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Using Lexical Analysis Software to Assess Student 
Writing in Statistics 

 
1.  INTRODUCTION 

 
For over twenty years, there have been calls for improving Science, Technology, Engineering 
and Mathematics (STEM) education in the United States (American Association for the 
Advancement of Science, 2009; Committee on Undergraduate Science Education, 1999; Gess-
Newsome, Johnston, et al., 2003; Kardash & Wallace, 2001; National Science Foundation, 1996; 
Ruiz-Primo, Shavelson, Hamilton, et al., 2002; Seymour, 2002; Seymour & Hewitt, 1997; 
Tobias, 1990). These calls have been paralleled in the statistics education community (Gal & 
Garfield, 1997).  A common recommendation is to move STEM instruction away from teaching 
and assessing facts to helping students acquire deeper conceptual understanding and transferable 
problem-solving skills. Similarly, in 1992, the ASA/MAA Joint Curriculum Committee gave 
three recommendations for changing statistics courses, one of which was to incorporate more 
data and concepts and fewer recipes and derivations (Cobb, 1992). Furthermore, one of the 
recommendations of the Guidelines for Assessment and Instruction in Statistics Education 
(GAISE) college report is to stress conceptual understanding, rather than mere knowledge of 
procedures (Aliaga, Cobb, Cuff, et al., 2005).  
 
Meaningful assessments that reveal student thinking are vital to these efforts (Pellegrino, 
Chudowsky, and Glaser, 2001) as emphasized by a second recommendation of GAISE: use 
assessments to improve and evaluate student learning (Aliaga, et al., 2005). Assessing conceptual 
understanding, however, is recognized as a “challenge faced by all educators in statistics 
education” (Gal & Garfield, 1997). To this end, there are efforts in science education devoted to 
developing concept inventories for formative assessment of students’ understanding of important 
‘big ideas’ in science (D'Avanzo, 2008; Knight, 2010; Libarkin, 2008). A similar undertaking in 
statistics is the Comprehensive Assessment of Outcomes of a First Statistics Course (CAOS). 
Concept inventories, like the CAOS, are typically multiple-choice assessments in which the 
distracters were derived from common student misconceptions. These misconceptions were 
generated by educational research on student thinking and alternative conceptions about the big 
ideas in STEM disciplines (Duit, 2009). These findings were obtained by asking students to 
construct explanations to questions either in interviews or writing. 
 
The utility of multiple-choice concept inventories is that they are efficient to administer to large 
groups of students. Constructed-response questions, also known as open-response or short 
answer questions, in which students must write an answer in their own words, have been shown 
to reveal students' understanding better than multiple-choice questions (Bennett & Ward, 1993; 
Birenbaum & Tatsouka, 1987; Bridgeman, 1992; Kuechler & Simkin, 2010). For example, 
Nehm and Schonfeld (2008) showed that constructed-response scores have greater 
correspondence with clinical interview scores than multiple-choice test scores in the subject of 
natural selection in biology. The drawback to the use of constructed-response tests is the time 
and expertise needed to score them, particularly in large enrollment courses or large research 
projects. Recent advances in technology and natural language processing, however, have made 



	
  

computerized analysis of writing possible and may facilitate the analysis of large numbers of 
written responses. In fact, the correspondence between clinical interview and constructed-
response scores persists when the constructed responses are scored by computers, which are 
capable of capturing even students’ “naïve ideas as accurately as human-scored measures” 
(Beggrow, Ha, Nehm, et al., 2013, pg. 14). 
 
The Automated Analysis of Constructed Responses (AACR; http://www.msu.edu/~aacr) 
research group, consisting of researchers from seven universities with backgrounds in various 
STEM disciplines, has as a goal the creation of open response questions that can be scored using 
software to help us gain greater insight into student thinking about ‘big ideas’, such as evolution, 
energy, and genetics. To date, the work of the statistics subgroup of AACR has been to inform 
biology education researchers of the problems students have in understanding the meaning of the 
word random (Kaplan, Rogness, and Fisher, 2014). These misuses of the word random have 
been noted in the biology education literature by Garvin-Doxas and Klymkowsky (2008), who 
claim that genetic drift, a random process underlying evolutionary change in biology, understood 
by both students and working scientists and in the journal, Nature, in which Ochs (1990) was 
able to cite three papers published in the previous year that used the word random incorrectly. 
 
In the next section of the paper, we describe the use of two different software packages, 
LightSIDE and Text Analysis for Surveys (TAS), for analyzing student open responses. Section 
3 describes the methodology associated with the data collection and analysis of open-response 
data. These data were collected from undergraduate students’ writing about the word random at 
the conclusion of an introductory statistics course. The analysis and results produced by the two 
packages will be contrasted with each other and with the results obtained from hand coding of 
the same data sets. The article will conclude with a discussion of the advantages and limitations 
of the analysis options for statistics education researchers and directions for future research using 
the software. 
 

 2. DESCRIPTION OF THE SOFTWARE 
 
2.1 Light Summarization Integrated Development Environment (LightSIDE) 
 
LightSIDE is a free and downloadable (http://www.cs.cmu.edu/~emayfiel/side.html) machine-
learning software package developed at Carnegie Mellon University (Mayfield & Rosé, 2010). 
The development of the LightSIDE software was based on the computer science research field of 
machine learning, in which researchers investigate how to teach computers to mine texts and 
build models based on human generated training sets (for details, see Abu-Mostafa, 2012). 
Generally, the machine learning software is taught by the patterns found in the human scored 
training sets. The algorithm that is generated by the machine learning software from a training 
set is used to predict the categorization decisions of texts that have not yet been scored manually.  
 
In practice, LightSIDE takes a set of human-scored text-based responses (for instance, a 
spreadsheet of responses that have been scored for the presence or absence of specified concepts) 
and discovers word patterns that account for human-generated scores. LightSIDE performs much 
of the difficult work of figuring out what elements differentiate an accurate response from an 
inaccurate response, or a response in which a series of words that represents a concept is present 



	
  

or absent. LightSIDE next applies the rules it learned from human scoring on a new set of 
responses and determines how well the rules work using Kappa agreement values. This software 
enables users to extract features (e.g. words in texts) from text and to build the algorithm on how 
the features predict human decision (e.g. human scoring).  
  
Using the LightSIDE program consists of three operations: 1) extracting features, 2) building 
models, and 3) predicting labels. In the first step LightSIDE mines important words from 
students’ essays. The researchers are able to control machine learning parameters such as n-gram 
selection (e.g., unigrams, individual words, or bigrams, two word phrases, see Wang, Chang and 
Li, 2008), stemming (e.g., predict for prediction, predictable, and predicted), and removing 
stopwords (e.g. a, an, so, or and). LightSIDE detects n-grams that indicate both whether a 
response belongs or should be excluded from the category and assigns each of the detected n-
grams a value indicating its importance as part of the inclusion or exclusion model. 
 
