg1402Gln 0.0882 NA

ALDH1A3 chr15 missense_variant Val335Met 0.0861 NA

LAMA2 chr6 missense_variant Ser3090Phe 0.0800 NA

PLIN4 chr19 missense_variant Val917Met 0.0800 NA

GP1BA chr17 missense_variant Ser441Pro 0.0787 NA

INA chr10 missense_variant Ser348Gly 0.0780 NA

PPBP chr4 missense_variant Ala46Val 0.0777 NA

KRT17 chr17 missense_variant Pro402Ser 0.0734 NA

OR8K3 chr11 missense_variant Thr8Ala 0.0732 NA

MUC17 chr7 missense_variant Val3083Ile 0.0694 0.137

SSPO chr7 non_coding 0.0675 0.362

CAPN3 chr15 missense_variant Arg489Trp 0.0675 0.208

KRT86 chr12 missense_variant Val249Ile 0.0650 NA
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Gene Chr Consequence Protein
Mean
VAF TCGA VAF

CARD14 chr17 missense_variant Arg785His 0.0644 0.195

PTPRS chr19 missense_variant Glu791Lys 0.0604 0.171

THSD7B chr2 missense_variant Gln420His 0.0599 0.356

PLEKHA5 chr12 missense_variant Asp503His 0.0592 0.394

FAM149B1 chr10 missense_variant Ala504Val 0.0570 NA

PTPRZ1 chr7 missense_variant Tyr228Cys 0.0529 0.327

RPGR chrX splice_acceptor_variant 0.0511 NA

2.3.5 Case 2: gene expression

We explored relationships between clonal abundance and bulk gene expression data

using the same strategies described for case one. Genome-wide gene coexpression

analysis identified 68 modules of coexpressed genes, which were summarized by their

eigengenes  and  hierarchically  clustered  (Fig.  2.9a-c).  As  expected23,24,27,28,  many

modules were significantly enriched with markers of distinct cell types (Fig. 2.10a-d). By

comparing clonal  abundance (Fig. 2.7p, Table 2.20) to module eigengenes over all

tumor  sections,  we  identified  five  gene  coexpression  modules  whose  expression

patterns closely tracked the abundance of clone 1 (red: r = 0.65,  Fig. 2.9d), clone 2

(violet: r = 0.82, Fig. 2.9e), clone 3 (black: r = 0.8, Fig. 2.9f), clone 4 (ivory: r = 0.86,

Fig. 2.9g), and clone 5 (lightcyan: r = 0.82, data not shown).

Enrichment analysis using gene sets defined by clonal  CNV boundaries (Fig.

2.7o and  Table  2.19)  confirmed  expected  over-representation  (for  gains)  or  under-

representation  (for  deletions)  in  the  bulk  coexpression  modules  most  strongly

associated with each clone (Fig. 2.9d-g, Table 2.22, Table 2.23). Further analysis using

publicly  available gene sets from diverse sources (Table 2.9)  revealed that  the red
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module, which tracked the abundance of clone 1 (i.e., tumor purity), was significantly

enriched with markers of radial  glia and microglia,  as well  as genes comprising the

mesenchymal subtype of glioblastoma. The violet  module, which closely tracked the

abundance of clone 2, was significantly enriched with genes from reported astrocytoma

expression  programs,  as  well  as  TNFalpha  signaling  and  extracellular  matrix

components. The black module, which closely tracked the abundance of clone 3, was

significantly  enriched  with  markers  of  neurons  and  genes  involved  in  chromatin

remodeling. The ivory module, which closely tracked the abundance of clone 4, was

enriched with  markers of  ependymal  cells  and myeloid  cells.  The lightcyan module,

which closely tracked the abundance of clone 5, was significantly enriched with genes

involved in  EGFR and NF-kB signaling,  as well  as  genes comprising  the proneural

subtype of glioblastoma (data not shown).
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Figure  2.9  |  Gene  coexpression  modules  are  highly  correlated  with  clonal
abundance (case 2).
(Figure caption continued on the next page.)
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(Figure caption continued from the previous page.)  a) Hierarchical clustering of gene
coexpression modules over all  tumor sections (n = 90).  b)  Module eigengenes (ME)
illustrate the relative expression levels of genes in each module over all tumor sections.
c)  The number of genes that formed each ME.  d-g) Top left: MEs with the strongest
correlations to  clonal  abundance (defined cumulatively).  Locally  weighted smoothing
(LOESS) lines are shown; correlation is based on data points. Bottom left: the 12 genes
with  the  highest  correlations  to  the  ME  (kME).  Right:  enrichment  analysis  of  gene
coexpression modules using published gene sets. FDR-corrected p-values (q-values)
from one-sided Fisher’s exact tests are shown. Positive values represent enrichments of
genes that  were  significantly  positively  correlated  to  the  ME,  while  negative  values
represent enrichments of genes that were significantly negatively correlated to the ME.
Gene sets representing chromosomal gains or losses include all genes within affected
regions (as described in Fig. 2.7 and Table 2.19). See Table 2.9 for descriptions and
sources of featured gene sets.

To further characterize the transcriptional signatures associated with each clone,

we  used  multiple  linear  regression  to  model  genome-wide  expression  levels  as  a

function of clonal abundance. To account for collinearity, we used a regular lasso model

with  bootstrapped  clonal  abundance  vectors  (real  or  permuted)  as  predictors  (Fig.

2.10e-i). We restricted our focus to genes that were significantly and stably modeled by

a single clone (Table 2.24). Enrichment analysis of these genes largely recapitulated

enrichment  analysis  of  gene  coexpression  modules  associated  with  each  clone,

including CNVs and the associations of different clones with different cell types (Fig.

2.10i, Table 2.25).
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Figure 2.10 | Linear modeling of gene expression using clonal frequencies reveals
concordant gene-set enrichments with coexpression modules (case 2).
a-d) Left: snapshots of additional gene coexpression modules enriched for markers of
nonmalignant cell types (expression patterns for the top 12 genes ranked by  kME are
shown).  Right:  heatmaps of  gene set  enrichment  results  for  each module.  Modules
included  genes  that  were  most  specifically  and  significantly  correlated  (after  FDR
correction) to the module eigengene (ME), and enrichment was assessed with a one-
sided  Fisher’s  exact  test  (followed  by  FDR  correction;  see  panel  i  for  legend).  e)
Correlation  heatmap  for  the  cumulative  frequency  vectors  of  identified  clones.  f-g)
Lasso regression75 was used to model the expression of all genes (n = 20,246) as a
function of clonal frequencies over all tumor sections (n = 85). Violin plots illustrate the
distributions  of  t-values  for  all  models  where  the  indicated  clone  was  the  only
explanatory  variable  that  survived lasso  selection.  Permutations were  performed by
randomly scrambling clonal frequencies (n = 100) prior to lasso regression. Real and
permuted clonal frequency vectors were bootstrapped (n = 100) to address collinearity.
P-values denote the significance of the Anderson-Darling test, which evaluates whether
two distributions are likely to be derived from the same distribution.  f) Results of  a
standard  lasso  model.  g)  Results  of  a  group  lasso  model  where  the  truncal  clone
(equivalent to tumor purity) was placed in a separate group. Unlike case 1, the group
lasso model did not outperform the standard lasso model. h) Density plot showing the
number of times (out of 100 bootstraps) that the same explanatory (clonal frequency
vector) was retained by the standard lasso regression model, or ‘stability’. The vertical
line demarcates the point to the right of which only 5% of values belong to the permuted
distribution,  i.e.  a  5% FDR  rate.  i) Heatmap  of  FDR-corrected  p-values  (q-values;
shared legend for panels a-d) after comparing each gene set to all genes with stability >
45  for  a  given  clone  (one-sided  Fisher’s  exact  test).  Positive  values  represent
enrichments of genes with significant positive correlations to the ME (a-d) or significant
positive modeling coefficients (i), while negative values represent enrichments of genes
with significant negative correlations to the ME (a-d) or significant negative modeling
coefficients (i).

