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ABSTRACT
The diffuse attenuation coefficient of 
photosynthetically active radiation (KdPAR) is 
commonly used to predict light attenuation 
in aquatic productivity models, but obtaining 
measurements of PAR to compute KdPAR is 
difficult. In situ calculations of KdPAR require 
multiple measurements of PAR through the water 
column, and these measurements are infeasible 
for real-time recording. Instead, predictive 
models using surface-water measurements may 
be used. Traditional KdPAR models are based on 
open-ocean habitats and rely on chlorophyll—
as a proxy measurement for phytoplankton 
abundance—as the main predictive parameter. 
However, elevated suspended sediments and 
dissolved organic materials may also affect KdPAR 
values of inland water bodies and estuaries. In 
this study, we leverage KdPAR calculations derived 
from in situ light measurements collected along 
with surface-water-quality parameters across 
the Sacramento-San Joaquin River Delta in 

California, USA (the Delta). Sampling occurred 
between January of 2013 and May of 2014. We 
also explored regional and seasonal effects, but 
these did not clearly affect the model. Ultimately, 
the best-performing model included surface-
level turbidity only (R2 = 0.91). The simplicity 
of the model facilitates use of KdPAR estimates 
for a variety of purposes throughout the Delta, 
including euphotic depth calculations, and as 
inputs to primary-productivity and habitat-
suitability models. We demonstrate the model’s 
usability with two open-sources data sets (one 
spatially dense, and one temporally dense), and 
estimate KdPAR, euphotic depth, and primary 
productivity within the Delta. We provide 
calculations for each estimation, allowing users to 
easily adopt these models and apply them to their 
own data or with open-sourced data, which are 
abundant.

KEY WORDS 
diffuse attenuation coefficient, photosynthetically 
active radiation, light availability, turbidity, light 
attenuation, Kd, KdPAR

INTRODUCTION
Light transmission through water is a major 
control on primary productivity in aquatic 
habitats (Goldman 1968; Cloern 1987; Fisher et 
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al. 1999; Jassby et al. 2002; Cloern and Jassby 
2012). Clearer waters increase light availability 
to plants and photosynthetic algae and bacteria 
by permitting more photosynthetically active 
radiation (PAR) to penetrate through the water 
column. As turbidity increases, PAR attenuates 
more rapidly, limiting the depth of PAR 
penetration. This light limitation can lead to 
successive effects, including lowering benthic 
and pelagic primary productivity of phototrophic 
algae and aquatic plants, changing the vertical 
distribution of phototaxic organisms (those who 
can move through the water column to find a 
suiTable PAR level) like zooplankton and other 
mobile species, shortening range of visibility, and 
altering predator and prey relationships (Cloern 
1999; Vogel and Beauchamp 1999; Browman et al. 
2000; Gallegos 2001; Ralph et al. 2007; Kirk 2010; 
Rathjen et al. 2012). 

Light attenuation and penetration are most often 
modeled using the diffuse attenuation coefficient 
of PAR (KdPAR), which is the rate at which light 
intensity decreases with depth. However, KdPAR 
is difficult to monitor continuously because 
it requires measurements of PAR at multiple 
water depths. Instead, KdPAR can be estimated by 
empirical models that contain biogeochemical 
parameters measured at the surface level which 
influence light attenuation and can be monitored 
continuously. By producing continuous KdPAR 
estimates, light-attenuation values can then 
be used to estimate euphotic depth (Zeu) and 
can be added into phytoplankton-productivity 
and habitat-suitability models that rely on this 
difficult-to-measure constant (e.g., Cloern 1987; 
Jassby et al. 2002).

Commonly, models used to estimate KdPAR 
are based on open-ocean environments with 
the assumption that phytoplankton biomass 
(measured by chlorophyll fluorescence [fChl]) is 
the strongest factor that attenuates light (Morel 
1988; Claustre and Maritorena 2003). Using open-
ocean models in more turbid inland waters 
underestimates light attenuation from high 
suspended matter content and light absorption 
by dissolved organic matter (DOM; measured 
as fluorescent dissolved organic matter, fDOM; 

Cloern 1987; Saulquin et al. 2013). Additionally, 
in complex hydrologic systems, such as estuaries 
with large anthropogenic influences, like the 
Sacramento-San Joaquin River Delta (the Delta), 
a host of biogeochemical parameters that absorb 
and/or scatter light—e.g., terrestrial and aquatic 
detrital material, aeolian material, watershed-
derived and bed sediments, phytoplankton, and 
various chemical components within runoff and 
effluent, among others—amplified by seasonality, 
geographical location, and weather patterns, can 
influence KdPAR. To predict KdPAR more accurately 
in such complex environments, a multivariate 
approach—one that accounts for several 
constituents, not just fChl—should be tested.