In the second step of the analysis, building models, LightSIDE builds an optimal algorithm to 
predict the human graders’ scoring of the responses into categories. LightSIDE is equipped with 
many types of support vector machines (SVM) (e.g., Sequential Minimal Optimization (SMO) 
or Library for Support Vector Machines (LIBSVM)) with which to build a scoring model. In this 
step of the analysis the researcher must choose a support vector machine from which LightSIDE 
will build its scoring model. Initially, the machine-learning experts who developed LightSIDE 
recommended the use of SMO (Moharreri, Ha, and Nehm, 2014). They claimed it was state-of-
the-art because, as a revised version of the original SVM, it improved on the SVM process. In 
our experience, the choice of SVM used in model-building in LightSIDE should be experience-
driven not rationale-driven; in fact, many researchers and projects using LightSIDE incorporate 
other algorithms (e.g. naïve Bayesian classifier) as part of the analysis (Mayfield, Adamson, and 
Rosé, 2013). In the initial analysis of the data presented in this paper, SMO showed the best 
performance in terms of providing the most reliable models for the data so it was used for this 
study.  
 
In the third step of the analysis, predicting labels, researchers can use the model that LightSIDE 
built in step two to label new text (e.g. students’ new responses to be scored). The results of 
LightSIDE’s prediction are then downloadable into an Excel file. Previous results have shown 
inter-rater reliability between a human scorer and LightSIDE to be better than that between the 
human and a second independent human scorer (Beggrow, et al., 2013). 
  
One advantage of using LightSIDE is that machine learning can extract text features and build 
predictive scoring models automatically, without the human labor that can be a highly time- and 
cost-consuming process (Nehm, Ha, and Mayfield, 2012). In addition, bigram (i.e. the 
combination of two words) and trigram (i.e., the combination of three words) functionalities are 
able to differentiate the meaning of two sentences that consist of the same words. Consider, for 
example, student descriptions of a skewed histogram. Students may describe the histogram as 
having right skew or left skew, with only one of the descriptions being correct. If the program 
parsed the writing into unigrams only, the word skew would be indicative of both a correct and 
incorrect response. The use of bigrams allows the program to read the bigram right skew as 
different from left skew, giving it the ability to characterize one phrase as correct and the other as 



	
  

incorrect. A final advantage of LightSIDE is that it is released under General Public License 
(GNU). Therefore, it is free for everyone and modifiable by anyone.  
  
One disadvantage of LightSIDE as a machine learning software, however, is that it requires data 
that have been hand-scored by humans because the software needs to learn from patterns in 
human decisions. Researchers need to collect and score an amount of data sufficient to build a 
reliable scoring algorithm. Sufficiency, in terms of the amount of data needed, depends on the 
complexity of the scoring algorithm, such as the diversity of features associated with a category. 
Moreover, the larger the amount of human-scored data that can be provided, the better the 
software is enabled to learn the patterns more effectively and accurately (see Ha, Nehm, Urban-
Lurain, et al., 2011). Researchers need to investigate empirically how much data LightSIDE 
needs to build an accurate and reliable model. Another disadvantage of LightSIDE is that it is 
difficult for users to intentionally control and modify the algorithm that the software generates. 
For example, an algorithm typically uses all features extracted from text to build the predictive 
scoring model when a subset of the extracted features would be sufficient to create a model with 
similar reliability. Although LightSIDE consists of several functions to select features (e.g., 
removing noisy features), it is still difficult to manually control the features that interact to build 
the algorithm because the software typically extracts and uses a large number of features from 
text.  
 
2.2  IBM/SPSS(R) Text Analytics for Surveys - TAS 
 
IBM SPSS Text Analytics for Surveys (TAS) is lexical analysis software that was originally 
designed for processing survey responses from marketing research (i.e. responses to questions 
such as, “What can be improved about product Y?”).  There is current work that extends the 
utility of this software to analyze student responses in STEM education research (Ha & Nehm, 
2011; Haudek, Kaplan, Knight, et al., 2011; Haudek, Prevost, Moscarella, et al., 2012; Nehm & 
Haertig, 2012).  For this report, we have used IBM SPSS Text Analytics for Surveys, v. 4.0 
(SPSS, 2010), which is commercially available at a cost of 2,400 USD (at the time of writing). 
  
TAS uses linguistic-based extraction to identify terms and/or phrases from blocks of machine-
readable text.  These terms may be single words (e.g. random) or they may be phrases (e.g. 
random sample or random sample of students). As a group, terms and phrases are referred to as 
lexical tokens or, simply, tokens. The software recognizes tokens by using built-in and/or 
customizable libraries, which can be thought of as dictionaries. Therefore, to investigate student 
writing in STEM, some work must be done to build a custom library that contains unique tokens 
in the student responses. For example, the phrase equal chance had to be added to the library 
used by the current project. These custom libraries are re-usable, however, and shareable 
between different text analysis projects; so custom libraries already built for one project need 
less revision for their subsequent use in other projects. 
  
Once the tokens are extracted, similar terms and phrases can be grouped together in categories. 
Categories may also contain functions, which combine tokens via Boolean operators.  In a 
biology education setting, researchers created a category for “Random” defined as a response 
containing the word random or the combination of the words by and chance. Thus the category 
definition can be written symbolically as {random | (by & chance)}. Category grain-size in TAS 



	
  

can be refined by the user, resulting in categories that may be very detailed (possibly containing 
only a single term) to extremely broad (possibly aligning with a scoring rubric level).   
 
TAS also contains linguistic and frequency-based algorithms to generate categories 
automatically (SPSS, 2010). These categories, however, do not always align well with the 
desired grain size or purpose of the research question, so some effort must be made to verify and 
hone categories by subject-matter experts. Therefore, categories are usually developed iteratively 
through careful examination of student writing and the lexical analysis output. TAS supports this 
iterative refinement, but ultimately an expert must make the decisions about the categories. The 
output from TAS is a series of binary variables based on the generated lexical category, whether 
a given response is present or absent in each category. These variables can be exported in a 
manner suitable for further statistical analysis or modeling techniques. Similar to findings using 
LightSIDE, previous research using TAS has shown that results from TAS can be used to create 
predictive scoring models on par with or better than inter-rater reliability measures between two 
independent human coders (Ha & Nehm, 2011; Haudek, et al., 2012; Nehm & Haertig, 2012). 
 
One advantage of using the TAS software is that it supports the Grounded Theory method of 
qualitative research (see, for example, Corbin & Strauss, 2008). The researcher must, at some 
level, become immersed in the student writing, insomuch as the researcher must identify terms in 
the writing in order to build libraries, and make decisions about how to group these terms into 
categories. These tasks necessitate the reading of student writing. In this way, the researcher may 
notice novel and/or emergent ideas in students writing. This approach to research requires little a 
priori knowledge of the kinds of ideas students are likely include in their explanations. 
   
