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Abstract

Background: Common single nucleotide polymorphisms (SNPs) in proprotein convertase subtilisin/kexin type 1 with
modest effects on PC1/3 in vitro have been associated with obesity in five genome-wide association studies and with
diabetes in one genome-wide association study. We here present a novel SNP and compare its biosynthesis, secretion and
catalytic activity to wild-type enzyme and to SNPs that have been linked to obesity.

Methodology/Principal Findings: A novel PC1/3 variant introducing an Arg to Gln amino acid substitution at residue 80
(within the secondary cleavage site of the prodomain) (rs1799904) was studied. This novel variant was selected for analysis
from the 1000 Genomes sequencing project based on its predicted deleterious effect on enzyme function and its
comparatively more frequent allele frequency. The actual existence of the R80Q (rs1799904) variant was verified by Sanger
sequencing. The effects of this novel variant on the biosynthesis, secretion, and catalytic activity were determined; the
previously-described obesity risk SNPs N221D (rs6232), Q665E/S690T (rs6234/rs6235), and the Q665E and S690T SNPs
(analyzed separately) were included for comparative purposes. The novel R80Q (rs1799904) variant described in this study
resulted in significantly detrimental effects on both the maturation and in vitro catalytic activity of PC1/3.

Conclusion/Significance: Our findings that this novel R80Q (rs1799904) variant both exhibits adverse effects on PC1/3
activity and is prevalent in the population suggests that further biochemical and genetic analysis to assess its contribution
to the risk of metabolic disease within the general population is warranted.
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Introduction

Prohormone convertase 1/3 is a calcium-dependent serine

endoprotease essential for the conversion of a variety of

prohormones and neuropeptide precursors to their bioactive

forms. Human prohormone convertase 1/3 (PC1/3) is encoded by

the gene PCSK1, which is located on chromosome 5 and is

comprised of 14 exons [1]. PC1/3 is expressed in a subset of

endocrine and neuroendocrine tissues, cells equipped with a

regulated secretory pathway. During transit through the secretory

pathway, PC1/3 is first synthesized in the endoplasmic reticulum

(ER) as an inactive 94 kDa zymogen composed of an N-terminal

signal peptide, a prodomain which serves as an intramolecular

chaperone and inhibitor; a catalytic domain which accomplishes

substrate hydrolysis; a P (homo B) domain which contributes to

enzymatic properties; and a carboxyl-terminal (CT) domain

which, when removed by partial or complete in trans proteolytic

processing, results in a much more active, but also less stable,

enzymatic form (reviewed in [2] (Figure 1). PC1/3 is abundantly

expressed in the arcuate and paraventricular nuclei of the

hypothalamus [3,4], tissues that are known to mediate satiety

and hunger signals [5]. Substrates of PC1/3, such as proinsulin,

proglucagon, proghrelin, agouti-related protein, pro-neuropeptide

Y, provasopressin and proopiomelanocortin are responsible for the

regulation of absorption, metabolism and acquisition (appetite) of

nutrients [6,7,8,9,10,11,12,13,14].

Deficiencies in PC1/3 frequently lead to imbalances in

prohormone processing that result in an array of metabolic

phenotypes, previously investigated both in mouse models and in

humans. Three human subjects have been described with an

autosomal recessive disorder (MIM:600955) associated with severe

mutations of PC1/3 resulting in early-onset obesity, hyperphagia,

hypoadrenalism, reactive hypoglycemia, malabsorptive diarrhea,

and hypogonadism [15,16,17]. Interestingly, the PC1/3 null

mouse model, unlike the PC1/3-deficient human, is not obese.

Although of normal weight at birth, PC1/3 null mice have a high

post-natal mortality rate, and those that do survive have a

significant reduction in body mass as compared to wild-type

animals by the age of 6 weeks. The stunted growth of PC1/3 null

mice is believed to be due at least in part to reduced processing of
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growth hormone releasing hormone (GHRH) and thus reduced

circulating levels of growth hormone (GH) [8]. In addition to a

reduction in GHRH, the levels of several key neuroendocrine

peptides such as ACTH, insulin and glucagon-like peptides-1 and -

2 are reduced in these animals due to lack of precursor processing

by PC1/3 [8].

