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Abstract

Bird songs are acoustic communication signals primarily used in male-male aggression and in male-female attraction. These
are often monotonous patterns composed of a few phrases, yet some birds have extremely complex songs with a large
phrase repertoire, organized in non-random fashion with discernible patterns. Since structure is typically associated with
function, the structures of complex bird songs provide important clues to the evolution of animal communication systems.
Here we propose an efficient network-based approach to explore structural design principles of complex bird songs, in
which the song networks–transition relationships among different phrases and the related structural measures–are
employed. We demonstrate how this approach works with an example using California Thrasher songs, which are
sequences of highly varied phrases delivered in succession over several minutes. These songs display two distinct features: a
large phrase repertoire with a ‘small-world’ architecture, in which subsets of phrases are highly grouped and linked with a
short average path length; and a balanced transition diversity amongst phrases, in which deterministic and non-
deterministic transition patterns are moderately mixed. We explore the robustness of this approach with variations in
sample size and the amount of noise. Our approach enables a more quantitative study of global and local structural
properties of complex bird songs than has been possible to date.
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Introduction

Most passerine birds sing to guard or advertise their territory,

alternatively to repel trespassers and attract potential mates [1].

Their songs vary greatly in complexity. Some species, like White-

crowned Sparrow (Zonotrichia leucophrys) and Zebra Finch (Taenio-

pygia guttata ) sing songs composed of a few monotonous notes and

phrases repeated in a fixed sequence [2,3]. Some others, like

American Redstart (Setophaga americana) and Bengalese Finch

(Lonchura striata var. domestica), sing more variable songs in which

a dozen syllables or phrases are used in different contexts [4,5].

Still others, notably birds in the family Mimidae such as Northern

Mockingbird (Mimus polyglottos) and Brown Thrasher (Toxostoma

rufum), have long complex songs comprising hundreds or even

thousands of different syllables or phrases, some of which mimic

other species [6].

It is unclear why bird songs should sometimes be so complex.

One possibility is that complex songs may reflect a male’s age and/

or quality, and reliably represent the quality or fitness of the male

who sings the song. Another hypothesis is that females inherently

prefer complex songs over simple ones, and hence males with

complex songs are in some way more attractive to them as mates.

These are not mutually exclusive, so that complex songs may

confer advantage on the singer both in male-male competition for

territory, and in male-female attraction enhancing mating

potentials (the so-called ‘dual function hypothesis’ [1]). Although

these explanations are intuitively appealing, there are no

conclusive experimental results in their support; some positive

evidence exists for each in some species, but it is countered by

negative indications in other species [7,8]. In any event, it is clear

that improved quantification and analysis of song complexity is

necessary for elucidation of its role in avian communication.

Most earlier studies of song complexity have focused on simple

parameters such as repertoire size (the number of different

syllable-, phrase-, or song-types) and song versatility (the switching

rate between song components), rather than on song structure

measured by the organization of its components [9,10]. Repertoire

size has been used frequently in comparative studies of songs

amongst individuals and species, because it is simple to use and

intuitively understood. Simple song metrics, however, are ineffec-

tive in characterizing complex songs with large repertoires and,

further, the determination of repertoire size is sometimes very

difficult to accurately ascertain in large-repertoire species. Though

there have been numerous studies that measured repertoire size

[11] and that approached song structure using simple statistics and

models [12–16], the structural properties of complex songs remain

largely unexplored. One emerging property is that different

phrases are often arranged in sequences that are neither uniform

nor random, but possess some intermediate and discernible

pattern.
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In this paper we propose an efficient network-based approach

that quantifies transition relationships among phrases in two

different ways, using complex network theory. We analyze songs of

the California Thrasher (Toxostoma redivivum) as an exemplar of

how a network-based approach may capture some essential

characteristics of complex bird songs and complement conven-

tional metrics such as repertoire size. We then discuss some

possible applications of the network-based approach relevant to an

improved understanding of the evolution of animal communica-

tion systems.

Methods

Song recording
The California Thrasher is a large, ground-foraging passerine

found in coastal and foothill chaparral from northern California to

northern Baja California. Like the congeneric Brown Thrasher, it

has a large repertoire incorporated into long, complex songs

consisting of diverse and distinct patterned components, which we

term ‘phrases’, variously delivered in a nearly continuous string or

sequence for several minutes and punctuated with intermittent

brief pauses of a few seconds duration [17] (see Figure S1 for the

acoustic features of phrases). A single male may sing several

hundred distinguishable phrases within a song bout a few minutes

long.

