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Self-consistent implementation of meta-GGA functionals for
the ONETEP linear-scaling electronic structure package
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LSchool of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
2Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry,
University of California, Berkeley, California 94720, USA
3 Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Accurate and computationally efficient exchange-correlation functionals are criticalo the successful applica-
tion of linear-scaling density functional theory (DFT). Local and semi-local functiofals«f the density are natu-
rally compatible with linear-scaling approaches, having a general form which assumes the Tegality of electronic

esently, the most sophisticated
approximation (meta-GGA)

interactions and which can be efficiently evaluated by numerical quadrature.
and flexible semi-local functionals are members of the meta-generalized-gradie

family, and depend upon the kinetic energy density, 7, in addition to the char,
to extend the theoretical and computational advantages of 7-dependen]

als in the ONETEP program. In this paper we lay out the theoretic
7-dependent meta-GGA functionals within ONETEP’s linear-scaling.fo
the gradient of the 7-dependent exchange-correlation energy, nécessary for
also derive the forms of the 7-dependent exchange-correlation po
the strictly localized, self-consistently optimized orbitals u‘ﬂ:y o

and its gradient. In order

ism. We present expressions for
ect energy minimization. We
tial and kinetic energy density in terms of
P To validate the numerical accuracy

of our self-consistent meta-GGA implementation, we performed cziculations using the B97M-V and PKZB

meta-GGAs on a variety of small molecules. Using

local orbitals, we obtain energies in excellent agreement
ional costand applicability of our approach to large-scale

codes. Finally, to establish the linear-scaling compu

ly a“minimal basis set of self-consistently optimized

large basis set calculations performed using other

calculations, we present the outcome of self—cons&% ta-GGA calculations on amyloid fibrils of increasing

\

size, up to tens of thousands of atoms.

I. INTRODUCTION

Kohn-Sham density functional theory (K T) is
founded on the premise that the exact charge dens L2 Sys-
e density
This ansatz

smaller correction for many-
effects. Unfortunately, ;t/g!re t'no ymputationally prac-

ticable exact form for this<exchange-correlation functional,
Ey.[n], is known. ~\s
A key challenge présented by

arying ‘significantly in their construc-
der?” of density functional approxima-
eful metaphor for categorizing the
of approximations to Ex.[n], arranging them

into “gings” ba the density-dependent ingredients with
which ‘they are‘suilt. Each rung on the ladder ascending to-
wards the, “‘heaven of chemical accuracy” introduces addi-

nsity-dependent ingredients, which can be used to
construét density functionals of increasing sophistication and

* C.Skylaris@soton.ac.uk

The first three rungs of the Jacob’s ladder are occupied by
the local and semi-local functional families: the local den-
sity approximations (LDAs), generalized gradient approxima-
tions (GGAs) and meta-generalized-gradient approximations
(meta-GGAs). These share the general form

Exc[n] = fdrexc(r) (D

where €4 (r) is the exchange-correlation energy per unit vol-
ume, which depends on the values of the density, and other
density-derived variables only at point r. Higher rungs on the
ladder introduce non-local dependence on the Kohn-Sham or-
bitals, {¢;}, and eigenvalues, {¢;}, and have more complicated
and computationally demanding forms than Eq. 1.

The meta-GGA family of functionals offers the most so-
phisticated and flexible semi-local forms, in which ex(r) de-
pends on the density, n(r), its gradient, Va(r), and the kinetic
energy density [4],

1 Noce 5

() =3 Z Vi ()P, )
where the summation is over all N, occupied orbitals. The
use of 7 to construct exchange-correlation functionals of-
fers significant theoretical benefits without abandoning the
computationally simple form of Eq. 1. Nevertheless, 7-
dependence does present additional challenges, particularly
with respect to self-consistent implementation. We discuss

these issues in sections II C and II D.
The addition of new density-dependent ingredients as the
Jacob’s ladder is ascended allows for the construction of more
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Etie ited functionals, which are typically more accurate
n those on the lower rungs. The metaphor of the Jacob’s
5] H% a useful shorthand for this general trend, however it
shouid be noted that this is not a strict rule. The accuracy of
any given functional depends on other factors not considered
in the ladder metaphor, such as the design of the functional
form and the context in which it is to be applied. When se-
lecting a functional to study a particular chemical system, it
is important to consider these other factors, rather than simply
assuming that a higher-rung functional is the best tool for the
job—a less computationally demanding lower-rung functional
may be more suitable.

The computational demands of any approximate exchange-
correlation functional must be considered in the context of
the overall KS-DFT procedure. Conventional DFT calcula-
tions have a computational cost which scales cubically with
the size of the system. This compares favorably to other quan-
tum chemical methods but still constrains the type of systems
which can practically be studied.

The cubic scaling cost of conventional DFT calculations
arises from the need to orthogonalize Kohn-Sham orbitals
which extend over the entire system, and may be overcome by
exploiting the locality of electronic interactions (see for ex-

with the size of the system. These “linear scaling”, or
methods have enabled DFT to be routinely applied to s
containing thousands of atoms.
ONETERP [8] is one of several software packages
plement linear-scaling DFT approaches. Othér O(
packages include BigDFT [9], CONQUEST [1Q]; X
[11], Quickstep [12] and SIESTA [13]. £ The ination
of readily available linear-scaling DFT so
parallel modern supercomputing hardware has
scope of DFT to systems such as ¢ biological macro-
for some recent
s of this type).
the development

of quantum chemical apprgachesiand tpéir application is the
d accuracy. This ten-

tension between computational cos

sion is particularly ke E:lh'\heedevelopment and exten-
sion of linear-scalin. e%ds, where maintaining O(N) scal-
is_Of paramount importance. Ideally,
of the most accurate exchange-
ationsy but, as has already been men-
hefJacob’s ladder of density functional
approximations introduce non-local ingredients which pose a
Smaintaining O(N) scaling. High accu-
ange-correlation functionals are of par-
terest Tyr linear-scaling DFT because they naturally
thedocality of electronic interactions and are com-
simple to evaluate using numerical integration.
st that the meta-GGAs, as the most sophisticated
semi-loeal functionals, exist in a “Goldilocks zone” where ac-
curacy and computational expense can be particularly favor-

ably balanced for linear-scaling DFT approaches (Fig. 1).
Recently, linear-scaling exact exchange evaluation has been
demonstrated within ONETEP [18] using a density-fitting-

scaling DF
A
ample Refs. 5 and 6). Using this “nearsightedness” [7], DF
calculations may be performed with a cost that scales line
(N),)\_ D
eTITS\the Jacob’s ladder, albeit at the cost of introducing an aux-

non-local

(semi-)local

eaven of chemical accuracy” [2, 3], each rung

density-dependent ingredient. The region inside
our suggested “Goldilocks zone”, where the com-
st and accuracy are particularly well-balanced for linear-
approaches.

a ne

the yellow
tational

approach. This opens up access the fourth rung of

iliary basis set. Nevertheless, the comparative simplicity of
the semi-local meta-GGAs remains highly desirable. Fur-
thermore, recently developed meta-GGAs offer impressive ac-
curacy. For example, the accuracy of the combinatorially
designed semiempirical BO97M-V functional [19] is compa-
rable to popular hybrid functionals across a broad range of
datasets. In some circumstances, notably for non-covalent
interactions, BO7M-V can outperform popular hybrid func-
tionals. Promising results have also been reported for the
recently developed nonempirical SCAN functional [20, 21].
In light of the performance of modern meta-GGAs such as
B97M-V, the “Goldilocks zone” of Fig. 1 becomes very ap-
pealing for linear-scaling DFT. Indeed, this balance of com-
putational simplicity and accuracy was the key motivator in
our implementing support for meta-GGAs in ONETEP.

In the remainder of this paper, the theoretical and computa-
tional details of our work to implement self-consistent meta-
GGA support within ONETEP are presented alongside results
demonstrating its numerical accuracy and computational ef-
ficiency. In section II, we describe the theoretical founda-
tions of this work, with particular emphasis on the linear-
scaling formalism used in ONETEP and the difficulties as-
sociated with self-consistent implementation of 7-dependent
functionals. The theoretical innovations necessary to im-
plement meta-GGAs within ONETEP’s linear-scaling frame-
work are described in section III. The meta-GGA function-
als we implemented in ONETEP to validate our approach,
PKZB [22] and B97TM-V [19], are described in section IITF.
We present results concerning the numerical and computa-
tional performance of self-consistent meta-GGA calculations
in ONETEP in section IV. Specifically, numerical compar-



.the linear-scaling computational cost of our approach is ver-

Publi; nrgs >ction IV B. Finally, in section V, we draw conclu-
stons pased on these results and make some suggestions for
further work and potential future applications for meta-GGA
functionals in ONETEP.

II. THEORY
A. Density-matrix DFT

KS-DFT represents the exact ground state electronic den-
sity via the density of an auxiliary system of independent
particles [1], which interact via a mean-field. The principal
advantage of using this auxiliary density is that the states of
the independent electrons can be described by a set of one-
electron orbitals, {¢;}. These Kohn-Sham (KS) orbitals are
solutions to one-particle Schrédinger equations with eigenval-
ues, {&;},

1
(—5v2 + VKs(r)) i (r) = g (r). 3)

where Vks(r) is an effective local potential. This allows

the
obstacle of expressing the kinetic energy as an explicit fu}o\ g

tional of the density to be sidestepped, since the kinetic.en-
ergy of a system of independent electrons has a simple form

in terms of the KS orbitals:
1 N } =
_ - # 2.
Tin) = 3 21 f dry (020, (F \ (4)

The state of the independent electron systMe fully
described by the one-particle density matrix

®)

in}érval [0,1], and from

with occupation numbers;{‘ 4
is obtained from the density

which the ground-state dens
matrix by setting r = 3

= p}r,r

The total ne?gy functional of KS-DFT can be expressed in
terms of the e—parﬁyle density matrix, by re-casting Eq. 4 in
terms of pfr,r

str]ZIdr[—%V%p(r,r’)] ) 7

where e have implicitly introduced a generalized definition
of Ti[n]y which allows for fractional occupancies, { f;} (as de-
scribed in Ref. 23). The remaining external potential, Hartree
and exchange-correlation contributions are explicit function-
als of the density, and can be expressed in terms of p(r,r’)
using Eq. 6.