Another advantage of using TAS is the ability to modify category grain-size. Researchers may 
have different purposes for the analysis of responses to different questions. Our experience has 
been that categories that represent one homogenous idea give the best analytic results. 
Depending on the research question, however, the size and scope of one idea can change 
drastically. TAS gives the researcher the ability to categorize the same set of terms differently by 
simply adjusting the categories. For example, as will be discussed later, students define random 
as something that is independent, representative or without bias. In our original coding, these 
ideas were grouped into the same category. TAS allows the user to easily separate or combine 
these three ideas, thereby allowing refinement of categories during the course of the project. 
 
The last advantage of using TAS is the ability to create diagrams of the lexical categories, called 
webmaps, from within the software. It should be noted that there are other software programs 
that can generate webmaps using the analytic outputs of either TAS or LightSIDE. This, 
however, requires multiple exporting and formatting steps. We have found utility in having the 
webmap feature available within the TAS lexical analysis software itself. Webmaps are a 
depiction of the co-variance of all or a selected sub-set of categories. Webmaps use nodes to 
represent the lexical categories and lines connecting nodes to represent responses shared between 
the two categories (for an example and further discussion see Figure 2 and Section 5.3). 
Generating webmaps allow a user to see immediately the connection (or lack thereof) between 
any two or more categories. This depiction is useful during the iterative process of category 
refinement. 
  



	
  

One disadvantage to using TAS is the amount of time in human labor needed to get refined 
output from text analytics (further discussion in Nehm & Haertig, 2012). As described 
previously, the software user has two main tasks using TAS: custom library creation and 
category refinement. The exact amount of time needed for library creation is dependent on the 
types of words one wishes to extract from responses. If the desired words are common terms, 
little effort is needed in library creation. On the other hand, if the desired words are scientific 
jargon, more effort is necessary, especially if there has been no effort to customize a library in 
that domain previously. As it relates to category refinement, the software user must confirm that 
each category represents only a single homogenous idea, at the desired and appropriate grain-size 
for the project. It has been our experience that time used for library building decreases as custom 
dictionaries are re-used and revised. As such, most of the human involvement in text analysis 
projects using TAS is applied in the creation and iterative refinement of categories.  
  
Another disadvantage of using TAS is the monetary cost for licensing the software. It should be 
noted that other software products (e.g. IBM SPSS Modeler; SPSS, 2011) are available for a 
lower cost and have similar text analytics features.  Modeler also allows the connection of text 
analysis results with a variety of computerized model building techniques in a single software 
environment. 
 

3. METHODOLOGY 
 

3.1 Description of the Data 
 
The data that will be used to illustrate the two software packages consist of sentences and 
definitions written by undergraduate students at the end of a one-semester introductory statistics 
class. In particular, the students were given a questionnaire on which appeared the following set 
of questions: 
 

a. Write a sentence with the word “random” using its primary meaning to you in statistics. 
b. Provide a definition for the word “random” using its primary meaning to you in statistics 

(i.e. maintaining the same meaning as you used in the prior sentence). 
 

The data discussed in this paper were collected as part of a large-scale study conducted during 
the fall semester of 2008 at three universities in the United States one located in the Southeast 
and two in the Midwest (for more details about the data collection and study design see Kaplan, 
Fisher, and Rogness, 2010 or Kaplan, Rogness, and Fisher, 2014). Two of the institutions are 
classified as having high research activity, one of which had large enrollment of over 40,000 
undergraduates and the other with 16,000. The other institution is a medium-sized 
comprehensive university. At the largest institution, introduction to statistics courses are taught 
in lecture format. For three hours each week, the students meet in lecture halls with 
approximately 120 students per lecture. The students attend an additional hour of recitation with 
a graduate teaching assistant once per week in classes of 30 students. At the other two 
institutions, enrollment in the classes is 30 – 40 students per classroom and at one of those 
institutions the class met at least one hour per week in a computer lab. At all institutions the 
course in which the data were collected is a service course for students in a variety of majors 
including nursing and the social sciences. The topics covered include descriptive statistics, 



	
  

confidence intervals, hypothesis testing, introduction to correlation and regression, and Chi 
Square Test of Independence.   
 
The total number of subjects for the large-scale study was 859, with 14 different instructors 
across the three institutions. Of these subjects, 534 gave a sentence and definition for random in 
the statistical sense in answer to Questions a and b. These 534 responses are called the 
“Complete data set” in this paper. A simple random sample of all of the responses from the 
Complete data set was selected for the initial phase of data analysis. This sample of responses is 
called the “Subset sample” and contained 65 responses about the statistical meaning of random. 
A second sample of responses was collected from the class taught by the first author in the fall 
2008 semester. These 82 responses were added to the data corpus; this sample is called the “One-
Class sample.” 
 
3.2 Analysis Procedures 
 
The research team used three different methods to code student responses: hand coding, 
LightSIDE software and TAS software.  Results of hand-coding were used as variables in 
scoring models using LightSIDE and helped inform computerized categorization using TAS. 
Procedures for each of the three coding methods are described in this section. 
 
3.2.1 Manual Coding of the Data 
 
The research team used data from a pilot study to create coding categories for the student 
sentences and definitions for the word random. One researcher read all the responses and used 
the responses to create categories.  Once the first researcher had finished creating coding 
categories for the definitions and had coded all the responses, draft versions of coding categories 
and the student responses were then sent to one other researcher. That researcher independently 
coded the responses and suggested modifications and edits to the coding categories. The three 
members of the research team discussed the responses on which the two independent coders 
disagreed and modified the coding rubric as necessary. After this discussion there was 100% 
agreement between the three researchers.  
 
The coding rubric for student statistical uses and definitions of random contains six categories: 1. 
“Uncoded,” 2. “By Chance,” 3. “Without Order or Reason,” 4. “Unexpected, Unpredictable,” 5. 
“Without Bias, Representative,” and 6. “Equally Likely.” The categories with higher assigned 
numbers are closer to a statistically sound understanding of the word random and each response 
was coded into only one category, corresponding to the category that was the highest that could 
be justified by the coder. It may seem peculiar that the most advanced coding category in the 
rubric represents a common misconception about random processes, that the outcomes are 
equally likely (Fielding-Wells, 2014). At the time, however, this category was the only one in 
which responses mentioned likelihood or anything closely related to probability, and there were 
no responses that mentioned probability without also stating the condition of equal likelihood. 
The research team then used the Subset sample (n = 65) to validate the rubrics created with the 
pilot study data. Each of the 65 definition and sentence pairs was independently coded by two 
researchers, with an initial agreement of 72%. All disagreements were discussed by the three 
researchers and the coding rubric was amended as necessary until there was 100% agreement on 



	
  

all of the instruments. The One-Class sample was coded by the first author using the coding 
rubric developed from the pilot study and Subset sample coding (for more detail about the 
categories and hand coding see Kaplan, Fisher, and Rogness, 2010 and Kaplan, Rogness, and 
Fisher, 2014).  
 