The two main factors that control light 
attenuation through the water column are 
scattering by suspended particles and absorption 
by DOM (Mobley 1994; Downing et al. 2012). 
Water with greater concentrations of suspended 
particulates scatters more light than clearer 
water. Examples of environmental and landscape 
factors that contribute to increased suspended 
particulates include runoff after rain events, 
increased flow velocity, algal blooms, and erosion. 
Suspended particles in aquatic habitats comprise 
mineralic sediments, algae, bacteria, and organic 
detritus. In aquatic systems where there is low 
absorption (e.g., high inorganic matter and low 
DOM), KdPAR can display a linear relationship with 
turbidity (Walmsley et al. 1980; Lloyd et al. 1987). 
However, when absorption by DOM is substantial, 
the relationship between KdPAR and turbidity 
becomes more variable (Kirk 1985). Modeling 
KdPAR as a function of suspended sediment and 
DOM could provide more accurate estimates than 
a model that requires only suspended particle 
concentration measurements in systems with 
high DOM levels (Davies-Colley and Smith 2001). 
Recent estuarine models have recognized the 
need for a new approach to modelling KdPAR, 
including accounting for parameters such as 
salinity, temperature, and particulate organic 
matter from the dynamics observed between 
particle compositions effect on absorption 
and scattering (Xu et al. 2005; Rose et al. 2019; 
Stumpner et al. 2020). 



3

DECEMBER   2023

https://doi.org/10.15447/sfews.2023v21iss4art5

MATERIALS AND METHODS
We collected depth profiles of PAR from which 
KdPAR values were calculated at multiple locations 
of the Delta, which represented a range of 
biogeochemical and hydrologic conditions 
(O’Donnell et al. 2023a). We also concurrently 
collected in situ surface-water-quality parameters 
to characterize the concentration of particles, 
phytoplankton, and DOM as well as ancillary 
water-quality information. We assessed a variety 

of models at the regional and at the whole-Delta 
scale, as well as by season and annually, to 
identify the most parsimonious and robust KdPAR 
model.

Data collection occurred across 53 sampling 
sites in total (Figure 1) between January of 2013 
and May of 2014. Six unique regions within the 
Delta can be used to group the sampling sites: 
the Cache Slough complex; the Sacramento River 

Figure 1  Sampling locations in the Sacramento-San Joaquin River Delta colored by region and sized by number of samples per site over the course of the study

https://doi.org/10.15447/sfews.2023v21iss4art5
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Deep Water Ship Channel; Montezuma Slough; 
North Delta tidal transition zone; Suisun, Grizzly 
and Honker bays; and the western Delta tidal 
zone (Figure 1). Each geographic region presents 
unique biogeochemical and hydrologic properties 
(Richardson et al. 2023) which may influence 
PAR differently. To test for differences between 
geographic regions, we used these regions as a 
categorical variable in the model selection data 
set.

We attached a PAR Sensor (HyperOCR I 
Radiometer, WET Labs, Inc., Philomath, Oregon 
97370 USA) during the 2013 sampling, and 
later an LI-192 Underwater Quantum Sensor 
(LI-COR Biosciences, Lincoln, Nebraska 68504 
USA) during the 2014 sampling to a weighted 
mount, and lowered it through the water 
column, recording PAR every half meter until 
it reached 0 (µmol s– 1m– 2) or until it reached 
a depth of 3.5 meters, whichever came first. 
HyperOCR I radiometer data were logged to 
an external data logger (Data Handler (DH4), 
WET Labs, Inc., Philomath, Oregon 97370 USA) 
and LI-192 Underwater Quantum Sensor data 
were collected using readings displayed on an 
LI-250 portable light meter (LI-COR Biosciences, 
Lincoln, Nebraska 68504 US). KdPAR is the slope 
of natural log-transformed PAR measurements 
(µmol s– 1m– 2) vs. measurement depth (meters; 
Kirk 2010), which we calculated from the PAR 
sensor profiling.

