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ABSTRACT

This paper presents the characterization of the in-flight beams, the beam window functions, and the associated uncertainties for the Planck Low
Frequency Instrument (LFI). The structure of the paper is similar to that presented in the 2013 Planck release; the main differences concern
the beam normalization and the delivery of the window functions to be used for polarization analysis. The in-flight assessment of the LFI main
beams relies on measurements performed during observations of Jupiter. By stacking data from seven Jupiter transits, the main beam profiles are
measured down to –25 dB at 30 and 44 GHz, and down to –30 dB at 70 GHz. It has been confirmed that the agreement between the simulated
beams and the measured beams is better than 1% at each LFI frequency band (within the 20 dB contour from the peak, the rms values are 0.1%
at 30 and 70 GHz; 0.2% at 44 GHz). Simulated polarized beams are used for the computation of the effective beam window functions. The error
budget for the window functions is estimated from both main beam and sidelobe contributions, and accounts for the radiometer band shapes. The
total uncertainties in the effective beam window functions are 0.7% and 1% at 30 and 44 GHz, respectively (at ` ≈ 600); and 0.5 % at 70 GHz (at
` ≈ 1000).

Key words. methods: data analysis – cosmology: cosmic microwave background – telescopes

1. Introduction

This paper, one of a set associated with the 2015 release of
data from the Planck1 mission, describes the beams and window

∗ Corresponding author: M. Sandri sandri@iasfbo.inaf.it
1 Planck (http://www.esa.int/Planck) is a project of the

European Space Agency (ESA) with instruments provided by two sci-
entific consortia funded by ESA member states and led by Principal
Investigators from France and Italy, telescope reflectors provided
through a collaboration between ESA and a scientific consortium led
and funded by Denmark, and additional contributions from NASA
(USA).

functions of the Low Frequency Instrument (LFI). The structure
of the paper is similar to that presented in Planck Collaboration
IV (2014); the main differences concern the beam normalization
and the delivery of the window functions to be used for polariza-
tion analysis.

We summarize here the general framework and the nomen-
clature adopted, which is the same as that used in Planck
Collaboration IV (2014). The LFI optical layout is composed of
an array of 11 corrugated feed horns, each coupled to an ortho-
mode transducer (OMT), which splits the incoming electromag-
netic wave into two orthogonal, linearly polarized components.
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Planck Collaboration: LFI beams and window functions

Thus, the LFI observed the sky with 11 pairs of beams, asso-
ciated with 22 pseudo-correlation radiometers. Each beam in a
pair is named LFIXXM or LFIXXS for the two polarization states
(“Main” Arm and “Side” Arm of the orthomode transducer, re-
spectively). Here XX is the radiometer chain assembly number,
ranging from 18 to 28. The beams from LFI18 to LFI23 are in
the V–band (nominally from 63 to 77 GHz); we refer to them
as 70 GHz. The beams from LFI24 to LFI26 are in the Q–band
(from 39.6 to 48.4 GHz); we refer to them as 44 GHz. The beams
LFI27 and LFI28 are in the Ka–band (from 27 to 33 GHz); we
refer to them as 30 GHz. The fundamental definitions introduced
in Planck Collaboration IV (2014), i.e., optical beams, scanning
beams, and effective beams, can be found in Appendix A.

In the framework of this paper, and the Planck LFI compan-
ion papers, we considered three regions defined with respect to
the beam boresight:

1. the main beam, which is defined as extending to 1.9◦, 1.3◦,
and 0.9◦ at 30, 44, and 70 GHz, respectively;

2. the near sidelobes, which are defined as extending between
the main beam angular limit and 5◦;

3. the far sidelobes, which are defined as the beam response
greater than 5◦ from the boresight.

The scanning beams used in the LFI pipeline (affect-
ing calibration, effective beams, and beam window functions)
are very similar to those presented in Planck Collaboration
IV (2014): they are beams computed with GRASP2, properly
smeared to take into account the satellite motion. Simulations
have been performed using the optical model described in Planck
Collaboration IV (2014), which was derived from the Planck
Radio Frequency Flight Model (Tauber et al. 2010) by varying
some optical parameters (e.g., the relative distance between the
two mirrors and the focal plane unit, the feed horn locations and
orientations) within the nominal tolerances expected from the
thermoelastic model, in order to reproduce the measurements of
the LFI main beams from seven Jupiter transits. This tuned opti-
cal model is able to represent all the measured LFI main beams
with an accuracy of about 0.1% at 30 and 70 GHz, and 0.2% at
44 GHz3.

Unlike the case in Planck Collaboration IV (2014), a dif-
ferent beam normalization is introduced here to properly take
into account the actual power entering the main beam (typically
about 99% of the total power). This is discussed in Sect. 2.

In Sect. 3 the details of the main beam reconstruction from
the Jupiter transits are presented. The comparison between the
measured scanning beam and GRASP scanning beams is also
shown. Section 4 presents the descriptive parameters of the ef-
fective beams, needed for the evaluation of the flux densities of
the point sources from the maps. In Sect. 5 we present the beam
window functions for temperature and polarization analysis. In
the computation of the effective beams and their related win-
dow functions, we have significantly increased the outer radius
(for 70 GHz this means a change from 2.5 FWHM to 4 FWHM)
to minimize the effect of the cut-off radius. The effect of near
and far sidelobes on the window functions is described in the
same section. The normalization of the window function reflects
the main beam efficiencies presented in Sect. 2. The main pa-
rameter that affects the polarization (EE) beam window func-
tions was confirmed to be the beam ellipticity, which leads to a

2 The GRASP software was developed by TICRA (Copenhagen, DK)
for analysing general reflector antennas (http://www.ticra.it).

3 These values represent the rms value of the difference between mea-
surements and simulations, computed within the 20 dB contour.

temperature-to-polarization leakage of about 15 % at multipole
` equal to 1000 (at 70 GHz) compared to an ideal case of a sym-
metrical Gaussian beam. The error budget on the window func-
tions is presented in Sect. 6.

2. Beam normalization

In previous work (Planck Collaboration IV 2014), the main
beam used in the calculation of the effective beams (and effec-
tive beam window functions) was a full-power main beam (i.e.,
unrealistically set to 100 % efficiency). The resulting beam win-
dow function was normalized to unity because the calibration
was performed assuming a pencil beam. This assumption con-
siders that all the power entering the feed horn comes from the
beam line of sight. We know that this assumption is not realis-
tic, since up to 1% of the solid angle of the LFI beams falls into
the sidelobes, unevenly distributed and concentrated mainly in
two areas, namely the main-reflector and sub-reflector spillover
(see Fig. 1). The main-reflector spillover is primarily due to the
rays reflected by the lower part of the sub-reflector and those
diffracted by the two reflectors; it peaks at about 90◦ from the
telescope line of sight, along the direction of the satellite spin
axis, and it has an intensity below –50 dB from the main beam
power peak. The sub-reflector spillover (whose intensity is lower
than the main-reflector spillover) is generated by the rays enter-
ing the feed without any interaction with the reflectors; its shape
aligns roughly with the feed, pointing at about 20◦ from the
line of sight of the telescope. They are both extended structures
whose shape and power change significantly across the band.
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Fig. 1. Far sidelobes at 30 GHz. The main beam points to the top
of the map (θ = 0◦). The main and sub-reflector spillover regions
are highlighted with red contours. The main-reflector spillover
points at about 85◦ from the main beam pointing direction and
it is peaked at about 2 dBi. The subreflector spillover is mainly
due to the feed sidelobe and peaks at about –8 dBi.

Because we accurately model the dipole signal, by convolv-
ing the sky dipole with the full 4π beam response of each ra-
diometer, our calibration procedure correctly converts the time-
ordered data into received antenna temperature in kelvin, where
that temperature represents the full-sky temperature weighted by
the 4π beam (Planck Collaboration V 2015). Our mapping pro-
cedure assumes a pencil beam (Planck Collaboration VI 2015),
which in the ideal case of a circularly-symmetric beam would
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yield a map of the beam-convolved sky; however, a fraction
of the signal from any source appears in the far sidelobes, and
would be missed by integration of the map over the main beam
alone. By the same token, bright resolved features in the map
have temperatures fractionally lower than in the sky, due to sig-
nal lost to the sidelobes. In essence this description remains true
even given the highly asymmetric sidelobes of the Planck beam:
the main difference is that the far sidelobe contribution to a given
pixel varies according to the orientation of the satellite at the
time of observation. This is handled by explicitly subtracting a
model of the Galactic straylight and treating the remaining ef-
fect as a noise term. Important to note is that the roughly 1%
of the signal found in the sidelobes is missing from the vicinity
of the main beam, so the main beam efficiency η ≈ 99 %; and
this must be accounted for in any analysis of the maps. In par-
ticular, the window function used to correct the power spectra
extracted from the maps (which is based on the main beam only)
allows for this efficiency. Likewise, to calculate the flux densi-
ties of compact sources from LFI maps, we should correct for
the main beam efficiency or, alternatively, deconvolve the beam
from the map before calculating the flux densities (the latter ap-
proach takes into account the true beam shape, not just its angu-
lar resolution and/or solid angle). In other words, the source flux
densities must be scaled up by a correction factor, as presented
in Planck Collaboration II (2015). In particular, the scaling fac-
tors are 1.00808, 1.00117, and 1.00646 at 30, 44, and 70 GHz,
respectively.

The efficiency values listed in Table 1 were calculated by
taking into account the variation across the band of the opti-
cal response (coupling between feed horn pattern and telescope)
and the radiometric response. The bandpass of each radiome-
ter is unique, since it depends very sensitively on the manu-
facturing process. Therefore two beams that are optically sim-
ilar (e.g., mirror-symmetric, such as 18S and 23S) have different
main beam efficiencies; and two beams that might be expected
to have different efficiencies (because the off-axis telescope re-
sponds differently to the two polarizations) are characterized by
very similar efficiencies (for example, 22M and 22S). The im-
pact of this imbalance in the efficiencies is not negligible for the
30 GHz window functions; it generates a bump at low ` com-
pared to the previous release which treated an ideal case in which
the beams were normalized to unity (see Fig. 14 in Sect. 5). At
higher frequencies this impact is negligible.