3.2.2 Coding of the Data Using LightSIDE 
 
To create training sets of data for LightSIDE, each response in the subset and One-Class samples 
was coded independently by three researchers as having or not having (presence or absence of) 
elements corresponding to each of the five categories used in the original hand scoring: “By 
Chance,” “Without Order or Reason,” “Unexpected, Unpredictable,” “Without Bias, 
Representative,” and “Equally Likely.” All disagreements were discussed by the three 
researchers until 100% agreement was reached. The responses from the One-Class sample were 
then analyzed via LightSIDE. Features were extracted for each of the five categories using the 
settings: unigrams, line length, remove stopwords, stem and treating features as binary. Models 
for each category were built using the SMO SVM and validated using a 10-fold cross validation 
process.  
 
This work relied on the use of the Cohen's kappa statistic to quantify the correspondence 
between human and computer scores (Bejar, 1991). Cohen's kappa values are widely used to 
measure inter-rater agreement. Considering the computer as a rater, the inter-rater agreement 
reliability captured by Cohen's kappa is an appropriate method for human and computer 
correspondence measures. Calculated Cohen’s kappa coefficients can range from -1.0 to 1.0. A 
kappa value of 0 indicates no agreement between two raters (and negative values indicate that 
the observed agreement is lower than would be expected by chance). Literature has suggested 
several possible cutoff values of Cohen’s kappa and how to interpret Cohen’s kappa; in 
particular we used Landis and Koch’s (1977) and Fleiss (1971)’s suggestions. Landis and Koch 
(1977) suggested that kappa values between 0.41 and 0.60 were considered moderate, values 
between 0.61 and 0.80 were considered substantial, and those between 0.81 and 1.00 were 
considered almost perfect. Fleiss’s (1971) guidelines are more generous than Landis’ and Koch’s 
(1977) guidelines. Fleiss (1971) suggested that kappa values over 0.75 were considered as 
excellent, scores between 0.60 and 0.75 were considered good, values between 0.40 and 0.59 
were considered fair, and values less than 0.40 were considered poor. Therefore, kappa values of 
0.81 or greater were the target, but kappa values greater than 0.75 were considered to be the 
benchmark for kappa values in this study.  
 
When a model built in LightSIDE, based on the Subset sample using the initial settings described 
previously, did not reach a kappa level of at least 0.75, several settings were changed in an 
attempt to create a model that would function better. One setting that addressed the small size of 
the data set was to set the threshold to three, rather than five. This encourages LightSIDE to 
recognize words that appear in only three of the responses in a given category, rather than 
requiring five responses to contain the word. Another setting that was modified was to specify 
that LightSIDE consider bigrams, or two-word phrases. For example, in the category for random 
sample, this allowed the software to recognize the phrase random sample, rather than each of the 
words, random and sample, individually. When these modifications still did not yield a model 
that reached a kappa level of 0.75, the two data sets, One-Class and Subset, were merged to 



	
  

create a larger training set. While this tweaking of the tuning parameters might result in a model 
that overfits the data, we were able to test the models built only on the One-Class sample for 
overfit using the Subset sample. Unfortunately, the models built on the combined One-Class and 
Subset samples could not be tested for overfit due to the lack of an additional hand-coded data 
set.  The details of the models along with the results of the coding of the Complete data set are 
discussed in detail in Section 4.2. 
 
3.2.3 Coding of the Data Using SPSS-TAS 
 
To begin the coding of the data using SPSS-TAS, the One-Class sample data were read into the 
program, which extracted terms based on the libraries built into the software. After reviewing the 
terms that had been extracted, the first author created a new library, called the Random Library, 
for the terms that the software had not extracted. This process was informed by the previous 
manual coding and use of LightSIDE for coding. Some of the terms that were added were agents 
of randomization, such as spinner, dice, hat and coin. Other additions included actions, such as 
flip a coin or choose out of a box; the built-in SPSS-TAS libraries do not contain verbs or actions 
due to their construction for use in analyzing marketing surveys. Another class of additions to the 
library was phrases having to do with likelihood, such as equally likely, same chance, or equal 
opportunity.  
 
Once the most obvious additions to the library had been made, categories were built for each of 
the five categories that had been previously identified in the data: “By Chance,” “Without Order 
or Reason,” “Unexpected, Unpredictable,”  “Without Bias, Representative,” and “Equally 
Likely.” In addition, categories were built for the phrase random sample and for agents of 
randomness as described previously. All categories were built using rules. For example, the 
category “Equally Likely” contained two rules: The first placed all responses that used the word 
probability into the category and the second placed all responses that used the words equal, 
equally, or same as a modifier of one of the words chance, opportunity, or likely. After the seven 
categories had been created and the responses were categorized, the categorizations were 
checked against the manual coding and the results of the coding by LightSIDE using Cohen’s 
kappa values as specified in the previous section. Terms were added to the Random Library and 
the rules for the categories were modified in an iterative process until the coding of the One-
Class sample by SPSS-TAS produced kappa values of at least 0.75.  
 
The Random Library and categories were saved in a way that allowed the researchers to read in 
and analyze the Subset sample data using the same library and categories. Tokens were extracted 
and responses were categorized based on the built-in and Random libraries and rules that had 
been created using the One-Class sample. These categorizations were compared to those that had 
been done using manual coding and a second iterative process was used to augment the Random 
Library and rules so that the results of the SPSS-TAS coding of the Subset sample produced 
sufficiently high kappa values when compared to the coding that had been done manually. The 
iterative process continued until the kappa values for all seven categories for both of the data sets 
was sufficiently high. Once the library and rules were created based on the smaller training sets, 
the Complete data set was read into TAS and analyzed using the library and rules. These results 
are discussed in detail in Section 4.3. 
 



	
  

3.3 Comparing Results from LightSIDE and TAS 
 
Once the models created in LightSIDE and TAS reached acceptable kappa levels with human 
hand coding for the Subset and One-Class samples, the models were applied to the Complete 
data set. Using the results of the hand coding, the number of expected responses in each category 
were calculated so the number of responses indicated by each of the two programs could be 
compared to the expected number. In addition, inter-rater reliability and percent agreement were 
calculated for the coding in LightSIDE when compared to TAS. These results are presented in 
Section 4.4. 
 

4. RESULTS 
 

4.1 Results of Hand Coding 
 
Table 1 provides the hand coding results of the Subset and One-Class samples and examples of 
student generated sentences and definitions for the word random from which the categories were 
derived. Recall that each response was placed into exactly one category, corresponding to the 
highest possible category into which the coder determined the response belonged. The results, 
therefore, reflect disjoint categories without retaining information about connections between the 
categories (for more details about the categories, see Kaplan, Fisher, and Rogness, 2010 and 
Kaplan, Rogness, and Fisher, 2014).  
 