While the PC1/3 null mouse is not obese, a mouse model of

obesity has been generated via introduction of a missense mutation

in PCSK1 at amino acid position 222, near the calcium-binding

pocket in the catalytic domain. This hypomorph mutation resulted

in obesity, hyperphagia and increased metabolic efficiency due to

decreased autocatalytic maturation of the enzyme to smaller

molecular weight forms [18]. Three common SNPs in PCSK1 have

been identified and associated with obesity. All three SNPs

(included in this study for comparison) exhibit moderate effects on

catalytic activity in vitro and on natural substrate processing in rat

pituitary tumor cells [19,20]. Two of the three non-deleterious

SNPs (S690T [rs6235] and Q665E [rs6234]) have been associated

with diabetes-related traits [20,21,22].

In the work presented below, the novel variant

NP_000430.3:p.Arg80Gln (R80Q; rs1799904), identified and

functionally evaluated for the first time here, was compared with

previously described SNPs associated with obesity and/or diabetes

(N221D [rs6232], Q665E/S690T [rs6234/rs6235], Q665E

[rs6234], and S690T [rs6235]) for potentially deleterious effects

on the biosynthesis, secretion and catalytic activity of PC1/3. Our

data suggest that this novel R80Q variant (rs1799904) deserves

further analysis to assess its genetic association with metabolic

diseases such as obesity and diabetes.

Materials and Methods

Databases used and protein structure/function analysis
methods

Alleles that varied from the human reference genome build

GRCh37 [23] were obtained from the dbSNP [24], 1000

Genomes [25], NHLBI [26], and NIEHS [27] datasets and were

merged into a custom SQL database. dbSNP data were compiled

from various sources, with allele frequencies available only for a

subset of variants. The 1000 Genomes dataset was based on both

low coverage whole genome and higher coverage exome

sequencing of 1092 individuals. The NHLBI and NIEHS data

were obtained from exome sequencing of 6500 and 95 individuals

respectively. Population allele frequencies were calculated using

the combined datasets wherever allele counts were present.

Variations in PCSK1 (chr5:95726119-95769847) were identified

and analyzed with the Ensembl Variant Effect Predictor version

2.6 [28] and Ensembl database homo_sapiens_variation_68_37

[29] to determine the effect of the variant on the transcript. Non-

synonymous codon substitutions were analyzed using the SIFT

[23,30,31,32,33], PolyPhen [34,35,36], and Condel [37] models to

estimate the variant’s probable impact on protein structure and

function.

Sanger sequencing of genomic DNA
Genomic DNA from individuals homozygous for two SNPs of

interest was isolated from EBV-infected B cells by the Coriell

Institute and sent to us for sequencing. The HG00596 DNA

sample containing rs1799904 (p.R80Q; (g.5:95764963C.T;

c.239G.A) was obtained from a southern Han Chinese female,

while the N586Tfsx4-containing (g.5:95730696TC.T;

c.1755delG) DNA sample, HG00350, was obtained from a

Finnish female. The primers used for sequencing bidirectionally

were:

Exon 2 (510 bp):

(F) CTCAACCAATTCAACCCAATC;

(R) CCCGTGACACAAGTTTACCTATG; and

Exon 13 (545 bp):

(F) CAGCTTTCCAAGAACACATCC;

