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Abstract

Background: Mortality prediction aids clinical decision-making and is necessary for quality 

improvement initiatives. Validated metrics rely on pre-specified variables and often require 

advanced diagnostics which are unfeasible in resource-constrained contexts. We hypothesize that 

machine learning will generate superior mortality prediction in both high-income and low and 

middle-income country cohorts.

Methods: SuperLearner (SL), an ensemble machine-learning algorithm, was applied to data from 

three prospective trauma cohorts: a highest-activation cohort in the United States (US), a high-

volume center cohort in South Africa (SA), and a multicenter registry in Cameroon. Cross-

validation was used to assess model discrimination of discharge mortality by site using receiver 
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operating characteristic curves. SL discrimination was compared with standard scoring methods. 

Clinical variables driving SL prediction at each site were evaluated.

Results: Data from 28,212 injured patients were used to generate prediction. Discharge mortality 

was 17%, 1.3%, and 1.7% among US, SA, and Cameroonian cohorts. SL delivered superior 

prediction of discharge mortality in the US (AUC 94–97%) and vastly superior prediction in 

Cameroon (AUC 90–94%) compared to conventional scoring algorithms. It provided similar 

prediction to standard scores in the SA cohort (AUC 90–95%). Context-specific variables (partial 

thromboplastin time in the US and hospital distance in Cameroon) were prime drivers of predicted 

mortality in their respective cohorts, while severe brain injury predicted mortality across sites.

Conclusions: Machine learning provides excellent discrimination of injury mortality in diverse 

settings. Unlike traditional scores, data-adaptive methods are well-suited to optimizing precise 

site-specific prediction regardless of diagnostic capabilities or dataset inclusion allowing for 

individualized decision-making and expanded access to quality improvement programming.

Level of Evidence: Level III

Study Type: Prognostic and Therapeutic

Keywords

Precision medicine; Low and middle-income countries; Prediction; Machine learning

BACKGROUND

Mortality prediction after injury enables patient risk stratification, aids in clinical decision-

making, and is a necessary benchmark for the development of quality improvement 

initiatives (1, 2). Over the past 60 years, the search for superior, widely-applicable trauma 

prediction has led to the development of dozens of severity algorithms. These models have 

incorporated a variety of different clinical variables including indicators of anatomic severity 

(3–5), physiologic predictors (6–8), and combinations of both anatomic and physiologic 

parameters (9, 10).

Despite these many approaches, no single score has been successful in generating ideal 

prediction over time and across diverse clinical contexts (11). While most scores are initially 

published with high reported predictive capacity, historically, performance has degraded 

over time, particularly when applied to different trauma populations. This, in turn, fuels the 

development of still more severity scoring systems and modifications.

One substantial problem has been the application of severity scores to trauma populations in 

low- and middle-income countries (LMICs). Scoring metrics developed in the US and other 

high-income countries routinely rely upon advanced diagnostic imaging or operative 

exploration for accurate anatomic assessment, making utilization unfeasible in resource-

constrained contexts. Even physiologic parameters, such as vital signs, are often sparse in 

settings with extreme staffing and equipment limitations. Scoring systems designed to 

generate prediction in LMICs, such as the Kampala Trauma Score, have performed 

inconsistently in different datasets (12–14).
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In other fields, machine learning algorithms have been utilized to generate excellent 

prediction of complex outcomes by using a data-driven approach to model selection with 

many potential predictors (15, 16). Due to the fact that these methods do not rely on a static 

variable set, they have the potential to actually adapt prediction to different clinical contexts 

(17, 18). Application of one such machine learning algorithm called SuperLearner (SL) has 

previously been demonstrated to improve prediction of complex outcomes in human 

immunodeficiency virus (15, 16) and in a single-center cohort SL has demonstrated superior 

discrimination of death after injury compared to conventional statistical approaches (19, 20).

However, the promise of machine learning is wide applicability of the precision medicine 

approach. To date, the predictive capacity of machine learning in diverse trauma datasets 

remains unknown. In this study, we hypothesize that machine learning, specifically so-called 

ensemble learning using all available admission variables will generate superior prediction 

of death in both high-income country and LMIC trauma cohorts. Identification of a 

translatable method of generating reliable prediction in diverse contexts would enable 

setting-specific tailored severity estimation for improved resource triage and clinical 

decisionmaking.