N

fivi ()Y} (r). (6)

3

Formulating KS-DFT with the density matrix as the central
quantity facilitates the development of methods which exploit
the locality, or “nearsightedness” [7], of p(r,r’) and opens
the door to electronic structure methods in which computa-
tional cost scales linearly with system size, N. It is well-
known that the density matrix for an insulating system (i.e.
a system with a band-gap) decays exponentially with inter-
electronic distance, |r — r’| (see for example Ref. 24, and ref-
erences therein). In pr}c/t'ce, this locality can be enforced to

| This manuscript was accepted by J. Chem. Phys. Click here to see the version of record. |
‘ s Ewi h other codes are presented in section IV A, while
iB6d 1

yield O(N) computation@l cost by truncating the density ma-
trix such that p(r,r’) = 0'when |r — r’| > rey, Where rey is
a predetermined ¢ istance,_This truncation of the den-
sity matrix is the fondamental premise upon which ONETEP
is designed.

‘) ‘B.._ ONETEP formalism
-—
In ETEPS)e ensity matrix is expressed in a separable

form,
) prr) = e MK PR (8)
o . .
where {¢,} are a set of strictly localized non-orthogonal or-

itals, related to the KS orbitals by
Yi(r) = o (r)M°;. ©))

and K is the density kernel,

N
K =% M fim' 7, (10)
i=1

constructed from elements of the transformation matrix M and
occupation numbers {f;}. Expressing the density matrix in
separable form (Eq. 8) allows its intrinsic locality to be ex-
ploited by truncating the density kernel such that

Rop > rew = K =0 (11)
where R,p is the distance between the localized orbitals,
@q(r) and @g(r), and rey is a predetermined cutoff distance
(the “density kernel cutoft™) [8].

Note that in Egs. 8 to 10 we have used the Einstein summa-
tion convention (implicit summation over repeated indices).
This convention will be used for the remainder of this paper,
though explicit summation signs will be used where this as-
sists clarity. We have also distinguished between contravari-
ant and covariant quantities by using upper and lower in-
dices, as is conventional. The necessity of this distinction
is a consequence of the non-orthogonality of ONETEP’s lo-
cal orbitals—care must be taken to respect the transformation
properties of these orbitals and related objects.

The non-orthogonal orbitals in Eq. 8, called “non-
orthogonal generalized Wannier functions” (NGWFs), are re-
stricted to spherical, atom-centered localization regions, so
Rop in Eq. 11 is simply the distance between atoms. The
NGWFs are constructed from an orthogonal basis of psinc
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‘ s t dic cardinal sine) functions positioned on a regular real-
ce grid [25-27], i.e.

Publighing

meLg,

Ca®) = D DX =Tp)Cma (12)

m

where each psinc, D(r —r,,) is centered on a point of the real-
space Cartesian grid, r,,. Strict locality is enforced by only
allowing psincs that fall within the localization region, L, to
have non-zero ¢;,q -

The psinc functions which form ONETEP’s underlying ba-
sis can be thought of as a regular real-space grid of bandwidth-
limited, periodic delta functions, and are constructed as a fi-
nite sum over plane waves—see appendix A of Ref. 25 for a
detailed description of the psinc basis set. This relationship
between the psinc basis and plane waves allows ONETEP to
benefit from the useful properties of a plane wave basis, in
particular the use of a single parameter, the kinetic energy
cutoff, to systematically improve basis set quality. In addi-
tion, as in conventional plane wave DFT, it is simple to switch
between real and reciprocal space representations of the ba-
sis by Fourier transform, enabling the most advantageous rep-
resentation to be used for any given operation. To perform

scaling computational cost, ONETEP uses the “FFTbox” ‘ap-

may be imposed by applying a constraint to the energy func-
tional, for which several methods are available—see section 4
of Ref. 34 for details.

There are two key computational issues associated with the
efficient implementation of this theoretical formalism in soft-
ware:

1. Taking advantage of the sparsity of the density kernel,
Hamiltonian and overlap matrices that naturally arises
as a consequence @f the strict locality of the NGWFs.

2. Efficient utilizati n}\&givailable computational re-
sources by distribution of ‘computational work across

inni NETEP was designed to effectively
e?&ctical sues, with efficient sparse matrix

$ [357“and parallel algorithms built around
ing Interface (MPI) library [29]. More re-

C€enM

(GPU)~acceleration is under development [37]. The new
G@ functionality described in this paper was devel-
ed tatake full advantage of ONETEP’s existing framework

reciprocal-space operations while maintaining overall linea% arse algebra and parallel computation.

proximation, in which Fourier transforms are applied toa sub-
region of the simulation cell, rather than the entire simulati
cell—see Refs. 26, 28 for details.

with respect to density kernel elements and the
29], using a conjugate gradients [30] schéme.
optimization of the NGWFs allows ONETEPR{0
accuracy with a minimal set of NGWFs and h
to eliminate basis set superposition gfror[31].
The energy minimization takes flace via'two nested loops:
with'fixed NGWFs while in
the outer loop, the NGWFs a Variyd, ie:

Emin““/&
{pa}

The procedure is re
satisfied, subject
trons in the syst
idempotent.
Constraiding the densify kernel to be idempotent is equiv-
alent to ensuring théjorthogonality of the KS orbitals. This
constraintds applied.in ONETEP using a modified Li-Nunes-
Vanderbilt (LI\Y) scheme [32, 33] (described in Ref. 34),

eve high-
een shown

13)

where total gnergy is minimized with respect to an aux-
iliary, dens ernel, L, which is related to the true density
kerngl by the purifying transform

K = 3LSL - 2LSLSL. (14)

Provided that L is nearly idempotent, the minimization pro-
cedure naturally drives K towards idempotency. The require-
ment that the total number of electrons, N, does not change

C. Meta-GGA functionals

For local and semi-local exchange-correlation functionals,
the exchange-correlation energy density, €x.(r), at point r is
determined entirely by the density and density-derived vari-
ables in the locality of r (Eq. 1). The distinction between
the different classes of local/semi-local functionals lies in
which variables the exchange-correlation energy density is
constructed using, broadly categorized by rungs on the Jacob’s
ladder of density functional approximations (Fig. 1).

With each rung on the ladder, the introduction of new
density-dependent ingredients allows the construction of more
flexible and sophisticated functional forms, which correct for
deficiencies in functionals on lower rungs. For example, a
particular limitation of the LDAs is their tendency to overbind
molecules, resulting in the overestimation of atomization en-
ergies. With the introduction of dependence on the gradient
of the density, GGAs can dramatically improve upon LDA at-
omization energies, as well as many other properties (see, for
example, Refs. 2, 38—40).

The meta-GGAs attempt to improve upon the LDAs and
GGAs by introducing dependence on the kinetic energy den-
sity, 7 (Eq. 2), i.e.

EMGCA[,] = f dr 4. (n(r), Va(r),7(r)). (15)

The physical relevance of 7 to the description of exchange
and correlation is demonstrated by its appearance in expan-
sions of both the exchange and correlation holes, as described
in Refs. 41, 42. In practice, the addition of another density-
derived ingredient offers greater flexibility, which may be used
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rPter satisfy formal constraints or fit empirical data (de-
ndiné n the predilections of the designer).

lshﬂé iprovements offered by meta-GGAs over GGAs are
typicaily less dramatic than those seen for GGAs over LDAs,
but still significant. For example, the TPSS and SCAN meta-
GGAs have been shown to consistently produce smaller errors
than the PBE GGA [40, 43] for the calculation of a variety of
properties [20, 44]. Since PBE, TPSS and SCAN are nonem-
pirical functionals, the improvements seen for the meta-GGAs
cannot be attributed to the quality of training data or fitting
method, and must be a consequence of improvements in the
functional form.

The addition of 7-dependence facilitates the construction
of functional forms which satisfy more formal constraints.
In particular, T-dependence allows meta-GGAs to satisfy the
constraint that the correlation energy of any one-electron den-
sity, ny, is zero,

Ec[n170] = 0’ (16)

where E. is a functional of two spin densities, i.e. Ec[ny,n;].
This can be achieved using expressions constructed from 7
and the Weizsicker kinetic energy density,

1|Vn|?
TW=—| n|

D. Self-consistent meta-GGA evaluation

In order to self-consistently solve the Kohn-Sham equa-
tions (Eq. 3), it is necessary to evaluate the effective poten-
tial, Vks(r), which includes an exchange-correlation contri-
bution, defined as the functional derivative of the exchange-
correlation energy with respect to the density,

OExc
Vidr) = Sn) (18)

For LDA and GGA uncti()}k&tbhe exchange-correlation en-
ergy density is an €xplicit functional of the charge density, n

and its gradient,/Vn, obtaining the functional form of Vi,
is a simple matte ating the functional derivative.

of meta-GGA functionals (Eq. 15)
dditional challenge because 7 is itself an implicit
d%y. Since the explicit dependence of T
functional derivative of Eq. 18 cannot be

One aj
i%iiev vate the meta-GGA exchange-correlation potential.
T ana‘é achieved by self-consistently determining the KS
italsaising a non-7-dependent functional, and then evalu-
atingythe meta-GGA energy expression non-self-consistently

s n a2 sing n and 7 constructed from these orbitals. This method
was used in Refs. 22, 61, and reportedly yields results close
Since 7% = 7 for a one-electron density and it can be s W g0 those produced by self-consistent meta-GGA calculations.

w

that T < 7 [45], the relationship between 7

for one-electron densities. For example, that{(
for a one-electron density is used in the PK
GGA (section III F 1) to eliminate self-cofrelation(thi

is also used in PKZB’s successor, TPSS [4 MN
correlation correcting expressions have been employed in the
construction of many density functiénalsydncluding examples
by Becke [42, 46, 47] and Van o?l?g%;l Scuseria [48]
which precede PKZB’s 1999 gpublication. /In addition, re-
lated 7-containing expressions _such’as theselectron localiza-
tion function (ELF) [49] (?(d localized gfbital locator (LOL)
[50] have been describe ich distinguish regions of elec-
tron localization, and EM produce striking visual-
izations of atomic a r?lgbcular eleéctronic structure.