To validate gene expression signatures of malignant clones and nonmalignant

cell types identified from bulk tumor sections, we performed single-nucleus RNA-seq

(snRNA-seq) on tumor sections 17, 53, 93, and 117 (Fig. 2.7f, Table 2.26). Using a

protocol adapted from TARGET-Seq82,113, we profiled gene expression in 288 flow-

sorted nuclei per section. Following data preprocessing and quality control, 809 nuclei

(70.2%)  with  an  average  of  >200K  unique  reads/nucleus  were  retained  for  further

analysis. Uniform manifold approximation and projection (UMAP) analysis revealed that

nuclei did not segregate by section ID (Fig. 2.14a, Table 27).
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To determine whether nuclei segregated by cancerous state, we analyzed the

malignancy of  each nucleus.  Unlike  some tumors,  astrocytomas are  not  defined by

truncal  CNVs,  which  can  drive  gene  expression  changes  that  are  used  to  infer

malignancy in snRNA-seq data88–90,108. We therefore genotyped all nuclei through single-

nucleus amplicon sequencing (snAmp-seq) of cDNA spanning mutations in the truncal

clone (Fig. 2.7o).  This analysis provided sufficient information to call  malignancy for

75%  of  nuclei.  Projecting  malignancy  status  onto  the  UMAP  plot  revealed  clear

segregation of malignant and nonmalignant nuclei (Fig. 2.14b).

Figure  2.11  |  Bulk  coexpression  module  genes  map  definitively  onto  single-
nucleus clusters.
a-j) Modules of coexpressed genes from bulk tumor sections (n = 90) that were most
strongly associated with specific clones (Fig. 2.9) or nonmalignant cell classes (Fig.
2.10) were evaluated for differential expression in each snRNA-seq cluster vs. all other
clusters  (white  distributions:  t-test  results  for  all  module  genes).  (Figure  caption
continued on the next page.)
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(Figure caption continued from the previous page.) Genes that were not associated with
each module were evaluated in the same fashion (black distributions), and a one-sided
Wilcoxon  rank-sum  test  was  used  to  determine  whether  module  genes  were
significantly upregulated in a given snRNA-seq cluster relative to all other genes (*** = P
< 1e-10). 

To further classify nuclei as specific malignant clones or nonmalignant cell types,

we  took  a  two-step  approach.  First,  we  hierarchically  clustered  all  nuclei  using  a

Bayesian distance metric calculated by Sanity19 that downweights genes with large error

bars, revealing 12 clusters. Second, we asked whether genes in the bulk coexpression

modules most strongly associated with each malignant clone or nonmalignant cell type

were  upregulated in  distinct  snRNA-seq clusters  compared to  all  other  genes (Fig.

2.11a-j). This analysis revealed specific and significant upregulation of genes from the

red (Fig.  2.9d),  violet  (Fig.  2.9e),  black (Fig.  2.9f),  and lightcyan (data not  shown)

modules in  snRNA-seq clusters 2,  1,  7,  and 10 (Fig.  2.12a),  suggesting that  these

clusters correspond to malignant clones 1, 2, 3, and 5, respectively. Genes in the ivory

module  (Fig.  2.9g) were  significantly  upregulated  in  snRNA-seq  clusters  3  and  5,

suggesting that  both  of  these clusters  represent  clone 4  (Fig.  2.12a).  Similarly,  we

observed specific and significant upregulation of genes from the purple  (Fig. 2.10a),

yellow  (Fig.  2.10c),  green  (Fig.  2.10d),  and  orange  (data  not  shown)  modules  in

snRNA-seq  clusters  9,  4,  12,  and  6  (Fig.  2.12a), suggesting  that  these  clusters

correspond  to  nonmalignant  astrocytes,  microglia,  neurons,  and  endothelial  cells,

respectively.  Genes in the tan module (Fig. 2.10b)  were significantly upregulated in

snRNA-seq  clusters  8  and  11,  suggesting  that  both  of  these  clusters  represent

nonmalignant oligodendrocytes (Fig. 2.12a).
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Figure 2.12 | Single-nucleus analysis supports and refines inferences from bulk
data.
a)  Heatmap  of  P-values  (one-sided  Wilcoxon  rank-sum  test)  comparing  differential
expression t-values for genes comprising each bulk coexpression module (colors, x-
axis) to all other genes in each SN cluster versus all other clusters. b) UMAP plot of all
nuclei (n = 809) with characterizations of clusters from (a) superimposed. c) UMAP plot
of  malignant  nuclei  (n  =  360),  with  results  of  Slingshot  trajectory  analysis 92

superimposed.  d) Heatmap  of  scaled  log2 expression  vectors  for  the  five  most
upregulated genes in each snRNA-seq cluster vs. all other clusters (one-sided Wilcoxon
rank-sum test). Far left: malignancy vector determined by snAmp-seq of cDNA spanning
mutations in the truncal clone. Left: malignancy vectors inferred from CNV analysis of
snRNA-seq  data  using  the  CopyKat88,  InferCNV89,  or  CaSpER90 algorithms  (blue  =
nonmalignant; all other colors = malignant). Right: bar plots depict the total number of
unique reads (UMIs)  for  each nucleus and the average number of  UMIs for  genes
comprising  the  Gene  Ontology  category  ‘mitotic  chromosome  condensation’  (GO:
0030261).  Red  vertical  line:  max  expression  of  mitotic  genes  in  neurons,  which
presumably represents background noise.

We  performed  several  additional  analyses  to  verify  these  findings.  First,  we

projected  snRNA-seq  cluster  assignments  onto  the  UMAP  plot  (Fig.  2.12b) and

observed that cluster assignments were consistent with the malignancy map produced

by  genotyping  nuclei  via  snAmp-seq  (Fig.  2.14b).  Second,  we  performed  UMAP

analysis for malignant cells only, followed by trajectory analysis with Slingshot92  (Fig.

2.12c).  This  analysis  revealed  patterns  of  clonal  evolution  that  recapitulated  the

phylogenetic tree inferred from integrative analysis of bulk tumor sections (Fig. 2.7o).

Third, we compared estimates of cellular abundance obtained from bulk and single-

nucleus  data  for  adjacent  tissue  sections.  This  analysis  revealed  highly  consistent

estimates for the relative abundance of malignant clones (r  ≥ 0.94;  Fig. 2.14c) and

nonmalignant cell types (r ≥ 0.90; Fig. 2.14d).