An EXO2 Multiparameter Sonde (EXO2; YSI 
Inc., Yellow Springs, Ohio 45387 USA) was 
used to measure surface-water (~2 m in depth) 
constituents during PAR sampling, including 
turbidity in Formazin Nephelometric Units (FNU), 
water temperature (WT) in Celsius (°C), pH, fChl 
in µg L– 1, salinity in PSU, and fDOM in quinine 
sulfate units (QSU). The EXO2 was set up to log 
data internally.

Matrix tests performed by the US Geological 
Survey (USGS) in cooperation with Xylem 
indicated that EXO2 fDOM sensors produced 
before June 2017 had a linearity issue. We 
corrected fDOM data using the following 
formula provided by Xylem and validated by 

the USGS, where fDOMuncorr is raw sensor data 
and fDOMcorr is the corrected data (2023 email 
between S. Smith and ETR, unreferenced, see 
“Notes”):

	 	 Eq 1

According to the unreferenced correction 
guidance, values below 15 QSU (n = 108) are 
“uncorrectable” and, as such, we removed 
them from the data set. Afterward, we applied 
site-specific temperature, turbidity, and 
inner-filter-effect corrections to remaining 
fDOM concentration data (Watras et al. 2011; 
Downing et al. 2012). We also applied site-
specific temperature corrections to EXO2 fChl 
concentration data (Watras et al. 2017).

In addition to utilizing sensor measurements, 
we gathered open-sourced environmental data 
to be included as potential predictors in the 
model. Daily average of incident solar radiation 
(SR) in watts per square meter (CIMIS 2021) was 
added into the data set because of its likelihood 
to influence light availability in water (Jassby 
2008). The California Irrigation Management 
Information System (CIMIS) continuous 
monitoring station at Twitchell Island (station 
140; Figure 1) was used as the site location for 
SR because of its data completeness and central 
location within the Delta (CIMIS 2021). The 
final two variables were the running sum of 
precipitation (RSP) in millimeters (mm) and the 
running sum of average daily air temperature 
by water year in °C (RSAT). We added these two 
calculated variables as proxies to account for 
influential seasonal and climatic trends specific 
to the Delta. 

Briefly, the Delta is in a Mediterranean climate 
that can be split into two broad weather-pattern 
groupings each year: wet and dry periods. Dry 
periods begin in the spring, generally around 
June, and span through a hot and dry summer, 
extending into October. Fall is the culmination 
of the dry period in the Delta, with intermittent 
rains beginning in November. An important 
climatic delineation often incorporated into 
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environmental studies in the Delta is “water year 
type.” Interagency managers and scientists in the 
Delta consider a water year to begin the previous 
October and extend through the end September 
of that calendar year, e.g., water year 2023 would 
be October 2022 through September 2023. The 
state of California classifies a “water-year type” 
based on the total amount of unimpaired runoff 
in million acre-feet within a water year for both 
the Sacramento and San Joaquin valleys (CDEC 
2021). The five categories of water year type 
include, in order of decreasing runoff: wet, above 
normal, normal, dry, and critical. Both valleys 
have different metrics for classifying water-
year type and can differ within the same water 
year (CDEC 2021). This study took place across 
2 water years (2013 and 2014) which had water 
year type designations of dry and critical for 
the Sacramento Valley and critical and critical 
for the San Joaquin Valley. Although the Delta 
extends into both valleys, environmental studies 
taking place in the Delta generally refer to metrics 
collected in Sacramento Valley because it is more 
influential on Delta water quantity and quality. 
Running sum of precipitation was used as a proxy 
for both water-year type and wet- or dry-season 
delineation. Running sum of precipitation might 
be especially useful for real-time calculations 
where final water-year type is unknown and 
therefore cannot be entered into the model 
as a categorical variable. Running sum of air 
temperature for use as a proxy for position in time 
with respec to the water year. The Twitchell Island 
continuous monitoring station was also used for 
the RSP and RSAT data (station 140; CIMIS 2021; 
Figure 1). 