In order to create and test categorization models for the data in the two computer programs, the 
data had to be re-coded by hand indicating every category into which each response could be 
classified. During the analysis of the data using TAS (described later), two additional categories 
were identified: “Random Sample” and “Agents.” These categories were included in the 
recoding of the data. In addition, when the data were recoded into multiple categories, the 
research team stopped accounting for any responses that were not coded into any category. The 
results of the hand coding are presented in Table 2; the same results are presented graphically in 
Figure 1. It is still apparent that the subjects in the One-Class sample tended to mention more 
statistical aspects of randomness, such as equal likelihood, unbiased, and agents than did the 
subjects in the Subset sample. In contrast, subjects in the Subset sample were more likely to 
mention random sampling and elements of without order, reason or pattern than the One-Class 
sample. This analysis, however, still does not provide insight into the relationships between the 
categories and, due to the prohibitive amount of time such hand coding would have required, the 
Complete data set was never hand coded. 
 
 



	
  

 
 

Table 1: Sentences and definitions for random given by students 
Definition 
Category 

Subset 
Sample  
(n = 65) 

One-Class 
Sample  
(n = 82) 

Example 

Uncoded  12% 6% Sentence: We used a random variable today. 
Definition: random: unknown 

By Chance 4% 9% 
Sentence: For the survey, a random sample was 
picked. 
Definition: by chance that something occurred. 

Without Order 
or Reason 39% 12% 

Sentence: It was a random sample, which provides 
independence. 
Definition: Random: persons were chosen not based 
on any reason. 

Unexpected, 
Unpredictable 14% 9% Sentence: I was picked for a random sample. 

Definition: Not pre-determined. 

Without Bias, 
Representative 23% 24% 

Sentence: The sample population is a random sample. 
Definition: Sample is equally representative of all 
groups of the population. 

Equally 
Likely 8% 40% 

Sentence: We took a random sample of the students. 
Definition: everyone was equally likely to be chosen 
for the sample. 

 
Table 2: Hand coding of the data (multiple categorizations allowed) 

 Percent in Sample 

Category 
Subset 
Sample 
(n = 65) 

One-Class 
Sample 
(n = 82) 

By Chance 9.2% 20.7% 
Without Order 
or Reason 21.5% 13.4% 
Unexpected, 
Unpredictable 12.3% 8.5% 
Without Bias, 
Representative 35.4% 31.7% 
Equally Likely 9.2% 36.6% 
Random Sample 56.9% 41.5% 
Agents 1.5% 30.5% 

 
 



	
  

 
Figure 1: Results of hand coding of the data (multiple categorizations allowed) 

 
4.2 Results of Coding using LightSIDE 
 
Table 3 provides the results of the initial analysis of the One-Class sample data through the first 
two steps in LightSIDE: extracting terms and building models. Notice that the models built for 6 
of the 7 categories (all except “Without Bias, Representative”) correctly categorized over 85% of 
the responses. Unfortunately, only the models for the 3 categories “By Chance,” “Equally 
Likely,” and “Random Sample” had kappa values meeting the stated criteria. The low kappa 
values for the other categories are the result of the high number of false negatives; in other 
words, the software has missed one-third to one-half of the responses that should have appeared 
in the category.  
 
When the model for the category “By Chance” was applied to the Subset sample data, every 
response was correctly categorized (i.e. 100% correct, kappa = 1.0); this model was therefore 
considered to be functioning properly and was applied to the Complete data set. The other two 
models, “Random Sample” and “Equally Likely,” did not fare as well when applied to the Subset 
sample, classifying 50.8% and 73.8% of the responses correctly with kappa values of 0.0989 and 
-0.5476, respectively. In fact, the model for “Equally Likely” was not able to detect any of the 6 
responses that should have been in the category. The problems with the “Random Sample” 
model were resolved by having LightSIDE consider bigrams, or two-word phrases, when 
extracting features from the data. This new model correctly categorized 92.7% (76) and 95.4% 
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(62) of the responses in the One-Class and Subset samples, respectively, with corresponding 
kappa values of 0.8493 and 0.909 (see Table 4).  
 

Table 3: Results of the first modeling attempt in LightSIDE using the One-Class sample 
Category Kappa Correctly 

Classified 
Number in 
Category 

False 
Positives 

False 
Negatives 

By Chance 0.9258 80 (97.6%) 17 1 1 
Without Order or 
Reason 0.5847 75 (91.5%) 11 2 5 
Unexpected, 
Unpredictable 0.4617 76 (92.7%) 7 2 4 
Without Bias, 
Representative 0.4250 62 (75.6%) 26 9 11 
Equally Likely 0.8949 78 (95.1%) 30 2 2 
Random Sample 0.8264 75 (91.5%) 34 5 2 
Agents 0.6385 70 (85.4%) 25 4 8 

 
 
The problems with the “Equally Likely” model were solved by setting the extraction threshold in 
LightSIDE to three instead of five. In other words, only three responses in the category needed to 
contain a word in order for that word to be extracted as informative of the category. This new 
model correctly categorized 97.6% (80) and 98.5% (64) of the responses in the One-Class and 
Subset samples, respectively, with corresponding kappa values of 0.9474 and 0.9008 (see Table 
4). The threshold was also set to three for the category “Agents.” This raised the percent of 
responses correctly classified in the One-Class sample to 92.7% (76) and provided an acceptable 
kappa value of 0.8234. It was noted, however, that the model had difficulty recognizing the 
words computer and die as representative of the category. Furthermore, the one response in the 
Subset sample that should have been in this category was not detected. Because of the relative 
lack of responses fitting this category in the Subset sample, and the supposition that future data 
with more examples in this category would analyze better, no further work was done to improve 
the model. 
 
When similar solutions were not effective for the three remaining categories, “No Reason or 
Order,” “Unexpected, Unpredictable,” and “Without Bias, Representative,” all of the hand coded 
data, the One-Class sample and the Subset sample, were combined into one data set with 147 
responses. For each category, the threshold in LightSIDE was set to three. The model generated 
for the category “No Reason of Order,” with a kappa value of 0.8456, correctly classified 95.9% 
of the responses, generating only one false positive and missing five of the 25 responses that 
should have been included in the category. The model for “Unexpected, Unpredictable,” with a 
kappa value of 0.7822, generated no false positives, but misclassified five of the 15 responses 
that should have appeared in the category. The software generated a model to predict the 
category “Without Bias, Representative” with a kappa value of 0.7859 that had a 
misclassification rate of 9.5%, missing nine of the 51 responses that should have been included 
in the category and generating five false positives. While two of the models did not reach the 
highest standard for the cutoff of kappa values, all did exceed a kappa value of 0.75. In addition, 
the models had a tendency to produce a relatively large number of false negatives. That said, all 



	
  

models correctly categorized over 90% of the responses in the two data sets. These models were, 
therefore, considered sufficient. Summary information about the models is given in Table 4.  
 