Table 1 reports the main beam efficiency of each LFI beam
as well as the percentage of the power entering the near and far
sidelobes. We note that there is a small fraction of missing power
in LFI sidelobes, resulting from the first-order approximation
adopted in the computation carried out with the GRASP Multi-
reflector Geometrical Theory of Diffraction (MrGTD) (Ticra
2012). In Planck Collaboration IV (2014) we expressed the hope
that we could include in the current paper the higher order con-
tributions, but we found that the computational cost of such an
analysis, performed across the band, was prohibitive. However,
we performed some tests in collaboration with HFI, comparing
the straylight evaluated with sidelobes computed at the 1st and
7th orders, and found that the resulting differences are negligi-
ble, both at map level (0.2 µK) and power spectrum level (lower
than 10−15 K2). In other words, it does seem that the missing
power is broadly distributed at a low power level and does not
have a significant impact on the straylight contamination, which
is clearly dominated by the main-reflector spillover.

Table 1. Beam efficiency computed from GRASP beams. In the
first column the main beam efficiency, η, is presented. The sec-
ond and third columns report the percentage of the power en-
tering the near and far sidelobes, respectively (nsl and fsl): these
values are directly calculated as the integral of the electric field
computed with GRASP. The sum of the three beam components
is presented in the fourth column. The three regions considered
(main beam, near, and far sidelobes) are those defined in Sect. 1.

Beam η nsl fsl Total
70 GHz

18S 98.87 0.12 0.62 99.60
18M 99.21 0.09 0.38 99.68
19S 98.98 0.11 0.58 99.66
19M 98.83 0.13 0.60 99.56
20S 98.81 0.13 0.70 99.64
20M 98.85 0.13 0.63 99.61
21S 98.82 0.13 0.70 99.65
21M 98.94 0.11 0.59 99.64
22S 99.15 0.08 0.50 99.73
22M 99.16 0.08 0.44 99.69
23S 99.19 0.09 0.43 99.71
23M 99.26 0.08 0.35 99.69

44 GHz

24S 99.73 0.03 0.15 99.91
24M 99.72 0.03 0.15 99.90
25S 99.76 0.02 0.06 99.84
25M 99.75 0.03 0.08 99.86
26S 99.77 0.02 0.05 99.84
26M 99.74 0.03 0.08 99.85

30 GHz

27S 98.89 0.09 0.76 99.75
27M 99.04 0.08 0.64 99.76
28S 98.79 0.10 0.83 99.73
28M 99.07 0.07 0.62 99.76

3. Scanning beams

3.1. Planet data

The LFI in-flight main beam reconstruction is based on the same
method adopted in the past release (Planck Collaboration IV
2014). In Fig. 3 the LFI footprint on the sky is shown for both
polarization arms. In contrast to the analogous figure reported
in Planck Collaboration IV (2014), here the beams are plotted
down to –30 dB at 70 GHz, and –25 dB at 30 and 44 GHz.

To assess the beam properties, we used seven Jupiter transits
(Planck Collaboration II 2015). The first four transits (J1 to J4)
occurred in nominal scan mode (spin shift 2 arcmin, 1 degree per
day), and the last three scans (J5 to J7) in deep mode (shift of the
spin axis between rings of 0.5 arcmin, 15 arcmin per day). Figure
2 shows two Jupiter scans at 70 GHz: the first one, in nominal
mode; and the seventh, in deep mode. Some data from the first
deep scan have been discarded and, for this reason we used only
the last two deep scans at the lower frequencies (30 and 44 GHz).
For the 70 GHz channel, the resulting sampling of the uv-plane is
about 3.4 times better than in the earlier paper and, consequently,
the signal-to-noise ratio is about 1.8 times better. At 44 and 30
GHz the improvement is slightly lower (1.3 and 1.5 times bet-
ter, respectively), since data from the first deep scan could not
be used due to spacecraft manoeuvrements. As a result of the
deeper sampling, the error on the reconstructed beam parame-
ters is lower with respect to the previous release, as can be seen
by comparing Table 2 with table 2 of Planck Collaboration IV
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(2014), and the error envelope on the window functions is lower
as well.

Fig. 2. Timelines corresponding to radiometer LFI18S at
70 GHz: first nominal scan (upper panel) and seventh deep scan
(bottom panel).

Table 2 reports the main beam descriptive parameters with
the estimated uncertainties evaluated from the stacked beams ob-
tained using all seven Jupiter transits. Figs. 4, 5, and 6 show the
values of FWHM, ellipticity, and beam orientation derived from
each Jupiter transit. The scatter among the values reconstructed
from different transits is much smaller than that expected from
the errors quoted for each transit, which conservatively includes
any possible systematic effects. The main uncertainty comes
from the fact that the elliptical Gaussian representation of the
beam shape, adopted only in this fit, although accurate at a level
of ∼ few µK for characterizing the power entering the main beam
and the signal convolved with sky diffuse emissions (Burigana
et al. 2001), shows a small point-to-point difference with the re-
constructed beam at a level of a few percentage points. If we
consider only the statistical properties of the noise and sky fluc-
tuations, as measured from the analysis of the signal variance
just outside the main beam, the resulting error bars would be
about ten times smaller, but in this release we adopted a conser-
vative approach to define the uncertainties in the beam window
functions. It is evident that the seven measurements give basi-
cally the same results. Thus, no time-dependent optical effects
are evident in these data, which were taken from October 2009
to February 2013.

With respect to the previous main beam reconstruction using
four Jupiter transits (Planck Collaboration IV 2014), there is an
improvement in the uncertainties on the FWHM, ellipticity, and
ψell, respectively, by factors of about 1.8, 3.1, and 1.8 at 70 GHz;
1.5, 2.1, and 1.5 at 44 GHz; and 1.6, 1.9, and 1.6 at 30 GHz.
These numbers reflect the improvement in the coverage of the
uv-plane of the stacked beams: the number of samples including
the three deep scans is about 3.4 times higher at 70 GHz, 1.7 at
44 GHz, and 2.2 at 30 GHz. For completeness, in Appendix B
the fitted parameters are reported for each scan.

Table 2. Main beam descriptive parameters of the scanning
beams, with ±1σ uncertainties.

Beam FWHM Ellipticity ψell
(arcmin) (degrees)

70 GHz

18M 13.40 ± 0.02 1.235 ± 0.004 85.74 ± 0.41
18S 13.46 ± 0.02 1.278 ± 0.004 86.41 ± 0.33
19M 13.14 ± 0.02 1.249 ± 0.003 78.82 ± 0.35
19S 13.09 ± 0.02 1.281 ± 0.002 79.15 ± 0.30
20M 12.83 ± 0.02 1.270 ± 0.003 71.59 ± 0.32
20S 12.83 ± 0.02 1.289 ± 0.004 72.69 ± 0.31
21M 12.75 ± 0.02 1.280 ± 0.003 107.99 ± 0.27
21S 12.86 ± 0.02 1.294 ± 0.003 106.96 ± 0.29
22M 12.92 ± 0.02 1.264 ± 0.003 101.87 ± 0.30
22S 12.99 ± 0.02 1.279 ± 0.003 101.61 ± 0.30
23M 13.32 ± 0.02 1.235 ± 0.004 93.53 ± 0.40
23S 13.33 ± 0.02 1.279 ± 0.004 93.49 ± 0.36

44 GHz

24M 23.18 ± 0.05 1.388 ± 0.005 89.82 ± 0.33
24S 23.03 ± 0.04 1.344 ± 0.003 89.97 ± 0.34
25M 30.02 ± 0.07 1.191 ± 0.005 115.95 ± 0.75
25S 30.79 ± 0.07 1.188 ± 0.005 117.70 ± 0.74
26M 30.13 ± 0.08 1.191 ± 0.006 61.89 ± 0.84
26S 30.52 ± 0.08 1.189 ± 0.006 61.53 ± 0.77

30 GHz

27M 32.96 ± 0.06 1.364 ± 0.005 101.20 ± 0.34
27S 33.16 ± 0.07 1.379 ± 0.005 101.29 ± 0.34
28M 33.17 ± 0.07 1.366 ± 0.006 78.17 ± 0.36
28S 33.12 ± 0.07 1.367 ± 0.005 78.47 ± 0.33

3.2. Polarized scanning beams

The polarized scanning beams have been evaluated from optical
simulations carried out by the application of physical optics and
physical theory of diffraction using GRASP. As reported in Planck
Collaboration IV (2014), these beams came from a dedicated
optical study that has been carried out with the goal of fitting
the simulated beams to the in-flight measurements. Of course,
to take into account the satellite motion, the optical beams have
been properly smeared. The impact of the polarization of Jupiter
is negligible because it is well below the level of beam measure-
ments (see Appendix B of Planck Collaboration IV (2014) for a
detailed description and evaluation of such effect).

The Low Frequency Instrument performs polarization
measurements of the cosmic microwave background (CMB)
anisotropies by combining the signal received by the feed horns
appropriately aligned in the focal plane (Leahy et al. 2010). All
LFI feed horns are off-axis and the respective main beams, lo-
cated at 3 to 5◦ from the telescope line of sight (LOS), suffer
some aberration. The LFI main beams can be considered lin-
early polarized, to first order, but we are conscious of the impact
of a non-null cross-polarization close to the main beam pointing
direction. Knowledge of the polarization properties of each main
beam (i.e., co- and cross-polar components) and of the spacecraft
pointing direction are required to perform polarization measure-
ments. Since we were not able to measure the cross-polar beam
in flight, we have relied on simulations validated by far more ac-
curate beam measurements than those reported earlier in Planck
Collaboration IV (2014). The strength of the model adopted is
twofold: (i) we have a description of the beams at levels lower
than the instrumental noise; and (ii) the beam cross-polar com-
ponent is fully characterized.
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Fig. 3. Scanning beam profiles for both polarization arms, reconstructed from seven Jupiter transits. The beams are plotted in
contours of –3, –10, –20, and –30 dB from the peak at 70 GHz (green), and –3, –10, –20, –25 dB at 30 GHz (blue) and 44 GHz
(pink).