Many variants 6f t eta-GGA form have been devel-
ork in the 1980s [42, 51, 52].

set of meta-GGAs are the semiempirical “Min-
als, which include local M06-L [53], M11-L

N15-L [55], as well as hybrid variants
exchange to the meta-GGA form (for ex-
, M11 [57] and MN15 [58]). The devel-

section III F 2), the related range-separated hybrid meta-GGA,
wB97M-V [59], and nonempirical SCAN [20] functionals.
For further examples and historical context, see the well-cited
accounts in Refs 19, 60.

However, the method has limited utility beyond total energy
evaluation, since the orbitals and density produced are com-
pletely determined by the non-7-dependent functional used.

A second approach is to use the optimized effective po-
tential (OEP) method [62]. The OEP method produces lo-
cal, multiplicative exchange-correlation potentials for orbital-
dependent functionals and is based on the premise of finding
the local potential for which the total energy is stationary, i.e.
O0E/6Vks(r) = 0. The local potential which satisfies this re-
quirement can be obtained by solution of an integral equation.
This is a non-trivial task and approximate methods are gener-
ally used (as in the Krieger-Li-Iafrate (KLI) approach [63]).
Although the OEP method is more often applied to function-
als incorporating exact exchange, it is also applicable to meta-
GGA:s, as described in Refs. 64, 65. For a well-cited review
of the OEP method and approximations to this, see Ref. 60.

A third approach, which avoids the theoretical and com-
putational complexity of solving the OEP integral equation
is to express the exchange-correlation potential in terms of
functional derivatives with respect to the orbitals, rather than
the density. Originally described by Neumann, Nobes and
Handy [66] in the context of self-consistently evaluating the
7-dependent Becke-Roussel exchange functional [52], this ap-
proach yields a non-multiplicative, orbital-specific potential.
Following Ref. 64, we refer to this approach as the “func-
tional derivatives of 7-dependent functionals with respect to
the orbitals”, or FDO, approach.

For this work, we adopted the FDO approach, motivated
by its relative simplicity compared to the OEP method. As
demonstrated in section III, the FDO approach allows self-
consistent calculations to be performed using 7-dependent
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‘ s EPngt correlatlon functionals with only minor extensions

t;he existing density-matrix DFT framework used by
Publisk#t
1he rDO approach has previously been described as an
“approximation”, since its orbital-specific potential represents
a step outside of the conventional Kohn-Sham method, which
assumes a local effective potential (as in Ref. 64). While the
FDO method could be considered an approximation to KS-
DFT with a local potential, this terminology could be mislead-
ing since the results obtained using this method are not neces-
sarily any less accurate or rigorous than those obtained using
the OEP method. The FDO approach falls within the wider
framework of the “generalized Kohn-Sham” (gKS) formal-
ism [67], in which alternate realizations of DFT may be con-
structed based on auxiliary systems other than the usual non-
interacting system of conventional KS-DFT. Such theories
permit non-local effective potentials, as in the FDO method.
Since the exchange-correlation part of the effective poten-
tial in the FDO approach is non-multiplicative, we would ex-
pect the solutions to the corresponding eigenvalue equations
(Eq. 3) to differ from those obtained using a local potential. It
has been observed that the differences between the FDO and
OEP methods for meta-GGAs are very small for total ener-

where we have used operator notation to emphasize the non-
multiplicative nature of the FDO exchange-correlation poten-
tial, VFPO,  Evaluating the functional derivative on the left
of Eq. 22 for a general meta-GGA dependent on n, Vn and
7 (Eq. 15), yields the FDO exchange-correlation potential
[64, 68]

15EmGGA 6exc v (aexc )
2760 (0) _{ on avn)}‘”’(r)

23
1axc (23)

Vi) - 5 V%u

A more compact e
potential is

VERO )0 QM)+ {Vewn) 24
which con &.@A-hke part,
o Oéxc O€xe
% A YCxe V. XC o)
3“ on (6Vn) (25)

ﬁ non- iplicative, T-dependent part,
> ) 1

T . = —_——
Vet (r) = (

3Exc 166){0 2
?) -V (r) - EFV Yi(r). (26)

gies, though these can be more significant for quantities se
sitive to electronic structure, such as nuclear shielding \P? g the relationship in Eq. 22 to derive an exchange-

stants [64]. Additionally, recent work by Yang and cow‘:r%\ ¢
1204 correlation potential is only defined where 6 Ex/6n appears as

ers has shown that band gaps for the SCAN meta-G
are improved using an FDO-type approach compared to
[65].
The FDO approach is perhaps the most widely use
of evaluating meta-GGA exchange-correlation
for example Refs. 44, 48, 68, 69). The wi

and OEP approaches. In
nt meta-GGA energies
ated in Q-Chem
[70], both using the FDO
In the FDO method
exchange-correlation energ
be arrived at using theffu

1 derivative of the

e fu ivati
ct to the orbitals may
10nal ivative chain rule [72]

SERAh , SERI9A sn(r’) (19)
S (1) 4 Sn(r') o (r)
and insertingsthe fu lonad/ derivative
-—%— 205 ~ 1), (20)
— Wz
to giv 3
b EmGGA 6 EmGGA
= = Yi(r). 2D

\7\ i 2 on®

The'gelationship in Eq. 21 implies the following form for
the product of the exchange-correlation potential and an or-
bital:

6EmGGA
on(r)

1 6ERASA
2 oyi(r)

gi(r) = ViPOy,(r),  (22)

lation potential means that the FDO exchange-
a product with a KS orbital. We have emphasized this relation-
ship with the KS orbital that appears in 6 Ex./0y; by enclos-
ing the non-multiplicative part of Eq. 24 in curly braces. For-
tunately, in conventional self-consistent DFT calculations the
exchange-correlation potential only arises as a product with a
KS orbital in the evaluation of Hamiltonian matrix elements.
As we shall see, this is also the case with the direct energy
minimization approach used in ONETEP, though in this case a
per-NGWF form of the exchange-correlation potential is used
(section III B) and this additionally appears in expressions for
the gradient of the energy (sections III D and IIT E).

Note that in the above, we have referred to the orbitals
which solve the one-electron eigenvalue equations (Eq. 3) in
both conventional and generalized Kohn-Sham (i.e. FDO) ap-
proaches as “KS orbitals”. We will continue with this con-
vention for the remainder of the paper, since this clearly dis-
tinguishes the orbitals which solve the one-electron equations
from the localized orbitals (NGWFs) used in ONETEP.

III. IMPLEMENTATION
A. Kinetic energy density

To evaluate 7(r) within ONETEP’s linear-scaling DFT for-
malism (section II B), it is necessary to recast Eq. 2 in terms
of local quantities. This is easily achieved by expanding the
KS orbitals in Eq. 2 in terms of the NGWFs (Eq. 9),

Nou,

(r) = 5 Zﬁv%mWW(MW%m) @7
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serting the definition of the density kernel in terms of
orblt 1 coefficients (Eq. 10)

() =+ (Vea () - (KPVps(r)) . (28)
2
ap

The introduction of fractional occupation numbers, {f;}, in
Eq. 27, follows from the generalized definition of the kinetic
energy in terms of the density matrix (Eq. 7).

In practice, 7(r) is evaluated on the simulation cell grid in
a manner analogous to n(r),

n(r) = ga (K oy (r), (29)
described in detail in Ref. 29. This starts with the evaluation

of “per-NGWEF” contributions

7(r @) = (Vea () -

VY Ky (r)] . (30)
B

where the summation over S is for all NGWFs which overlap
with ¢,. It is convenient to perform the summation over 8
before applying the gradient operator, since this is easily ap-

plied to the summed quantity in reciprocal space, avoiding th
need to individually calculate the gradient of each 8 NG

The per-NGWF contributions are then summed to yigld the
quantity on the full simulation cell grid,

1
HOEE: Z (r; ).

For completeness, we note that the ev u tlon f () by
this method introduces a subtle approximatign, present
for the same method applied to n(r) [29]. For n(%), summing

over only NGWFs which overlap wi to form n(r; a) (as
in Eq. 30) is exact, since the NGWEs are zeto-valued outside
dient operator is ap-

ocalized. This is

sinc /bdsm functions from

.'12)—while the psincs
points_they are not centered upon,
hav zero g dlent at these pomts We

plied to a NGWE, however, i
a consequence of the for f t
which the NGWFs are c cted
are zero-valued at the
they do not in gener:

for the evaluatio klzetlc energy integrals over NGWFs
(where the operator 1Sithed.aplacian, rather than the gradient)
and is expected to haSe anegligible effect in that context [28].

-

BS Exchange-correlation potential

Wth the kinetic energy density (section III A), the
exchange-correlation potential must be expressed in a form
containing only local quantities in order to be compatible with
ONETEP’s linear-scaling formalism (section II B). For LDA
and GGA-type functionals, this is trivial, since the form of
the exchange-correlation potential, as determined by the func-
tional derivative § Exc[n]/dn(r), is already a local potential.

\6E

\ B

For meta-GGAs using the FDO method, the situation is more
complicated, with a non-multiplicative “orbital-specific” po-
tential, which is defined with respect to a KS orbital (Egs. 22
and 23)—this presents a potential issue for ONETEP, since we
must avoid explicit reference to the KS orbitals. Fortunately,
it is simple to derive a “per-NGWF” potential, which avoids
the need to deal directly with the KS orbitals.

Expanding the KS orbital in Eq. 23 in terms of NGWFs

(Eq. 9) and using Eq. e obtain
o /

6n(r)

(32)

= X ‘pa/ (I‘) Mai xcsaaf (r)Ma

where the ike 7-dependent parts of the potential

ndgs. 25 and 26 (but with y; replaced by ¢, ).
the orbital coefficients, M "l. , commute with

ive
% [%%(r) — V&% pa (1) — | Xcso(,(r)}] =0.
Y &

(33)

ich implies a per-NGWF exchange-correlation potential

VFDO VXGGA

(Pa,(l') =

Pa (1) + {Vipa (1)
(34)

with the same local GGA-like, and non-multiplicative 7-
dependent parts seen in Eqs. 25 and 26 (but with i; replaced
by ¢q, as before).

Applying the product rule, the 7-dependent part can be ex-
pressed in a more compact form,

Oex
ot

{Vivan)} = —%V ( a(r>) (35)

which proves useful in evaluating integrals over the V7, (sec-

tion I C).