We recorded spontaneous singing of a single male California

Thrasher from his territory in foothill chaparral vegetation in

Amador County, California, during a single morning on March

21, 2009. Recordings were made along the Comanche Parkway, at

approximately 38 deg 15 min 17.95 sec N, 120 deg 53 min

5.43 sec W, 168 m elevation. No birds were touched or in any

way manipulated. By limiting our song data to a particular bird

and a narrow time slot we hoped to minimize factors that may

generate variations in phrase type and phrase usage within the

broader population and over time (e.g., daily, seasonal, and age-

related changes). We expect to study these variations with our

methodology once its utility is established; indeed, that is the

objective of the present paper, which we feel is best met by

minimizing other variations beyond a target individual singing on

territory during a single morning. Different song bouts were

recorded in separate WAV files (16-bit, mono, 44.1 kHz sampling

rate) using a Marantz PMD 670 with a Telinga parabolic reflector

and Sennheiser omnidirectional microphone. The song data were

accumulated in 7 recording sessions over a 1.5 h period and total

20 min in overall duration.

Classification of phrase types
We computed the sound spectrograms of all the songs using

Sound Analysis Pro (http://soundanalysispro.com) with a 9.27 ms

FFT data window and a 2.0 ms advancing window. This protocol

provided sequences of a total of 2,897 phrases punctuated by

periods of silence. Figure 1A shows the sound spectrogram of a

20 sec song fragment in which 71 phrases (of 25 different types)

are depicted (File S1). Some of the phrases were always repeated

immediately, while others always occurred singly (see Figure S2

for the nature of phrase repetitions). Each phrase was categorized

into one of 182 types based on both visual examination of their

sound spectrograms and auditory recognition of the recorded

sound, and all recognized phrases were classified with reference to

a catalog of standards. Each phrase was encoded with an ID

number, and songs could then be represented as symbol or

number sequences (see Table S1 for the complete catalog).

In order to verify that our classification was objective, we

trained a support vector machine (SVM) [18] to classify the phrase

categories that been initially chosen subjectively. This was done by

training SVMs on samples of phrases that had been chosen by a

supervisor to recognize the different phrase types, and then

evaluating their ability to classify the remaining phrases that had

not been part of the training set. The average percent correct

classification for the 25 test phrase types was 97:5% and for the

‘other’ category was 92:0% (see Information S1). Therefore we

conclude that our classification of phrase types, while initially

subjective, was objectively confirmed.

Song network analysis
The song network analysis that we propose focuses on transition

relationships among the different phrases. First of all, transitions

between successive phrases are analyzed for each adjacent phrase

pair along the song sequences; n.b. instances of repetition of the

same phrase (‘self-transitions’) are omitted because standard

network measures, discussed below, are typically defined for

networks without self-transitions. Then, based on observed

transitions, we construct a ‘song network’, which may be either

an undirected or a directed graph, in which nodes represent

different phrases and edges represent transitions between them.

We term these ‘song undirected networks (SUNs)’ and ‘song

directed networks (SDNs)’. Figure 1B and 1C are the examples of

SUN and SDN constructed from the song fragment shown in

Figure 1A. Thus phrase sequences may be represented by both

types of network, which can then be characterized by a few global

and local network measures as described below. With this coarse-

grained procedure, we may lose some details of the song

properties, but we encompass basic song complexity within the

aegis of established network theory.

Song undirected networks and measures. In the SUNs,

nodes represent phrases, and undirected edges represent transi-

tions or links between them. Bi-directional or reversible transitions

(e.g., phrase ID#s 6?12, 12?6 in Figure 1A) are not

distinguished, so both occur in the edge joining phrase ID#s 6

and 12. The SUN is the minimal representation of the connection

topology among different phrases, and can be characterized by

three network measures: average path length, clustering coeffi-

cient, and degree distribution [19].

Average path length, L, is defined as the average minimum

number of connections to be crossed from any arbitrary phrase to

any other. L measures the overall navigability in the song network;

as L becomes large, a longer series of transitions, involving more

steps, is required for any phrase to reach another. Such a situation

might be found in a stereotypic song composed of many different

phrases sung in a fixed sequence. On the other hand, if L is small,

the opposite happens, such as in more versatile songs that can loop

back to previous phrases through shorter and alternative

intermediate sequences.