Fig. 4. FWHM at 70 GHz (upper panel) and 30/44 GHz (bottom
panel) for the seven Jupiter scans.

The GRASP main beams were computed in uv-spherical po-
lar grids (see Appendix A for the definition of the main beam
region). In each point of the uv-grid, the far field was computed
in the co- and cross-polar basis according to Ludwig’s third def-
inition (Ludwig 1973).

Fig. 5. Ellipticity at 70 GHz (upper panel) and 30/44 GHz (bot-
tom panel) for the seven Jupiter scans.

Although the GRASP beams are computed as the far-field
angular transmission function of a highly polarized radiating el-
ement in the focal plane, the far-field pattern is in general no
longer exactly linearly polarized: a spurious component, induced
by the optics, is present (Sandri et al. 2010). The co-polar pattern
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Fig. 6. Beam orientation at 70 GHz (upper panel) and 30/44
GHz (bottom panel) for the seven Jupiter scans. ψell is defined
in Planck Collaboration IV (2014).

is interpreted as the response of the linearly polarized detector to
radiation from the sky that is linearly polarized in the direction
defined as co-polar, and the same is true for the cross-polar pat-
tern, where the cross-polar direction is orthogonal to the co-polar
one. The Jupiter scans allow us to measure only the total field,
that is, the co- and cross-polar components combined in quadra-
ture. The total field of GRASP beams fits the Jupiter data, but
these beams also have the co- and cross-polar pattern defined
separately. The adopted beam reference frame, in which each
main beam was computed, implies that the power peak of the
co-polar component lies in the centre of the uv-grid, and a mini-
mum in the cross-polar component appears at the same point. In
particular, the major axis of the polarization ellipse is along the
u-axis for the radiometer side arm and it is aligned with v- for
the radiometer main arm. This means that, very close to the beam
pointing direction, the main beam can be assumed to be linearly
polarized; the x-axis of the main beam frame can be assumed to
be the main beam polarization direction for the radiometers S;
and the y-axis of the main beam frame can be assumed to be the
main beam polarization direction for the radiometers M.

We have evaluated the effect of cross-polarization on the
window functions, and find that it is roughly 1% at 70 GHz for
` equal to 1000. The GRASP beams are normalized to have an
integrated solid angle of 4π sr. The integral over the main beam
region (the summed co- and cross-polar power) is representative
of the main beam efficiency.

3.3. Hybrid beams

Unlike in the previous release, this time we have produced a new
main beam model named the “hybrid beam”. Hybrid beams have
been created using planet measurements above 20 dB below the

main beam power peak and GRASP beams below this threshold
(see Figs. 7 and 8). The planet data have been filtered using a
maximally flat magnitude filter (Butterworth filter) to reduce the
noise. The hybrid beams have been normalized according to the
GRASP beams (i.e., the main beam efficiency is set to the same
value). We used the hybrid beams to perform a further check
on the consistency between the GRASP model and the planet
data, in terms of window functions. Figure 9 shows the com-
parison between the symmetrized GRASP beams and the planet
data. The polarized beams provide the best fit to the available
measurements of the LFI main beams from Jupiter; this model
represents all the LFI beams with an accuracy of about 0.1% at
30 and 70 GHz, and 0.2% at 44 GHz (rms value of the differ-
ence between measurements and simulations, computed within
the 20 dB contour). Figure 10 shows for all channels the com-
parison between the window functions computed using GRASP
beams and the window functions computed using hybrid beams.

Jupiter data

GRASP simulation

Fig. 7. Hybrid beam at 70 GHz. The data within the 20 dB con-
tour are measurements (i.e., Jupiter data), filtered and interpo-
lated on a regular grid. The data at lower levels are GRASP si-
mulations, smeared to take into account the satellite motion.

4. Effective beams

The effective beam is defined in the map domain, and is obtained
by averaging the scanning beams that are pointed at a given pixel
of the sky map, while taking into account both the scanning
strategy and the orientation of the scanning beams when they
point at that pixel. The effective beams thus capture information
about the difference between the true and observed images of
the sky. They are, by definition, the objects whose convolution
with the true CMB sky produces the observed sky map, at least
in the absence of sidelobes. Similarly, the effective beam win-
dow functions capture the ratio between the true and observed
angular power spectra. As in Planck Collaboration IV (2014),
we compute in this paper the effective beam at each sky pixel
for each LFI frequency scanning beam, and scan history using
the FEBeCoP method. For a detailed account of the algebra in-
volving the effective beams for temperature and polarization see
Mitra et al. (2011).

The main beam solid angle of the effective beam, Ωeff , is es-
timated as the integral over the full extent of the effective beam.
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Fig. 8. Difference between hybrid beam and GRASP simulation.
The colour scale spans 2.25 times the rms of the beam difference,
i.e., 0.1% of the beam maximum.

A larger cut-off radius has been applied to the main beams:
113.6 arcmin at 30 GHz; 79 arcmin at 44 GHz; and 52 arcmin
at 70 GHz. From the effective beam solid angle, we can estimate
the effective full width half maximum (FWHMeff), assuming a
Gaussian of equivalent solid angle. These values have been av-
eraged across the map to obtain the band (quadruplets) averaged
effective beam solid angles listed in Table 3. The spatial varia-
tion is the 1σ uncertainty associated with the band (quadruplets)
averaged beams.

In Table 4, we report the FWHM computed in a different
way, by forming the averages of the FWHM evaluated evaluated
from a Gaussian fit to the effective beam maps. The former is
best used for flux determination, the latter for source identifica-
tion.

5. Beam window function

5.1. LFI window functions based on FEBeCoP

FEBeCoP beam window functions have been computed as pre-
sented in Planck Collaboration IV (2014). In the current release
we deliver both TT and EE window functions defined as

WTT,EE
`

= 〈C̃TT,EE
`

〉/CTT,EE
`

, (1)

where the ensemble average is taken over the Monte Carlo (MC)
simulations of the CMB observations, C̃` is the power spectrum
of the CMB-only maps simulated by FEBeCoP as described in
(Mitra et al. 2011), and C` is the fiducial model used as input.
These are shown in Fig. 10 for 30, 44, and 70 GHz frequency
maps (temperature and polarization), using two different beam
models (GRASP beams and hybrid beams). Figure 11 shows the
difference between the current window functions and the old
ones, delivered in 2013. The main difference is in the normal-
ization, with the current window functions taking into account
the power missed by the main beams, whereas the old ones were
computed using full-power main beams. Naturally, the actual
pointing solution is different with respect to that used in the past
release (Planck Collaboration II 2015).

As done in 2013, we verified that for the Galactic mask used
for power spectrum estimation (Planck Collaboration II 2015;

Planck Collaboration XI 2015) the differences between full-sky
and cut-sky window functions are marginal with respect to the
error envelopes discussed in Sect. 6, therefore the full-sky ap-
proximation has been used.

The oscillations in the EE window functions, located at val-
ues of ` corresponding to the CTT

` acoustic peaks, hint at the
presence of temperature-to-polarization leakage, likely caused
by the coupling of the scanning strategy with the particular shape
of scanning beams. To demonstrate this, we compare the win-
dow functions of the 18/23 quadruplet computed using a circu-
lar Gaussian, an elliptical Gaussian and a more realistic GRASP
scanning beam. In Fig. 12 the EE window function for the 18/23
quadruplet (at 70 GHz) is shown. It is noteworthy that for the cir-
cular Gaussian no oscillations are present, while the main con-
tribution to the leakage (15 % at ` = 900) is due to the beam el-
lipticity. The actual beam shape also has an effect (see the right
panel of the Fig. 12, comparison between blue and green curves),
but it is minor with respect to the ellipticity effect (blue curve).

Regarding the beam cross-polarization, since the delivered
window functions have been obtained from GRASP beams, where
the cross-polarization is properly taken into account, no approx-
imation is required. Nevertheless we evaluated the effect of the
beam cross-polarization by computing the window functions, in-
cluding and not including the cross-polar beam component, as
described in (Jones et al. 2007). The results are presented in
Fig. 13. The effect of including the cross-polar beam in the win-
dow function computation for 70 GHz is roughly 1% at ` = 1000.
Including the cross-polar term can approximately be described
by an overall smoothing effect. A Gaussian beam of about 51
arcseconds accurately describes the extra smoothing effect up to
` = 1000 for 70 GHz, and deviates from the real effect for large
multipoles, overpredicting the amount of smoothing.

Another interesting effect on the polarized window func-
tion is related to the different main beam efficiencies, mainly
at 30 GHz. This effect is shown in Fig. 14. From this figure it is
evident that there is a bump at low multipoles with respect to the
window function delivered in 2013. This bump is not due to the
different beam shape or the different pointing solution, but rather
to the fact that the beams have, reasonably, different efficiencies
due to mechanical issues.

Since the beam window functions are computed using CMB-
only Monte Carlo simulations, the oscillations we see in the po-
larization B`s only account for the leakage of the CMB signal
itself and not for foreground-induced leakage.

5.2. Simulated timeline-to-map Monte Carlo window
functions

To see the effect of sidelobes and to provide a consistency check
for the FEBeCoP window functions, we also calculated the win-
dow functions via simulated timelines. This is more suitable for
including the sidelobes, although costly, limiting us to a small
number of realizations and thus leaving a large simulation vari-
ance in the results.