METHODS

SuperLearner (SL), an ensemble machine-learning algorithm, was applied to all admission 

data from three large prospective trauma cohorts: a highest-level activation urban trauma 

center in the United States (US), a high-volume trauma center in South Africa (SA), and 

three referral hospitals in Cameroon.

US COHORT

The US data utilized was extracted from prospective data collected on a severely-injured 

patient cohort presenting to San Francisco General Hospital between February 2005 and 

April 2015. Specifically, the Activation of Coagulation and Inflammation in Trauma (ACIT), 

which has been described in detail in other studies, was a single-center prospective cohort 

study which followed severely injured trauma patients from emergency department 

admission through hospitalization (21, 22). All adult trauma patients presenting to San 

Francisco General Hospital between February 2005 and April 2015 who met criteria for 

highest triage activation level were included into the US cohort. Exclusion criteria included 

patient age less than 15 years, pregnancy, incarceration, thermal mechanism, and transfer 

from outside hospital. Baseline data collected included patient demographics, past medical 

history, substance use, and injury characteristics and physiologic variables including vital 

signs, laboratory monitoring including an extensive panel of coagulation and inflammation 

markers, ventilator parameters, input/output data, and fluid, colloid, blood product, and 

medication administration. Outcomes data including hospital mortality were collected.

Although ACIT collected longitudinal data from admission throughout the first 28 days of 

hospitalization, for the purposes of this study, only admission variables were used for SL 

prediction. The study was carried out with the approval of the University of California San 

Francisco Institutional Review Board.
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SOUTH AFRICAN COHORT

The South African data utilized was extracted from prospective data collected on injured 

patients presenting to Groote Schuur Hospital between April 2014 and November 2016. 

South Africa is an upper-middle-income country with high rates of injury deaths due to 

homicide and vehicular trauma (23). Groote Schuur Hospital is a government-funded, high-

volume, tertiary teaching hospital in Cape Town, South Africa with an estimated census of 

9000 trauma patients per year (24). Between April 2014 and November 2016 prospective 

data were collected on injured patients presenting to Groote Schuur Hospital using a 

clinician-entered point-of-care mobile electronic Trauma Health Record (eTHR) system. 

This system and cohort has been described in detail in prior publications (24). Briefly, all 

admitted patients older than 12 years of age with primary blunt or penetrating trauma 

mechanisms were included in the cohort and followed from admission through 

hospitalization. Patients were excluded if they were determined to be dead on arrival, 

presented with thermal injuries, were discharged home or transferred to a step-down facility 

from the emergency department, or if the patient’s discharge and/or hospital disposition was 

unknown. Concurrent with patient care clinicians entered data on demographic and injury 

characteristics, clinical parameters on admission, and patient outcomes including disposition 

and death.

For the purposes of this study only admission variables were used for SL prediction. Ethical 

approval for this study was obtained from the Human Research Ethics Committee of the 

University of Cape Town and Institutional Review Board of the Department of Surgery, 

Groote Schuur.

CAMEROONIAN COHORT

The Cameroon data utilized was extracted from the Cameroon Trauma Registry which 

collected prospective data on injured patients between July 2015 and January 2017. 

Cameroon is a primarily francophone lower-middle income country in central Africa with 

among the lowest life expectancies on earth. In 2015 a Cameroon Trauma Registry was 

established to collect prospective data on all injured patients presenting to three referral 

hospitals: Laquintinie Hospital of Douala, a high-volume urban hospital in Cameroon’s 

largest city; Limbe Regional Hospital, a regional medical center with mixed urban/rural 

catchment in the Anglophone Southwest Region of Cameroon; and the Catholic Hospital of 

Pouma, a hospital on the highly-trafficked road between Douala and Yaoundé, Cameroon’s 

capital. Between July 2015 and January 2017 all injured patients presenting to these three 

hospitals for trauma were followed from emergency admission to hospital discharge. 