C. Integrals

The self-consistent implementation of meta-GGAs under
the FDO method requires integrals over the 7-dependent part
of the exchange-correlation potential (Eq. 35), in addition
to the usual integrals over the local, GGA-like part of the
exchange-correlation potential (Eq. 25).

The form of the 7-dependent matrix element used in Neu-
mann, Nobes and Handy’s paper [66] and other later publica-
tions (e.g. Ref. 48) is

WiV |w,>——fdrwfl(r) ( "°V¢,()) (36)

which may be arrived at from Eq. 35 via integration-by-parts.
This form of the integral has the apparent advantage that
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‘ s l‘kpriv itive of the potential dex./dT is not required—only
.dcriva

Pu b“&bﬂﬂg for a Gaussian basis set code, since analytic deriva-
uves of the basis functions (and hence orbitals) are easily ac-
cessible and the need to evaluate the numerical derivative of
the potential is avoided.

The same result may be arrived at for NGWFs, when inte-
grated over a unit cell with periodic boundary conditions (via
the divergence theorem), i.e.

~r _ 1 Oé€xc
(@alViclop) = 3 Ldrvwa(r) : (?Vﬁ%(l‘)) , (37

where V is the volume of the simulation cell. However, for
ONETERP, this form of the integral is problematic because the
gradients of psinc functions (and by extension, NGWFs) are
delocalized (as described in section III A).

For integrals over the local potential and kinetic energy op-
erator,

Vg = fv dr o (F)Vioo (D)5 (1), (38)

1
o = =3 [ drea(0¥ga(r),

Direct minimization of the energy under the LNV scheme
used in ONETEP (section II B) requires the evaluation of the
gradient of the energy with respect to the elements of the aux-
iliary density matrix, L. This gradient is given by

OE 9K
= 9K gLaB” “1

OE

oLeB
where 0K"? | dLP caré rived from Eq. 14 (see Ref. 73).
For the purposes is works_it is sufficient to note that
AK?16L2E does not depend on the form of Ey.[n] and we
lati

can therefore foéus on'the form of the dE/0K"°.
The exchange-come component dE /K can be ex-
of th

pressed in germ unctional derivative of Ey.[n] with
respect to thedensity,

—
C —
3&[('7 5 = f dr
e paftial derivative with respect to the density ker-

d thus
;é(’ﬁeme s depends on the form of the exchange-correlation
e
of

0Ey. On(r)
on(r) oK1’

(42)

ntial, Vi (r) = 6Ex./on(r). For reference, the derivation
42 is reproduced in appendix A.

(3\
the locality of the NGWFs naturally restricts the inte rati}\ Using Eq. 29, the partial derivative on the right of Eq. 42 s

region. In V,g, the integrand is zero where the o and

WPFs do not overlap, and thus it can be assumed that V5
where the localization regions of ¢, and ¢g do n
Similarly for T, g, the integrand is always zerooutsi
calization region of the @« NGWF, and the ap imatign is
made that the 7,4 = 0 where there is no o erlap%n he
localization regions of ¢, and ¢g (as des 'Wﬂ 28).
For Eq. 37 the delocalization of the NGWF gradients prevents

the restriction of the integration to the localization*sphere of

lap.

y orf/he NGWEFs, we use
er'the 7-dependent part
ased on Eq. 35,

dexe
= Vsoﬁm), (40)

3 15 not a significant issue in ONETEP,
rator can be trivially applied to each
of the vector field in reciprocal space.

.40 closely resembles the form of the kinetic
als'(Eq. 39). Indeed, for dex./07 = 1, the two in-

tegral egare equivalent—a property we used in testing the
code'to'evaluate (@, |V,.l¢p). As for the kinetic energy inte-

(and kinetic energy density, section III A), the eval-
uation of (¢, |V)Z-C|g0/g> in ONETEP makes the approximation
that integrals over NGWFs with non-overlapping localization
spheres are zero, despite the delocalizing effect of applying
the gradient operator to psinc functions.

NS\

theé 1o=«

onx) .
s = 090 (gpr) (43)
and thus Eq. 42 becomes
aE‘XC _ * 6EXC
0 = f dr ¢ (1) 5 5 en ©). (44)

For LDA or GGA functionals the functional derivative is
equivalent to the local exchange-correlation potential, and
Eq. 44 is simply a matrix element over the local potential:

OExc
(9[(779

Under the FDO approach (section IID), the meta-GGA
exchange-correlation potential consists of a local GGA-
like part (Eq. 25) and non-multiplicative, 7-dependent part
(Eq. 35). Inserting the per-NGWF exchange-correlation po-
tential (section III B) into Eq. 44 yields

= <‘109|ch|‘/777>- (45)

OFEx.
6[(?}9

=fw%m@“m%m

+ f dr ¢ (1) (Vi (1)) (46)
= (2ol @) + (pal Vi),

the form of the exchange-correlation component of 9E/9K"?
for meta-GGAs under the FDO approach.

The implementation of Eq. 46 in ONETEP was a simple
matter of adding contributions from the additional matrix el-
ement, {pg|Vil@y), to the existing gradient expression for
GGA-type functionals.
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E. NGWF optimization

sity kernel elements described in section III D, direct mini-
mization of the energy in ONETEP also requires the evalua-
tion of the gradient of the energy with respect to the NGWFs.

Since the total energy is a functional of the NGWFs (via the
density, Eq. 29), the gradient of the energy with respect to the
NGWEFs is a functional derivative. This functional derivative
has the form

ST QT S K 4]
where
[QVI = 3LV, Li®
- 2L S5 L%V, L' (48)
= 2LV, LMY Sy 5 Lo
and
Vo= [ drgimseso,m. (49)

pendix B (based on work presented in Ref. 73). Note that t

was constructed to satisfy a number of known exact con-
straints on Exc[n] with only a single empirically fitted parame-
ter (see Ref. 3 for further details of this constraint-satisfaction
approach). Although PKZB performed well compared to con-
temporary semi-local functionals (see e.g. Ref. 45), it has
since been superseded by more modern meta-GGAs such as
the TPSS meta-GGA [44, 75, 76], a non-empirical refinement
of PKZB.

While PKZB has beenysurpassed by more modern meta-
GGA:s, it has the ad\‘?QZlge of theoretical simplicity. Our
implementation of PRKZB test the self-consistent meta-
GGA framework described ab
this simplicity. In lar, the forms of the exchange and
correlation part§.of the.functional are closely related to the
PBE GGA, which™was already available and well-tested in
ONETEDP. This allowed"PKZB to be relatively simply imple-
mented by reusefandunodification of existing code.
tage of using PKZB as a testbed for meta-
P Wwas its relatively wide availability in other
publication of the original PKZB paper in
been ample time for the creation of mature,
mentations of the functional. We used this to our
dvantigre in the implementation of this functional and the

was primarily motivated by

le im

s in Libxc [77], NWChem [78] and Q-Chem [70]. A

L . . general framework for meta-GGAs in ONETEP, performing
For reference, a derivation of Eq. 47 is presented in m inary tests of our work against independent implemen-

result differs by a factor of two depending on whether the
WFs are real or complex, and this is covered in appendix
this section, we only consider the case of complex

n

Fs
Inserting the per-NGWF FDO exchange-correlati %eﬂ\

tial (Eq. 34) into Eq. 47 yields

6EXC _ V,FDOka
S59r (1) = ¢ (0[Q ] (50)
+ VA ) e (KX + ka

where QY-FPO is defined as in Eq. th V.. replaced
by

)V 4

(

V20 = f 24 9, ()

r) xc(r)soﬂ (r)

61y

e energy with respect to density
tation of Eq. 50 in ONETEP
cation of the existing gradient ex-
pression fot GGA-t nctionals. This involved adapting
the routines tsed to )cgnstruct QV to use VF DO in place of the
usual local potenti integral, and adding an extra term to the
GGA gradient %presswn {(VZoe(r)} K .

\ <

F. Functionals
1. PKZB

The PKZB meta-GGA was first described in 1999 [22, 74]
and, following the design principles of the PBE GGA [40, 43],

thelection of results, validating our self-consistent implemen-

tation of PKZB against Q-Chem are reported in section IV A.

While the key equations required to evaluate energies us-
ing the PKZB functional are well described in the original
paper [22], equations for the derivatives of the exchange and
correlation energy density, €xc(r), necessary to evaluate the
exchange-correlation potential (sections II C and III B) are not
provided. For convenience and ease of reproducing our work,
the equations we derived for the derivatives of €. (r) are pre-
sented in appendix C, alongside reproductions of the original
energy equations.

2. B97M-V

B97M-V [19] is a semi-local meta-GGA density func-
tional with VV10 non-local correlation [79] designed by
Mardirossian and Head-Gordon via a combinatorial approach
[80]. In the spirit of the original B97 density functional [81],
the semi-local part of B97M-V is partitioned into three com-
ponents: exchange, same-spin correlation, and opposite-spin
correlation. Consequently, BO7M-V has three separate inho-
mogeneity correction factors (ICF) that enhance the three as-
sociated uniform electron gas energy densities. Each ICF is
a two-dimensional power series utilizing two variables: u, a
finite-domain dimensionless variable that depends on the den-
sity and its gradient [81], and w, a finite-domain dimension-
less variable that depends on the density and the kinetic en-
ergy density [82]. The final functional form of B97M-V was
selected by searching through more than 10'© of the over 10*
possible options and choosing the most transferable and well-
behaved fit. B97M-V has a total of 12 linear parameters—4
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t change, 4 for same-spin correlation, and 4 for opposite-
spin, correlation. For non-covalent interactions and isomer-
()

hi&& rergies that are not significantly affected by self-
nteracuon error, B97M-V is much more accurate than other
semi-local functionals such as B97-D3(BJ) [83-85], M06-L
[53], and MN15-L [55], and competitive with the best hybrid
functionals such as wB97X-V [86] and wB97M-V [59]. As an
example of its performance, across a database of 1744 closed-
shell non-covalent dimer binding energies, BO7M-V affords
an RMSD of 0.24 kcal mol~!, while the three aforementioned
semi-local functionals manage RMSDs of 0.47, 0.55, and
1.38 kcal mol 1, respectively. Furthermore, across a database
of 755 isomerization energies, B97M-V has an RMSD of
0.27 kcal mol ™!, compared to 0.78, 0.71, and 1.55 kcal mol !,
respectively, for B97-D3(BJ), M06-L, and MN15-L [59].