Table 4: Results for the final models generated using LightSIDE 

One-Class sample Subset sample 

Category n 
required 

Kappa 
Correctly 

Categorized 
(n = 82) 

Kappa 
 Correctly 

Categorized 
(n = 65) 

By Chance 82 0.9258 97.6% 1 100% 
Equally Likely 82 0.9474 97.6 0.9008 98.5% 
Random Sample 82 0.8493 92.7% 0.9090 95.4% 
Agents 82 0.8234 92.7% 0 98.5% 
  Model Kappa Correctly categorized 
Without Order or Reason 147 0.8456 95.9% 
Unexpected, Unpredictable 147 0.7822 96.6% 
Without Bias, 
Representative 147 0.7859 90.5% 

 
4.3 Results of Coding using TAS 
 
As discussed in Section 3.2.3, the first step in using TAS is to read in the data and allow the 
software to extract lexical tokens based on the libraries built into the software. Once this was 
done, a new library was created using terms related to randomness. Next, rules corresponding to 
each of the seven coding categories were created. An iterative process was used to update the 
library and rules until the number of responses in each of the categories according to TAS was 
approximately equivalent to the number of responses when categorized by hand. The process 
included not only adding terms to the library, but also adding synonyms, such as words invented 
by students like biasedly and biasly for bias and actual words like pre-determine and 
undetermined for predetermined.  

Table 5 shows the rules that were used in TAS to classify the One-Class and Subset samples. The 
rules are created using standard logical operations (& for and; | for or) as well as standard use of 
parentheses and order of logical operations. The asterisk (*) indicates that a part of a word or 
phrase should be searched for and responses including any word or phrase beginning with the 
subpart should be included in the category. When a phrase, such as by chance, appears in a rule 
with no operator between the two words, this indicates that TAS extracted the full term as a 
bigram. If an operator appears between two words in a rule, such as random & sample, this 
allows the software to correctly classify responses when each term is extracted individually, 
rather than as the bigram random sample.  

Two of the categories are described by only one rule: “Agents” and “By Chance.” The other 
categories contain multiple rules. While the or operator can be used to combine rules, rules that 
contained different aspects of the category were kept separate so they can be analyzed 
individually at a later date. For example, in the category “Without Bias or Representative,” the 



	
  

first rule contains the aspects of the category related to representativeness, the second rule 
contains aspects of independence or no relationship and the last three rules contain various 
elements associated with the concept of bias.  

 
Table 5: Final set of rules used in TAS classification 

Category Rules 
By Chance by chance | equal chance | same chance |( fair & chance) | fair chance 

Without Order 
or Reason 

1. (( without  |  no) &  (order |  reason | pattern | organization)) |  unplanned 
2. no order | no reason | no pattern 
3. reason | order | pattern 

Unexpected or 
Unpredictable 

1. Unpredicted 
2. Foresee 
3. not predictable |  predict |  (no & predetermined) 

Without Bias 
or 
Representative 

1. representative | representative of all groups | equally representative 
2. independen* |  (no* & (relation |  influence | association)) | any relation  | no 

relationship 
3. [ human motive +  <Contextual>] |   human &  impact | ( (without |  no*) & 

preference | influence*) 
4. ( no &  bias) |  ([ bias +  <Contextual>]) |  ([ bias +  <PositiveBudget>]) |  ( 

without &  bias) |   unbiased |   biased  |  not biased |  non-biased   |  skew 
5. Judgments of bias 

Equally 
Likely 

1. equal chance | equal opportunity | equal probability | same chance | same 
probability | equal likely | equal likely chance | (equal & shot) 

2. probability 

Random 
Sample 

1. random sample of *  | random sampling of * 
2. random & sample 
3. random sample 
4. random sampling 

Agents coin | coin flip | hat | hat to get a random sample | hat to make a random sample | 
names from the hat | computer | calculator | die | dice | cards 

 

Table 6 provides the summary statistics for the TAS models when compared to the hand scoring 
of the data. Notice that almost all of the models correctly classify at least 95% of the responses, 
with kappa values near 0.85 or higher and that all of the models have kappa values higher than 
the lower threshold of 0.75. The model that fares the worst is the model for “Equally Likely” 
when applied to the Subset sample. The reason for the low kappa paired with the relatively high 
percent of correct classifications (96.9%) is because the only two misclassifications were false 
negatives. There were only six responses in the data set that had been hand coded into the 
category “Equally Likely,” and TAS was only able to find four of them, missing two or one-third 
of the responses that should have been found. When the two responses were reread and 
reconsidered, there was no clear modification to the rules or library that could be used to train 
TAS to correctly classify the two responses without creating the possibility of more false 
positives. Since the model had a sufficiently high kappa value and extremely high correct 
classification rate, the seven models were considered adequate and these rules and the 



	
  

corresponding library were used on the Complete data set. These results will be discussed in 
Section 4.4. 

Table 6: Kappa values for TAS models when compared to hand scoring 
 Subset Sample 

(n = 65) 
One-Class Sample 

(n = 82) 

Category Kappa Correctly 
Classified Kappa Correctly 

Classified 
By Chance 1.0000 100% 0.9924 97.5% 
Without Order or 
Reason 0.9040 96.9% 0.8483 96.3% 
Unexpected, 
Unpredictable 0.9247 98.5% 0.9165 98.8% 
Without Bias, 
Representative 0.9003 95.4% 0.8577 93.9% 
Equally Likely 0.7841 96.9% 0.9217 96.3% 
Random Sample 0.9688 98.5% 0.9502 97.6% 
Agents 1.0000 100% 1.0000 100% 

 

In addition to categorizing responses, the TAS software can create webmaps of the extracted 
categories. Examples of webmaps for the two data sets and all seven extracted categories are 
shown in Figures 2 and 3. The webmaps show not only the ideas and phrases present in the 
responses, but also the connections between the categories that tend to exist in the data. The 
webmaps include nodes for each category. The node sizes are based on the number of responses 
in that category with larger nodes indicating more responses. The largest nodes for the One-Class 
sample were for the categories “Random Sample” and “Equally Likely” and the largest nodes for 
the Subset sample were for “Random Sample” and “Without Bias, Representative.”  

The thickness of the line that connects two nodes indicates the number of responses that include 
both of the connected categories. The webmaps show additional differences between the two 
samples with respect to the students’ writing about random. In the Subset sample webmap, 
(Figure 3) the strongest connections (denoted by the thickest lines) are between the three 
categories of “Random Sample,” “Without Bias or Representative,” and “No Reason or Order.” 
In contrast, the strongest connections on the One-Class sample webmap (Figure 2) include 
“Random Sample,” “Equal Chance,” and “Agents.” The thick connecting lines on the One-Class 
sample webmap include the statistical ideas underlying random, whereas the Subset sample 
webmap connections mirror a more colloquial use of random. Furthermore, the webmap for the 
One-Class sample shows many more connections between the ideas associated with randomness 
on the part of the subjects (for more detailed discussion of the differences between the two 
samples see Kaplan, Rogness and Fisher, 2014). 