Signal-only timeline-to-map Monte Carlo simulations were
produced using Level-S (Reinecke et al. 2006) and HEALPix
(Górski et al. 2005) subroutines and the Madam map-maker
(Kurki-Suonio et al. 2009; Keihänen et al. 2010) on the Sisu su-
percomputer at the CSC-IT Center for Science in Finland, as de-
scribed in Planck Collaboration IV (2014). In the 2013 analysis,
only the main beam was simulated; now we simulated all three
parts of the beam, i.e., the main beam, near sidelobes, and far
sidelobes.
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Fig. 9. Comparison between the (symmetrized) GRASP beams and the (symmetrized) beam profile measured with Jupiter (raw data
and filtered data) for the three channels, 30, 44, and 70 GHz. The symmetrized beams have been computed by averaging all the
beams of each channel, and then averaging over radial angle to be circularly symmetric.

Table 3. Band averaged effective beam solid angles under a Gaussian approximation. Ωeff is the beam solid angle estimated up to a
radius equal to the main beam radius. FWHMeff is the effective FWHM estimated from Ωeff . Ω

(1)
eff

is the beam solid angle estimated
up to a radius equal to the FWHMeff , while Ω

(2)
eff

indicates the beam solid angle estimated up to a radius = 2 × FWHMeff .

Band Ωeff spatial variation Ω
(1)
eff

spatial variation Ω
(2)
eff

spatial variation FWHMeff spatial variation
(arcmin2) (arcmin2) (arcmin2) (arcmin2) (arcmin2) (arcmin2) (arcmin) (arcmin)

30 1190.06 0.69 1117.3 1.8 1188.93 0.70 32.408 0.009
44 832.00 34.00† 758.0 32.0† 832.00 35.00† 27.100 0.570†
70 200.90 0.99 186.1 1.8 200.59 0.99 13.315 0.033

18/23 210.13 0.63 194.2 2.6 209.82 0.64 13.618 0.020
19/22 199.19 0.64 185.0 1.6 198.90 0.64 13.259 0.021
20/21 192.58 0.67 179.1 1.9 192.27 0.67 13.037 0.023
25/26 1019.63 0.65 942.2 2.4 1019.05 0.64 29.998 0.009

† The large spatial variation associated with the 44 channel is due to the combination of beams with very different shapes and orientations, due
to the different location of horn 24 with respect to horns 25 and 26 in the focal plane (Sandri et al. 2010). Indeed, the value associated with the
quadruplet 25/26 (the spatial variation of the 24 is about 0.78 arcmin2) is in line with other quadruplets.

We started from the simulated input CMB sky a`m realiza-
tions of the FFP8 CMB Monte Carlo simulation set (Planck
Collaboration XII 2015). Given the high computational cost of
the timelime-to-map simulation, we used only the first 50 real-
izations. These sky a`m were then convolved, using the Level-S
code conviqt v4, with the beam a`m (called here b`m). The a`m
and b`m both have three components: T for intensity and E, B for
polarization. Here the aB

`m represent just the B-mode polariza-
tion due to gravitational lensing of the E-mode polarization, i.e.,
there was no primordial B-mode in these simulations, so they
were much smaller than the aE

`m. In order to evaluate the sidelobe
effect on the window function, and also for practical computa-
tional reasons, the three contributions corresponding to the three
beam regions presented in Sect. 1 (i.e., main beam, near side-
lobes, and far sidelobes) were considered separately. The CMB
timelines for each realization and beam component were pro-
duced using multimod, according to the detector pointing for
each radiometer.

Because of the very different extent of the different beam
parts, different Level-S parameters were used for each (see
Table 5). The significance of these parameters is that only multi-
poles ` up to conv lmax are modelled, but the accuracy falls off
near conv lmax and can be improved by increasing lmax out
and interpol order. The parameter beammmax controls how
accurately the azimuthal structure of the beam is modelled.
Increasing the values of these parameters increases the compu-
tational cost.

Maps were then made with Madam, separately from just the
main beam timelines, from the sum of the main beam and near
sidelobe timelines, and the sum of all three beam component
timelines, using the same Madam parameter settings as were used
for the flight maps (Planck Collaboration VI 2015). In this way,
we produced 30 GHz, 44 GHz, and 70 GHz frequency maps
(HEALPix resolution Nside = 1024) and the quadruplet maps for
44 GHz 25/26 and 70 GHz 18/23, 19/22, and 20/21, for the 4-
year full mission LFI survey. The angular power spectra C` were
then calculated with anafast (from full-sky maps).
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Table 4. Statistics of the FEBeCoP effective beams computed with the GRASP scanning beams.

FWHM Ellipticity ψ
Band mean stdev mean stdev mean stdev

(arcmin) (arcmin) (degree) (degree)
30 32.293 0.024 1.318 0.037 0 54
44 27.000 0.590 1.035 0.035 0 50
70 13.213 0.034 1.223 0.026 3 54

18/23 13.525 0.021 1.188 0.021 3 54
19/22 13.154 0.037 1.230 0.027 2 54
20/21 12.910 0.037 1.256 0.036 3 54
25/26 29.975 0.013 1.177 0.030 –2 47
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Fig. 10. FEBeCoP beam window functions for Planck 30, 44, and 70 GHz frequency maps: temperature (left panels) and polarization
(right panels) computed from GRASP beams (GB) and hybrid beams (HB).

Table 5. Parameters for the Level-S codes conviqt v4 and multimod for the different beam parts.

Main beam Near sidelobes Far sidelobes
parameter 30&44 GHz 70 GHz 30&44 GHz 70 GHz 30&44 GHz 70 GHz
conv lmax 2048 2048 1000 1500 180 180
lmax out 4096 4096 2000 3000 360 360
beammmax 9 9 18 18 180 180
interpol order 5 9 5 5 5 5

We calculated the scalar beam window function B` as

B` =
1

Bpix
`

√
〈CTT

`
(out)〉

〈CTT
`

(sky)〉
, (2)

where CTT
` (sky) is the temperature angular power spectrum of

the input a`m of the simulation, CTT
` (out) is the temperature an-

gular power spectrum of the map produced by the simulation
pipeline, and 〈·〉 represents the mean over the first 49 realiza-
tions (the 50th realization was used as a test case for applying
the window function). The quantity Bpix

`
is the HEALPix Nside

1024 pixel window function, which we divided out in order not
to include the pixel window that comes from using pixelized out-
put maps. The proper definition of the beam window function
would refer to the model C` used to produce the different a`m
realizations (see Eq. 1), instead of the mean of the input realiza-
tions 〈CTT

` (sky)〉, but we do not have enough statistics for this

formulation, and instead we use Eq. (2) to reduce the simulation
variance in the obtained window function.

No filter function appears in Eq. (2) since the LFI analysis
uses no filtering (see Poutanen et al. (2004) for destriping and fil-
ter functions). We actually obtain two output maps from Madam,
the binned output map and the destriped output map. Destriping
is a process that aims to remove correlated noise. It happens in
the time domain and its effect does not properly belong to the
beam window function, so we have used the binned output maps
for calculating the window functions. For the main beam and
near sidelobe timelines destriping has a rather small effect for
our noiseless simulation. There is a small noiselike contribution
due to pixelization noise (Kurki-Suonio et al. 2009). However,
for the far sidelobe timelines, a given location of the sky ap-
pears completely different with different beam orientations, and
the Madam destriper interprets this difference as due to noise and
tries to remove it. Therefore the contribution of far sidelobes to
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Fig. 11. Comparison between the LFI window functions deliv-
ered in the previous release (Planck Collaboration IV 2014) and
the current LFI window functions. The curves are slightly biased
above unity due to the different normalization adopted in the two
releases. In the 2013 release we assumed a full-power main beam
whereas in the current release we are considering that not all the
power falls into the main beam (see Sect. 2).

the destriped maps is very different from their contribution to
the binned maps. To show this effect we have also calculated
the beam window functions for the full beam using the destriped
maps.

To summarize, for each frequency channel and horn pair, the
beam window functions have been computed for:

(a) just the main beam;
(b) main beam + near sidelobes;
(c) main beam + near sidelobes + far sidelobes.

For the last case we calculated both a “binned” and “destriped”
window function.

A comparison of the resulting window functions to the
FEBeCoP window functions is shown in Fig. 15 for the 70 GHz
channel. The sidelobe impact on the low multipoles for the 30
GHz channels is of nearly the same magnitude, whereas it is
much lower at 44 GHz, since the main beam efficiency is higher.

The increment at the quadrupole of the window functions
computed considering the near sidelobes reflects the efficiencies
in Table 1, i.e., about 0.1%. Since the far sidelobes are very wide
structures that are strongest in a direction almost orthogonal to
the line of sight, they add power incoherently to the signal enter-
ing the main beam at scales of ` = 2 or higher multipoles.

This timeline-to-map Monte-Carlo approach is quite re-
source intensive, and since the timelines are communicated from
Level-S to Madam by writing them on disk from where Madam
reads them, there is an I/O bottleneck that limits massive par-
allelization of the simulations. The FEBeCoP algorithm is much
faster, hence it allows for a significantly larger number of sim-
ulations, resulting in a more accurate estimation of the window
functions. Since FEBeCoP cannot handle the sidelobes, the side-
lobe effect is included in the error budget, as done in the previous
release.

5.3. Matrix window functions

The scalar window functions of the previous subsections depend
on the assumed CMB angular power spectra, in addition to the
instrument beam and scanning, because they contain contribu-
tions from the leakage between the temperature and polariza-
tion signals. This gives a large contribution for the EE window
function particularly. This is because the EE window function is
obtained from the ratio between the (simulated) output EE spec-
trum and the input EE spectrum; however, because of T to E
leakage, the output EE spectrum also depends on the input TT
spectrum. We can isolate the leakage effect by introducing the
matrix beam window function.

Assume that the spherical harmonic coefficients ãX
`m of the

output map are related to those of the sky, aX
`m, by

ãX
`m =

∑
m′X′

KXX′
`mm′a

X′
`m′ , (3)

where X = T, E, B. For the expectation value of the angular
power spectrum of the map we then get

〈C̃XY
` 〉 =

∑
X′Y ′

WXY,X′Y ′

`
CX′Y ′
` , (4)

where
WXY,X′Y ′

`
≡

1
2` + 1

∑
mm′

KXX′
`mm′K

YY ′∗
`mm′ (5)

and
CX′Y ′
` = 〈aX′

`m′a
Y ′
`m′〉 (6)

is the expectation value of the angular power spectrum of the
sky.