Specifically, trained Cameroonian trauma registrars recorded patient data at the time of 

patient admission using paper trauma registry forms (collecting data regarding 

demographics, mechanism of injury, past medical and surgical history, injuries and injury 

severity, vital signs, radiology studies, resuscitation measures, treatments, and disposition) 

and subsequently on paper follow-up up forms (collecting data regarding operative 

interventions, laboratory and radiology studies obtained, medications and treatments 

administered, complications, and hospital outcomes). The paper forms were initially stored 

in secured lock boxes on-site at each hospital and then were subsequently entered by trauma 

registrars into a REDCap database hosted by the University of California San Francisco 
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server. All patients presenting with injury mechanisms were included in the cohort. No 

exclusions were made on the basis of injury severity, trauma mechanism, hospital 

disposition, or age.

For the purposes of this analysis, only hospital indicators available at presentation were 

utilized for SL prediction. Ethical clearance was obtained from the University of California, 

San Francisco Committee on Human Research and the National Ethics Committee of the 

Republic of Cameroon.

SUPERLEARNER PREDICTION

SL is a previously-validated ensemble machine learning algorithm which has been described 

in detail in prior publications (18). SL can be downloaded as a package within the R coding 

language (25). Both the R software and the SL package are open-source and can be accessed 

without charge to the user (https://cran.r-project.org/ and https://cran.r-project.org/web/

packages/SuperLearner/index.html, respectively). This means that this technology is widely 

accessible to clinicians and researchers in both high-income and LMIC contexts.

Rather than pre-specifying a single statistical approach, SL simultaneously investigates 

multiple algorithms ranging from simple logistic regression to highly complex machine 

learning (e.g., neural nets) in order to optimally predict outcomes of interest from complex 

datasets. SL uses cross-validation to tailor a weighted (convex) combination of learners to 

optimize prediction on new data from the same data-generating distribution. Embedded 

cross-validation eliminates the risk of over-fitting (18).

In this study SL was applied to all admission variables of the US, SA, and Cameroonian 

cohorts to generate setting- specific prediction of hospital mortality. We used a set of 

algorithms including: logistic and linear regression, generalized additive models with 

various levels of smoothing (26), random forest (27), lasso (28) and systems-based on sieves 

of parametric models (e.g. polyclass). To report the ability of the resulting SL fit to future 

data, we estimated the cross-validated area under the curve (AUC) of receiver-operator 

characteristic curves (ROC) as well as using cv-AUC as the objective function, so the 

procedure optimizes prediction towards more clinically-relevant measures of performance 

(in this case, a function of specificity and sensitivity). SL prediction and cross-validated risk 

was used to evaluate performance of each model (29).

COMPARISON OF SUPERLEARNER AND STANDARD SEVERITY SCORING METRICS

Feasibility, calculated by present missingness in each dataset, was calculated for standard 

severity scoring metrics, including Trauma and Injury Severity Score (TRISS) (9), Kampala 

Trauma Score (KTS) (8), Revised Trauma Score (RTS) (30), Glasgow Coma Scale, Age, 

Pressure Score (GAP) (6), Mechanism, Age, and Pressure Score (MGAP) (31), and the 

Glasgow Coma Score (GCS) (32).

Discrimination of hospital mortality using SL was compared with these standard scoring 

metrics (TRISS, KTS, RTS, GAP, MGAP, and GCS). Given differences in the baseline 

variables, not all scores could be calculated for each dataset. Specifically, TRISS was only 

calculated in the US cohort whereas KTS was only calculated in the Cameroonian cohort.
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VARIABLE IMPORTANCE MEASURES

Many choices are available for assessing the relative importance of predictor variables in the 

overall ability of the final model to predict. One such technique is available as a byproduct 

of another ensemble-type machine learning algorithm called random forest. In this case an 

average of regression trees is used as the final predictor. Specifically, random forest variable 

importance is measured as the change in the out-of-sample (samples not used in training) fit 

of the model when each variable is randomly permuted (and thus made independent of the 

outcome). We report the five most important predictor variables within each study as chosen 

by this metric (27, 33). Top influential predictors for hospital mortality after injury were 

compared across clinical settings.

RESULTS:

DATA AND COHORT CHARACTERISTICS

Data from 28,212 injured patients were evaluated and used to generate prediction. (Table 1) 

Available admission variables differed by site, with the quantity of variables used for 

prediction ranging from 133 (Cameroon) to 212 (US).