The clustering coefficient, C, is the overall tendency of different

phrases to form groups that are highly likely to co-occur in a song

sequence, computed as follows:

Ci~
2Ei

ki(ki{1)
,

C~
1

n

Xn

i~1

Ci

For each phrase i, there are ki(ki{1)=2 possible links within the

set of kim phrases linked to phrase i. Ei is the observed number of

Structural Design Principles of Complex Bird Songs
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such links for phrase i, and thus Ci measures the proportion of

possible links that is actually observed. C averages Ci values over

all phrases m. Song networks with more and more connected

phrase groups in them will have higher C values. If there is no

grouping of phrases then C = 0; if every pair of phrases is fully

connected then C = 1.

Degree distribution is the distribution over k of P(k), the

probability that a phrase has k connections or transitions. Its shape

is helpful in distinguishing between different classes of networks;

for example, a bell-shaped degree distribution is seen in a random

network, and indicates that there are no highly connected phrases

known as ‘hubs’. In contrast, a degree distribution with a long tail

to the right (at high k values) indicates that there are hubs in the

song network, unlike random networks.

Song directed networks and transition motifs. Complex

networks in nature commonly contain recurring patterns of inter-

connections, sometimes termed ‘network motifs’ [20]. Song

directed networks may also display such small-scale structural

patterns; to quantify these, we introduce five types of ‘transition

motifs’ defined by the combination of incoming (in-degree) and

outgoing (out-degree) edges. These motifs are ‘One-way’ (one-to-

one), ‘Bottleneck’ (many-to-one), ‘Branch’ (one-to-many), ‘Hour-

glass’ (many-to-many), and ‘Margin’ (either no in-degree or no

out-degree). One-way and Bottleneck motifs are deterministic, in

that one or more phrases transit to a specific phrase; Branch and

Hourglass motifs are non-deterministic, in that transitions through

a specific phrase may transit to one of several different phrases;

Margin motifs mark the beginnings or ends of song sequences.

Local structural properties of complex bird songs can be

characterized by the transition motifs in the song directed network.

For example, a highly versatile or randomly organized song may

be mostly occupied by nondeterministic transition motifs, whereas

a stereotypic song may consist of mainly deterministic transition

motifs (both along with Margins). In contrast to these extremes, a

complex song can exhibit moderately mixed transitions, charac-

terized by a particular ratio of deterministic and nondeterministic

motifs.

Random networks for comparison. The structure of

observed song networks can be compared to random networks

having the same overall topology. We generate ‘random

undirected networks (RUNs)’ and ‘random directed networks

(RDNs)’ with the same number of nodes n, and the same average

degree �kk (average number of edges per node) as the SUN and

SDN, respectively. These random networks are constructed in a

manner similar to the Erdös-Rényi model [21]. In the case of

RUN, an undirected edge is placed with probability p at each of n

nodes; if the resulting RUN has exactly the same �kk as SUN, it is

retained; otherwise, the procedure is repeated until the criterion is

met. In the case of RDN, one of the following directed edges is

placed at each of n nodes with equal probability p: in-degree, out-
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Figure 1. Song fragment from a California Thrasher recording. A. Sound spectrogram of part of a song. Phrases are labeled with their ID
numbers. Yellow circles denote background singing of other birds. These are eliminated from analysis. B–C. Song undirected and directed networks
constructed from the song fragment shown in A. Nodes represent phrases and edges represent transitions between them, directed or not; self-
transitions are omitted.
doi:10.1371/journal.pone.0044436.g001
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degree, and bi-degree; if the resulting RDN has exactly the same �kk
as SDN, it is retained; otherwise, the procedure is repeated as

before.

Random networks provide baseline data for comparison with

observed song networks. If the measures of song networks (L, C,

and P(k)) are similar to those of the RUN or RDN, the observed

songs may be just random assemblies of phrases; if, however, the

properties of actual or observed song networks are quite different

from RUN and RDN, then other design principles must underlie

their construction. In drawing such comparisons, it should be

recognized that Erdös-Rényi-type random undirected networks, in

general, have small L, small C, and P(k) distributed as a bell-

shaped curve [19].