Supervised  clustering  with  differentially  expressed  genes  revealed  clear

separation of snRNA-seq clusters (Fig. 2.12d).  Overall, malignant clones were more

transcriptionally active than nonmalignant cell types, with the exceptions of clone 4:1
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and  endothelial  cells  (Fig.  2.12d,  right).  Enrichment  analysis  of  genes  that  were

significantly  up-regulated  in  snRNA-seq  clusters  confirmed  the  identities  of

nonmalignant  cell  types  (Fig.  2.14,  Table  2.28).  For  malignant  clones,  enrichment

analysis of snRNA-seq clusters supported and refined inferences from bulk data (Fig.

2.9d-g,  Fig.  2.10i,  Fig.  2.14,  Table  2.9).  For  clone  1,  consistent  enrichments  for

markers of radial glia and genes comprising the mesenchymal subtype of glioblastoma

were observed in bulk and snRNA-seq data. In contrast, markers of microglia were less

significantly  enriched in clone 1 nuclei  from snRNA-seq data versus bulk  data,  and

markers of oligodendrocyte progenitor cells (OPCs) were more significantly enriched.

For clone 2, markers of astrocytes were more significantly enriched in snRNA-seq data

versus bulk data. Clone 3 was consistently enriched with genes involved in chromatin

remodeling, but neuronal markers were less significantly enriched in snRNA-seq data.

Clone 4 showed strong enrichment for markers of ependymal cells in all analyses, while

clone  5  was  significantly  enriched  with  genes  comprising  the  proneural  subtype  of

glioblastoma in all analyses. Interestingly, genes involved in mitosis were most highly

expressed by clone 1, clone 4:2, and endothelial cells (Fig. 2.12d, right).
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Figure 2.13 | Single-nucleus analysis supports and refines inferences from bulk
data. 
a) UMAP plot of snRNA-seq data (n = 809 nuclei) with the tumor section IDs that served
as the source for each nucleus superimposed.  b)  UMAP plot of snRNA-seq data with
malignancy superimposed.  Malignancy was determined by  genotyping  all  nuclei  via
single-nucleus amplicon sequencing (snAmp-seq) of cDNA spanning mutations in the
truncal clone.  c) Frequencies of malignant clones in snRNA-seq data (n = 360 nuclei
from four tumor sections) and bulk data (n = 16 tumor sections), with correlations in
legend. d) Relative abundance of nonmalignant cell types in snRNA-seq data (n = 449
nuclei from four tumor sections) and bulk data (n = 16 tumor sections), with correlations
in legend. Estimates were scaled and centered for comparability. Bulk estimates for (c-
d) are derived from clonal abundance and module eigengene values featured in  Fig.
2.7p and  Fig. 2.10a-d, respectively, averaged across the four sections flanking each
section analyzed by snRNA-seq (snRNA-seq section 17: bulk sections 14, 16, 18, 19;
snRNA-seq  section  53:  bulk  sections  50,  51,  54,  55;  snRNA-seq  section  93:  bulk
sections 91, 92, 94, 95; snRNA-seq section 117: bulk sections 114, 116, 118, 119).  e)
Log-ratio  output  of  the  CopyKat  CNV  algorithm88.  Left:  snAmp-seq  malignancy
assignments and snRNA-seq cluster assignments. Right: sum of the absolute value of
CopyKat CNV calls (chromosomal arms in gray could not be called due to inadequate
gene coverage).
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Figure 2.14 | Gene set enrichment analysis supports the functional distinctness of
snRNA-seq clusters.
Clustered heatmap of FDR-corrected p-values (q-values) from one-sided Fisher’s exact
tests comparing featured gene sets with genes that were significantly upregulated (FDR
< .05) in each snRNA-seq cluster vs. all other clusters by the one-sided Wilcoxon rank-
sum test.
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Because clones in this case were characterized by disparate CNVs (Fig. 2.7o),

we asked how malignancy calls compared between algorithms that infer CNVs from

snRNA-seq data and malignant  genotypes derived from snAmp-seq data.  We used

CopyKat88,  InferCNV89,  and  CaSpER90 to  call  CNVs  from  snRNA-seq  data.  These

analyses revealed substantial variation in malignancy calls for different algorithms (Fig.

2.12d) as well as differences from bulk CNV calls (e.g., no gains in chr7p, chr8p, and

chr9q;  Fig. 2.14e).  Taking the snAmp-seq genotyping as ground truth, CopyKat and

InferCNV were more sensitive but less specific than CaSpER, leading to discrepant

calls. For example, nonmalignant astrocytes and oligodendrocytes:2 were mostly called

malignant by CopyKat and InferCNV, while clone 4:2 was mostly called nonmalignant by

these two algorithms.  CaSpER’s  classification  of  nuclei  from these populations was

mostly correct, but it failed to recognize most malignant nuclei for clones 3 and 5. In

addition,  clone  4:1  was  mostly  classified  as  nonmalignant  by  all  three  algorithms.

Overall, no method for inferring malignancy from CNVs achieved accuracy > 61% (Fig.

2.12d).
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Figure 2.15 | Concordance of  kME and differential expression t-values from bulk
and single-nucleus experiments.
a-j) Violin plots reveal the relationship between differential expression t-values for each
snRNA-seq cluster (calculated by t-test for all genes between each cluster and all other
clusters) and the kME values of the bulk coexpression module most strongly associated
with each clone or nonmalignant cell type.

Multiscale  gene  expression  profiling  of  this  case  allowed  us  to  compare  the

consistency of transcriptional signatures associated with distinct malignant clones and

nonmalignant cell types in bulk and snRNA-seq data. Based on our previous findings in

normal human brain23 and Fig. 1, we expected differential gene expression in snRNA-

seq data to predict gene expression correlations to cellular abundance in bulk RNA-seq

data, and vice versa. Genome-wide analysis confirmed this relationship for all malignant

clones  and  nonmalignant  cell  types  (Fig.  2.16),  further  demonstrating  that  gene

expression  profiles  of  distinct  cellular  populations  can  be  revealed  by  correlating

genome-wide expression patterns with cellular abundance in heterogeneous samples.
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2.3.6 Integrative analysis

We next sought to compare transcriptional profiles of malignant cells between case one

and case two through integrative analysis. However, despite the fact that both tumors

were  diagnosed  as  grade  2  IDH-mutant  astrocytomas,  only  one  SNV  was  shared

between the cases. Furthermore, the shared SNV (IDH1 R132H) was absent in ~21% of

malignant  cells  in  case  2  following  loss  of  chr2q  (Fig.  2.7o).  We  therefore  asked

whether the truncal clones (i.e., clone 1), which presumably included all of the mutations

required  to  initiate  these  tumors  along  with  passenger  mutations,  had  consistent

transcriptional profiles in case 1 and case 2. For each case, we analyzed genome-wide

correlations  to  the  cumulative  abundance  of  clone  1  (equivalent  to  tumor  purity).