Cohort composition also varied by dataset (Table 1); however, all three cohorts were 

predominantly young (median age 29–36) and male (72.4 −82.0%). Rates of blunt trauma 

were lower for the SA and US cohorts (45.6% and 57%) than for the Cameroonian cohort 

(82.8%). Discharge mortality ranged from 1.28% in the SA cohort to 17.4% in the US 

Cohort.

FEASIBILITY OF CONVENTIONAL SEVERITY SCORES

Compared to the SL algorithm, which was able to utilize data from all patients at each site, 

all conventional scores were limited by missing composite patient data, which ranged from 

0.94% for patient age in the US cohort to 100% for injury severity score in the Cameroonian 

cohort and KTS in the US cohort. Overall data missingness for conventional scores was 

higher for resource-constrained settings compared to the US site. (Table 2)

SL DISCRIMINATION OF MORTALITY

SL demonstrated excellent prediction of discharge mortality in the US cohort (AUC 94–

97%) with improved discrimination compared to TRISS and far superior discrimination 

compared to physiologic scores, including the GAP, MGAP, GCS, and RTS. (Figure 1) KTS 

could not be calculated in this cohort due to lack of composite score recording of the 

Glasgow Coma Scale.

Among the SA cohort, SL generated prediction with similar discrimination to conventional 

scoring using GAP and RTS (AUC 90–95%). (Figure 2) KTS and TRISS could not be 

calculated for this cohort with the available variables.

SL demonstrated far superior prediction of mortality in the Cameroonian cohort (AUC 90–

94%) compared to KTS, GAP, MGAP, GCS, and RTS. (Figure 3) Anatomic scoring was not 
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available for this cohort given limitations of diagnostic imaging, record-keeping, and 

operative capacity in this setting.

VARIABLE IMPORTANCE MEASURES

For each cohort, influential drivers of prediction were identified. (Figure 4) Unique, context-

specific variables found to drive prediction of mortality in each cohort included admission 

partial thromboplastin time in the US cohort and distance to the hospital and patient 

education level in the Cameroonian cohort. Regardless of site differences, indicators of 

severe head injury, including admission GCS (US, SA) and image-guided or clinician-

estimated head injury severity (US, Cameroon), portend high risk of mortality after injury. 

Advanced patient age was also found to drive prediction of trauma mortality in diverse 

clinical contexts (US and Cameroon).

DISCUSSION

In this study, we demonstrate that machine learning generates excellent prediction of trauma 

mortality across extremely diverse clinical settings. Unlike conventional statistical 

approaches, which rely on relatively complete collection of pre-specified variables, machine 

learning was able to discriminate mortality on the basis of different baseline admission 

variables. Additionally, the feasibility of conventional algorithms in all settings was limited 

by variable missingness. We further demonstrate that variables driving prediction can lend 

important insights into context-specific and potentially modifiable targets for clinical 

intervention. These capabilities of machine learning address many of the challenges that 

have plagued prior attempts at severity scoring and suggest that machine learning could be 

an adaptable benchmark for establishing optimal prediction to aid clinical decision making 

and evaluate trauma systems in diverse contexts.

The datasets utilized in this study reflect trauma care in areas with substantial differences in 

resource availability, patient population, injury patterns, prehospital systems, and trauma 

practice standard of care. Prior attempts to apply algorithms developed in high-income 

contexts to LMIC contexts have been limited by feasibility constraints and these underlying 

differences in patient trajectory in different health systems (34). Lack of reliable scoring has 

hindered efforts to generate quality improvement programming in LMICs. In high-income 

countries, clinicians have yet to harness the full power of the vast amounts of patient data 

available on modern trauma patients.

Machine learning offers potential solutions to many of these obstacles by approaching the 

problem in a novel fashion. Traditional modeling has attempted to generate a single model 

capable of assessing all trauma patients. It can be argued that in addition to patient 

physiology, injured patient outcomes are a reflection of the overall fitness of a trauma 

system. Moderate injury may confer minimal mortality risk in the US, but it confers a much 

higher risk in contexts where resources such as blood transfusions, prehospital care, critical 

care, and other therapeutic interventions are not available. Machine learning does not 

attempt to find a single model for all patients but rather to identify the risk to a given patient 

in their given context. Tailored prediction is achievable because machine learning, unlike 

conventional scoring, is not constrained by the need for algorithm simplicity and is able to 
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adjust for the complex relationships between many more potential predictors. These features 

largely explain why SL prediction remains robust despite differences in care.