Results

We demonstrate how this approach works with California

Thrasher songs, and evaluate the robustness of the approach with

variation in sample size and errors in phrase identification.

Song undirected network analysis
We constructed a song undirected network (SUN), using the

entire set of phrase sequences. All networks were characterized

with three network measures: average path length L, clustering

coefficient C, and degree distribution P(k), as described above.

We compared the observed song network with 1,000 correspond-

ing random undirected networks (RUNs) that had the same

number of nodes n and average degree �kk as the SUN (n = 182 and
�kk = 6.4, respectively), by calculating �LL and �CC, and P(k) for the

RUNs.

Figures 2A and 2B are the observed SUN and a sample RUN.

Both networks have small but similar values for L (L~3:15 for the

SUN, �LLrand~2:98+0:09 for the RUN; Z~1:9, NS), indicating

that in the SUN any phrase can reach any other in just a few

transitions–about three degrees of separation, despite a phrase

repertoire size n~182. However, the SUN has a value of C that is

significantly larger than that of the RUN (0:21 vs
�CCrand~0:03+0:01 for the RUN; Z~18:0, Pv0:0001), indicat-

ing that there are many more tightly-clustered phrase groups in

real songs than in the randomly generated networks. Here Z-score

is computed as Z~(Xobserved{ �XXrand)=SD, where X is either L or

C. Networks like the observed song network, with small L and

larger C relative to random networks, are termed ‘small-world

networks’ [22]. Small-world networks are widespread in biological,

social, technological, and information systems (including human

language), and their collective dynamics have been much studied

[22–25]. Small-world-ness is typically measured by

S~(C=�CCrand)=(L=�LLrand), with the property that if Sw1 the

network is regarded as small-world [26]. In this instance, S~6:62.

The third network metric, P(k), reveals that the SUN and the

RUN are quite different types of networks: the P(k) of the SUN

has a long tail to the right over higher k values, whereas that of the

RUN is approximately a bell-shaped curve. Thus the structure of

the California Thrasher song is characterized by phrases grouped

into distinct hubs, to an extent not seen in the random networks.

The comparison of the SUN with 1,000 different RUNs

suggests that the California Thrasher song is indeed complex but

not at all random; rather, it is structured with a small-world

topology, which is a property also possessed by human languages

[27]. The distinct combination of small L, large C, and a non-bell-

shaped P(k) is unlikely to emerge if phrases were randomly

distributed in the songs. In this thrasher, songs appear to be

governed by principles consistent with a small-world network

organization over a large phrase repertoire.

Song directed network analysis
The song directed network (SDN) is characterized with the five

types of transition motifs described above and shown in Figure 3.

For the purposes of comparison, we constructed 1,000 corre-

sponding random directed networks (RDNs) with the same values

of n (182) and �kk (7.5) as in the observed SDN. In the SDN and the

RDNs, the average path length is comparable (L~4:17 for the

SDN and �LL~3:82+0:09 for the RUN); again, it suggests that the

bird can switch one phrase type to any others with a small number

of steps even in the song directed network.

Figures 3A and 3B show pie charts of the proportion of

transition motifs contained in the SDN and in the RDN,

respectively, with average values shown for the latter. It is evident

from this figure that the observed SDN has different proportions of

transition motifs compared with the RDN (Chi-square test with

four degrees of freedom; Pv0:0001). Denoting the number of

appearances in the real networks as NSDN and in the random

network as NRDN, we computed Z-scores for each transition motif

as above. The SDN contains a larger proportion of deterministic

transition motifs: One-way ((NSDN,NRDN+SD) = (35,2+1),

Z~33:0, Pv0:0001) and Bottleneck ((NSDN,NRDN+SD) =

(20,13+2), Z~2:3, Pv0:05). At the same time, the RDNs

contain many more non-deterministic transition motifs: Hourglass

((NSDN,NRDN+SD) = (111,146+4), Z~{8:8, Pv0:0001), and

more Margin ((NSDN,NRDN+SD) = (1,8+3), Z~{2:3,

Pv0:05). We found no statistically significant difference in

Branch motifs ((NSDN,NRDN+SD) = (15,13+3), Z~0:07,

NS). Together, our results indicate that the deterministic and

non-deterministic transition motifs are moderately mixed in the

actual song network, compared to the heavily non-deterministic

nature of the random directed network.

