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The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar 
boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3 fb−1 of 
data collected in proton–proton collisions at 

√
s = 8 TeV. This search is sensitive to long-lived particles 

that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic 
calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are 
reported on the product of the scalar boson production cross section times branching ratio into long-lived 
neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses 
from 100 GeV to 900 GeV, and a long-lived neutral particle mass from 10 GeV to 150 GeV.

Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The discovery of the Higgs boson [1–3] by the ATLAS and CMS 
experiments [4,5] in 2012 identified the last piece of the highly 
successful Standard Model (SM). Subsequent measurements of the 
Higgs boson branching ratios and couplings, while consistent with 
the SM expectations, allow for a substantial branching ratio to ex-
otic particles. This letter describes a search for decays of the Higgs 
boson and other scalar bosons to non-SM states that in turn decay 
to SM particles.

A number of extensions of the SM involve a hidden sector 
that is weakly coupled to the SM, with the two connected via a 
communicator particle. This letter considers models containing a 
hidden sector with a confining gauge interaction that is otherwise 
invisible to the SM. The communicator is chosen to be a SM-sector 
scalar boson, � [6–9]. The communicator mixes with a hidden-
sector scalar boson, �hs, which decays into detectable SM particles. 
This search considers communicator masses between 100 GeV and 
900 GeV. A � mass close to the mass of the discovered Higgs bo-
son is included to search for exotic decays of the Higgs boson.

A Hidden Valley (HV) model [8,9] is used as the benchmark 
model. The lightest HV particles form an isospin triplet of pseu-
doscalar particles which are called valley pions (πv) because of 
their similarity to the SM triplet. The πv are pair-produced (�hs →
πvπv) and each decays to a pair of SM fermions. The πv possess 
Yukawa couplings to fermions and therefore preferentially decay to 
accessible heavy fermions, primarily bb, cc and τ+τ− .

� E-mail address: atlas.publications@cern.ch.

The lifetime of the πv is unconstrained and could be quite long. 
A long-lived πv can result in signatures that traditional searches 
fail to detect. If a πv decays in the inner detector or muon spec-
trometer, it can be reconstructed as a displaced vertex. However, 
standard vertex-finding algorithms [10] are not likely to recon-
struct it without modification. Likewise, a πv decay deep inside 
the calorimeter is reconstructed as a jet with an unusual energy 
signature that most traditional searches reject as having poor data 
quality. This search focusses on final states where both πv decay 
in the hadronic calorimeter or near the outer edge of the electro-
magnetic calorimeter. Each heavy fermion pair from a πv decay 
is reconstructed as a single calorimeter jet with three character-
istic properties: a narrow radius, no tracks from charged particles 
matched to the jet, and little or no energy deposited in the elec-
tromagnetic calorimeter.

Scalar boson masses ranging from 100 GeV to 900 GeV are 
considered in addition to the Higgs boson’s mass (generated at 
mH = 126 GeV) and πv masses between 10 GeV and 150 GeV are 
studied. Other searches for pairs of displaced vertices generated by 
pair-produced neutral, long-lived particles were performed in AT-
LAS [11] and CMS [12] at the LHC and in D0 [13] and CDF [14]
at the Tevatron. The Tevatron experiments and CMS searched for 
displaced vertices in their tracking system only, which results 
in a corresponding proper decay length range of a few meters. 
CMS also looked at the multi-lepton decay channel, another pos-
sible decay of HV particles. The previous ATLAS analysis, based 
on 7 TeV data, used the muon spectrometer and is sensitive to 
proper decay lengths between 0.5 m and 27 m, depending on 
the benchmark model. No evidence of physics beyond the SM was 
found.

http://dx.doi.org/10.1016/j.physletb.2015.02.015
0370-2693/Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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2. The ATLAS detector

The ATLAS detector [15] is a multi-purpose detector at the LHC, 
consisting of several sub-detectors. From the interaction point (IP) 
outwards there are an inner detector (ID), electromagnetic and 
hadronic calorimeters, and a muon spectrometer (MS). The ID, im-
mersed in a 2 T axial magnetic field, provides tracking and ver-
tex information for charged particles within the pseudorapidity1

(η) region |η| < 2.5. It consists of three different tracking detec-
tors. From small radii outwards, these are a silicon pixel detector, 
a silicon microstrip tracker (SCT) and a transition radiation tracker 
(TRT).

The calorimeter provides coverage over the range |η| < 4.9. It 
consists of a lead/liquid-argon electromagnetic calorimeter (ECal) 
at smaller radii surrounded by a hadronic calorimeter (HCal) at 
larger radii comprising a steel and scintillator-tile system in the 
barrel region (|η| < 1.7) and a liquid-argon system with copper 
absorbers in the endcaps (1.5 < |η| < 3.2). The ECal spans the 
range 1.5 m < r < 2.0 m in the barrel and 3.6 m < |z| < 4.25 m
in the endcaps. The HCal covers 2.25 m < r < 4.25 m in the barrel 
and 4.3 m < |z| < 6.05 m in the endcaps. There is also a forward 
calorimeter (FCal), with coverage between 3.1 < |η| < 4.9, which 
uses copper absorbers in the first layer, and tungsten absorbers in 
the second and third layers, and liquid-argon as the active medium 
in all layers. Muon identification and momentum measurement are 
provided by the MS, which extends to |η| = 2.7. It consists of a 
three-layer system of gas-filled precision-tracking chambers. The 
region |η| < 2.4 is also covered by separate trigger chambers.