(R) CCATGTTTGACTTATTTCCTGC

Expression vector construction/mutagenesis
Flag-tagged human PC1/3, a kind gift of J. W. Creemers [20]

was modified by site-directed mutagenesis using the Stratagene

Figure 1. Domain structure and SNP locations within preproPC1/3. The upward arrows indicate the cleavage sites required for PC1/3
maturation. The downward arrows indicate locations of previously described (black) and novel (purple) SNP. The dashed line between the pro and
catalytic domains represents a primary cleavage site (occurring in the ER) that is required for activation. The dashed line in the middle of the
prodomain indicates the secondary cleavage site (likely cleaved in the trans-Golgi network). The P or Homo B domain following the catalytic domain
is important for the stabilization of the catalytic domain, as well as determining various enzymatic properties. The C-terminal domain plays a role in
efficient routing of PC1/3 to the secretory granules, and contributes to substrate specificity as well as to specific activity and stability.
doi:10.1371/journal.pone.0055065.g001

Characterization of a Novel PCSK1 Variant
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Table 1. Potentially consequential variant alleles in PCSK1.

Pos ID REF ALT Rank cDNA Protein Effect MAF Samples Het Hom

5:95768682 rs201377789 A G 12 65T.C Leu22Pro 0.00033 7690 5 0

5:95764976 G A 12 226C.T Pro76Ser 0.00008 6501 1 0

5:95764968 rs148354360 C A 12 234G.T Arg78Ser SpC 0.00015 6501 2 0

5:95764963 rs1799904 C T 12 239G.A Arg80Gln p 0.00870 1092 17 1

5:95761576 rs200893367 T G 12 344A.C Asp115Ala S 0.00046 1092 1 0

5:95761546 A T 12 374T.A Met125Lys 0.00008 6503 1 0

5:95761545 rs146545244 C T 12 375G.A Met125Ile 0.00038 6503 5 0

5:95759156 G A 12 404C.T Thr135Ile PC 0.00008 6503 1 0

5:95759151 T G 12 409A.C Met137Leu 0.00008 6503 1 0

5:95759098 rs145659863 T G 12 462A.C Lys154Asn S 0.00008 6503 1 0

5:95759093 A G 12 467T.C Ile156Thr SpC 0.00008 6503 1 0

5:95759090 rs200462856 G A 12 470C.T Thr157Met SPC 0.00015 6503 2 0

5:95759036 rs140520429 G A 12 524C.T Thr175Met SPC 0.00026 7595 4 0

5:95759019 rs145592525 A G 12 541T.C Tyr181His SPC 0.00038 6503 5 0

5:95757611 G A 12 593C.T Pro198Leu SPC 0.00008 6503 1 0

5:95751796 rs202203086 G A 12 650C.T Ala217Val SPC 0.00013 7595 2 0

5:95751785 rs6232 T C 12 661A.G Asn221Asp 0.03289 8254 523 10

5:95751745 rs145127903 T A 12 701A.T Lys234Ile SPC 0.00008 6503 1 0

5:95751742 rs183045011 A G 12 704T.C Val235Ala SPC 0.00046 1092 1 0

5:95748134 T C 12 770A.G Asn257Ser S 0.00008 6503 1 0

5:95748123 C T 12 781G.A Val261Met SPC 0.00008 6503 1 0

5:95748122 rs139602265 A G 12 782T.C Val261Ala SPC 0.00008 6503 1 0

5:95748068 rs142673134 C G 12 836G.C Gly279Ala SPC 0.00008 6503 1 0

5:95748035 rs193214131 T C 12 869A.G Tyr290Cys PC 0.00026 7595 4 0

5:95746664 G C 12 909C.G Phe303Leu SPC 0.00008 6503 1 0

5:95746663 rs148617898 C T 12 910G.A Val304Ile pC 0.00038 6503 5 0

5:95746638 rs138879299 C T 12 935G.A Arg312His S 0.00008 6503 1 0

5:95746543 rs189927028 C T 12 1030G.A Ala344Thr P 0.00046 1092 1 0

5:95744026 G A 12 1097C.T Thr366Met S 0.00008 6503 1 0

5:95735742 rs140481124 G C 12 1345C.G Leu449Val SPC 0.00008 6503 1 0