Comparing these results between cases, we observed a highly significant relationship

(Fig. 2.16a, Table 2.29). Enrichment analysis of genes whose expression patterns were

most positively correlated with clone 1 in both cases implicated gene sets comprising

the ‘classical’ subtype of glioblastoma proposed by Verhaak et al.17, markers of radial

glia, infiltrating monocytes, and extracellular matrix components (Fig. 2.16a-b; red). In

contrast, genes whose expression patterns were most negatively correlated with clone 1

in both cases largely implicated gene sets related to neurons and neuronal function

(Fig. 2.16a-b; blue).

We further characterized genes whose expression patterns were most positively

correlated with the truncal clone in both cases (Fig. 2.16a; red) by cross-referencing

them with human  protein-protein interaction (PPI) data from the STRING database 95,96.

This analysis revealed eight distinct clusters of interacting proteins (Fig. 2.16c).  The

largest of these (green) included several SOX transcription factors and was significantly
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enriched with genes involved in WNT and MYC signaling (Fig.  2.16d).  The second

largest cluster (yellow) was significantly enriched with genes involved in DNA repair, and

the third largest cluster (orange) was significantly enriched with genes involved in RNA

splicing  (Fig.  2.16d).  The remaining  clusters  were  significantly  enriched with  genes

involved  in  mRNA transport  (brown),  DNA replication   (turquoise),  specific  cellular

compartments and protein complexes (pink, gray), and immune 

response (purple) (Fig. 2.16d).

Table 2.3 | Most highly correlated genes to the tumor purity in each case, along
with joint correlations and associated p-values.

Gene
Correlation to purity

in case one
Correlation to purity in

case two
Joint correlation after

Fisher’s method
FDR-correction of P-
value using q-value

AKR1C3 0.9642 0.6278 0.8787 0.0000

NMB 0.9590 0.6275 0.8705 0.0000

VCAM1 0.9674 0.4723 0.8568 0.0000

C1orf94 0.9528 0.5371 0.8428 0.0000

GLIPR2 0.9491 0.5468 0.8390 0.0000

S100A10 0.9399 0.6013 0.8385 0.0000

NUPR1 0.9422 0.5830 0.8373 0.0000

CTSH 0.9553 0.4697 0.8334 0.0000

CD24 0.9551 0.4615 0.8315 0.0000

DFNA5 0.9430 0.5492 0.8309 0.0000

SOX3 0.9465 0.5213 0.8299 0.0000

DYNLT1 0.9608 0.3865 0.8281 0.0000

C1orf194 0.9451 0.5080 0.8248 0.0000

FAM181B 0.9617 0.3495 0.8231 0.0000

TMEM163 0.9355 0.5557 0.8222 0.0000

RND2 0.9657 0.2814 0.8200 0.0000

TMEM218 0.9520 0.4210 0.8180 0.0000

TRAF3IP2 0.9651 0.2717 0.8167 0.0000

ANP32B 0.9549 0.3780 0.8149 0.0000

MARVELD3 0.9507 0.4165 0.8148 0.0000

C1orf198 0.9414 0.4820 0.8137 0.0000

SULF1 0.9320 0.5373 0.8134 0.0000
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Gene
Correlation to purity

in case one
Correlation to purity in

case two
Joint correlation after

Fisher’s method
FDR-correction of P-
value using q-value

PLTP 0.9554 0.3586 0.8119 0.0000

NES 0.9507 0.3969 0.8108 0.0000

SNCAIP 0.9466 0.4222 0.8090 0.0000

ABI3BP 0.9274 0.5189 0.8031 0.0000

CDCA7 0.9275 0.5166 0.8027 0.0000

GINS3 0.9508 0.3543 0.8024 0.0000

MIF4GD 0.9400 0.4370 0.8017 0.0000
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Figure 2.16 | Integrating correlations to malignant cell abundance reveals core
transcriptional features of astrocytomas.
a)  Gene expression correlations (n = 15,288 genes) to malignant cell  abundance in
case 1 and case 2. Red and blue denote significantly correlated genes that were used
for enrichment analysis (b), and the star denotes AKR1C3. b) -Log10 FDR-corrected p-
values (q-values) from one-sided Fisher’s exact tests analyzing gene set enrichment in
red  and  blue  genes  from  (a).  c)  Validated  protein-protein  interactions  (PPI)  from
STRINGdb96 for red genes from (a). The 201 proteins shown formed networks of five or
more proteins, with the number of interactions equal to the number of edges. d) -Log10

FDR-corrected p-values (q-values) from one-sided Fisher’s exact tests analyzing gene
set  enrichment  for  each  STRINGdb  interaction  cluster  in  (c).  e-f)  AKR1C3
immunostaining in FFPE tissue adjacent to the sectioned region of case 1 (e) and non-
neoplastic human brain (f). Image: 200x; scale bar: 50 μm. g-i) Immunofluorescent co-
staining of IDH1 R132H (white), AKR1C3 (green), and nuclei (blue [DAPI]) in case one
demonstrating  expression  of  AKR1C3  in  malignant  cells  carrying  the  truncal  IDH1
R132H mutation. Scale bar denotes 50µm.

To provide further validation for these findings, we performed immunostaining for

AKR1C3. Out of 15,288 genes, AKR1C3 bulk expression correlations to tumor purity

ranked  fifth  in  case  one  and  first  in  case  two  (Fig.  2.16a  [asterisk],  Table  2.29).

AKR1C3 was also significantly upregulated in malignant vs. nonmalignant nuclei per

snRNA-seq (Fig. 2.12m, right). Immunostaining confirmed substantial upregulation of

AKR1C3 in tumor vs. normal human brain at the protein level (Fig. 2.16e, f). To provide

cellular resolution, we co-stained for AKR1C3 and IDH1 R132H using an antibody that

recognizes the mutated IDH1 protein. As expected, this analysis revealed broad overlap

between cells expressing AKR1C3 and cells expressing IDH1 R132H (Fig. 2.16g-i).

2.4 Discussion

Understanding how oncogenic mutations alter gene expression to induce and maintain

malignancy is an important goal that may reveal new therapeutic targets for diverse

cancers. However,  it  has been difficult  to isolate transcriptional profiles of malignant
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cells through differential expression analysis of bulk tumor and normal human tissue

samples due to  variation  in  the  purity,  microenvironment,  and clonal  architecture of

tumor specimens. Single-cell methods hold promise for this task but suffer from limited

scalability,  potentially  inaccurate annotation  of  malignant  cells,  and technical  factors

related to tissue dissociation, sampling bias, noise, contamination, and sparsity18–22. In

this study, we have described an alternative approach for clarifying the transcriptional

profiles  of  malignant  clones  through  multiscale  and  multiomic  analysis  of  individual

tumor specimens.

The premise of our approach is straightforward: variation in the abundance of

malignant  clones  in  bulk  tumor  sections  should  drive  covariation  of  transcripts  that

optimally distinguish those malignant clones. The same premise underlies our efforts to

determine the core transcriptional  identities of nonmalignant CNS cell  types through

integrative gene coexpression analysis of bulk human brain samples23. However, unlike

normal brain samples, tumor samples typically include distinct malignant clones defined

by partially overlapping sets of mutations. Because most of these mutations are not

shared between clones from different individuals1–5, they may differentially impact gene

expression in malignant cells. We therefore sought to apply our strategy to individual

tumor  specimens  and  evaluate  associations  between  malignant  cell  genotypes  and

gene expression.