In addition, in Figure 4, we illustrate another feature of song

structure derived from a comparison of real songs with ‘shuffled’

songs. Shuffled songs were generated by 1,000 repeated position

switches of randomly-selected phrase pairs from the original song

sequences; thus, the original frequency distribution of phrases is

maintained but the transition contexts are altered. The figure

compares the occurrence frequency, obtained by dividing the

number of each phrase by the total number of phrases, with the

degree frequency, the degree of each phrase divided by the total

degree. If transitions between phrases were random, common

phrases would gain more connections after the shuffling, i.e. attain

a higher degree, because they have more chances to become

involved in novel transitions. The observed SDN follows this

expectation for less popular phrases, but with increasing occur-

rence frequency the degree frequency falls increasingly below this

expectation. In particular, several of the most popular phrases are

characterized by only moderate degree frequencies, indicating

some stereotypy in their transitions. This indicates that both

random and non-random processes play important roles in

creating the diversity of phrase-to-phrase transitions in complex

bird songs.

Sample size dependence
The structural properties of a song networks described above

might conceivably be dependent on sample size, the song length,

or total number of phrases recorded. To explore this possibility

and to test for the robustness of the structural properties we have

described, we constructed SUNs from songs of different sequence

lengths, and computed the corresponding network measures.

As expected, the number of different phrases observed

(repertoire size) increased when a larger number of phrases

(longer song) were used (see Figure 5A), though at a decreasing

rate with no evident asymptote. Thus a limit to repertoire size is

Structural Design Principles of Complex Bird Songs
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not discernable, and is undoubtedly much greater than the

number we observed (182 different phrases). There are two

important consequences to this. First, unlike simple songs, the

complex songs we recorded, even from just one individual over a

short time interval, cannot be described by a single measure like

repertoire size. Second, because the simple measures of complexity

are sensitive to song length, there is an evident need for scale-free

measures of song complexity.

For the network measures, the outcome is different, because of

far greater sample size independence; L and C already approach

an asymptote at n~2,000 (see Figure 5B and 5C), and P(k)
exhibits almost the same distribution at n = 2,000 and n = 2,897

(see Figure 5D). We take this convergence of L, C and P(k) as

evidence that the three network measures were successfully

estimated by our samples, and are more robust indicators of song

complexity than is repertoire size. The proportions of transition

motifs were similarly independent of sample sizes. We constructed

SDNs with different sample sizes and measured variation in the

proportions of transition motifs. Figure 5E illustrates how the

composition of transition motifs changes as a function of sample

size. In this figure the distribution of transition motifs is stabilized

beyond about 50% of our maximum sample size. The proportions

we observed of stochastic vs. deterministic transitions are not

dependent on sample size, but are rather real properties of song

structure.

Both types of analyses support the conclusion that, while phrase

repertoire size does increase with longer observation periods, the

same is not true for the network-based measures, which stabilize at

samples sizes considerably less than our maximum. In view of this

stability, it is apparent that some 20 minutes of song recording was

sufficient for characterizing California Thrasher song complexity

with scale-invariant network measures.

Noise rate dependence
Measurement of song complexity might well be affected by

misclassification of song phrases. To examine this possibility, we

performed a series of experiments, in which selected phrases in the

original song were replaced at random with other phrases. This

procedure imitates phrase misclassification. The network measures

used above were then recomputed as a function of noise rates–the

ratio of the number of misclassifications to the total number of

phrases (see Figures 6A–D). In these figures, each data point is the

average and standard deviation of 100 noise-induced experiments

with different random seeds.

These results suggest that a modest amount of noise (i.e., several

tens of misclassifications out of 2,897 phrases) makes little

difference for the various network measures. Beyond modest noise

rates, however, the network measures begin to change substan-

tially; both L and C decrease and the peak position of k shifts

toward higher values. In other words, misclassification generates

denser phrase connectivity, reflected by a higher proportion of

Hourglass motifs. At still greater noise rates (w10%, i.e., a few

hundred misclassifications), we get networks that are no longer

comparable with the original song network. Thus, phrase

misclassification at the level of a few percent would make little

difference to our characterization of song structure.