5:95735724 G T 12 1363C.A Pro455Thr SpC 0.00008 6503 1 0

5:95735703 rs151257336 G T 12 1384C.A Pro462Thr SpC 0.00008 6503 1 0

5:95735700 rs143174906 C T 12 1387G.A Glu463Lys 0.00059 7595 9 0

5:95734621 rs149124467 C T 12 1550G.A Arg517Gln pC 0.00015 6503 2 0

5:95734610 G A 12 1561C.T Leu521Phe SpC 0.00008 6503 1 0

5:95734581 A G 3 1588+2T.C - 0.00015 6503 2 0

5:95730719 rs145196120 A G 12 1733T.C Ile578Thr 0.00008 6503 1 0

5:95730638 C T 12 1814G.A Arg605His SPC 0.00008 6503 1 0

5:95730629 G A 12 1823C.T Thr608Met SpC 0.00015 6503 2 0

5:95730597 rs144324144 C G 12 1855G.C Gly619Arg P 0.00008 6503 1 0

5:95730576 G T 12 1876C.A Pro626Thr 0.00008 6503 1 0

5:95729049 rs139453594 T C 12 1918A.G Thr640Ala 0.00145 7595 22 0

5:95729048 rs193015519 G A 12 1919C.T Thr640Ile 0.00013 7595 2 0

5:95729039 rs142453906 G C 12 1928C.G Ser643Cys 0.00008 6502 1 0

5:95729007 rs200614230 G A 12 1960C.T Arg654Trp S 0.00046 1092 1 0

5:95728982 rs148807505 G T 12 1985C.A Ala662Asp S 0.00008 6503 1 0

5:95728974 rs6234 G C 12 1993C.G Gln665Glu 0.24962 7900 2988 478

5:95728898 rs6235 C G 12 2069G.C Ser690Thr 0.23747 7900 2852 450

5:95728877 rs138433207 T G 12 2090A.C Tyr697Ser 0.00008 6503 1 0

Characterization of a Novel PCSK1 Variant
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QuikChange method [38] to introduce the mutations shown in

Figure 1. All mutations were verified by sequencing of the entire

PC1/3 cDNA insert.

Transient transfection of PC1/3 variants
To assess the biosynthesis and secretion profiles of PC1/3

variants in a cell line that does not express endogenous PC1/3,

Ad-293 (Stratagene) HEK cells, plated at a density of 26105 cells

per well in 24-well plates, were transfected with plasmids encoding

either wild-type or variant PC1/3s in triplicate wells. Cells were

transfected with 200 ng of plasmid DNA per well using

Lipofectamine (Invitrogen, Carlsbad, CA). To assess effects in a

regulated neuroendocrine cell line (also lacking expression of

endogenous PC1/3), Neuro-2A cells (ATCC, cat. No. CCL-131)

were transfected in triplicate with the same protocol using

Lipofectamine 2000 (Invitrogen, Carlsbad, CA). For both cell

lines, five hours post-transfection, 1 ml of growth medium was

added to each well and incubation continued for an additional

24 h. Cells were then washed with PBS and 0.3 ml of Opti-MEM

(Invitrogen, Carlsbad, CA) containing 100 ug/ml bovine aprotinin

(Desert Biologicals) was added to each well. Cells were incubated

for an additional 18–24 h before conditioned medium and cells

were harvested. Conditioned medium was analyzed first by

enzyme assay; both cells and medium samples (for HEK cells)

and medium samples (for Neuro- 2A cells) were then subjected to

SDS-PAGE followed by Western blotting using primary antiserum

against the amino terminus of mature mouse PC1/3 [39]. Mouse

monoclonal anti-ß-actin antiserum (Sigma-Aldrich, St. Louis, MO)

was used to assess cellular actin levels as a loading control. Western

blots were then probed with horseradish peroxidase-coupled

secondary antiserum. Visualization of immunoreactive protein

was accomplished using the SuperSignal West Femto Maximum

Sensitivity Substrate kit (Thermo Scientific, Rockford, IL).