Assuming the only effect is that of the instrument beams,
the WXY,X′Y ′

`
is the matrix beam window function (as formulated

here, it also includes the pixel window). It should be a com-
bined property of the beams and the scanning strategy that deter-
mines the beam orientations at different times, and independent
of the angular power spectrum. We evaluate it by timeline-to-
map simulations where the input skies are realizations of con-
stant (as a function of `) DXY

` ≡ `(` + 1)CXY
` /2π. (Using real-

istic DXY
` here would result in poor accuracy due to some DXY

`
being very small, especially near where the cross-correlations
change sign.) We used DTT

` = DEE
` = DBB

` = 1000 µK2 and
DT E
` = DT B

` = DEB
` = 500 µK2 to produce a set of 25 realiza-

tions of aT
`m, aE

`m, aB
`m.

To evaluate the individual matrix elements, we need three
separate simulations where the input sky contains only T , only
E, and only B. We carried out such timeline-to-map simulations
using the prescription of Sect. 5.2, but always setting two of the
input aT

`m, aE
`m, aB

`m to zero.
From the output maps of these simulations we get directly

those matrix elements that represent leakage from CTT
` , CEE

` and
CBB
` as, e.g.,

WXY,TT
`

=
〈C̃XY

` (T−only)〉

〈CTT
`
〉

. (7)

We note that “T -only” represents here the output map obtained
from a T -only input sky, not that the output map itself would
have only T – the presence of E and B in this output map is
precisely due to the leakage we want to measure.

To get those matrix elements that represent the additional
effect of the correlations, e.g., CT E

` , we also need output maps
where both T and E were present in the input sky. Because of
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the linearity of the map-making process we obtain these directly
by taking the sum of the “T -only” and “E-only” maps. We then
get

WXY,T E
`

=
〈C̃XY

` (T E) − C̃XY
` (T−only) − C̃XY

` (E−only)〉

〈CT E
`
〉

. (8)

The evaluation of the matrix beam window functions is
three times as costly as evaluating the scalar window functions.
Therefore we only used 25 realizations to estimate them. This
took 500 000 core-hours, the sidelobes being more costly than
the main beam. Of this multimod used about 60 % and Madam
about 40 %; all other steps, including conviqt v4 and anafast,
took less than 1 % taken together. (The 50 realizations for the
scalar window functions took 300 000 core-hours.) The simula-
tions were run on the CSC Sisu Cray-XC30 (Intel Haswell 2.6
GHz) computer, using 1728 cores (72 nodes), which allowed
running four 70 GHz Madam map making tasks simultaneously.

A larger number of simultaneous map making tasks would have
led to I/O congestion. Therefore these simulations took several
weeks to run.

We show all 36 components of the 70 GHz main beam ma-
trix window function in Fig. 16. The relative effect of the near
sidelobes on the diagonal components is less than or (at the low-
est multipoles) roughly equal to ±2 × 10−3. The relative effect
of the near sidelobes to the off-diagonal components is largest
where the off-diagonal components are small; the absolute effect
is less than or (at the lowest multipoles) roughly equal ±6×10−5.

In Fig. 17 we apply the obtained inverse window function
to the output C` of the 50th realization of our CMB simulation
(Sect. 5.2) to reconstruct the input C`. We see that the recon-
struction works for CTT

` , CT E
` , and CEE

` to the accuracy of simu-
lation variance, except at the highest multipoles, where the win-
dow function is very small and not calculated as accurately as for
the lower multipoles. For 30 GHz and 44 GHz the performance
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is similar, except that the accuracy falls at lower ` reflecting the
wider beams.

The matrix window function approach presented in this sec-
tion is work in progress; it was not yet mature enough to be
used later in the analysis due to the lack of further testing in
the pipeline. We are working on this approach to consolidate it
for future data releases.

6. Error budget

The propagation of the uncertainties in the beam knowledge to
the window function has been evaluated using the simulated
beams derived from the MC pipeline on the Planck optics per-
formed for the last release (Planck Collaboration IV 2014). Of
course, the selected sample is smaller because the uncertain-
ties in the main beam parameters are smaller (see Table 2) with
respect to those presented in the 2013 paper. Since the differ-
ence between the window functions obtained with FEBeCoP and
those obtained with the simple harmonic transformation is very
small (less than the error on the window function calculated in
2013), it was decided to calculate the error budget using the
harmonic transform approach instead of FEBeCoP because it is
much faster. This assumption is conservative (the errors calcu-
lated in this way are slightly higher than those calculated with
FEBeCoP).

Using the set of simulated beam window functions, we have
built the covariance matrix C in `-space computing

C``′ = 〈(W` − 〈W`〉)(W`′ − 〈W`′〉)〉 , (9)

where the 65 simulations are averaged. Then we have decom-
posed the covariance matrix into eigenvalues (Λk) and eigenvec-
tors (Vk). The error content is substantially encompassed in the
first two eigenvalues, which account for the cutoff radius and
main beam uncertainties, respectively.

The FEBeCoPwindow functions are computed using only the
main beam. In Sect. 5.2 we evaluated the impact on the beam

window functions of neglecting near and far sidelobes. To eval-
uate the total error budget, we added this term as the first eigen-
mode in error decomposition described above and we show the
total error budget in Figs. 18, 19, and 20 for the 70, 44, and
30 GHz, respectively. The grey line (eigenvector k = 0) repre-
sents the cutoff radius term. The widening of the error at low `
accounts for the uncertainty introduced neglecting the near and
far sidelobe contribution. Since for this release the new window
functions are not normalized, the errors themselves are not nor-
malized to zero.

Whereas the main beam shape has been verified via the
Jupiter observations, we have no direct measurement of the near
and far sidelobes. The LFI sidelobes have been computed us-
ing GRASP and taking into account the nominal radiometer band-
shapes. The impact on sidelobes of the uncertainty in the knowl-
edge of the radiometer bandshape is under investigation and will
be introduced in the next release.

The LFI beams are not used in the Planck 2015 likelihood
at high ` (Planck Collaboration XI 2015), nevertheless we de-
cide to estimate the impact of the beam error on the cosmolog-
ical parameters. As done in 2013 release we apply the Markov
Chain Beam Randomization (Rocha et al. (2010)) procedure to
a simulated 70 GHz dataset. We found that the impact for all the
ΛCDM parameters is well below 10% of σ confirming that the
uncertainty on beam knowledge is negligible in the cosmological
parameter estimation.

7. Conclusions

In this paper we discussed: (i) the improvement in the LFI main
beam reconstruction with respect to the 2013 release; (ii) the
beam normalization convention adopted in the LFI pipeline; (iii)
the temperature and polarized beam window functions; and (iv)
the error budgets on the beam parameters and window functions.
The in-flight assessment of the LFI main beams relied mainly
on the measurements performed during seven Jupiter crossings,
the first four transits occurring in nominal scan mode and the
last three scans in deep mode. The calibrated data from the
Jupiter scans were used to determine the scanning beams: the
signal-to-noise ratio for these data makes it possible to follow
the LFI beams profile down to –30 dB. These measurements
have been used to further validate the beam model presented in
2013 (GRASP beams properly smeared to take into account the
satellite motion). Fitting the main beam shapes with an elliptical
Gaussian, we expressed the uncertainties of the measured scan-
ning beam in terms of statistical errors for the Gaussian param-
eters: ellipticity; orientation; and FWHM. The polarized beams,
described in Sect. 3.2, provide the best fit to the available mea-
surements of the LFI main beams from Jupiter. We found that
this model represents all the LFI beams with an accuracy of
about 0.1% at 30 and 70 GHz, and 0.2% at 44 GHz (rms value
of the difference between measurements and simulations, com-
puted within the 20 dB contour), which has been considered in
the propagation of the uncertainties at the window function level.
The corresponding simulated sidelobes have been used in the
calibration pipeline to evaluate the gains and to subtract Galactic
straylight from the calibrated timelines (Planck Collaboration II
2015). This model, together with the pointing information de-
rived from the focal plane geometry reconstruction, gives the
most advanced and precise noise-free representation of the LFI
beams. The polarized beams were the input to calculate the effec-
tive beams, which take into account the specific scanning strat-
egy to include any smearing and orientation effects on the beams
themselves.
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Fig. 15. Per cent difference between the window function obtained using Level-S (see Sect. 5.2) and the FEBeCoP window function
(see Sect. 5.1), at 70 GHz. The left panel is an enlargement of the right panel, concentrating on the low multipoles. The contribution
from the main beam (mb), near sidelobes (nsl), and far sidelobes (fsl) is shown. The agreement between the Level-S window
function computed using the main beams and the FEBeCoP window function is evident, as presented also in Planck Collaboration
IV (2014). The effect, 0.1 − 0.2%, of near and far sidelobes is clearly visible at low `. At high ` the difference is mainly simulation
variance, due to the small number (49) of CMB realizations.

To evaluate the beam window function, we adopted two inde-
pendent approaches, both based on Monte Carlo simulations. In
one case, we convolved a fiducial model C` with realistic scan-
ning beams in harmonic space to generate the corresponding
timelines and maps; in the other case, we convolved the maps
derived from the fiducial model C` with effective beams in pixel
space. Using the first approach, we have also evaluated the con-
tribution of the near and far sidelobes on the window functions:
it is seen that the impact of sidelobes on the low multipole region
is at about the 0.1 % level.

