UC Irvine UC Irvine Previously Published Works

Title

Unconventional flux dynamics in the heavy fermion superconductors UPt3 and UBe13

Permalink

https://escholarship.org/uc/item/57p656cx

Journal

Physica C Superconductivity, 235(PART 4)

ISSN 0921-4534

Authors

Amann, A Visani, P Aupke, K <u>et al.</u>

Publication Date

1994-12-01

DOI

10.1016/0921-4534(94)92442-2

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Physica G

Unconventional Flux Dynamics in the Heavy Fermion Superconductors UPt₃ and UBe₁₃

A. Amann¹, P. Visani¹, K. Aupke¹, A.C. Mota¹, M.B. Maple², Y. Dalichaouch², P.E. Armstrong³, Z. Fisk³, A.V. Mitin⁴

¹ Laboratorium für Festkörperphysik, ETH Hönggerberg, CH-8093 Zürich, Switzerland

² Dept. of Physics and IPAP, UCSD, La Jolla, CA 92093-0319, USA

³ Los Alamos National Laboratory, Los Alamos, NM 87545, USA

⁴ P.L. Kapitza Inst. for Physical Problems, 117334 Moscow, Russia

We have investigated flux creep in single crystals of UPt₃ (H//c) and UBe₁₃ (H//c₄) in the temperature range 5 mK < T < T_c and for magnetic fields H < 0.2 T. The relaxation curves for both of these heavy fermion superconductors show novel behaviours, with decay laws which depend strongly on the applied field. At all temperatures, we observe contributions to the decays which seem to arise from different processes with different time dependences, namely logarithmic and stretched exponential.

Recently we reported on a novel behaviour of the relaxation of the magnetization in the heavy electron compound UPt₃ [1]. We present here some new results which show that two clearly different relaxation mechanisms are responsible for the decay of the magnetization from a metastable configuration in UPt₃: i) the well known thermally activated flux creep and ii) a temperature independent, complex relaxation which follows the stretched exponential form:

$$\mathbf{M}(t) - \mathbf{M}(\infty) = \left[\mathbf{M}(0) - \mathbf{M}(\infty)\right] \exp\left[-\left(t/\tau\right)^{\beta}\right] (1)$$

with $0.6 < \beta < 0.9$. Two relaxation mechanisms are also responsible for the decay of the magnetization of UBe₁₃, although with a much weaker contribution of the temperature independent process.

The UPt₃ specimen is a single crystal $(1.7x3x 0.9 \text{ mm}^3)$ with a transition temperature $T_c = 528 \text{ mK}$ and a transition width $\Delta T_c = 11 \text{ mK}$. The magnetic field was applied parallel to the c-axis of the crystal. The UBe₁₃ single crystal $(1.7x1.8x4.9 \text{ mm}^3)$ has $T_c = 880 \text{ mK}$ and $\Delta T_c = 60 \text{ mK}$. The specimens were placed inside the mixing chamber in direct contact with the ³He-⁴He solution. We discuss here relaxation of the remanent magnetization at a constant temperature after having cycled the zero field cooled specimen in a field H_i.

Fig.1: Relaxation curves of M_{rem} for the UPt₃ sample at 450 mK for different cycling fields H_i : 3.4 Oe (a), 28 Oe (b) and 680 Oe (c). For comparison we have chosen $M_{rem}(t=1s) = 0$.

Decays of the remanent magnetization M_{rem} at T = 450 mK for three different cycling fields H_i are shown in Fig. 1. It is clear from this figure that, for high values of H_i , two types of decays are present. The curves can be described as a superposition of a logarithmic and a stretched exponential decay. For low values of H_i (of the order of 1 Oe) on the other hand, we observe a decay that can be well fitted with *only* a stretched exponential law as shown by us previously for another UPt₃ crystal with $H \perp c$ -axis [1]. If we try to quantify the anomalous decay we find out that, for example for $H_i = 3.4$ Oe (Fig. 1a)

the remanent magnetization at the specimen is about $M_{rem} \cong 1100 \phi_0$ and its decay in the first 10^4 seconds is $\Delta M \cong 420 \phi_0$. As the flux front penetrates deeper into the crystal for bigger cycling fields H_i, we find that the ratio $\Delta M [10^4 \text{ s}] / M_{rem}$ decreases from about 38% (Fig. 1a) to 1.3% (Fig. 1c), where $\Delta M [10^4 \text{ s}]$ represents only the stretched exponential part, i.e. the logarithmic part of the decay has been subtracted (lines in Fig. 1). This behaviour is displayed in Fig. 2 for data at T = 450 mK and different cycling fields H_i. Undoubtedly, the closer the flux front is to the surface of the specimen, the stronger its decay is in a given time interval.

Fig.2: Remanent Magnetization M_{rem} (open symbols) and ratio $\Delta M [10^4 s]/M_{rem}$ (full symbols) for the UP₁₃ sample at 450 mK.

In Fig. 3 we give the normalized logarithmic decay rates obtained from the slopes of the lines as the ones shown in Fig. 1, for UPt₃ and UBe₁₃. At each temperature, the cycling field H₁ is above the field H^{*} necessary to establish the critical state with the exception of the data at T = 5 mK. We notice that the logarithmic decay rate in UBe₁₃ is considerably stronger than in UPt₃. It follows the temperature dependence predicted by Kim-Anderson and it extrapolates to about zero for T \rightarrow 0. For UPt₃ on the other hand, we observe very weak, conventional flux creep only at high temperatures and no thermally activated creep for T \leq 400 mK.

Fig.3: Normalized decay rates of the logarithmic part of the decay for both samples.

It is tempting to relate the strong pinning at $T \le 400$ mK to the existence of fractional vortices [2, 3]. In the low field, low temperature phase of UPt₃ with a multicomponent order parameter, domain walls can act as strong pinning centers reducing the creep rate to unobservable low levels [4].

Below 400 mK, only the stretched exponential type of decay is observed in UPt₃. We also observe a stretched exponential contribution to the relaxation of M_{rem} in UBe₁₃ but its magnitude is at least a factor of 10 weaker than in UPt₃ at all temperatures. The anomalous flux dynamics discussed here for UPt₃ and UBe₁₃ is not found in CeCu₂Si₂ [5]

One of us (ACM) would like to acknowledge valuable conversations with A.I. Larkin, M. Sigrist, V.B. Geshkenbein and R. Joynt.

REFERENCES

- A. Pollini, A.C. Mota, P. Visani, G. Juri and J.J.M. Franse, Physica B 165 - 166 (1990) 365
- V.B. Geshkenbein, A.I. Larkin and A. Barone, Phys. Rev. B 36 (1987) 237
- M. Sigrist, T.M. Ricc and K. Ueda, Phys. Rev. Lett. 63 (1989) 1727
- 4. M. Sigrist, private communication
- A. Pollini, A.C. Mota, P. Visani, R. Pittini, G. Juri and T. Teruzzi, J. Low Temp. Phys. 90 1/2 (1993), 15