Model Selection
We explored several data types to develop and 
assess our models: in situ measurements of 
turbidity, fDOM and chlorophyll; the water 
quality variables salinity, water temperature, 
and pH, as well as indicators of environmental 
conditions, such as SR, RSP, and RSAT. To find 
and remove covariable parameters, we performed 
a stepwise removal of parameters with a variance 
inflation factor (VIF) cutoff of 2.5 using the ‘car’ 
package (Fox and Weisberg 2019) in R (R Core 
Team 2021) with the data set that contained each 

testing variable (Figure 2; Kassambara 2019; and 
including sub-region), excluding any record where 
fDOM concentration was null because of sensor 
corrections.

Variance inflation factor testing resulted in the 
successive removal of RSAT, sub-region, SR, 
RSP, and finally fDOM. Because the literature 
review suggested that fDOM was among the 
most important factors that influenced light 
attenuation (in addition to turbidity and fChl; 
e.g., Cloern 1987; Saulquin et al. 2013), we 
decided to keep fDOM in the data set to develop 
the initial model. We ran a stepwise regression 
with backward removal using the ‘caret’ R 
package (Kuhn 2021), which resulted in the most 
performant model (smallest mean-squared error) 
that contained turbidity only. Because fDOM 
was not included in the best-performing model, 
and because it led to collinearity issues and data 
loss, we determined that the records which were 
removed as a result of null fDOM concentrations 
should be brought back into the testing data 
frame, and that fDOM should not be included in 
the final testing data set. 

We brought all testing parameters (with the 
exception of fDOM) back into the data set, 
including those initially removed as a result of 
null fDOM concentration measurements, and 
we repeated VIF testing (n = 242). This resulted 
in the successive removal of sub-region, RSP, 
and SR. The final data set we used to select the 
model included turbidity, fChl, WT, RSAT, pH, 
and salinity. We repeated the stepwise regression 
with backward removal to select the final input 
parameters to the model. The top-performing 
model contained turbidity only. Using the 
turbidity-only model, we removed seven outliers 
where Cook’s distance was greater than three 
times the mean of the Cook’s distance for the 
data set during assumptions testing, and then 
calculated the model coefficients and statistics. 

Model Demonstration Data Set
To test the functionality of the model, we applied 
the formula to two open-sourced demonstration 
data sets that contained turbidity in FNU; 
one spatially rich and one temporally rich. 

https://doi.org/10.15447/sfews.2023v21iss4art5
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The spatially rich data set consisted of a high-
resolution mapping survey which spanned the 
Delta (Bergamaschi et al. 2020). This mapping 
data set represents three “snapshots” in time, 
with surveys occurring in May, July, and October 
of 2018, each lasting 3 days. The temporally rich 
data set consisted of 6 months of tidally filtered 
(Godin 1972) turbidity data in FNU collected at the 
USGS Grizzly Bay continuous monitoring station 
(Figure 1; USGS station number 380631122032201; 
USGS 2023; http://waterdata.usgs.gov/usa/nwis).

For both sets of demonstration data, we estimated 
KdPAR using turbidity measurements (FNU). Each 
mapping survey overlapped in time and location 
with the continuous monitoring station data set. 
For comparison, we used only mapping data 
collected within Grizzly Bay (Figure 1) to compare 
to time-series data collected at the Grizzly Bay 
continuous monitoring station. Mapping data 
were collected at a frequency of one measurement 
per second per parameter, whereas time-series 
data were collected every 15 min. This difference 
in frequency of measurements resulted in few 
records overlapping each survey at the Grizzly 
Bay continuous monitoring station (n = 3 for 
continuous monitoring station data collected 
during the May and July 2018 Delta mapping 
survey, n = 1 during the October 2018 survey, and 
n  > 1,300 for each mapping survey while the boat 
was collecting data within Grizzly Bay). 

Data used for each presented model 
demonstration and comparison (turbidity [FNU], 
and chlorophyll fluorescence [µg L– 1]) were 
averaged within datasets to obtain one value per 
parameter per survey. Daily solar radiation in 
watts per m2 was obtained from the Twitchell 
Island continuous monitoring station (station 140; 
CIMIS 2021; Figure 1). 