 



	
  

 
Figure 2: Webmap of categories for the One-Class sample 

 

 
Figure 3: Webmap of categories for the Subset sample 

4.4  Comparing Results of Coding using LightSIDE and TAS 
 
In this section we compare the results of coding by the two computer programs. Tables 7 and 8 
compare the coding of the two small data sets, Subset and One-Class respectively, by the 
software packages. Note that while both programs identified approximately the same number of 
responses in each category and approximately the same number as were indicated by hand 
coding, the kappa values and percent agreement indicate that the two programs did not select the 
same subset of responses in each category. That said, there are several issues apparent from the 
tables. First, both programs tend to under select responses in the “Unexpected, Unpredictable” 
category. This was true across both samples. While the kappa value representing inter-rater 
reliability between the two programs for this category was sufficiently high when applied to the 
Subset sample, it was not when applied to the One-Class sample. The opposite was true for the 
categories of “Agents” and “Without Bias, Representative,” although the issue with the category 
“Agents” is an artifact of the fact that there is only one such response in the Subset sample and 
LightSIDE was unable to detect it.  
 
 



	
  

Table 7: Comparison of coding by LightSIDE and TAS: Subset sample 
 Number Identified  (n = 65)  

Category TAS LightSIDE Hand Kappa 
(TAS v SIDE) 

Percent 
Agreement 

By Chance 6 6 6 1 100% 
Without Order or 
Reason 12 10 14 0.8908 96.9% 
Unexpected, 
Unpredictable 7 5 8 0.8168 96.9% 
Without Bias, 
Representative 22 23 23 0.6262 83% 
Equally Likely 4 5 6 0.8710 98.5% 
Random Sample 36 36 37 0.9377 96.9% 
Agents 1 0 1 0 98.5% 

 
Table 8: Comparison of coding by LightSIDE and TAS: One-Class sample 

 Number Identified  (n = 82)  

Category TAS LightSIDE Hand Kappa 
(TAS v SIDE) 

Percent 
Agreement 

By Chance 15 17 17 0.8448 95.1% 
Without Order or 
Reason 12 11 11 0.7472 93.9% 
Unexpected, 
Unpredictable 3 5 7 0.4760 95.1% 
Without Bias, 
Representative 25 24 26 0.9127 96.3% 
Equally Likely 31 30 30 0.8695 93.9% 
Random Sample 36 34 34 0.8505 92.7% 
Agents 25 23 25 0.8234 92.7% 

 
The models built in LightSIDE and TAS were then used to code the Complete data set 
containing 534 responses. The results comparing the categorization of the Complete data set are 
provided in Table 9. The Subset sample is a randomly selected subset of the Complete data set, 
so the percent of responses observed in the Subset sample for each category was used to predict 
the expected number of responses in the Complete data set. Notice that both programs under-
predict when compared to the expected number of responses for all categories except “Agents,” 
for which both models significantly over-predicted. Notice also that the most egregious of the 
under-prediction is in the category “Unexpected, Unpredictable,” an outcome that might have 
been anticipated based on the results shown in Tables 7 and 8. Notice that the models for the 
three categories that were problematic in the coding of the smaller data sets remain problematic 
when applied to the larger data set. It should also be noted that two of the problematic models, 
“Without Bias, Representative” and “Unexpected, Unpredictable,” were models for which 
LightSIDE required a larger data set to create. Furthermore, when coding the category “Without 
Bias, Representative” using TAS, it was apparent that this category is actually a merging of three 
ideas: bias, independence and representativeness. These issues may underlie the lack of inter-
rater reliability between the computer programs. 



	
  

 
Table 9: Comparison of coding by LightSIDE and TAS: Complete data set 

 Number Identified (n = 534)  

Category TAS LightSIDE Expected Kappa Percent 
Agreement 

By Chance 32 40 49 0.8810 98.5% 
Without Order or 
Reason 87 102 115 0.8267 94.9% 
Unexpected, 
Unpredictable 9 28 66 0.4730 96.4% 
Without Bias, 
Representative 122 167 189 0.6662 86.7% 
Equally Likely 36 41 49 0.8181 97.5% 
Random Sample 237 244 303 0.8903 94.6% 
Agents 12 29 8 0.2191 94.2% 

 
 

5. DISCUSSION 
 
5.1 Summary of Findings 
 
The results presented in Section 4 indicate that both software programs LightSIDE and TAS 
provide a means for analyzing open response data generated by statistics education research data. 
While not all of the models achieved the desired kappa level, we must consider the size of the 
One-Class and Subset samples. Previous research, such as that reported by Ha and Nehm (2011), 
used nearly 2500 hand coded responses to create computer scoring models as compared to the 82 
or 147 used in this attempt. The models that functioned the best, those for the categories “By 
Chance,” “Random Sample,” “Agents,” and “Equally Likely,” were those that had fewer rules or 
elements associated with the categories. In addition, it was easier for the software to create 
models for the categories that appeared more often in the training set. In contrast, when we 
examined the categories for which the models did not function as well, “Without Bias, 
Representative,” “No Reason or Order,” and “Unexpected, Unpredictable,” we found these to be 
multidimensional when compared to the other categories. That is, each of these categories 
contained several ideas. For example, “Without Bias, Representative” comprised responses of 
three distinct types: those containing the concept of bias, those containing the concept of 
independence and those containing the concept of representativeness. The authors are confident 
that hand coding of the Complete data set and/or splitting the problematic categories into their 
component parts, neither of which has been undertaken as of this time, would resolve the issues 
with the models for the more complicated categories. 
 
5.2 Advantages and Limitations of the Coding Methods  
 
Both software packages require a significant amount of hand scored data: LightSIDE to generate 
a training set so the software can detect categories and TAS to generate a data set with which to 
compare results and illuminate tokens and rules that need to be added to the software libraries 



	
  

and categories. Thus, hand scoring is necessary. Hand scoring is also useful in that it helps the 
researcher to understand the structure of the data and the categories that may exist in the data. 
Three researchers spent a considerable amount of time generating the original rubric categories 
for the definitions of random from the student responses. That work was necessary to create a 
foundation from which to build models in LightSIDE and categories in TAS.  That said, hand 
coding is time consuming, so a reasonable first step is to hand code a sample that seems to be of 
the smallest size sufficient to create reliable computer models, given the complexity of the 
categories. If the size is not sufficiently large, more data can be hand coded at a later date, so we 
recommend starting with a large data set, but coding subsets until the software is able to build 
reliable models from the coded data. 
 