Comparison of song networks between different
individuals

Here we analyze song data from two additional individual

thrashers in the Santa Monica Mountains, California, and

compare song structure in these individuals to that we have

analyzed above (referred to as Mar2009). The additional

recordings (referred to as Feb2012-1 and Feb2012-2, respectively)

were made on February 8–10, 2012, from along the Topanga

Lookout Road, at approximately 34 deg 4 min 57.98 sec N,

118 deg 38 min 35.60 sec W, 740 m elevation, with the same

recording equipment and conditions. The song data of Feb2012-1

and Feb2012-2 comprise sequences of 658 and 1,316 phrases,

respectively; phrase type classification and song network analysis

are performed in the same manner as described above.

The result of song undirected network analysis is summarized in

Table 1. All the birds exhibited positive values of small-world-ness

(S) and non bell-shaped degree distribution P(k) (see Figure S3),

indicating that the songs of these California Thrashers share a

small-world property, despite large individual differences in the

sizes of their phrase repertoires and their specific phrase types.

Furthermore, Table 2 shows that Feb2012-1 and Feb2012-2 have

similar composition of transition motifs in song directed networks

(i.e., a large portion of One-way motifs), and that all the birds

possess diverse transition motifs with a different balance of

corresponding random networks (Chi-square test with four degree

of freedom; Pv0:0001. See also Information S1).

With analysis of these additional song data from different

individuals, our methodology gains further support of its

effectiveness to quantify and compare the non-random structures

of complex bird songs. We note that individual differences of song

structure observed here may result from seasonal and/or

geographic factors, and planned research will clarify these

influences by obtaining a more systematic recording across seasons

and regions.

Discussion

We have described a network-based approach to explore the

structural properties of complex bird songs–both global and local

features. Our approach helps to elucidate the design principles of

complex bird songs in a way that is difficult with conventional

methods only. It enabled us to identify distinct structural features

of California Thrasher songs, such as a large phrase repertoire that

is organized as a classical ‘small-world network’, with a balance of

deterministic and non-deterministic transition patterns between

adjacent phrases, although the generality of the results must be

tested in many more California Thrashers, at other times and

places, and in other species recognized for their complex songs,

such as Nightingales, Northern Mockingbirds, and Brown
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Thrashers. As far as we know, this is the first attempt at utilizing a

network-based approach to the structural design principles of

complex bird songs, although similar approaches have been taken

in other aspects of animal behavior studies, mostly in the context

of social network analysis [28].

The pros and cons of our approach may be assessed in

comparison with conventional methods: repertoire size, versatility,

information entropy, and Markov models. As stated before,

repertoire size and versatility have been commonly used as

measures of song complexity, promoted undoubtedly by their

simplicity of application. In large repertoire songs, however, these

measures are not easily estimated, as seen in Figure 5A; further,

they are not necessarily good indicators of song complexity, since a

large phrase repertoire organized into one fixed sequence could

not be deemed especially complex. Information entropy and

Markov models can provide more insight into how repertoire is

organized. Since both measures are based on a transition matrix

describing the probabilities of moving from one component type to

another, they require accurate estimates of the occurrence

frequencies of transitions among component types, which in turn

require large sample sizes. However, to construct song networks

(either SUN or SDN), transition probabilities are not necessary;

instead, we need to know binary information about whether

transitions amongst phrase types occur or not, which can be

estimated from a relatively small samples size. There are, of

course, some constraints to a network-based approach. Since

complex network theory is targeted at networks consisting of a

large number of nodes (e.g., nw50) with sparse connections

between them [22], network measures are of no value for small-

size networks (e.g., n~10 or fewer). In sum, our approach neither
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supplants nor contradicts conventional methods, but rather

supplements them by characterizing complex song structure at

adequate levels of abstraction.