The error budget comes from two contributions: the propa-
gation of the main beam uncertainties through the analysis; and
the contribution of near and far sidelobes. As found in the past
release, the two error sources have different relevance, depend-
ing on the angular scale. Ignoring the near and far sidelobes is
the dominant error at low multipoles, while the main beam un-
certainties dominate the total error budget at ` ≥ 600. The total
uncertainties in the effective beam window functions are: 0.7%
and 1% at 30 and 44 GHz, respectively (at ` ≈ 600); and 0.5%
at 70 GHz at ` ≈ 1000.

The results presented in this paper, and in the LFI companion
papers, prove the extraordinary capabilities of LFI in achieving
the expected objectives in terms of sensitivity, angular resolu-
tion, and control of systematic effects. In particular, we found
an impressive consistency between main beam simulations and
measurements, which demonstrates the reliability and the ac-
curacy of the optical model. The methods used to evaluate the
beam window functions and the corresponding error budget have
proved to be very well consolidated. In addition, a new promis-
ing approach – the matrix beam window function – has been
presented and it will be consolidated for future data releases.
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Fig. 16. Diagonal (top left panel) and off-diagonal components of the 70 GHz main beam matrix window function. “X from Y”
stands for WX,Y

`
and “X beam window” for the diagonal components WX,X

`
. To bring out the difference between the six diagonal

components, we also show the difference WX,X
`
−WTT,TT

`
(the near-horizontal lines in the top left panel, with the scale indicated at

the right side of the panel). The 30 off-diagonal components are divided into three panels. The bottom left shows the six components
that are largest at low `. The two right panels shows those components that peak at intermediate `. These were further divided
according to whether the leakage involves the same components (of T , E, and B) in the ‘from’ and ‘to’ sides (top right) or not
(bottom right) – the latter tend to be smaller (we note the difference in scale). There are too many curves for all of them to be clearly
visible, so to indicate where each of them lies, the legend lists the components in approximately the same order as they appear in the
plot. In the top right panel T E, EE lies under T B, EB; T E,TT under EB,T B; T E, EB under T B, BB; and both TT,T B and T B,TT
under EB,T E. In the bottom right panel EE,TT lies under TT, EE and EB,TT under TT, EB.

Appendix A: Useful definitions

A.1. GRASP simulations

The far field pattern in the three regions reported above has been
computed with GRASP using different computational methods
and different field storage.

Main beams have been computed in two-dimensional grids
over the spherical surface, defined by the variables u and v,
related to the spherical angles by u = sin θ × cos φ and v =
sin θ × sin φ. The variables u and v range from –0.033 to 0.033
(θ ≤ 1.9◦) for the 30 GHz channel, from –0.023 to 0.023
(θ ≤ 1.3◦) for the 44 GHz channels, and from –0.015 to 0.015
(θ ≤ 0.9◦) for the 70 GHz channel. Each grid is sampled with 601
× 601 points, therefore the spatial resolution is about 23 arcsec

for the 30 GHz channel, 16 arcsec for the 44 GHz channel, and
10 arcsec for the 70 GHz channel.

Near and far sidelobes have been computed in spherical po-
lar cuts, for which φ is constant and θ is varying. These cuts pass
through the pole of the sphere (i.e., the beam pointing direction)
at θ = 0. Near sidelobes have been computed with a spatial reso-
lution of 1’ in θ and 0.5◦ in φ. Far sidelobes have been computed
with a spatial resolution of 0.5◦, both in θ and φ.

Main beams and near sidelobes have been computed using
physical optics and physical theory of diffraction (Ticra 2008),
whereas far sidelobes have been computed using Multi-reflector
Geometrical Theory of Diffraction (MrGTD) (Ticra 2012).
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Fig. 17. Reconstruction of the sky angular power spectrum using the matrix beam window function. The blue curves show the 70
GHz input “sky” angular power spectrum of the 50th CMB realization. The red curves show the angular power spectrum of the
corresponding output map. The green curves show the result of applying the inverse of the matrix beam window function to it.
We note that for ` . 1700 the blue curve is not visible, since it lies under the green curve, showing that the reconstruction was
successful. The left panel shows the TT spectrum, the middle panel the T E spectrum, and the right panel the EE spectrum.
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Fig. 18. Eigenmodes of the covariance matrix of the 70 GHz
channel.

A.2. Nomenclature for beams

In the present paper, and in the Planck companion papers, we
used three relevant definitions:

1. The “optical beam” is the optical response of the feed horn
coupled to the telescope. It is independent of both the ra-
diometer response (bandshape and non-linearity) and of the
satellite motion (spinning and scanning strategy). It repre-
sents the pure optical transfer function. The main beam prop-
erties of the optical beams can be evaluated using optical
simulations performed with methods largely validated by
ground measurements.

2. The “scanning beam” is the beam that can be directly mea-
sured in-flight using planet observations. It stems from the
optical beam, coupled with the radiometer response, and
smeared by the satellite motion. So, with respect to the op-
tical beams, the scanning beams have slightly higher values
of angular size and ellipticity.

3. The “effective beam” is a beam defined in the map-domain,
and is obtained by averaging the scanning beams pointing
at a given pixel of the map, taking into account the scan-
ning strategy and the orientation of the beams themselves
when they point along the direction to that pixel. Therefore,
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Fig. 19. Eigenmodes of the covariance matrix of the 44 GHz
channel.

whereas for each radiometer there is one corresponding op-
tical and scanning beam, the same radiometer has the same
number of effective beams as there are pixels in the observed
sky map. The importance of the effective beams is twofold:
they are used in the window function computation; and their
solid angles are needed for the estimation of the flux density
of point sources.

Appendix B: Beam fit results

As described in Sect. 3.1, the code used to fit the beam shape to
an elliptical Gaussian function returns the full width half max-
imum (FWHM), the beam ellipticity (e), and the beam orienta-
tion (ψell). Moreover, the fit procedure returns the main beam
pointing directions in the Planck field of view, centred along the
nominal line of sight. In Tables from B.1 to B.7, the fitted pa-
rameters are reported for each scan, with their error at 68 %CL.
These values are those plotted in Figs. 4, 5, and 6. The main
beam descriptive parameters fitted from the stacked scans are
those reported in Table 2, whereas the main beam pointing di-
rections (θuv and φuv) have been computed from X0 and Y0, and
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Fig. 20. Eigenmodes of the covariance matrix of the 30 GHz
channel.
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Fig. 21. Eigenmodes of the covariance matrix of the quadruplet
18/23 at 70 GHz.
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Fig. 22. Eigenmodes of the covariance matrix of the quadruplet
19/22 at 70 GHz.
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Fig. 23. Eigenmodes of the covariance matrix of the quadruplet
20/21 at 70 GHz.
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lobes is of course arbitrary, and here their boundary is marked at
5◦. The peak of the spillover of the primary mirror is clearly vis-
ible, at an angle of roughly 90◦.

reported in Planck Collaboration II (2015), using these simple
formulae:

θuv = arcsin
√

X2
0 + Y2

0 ; (B.1)

φuv = arctan
Y0

X0
. (B.2)
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Table B.1. Fitted parameters derived from the first scan of Jupiter: main beam pointing directions defined with respect to the nominal
telescope line of sight, FWHM, ellipticity, and orientation.

Beam X0 Y0 FWHM e ψell

(arcmin) (deg)

70 GHz
18M –0.03879 ± 0.00002 –0.04334 ± 0.00002 13.44 ± 0.13 1.23 ± 0.02 85 ± 2
18S –0.03878 ± 0.00002 –0.04335 ± 0.00002 13.50 ± 0.12 1.27 ± 0.02 86 ± 2
19M –0.04873 ± 0.00002 –0.02759 ± 0.00002 13.14 ± 0.13 1.25 ± 0.02 78 ± 2
19S –0.04874 ± 0.00002 –0.02758 ± 0.00002 13.07 ± 0.13 1.28 ± 0.02 79 ± 2
20M –0.05438 ± 0.00002 –0.01138 ± 0.00002 12.84 ± 0.12 1.27 ± 0.02 71 ± 2
20S –0.05438 ± 0.00002 –0.01137 ± 0.00002 12.84 ± 0.13 1.29 ± 0.02 72 ± 2
21M –0.05460 ± 0.00002 0.01034 ± 0.00002 12.77 ± 0.10 1.28 ± 0.02 107 ± 1
21S –0.05459 ± 0.00002 0.01035 ± 0.00002 12.87 ± 0.12 1.29 ± 0.02 106 ± 2
22M –0.04860 ± 0.00002 0.02654 ± 0.00002 12.92 ± 0.11 1.27 ± 0.01 101 ± 2
22S –0.04861 ± 0.00002 0.02653 ± 0.00002 12.97 ± 0.12 1.28 ± 0.02 101 ± 2
23M –0.03849 ± 0.00002 0.04237 ± 0.00002 13.35 ± 0.12 1.23 ± 0.02 92 ± 2
23S –0.03850 ± 0.00002 0.04235 ± 0.00002 13.36 ± 0.13 1.28 ± 0.02 92 ± 2

44 GHz
24M –0.07102 ± 0.00007 –0.00058 ± 0.00009 23.18 ± 0.51 1.39 ± 0.06 89 ± 3
24S –0.07101 ± 0.00006 –0.00060 ± 0.00008 23.04 ± 0.45 1.34 ± 0.05 89 ± 3
25M 0.04199 ± 0.00014 0.07605 ± 0.00012 30.23 ± 0.94 1.19 ± 0.07 114 ± 9
25S 0.04193 ± 0.00015 0.07607 ± 0.00012 30.94 ± 0.95 1.19 ± 0.07 117 ± 9
26M 0.04165 ± 0.00016 –0.07727 ± 0.00013 30.29 ± 1.06 1.19 ± 0.08 62 ± 10
26S 0.04163 ± 0.00015 –0.07728 ± 0.00012 30.64 ± 0.97 1.19 ± 0.07 61 ± 9

30 GHz
27M –0.06810 ± 0.00014 0.03326 ± 0.00019 33.02 ± 1.09 1.37 ± 0.05 101 ± 5
27S –0.06811 ± 0.00014 0.03326 ± 0.00019 33.11 ± 1.13 1.38 ± 0.05 101 ± 5
28M –0.06823 ± 0.00015 –0.03412 ± 0.00020 33.10 ± 1.18 1.37 ± 0.05 78 ± 5
28S –0.06825 ± 0.00014 –0.03412 ± 0.00018 33.09 ± 1.08 1.37 ± 0.05 78 ± 5

Table B.2. Fitted parameters derived from the second scan of Jupiter: main beam pointing directions defined with respect to the
nominal telescope line of sight, FWHM, ellipticity, and orientation.