As mentioned in section I, linear-scaling DFT methods are
particularly sensitive to the balance of computational cost and
accuracy. To produce meaningful results for very large chem-
ical systems, exchange and correlation must be treated with
accurate methods, but without compromising the computa-
tional scaling of the method such that calculations become in-
tractable. Our motivation for implementing B97M-V was its
potential to satisfy both of these requirements, sitting firmly
in the “Goldilocks zone” of Fig. 1.

ation. ONETEP’s linear-scaling DFT approach en
full quantum-mechanical description of a protein-ligand Sys-
tem [14, 15], avoiding the need to partition the s tecbinto
quantum and classical regions, as in competing QM ap=.
proaches. We hope that the combination of this bility,with
B97M-V’s excellent accuracy in describi non—Nch in-
teractions will yield a powerful tool for t ‘Tﬂd.y}gr tein-
ligand binding, applicable to the challenging prebleniof com-
putational drug optimization. For non=covalent int€raction en-
ergies, BO7M-V has been shown 0 significantly outperform
several dispersion corrected GGAs(see Refs. 19, 59). For
biological systems, in which on-c{ova t interactions often
play an important role, we antieipate the use of BO7M-V will
yield improved accuracy gzr the dis ezsjion-corrected GGA
previous studies us-
ing ONETEP (see forx le, Refs. 14, 15). In practice, the
ies of binding using B97M-V would
urational sampling with the eval-

gurations using DFT, as in the
8] rpéthod or the “stepping stone” ap-

ions. VV10 and similar non-local correlation
e vdW-DF family [90, 91] are not easily clas-

oifunctional [79], in order to account for dis-
t

rather than dependence on KS orbitals. These functionals take
the form of a double integral

Eéﬂ[n]=fdl‘ldl‘zn(l’l)q’(l‘l,rz)n(l‘z) (52)

where ®(r,r;) is a kernel depending on the interelectronic
distance, r; — rp. Klime§ and Michaelides have proposed
a “stairway to heaven” of DFT-based dispersion corrections,
analogous to the Jacob’s ladder (Fig. 1) with the vdW-DF fam-
ily (including VV10) on the third step [92].

For clarity, we note that “VV10” is often used to refer to the
combination of specific semi-local exchange and correlation
functionals with the VV 10 non-local correlation functional,
as described in Ref. %OWe will distinguish between the

non-local correlation component and the combined exchange-
correlation functiopal referring to the non-local part as

“VVI10 NLC”.

of VV10 NLC in ONETEP follows
in Ref. 93, which slightly modi-
NLC kernel in order to make use of

érez and Soler [94] (for details of the
implem f the vdW-DF functionals in ONETEP, see
§§2‘35) btain good agreement between this “revised

?»(rViV10), and the original VV10 [79] functional, Saba-
ini and coworkers reoptimized one of VV10’s two empirical
eters, b and C [93]. ONETEP implements rVV10 NLC

.. . . . . pa
A domain in which we are particularly interested in @p- as described in Ref. 93, and thus uses the reoptimized b value
plying B97M-V is the description of biomolecular assoc 6.3).

The implementation of B97M-V in ONETEP uses rVV10
NLC and we will refer to this combination of the local
part of the B97M-V functional with revised VV10 NLC as
“B97M-rV”, as distinct from “B97M-V”, which incorporates
the original VV10 NLC functional. Since the local part of
B97M-V [19] was optimized in combination with the original
VV10 NLC functional and we have not reoptimized the em-
pirical parameters for either part of BO7M-rV to account for
use of rVV10 NLC, we might expect B97M-V and B97M-rV
to behave slightly differently. However, as described in sec-
tion IV A, we find the differences in relative energies obtained
using the two variants to be very small in most cases.

The impact of r'VV10 NLC on the computational cost of
B97M-rV compared to a “pure” meta-GGA, such as PKZB,
is an interesting question, and particularly relevant to our in-
tended application of BO97M-rV to large scale calculations.
This question is considered in section IV B.

To avoid the time-consuming process of implementing the
local component of BO7M-rV from scratch, this was imple-
mented in ONETEP by adapting the existing Q-Chem rou-
tines for evaluating the BO7M-V exchange-correlation energy
density, exc(r), and its derivatives with respect to n, Vn and
7 (as described in Ref. 19). The initial testing and debug-
ging of these modified routines within the context of ONETEP
was done by comparison with an independent implementation
of the local part of B97M-V in the Libxc library [77], which
could be called directly within ONETEP. Comparisons of full
self-consistent BO7M-rV energies obtained using ONETEP
and Q-Chem are presented in section IV A.
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IV. RESULTS
A. Testing and validation

In order to test the numerical correctness of the theoret-
ical framework outlined in section III, we compared meta-
GGA energies calculated self-consistently using the ONETEP
and Q-Chem packages for a number of small molecular sys-
tems. Q-Chem is an all-electron Gaussian basis set code and
therefore differs substantially from ONETEP in its approach
to self-consistent solution of the Kohn-Sham equations (see
Refs. 70, 96, 97 for details). This difference presents both a
challenge and a opportunity. The challenge arises in setting
up calculations with comparable conditions in each package.
For example, it is not immediately clear what kinetic energy
cutoff and pseudopotential in ONETEP is appropriate to com-
pare with a given atomic orbital basis set and integration grid
in Q-Chem. The opportunity is in the strong independent val-
idation provided by comparison against an independent elec-
tronic structure code built upon an alternative theoretical foun-
dation.

For all Q-Chem results reported in this section, a devel-
opment version of Q-Chem 4 was used [70]. In these calcu-
lations, the def2-QZVPPD basis set was used for all atom
[98, 99] and the (99,590) integration grid (99 radial shells

was used to evaluate the rVV10 NLC component of BO7M-r
[101].

The ONETEP calculations were perform
conserving pseudopotentials from the Rappe-

-

SO and
F nuclei [103]. The Opium pseudopotentia%ﬁ&r [104—
106] was used to generate the pseudopotential forgulfur, used

in calculations on cysteine [107]. cudopotential files
used in the calculations presented M, this section are included
in the supplementary material for ease«of reproduction. The

number of NGWFs used to represent the valence electrons of
each atom was as follow?ﬁ, 1;°C, 4, y" 4; 0, 4; S,9. This

corresponds to 1 NGWF for‘each valence-shell electron pair.
Through a set of calibiz ti‘(?l%:sgations, two combinations

of kinetic energy cutoff and NG localization sphere radii

were identified forComparison with the Q-Chem calculations,

calization sphere radii of 8.0 a¢ for all
1§1-aocuracy” calculations used a kinetic
eV and NGWEF localization sphere radii
?that these kinetic energy cutoff values are the
ted from ONETEP and in practice the kinetic en-
\c}yff used in the calculation deviates slightly from this
t that an integer number of grid points is positioned
along each simulation cell dimension.

The simulation cell sizes used for each test case were de-
rived from the molecular geometry such that there was at least
a5 ap vacuum gap between the edge of the cell and the furthest
extent of the NGWF localization spheres (using 12 ag radii) in

each Cartesian direction. This vacuum buffer was introduced
to avoid interactions between periodic images of the molecu-
lar systems. The simulation cell dimensions are provided with
molecular geometries in the supplementary material.

No correction for basis set superposition error (BSSE) was
applied in either the Q-Chem or ONETEP calculations. As
mentioned earlier, in situ optimization of NGWFs eliminates
the need for such corrections in ONETEP [31]. In the case
of Q-Chem, it was judfyl that BSSE correction was unnec-

essary for the large def2€QZVPPD atomic orbital basis set as
the monomer basis set; w%}&d\ali{e‘ady be highly saturated.
The binding enefgies“of four«pon-covalently bound com-
plexes, shown in Fige 2, and a set of relative energies for con-
formers of cysteing and'melatonin, shown in Fig. 3, were used
to test the i entation of meta-GGAs in ONETEP against
Q-Chem. Geometry specifications for all the test cases are
available in supplementary material. The comparison of
as necessary, since absolute energies from

all-eleetron COdY are not equivalent to absolute energies from
pseudopotential/codes, where the core orbitals are represented
ﬁéﬂ effectt

ionic potential. The results of Q-Chem and
TEP calculations using the PKZB and B97M-rV meta-
GAs jare presented in Tables I and II. Results are also re-
po for the PBE GGA, as a reference. Ideally, the differ-
ence between the codes for self-consistently evaluated meta-
energies should be similar to the difference for GGA

troduced by 7-dependence (section III) are not required.

As mentioned in section IIIF2, “B97M-rV” denotes the
B97M-V functional, used in conjunction with the revised
VV10 NLC functional of Ref. 93, rather than the original
VV10 NLC functional [79]. The results reported in the
B97M-1rV rows of Tables I and II were obtained using the
B97M-rV functional in both Q-Chem and ONETEP, to avoid
introducing an additional error due to the difference between
original and revised VV10 NLC. The difference between
B97M-V and B97M-rV is typically small, on the order of
0.1 kcalmol~! (see Table S1 in the supplementary material
for examples).

For all the test cases studied, the difference between
Q-Chem and ONETEP meta-GGA energies for both the
900eV/8 ag and 1200 eV/12 ay settings was of a similar mag-
nitude to the differences seen for PBE, indicating that the im-
plementation of self-consistent meta-GGA evaluation is well-
behaved. For the binding energies, the RMSD for ONETEP
and Q-Chem PBE results is ~ 0.1 kcal mol~!. Similar RMSDs
are obtained for PKZB and BO7M-rV, though B97M-rV actu-
ally produces better agreement than PBE, with both RMSDs
slightly smaller than those obtained for PBE. For the confor-
mational energies, the RMSDs for PBE are slightly larger,
nearer to 0.2kcalmol~!. The meta-GGAs produce RMSDs
close to 0.3kcalmol™' in this case. Differences between
Q-Chem and ONETEP for the melatonin conformer energies
are somewhat larger for PKZB and BO7M-rV than for PBE,
with some absolute differences exceeding 0.4 kcalmol~!.
For B97M-1V, the larger Q-Chem/ONETEP difference seen
for the melatonin conformer energies is accompanied by
a comparatively large difference of 0.7 kcalmol™! between

atom, 590 angular grid points per shell) was used togevalu- ) © I .
ate exchange-correlation functionals. The SG-1 gﬁ(ﬁ@\]\energle& where the additional energy and gradient terms in-
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El’ results with the two cutoftf energy/NGWF radius
settings. This may indicate that the melatonin conformer en-
PubligBby aiculated with the lower quality 900 eV/8 g basis set
using BY/M-rV are not well-converged with respect to the ba-

sis set.