A sequential three-level trigger system selects events to be 
recorded for offline analysis. The first level consists of custom 
hardware that implements selection on jets, electrons, photons, 
τ leptons, muons, and missing transverse momentum or large total 
transverse energy. The second and third levels add charged particle 
track finding and refine the first-level selections with progressively 
more detailed algorithms.

3. Data and simulation samples

All data used in this analysis were collected during the 2012 
LHC proton–proton run at a centre-of-mass energy of 8 TeV. Af-
ter data quality requirements are applied, the sample corresponds 
to an integrated luminosity of 20.3 fb−1. The HV Monte Carlo 
(MC) samples are generated with PYTHIA 8.165 [16] and the PDF 
MSTW2008 [17] to simulate gluon fusion gg → � production and 
the �hs decay �hs → πvπv for different � and πv masses (Ta-
ble 1). � masses below 300 GeV are considered low-mass samples 
and the rest are considered high-mass samples. The πv lifetime is 
fixed in each sample to ensure decays throughout the ATLAS de-
tector. The � is simulated in PYTHIA by replacing the Higgs boson 
with the � and having the � decay to πv 100% of the time. The 
� samples are produced with cross sections calculated at next-
to-next-to-leading-logarithmic accuracy in QCD processes and at 
next-to-leading-order in electro-weak processes assuming the �

at each mass has the same properties as the SM Higgs boson [18]. 
After generation the events are passed through a detailed simula-
tion of the detector response with GEANT4 [19,20] and the same 
reconstruction algorithms as are used on the data. GEANT4 needed 
no modification to simulate the signal as all decay particles are SM 

1 ATLAS uses a right-handed coordinate system with its origin at the nominal 
interaction point (IP) in the centre of the detector and the z-axis along the beam 
pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis 
points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ
being the azimuthal angle around the beam pipe. The pseudorapidity is defined in 
terms of the polar angle θ as η = − ln tan(θ/2).

Table 1
The � mass or Higgs boson mass, � gluon fusion production cross section, and 
πv mass of each benchmark Hidden Valley model generated. The cross-sections are 
based on the assumption in the benchmarked model that the � boson produc-
tion mechanism is the same as the Higgs boson production mechanism. The decay 
branching ratios of the πv as a function of the πv mass are listed in the second 
table as determined in the simulation samples.

mH [GeV] σ [pb] πv Mass [GeV]

126 19.0 10, 25, 40

� Mass [GeV] σ [pb] πv Mass [GeV]

100 29.7 10, 25
140 15.4 10, 20, 40
300 3.59 50
600 0.52 50, 150
900 0.06 50, 150

πv Mass [GeV] BR bb [%] BR τ+τ− [%] BR cc [%]

10 70.0 16.4 13.4
20 86.3 8.0 5.6
25 86.6 8.1 5.3
40 86.5 8.5 5.0
50 86.2 8.8 4.9

150 84.8 10.2 4.8

particles. All MC samples are reweighted to reproduce the number 
of interactions per bunch crossing observed in the data.

4. Trigger and event selection

Candidate events are collected using a dedicated trigger, called 
the CalRatio trigger [21], which looks specifically for long-lived 
neutral particles that decay near the outer radius of the ECal or 
within the HCal. The trigger is tuned to look for events contain-
ing at least one narrow jet with little energy deposited in the ECal 
and no charged tracks pointing towards the jet. At the first level 
the trigger selects only narrow jets by requiring at least 40 GeV of 
transverse energy (ET) in the calorimeter in a 0.2 × 0.2 (
η ×
φ) 
region using topological jets [15,22], in contrast to the default al-
gorithm in which the energy in a 0.4 × 0.4 region is summed. The 
40 GeV ET threshold requirement is fully efficient at an offline jet 
ET of 60 GeV. To select jets with a high fraction of their energy 
in the HCal the second level of the trigger requires these narrow 
jets to have log10(EH/EEM) > 1.2, where EH/EEM is the ratio of the 
energy deposited in the HCal (EH) to the energy deposited in the 
ECal (EEM). The trigger also requires no tracks with pT > 1 GeV
in the region 0.2 × 0.2 (
η × 
φ) around the jet axis. The third 
level of the trigger uses the slower but more accurate anti-kt algo-
rithm [23] with R = 0.4 to reconstruct the jet and requires the jet 
to have a minimum of 35 GeV of transverse energy.