Beam X0 Y0 FWHM e ψell

(arcmin) (deg)

70 GHz
18M –0.03879 ± 0.00002 –0.04334 ± 0.00002 13.40 ± 0.11 1.23 ± 0.02 85 ± 2
18S –0.03879 ± 0.00002 –0.04334 ± 0.00002 13.45 ± 0.10 1.28 ± 0.02 86 ± 1
19M –0.04872 ± 0.00002 –0.02758 ± 0.00002 13.13 ± 0.11 1.25 ± 0.02 78 ± 2
19S –0.04873 ± 0.00002 –0.02758 ± 0.00002 13.08 ± 0.11 1.28 ± 0.02 79 ± 1
20M –0.05438 ± 0.00002 –0.01137 ± 0.00002 12.81 ± 0.10 1.27 ± 0.02 71 ± 1
20S –0.05438 ± 0.00002 –0.01136 ± 0.00002 12.83 ± 0.11 1.29 ± 0.02 72 ± 1
21M –0.05461 ± 0.00001 0.01034 ± 0.00002 12.74 ± 0.09 1.28 ± 0.02 108 ± 1
21S –0.05459 ± 0.00002 0.01035 ± 0.00002 12.86 ± 0.10 1.29 ± 0.02 106 ± 1
22M –0.04859 ± 0.00001 0.02654 ± 0.00002 12.89 ± 0.09 1.26 ± 0.02 101 ± 1
22S –0.04859 ± 0.00001 0.02653 ± 0.00002 12.95 ± 0.10 1.28 ± 0.02 101 ± 1
23M –0.03849 ± 0.00002 0.04237 ± 0.00002 13.32 ± 0.11 1.24 ± 0.02 93 ± 2
23S –0.03850 ± 0.00002 0.04235 ± 0.00002 13.32 ± 0.11 1.28 ± 0.02 93 ± 1

44 GHz
24M –0.07102 ± 0.00006 –0.00057 ± 0.00008 23.18 ± 0.44 1.39 ± 0.05 90 ± 3
24S –0.07100 ± 0.00005 –0.00062 ± 0.00007 23.04 ± 0.40 1.34 ± 0.04 90 ± 3
25M 0.04201 ± 0.00012 0.07605 ± 0.00010 30.16 ± 0.80 1.19 ± 0.06 115 ± 7
25S 0.04196 ± 0.00013 0.07607 ± 0.00011 30.88 ± 0.81 1.19 ± 0.06 116 ± 7
26M 0.04166 ± 0.00014 –0.07727 ± 0.00011 30.16 ± 0.91 1.19 ± 0.07 62 ± 8
26S 0.04165 ± 0.00013 –0.07728 ± 0.00011 30.50 ± 0.83 1.19 ± 0.06 61 ± 8

30 GHz
27M –0.06810 ± 0.00012 0.03323 ± 0.00016 33.03 ± 0.93 1.36 ± 0.04 101 ± 4
27S –0.06810 ± 0.00012 0.03324 ± 0.00017 33.25 ± 0.99 1.38 ± 0.04 101 ± 4
28M –0.06825 ± 0.00013 –0.03413 ± 0.00017 33.16 ± 1.02 1.37 ± 0.04 78 ± 5
28S –0.06823 ± 0.00012 –0.03415 ± 0.00016 33.20 ± 0.93 1.37 ± 0.04 78 ± 4
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Table B.3. Fitted parameters derived from the third scan of Jupiter: main beam pointing directions defined with respect to the
nominal telescope line of sight, FWHM, ellipticity, and orientation.

Beam X0 Y0 FWHM e ψell

(arcmin) (deg)

70 GHz
18M –0.03878 ± 0.00002 –0.04334 ± 0.00002 13.40 ± 0.11 1.24 ± 0.02 85 ± 2
18S –0.03878 ± 0.00002 –0.04334 ± 0.00002 13.46 ± 0.10 1.28 ± 0.02 86 ± 1
19M –0.04871 ± 0.00002 –0.02758 ± 0.00002 13.13 ± 0.11 1.25 ± 0.02 79 ± 2
19S –0.04872 ± 0.00002 –0.02758 ± 0.00002 13.10 ± 0.11 1.28 ± 0.02 79 ± 1
20M –0.05437 ± 0.00002 –0.01138 ± 0.00002 12.83 ± 0.11 1.27 ± 0.02 71 ± 1
20S –0.05437 ± 0.00002 –0.01137 ± 0.00002 12.84 ± 0.11 1.29 ± 0.02 72 ± 1
21M –0.05460 ± 0.00001 0.01034 ± 0.00002 12.77 ± 0.09 1.28 ± 0.02 107 ± 1
21S –0.05458 ± 0.00002 0.01035 ± 0.00002 12.87 ± 0.10 1.30 ± 0.02 106 ± 1
22M –0.04858 ± 0.00001 0.02654 ± 0.00002 12.92 ± 0.09 1.27 ± 0.02 102 ± 1
22S –0.04859 ± 0.00001 0.02653 ± 0.00002 12.99 ± 0.10 1.28 ± 0.02 101 ± 1
23M –0.03849 ± 0.00002 0.04236 ± 0.00002 13.32 ± 0.11 1.24 ± 0.02 93 ± 2
23S –0.03850 ± 0.00002 0.04235 ± 0.00002 13.33 ± 0.11 1.28 ± 0.02 93 ± 1

44 GHz
24M –0.07101 ± 0.00006 –0.00057 ± 0.00008 23.20 ± 0.44 1.39 ± 0.05 89 ± 3
24S –0.07099 ± 0.00005 –0.00062 ± 0.00007 23.16 ± 0.40 1.34 ± 0.04 89 ± 3
25M 0.04198 ± 0.00012 0.07605 ± 0.00010 30.15 ± 0.76 1.19 ± 0.06 115 ± 7
25S 0.04194 ± 0.00012 0.07606 ± 0.00010 30.91 ± 0.77 1.19 ± 0.05 117 ± 7
26M 0.04165 ± 0.00013 –0.07726 ± 0.00011 30.26 ± 0.87 1.19 ± 0.06 61 ± 8
26S 0.04166 ± 0.00012 –0.07726 ± 0.00010 30.62 ± 0.79 1.19 ± 0.06 62 ± 7

30 GHz
27M –0.06810 ± 0.00012 0.03322 ± 0.00016 33.13 ± 0.92 1.37 ± 0.04 101 ± 4
27S –0.06810 ± 0.00012 0.03322 ± 0.00016 33.30 ± 0.97 1.37 ± 0.04 101 ± 4
28M –0.06823 ± 0.00013 –0.03414 ± 0.00017 33.32 ± 1.03 1.37 ± 0.08 78 ± 5
28S –0.06822 ± 0.00012 –0.03414 ± 0.00016 33.24 ± 0.93 1.36 ± 0.04 78 ± 4

Table B.4. Fitted parameters derived from the fourth scan of Jupiter: main beam pointing directions defined with respect to the
nominal telescope line of sight, FWHM, ellipticity, and orientation.

Beam X0 Y0 FWHM e ψell

(arcmin) (deg)

70 GHz
18M –0.03878 ± 0.00002 –0.04333 ± 0.00003 13.39 ± 0.14 1.24 ± 0.03 85 ± 2
18S –0.03878 ± 0.00002 –0.04334 ± 0.00003 13.46 ± 0.14 1.28 ± 0.03 86 ± 2
19M –0.04872 ± 0.00002 –0.02758 ± 0.00003 13.13 ± 0.15 1.25 ± 0.03 79 ± 2
19S –0.04872 ± 0.00002 –0.02757 ± 0.00003 13.07 ± 0.14 1.28 ± 0.03 79 ± 2
20M –0.05437 ± 0.00002 –0.01137 ± 0.00003 12.84 ± 0.14 1.27 ± 0.03 71 ± 2
20S –0.05438 ± 0.00002 –0.01136 ± 0.00003 12.83 ± 0.15 1.29 ± 0.03 72 ± 2
21M –0.05460 ± 0.00002 0.01035 ± 0.00002 12.75 ± 0.12 1.28 ± 0.02 108 ± 2
21S –0.05459 ± 0.00002 0.01035 ± 0.00003 12.87 ± 0.14 1.29 ± 0.03 106 ± 2
22M –0.04858 ± 0.00002 0.02654 ± 0.00002 12.92 ± 0.13 1.26 ± 0.02 101 ± 2
22S –0.04859 ± 0.00002 0.02654 ± 0.00003 12.99 ± 0.13 1.28 ± 0.03 101 ± 2
23M –0.03849 ± 0.00002 0.04238 ± 0.00003 13.32 ± 0.14 1.24 ± 0.03 93 ± 2
23S –0.03850 ± 0.00002 0.04236 ± 0.00003 13.33 ± 0.15 1.28 ± 0.03 93 ± 2

44 GHz
24M –0.07101 ± 0.00008 –0.00056 ± 0.00011 23.16 ± 0.60 1.39 ± 0.07 90 ± 4
24S –0.07099 ± 0.00007 –0.00061 ± 0.00010 23.02 ± 0.54 1.34 ± 0.06 90 ± 4
25M 0.04200 ± 0.00016 0.07604 ± 0.00014 30.24 ± 1.06 1.20 ± 0.08 116 ± 10
25S 0.04194 ± 0.00016 0.07606 ± 0.00014 31.01 ± 1.09 1.19 ± 0.08 117 ± 10
26M 0.04167 ± 0.00018 –0.07726 ± 0.00015 30.23 ± 1.22 1.20 ± 0.09 60 ± 11
26S 0.04167 ± 0.00017 –0.07728 ± 0.00014 30.69 ± 1.12 1.19 ± 0.08 61 ± 10

30 GHz
27M –0.06810 ± 0.00016 0.03323 ± 0.00022 33.00 ± 1.28 1.36 ± 0.05 101 ± 6
27S –0.06810 ± 0.00017 0.03324 ± 0.00023 33.12 ± 1.36 1.38 ± 0.06 100 ± 6
28M –0.06822 ± 0.00018 –0.03414 ± 0.00024 33.19 ± 1.45 1.37 ± 0.11 78 ± 7
28S –0.06821 ± 0.00017 –0.03413 ± 0.00022 33.19 ± 1.32 1.37 ± 0.10 78 ± 6
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Table B.5. Fitted parameters derived from the fifth scan of Jupiter: main beam pointing directions defined with respect to the nominal
telescope line of sight, FWHM, ellipticity, and orientation. Data at 30 and 44 GHz are missing due to spacecraft manoeuvrements
during the observations.