Given the limited size of our dataset and the substantial dif-
ferences between Q-Chem and ONETEP outlined earlier, it
is difficult to identify specific reasons why the RMSDs for
the conformational energies (Table II) are generally somewhat
larger than those for the binding energies (Table I). It is plau-
sible that the different magnitudes of the RMSDs observed for
the binding and conformational energies are simply an artifact
of the systems selected for this comparison—with a larger set
of data points, the differences between the conformational and
binding energies could evaporate. To draw meaningful com-
parisons between the differences in conformational energies
and binding energies calculated using ONETEP and Q-Chem
would require extensive benchmarking and comparison on a
much larger number of data points. In the present work, we
are primarily concerned with demonstrating the numerical va-
lidity of the implementation of meta-GGAs in ONETEP, using
the behavior of the PBE GGA as a reference. A more exten-
sive comparison of the differences in energies calculated using
ONETEP and Q-Chem is therefore beyond the scope of thi
work.

In spite of the slightly larger deviations from the Q-Che
results seen for the conformer energies in Table
ONETEDP results retain the same energetic ordering as

predicts binding where Q-Chem does no
with PKZB. In this case, Q-Chem produc
positive binding energy of 0.026 kcalmol ~' whi
ies of <0.011kcal mol~!
ap and 1200eV/12 ag

settings, respectively.

The comparisons presentéd T{bleds} and II demonstrate
that the theoretical framiz2 rk outlined'in this paper, as im-
plemented in ONETEP,.y eN:o sistent meta-GGA en-
ergies in good quali tiv?nd quangitative agreement with a
entation in Q-Chem. In spite of the
orithmic differences between the
ossible to produce results which agree to
cal)ﬂol‘ ! which is consistent with the
ved with the well-tested PBE GGA.

within a fra iQ,QO
extent of agreement ac

\
B. }inear-scaling performance testing

ﬁ?eg otivation in implementing meta-GGA functionals
within ONETEP was their application to large systems with
many theusands of atoms. When studying systems of this size,
low scaling computational cost with respect to system size is
vital. To evaluate the computational scaling of our implemen-
tation of meta-GGAs in ONETEP, we performed a series of
single point DFT energy calculations on segments of a 13696

ok oy
A

=]
CgH,H [\ CgHg-H,O (II)

SO | ¥

—~—

Cx :
G. 2.4 The four systems for which binding energies are presented

le I. The geometries for CH,F---CH;F and C(H,--C H;F,
were Jobtained from the X40 set of non-covalent interactions of
enated molecules [108] while the geometries for the two

‘the\C6H6---H20 structures were from the set of hydrocarbon-water in-

teractions presented in Ref. 109 (this is referred to as the HW30 set
in Refs. 19, 59).

atom amyloid fibril. The results are plotted in Fig. 4, and
clearly demonstrate the computational cost for self-consistent
single-point energy calculations using meta-GGAs, as mea-
sured in terms of overall execution time, increases linearly
with the number of atoms, N.

All calculations presented in Fig. 4 were performed using a
development version of ONETEP, running on the Iridis 4 su-
percomputer at the University of Southampton with 128 MPI
processes and 4 OpenMP threads per process. ONETEP was
compiled using the Intel Fortran compiler 16.0 and linked to
the Intel Math Kernel Library 11.3. The kinetic energy cutoff
and NGWF cutoff radii (for all atoms) were 600 eV and 7.0 ay,
respectively. These settings correspond to a medium quality
basis set and while they are sufficient for testing the compu-
tational scaling of our implementation, we would recommend
production calculations are run with a higher quality basis set
(higher kinetic energy cutoff, larger NGWF radii). The cal-
culation was converged until the RMS NGWF gradient was
less than 2.0 x 10~®a.u. and a density kernel cutoff (Eq. 11)
of 20.0 ap was used. This is a relatively small kernel cutoff,
suitable for testing purposes, but unlikely to be sufficient for
production calculations, where larger values would be neces-
sary. The structure of the 13696 atom fibril was kindly pro-
vided by the authors of Ref. 113 and smaller segments were
derived from this structure. The atomic coordinates used in all
the amyloid fibril calculations are provided in the supplemen-
tary material.
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larger prefactor associated with the meta-GGAs ob-
ed in Fig. 4 is unsurprising, given the additional opera-
bl}g] lired to evaluate the meta-GGA energy and gradient
terms. 1he meta-GGA code is still a work-in-progress and it
is likely that further optimization will improve the prefactor.
Though it may be possible to decrease the overall compu-
tational cost of meta-GGA calculations, we expect that meta-
GGA calculations will remain somewhat more expensive than
corresponding GGA and LDA calculations, for the simple rea-
son that the evaluation of 7(r) over the simulation cell is in-
herently more costly than the evaluation of n(r). As outlined
in section IIT A, the evaluation of 7(r) follows the same multi-
step procedure used to evaluate n(r) (described in Ref. 29).
However, the evaluation of 7(r) additionally involves applica-
tion of the gradient operator and a scalar product over Carte-
sian components (Eq. 30). Since the evaluation of the n(r) is
one of the more costly steps in a typical ONETEP calculation,
we would expect the additional cost of evaluating 7(r) to be
a major contributor to the overall greater cost of calculations
using meta-GGAs.
As a rough example of the extent of the additional cost as-
sociated performing a meta-GGA calculation, we can exam-
ine timings reported by ONETEP’s internal timing routines.

Al

Publi

calculation converged after 11 outer loop (NGWF optimiza-
tion) iterations in 7.3 h. The amount of time spent in the key
routines for evaluating the charge density and kinetic energy
density on the simulation cell grid was 0.9h and 2.0h, re-
spectively. For comparison, the PBE calculation took 3.4 h to
complete 11 outer loop iterations, with 0.9 h spent inside the
same key charge density evaluation routine. For the PKZB
calculation, the time spent inside routines for evaluating in-
tegrals over the 7-dependent part of the exchange-correlation
potential (Eq. 40) was zg h, which accounts for most of the
remaining 1.9 h difference between for PKZB and PBE calcu-
lations. The last 0. is rence is difficult to attribute,
because the modifieations made to ONETEP to support meta-
GGAs were spréad threughout the codebase and thus affect
many individual routines to,some extent. Nevertheless, these
timings su es}’nat theiadditional cost of evaluating the ki-
netic energydensity.and new exchange-correlation integrals

The data ig. 4 suggest that PKZB calculations have a
higher pr‘éﬁactor than B97M-rV, since the gradient of the fitted

o

For the full 13696 atom fibril, the PKZB single-point energ
\@ E 1. Comparison of binding energies, in kcalmol™!, for the

II III IV

N

\asing Q-Chem and ONETEP. Binding energies are presented for

FIG. 3 Conformations of melatonin and cysteine, for which relative
ies are preséxted in Table II. The structures of cysteine (I, IL, III,
e obtained from Ref. 110, forming part of the CYCONF

conformational energies in Table II are relative to the lowest energy
conformers, “I” and “aa” for cysteine and melatonin, respectively.
In this figure, the higher-energy conformations of each molecule are
superimposed on the lowest energy conformations, to illustrate the
structural differences.

four non-covalently bound systems presented in Fig. 2 calculated

the PBE, and PKZB and B97M-rV exchange-correlation function-
als. Monomer geometries were derived from the complex geometries
(without optimization). The differences between energies calculated
using Q-Chem and ONETEP are listed in the columns labeled A.
The def2-QZVPPD [98, 99] basis set was used for all atoms in the
Q-Chem calculations, while two levels of basis set quality were used
in ONETEP, denoted X/Y, where X is the kinetic energy cutoff in
eV and Y is the radius of the NGWF localization sphere in ag. The
RMSD of the Q-Chem and ONETEP energies is reported for each
functional at both the ONETEP basis set levels.

ONETEP
1200eV/12ay A

Q-Chem 900eV/8 ag A

PBE
CH,F--CHF  -0.925 —0.963 —0.038  —0.957  —0.033
CeHg—CeHyF;  0.650  0.856  0.206  0.794  0.144
CeHeH,0 () —-0.922 —-0.920  0.002  —0.925  —0.003
CeHe-—H,0(D —1.790 —1.706  0.084  —1.775  0.014
RMSD 0.113 0.074

PKZB
CH,F--CHf  -0.528 —0.607 —0.079  —-0.619  —0.091
CoHg—CeHsFy 1221 1.014  —0.207  0.956  —0.265
CeHg~H,0(D)  0.026 —0.011 —0.038  —0.034  —0.060
CeHg~H,0(D) -0.572  —0.716 —0.144  —0.790  —0.217
RMSD 0.133 0.180

B97TM-rvV
CHF--CHF  —1.435 —1.496 —0.061  —1.497  —0.062
CoHy—CeHyFy; —4.508  —4.358  0.149  —4.443  0.065
CHeH,0() 1214 -1246 —0.032 -1.249  —0.034
CoHe—H,0(ID) -3.283  —3.249  0.034  -3.329  —0.046
RMSD 0.084 0.053
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line appears larger than the gradient for the BO7M-rV
e, At first glance, this is an unexpected result, since one

8 ———

aiuonai work associated with rVV10 NLC, not present in
PKZB. In fact, the explanation for this outcome is the slower
convergence of PKZB calculations relative to B97M-rV. For
all amyloid fibril segments, the PKZB calculations required 11
outer loop (NGWF optimization) iterations to achieve conver-
gence (based on the RMS NGWF gradient), while B97M-rV
required 8 or 9 iterations for most segments, as detailed in
Table III. For the 5136 and 8560 atom segments, BO7TM-rV

required 11 and 12 outer loop iterations to converge, respec- { w

tively, and these individual calculations were more costly than 0 R
the corresponding PKZB calculations. For comparison, the 0 \(;000 9000 12000
PBE calculations all required 11 iterations to achieve conver- Number of atoms, N

gence. The results presented in Table III demonstrate that the
average time per outer loop iteration was consistently lower
for PKZB than for BO7TM-rV across all segment sizes, sup-  FIG. 44 ““Execution times for single point DFT calculations