Although excellent prediction was generated at all sites, the discrimination margin between 

SL and conventional scoring narrows where mortality prediction is already very good, as 

seen in the SA cohort. This is because SL will predict future outcomes using the same data-

generating distribution as well (asymptotically) or better than the best single algorithm in the 

library of learners (18). If one uses a broad suite of learners, from very smooth, traditional 

modeling approaches (e.g., logistic regression) to very flexible, nonparametric routines (like 

random forest), then the cross-validated estimate of fit can provide a standard by which to 

compare other, simpler competing approaches. In contrast, where traditional prediction is 

less robust, either because of underfitting when a large number of physiologic parameters 

are available (US cohort), or where feasibility of advanced imaging and laboratory 

measurements has limited application (Cameroon), machine learning offers substantial 

improvements in discrimination with important implications on health systems development.

Importantly, the embedded use of cross-validation within the SL algorithm is the essential 

component in the generation of reliable context-tailored prediction. It is possible that 

simplistic models may report discrimination higher than that generated by SL, but as these 

models do not inherently embed cross-validation, they are naturally prone to overfit 

(predicting the building data well), and require calibration on a prospective hold-out sample 

to better gauge performance.

Comparative variable importance reveals conserved and context-variable predictors driving 

prediction of mortality in different settings. While it is not possible to definitively determine 

why this is the case, we would hypothesize that this is not due simply to differences in what 

variables are being measured but also in part due to underlying differences in the patient 

population, health system, and in care and treatment practices. Distance to the hospital is a 

top variable importance measure in Cameroon where there is no formal pre-hospital 

emergency response system, catchment areas are large and treatment delays are often 

substantial, whereas this measure is not predictive of outcome in the US cohort as transit 

times within the catchment region of the center analyzed were negligible. Conversely, 

markers of trauma-induced coagulopathy rank highly in the US cohort. We would expect 

that, if measured, these markers would also predict mortality in LMIC cohorts. This 

highlights how, in addition to revealing potentially modifiable context-specific targets for 

intervention, variable importance generates an evidence-based means of triaging variable 

inclusion which could potentially add predictive power in resource-constrained settings.

Although this approach appears promising, there are several notable limitations that should 

be considered. First, machine learning is most appropriately utilized with large and complex 

datasets. Without adequate size and variability, predictive capacity will be limited. With 

simple predictor sets, SL may be effective, but may not be necessary and more traditional 

statistical approaches may yield similar results. Although machine learning can maximize 

data utilization and address variable missingness, it will not be able to compensate for poor 

data quality. It is likely that some prediction-driving variables in any context remain 

unmeasured, and these will limit the prediction capacity of any prospective algorithm, 
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including SL. Particularly among LMIC settings, acquisition of high quality data inputs will 

likely remain the most significant barrier to use. Continued progression toward ubiquitous 

trauma registry data collection on all injured patients will be essential to facilitate 

improvements in trauma care. Finally, despite being open source, the authors anticipate that 

trauma clinicians may not routinely have time to download the software and learn a coding 

language in order to use SL to aid clinical decision making. With this in mind, in order to 

facilitate point-of-care use in the clinical setting it will be important to develop open-source 

cloud-based applications of the SL software which allow clinicians to simply upload their 

trauma dataset in order to obtain context-tailored prediction without needing advanced 

coding skills.

Currently, the surgical field remains skeptical of black-box approaches like machine 

learning, as most clinicians and scientists have been trained under a strict paradigm of 

hypothesis testing based on clinical relevance; data mining, therefore, can seem unfamiliar. 

Despite their novelty, clinically agnostic approaches offer several other potential advantages. 

First, SL and similar programs allow for context-tailored prediction and target identification 

with minimal risk of overfitting. Additionally, these programs can easily be translated into 

user-friendly open-source applications with the potential for rapid, point-of-care use in 

diverse contexts. The algorithms are adaptable over time; in contexts with longitudinal and 

streaming data capacity, they could establish a foundation for real-time individualized 

decision support. Finally, it is important to note that this method can be readily adapted for 

clinically-relevant outcomes other than trauma mortality, providing great potential for 

augmenting clinical decision to optimize performance.