By  amplifying  each  tumor  specimen  into  a  large  number  of  standardized

biological replicates through serial sectioning, we obtained representative subsamples

of each tumor with variable cellular composition. Because section size and number can

be  tailored  to  experimental  needs,  this  strategy  provides  flexibility  for  a  variety  of
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concurrent assays while preserving spatial information. We performed WES to identify

mutations in a small number of distant sections, followed by deep sequencing of PCR

amplicons spanning mutation sites to quantify SNV frequencies with high confidence in

a large number  of  sections.  Although clusters of  SNVs with  highly  correlated VAFs

suggested  distinct  clones,  we  found  that  integrative  analysis  of  SNV  and  CNV

frequencies (inferred from bulk DNA methylation data [case 1] or bulk RNA-seq data

[case  2])  was  required  to  accurately  reconstruct  clonal  phylogenies.  Using  this

approach, we identified the six most prevalent clonal populations of malignant cells in

case 1 and five in case 2 and quantified their abundance in all tumor sections.

By comparing clonal abundance to genome-wide expression patterns over all

tumor sections, we identified transcriptional profiles of distinct malignant clones in each

case. Clone expression profiles were validated through comparisons with normal human

brain (case 1) and snRNA-seq using nuclei isolated from interpolated tumor sections

(case 2).  Enrichment analysis of these profiles revealed several  interesting findings.

First,  gene  sets  defined  by  clonal  CNV boundaries  were  significantly  enriched  (for

gains) or depleted (for deletions) in the expected clone expression profiles, providing

independent  validation  of  clonal  identities.  Second,  gene  sets  representing

transcriptional  subtypes  of  glioblastoma17 were  significantly  associated  with  distinct

clones in each case, suggesting stereotyped patterns of malignant cell differentiation

that may reflect different microenvironments114. Third, in both cases, markers of neural

stem cells (radial glia) were most significantly enriched in the truncal clone. And fourth,

markers of ependymal cells were significantly and specifically enriched in clone 4 from

case  2.  To  our  knowledge,  malignant  ependymal  cells  have  not  previously  been
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described in human astrocytomas. Because ependymal cells differentiate from neural

stem cells during normal brain development115, the presence of malignant ependymal

cells is consistent with a neural stem cell as the cell of origin for case two.

Although both cases were diagnosed as IDH-mutant grade 2 astrocytomas, they

shared only one SNV (IDH1 R132H), which was truncal in both cases but lost from 21%

of  malignant  cells  (clone  3)  in  case  2  due  to  chr2q  deletion.  The  extent  of  clonal

heterogeneity,  even  for  the  same  type  of  tumor,  begs  the  question  of  how  gene

expression  correlations  to  malignant  cell  abundance  should  be  aggregated  across

cases. Here, we reasoned that aggregating gene expression correlations to the truncal

clone  (equivalent  to  tumor  purity)  would  identify  the  most  specific  and  consistent

transcriptional  features  of  all  malignant  cells  in  both  astrocytomas.  An  alternative

strategy is  to  aggregate correlations to  VAFs for  specific  mutations that  are shared

among many cases. Both strategies are cumulative in nature and based upon analysis

of bulk tumor samples that collectively may represent millions or even billions of cells.

We  observed  a  highly  significant  genome-wide  correlation  between  gene

expression profiles of the truncal clone in both cases, which suggests that a core set of

genes is consistently expressed by the founding population of malignant cells in human

astrocytomas.  This  result  is  particularly  striking  given  the  biological  and  technical

differences between case 1 (primary astrocytoma, microarray gene expression data)

and case 2 (recurrent astrocytoma, RNA-seq gene expression data). Cross-referencing

these genes with human PPI data96  revealed distinct groups of interacting proteins that

were significantly enriched with cancer-related pathways and processes, including WNT

and MYC signaling, RNA splicing, and DNA repair. Furthermore, many of the genes
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whose expression patterns correlated most strongly with malignant cell abundance in

both cases (Table 2.29) have been implicated in other types of cancer. For example,

AKR1C3, which encodes a prostaglandin synthase involved in androgen production116,

is  significantly  upregulated  and  associated  with  poor  outcomes  in  hepatocellular

carcinoma117,  prostate cancer118,  and pediatric T-cell  acute lymphoblastic leukemia119.

These findings point to the exciting possibility that malignant cells from diverse cancers

caused by distinct mutations may nevertheless share transcriptional dependencies that

can be exploited therapeutically.

It  is  also  important  to  note  that  transcriptional  phenotypes  of  malignancy,

including upregulation of AKR1C3, persisted in clone 3 from case 2 despite loss of the

driver mutation IDH1 R132H following chr2q deletion. IDH1 R132H perturbs genome-

wide  expression  patterns  by  increasing  production  of  the  oncometabolite  D-2-

hydroxyglutarate120,  which  competes  with  endogenous  a-ketoglutarate  to  alter  the

activities  of  enzymes that  are  required  to  maintain  normal  DNA methylation121.  Our

findings  suggest  that  altered  DNA methylation  patterns  can  persist  and  perpetuate

malignant  phenotypes  despite  loss  of  the  mutated  protein  that  caused  them.  This

example is illustrative because it highlights the limitations of conventional gene panels

for  cancer  diagnostics,  which  provide  binary  calls  for  the  presence  or  absence  of

common oncogenic mutations. In this case, such panels would indicate the presence of

IDH1  R132H  and  recommend  treatment  that  targets  this  mutation9.  However,  with

knowledge of this tumor’s clonal  phylogeny, we can see that such treatment will  be

entirely ineffective for one-fifth of malignant cells, since the mutated IDH1 protein is no

longer there.
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There are several important methodological implications and limitations of our

approach. First, each tumor specimen analyzed in this study represents a small fraction

of overall tumor volume; future efforts will analyze multiple, geographically distinct tumor

subsamples to evaluate the consistency of clonal architecture. Second, our approach

requires a large number of sections to detect meaningful correlations (for example: 25

sections provide ~85% power to detect  moderate correlations [|r|  > 0.5,  P < .05]) 33.

Third,  DNA and  RNA must  be  co-isolated  from  each  section  (i.e.,  from  the  same

population of cells). Fourth, deep sequencing is required to establish high-confidence

VAFs for SNVs, which are in turn required to estimate clonal frequencies. Fifth, limited

variability in clonal frequencies may impact the ability to detect corresponding molecular

signatures. Sixth, some types of mutations are not yet captured by our approach (e.g.,

noncoding SNVs, rearrangements, chromothripsis, etc.). And seventh, collinearity in the

abundance  of  malignant  and  /  or  nonmalignant  cell  types  may  produce  spurious

correlations (which can be mitigated by differential coexpression analysis with normal

tissue, as done for case one, or sectioning in multiple planes, as done for case two). For

this reason, we recommend validating transcriptional profiles of malignant clones using

one  or  more  independent  techniques.  We  found  that  multiscale  integration  of  bulk

sections and single nuclei allowed us to leverage the complementary strengths of each

sampling  strategy.  Specifically,  bulk  sections  facilitate  multiomic  integration  while

yielding  robust  molecular  signatures  driven  by  millions  of  cells,  while  single  nuclei

enable precise validation of predictions made from bulk data. However, the success of

this  approach  depends  on  accurate  classification  of  malignant  nuclei.  As  we  have

shown, existing algorithms for identifying malignant nuclei based on inferred CNVs from

95

https://sciwheel.com/work/citation?ids=1273231&pre=&suf=&sa=0


gene expression data may be inaccurate.  Therefore,  our  approach will  benefit  from

scalable methods for profiling gene expression and malignant cell genotypes in parallel.