Beam X0 Y0 FWHM e ψell

(arcmin) (deg)

70 GHz
18M –0.03878 ± 0.00002 –0.04334 ± 0.00002 13.39 ± 0.12 1.24 ± 0.02 85 ± 2
18S –0.03878 ± 0.00002 –0.04334 ± 0.00002 13.46 ± 0.12 1.28 ± 0.02 86 ± 2
19M –0.04872 ± 0.00001 –0.02759 ± 0.00001 13.13 ± 0.06 1.25 ± 0.01 78 ± 1
19S –0.04872 ± 0.00001 –0.02758 ± 0.00001 13.08 ± 0.05 1.28 ± 0.01 79 ± 1
20M –0.05437 ± 0.00001 –0.01138 ± 0.00001 12.82 ± 0.05 1.27 ± 0.01 71 ± 1
20S –0.05438 ± 0.00001 –0.01137 ± 0.00001 12.83 ± 0.05 1.29 ± 0.01 72 ± 1
21M –0.05460 ± 0.00001 0.01034 ± 0.00001 12.74 ± 0.04 1.28 ± 0.01 108 ± 1
21S –0.05459 ± 0.00001 0.01035 ± 0.00001 12.86 ± 0.05 1.30 ± 0.01 106 ± 1
22M –0.04859 ± 0.00001 0.02654 ± 0.00001 12.92 ± 0.05 1.26 ± 0.01 101 ± 1
22S –0.04860 ± 0.00001 0.02653 ± 0.00001 13.00 ± 0.05 1.28 ± 0.01 101 ± 1
23M –0.03849 ± 0.00002 0.04236 ± 0.00002 13.30 ± 0.12 1.24 ± 0.02 93 ± 2
23S –0.03850 ± 0.00002 0.04235 ± 0.00002 13.33 ± 0.13 1.28 ± 0.02 93 ± 2

Table B.6. Fitted parameters derived from the sixth scan of Jupiter: main beam pointing directions defined with respect to the
nominal telescope line of sight, FWHM, ellipticity, and orientation.

Beam X0 Y0 FWHM e ψell

(arcmin) (deg)

70 GHz
18M –0.03879 ± 0.00001 –0.04335 ± 0.00001 13.40 ± 0.14 1.24 ± 0.03 85 ± 2
18S –0.03878 ± 0.00001 –0.04336 ± 0.00001 13.45 ± 0.14 1.28 ± 0.03 86 ± 2
19M –0.04872 ± 0.00001 –0.02760 ± 0.00001 13.13 ± 0.15 1.25 ± 0.03 78 ± 2
19S –0.04872 ± 0.00001 –0.02759 ± 0.00001 13.09 ± 0.14 1.28 ± 0.03 79 ± 2
20M –0.05437 ± 0.00001 –0.01139 ± 0.00001 12.83 ± 0.14 1.27 ± 0.03 71 ± 2
20S –0.05438 ± 0.00001 –0.01138 ± 0.00002 12.82 ± 0.15 1.29 ± 0.03 72 ± 2
21M –0.05461 ± 0.00001 0.01033 ± 0.00001 12.73 ± 0.12 1.28 ± 0.02 108 ± 2
21S –0.05460 ± 0.00001 0.01034 ± 0.00001 12.85 ± 0.14 1.29 ± 0.03 106 ± 2
22M –0.04859 ± 0.00001 0.02652 ± 0.00001 12.92 ± 0.13 1.26 ± 0.02 101 ± 2
22S –0.04860 ± 0.00001 0.02652 ± 0.00001 12.99 ± 0.13 1.28 ± 0.03 101 ± 2
23M –0.03849 ± 0.00001 0.04235 ± 0.00001 13.32 ± 0.14 1.24 ± 0.03 93 ± 2
23S –0.03851 ± 0.00001 0.04234 ± 0.00001 13.32 ± 0.15 1.28 ± 0.03 93 ± 2

44 GHz
24M –0.07103 ± 0.00007 –0.00058 ± 0.00010 23.22 ± 0.60 1.39 ± 0.07 90 ± 4
24S –0.07100 ± 0.00004 –0.00062 ± 0.00006 22.91 ± 0.54 1.34 ± 0.06 90 ± 4
25M 0.04199 ± 0.00012 0.07604 ± 0.00010 30.14 ± 1.06 1.20 ± 0.08 116 ± 10
25S 0.04194 ± 0.00012 0.07605 ± 0.00010 31.00 ± 1.09 1.19 ± 0.08 117 ± 10
26M 0.04166 ± 0.00013 –0.07727 ± 0.00011 30.22 ± 1.22 1.20 ± 0.09 60 ± 11
26S 0.04166 ± 0.00012 –0.07729 ± 0.00011 30.70 ± 1.12 1.19 ± 0.08 61 ± 10

30 GHz
27M –0.06811 ± 0.00009 0.03322 ± 0.00012 32.68 ± 1.28 1.36 ± 0.05 101 ± 6
27S –0.06810 ± 0.00009 0.03323 ± 0.00012 33.02 ± 1.36 1.38 ± 0.06 100 ± 6
28M –0.06824 ± 0.00010 –0.03414 ± 0.00013 32.99 ± 1.45 1.37 ± 0.11 78 ± 7
28S –0.06823 ± 0.00009 –0.03415 ± 0.00012 32.89 ± 1.32 1.37 ± 0.10 78 ± 6
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Table B.7. Fitted parameters derived from the seventh scan of Jupiter: main beam pointing directions defined with respect to the
nominal telescope line of sight, FWHM, ellipticity, and orientation.

Beam X0 Y0 FWHM e ψell

(arcmin) (deg)

70 GHz
18M –0.03879 ± 0.00001 –0.04333 ± 0.00001 13.40 ± 0.07 1.24 ± 0.01 85 ± 1
18S –0.03878 ± 0.00001 –0.04334 ± 0.00001 13.46 ± 0.06 1.28 ± 0.01 86 ± 1
19M –0.04872 ± 0.00001 –0.02758 ± 0.00001 13.13 ± 0.07 1.25 ± 0.01 78 ± 1
19S –0.04872 ± 0.00001 –0.02757 ± 0.00001 13.09 ± 0.07 1.28 ± 0.01 79 ± 1
20M –0.05438 ± 0.00001 –0.01137 ± 0.00001 12.84 ± 0.06 1.27 ± 0.01 71 ± 1
20S –0.05438 ± 0.00001 –0.01136 ± 0.00001 12.84 ± 0.07 1.29 ± 0.01 72 ± 1
21M –0.05461 ± 0.00001 0.01034 ± 0.00001 12.77 ± 0.05 1.28 ± 0.01 107 ± 1
21S –0.05460 ± 0.00001 0.01035 ± 0.00001 12.87 ± 0.06 1.29 ± 0.01 106 ± 1
22M –0.04859 ± 0.00001 0.02654 ± 0.00001 12.93 ± 0.06 1.26 ± 0.01 101 ± 1
22S –0.04860 ± 0.00001 0.02653 ± 0.00001 12.98 ± 0.06 1.28 ± 0.01 101 ± 1
23M –0.03850 ± 0.00001 0.04237 ± 0.00001 13.32 ± 0.06 1.24 ± 0.01 93 ± 1
23S –0.03851 ± 0.00001 0.04236 ± 0.00001 13.34 ± 0.07 1.28 ± 0.01 93 ± 1

44 GHz
24M –0.07103 ± 0.00004 –0.00056 ± 0.00005 23.28 ± 0.27 1.39 ± 0.03 89 ± 1
24S –0.07101 ± 0.00003 –0.00061 ± 0.00004 23.08 ± 0.24 1.34 ± 0.03 90 ± 1
25M 0.04198 ± 0.00010 0.07606 ± 0.00009 29.64 ± 0.71 1.19 ± 0.05 117 ± 7
25S 0.04192 ± 0.00011 0.07606 ± 0.00009 30.40 ± 0.73 1.18 ± 0.05 119 ± 7
26M 0.04165 ± 0.00011 –0.07726 ± 0.00009 29.87 ± 0.75 1.19 ± 0.05 61 ± 7
26S 0.04165 ± 0.00010 –0.07727 ± 0.00009 30.24 ± 0.71 1.18 ± 0.05 60 ± 7

30 GHz
27M –0.06811 ± 0.00007 0.03323 ± 0.00010 33.05 ± 0.57 1.36 ± 0.02 101 ± 2
27S –0.06811 ± 0.00008 0.03324 ± 0.00010 33.21 ± 0.60 1.38 ± 0.02 101 ± 2
28M –0.06824 ± 0.00008 –0.03413 ± 0.00011 33.28 ± 0.64 1.36 ± 0.05 78 ± 3
28S –0.06823 ± 0.00007 –0.03414 ± 0.00010 33.22 ± 0.58 1.37 ± 0.02 78 ± 2
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