Where data were comparable, we used the present 
turbidity-only model to calculate KdPAR. We then 
used our KdPAR estimates in established euphotic-
depth (Kirk 2010) and primary- productivity 
(Jassby et al. 2002) models, comparing mapping to 
time-series predictions.

RESULTS
The final KdPAR model showed a high predictive 
power (R2 = 0.91, RSE = 0.28, p < 0.0001, df = 234, 
F = 2406; Figures 3 and 4). Overall, KdPAR was most 
highly correlated with turbidity, followed by 
fDOM and fChl (Figure 2), each with a positive 
relationship. A slight positive correlation between 
SR and KdPAR is evident, as well as a slight negative 
relationship between pH and KdPAR (Figure 2). 
This correlation generally means that the greater 
the turbidity, fDOM, and fChl concentrations, 
the greater the attenuation of PAR. Water 
temperature, RSP, RSAT, and salinity did not each 
appear to be correlated with KdPAR. It is unclear 
if these relationships hold true throughout the 
Delta, or if small regional shifts occur.

	 	 Eq 2

The final KdPAR model is as follows:

Turbidity values used to create the final model 
ranged from 1.24 to 45.17 FNU, the maximum 
fDOM value was 62.80 QSU (note that the lower 
range of fDOM data were deleted as a result of 
sensor corrections), and fChl ranged from 0.31 to 
6.77 µg L– 1.

Model Demonstration
Using the KdPAR model, we evaluated spatial and 
temporal changes in KdPAR across the Delta. We 

Table 1  Average Turbidity (FNU) and chlorophyll fluorescence 
(fChl; µg L– 1) estimates at the USGS Grizzly Bay continuous monitoring 
station during the May, July, and October Delta mapping surveys, and near 
the same monitoring station using the Delta mapping survey data, and 
daily solar radiation (SR; watts m– 2) at the Twitchell Island continuous 
monitoring station (station 140; CIMIS 2021; Figure 1)

 Grizzly Bay continuous 
monitoring station Data

Delta mapping data 
collected within 

Grizzly Bay

Twitchell 
Island 

continuous 
monitoring 

station

Date
Turbidity 

(FNU)
fChl 

(µg L– 1)
Turbidity 

(FNU)
fChl 

(µg L– 1)
SR 

(watts m– 2)

05/17/2018 111.00 13.62 106.77 18.46 341

7/26/2018 81.66 4.42 64.05 3.44 321

10/17/2018 18.06 2.08 8.52 2.15 185

http://waterdata.usgs.gov/usa/nwis
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input turbidity (FNU) data from Delta-wide water-
quality mapping surveys conducted in May, July, 
and October of 2018 by the USGS (Bergamaschi 
et al. 2020) into the KdPAR model equation. The 
results (Figure 5) depict an ability to predict 
KdPAR granularly across the Delta. These data 
show particular variability within the Suisun, 
Grizzly, and Honker Bay region (Figures 1, 5, 
and 6) which is known to experience elevated and 
variable turbidity caused by wind-wave sediment 
re-suspension (Conomos and Peterson 1977; Burau 
et al. 2000), and thus can be expected to exhibit 
correspondingly elevated and variable KdPAR. 

We also demonstrated this model using tidally 
filtered (Godin 1972) turbidity (FNU) data 
collected at the USGS Grizzly Bay continuous 
monitoring station (Figure 1). Results from this 
temporally rich time-series data set show that 
KdPAR varied by an order of magnitude during the 
mapping periods, with large excursions in KdPAR 
occurring in a matter of days (Figure 6).

These KdPAR values estimated using both 
demonstration data sets display similar trends 
(Figures 5 and 6), where KdPAR decreases by 
survey within the Grizzly Bay area (and thus light 
availability increases; Tables 2 and 3). While the 
KdPAR estimates at the Grizzly Bay continuous 
monitoring station and within Grizzly Bay during 
the three presented Delta-wide surveys show the 

same trend between the two data sources, the 
results are not identical (Table 2).

The average Delta mapping data within Grizzly 
Bay indicates lower average KdPAR estimates 
than average KdPAR estimates at the Grizzly Bay 
continuous monitoring station during the same 
time-frame as the mapping surveys. A likely 
explanation for these differences is that the 
continuous monitoring station represents two 
measurements from one location in Grizzly Bay, 
15 min apart, whereas the survey data is from a 
much larger area within Grizzly Bay and across a 
larger time-frame (more than 30 min per survey). 