Enzyme assay
Enzymatic activity of secreted recombinant PC1/3 proteins

present in conditioned medium obtained from transiently trans-

fected HEK293 cells was measured in triplicate 50 ul reactions in

a 96-well polypropylene plate containing 25 ul of conditioned

medium and final concentrations of 200 uM substrate (pyr-

ERTKR-amc [7-amino-4-methlcoumarin]), 100 mM sodium ac-

etate, pH 5.5, 2 mM CaCl2, 0.1% Brij 35, and a protease

inhibitor cocktail (final concentrations: 1 uM pepstatin, 0.28 mM

TPCK, 10 uM E-64, and 0.14 mM TLCK). Reaction mixtures

were incubated at 37uC and fluorescence measurements (380 nm

excitation, 460 emission) were taken under kinetic conditions every

20 seconds for 1 h in a SpectraMax M2 Microplate Reader.

Maximum rates were obtained from the linear portion of the

kinetic measurement curves. Specific activities of PC1/3 proteins

in the conditioned medium were determined by dividing

maximum rates by band intensities of total secreted immunore-

active protein, each determined in triplicate, and quantified with

an Alphaimager 3300 (Alpha Innotech Corporation, San Leandro,

CA) imaging system.

Results

Analysis of public databases; structure-function analysis
A total of 1020 allelic variants (data not shown) within the

PCSK1 gene were found in the public databases, of which 54 were

potentially consequential splice site or missense variants (Table 1).

Thirty-seven non-synonymous substitutions were predicted to be

possibly or probably deleterious by at least one model (SIFT,

PolyPhen, or Condel, where Condel represents a consensus

modeling program). Two of the three previously described variants

are common, with MAFs of 23.7% for S690T (rs6235) and 25.0%

for Q665E (rs6234), whereas the N221D SNP (rs6232) is less

common (MAF = 3.3%). None of these three variants were

predicted to be deleterious using SIFT, PolyPhen, or Condel. In

contrast, the novel variants that were predicted as ‘‘possibly’’ or

‘‘probably’’ deleterious were unique to one sample or were

observed with very low frequency (minor allele frequencies (MAFs)

of 0.008%–0.87%. In addition we considered a frameshift variant

Table 1. Cont.

Pos ID REF ALT Rank cDNA Protein Effect MAF Samples Het Hom

5:95728863 rs140899352 C T 12 2104G.A Glu702Lys 0.00039 7595 6 0

5:95728862 rs188666266 T G 12 2105A.C Glu702Ala S 0.00046 1092 1 0

5:95728749 G A 12 2218C.T Arg740Trp SPC 0.00008 6503 1 0

5:95728748 rs140941383 C T 12 2219G.A Arg740Gln SPC 0.00008 6503 1 0

5:95728710 rs147016634 T G 12 2257A.C Asn753His SC 0.00046 7595 7 0

The R80Q (rs1799904) variant that differed from the human reference genome and was predicted to have a potentially consequential effect on the transcript was
selected from the dbSNP 137, 1000 Genomes, NHLBI, and NIEHS public datasets. Pos: genomic position in GRCh37; ID: dbSNP 137 rs ID; REF: reference allele; ALT:
alternate allele (variant); Rank: 3 splice_donor_variant, 12 missense_variant; cDNA: position and consequence of variant in cDNA of canonical NM_000439.4 transcript;
Protein: position and consequence of variant in NP_000430.3 protein; Effect: computational prediction of effect on protein structure or function (‘‘S’’ predicted
deleterious by SIFT, ‘‘P’’ or ‘‘p’’ predicted probably or possibly damaging by PolyPhen, ‘‘C’’, predicted deleterious by Condel from a consensus of SIFT and PolyPhen, ‘‘-’’
no prediction); MAF: minor allele frequency across all populations; Samples: total number of individuals genotyped; Het: number of individuals heterozygous for the
variant allele; Hom: number of individuals homozygous for the variant allele. Known, common variants are listed in italics, and the rare novel variant is shown in bold.
doi:10.1371/journal.pone.0055065.t001

Figure 2. Direct Sanger sequencing of genomic DNA from a
subject bearing the Arg80Gln variant.
doi:10.1371/journal.pone.0055065.g002

Characterization of a Novel PCSK1 Variant
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N586TfX4 (g.5:95730696), which exhibited an unusually large

MAF of 6.1% in a previous release of the 1000 Genomes data. We

selected the most common novel variant R80Q (rs1799904;

MAF = 0.87%), and N586TfsX4 for genomic sequencing and

potential functional studies, comparing them with already

described common variants of PC1/3.