Total calculation time / h
IS
T
1

porting the suggestion that the unexpectedly good relative per- ~ on amyloid fibril ségments of increasing size, using the PBE
formance of B97M-rV is a consequence of more rapid conver- (green squares), BKZB (red triangles) and BOTM-rV (blue circles)
gence. ﬁl:nge-c lafion functionals. Linear least squares fits of the data
r each functional are plotted as dotted lines. The computational de-
f thl;% calculations are described in section IV B.
| -
TABLE II. Comparison of conformational energies, in kcal mo \ PBE PKZB B97M-rV
for the conformers of cysteine and melatonin presented in Flg\ N N /N N /N N t/N;
calculated using Q-Chem and ONETEP. The conformatio T- atoms 7 Titer fer  "Titer ter  CTiter ter
gies are relative to the lowest energy conformer, labeled “I™ 1712 11 191 11 400 9 538
for cysteine and melatonin, respectively. As in Ta 3424 11 305 11 666 8 878
ferences between energies calculated using Q-Chem an 5136 11 451 11 925 I 1116
are listed in the columns labeled A and the RMSDs of t 6848 11 367 I 1191 9 1401
gies calculated using Q-Chem and ONETEP are pr \Qi{ ?gg% H g?g H i 2?3 13 }ggi
exchange-correlation functional. The basis sets gised fo C 11984 11 959 11 2168 9 2216
and ONETERP calculations are as described for 13696 11 1119 11 2379 9 2620
ONETEP \\
Q-Chem 900eV/8 ag ‘1'2Q06V/12 ao A TABLE III. Outer loop iteration execution times, to the nearest sec-
ond, for single point DFT calculations on amyloid fibril segments of
PBE increasing size. For each amyloid fibril segment, the number of outer
Cysteine I  0.894 0.91 16 1 013 0.119 loop iterations, Njir, required to achieve convergence and the total

Cysteine Il 3.033 3.261 28 3.292 0.259 time taken, ¢, divided by the number of outer loop iterations are given
Cysteine IV~ 3.161 %5 224/ 3.339 0.178 for the PBE, PKZB and B97M-rV functionals. The number of atoms
Melatonin be  4.487 0. 4.521 0.033 in each amyloid fibril segment, Nytoms., is listed in the first column.
Melatonin dw 6. 319/ ‘N75 .194 6.469 0.151
RMSD _ / 0.167 0.165
PKZB V. CONCLUSION
Cysteine 1L 0.001 0.867 0.123
Cysteine 1 0.370 1.573 0.379 In this paper, we described a theoretical framework for self-
Cysteine I 23 0.382 2.212 0.110 consistent evaluation of meta-GGA exchange-correlation en-
Melatopin_be 5.316 0.463 4.972 0.119 ergies within ONETEP’s linear-scaling DFT formalism. In
Melatdnin dw 5 6.163  0.224 6.358 0.419 developing this framework, we used the FDO method to eval-
§M5D 0.331 0.268 uate functional derivatives (section I D) with respect to the
density, yielding an orbital-specific exchange-correlation po-
tential. To ensure that our approach maintained linear-scaling
1.481 1.528 0.048 1.699 0.219 . . . L.
1313 1127 0.114 1 664 0.351 computational cost, we derived expressions for the kinetic en-
1.481 1.683 0.202 1.863 0.382 ergy density (section IIl A), 7, and exchange-correlation po-
Melatonin be  5.582 5193 —0.389 5.009 0.327 tent}al (section I B) in terms of ONETEP’S strictly localized
Melatonin dw 9424 9011 —0414 9731 0.306 orbitals (NGWFs, Eq. 12) and density kernel (Eq. 10). We
also derived expressions for the gradient of the 7-dependent
RMSD 0.275 0.322

exchange-correlation energy with respect to these localized
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ties in order that the meta-GGA energy could be
f consistently optimized using ONETEP’s modified LNV

PU DlISRdAE sections 1D and I E),

The PKZB and B97M-rV meta-GGAs were implemented
in ONETEP, and their behavior within the self-consistent
framework was validated against existing implementations in
the Q-Chem package for a set of binding energies and rel-
ative conformational energies (Tables I and II). In all cases,
the numerical agreement between ONETEP and Q-Chem was
commensurate with the agreement obtained using the well-
tested PBE GGA functional, indicating that the additional gra-
dient and energy terms necessary to evaluate self-consistent
meta-GGA energies (section III) are well-behaved. In addi-
tion, agreement in terms of the ordering of conformer energies
was also observed for both the meta-GGAs tested (Table II).
Given the significant algorithmic and theoretical differences
between the Q-Chem and ONETEP packages, the quantita-
tive and qualitative agreement in meta-GGA energies calcu-
lated using both codes is a strong validation of the theoretical
framework presented in the preceding sections.

As outlined in the section I, a key motivation for this
work was the proposed “Goldilocks zone” occupied by the
meta-GGAs, balancing computational efficiency and numer-

GGAs in a variety of applications where accurate description
of exchange-correlation effects is important.

Of the linear-scaling DFT software packages listed in sec-
tion I, only Quickstep (part of the CP2K suite [114]) cur-
rently supports meta-GGA exchange-correlation functionals,
as mentioned in Ref. 12. Although both ONETEP and Quick-
step use linear-scaling methods in order to apply DFT in large-
scale calculations, the codes differ substantially in their im-
plementation. Perhaps the starkest difference is in the types
of basis function used(lguickstep is based on the Gaussian
and plane wave (GPW )'methgd [115], utilizing a combination
of Gaussian functions planegyaves to construct the Kohn-
Sham orbitals and eca:;ﬁn density, while ONETEP employs
self-consistent] timized NGWFs constructed from an un-
derlying psine basiSiget tion II). The NGWF/psinc basis
and its in sifu optimizatign presents unique challenges for the
implementatign 6f'meta-GGA exchange-correlation function-
als whi€hrhave been addressed in this paper.

ugh ling¢ar-scaling DFT packages can differ substan-

tially in esig:&md implementation, they often share com-
on theore foundations. The essential ideas of direct en-

e minﬁzization with respect to a separable density matrix
nd the usé of strictly localized basis functions, as employed

P, are a common starting point for linear-scaling

ical accuracy (Fig. 1). Meta-GGAs are particular attracti in > : !
for linear-scaling DFT calculations because they have the po- «DFT methods (as described in Ref. 6). We therefore hope that

tential to improve upon the accuracy of LDA and GGA re-
sults, while retaining a computationally efficient semi=lo
form (Eq. 15).
In section IV B we confirmed that our impleme Eﬁ?
self-consistent meta-GGA evaluation in ONETEP exhibited"
O(N) scaling, performing calculations on amyloi
sisting of thousands of atoms. The co
meta-GGA calculations was somewhat grea or a cor-
responding GGA calculations, as would be expected due to
the additional complexities associated-with 7-dependence. In
general, the meta-GGA calculationg required approximately
double the amount of time to complete'¢ompared to the corre-
sponding GGA calculations, thoughéven for the largest 13696
atom amyloid fibril, the tofal time was/only around 7h for
both meta-GGA functiog iven the excellent ac-

ested.
curacy possible using de;xﬁt;GGA functionals such as
2)%?6: would'suggest that this factor of

B97M-V (section II
two increase in cogt may,bé a price worth paying.

We anticipate! that the lementation of self-consistent
meta-GGA evaluation in ;)NETEP described in this paper
will form the“foundatign/for future applied studies in a va-
riety of contexts. e of our motivations in implementing
suppo f‘ol ta-GGAs in ONETEP was for the study of
biomolecular assoctation. In particular, the excellent perfor-
mance B97M)V [19, 59] for non-covalent interactions (sec-
tion, 111 uggested that we might be able to achieve sig-
nificantsimprovements in accuracy over existing work with
dispession-corrected GGAs [14, 15] without the need for
costly hybrid functionals. More broadly, meta-GGAs are ca-
pable of improving upon GGAs across a diverse range of
systems and types of bonding (see for example, recent ex-
amples using the nonempirical SCAN functional in Ref. 21).
This suggests that ONETEP users will find utility for meta-

etailed account of the implementation of meta-GGAs in
ONETEP presented in this paper will facilitate the implemen-
tation of meta-GGAs in other linear-scaling DFT codes which
share this foundation.

All the calculations in this paper were performed us-
ing norm-conserving pseudopotentials, since the current im-
plementation of self-consistent meta-GGA functionality in
ONETERP is restricted to pseudopotentials of this type. An
alternative approach to the problem of representing atomic
cores is the projector augmented wave (PAW) method [116],
in which all-electron orbitals are retained, but are expressed
in terms of smooth pseudofunctions and partial waves rep-
resenting the orbital in the region of the atomic core. The
PAW method has some significant advantages over norm-
conserving pseudopotentials for practical DFT calculations,
notably improved transferability and better convergence with
respect to the kinetic energy cutoff. Support for PAW has re-
cently been implemented in ONETEP [117], allowing LDA
and GGA calculations to be performed with the method. The
next step for the work described in this paper is to extend
this functionality to allow self-consistent meta-GGA evalua-
tion using PAW. This will require the kinetic energy density
to be decomposed into contributions from the smooth pseud-
ofunctions and partial waves, and will also involve additional
terms in the Hamiltonian, as described in Ref. 69.

SUPPLEMENTARY MATERIAL

See the supplementary material for: comparisons of bind-
ing and relative conformer energies calculated using B97M-V
and B97M-rV; structures for all molecules used for calcula-
tions in this paper; and the pseudopotentials used in calcula-
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elements

where we have used Eq. A2 to express n(r,K"7? + h). The
expression for the gradient of Ey. with respect to the den-
sity kernel elements may therefore be written in terms of the
exchange-correlation potential (as in Eq. 42), i.e.