Like KdPAR estimates, we can produce Zeu (depth 
at which 1% of surface irradiance remains) 
estimates across the Delta and across time 
wherever turbidity (FNU) data are available, using 
the following formulas (Kirk 2010;): 

	 	 Eq 3

or

	 	 Eq 4

Similarly, where turbidity in FNU, daily average 
SR in watts per m2 (converted to E by multiplying 

Figure 2  Correlation plot between all non-null, numeric parameters 
used as inputs during model testing, including the explanatory 
variable (the light attenuation coefficient; KdPAR), and predictor 
variables turbidity, fluorescence of dissolved organic matter (fDOM), 
fluorescence of chlorophyll (fChl), solar radiation (SR), water 
temperature (WT), the running sum of precipitation (RSP), the 
running sum of air temperature (RSAT), salinity, and pH

https://doi.org/10.15447/sfews.2023v21iss4art5
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Figure 3  Plot of light attenuation 
coefficient (KdPAR) estimates predicted by 
the KdPAR model against observed KdPAR 
estimates by in situ PAR measurements with 
depth

Figure 4  Plot of turbidity against KdPAR, 
with 95% confidence bands
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Figure 6  Continuous KdPAR estimates calculated using tidally-filtered turbidity data produced by the USGS at a continuous monitoring station in Grizzly 
Bay, USGS station number 380631122032201. Bars represents dates where Delta-wide surveys occurred (see Figure 4).

Figure 5  KdPAR estimates calculated across the Sacramento-San Joaquin Delta during three boat-based, high-resolution surveys (May, July, and October) 
conducted in 2018 (Bergamaschi et al. 2020)

https://doi.org/10.15447/sfews.2023v21iss4art3
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by a factor of 0.18; Jassby 2005), and fChl in µg L– 1 
data are available, we can estimate gross primary 
productivity (GPP; mg C m– 2 d– 1; Table 4; where 
0.73 is an approximately constant Delta-specific 
efficiency factor; Jassby et al. 2002; Equations 5 
and 6).

	 	 Eq 5

or

	 	 Eq 6

Altogether, the KdPAR estimates calculated with 
high-resolution mapping data and continuous 
monitoring station turbidity data present 
examples of how the KdPAR model can be applied 
to calculate habitat metrics using commonly 
measured parameters. 

DISCUSSION
Turbid conditions, such as those found in the 
Delta, are thought to be the leading cause 
inhibiting phytoplankton growth and productivity 
in estuaries (Cloern 1987). This study supports 
this hypothesis because turbidity displayed the 
strongest relationship with KdPAR (Figure 2). 
Although the nature of the runoff and discharge 
(e.g., comprising absorptive organic matter) 
that enters the Delta suggests that fDOM may 
influence KdPAR and how turbidity affects 
KdPAR, Fluorescent DOM did not improve the 

model because it was not included in the best-
performing model when included in the testing 
data set. Fluorescent DOM sensor corrections 
resulted in the deletion of all data collected at the 
lower end of the range of fDOM concentration 
measurements (< 15 QSU; n = 108). However, 
higher fDOM concentrations are thought to 
alter how turbidity affects light attenuation, 
so the deletion of the lower end of the fDOM 
measurements should not have muted that effect. 
Considering that fDOM was not included in the 
most parsimonious KdPAR model, the hypothesis 
that fDOM affects the linearity of the relationship 
between KdPAR and turbidity is not supported in 
the context of the Delta, where light absorption by 
fDOM may not be substantial. 

Chlorophyll fluorescence was also not included 
in the “best-performing” multivariate model. 
Previous publications have concluded that 
chlorophyll was best suited to model KdPAR in open 
ocean water, and turbidity and fDOM were better 
suited to model KdPAR in nutrient-rich inland water 
(Cloern 1987; Morel 1988; Claustre and Maritorena 
2003; Saulquin et al. 2013). Given that the Delta 
is estuarine, we hypothesized that fChl may be 
influential. However, because the highest fChl 
value was relatively low (6.77 µg L– 1), it is possible 
that fChl may exert a stronger influence on KdPAR 
during periods of elevated fChl, such as during 
an algal bloom. Although there is no consensus 
on a fChl bloom condition threshold (Adams et 
al. 2021) because global bloom dynamics are 
too variable (Dai et al. 2023), fChl ranges in 
the Delta can certainly exceed 6.77 µg L– 1. One 

Table 2 Average KdPAR estimates at the USGS Grizzly Bay continuous 
monitoring station, station number 380631122032201, during the May, 
July, and October Delta mapping surveys and near the same continuous 
monitoring station using the Delta mapping survey data (residual 
standard error = 0.28).	