SNP validation by sequencing
Genomic DNA from two individuals homozygous for the most

common variants was obtained from the Coriell Institute and

subjected to Sanger sequencing. The DNA sample containing

rs1799904 (R80Q (g.5:95764963C.T; c.239G.A) was found to

be homozygous for the R80Q mutation in exon 2 (Figure 2),

while the N586Tfsx4-containing SNP (g.5:95730696TC.T;

c.1755delG) was determined to be a false positive (i.e. no frameshift

mutation was found in in exon 13) (data not shown).

Secretion and biosynthesis of PC1/3 variants
In order to assess whether the novel variant R80Q (rs1799904)

affected the biosynthesis or secretion of PC1/3, expression vectors

encoding wild-type and variant PCSK1s were transiently transfect-

ed into HEK and/or Neuro-2a cells (both lines lack expression of

endogenous PC1/3). PC1/3 proteins containing the previously

described S690T/Q665E (rs6234/rs6235) pair, as well as the

individual S690T and Q665E SNPs, did not exhibit significantly

altered expression and secretion patterns as compared to wild-type

PC1/3. The N221D (rs6232) substitution resulted in reduced

secretion and cleaved forms of PC1/3 in the medium (Figure 3).

The secretion profile of the R80Q (rs1799904) substitution differed

Figure 3. Western blotting of wild-type and variant PC1/3 proteins expressed in HEK cells. HEK cells were transiently transfected with
empty pcDNA3 (E); pcDNA3 encoding either wild-type PC1/3; or PC1/3 proteins bearing the mutations under study. Western blots of cell lysates and
media from transfected HEK cells were probed with amino-terminally directed PC1/3 primary antiserum for detection of recombinant proteins. The
data shown represent 1 of 3 independent experiments performed in triplicate. Total secreted immunoreactive band intensity values, obtained
through densitometry analysis and used to calculate specific activity for each variant, are represented above the Western blot and shown as the mean
6 S.D.
doi:10.1371/journal.pone.0055065.g003

Figure 4. Specific activities of wild-type and variant PC1/3 proteins, expressed in HEK cells. Enzymatic activities of secreted recombinant
PC1/3 proteins in conditioned medium of transfected HEK cells were compared by measuring maximum cleavage rates using the fluorogenic
substrate pyr-ERTKR-amc during a 1 h kinetic assay. Three replicates per transfection condition were assayed in triplicate, and maximum rates were
divided by band intensity of immunoreactive protein in the spent medium of the same wells from which activity data were derived. Specific activity
values are shown as the mean 6 S.D (n = 3). Data represent one of 3 independent experiments performed in triplicate.
doi:10.1371/journal.pone.0055065.g004

Characterization of a Novel PCSK1 Variant
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from wild-type PC1/3, in that the 74 and 66 kDa lower molecular

weight forms of PC1/3 were absent from the medium (in HEK cell

experiments) or reduced (in Neuro-2a cell experiments), although

the total level of secreted PC1/3 was not reduced.