OEx. f

= | dr
OKn?
Appendix B: Gradlen f Exc with respect to the NGWFs

(Nexchange correlation com-
the energy with respect to the NG-
resented in Ref. 73 (ch. 7), and is

he conyenience of interested readers.
erived starting with the chain rule for func-

e (wppendix A of Ref. 119):
f , 0Ey. on(r’)
= | dr
on(r’) 6¢g (r)

- f dr' Ve (') i’;fr(;)) .

O0Ey. On(r)
on(r) oK "

(A5)

The following depiV
ponent of the gra
WFs is based
reproduced here

(BI)

ate of a NGWF can be expanded using the product rule
jor functional derivatives (appendix A, Ref. 119):

Appendix A: Gradient of Ex. with respect to the density kern\fuﬁetional derivative of n(r) with respect to the complex-
conj

Eq. 42 may be derived by considering the definitio
partial derivative in terms of a limit

aExc _
0K~ h50

where the change in K79 affects the densi Xb Ey.

is a functional. The density with K79 varie .&h‘b\

n(r,K" + n)
_ o Ka/ﬁ * h *
;so (r) pg(r %%(r) (A2)

£

ey + h

7o *

The functional derivative.of Ex.[w] with respect to the density
may be written )

(A3)

e=0
cln(r) + €{(r)] -

e—0 €

Ex[n(r)]

ere £ (M. is an arbitrary test function (see for example, ap-
pendi of Ref. 118). Using dn(r)/0K"? as test function in
Eq. rodtces a limit identical to the limit in Eq. Al, i.e.

f g O Excln] 9n(r)
én(r) 0K

(A4)
. Exc[n(r) + € gln{(;g ] = Exc[n(r)]
- :

‘the\
Exeln(r, K" + h)] — Exln(n)] Wm

on(r’) KH

* /l( ) *
Spa(r) o (1)
o5 (1)
Spa(r)
The functional derivative in the second term of Eq. B2 is sim-
ply

@, (r")
(B2)
+ @, (KK

Sy (r’)
0o (r)

To evaluate the functional derivative in the first term, the chain
rule can be used again to yield

KH
= f dr’6—6§$. (B4)
08k 0pa(r)

=695(r—r'). (B3)

SKHY
0 (1)

Since K is a function of S, rather than a functional, 6 K*” /6 S
reduces to partial derivative, i.e.

SKH 9K
85Suc  OS.

—5(r-r) (BS)

where, using the expression for the density kernel in terms of
the auxiliary density kernel (Eq. 14),

IKH S
OSuc (B6)
—2(LML¥Y S, 5% + LMY S\ s LO'L*).

The other functional derivative in Eq. B4 is

0Suc
Spa(r)

6 ¢ (r) (B7)
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AP-

ishi oKH”  OKHY
Publishing S o (1), (BS)
0¢a(r)  OSax
Using Eqs. B2, B3 and B8, Eq. B1 becomes
O0Ey¢ OKH”  SEx
= Voum—m—+ —— K** B9
e (r) ec(MVu 950, T ono) @k (r) (B9)
where V,,, is as defined in Eq. 49.
Finally, recognizing that
oOKH”
Vika
=Voy—, B10
Q"] Vi gS (B10)
where [QV]¢? is defined in Eq. 48, Eq. B9 becomes
O Exc Vika 0Exc Ka
= + — K B11
Sor e = I + S (r) (B1D)

which is the expression provided earlier (Eq. 47).
Note that the preceding derivation was for complex NG-
WFs (where each NGWF and its complex conjugate may be

is the enhancement factor, which has a similar form to the
factor used for PBE [40, 43]. PKZB differs from PBE in the
definition of x:

xX=cp+ czaz +c3gp + C4p2 (C4)
where
_ |Vn|?
P = 4G 3 ©)
q= (Co6)
with ¢ = 10/81, ¢;
(C7)

In the preceding equations, « and D are constants, with values
0.804 and 0.118, as'set out in Ref. 22. The exchange energy
olarized system may easily be obtained using the
ell-known spin-scaling relation [120]:

3

varied independently). For real NGWFs, Eq. B11 is simply 1 1
multiplied by a factor of two, i.e. L8 Ednpany) = S Ex2m] + S Ex[2ny]. (C8)
OExe _ 206 (0)[QV T +2 OEx e (1)K (B%N ¢ derivative of €?X%B with respect to n is
0pq(T) on(r) )
\ 0 e}f(’KZB 0 egmf nif OF, 9
on _ on Fore an ©
Appendix C: PKZB energy derivatives B -
% where the derivative of " is trivial
To evaluate the PKZB excl.lange—'corlﬁelation otential\un- eunif Gr2)!/3
der the FDO method, we require derivativ the'exchange- X _ _ nl/3, (C10)
correlation energy density, €y, with respecgto charge on 4
density, n, its gradient, Vn, and the kinetic en: density,  The derivative of the enhancement factor is
7. Equations for the PKZB exchange and, correlation energy
were provided in Ref. 22, but the deriyatives necessary to eval- OFx - OFx 0x (C11)
uate the exchange-correlation potentialiwere not, and do not on  Ox On
appear to have been publishedglsewhere facilitate repro- where
duction of our work, we pfesen }Ke equations used to
evaluate the PKZB energ§ ai i oFx 14X -2 c12
ox P (€12)
3Exchange and
y O S L I A
The PKZB_exchange epergy functional [22, 74] has the on_ on +2c on TS\ g Y5, +2C4pan' (C13)
form, .
> The derivatives of p and ¢ are:
if
EL SB[y~ f dr €2 (n) F (n,Vn,7) (Cl) op 8 e i
-3 2Y2/3,11/3°
wpere N on " IAGEPEE
T
B if 3 2 2173, 473 =3 223,803 S (C15)
e =G (C2) In - 3203m)2nB 120
Vs

is the exchange energy per unit volume of the uniform electron
gas and

F(p,q) =1+«k— (C3)

1+ x/k

The derivative of €?%?B with respect to Vn can be obtained

via the derivative with respect to |Vn/|, using

QEPKZB 5 cPKZB g,

— Cl6
ovn 0|Vn| |Vn| ( )
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‘ s IP using unmodified code for the PBE functional (as in our im-
. plementation of PKZB), we will not present explicit forms for
Publishing de* B _ EunifﬁFX ox ) (c17)  thesehere.
0|Vn| * 0x 0|Vn| Since the spin-unpolarized PKZB derivatives can be ob-

The form of dx/3|Vn| is identical to Eq. C13, but with deriva-
tives with respect to n replaced with derivatives with respect
to |Vn|. These derivatives with respect to |Vn| are

op |Vn|
= , C18
|Vn| 4(3m2)2/3p8/3 (C18)
aq 1 dp
=—-— . C19
0|Vn| 12 0|Vn| ( )
Finally, the derivative of e?X?B with respect to 7 is
0elKZB : oF 0
S emif(y I X (C20)
ot ox Ot
where, since p does not depend on 7,
ox _0q aq
— =20g— — C21
ot 24 ot T 6Tp €2

and =
\ 31’10—

aq 3
_q = (Cb\ afZ,a'

tained from the spin-polarized forms via

ey 98T Oy (C28)
on o on, On

with identical relationcsz'rés for derivatives with respect to Vn
and 7, it is only nec@ssary to consider the spin-polarized
forms.

The derivative

with respect to spin-density n, is

PKZB P
Oe, _ Ee1l o ¢PBE af
on ™ gn,,

(C29)
PBE pig 020 )

(o
O
- + .
ony fao * e ong
In‘addition to t)e derivatives of the PBE correlation energy

nsity; d%'ivatives of fi and f, , are required. These are

Lan :_ZC[TTW-'_TlW]( o ) !

— (C30)
TT+T TT+7 /) ho

W 2

1

ot 2(3n2)2/3p3/3" \\ =-2(1+C) (i) —. (C31)
C()I’l(,— To ng
2. Correlation } For the correlation part of the PKZB functional we imple-

form

EgPny,n)] = f dr{ef}i‘ifl

et = e n g ) (C24)
€rBE =€l5F (ny90, V1o, 0) (C25)
and
+ TIV 2

— (C26)

TT + T

S ™)
—~ =(1+0) (i) , (C27)

th 7, 1/8)|Vny |2 /ny, the Weizsicker kinetic energy
%a d T, | denoting the two spin components of the
ensity, n, and kinetic energy density, 7.

, the derivatives of the PKZB correlation energy
density, e?X%B (the terms inside the curly braces of Eq. C23),
with respect to n and Vn will involve the corresponding
derivatives of the PBE correlation energy densities (Egs. C24

and C25). However, since these derivatives can be evaluated

mented the derivative of e?X?B with respect to Vn,, directly,

rather than via 6EEKZB /0|Vny|. This was done in order to
make use of the existing code for the spin-polarized PBE func-
tional in ONETEP, which outputs derivatives with respect to
|Vn|, rather than the spin-components of this, |Vn,|. Deriva-
tives with respect to the spin components of the gradient of the
density, Vn,, can be obtained from derivatives with respect to
the magnitude of the gradient of the total density, |Vn/|, using

detBE  0e®F 9|Vn| 9P Vn
dVn,  0|Vn| 0Vny,  9|Vnl| |Vn|

(C32)

The derivative of e?X%B with respect to Vn, is identical to

Eq. C29, but with dn, replaced with dVn,. The required
derivatives of f| and f> , with respect to Vn, are

w4V otV
O _ ol Tl ! v (C33)
oVn, T +T T+ 1) 0Vn,
0fro ‘rg’ 1 6‘1’(‘,”
— =2(1 <) |— 4
0Vny 1+0) ( 7y )\ 1] OVng,’ (€34
where

ary _1Vn,
Ve 4 ng

(C35)

Finally, the derivative of e?X?B with respect to 7, is

T COE 0
01s SV o, 7 0T,
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‘ s I\P has fewer terms than Eq. C29 because €FPF is indepen- dent of 7. The required derivatives of f; and f> ., are
Publishing o Ve

_1:_2C[T l) ( ) (€37)
075 T +T Tm+T

d AN

Pz _ o140 (TL) (—) (€38)
01 To To

It is noteworthy that E;ZC37 is independent of o, and thus
C

need only be evaluated @nce for both spin-components.
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