Survey

Average KdPAR

Grizzly Bay continuous 
monitoring station

Delta mapping data 
collected in Grizzly Bay

May 2018 12.73 ± 0.28 12.27 ± 0.28

July 2018 9.50 ± 0.28 7.57 ± 0.28

October 2018 2.51 ± 0.28 1.46 ± 0.28

Table 3  Average euphotic depth (Zeu) estimates at the USGS Grizzly Bay 
continuous monitoring station, USGS station number 380631122032201, 
during the May, July, and October 2018 Delta mapping surveys and near 
the same continuous monitoring station using the Delta mapping survey 
data 

Survey

Average Zeu (m)

Grizzly Bay continuous 
monitoring station

Delta mapping data 
collected in Grizzly Bay

May 2018 0.36 0.38

July 2018 0.51 0.66

October 2018 1.84 3.16
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USGS survey completed in the spring of 2020 
reported over 400 µg L– 1 in a dead-end slough as 
measured by a Fluoroprobe III (bbe Moldaenke, 
Kiel, Germany; O’Donnell et al. 2023b), although 
median springtime highs rarely exceed 10 µg L– 1 
(Bergamaschi et al. 2020; O’Donnell at al. 2023b). 
Although turbidity sensors pick up light scattered 
by phytoplankton, we recommend that users of 
this model exercise caution when applying the 
formula to data collected during an algal bloom. 
The light absorbed or blocked by phytoplankton 
during a bloom might become more influential 
than turbidity at a high concentration. Research 
to determine the threshold at which this 
relationship changes would be beneficial.

A light-attenuation model for Chesapeake Bay 
created by Xu et al. (2005) was used to determine 
that chlorophyll-a concentration did not highly 
influence light attenuation. They did not provide 
ranges of values used within their testing 
data; however, they did highlight the value of 
producing different models that used different 
conditions. Specifically, Xu et al. (2005) separated 
their model by salinity (as a proxy for fDOM). 
Although our Delta study lacks a low range in 
fDOM concentration measurements from sensor 
corrections, the model did not appear to require 
partitioning because the R2 value is 0.91 using 
turbidity only, even though the presumably low-
fDOM samples were included. However, because 
Xu et al. (2005) recognized a salinity break, we 
caution users against extending this model into 
the highly brackish waters of the San Francisco 
Bay (bay). Conducting a study similar to our study 

in the bay and creating a bay-specific KdPAR model 
would better describe how salinity and fChl 
influence KdPAR further downstream into the 
estuary. The Xu et al. (2005) model demonstrated 
that total suspended solid concentration (like 
turbidity) was the major attenuator of light in 
Chesapeake Bay. Similarly, turbidity is the largest 
local attenuator of light in the Delta, perhaps 
overshadowing any effect by fChl or fDOM. 

Ultimately, a relationship among seasonal or 
weather patterns and KdPAR was not observed in 
the Delta. and this was unexpected because of the 
strong seasonality of light-attenuating substances 
reported in another Chesapeake Bay model (Rose 
et al. 2019). Attenuation values were high in 
the spring and decreased through summer and 
fall (Figure 6; Table 2), supporting the idea that 
seasonally lower flows result in lower suspended 
sediments. Attenuation values were lowest in the 
fall before increased precipitation restored flow 
and decreased attenuation (Figure 6; Table 2). 
Initially, parameters from open-sourced data sets 
that were meant to act as seasonal and weather-
pattern proxies (RSP and RSAT) were removed 
from the model-selection process because they 
covaried with other input parameters (perhaps 
WT; Figure 2). However, when the VIF testing was 
repeated using the larger data set (reinserting 
records previously removed as a result of fDOM 
corrections and removing fDOM from the testing 
data set), RSAT did not covary enough to be 
removed from the data set used to select the KdPAR 
model. Because data were not collected evenly 
across season or water-year type, ground-truthing 
in rainier years (e.g., where water-year type is 
not dry or critical as in the presented data) and 
in summer months (model tuning data were not 
collected in June-August for this study) might add 
value to understanding how the model performs 
in different conditions. Ultimately, we included 
neither RSAT or WT in the final model, and 
neither was WT. Although seasonal and weather 
patterns influence light availability, turbidity 
measurements accounted for these relationships. 