Catalytic activity of PC1/3 variants
To determine the impact of these variations on PC1/3 catalytic

activity, conditioned medium of HEK cells transfected with either

empty vector, variant PC1/3s, or wild-type PC1/3 was subjected

to a fluorogenic assay. Maximum rates of fluorogenic substrate

cleavage were normalized using the band intensities of secreted

PC1/3s in order to determine the specific activity of each variant

relative to wild-type PC1/3. The S690T/Q665E (rs6234/rs6235)

and S690T (rs6234) amino acid substitutions did not significantly

alter specific activity (95% confidence level; p.0.13). The Q665E

substitution alone resulted in a small but significant 27% decrease

in specific activity as compared to wild-type (p = 0.05). The

N221D (rs6232) substitution decreased specific activity by 36%

(p = 0.02), and the R80Q variation resulted in a 38% decrease

(p = 0.02) (Figure 4). When expressed in Neuro-2a cells, the

R80Q (rs1799904) variant resulted in a 42–48% decrease

(p,0.0001) in activity as compared to wild-type PC1/3 (Figure 5).

Discussion

In studies of European populations, PCSK1 represents the third

most important gene contributing to extreme obesity [40].

Functional studies of certain SNPs associated with obesity that

impose modest or no significant effects on PC1/3 function in vitro

have supported the idea that even slight variations in PC1/3

activity can predispose an individual to higher risk of obesity [20].

Individuals who are compound heterozygotes or are homozygous

for rare severe deleterious mutations in PCSK1 suffer from multi-

dimensional disease states, including small intestinal dysfunction,

hyperphagia and obesity [15,16,17]. Even heterozygous mutations

which result in functional enzymatic changes have been linked to

obesity, despite the presence of a normal allele [40]. The

mechanism by which modest deficiencies in PC1/3 activity can

lead to such profound phenotypes when present on a single allele

remains unknown. A closer look into the complex biochemistry of

commonly found variations of this enzyme may provide answers to

these questions. In this work, we have analyzed public databases

for other less common and rare deleterious variants and identified

the variant R80Q (rs1799904), and have compared the effects of

this variant to those of known polymorphisms.

Consistent with previous studies [19,20], we found that the

amino acid substitutions S690T/Q665E (rs6234/rs6235) did not

significantly alter the specific activity or biosynthesis and secretion

of PC1/3 in HEK cells. The Q665E substitution alone did result

in a slight decrease in specific activity as compared to wild-type

enzyme, and may represent the more detrimental of the two

mutations (S690T/Q665E), which were previously identified as a

paired SNP associated with a higher risk of developing obesity and

diabetes [19,20,21]. In our hands, the N221D (rs6232) substitution

decreased specific activity by a somewhat greater extent than

previously reported, possibly due to differences in enzyme assay

methods [20].

However, of all of the variants we analyzed in HEK cells, the

novel R80Q (rs1799904) variant exhibited the most detrimental

effects on PC1/3 maturation and specific activity. This variant

yielded an 87 kDa product in the conditioned medium that did

not undergo further carboxy-terminal processing to the more

active 74 and 66 kDa forms, resulting in an enzyme with

significantly lower specific activity, similar to the more common

obesity risk N221D (rs6232) variant. This novel R80Q variant

exhibited an even more pronounced decrease in specific activity

when expressed in a cell line containing a regulated secretory

pathway (Neuro-2a), where wild-type PC1/3 is likely able to

achieve greater specific activity through more complete matura-

tion to its lower molecular weight forms within regulated secretory

vesicles. The lower molecular weight forms of PC1/3 exhibit a

different substrate specificity than full-length 87 kDa PC1/3 [41];

this could be an important mechanism for SNPs to exert functional

effects. Another possible functional consequence of altering the

profile of active species is a change in enzyme stability, since

carboxy-terminally truncated species are known to be more labile

than the 87 kDa form (reviewed in [2]). Since the C-terminal

region of PC1/3 has been implicated in targeting of this enzyme to

secretory granules [42,43], altered C-terminal processing may also

result in changes in enzyme distribution. Further studies using

immunocytochemistry in transfected Neuro- 2A cells will shed

additional light on this question.