We suggest three possible applications of the network-based

approach. First, in addition to the conventional measures, this

approach can provide tools for quantifying intra- and inter-specific

differences in complex songs. By studying these variations we may

approach the following sorts of questions: Are all complex bird

songs governed by the same structural design principles, or might

there be different ones in different species? Second, the ability to

learn songs, thought to be absent in non-passerine birds, is

assumed typical of oscine passerines [29]. But what aspects of song

structure are innate versus learned in oscine passerines? Because a

song network is a learned outcome and an individual construction,

complex bird songs may provide a generally useful biological

model of how a large phrase repertoire develops, how a small-

world architecture originates, and how a particular configuration

of transition motifs emerges during the learning process. By

tracking song development in a controlled environment, it may be

possible to quantify song learning as phrase repertoire growth

within a song network framework. Third, although some previous

studies have produced evidence that song complexity has evolved

because of female preference for males with larger repertoires [30–

33], the structured song network we studied might require another

explanation: female preference for more abstract song features,

such as combinatorial aspects or transition modes, might be

driving the evolution of signal complexity [34]. Whether or not

females can respond to such abstract song features could be tested

by song playback experiments, in which synthesized songs that

control for variation in L, C, and P(k), or in the proportions of

transition motifs, are played to females whose responses can be

measured and studied.

Clearly, past studies of complexity in bird songs that focused

exclusively on simple song parameters addressed only a small part

of song structure, representing just the ‘tip of the iceberg.’ With the

use of methods that are standard in network analysis, a rich set of
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Table 1. Comparison of song undirected networks between different individuals.

SUN Nodes Edges L �LLrand C �CCrand S

Mar2009 182 580 3.15 2.9860.09 0.21 0.0360.01 6.62

Feb2012-1 57 149 2.81 2.5860.03 0.37 0.0960.02 3.68

Feb2012-2 120 257 6.61 3.4460.04 0.31 0.0360.01 4.86

(�LLrand and �CCrand are computed from 1,000 corresponding RUNs.).
doi:10.1371/journal.pone.0044436.t001
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patterns may be revealed that can further our understanding of the

evolution of vocal communication in birds, of animal communi-

cation systems in general, and of questions of syntax and even

semantics that approach those asked by students of human

language. Objective and quantitative analysis, exemplified by

network-based approaches such as ours, will be fundamental to

this understanding.
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(EPS)

Figure S2 Statistical prosperities of repetitions of same
phrase.
(EPS)

Figure S3 Comparison of degree distributions of differ-
ent individuals.
(EPS)

Information S1 Detailed description of California
Thrasher song and of a method of phrase classification.
(PDF)

Table S1 Catalog of phrase repertoire.
(EPS)

File S1 Audio file of a California Thrasher song.
(WAV)

Acknowledgments

We thank A.N.G. Kirschel and Z. Harlow for discussion. We also thank

anonymous reviewers for constructive comments.

Author Contributions

Conceived and designed the experiments: KS MLC CET. Performed the

experiments: KS MLC CET. Analyzed the data: KS DC CET.

Contributed reagents/materials/analysis tools: KS DC CET. Wrote the

paper: KS MLC DC CET.

References

1. Catchpole CK, Slater PJB (2008) Bird Song: Biological Themes and Variations.
Cambridge University Press, 2nd edition.

2. Marler P, Tamura M (1962) Song ‘dialects’ in three populations of white-
crowned sparrows. Condor 64: 368–377.

3. Zann RA (1996) The Zebra Finch: A Synthesis of Field and Laboratory Studies.
Oxford University Press.

4. Lemon RE, Dobson CW, Clifoton PG (1993) Songs of American redstarts

(Setophaga ruticilla): sequencing rules and their relationships to repertoire size.
Ethology 93: 198–210.

5. Okanoya K (2004) Song syntax in Bengalese finches: proximate and ultimate
analyses. Advances in the Study of Behavior 34: 297–346.

6. Kroodsma DE (2005) The Singing Life of Birds: The Art and Science Listening

to Birdsong. Houghton Mifflin.
7. Byers BE, Kroodsma DE (2009) Female mate choice and songbird song

repertoires. Animal Behaviour 77: 13–22.
8. Marler P, Slabbekoorn H, editors (2004) Nature’s Music: The Science of

Birdsong, Academic Press. 39–79.

9. Searcy WA, Nowicki S (2005) The Evolution of Animal Communication:
Reliability and Deception in Signaling Systems. Princeton University Press.

10. Kipper S, Kiefer S (2010) Age-Related Changes in Birds’ Singing Styles: On
Fresh Tunes and Fading Voices? Advances in the Study of Behavior 41: 77–118.

11. Garamszegi LZ, Balsby TJS, Bell BD, Borowiec M, Byers BE, et al. (2005)
Estimating the complexity of bird song by using capture-recapture approaches

from community ecology. Behavioral Ecology and Sociobiology 57: 305–317.