Similarly, we removed the categorical regional 
variable from both iterations of the model 
testing data set because of covariation. Similar 

Table 4  Average gross primary productivity (GPP) estimates at the 
USGS Grizzly Bay continuous monitoring station, USGS station number 
380631122032201, during the May, July, and October 2018 Delta mapping 
surveys and near the same continuous monitoring station using the Delta 
mapping survey data

Survey

Average GPP (mg C m-2 d-1)

Grizzly Bay continuous 
monitoring station

Delta mapping data 
collected in Grizzly Bay

May 2018 209 302

July 2018 92 94

October 2018 93 165
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to seasonal and weather effects, the relationship 
between turbidity and KdPAR did not vary 
substantially among different locations within 
the Delta, even though measured turbidity varied 
substantially throughout the Delta. 

Estimates of Zeu and KdPAR presented in this 
paper depended only on turbidity, but GPP was 
also a function of fChl and SR. Unlike Zeu and 
KdPAR, GPP estimates did not follow a consistent 
stepwise trend across months (Tables 2 through 
4), even though each input parameter used to 
compute GPP followed a consistent stepwise trend 
across months (Table 1). This demonstration 
underscored that trends in data may be similar, 
but the contributions and ratios of internal, 
external, and environmental factors that 
influence the Delta resulted in a more complex 
relationship between GPP and water quality.

The KdPAR model presented here can be applied 
broadly throughout the Delta because the 
model only includes one commonly measured 
input variable (turbidity). Connecting real-time 
surface-level turbidity data from sensors located 
throughout the Delta allows KdPAR to be estimated 
at high temporal resolution (see Figure 6). 
Special studies that involve collecting turbidity 
measurements may also benefit from this model, 
since it offers the possibility of estimating KdPAR 
at a high spatial resolution (see Figure 5). These 
newly available KdPAR estimates can be used to 
improve estimates of productivity throughout the 
Delta, and to improve other water-quality models 
(Cloern 1987; Jassby et al. 2002; Lee et al. 2021). 

CONCLUSIONS
Open-ocean models place high importance on 
phytoplankton (measured by fChl) as a controlling 
factor of light attenuation, but inland-water-body 
models have used parameters such as turbidity 
and fDOM to model light attenuation. Despite 
the expectation that accurately modeling KdPAR 
would require us to account for light attenuation 
by phytoplankton, dissolved organic matter, 
and turbidity, we found that a model using only 
turbidity had the smallest mean-squared error. 
Because the best-performing model contained 

turbidity only, the hypothesis that inland waters 
require different light-attenuation models than 
open-ocean waters is supported. However, 
within the Delta, fDOM does not appear to affect 
turbidity’s influence on KdPAR. It is unclear how 
this relationship would change if measurements 
were collected farther seaward, or if there is 
a cutoff point at which fChl becomes a more 
important or even primary constraint.

Neither regional nor seasonal effects were 
significant variables in the presented model, 
making the model broadly applicable to Delta-
wide forecasting. KdPAR estimates obtained from 
this model may serve many purposes, such as 
predicting phytoplankton productivity, euphotic 
depth, habitat suitability, and water quality, 
among others. Real-time sensor measurements 
for turbidity (and ancillary measurements 
required for primary productivity estimates, 
e.g., fChl and SR) are now available through 
many monitoring networks (e.g., USGS, Bureau 
of Reclamation, San Francisco Estuary Institute, 
California Department of Water Resources). 
Incorporating these real-time data into the 
presented model would facilitate creation of a 
network of continuous KdPAR predictions across 
the Delta, , which could help apply hindcasting 
and forecasting to habitat conditions and primary 
productivity. 
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