In summary, we have described a novel approach for clarifying the transcriptional

profiles  of  malignant  clones  through  multiscale  and  multiomic  analysis  of  individual

tumor  specimens.  Importantly,  our  approach  is  generalizable  to  other  molecular

phenotypes and any kind of solid tumor. Ongoing efforts seek to incorporate additional

cases,  molecular  species,  and  data  modalities,  while  increasing  efficiency  through

automation.  By  shining  a  bright  light  on  the  most  robust  molecular  properties  of

malignant clones, we hope that these efforts will expand the therapeutic search space

for human cancers.
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Chapter 3: Metaanalysis of glioma samples 
reveals unique, cell-type specific dysregulated 
genes of the microenvironment.
Having established the significance of correlative deconvolution methods for malignant 

samples, I wish to expand this paradigm to the deconvolution of the nonmalignant 

microenvironment.

Chapter 3.1: Introduction

Having established the utility of using coexpression analysis to track the abundance and

transcriptional output of malignant cells, we now wish to interrogate the relative 

abundance and dysregulation of expression in nonmalignant cells. The fundamental 

framework for this method has been established in a previous publication of the lab1, 

though we will be expanding this methodology to allow direct comparison between 

normal and malignant brain tissue. 

Nomalignant cells have been shown to be key in the tumor growth and survival, 

adopting both tumor suppressive2 and tumor inhibitory3 phenotypes. Identifying these 

factors of dysregulation in the microenvironment represents an exciting, new realm for 

drug discovery as malignancies are more likely to share microenvironment phenotypes 

than their mutational background4,5, as well as having less opportunity to evolve 

resistance to microenvironmental changes6,7.

The central thesis of this approach is to characterize the difference between the 

correlation matrices of normal and malignant brains to identify modules of coexpressed 

genes which are specific to the malignant context. Instead of using serial-sections I 

have used the wealth of publicly-available transcriptomic datasets to compute dataset-
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specific networks of coexpressed genes. Using gene set enrichment analyses I have 

chosen modules maximally and uniquely enriched in cell-types of interest. Finally, I use 

statistical techniques to average the correlations of genes to the module eigengene. 

This correlation statistic has been shown to be highly correlated to the degree of cell-

type specific expression and it allows for the quantification of the degree to which each 

gene is expressed in specific cell types across thousands of samples1. By comparing 

the averaged correlations between malignant and normal samples, a total sample 

number exceeding 13,000, it is possible to identify genes which are highly dysregulated 

in specific cell-types in glioma, but not in a normal context. These genes represent ideal

targets for therapeutic intervention targeting the glioma microenvironment. 

In order to allow for greater community access to our data, as well as to allow 

easy orthogonal validation of our findings using publicly available single-cell and single-

nucleus transcriptomic data, we have also developed an R-shiny application. Overlaying

our data with functionally relevant database annotations, such as cellular localization of 

the gene product8 and essentiality of genes from knock-out screens in cancer cell lines9,

will allow this application to be useful tool in identifying potential targets for drug 

development against dysregulated genes in the glioma microenvironment. 
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Chapter 3.2: Methods

3.2.1 Sample Sourcing

Our glioma cohort is composed of 47 datasets (5450 samples) and includes grades two 

through four of high and low grade glioma (including IDH mutant and wild-type gliomas).

This broad sampling ensures that the conclusions drawn from the data are minimally 

biased towards any histological subtype and generalizable across glioma. Our normal 

cohort is composed of 62 datasets (7269 samples) from the human brain and includes 

the frontal, temporal and parietal regions, reflecting the spatial bias of gliomas. The 

exact breakdown of samples across platform, source, type and grade is shown in Table 

3.1.
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Table 3.1 | Distribution of normal and glioma samples by platform and source. 
Additionally, distribution of glioma samples by type and grade. 
In some cases grade was indicated as low grade and indicated in the table as grade 
2/3. Furthermore, there were samples simply annotated as low-grade glioma (of 
undetermined type)  which are listed as “Low-grade glioma” for type and 2/3 for grade.

 

 

 

 

 

 

3.2.2 Sample preprocessing

Sample preprocessing was performed as described in Kelley et al.1. Briefly, batch 

information and other metadata were derived from supplementary files on GEO, when 

available, as well as from “.CEL” files when applicable. Care was taken to process each 
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Glioma Normal Type Grade Count

Platform GBM 4 2271

Affy Hg
U133

998 422 Astrocytoma 4 455

Affy Hg
U133

1879 202 Astrocytoma 3 369

Affy HuEx 242 1329 Astrocytoma 2 281

Agilent 448 3633 Astrocytoma 2/3 85

Illumina 1883 1683 Oligodendrogliom
a

3 505

Source Oligodendrogliom
a

2 217

TCGA 1956 0 Oligodendrogliom
a

2/3 40

EMTAB 404 0 Low-grade glioma 2/3 1227

CGGA 301 0

GSE 2829 2579

GTEX 0 877

ABI 0 3633

Other 180

Total 5450 7269
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unique sample only once, and when a sample was included in multiple datasets, it was 

only analyzed in the original dataset. 

Each dataset was processed using the SampleNetwork function10. Sample outliers were

removed if their connectivity was more than 4 standard deviations below the mean 

connectivity. Connectivity is a measure of the degree of relatedness between samples 

and is roughly equivalent to correlation. 

Data was quantile normalized and batch correction was performed if a significant 

association between batch and the first principal component was found via ANOVA. 

Batch correction was performed using the ComBat R function11. Depictions of the 

dataset before and after preprocessing can been seen in Figure 3.1.

Figure 3.1 | TCGA-LGG cohort data before and after dataset preprocessing.
Sample connectivity and significance values of ANOVA of PC1 to batch effects before 
and after sample processing. Samples with connectivity values (Z.k) more than four 
standard deviations from the mean are removed and batch effects corrected using the 
ComBat package. The lack of highly disconnected samples (as quantified by Z.k) and 
elimination of significant association of PC1 with batch effect shows successful sample 
processing.
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3.2.3 Construction of Coexpressed modules for each dataset

Correlations within datasets were calculated as biweight midcorrelation for all features12,

as this is a correlation metric with reduced sensitivity to outliers while maintaining power

to detect correlations12. Clustering on the correlation space was performed using 

flashClust12 using 1-correlation as a distance metric. 

The hierarchically clustered dendrogram was cut a series of heights defined by 

hyperparameters for the top 0.01%, 0.1%, 1%, 2%, 3%, 4%, or 5% of pairwise 

correlations for the entire data set and a minimum module size of 8, 10, 12, 15, or 20 

members. We used the first principal component (via singular-value decomposition) of 

each resulting module to determine the degree of correlation between modules. 