12. Chatfield C, Lemon RE (1970) Analysing Sequences of Behavioural Events.
Journal of Theoretical Biology 29: 427–445.

13. Dobson WC, Lemon ER (1979) Markov sequences in songs of American
thrushes. Behaviour 68: 86–105.

14. Todt D, Hultsch H (1998) How songbirds deal with large amounts of serial

information: retrieval rules suggest a hierarchical song memory. Biological
Cybernetics 79: 487–500.

15. Kakishita Y, Sasahara K, Nishino T, Takahasi M, Okanoya K (2009)
Ethological data mining: an automata-based approach to extract behavioral

units and rules. Data Mining and Knowledge Discovery 18: 446–471.
16. Jin DZ, Kozhevnikov AA (2011) A compact statistical model of the song syntax

in Bengalese finch. PLoS Computational Biology 7: e1001108.

17. Cody ML (1998) California Thrasher (Toxostoma redivivum). The Birds of
North America Online; (A Poole, Ed) Ithaca: Cornell Lab of Ornithology;

Retrieved from the Birds of North America Online http://bnabirdscornelledu/
bna/species/323 doi:102173/bna323.

18. Cortes C, Vapnik V (1995) Support-vector networks. Machine Learning 20:
273–297.

19. Newman MEJ (2003) The structure and function of complex networks. SIAM
Review 45: 167–256.

20. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, et al. (2002) Network

motifs: simple building blocks of complex networks. Science 298: 824–827.
21. Bollobás B (2001) Random graphs. Cambridge University Press.

22. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks.
Nature 393: 440–442.

23. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási AL (2000) The large-scale

organization of metabolic networks. Nature 407: 651–654.
24. Jeong H, Mason SP, Barabási AL, Oltvai ZN (2001) Lethality and centrality in

protein networks. Nature 411: 41–42.
25. Lusseau D (2003) The emergent properties of a dolphin social network.

Proceedings of the Royal Society B 270: S186–S188.

26. Humphries MD, Gurney K (2008) Network ‘small-world-ness’: a quantitative
method for determining canonical network equivalence. PLoS ONE 3:

e0002051.
27. Ferrer i Cancho R, Sole RV (2001) The small world of human language.

Proceedings of the Royal Society B 268: 2261–2265.
28. Wey T, Blumstein DT, Shen W, Jordan F (2008) Social network analysis of

animal behaviour: a promising tool for the study of sociality. Animal Behaviour

75: 333–344.
29. Fehér O, Wang H, Saar S, Mitra PP, Tchernichovski O (2009) De novo

establishment of wild-type song culture in the zebra finch. Nature 459: 564–568.
30. SearcyWA (1984) Song repertoire size and female preferences in song sparrows.

Behavioral Ecology and Sociobiology 14: 281–286.

31. Baker MC, Bjerke TK, Lampe H, Espmark Y (1986) Sexual-response of female
great tits to variation in size of males’ song repertoires. The American Naturalist

128: 491–498.
32. Hiebert SM, Stoddard PK, Arcese P (1989) Repertoire size, territory acquisition

and reproductive success in the song sparrow. Animal Behaviour 37: 266–273.
33. Catchpole CK (1980) Sexual Selection and the Evolution of Complex Songs

Among European Warblers of the Genus Acrocephalus. Behaviour 74: 149–165.

34. Sasahara K, Ikegami T (2007) Evolution of Birdsong Syntax by Interjection
Communication. Artificial Life 13: 259–77.

Table 2. Comparison of song directed networks between
different individuals.

SDN One-way Branch Margin Bottleneck Hourglass

Mar2009 0.19 (0.01) 0.08 (0.07) 0.01 (0.04) 0.11 (0.07) 0.61 (0.81)

Feb2012-1 0.37 (0.02) 0.07 (0.11) 0.00 (0.07) 0.07 (0.11) 0.49 (0.70)

Feb2012-2 0.38 (0.04) 0.10 (0.15) 0.01 (0.15) 0.08 (0.15) 0.43 (0.51)

(The average values computed from 1,000 corresponding RDNs).
doi:10.1371/journal.pone.0044436.t002

Structural Design Principles of Complex Bird Songs

PLOS ONE | www.plosone.org 9 September 2012 | Volume 7 | Issue 9 | e44436