The proPC1/3 maturation process begins with the autocatalytic

intramolecular cleavage of the pro-domain in the ER at the

primary cleavage site, RSKR107–110 [44,45]. This cleavage yields

an 87 kDa form of PC1/3 that, by analogy with the related

enzyme furin [46] likely remains associated with its own

Figure 5. Western blotting of wild-type and novel R80Q
(rs1799904) variant PC1/3s, expressed in Neuro-2A cells. Panel
A: Neuro-2a cells were transiently transfected with equal amounts of
empty pcDNA3 (E), or pcDNA3 encoding wild-type PC1/3 or the novel
variant R80Q (rs1799904) PC1/3. Western blots of media were probed
using amino-terminally directed PC1/3 primary antiserum. The data
shown represent one of 3 independent experiments performed in
triplicate. Panel B: Specific activities of wild-type PC1/3 and the
R80Q PC1/3 variant. Enzymatic activities of secreted recombinant
PC1/3 proteins in conditioned medium were compared by measuring
maximum cleavage rates using the fluorogenic substrate pyr-ERTKR-
amc during a 1 h kinetic assay. Three replicates per transfection
condition were assayed in triplicate, and maximum rates were divided
by band intensity of immunoreactive protein in the spent medium of
the same wells from which the activity data were derived. Specific
activity values are shown as the mean 6 S.D. Data represent one of 3
independent experiments, each performed in triplicate.
doi:10.1371/journal.pone.0055065.g005
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prodomain through non-covalent interactions until its arrival at

the trans-Golgi network. Although this has not yet been strictly

demonstrated for PC1/3, the PC1/3 prodomain most likely assists

in the folding of the catalytic domain and in enzyme inhibition

during secretory pathway transport [47,48,49,50,51,52]. If prodo-

main processing of PC1/3 occurs similarly to that of furin, trans-

Golgi network protonation of a histidine in the vicinity of the

secondary cleavage site (RRSRR77–81) then results in secondary

site cleavage at R81, followed by dissociation of prodomain

fragments from PC1/3 [53,54]. The inhibitory role of the

prodomain is of particular interest to this study when we consider

the location of the R80Q (rs1799904) substitution within the

secondary cleavage site of the prodomain (Figure 1). Independent

studies have shown that alteration of mouse proPC1/3 prodomain

residues either within or surrounding cleavage motifs can affect

propeptide processing; the in vitro proteolytic conversion of an

R80A mutant propeptide (the same residue as the R80Q variant

studied here) by wild-type enzyme was impaired compared to

wild-type propeptide [44]. Given this finding, our lack of

identification of propeptide-bearing R80Q PC1/3 is puzzling.

We have previously found that a portion of newly synthesized

proPC1/3 is subjected to endoplasmic reticulum- associated

degradation [52]; this might represent the fate of this molecular

species. Collectively, these data support the idea that residues

within the secondary cleavage site, including the novel variant

studied here, contribute to the proper processing of proPC1/3.

The novel R80Q (rs1799904) variant (MAF = 0.87%) is about

one-third as common as the N221D (rs6232) SNP (MAF = 3.3%).

Although less common, the R80Q variant should be subjected to

further analysis to evaluate its influence on insulin sensitivity,

proinsulin conversion and the risk of developing obesity, similarly

to the effect of the N221D (rs6232) SNP [20,22]. We note that 119

individuals in the public datasets have other, less common and

rare variants of PCSK1, most of which are predicted to have some

detrimental effect on protein function. This mutational burden on

the population is not trivial and may also play a role in

susceptibility to obesity or other disorders. The importance of

rare variants in common disorders is not clear at present, but

advances in massively parallel sequencing and computational

analysis may soon shed additional light on this question.

In conclusion, we show that the novel PCSK1 variant R80Q

(rs1799904) exhibits deleterious effects on PC1/3 maturation. This

PC1/3 variant exhibits decreased catalytic activity as compared to

wild-type PC1/3 and to previously described obesity risk SNPs;

therefore, it may contribute to a higher risk of metabolic disease in

the general population. Our results suggest that further study of

less common and rare variations in PCSK1 from both biochemical

and genetic standpoints will be useful in elucidating the

mechanisms by which variant PC1/3s contribute to metabolic

diseases such as obesity and diabetes.
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