Modules with a first principal component (which I refer to as the module eigengene, ME)

correlated above 0.85 were merged to focus on identifying unique patterns of 

coexpression.  

The correlation of each gene to the MEs was calculated as a quantitative 

measure of belongingness of the genes to the modules, a metric defined as 

intramodular connectivity (kME)13,14.

3.2.4 Assignment of Genes to Modules

Module membership was assigned to all unique genes with positive kME values that 

were significant after applying a False-discovery rate correction15 for multiple 

comparisons. If a probe/gene was significantly correlated with more than one module, it 

was assigned to the module for which it had the highest kME value.  Probe/gene 
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identifiers from all data sets were mapped to a common identifier (HomoloGene ID data 

build 68).

3.2.5 Enrichment Analysis

To identify modules enriched in specific cell-types I used the top 150 genes with 

the highest fidelity for distinct brain cell-types, derived from the lab’s publication1. 

Enrichment analysis in each dataset was conducted using a one-sided Fisher's exact 

test as implemented by the fisher.test R function16. The module with the most significant 

enrichment for each cell-class gene set was identified. Only modules that were 

significantly enriched after applying a False-discovery rate correction15 were used in 

subsequent analyses.

3.2.6 Mathematical Derivation of Fidelity

Because correlation coefficients, like kME are correlation coefficients, they cannot 

be averaged over independent data sets of different sample sizes. Instead Fisher’s 

method can be used 16. The first step is to transform the correlation coefficient kME 

values into Z-scores:

where g indexes the gene, d indexes the data set, and c indexes the cell class. An 

average of the resulting z-scores (weighted by sample size) was then determined with 

the following equation:
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where n denotes the number of samples in data set d. The sampling s.d. of  ̄zgc is:

Dividing the ‘average’ z-scores by the sampling s.d. yielded the genome-wide statistics 

or gene expression fidelity:

For interpretability, we also converted zgc into an ‘average’ correlation coefficient by 

performing the reverse Fisher transformation:

which is reported as ‘Mean.r’ along with expression fidelity for all genes with respect to 

all cell classes for humans. It is important to note that gene expression fidelity, as 

defined here, is robust to the choice of gene set used for enrichment analysis.
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3.2.7 Expression

The mean rank expression percentile was calculated by first converting the published 

quantification metric of the dataset (TPM, CPM, FPKM, etc.) into ranks, and then taking 

an average for each gene across all samples.

3.2.8 Outside Data Sources

We used multiple orthogonal data-sources to validate our analysis regarding 

dysregulation in nonmalignant cells and provide context for putative therapeutic targets.

3.2.8.1 COMPARTMENTS

Cellular localization for mouse and human genes were extracted from the 

COMPARTMENTS resource, utilizing only level 5 confidence annotations8.

3.2.8.2 DepMap

We used the DepMap "Gene Dependency" metric for cell lines of the lineage subtype 

"Glioma" to calculate the mean dependency metric for each gene9.

3.2.8.3 GTEX Human Tissue Map

We used the Genotype-Tissue Expression (GTEx) database to quantify expression of 

genes across tissues17. Expression was averaged across replicates and two standard 

error values were calculated. Tissues with fewer than 10 replicates were excluded.
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3.2.8.4 IVY-GAP GBM Atlas

We used the Ivy-Gap Glioblastoma Atlas to measure gene expression across tumor 

regions18. Replicates were averaged and two standard errors were calculated. 

Single-cell datasets

We used the single-cells from the control dataset, along with the author's annotation of 

cell identity to quantify average expression of genes at the single-cell level along with 

two standard error measurements of variance19. We used the purified single-cells GBM 

dataset to quantify average expression per cell-type as well as two standard errors of 

variation20.

Chapter 3.3: Results

Our pipeline’s (Fig. 2.4.2) goal is finding genes which are excellent markers for cell-

types in the tumor microenvironment, but are non expressed in the normal brain. The 

initial steps of using SampleNetwork for batch correction and outlier removal and 

FindModules for the creation of coexpression networks of broad resolution is detailed in 

the methods. The enrichment analysis portion is extremely flexible and can be adapted 

to target genesets for any relevant biological context or cell-type of interest. 

Furthermore, datasets with no significant geneset enrichment are not included in the 

analysis, ensuring that priors regarding gene expression for certain cell-types do not 

introduce bias into this analysis.

Next, the Fisher transformation allows averaging of correlation from differently-

sized datasets. This is a very efficient transformation and recomputing fidelity after the 

addition of additional data is trivial. Finally, computing differential fidelity gives a direct 
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measurement of which genes are highly expressed in a cell-type in the glioma but not 

normal brain context.

Figure 3.2 | High-level overview of the pipeline to compute differential fidelity 
between glioma and normal brain samples. 
Starting with the SampleNetwork function to remove batch effects and outliers, the 
resulting expression matrix is fed into FindModules, which uses a range of 
hyperparameters to identify networks of coexpressed genes at numerous resolutions. In
order to assign biological meaning to the modules, gene set enrichment is used to 
determine whether the modules are significantly enriched in either cell-state or cell-type 
gene sets. Finally, modules with enrichments for cell-types of interest are chosen for 
each dataset. Constituent genes’ kME values to the chosen module for each dataset are 
summarized via Fisher’s method. This process is performed for both normal and glioma 
datasets. The difference between the resultant fidelity between normal and glioma is 
termed differential fidelity.

Our consideration of differential fidelity is best coupled with differential expression

between glioma and normal contexts. We have plotted differential fidelity (glioma minus 

normal) for microglia (a), oligodendrocytes (b), neurons (c), and endothelial cells (d) 

against differential expression (as quantified by the differences in mean rank expression

percentile), while including coloring for the mean expression percentile in normal 

samples (Fig. 3.3). The 13,702 genes shown represent the consensus of 5297 glioma 

and 7221 normal samples. Genes represented in the top right quadrant are of greatest 

interest as they represent genes whose fidelity and expression values have increased 
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for that cell-type in glioma versus normal. The most likely explanation for this pattern is 

increased, dysregulated expression of the gene likely due to being in the proximity of 

the tumor as part of its microenvironment. The converse of this situation is located in the

bottom left quadrant. These genes have experienced decreased fidelity to the cell-type 

as well as decreased bulk expression. This can be caused by the converse 

dysregulation event where a gene that is a high fidelity marker for the cell-type in the 

normal context is no longer a high fidelity marker. This is likely due to a loss in 

expression in the cell-type and/or increased expression in some other cell-type, either 

another dysregulated nonmalignant cell or malignant cells (which often have broad 

dysregulation of their transcriptomic profiles), coupled with a decrease of expression of 

the gene in the cell-type of interest.

Another confounding factor is the change in relative abundance of the cell-types. 

For example, both increased expression in the relevant cell-type as well as increased 

relative abundance of the cell-type can drive increased bulk expression of a gene and 

contribute to its presence in the upper right quadrant. However, if a gene gains fidelity in

a cell-type but the cell-type experiences a decrease in relative abundance, the gain in 

fidelity and increased expression in the relevant cell-type might not be enough to 

compensate for the loss of in abundance of the cell type and place the gene in the lower

right quadrant.