The main benefit to LightSIDE is that it is free, open source software easily accessible to all 
researchers. In addition, LightSIDE learns from the training set so, once the data are hand coded, 
it is relatively easy to run several models in LightSIDE, varying parameters to find the optimal 
model, and there is little work that needs to be done by the researcher after that point. 
Furthermore, the results of the analysis in LightSIDE provide the researchers with a list of 
features (i.e. n-grams) that are associated with responses that are either included or excluded 
from a category. The use of LightSIDE as a data mining or exploratory data analysis can 
illuminate features of the data that may not have been apparent in hand coding, which can then 
be used to refine and develop coding rubrics for previously collected data. For example, when 
creating the model for the category “Equally Likely,” LightSIDE selected the tokens hat and 
coin, leading to the creation of the category, “Agents.” LightSIDE may be used for exploring the 
data even without the burden of having hand coded the data. Consider a data set with responses 
collected pre- and post-instruction. These data can be loaded into LightSIDE and a model can be 
generated to list the lexical tokens that differentiate between pre- and post-instruction responses. 
In the case of random, we would hope that tokens such as probability or coin might be associated 
with post-instruction responses. Information gained from the LightSIDE analysis can also be 
used to inform the development of future research, both research questions and design of data 
collection.  
 
A drawback to LightSIDE is that the model creation is a bit of a black box and not easy to adjust 
when the researcher notices a systematic error, such as occurred in the analysis reported here 
when LightSIDE failed to detect key words, such as predict. In addition, LightSIDE is most 
stable when working on one category at a time. If a data set contains responses coded into 
multiple categories, such as in this data set where each response was categorized as in or out of 
each of the seven categories, there tends to be a need to reload the data when creating each 
model. The results for each model must be exported separately and then the output files can be 
combined to create one file for all categories found in the data. Another limitation to LightSIDE 
is the need for a large hand-coded data set that contains sufficient responses to represent being in 
and being out of the category being modeled. Related to this is the possibility that tweaking the 
model tuning parameters when using a small data set can result in over-fitting the model. If one 
has sufficient hand coded data, the models can be checked for such an over-fit by reserving part 
of the data set. Otherwise, additional data may need to be collected and hand coded in order to 
check the model. 
 



	
  

The main benefit to TAS is in its flexibility in allowing the user to create libraries and 
categorization rules. Furthermore, because the user is more involved in the creation of rules and 
categories, one has an opportunity to learn about the structures of the data, similar to that which 
occurs in hand coding, but with greater efficiency. In the random data set, for example, creating 
rules to model “Without Bias, Representative” illuminated the fact that this one category might 
actually comprise three separate ideas: lack of bias, representative samples, and independence of 
observations. This observation will be taken into account in the design of future research on 
student understanding of the word random. For example, the sub-categories and their 
relationships to the use of terms like probability, likelihood, or chance might in the future be 
used to identify students who have a stronger understanding of random in the statistical sense 
than the students who invoke equally likely outcomes. Another benefit to TAS is the graphical 
and output options that are stronger than those found in LightSIDE. One example is the webmaps 
illustrated by Figures 2 and 3, which allow the researcher to view the connections between the 
use of terms. TAS also provides tabular information on the number of responses in particular 
categories and in the overlap between categories.  In addition, when a single data set has been 
coded into multiple categories, the software is able to output a spreadsheet containing a list of the 
categories into which each subject’s response has been placed. The main limitation to the use of 
TAS is the cost of the license, even with educational pricing. An additional limitation is the time 
and effort needed on the part of the researcher to create the libraries, categories, and rules in 
TAS.  
 
5.3 Implications and Future Directions  
 
Even given the limitations of the software, both programs discussed in this paper are a more 
reasonable approach than hand-coding a great number of student responses should a researcher 
want to use open-ended responses in order to learn more about student knowledge than is 
possible through the use of forced response, multiple-choice, or true-false type, questions. In 
fact, the coding of the random data suggests that the best use of the software may be to employ 
an iterative process of hand coding in conjunction with the two programs. Once sufficient data 
have been hand coded to create a reasonable model in LightSIDE, the tokens identified by 
LightSIDE can be used as a basis for creating libraries and categories in TAS. Researchers can 
cycle through the three methods until one of the software packages has created a model that 
produces reasonable kappa values for the data. This model can then be applied to previously un-
coded data or newly collected data. 
 
The iterative process is one way in which the software can be used to inform the research 
process. The underlying research question for which we used the software in this project was to 
understand how statistics students define and use the word random.  In the process of coding the 
data using the software packages, we found that some of the categories we had created by hand 
might contain several distinct ideas that should have been categorized separately. For example, 
the category, “Without Bias or Representative,” appears to be an amalgamation of three distinct 
statistical ideas: unbiased (i.e. sampling or assignment to treatments), representative (i.e. samples 
or treatment groups), and independent (i.e. selection of subjects). The issues with this category 
were raised by the difficulty LightSIDE had in creating a reasonable model for this category. The 
knowledge gained about this category will be retained in future studies of student understanding 
of random. 



	
  

 
The analysis may also lead to more general directions for research programs. Originally, the 
hand coding rubric for the random data included two dimensions: the definitional categories 
reported here and a usage category. The usage category was coded as whether the subject used 
random as a non-specific adjective, as a descriptor of a process, or a descriptor of an outcome 
(see Kaplan, et al., 2010 for more details). Another possible grouping for the responses is into 
categories for subjects who wrote specifically about random sampling, random assignment, or 
neither. Creating these categories would be relatively easy using TAS and the results could 
inform future research studies about student understanding of random samples in experimental 
design. This analysis would most likely require revision of the categories because the researcher 
may be more interested in how or if students describe the sampling process rather than capturing 
definition types of random with the categories (e.g. “By Chance”). The library created for the 
project described here could, however, be used as a basis for the subsequent analysis. 
 
One long-term goal of incorporating automated analysis of student responses into statistics 
education research is to be able to provide real-time feedback to statistics instructors about their 
students’ understanding of statistical concepts. Once the models for student definitions of 
random have been tested on further data and found to be reliable, instructors would be able to 
upload their own students’ responses, which would then be automatically analyzed. The 
instructors would receive a report documenting the types of definitions provided by students, the 
number of students who provided each type of definition and the relationships among the tokens 
mentioned by students, in the form of a webmap or similar graphic. The goal of automatic 
analysis of student responses is not limited to statistical definitions. In fact, the AACR project is 
already successfully scoring student responses to biology prompts (for example see: Haudek, et 
al., 2012; Weston, Parker, and Urban-Lurain, 2013) and is developing models that will analyze 
student descriptions of histograms and using the software to illuminate common misconceptions 
about histograms (for more detail, see Kaplan, Gabrosek, Curtiss, et al., 2014). 
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