CONCLUSIONS

Machine learning provides superior prediction of mortality after injury in diverse clinical 

contexts offering discrimination without the need for sophisticated diagnostic data or a 

common variable set. It is readily scalable and can be used to identify site-specific factors 

that drive prediction, showing potential as a benchmark for outcomes scoring and risk 

stratification to improve injury care.
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Figure 1: Comparative prediction of mortality in a US trauma cohort. (N=1,494).
Receiver operating characteristic curves demonstrating discrimination of mortality using a 

machine learning algorithm (SuperLearner) compared with conventional severity scoring in 

a single center, highest activation US trauma cohort. Data in parentheses represent 95% 

confidence intervals. AUC, Area Under the Curve; US, United States; SL, SuperLearner; 

TRISS, Trauma and Injury Severity Score; RTS, Revised Trauma Score; GAP Glasgow 

Coma Scale, Age, Pressure Score; MGAP, Mechanism, Glasgow Coma Scale, Age, and 

Pressure Score; and GCS, Glasgow Coma Scale.
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Figure 2: Comparative prediction of mortality in a South African trauma cohort. (N=18,821).
Receiver operating characteristic curves demonstrating discrimination of mortality using a 

machine learning algorithm (SuperLearner) compared with conventional severity scoring in 

a high-volume urban South African trauma cohort. Data in parentheses represent 95% 

confidence intervals. AUC, Area Under the Curve; SA, South Africa; SL, SuperLearner; 

RTS, Revised Trauma Score; GAP Glasgow Coma Scale, Age, Pressure Score; MGAP, 

Mechanism, Glasgow Coma Scale, Age, and Pressure Score; and GCS, Glasgow Coma 

Scale.
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Figure 3: Comparative prediction of mortality in a multisite Cameroonian trauma cohort. 
(N=7,897).
Receiver operating characteristic curves demonstrating discrimination of mortality using a 

machine learning algorithm (SuperLearner) compared with conventional severity scoring in 

a multi-center Cameroonian trauma cohort. Data in parentheses represent 95% confidence 

intervals. AUC, Area Under the Curve; SL, SuperLearner; KTS, Kampala Trauma Score; 

RTS, Revised Trauma Score; GAP, Glasgow Coma Scale, Age, Pressure Score; MGAP, 

Mechanism, Glasgow Coma Scale, Age, and Pressure Score; and GCS, Glasgow Coma 

Scale.
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Figure 4: Context-specific Clinical Admission Variables Driving SuperLearner Prediction of 
Mortality.
Top variable importance measures by context using random forest estimation. Estimated 

severity, ordinal ranking of perceived injury severity by provider at patient presentation (1–

6); AIS, Abbreviated Injury Score.
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Table 1:

Dataset and Trauma Cohort Characteristics

US Cohort SA Cohort Cameroon Cohort

N=1,494 N=18,821 N=7,897

Data Characteristics

 Data Collection (years) 2005–2015 2014–2016 2015–2017

 Medical Centers (n) 1 1 3

 Admission Predictor Variables (n) 212 144 131

 Observations (n) 853,074 17,416,200 2,574,422

Cohort Characteristics

 Age (years, IQR) 36 (25– 52) 30 (24 −32) 29 (22–40)

 Pediatric Patients (%) 0 5.1 14.2

 Male Patients (%) 82.0 75.6 72.4

 Blunt Mechanism (%) 57.0 45.6 82.8

 Discharge Mortality (%) 17.4 1.28 1.74

Age is presented as median (IQR), all other variables reported as specified. US, United States Cohort; SA, South African Cohort.
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Table 2:

Data Missingness by Trauma Severity Score and Cohort (%)

US Cohort SA Cohort Cameroon Cohort

N=1,494 N=18, 821 N=7,897

SuperLearner 0% 0% 0%

Kampala Trauma Score 100% 0% 46.6%

Revised Trauma Score 6.2% 6.8% 46.5%

Trauma and Injury Severity Score 9.4% 0% 100%

GCS, Age, Pressure Score 3.4% 8.3% 20.6%

Mechanism, GCS, Age, Pressure Score 3.7% 9.4% 24.2%

Glasgow Coma Score 1.4% 4.7% 3.9%

US, United States Cohort; SA, South African Cohort; GCS, Glasgow Coma Score.
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