We see two major patterns in the scatterplots featured in Fig. 3.3, positively 

correlated and negatively correlated. Positively correlated plots include those of 

microglia (Fig. 3.3a) and endothelial (Fig. 3.3d), and are suggestive of increased 

relative abundance of these cell-types. Both of these cell-types are known to be 
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enriched in the both tumor core and periphery: microglia due to immune recruitment21 

and endothelial cells due to increased vascularization22 by the tumor. On the other hand,

negatively correlated scatterplots are suggestive that these cell-types are experiencing 

a decrease in relative abundance, like those of oligodendrocytes (Fig. 3.3b) and 

neurons (Fig. 3.3c). Both of these cell-types have been shown to be largely excluded 

from the tumor mass23. 

Figure 3.3 | Scatterplots of differential expression against differential fidelity.
Scatterplots of differential expression against differential fidelity for all genes 
corresponding to microglia (a), oligodendrocytes (b), neurons (c), and endothelial cells 
(d). Color of the points corresponds to the normal mean rank expression percentile.

Ultimately, the area of the plot of the most interest is the top right, representing 

genes with both high differential fidelity and high differential expression. Of the plots 

featured in Fig 3.3, we were particularly interested in endothelial cells as they would be 

directly accessible to the blood. 
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To zoom in on this region of interest, we set arbitrary thresholds in Fig. 3.4a of an

absolute value of fidelity in the normal data of less than 30 and in the glioma data of 

more than 30. In addition we can use resources like the COMPARTMENTS database8 

to overlay information on whether the genes have an extracellular component, which 

makes them accessible to targeted therapeutics. 

An outlier with extreme differential fidelity and expression is present in (Fig 3.4a),

which also does have an extracellular component. We can further investigate the 

identified target, ENPEP, by subsetting mean rank expression percentile (Fig. 3.4b) and

kME  (Fig. 3.4c) by grade. Both low (LGG) and high (HGG) grade gliomas have 

significantly elevated expression of ENPEP and increased fidelity of ENPEP  to 

endothelial cells in glioma versus normal datasets. Furthermore there is an 

nonsignificant increase in expression from LGG to HGG and a significant increase in 

fidelity to endothelial cells from LGG to HGG. 
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Figure 3.4 | Target identification using subsetting of the data in endothelial cells.
Filtering genes with normal absolute fidelity to endothelial cells less than 30 and glioma 
fidelity greater than 30, while overlaying whether the genes have extracellular 
components allows for easy target identification (a).(Figure caption continued on the 
next page.) 
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(Figure caption continued from the previous page.) The identified target, ENPEP, has 
an extracellular component and has a high differential fidelity for endothelial cells as 
well as high differential expression in the datasets. ENPEP can be further studied by 
breaking down the data to normal, low-grade glioma (LGG), and high-grade glioma 
(HGG) types for measuring mean rank expression percentile (b) and kME (c). * indicates 
significance of (p<0.05) by the two-sided Wilcoxon rank-sum test.

Finally, we use orthogonal data sources to validate our predictions regarding 

ENPEP expression in endothelial cells of the glioma microenvironment. In Fig. 3.5a, we 

use the GTEX Human Tissue Atlas17 to determine whether ENPEP has significant 

expression in any other tissues. While there are low levels of expression of ENPEP in 

the cerebellum, expression in the frontal cortex is very low, around 1 TPM. Other tissues

with elevated levels of expression are the musco-skeleltal system and liver, which have 

significant mass or favorable tolerance profiles for therapeutics, respectively24. Using 

single cell data of normal cortex from Velmeshev et al.19 (Fig. 3.5b) we find very 

negligible expression of ENPEP in endothelial cells (0.2 CPM) and even lower 

expression in all other cell types. This matches data from the GTEX Human Tissue Atlas

which found low expression of ENPEP in the frontal cortex.
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Figure 3.5 | Orthogonal data recapitulates in silico predictions of ENPEP 
expression.
(a) Data from the GTEX human tissue atlas details the expression of ENPEP in various 
human tissues. (b) Similarly, using single-cell data from Velmeshev et al., we can see 
the cell-type distribution of ENPEP expression in the human brain. (c) The IVY-GAP 
Atlas shows distribution of ENPEP expression in various histologic areas of GBM 
tumors. (d) Single-cell data from Darmanis et al. reveals distribution of ENPEP 
expression in various cell-types of the tumor microenvironment in the tumor core and 
periphery. Error bars in all figures represent two standard errors.

To investigate expression in the Glioblastoma (GBM) setting, we use the IVY-

GAP Atlas18 (Fig 3.5c) which performed histologically-guided multi-site sampling to 

selectively transcriptomically profile biologically important regions. We find that 
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expression is highest in areas of microvascular proliferation and hyperplastic blood 

vessels and low elsewhere, in line with our prediction of ENPEP expression in 

endothelial cells. Single cell transcriptomic profiling of GBMs by Darmanis et al.20 (Fig. 

3.5d) has adapted the multi-site sampling methodology to the single cell workflow. 

Interestingly, we find highest expression of ENPEP in tumor core endothelial cells, with 

low expression everywhere else. Surprisingly, peripheral endothelial cells do not show 

any expression of ENPEP, suggesting that the dysregulation of endothelial cells by the 

tumor that results in ENPEP expression occurs only in the tumor core and not periphery.

Chapter 3.4: Discussion

Through the use of massive amounts of data and leveraging of our correlational 

algorithms we were able profile cells of the tumor microenvironment in terms of 

differential expression in glioma versus normal settings. This effort reflects a key 

advance in how we can further leverage the vast amounts of existing data bulk 

transcriptomic data to identify dysregulated genes for therapeutic intervention in any 

definable cell type. 

We chose endothelial cells as a cell-type to investigate more deeply as its direct 

contact with the bloodstream makes it an attractive starting point to find a target. It was 

immediately apparent that ENPEP had both high differential fidelity and expression, 

suggesting that ENPEP  was expressed uniquely in endothelial cells and was poorly 

expressed in the normal brain. Orthogonal validation in bulk and single-cell datasets 

bore out predictions of expression of ENPEP uniquely in endothelial cells close to the 

tumor in vascular regions. 
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ENPEP, known as glutamyl aminopeptidase, catalyzes the cleavage of 

glutamatic and aspartic residues from the N-terminus of proteins25. It is part of the renin-

angiotensin system and is thus a critical part of regulating blood pressure26. It has also 

been implicated as being part of neovascularization pathways22,27,28.

Compellingly, literature does exist in highlighting the use of anti-ENPEP 

antibodies to target tumor vasculature29. However, this work has been performed in 

mouse models and the specificity of ENPEP expression in brain malignancies has thus 

far not been satisfyingly clarified. It is our hope that this work provides the necessary 

support for further development of ENPEP as a therapeutic target for the following 

reasons: 1) it is uniquely expressed in endothelial cells close to gliomas and not in 

normal brain, 2) it is highly expressed in endothelial cells in both high and low-grade 

gliomas, 3) because endothelial cells are adjacent to the blood, this target can be bound

without requiring further penetration into the tissue.

While this approach has thus far been limited to only a single target, it is clear 

that this process could be for any cell-type yielding a wealth of potential therapeutic 

targets for gliomas or any other disease with a detectable transcriptomic phenotype.
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