The probability (επv ) for a single πv to fire the trigger in sim-
ulated events is shown in Fig. 1, for the (a) barrel and (b) endcap 
region of the calorimeter in several different signal samples. The 
average probability for the low (high) scalar boson masses is about 
20% (55%) for πv decays occurring at radii between 2.0 m and 
3.5 m in the barrel, and about 6% (30%) for πv decays with |z|
between 4.0 m and 5.5 m in the endcaps. The turn-on takes place 
before the inner edge of the HCAL as the log10(EH/EEM) cut al-
lows for a small amount of energy in the ECal. The probability 
decreases towards the outer region of the HCal where too much 
of the energy escapes the HCal to pass the jet ET requirement. 
The efficiency is lower in the endcaps because events tend to not 
satisfy the isolation criteria due to the increased occupancy from 
extra collision events in the same bunch crossing as a hard-scatter 
interaction (pile-up).

Events also contain a reconstructed primary vertex with at 
least three tracks with pT > 1 GeV. Events are rejected if any re-
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Fig. 1. The probability (επv ) for a single πv to pass the trigger as a function of the 
πv (a) radial decay length in the barrel and (b) the z position of the decay vertex 
in the endcaps for several � and πv masses.

constructed jets show evidence of being caused by a beam-halo 
interaction [21]. A missing transverse momentum requirement, 
Emiss

T < 50 GeV, is applied to reject non-collision events, such as 
cosmic rays or beam-halo interactions.

In the offline selection, jets are reconstructed with an anti-kt

algorithm with R = 0.4, starting from calorimeter energy clus-
ters calibrated using the local cluster weighting method [24]. Jets 
are then calibrated using an energy- and η-dependent simulation-
based calibration scheme. Jets are rejected if they do not satisfy 
the standard ATLAS good-jet criteria with the exception of require-
ments that reject jets with small electromagnetic energy fraction 
(EMF) [25]. At least one jet must have fired the CalRatio trigger. 
The jet matching the trigger must pass an ET > 60 GeV require-
ment while a second jet must satisfy an ET > 40 GeV requirement. 
If more than one jet fired the CalRatio trigger then only the leading 
jet is required to have ET > 60 GeV.

Individually, all jets must satisfy |η| < 2.5, have log10(EH/

EEM) > 1.2, and have no good tracks in the ID with pT > 1 GeV
in a region 
R < 0.22 centred on the jet axis. A good track must 
have at least two hits in the pixel detector and a total of at least 
nine hits in the pixel and SCT detectors. Fig. 2(a) compares the 
distribution of the number of good tracks associated with each 
jet in the multi-jet sample (described in the next section) with 
that in jets resulting from simulated πv decays in the HCAL or 
ID. Fig. 2(b) makes the same comparison for the distribution of 

2 
R = √
(
η)2 + (
φ)2.

Fig. 2. Distribution of (a) the number of good tracks (ntracks) with pT > 1 GeV and 

R < 0.2 around the jet axis and (b) the distribution of jet log10(EH/EEM) with 
jet |η| < 2.5, pT > 40 GeV. The dashed histogram is for πv jets decaying in the 
hadronic calorimeter, and the dotted histogram is for πv jets decaying in the ID. 
Both are from the mH = 126 GeV, mπv = 10 GeV sample. The filled histogram is the 
multi-jet data sample used to evaluate the multi-jet contribution to the background. 
Events are required to satisfy Emiss

T < 50 GeV.

log10(EH/EEM) of each jet. The multi-jet data was gathered using 
a prescaled, single-jet trigger with a 15 GeV requirement.

Jets caused by cosmic rays and beam-halo interactions are often 
out-of-time. The jet timing is calculated by making an energy-
weighted average of the timing for each cell in the jet. Each cell 
is defined to have a time of 0 ns if its energy is recorded at a time 
consistent with the arrival of a β = 1 particle from the IP. The tim-
ing of each jet is required to satisfy −1 < t < 5 ns. This cut will 
impact the efficiency for low β πv. Due to the requirement of a 
high-ET jet in this analysis the β-distribution is peaked near 1 for 
low mass � samples. For the high mass � samples the difference 
between m� and mπv results in a large boost for the πv at the 
generated lifetimes. As a result, the inefficiency introduced by the 
timing cut is at worst 1.5% for the considered samples.

The analysis requires that exactly two jets satisfy these require-
ments. The second jet requirement significantly reduces the SM 
multi-jet background contribution. Table 3 lists the final number 
of expected events in each signal MC sample. The final number of 
events selected in data is 24.

5. Background estimation

The largest contribution to the expected background comes 
from SM multi-jet events. Cosmic-ray interactions contribute at a 
much lower level, and beam-halo interactions make a negligible 
contribution.

To estimate the multi-jet background contribution, a multi-jet 
data sample is used to derive the probability that a jet passes the 
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trigger and analysis selection. To obtain a raw background pre-
diction, these jet probabilities are applied to a data sample that 
represents the multi-jet background before application of jet-level 
analysis selection. A correction to account for two-jet correlations 
is applied to this raw prediction to yield the final multi-jet back-
ground estimate.

The multi-jet data sample contains events that pass single-jet 
triggers with an ET threshold of 15 GeV or higher. These trig-
gers were prescaled in 2012 and their effective luminosities range 
between 14.8 nb−1 and 454.1 nb−1. The dataset is representa-
tive of the full 20.3 fb−1 of data collected in 2012 and contains 
events from throughout the data collection period. The events 
are required to pass the analysis Emiss

T requirement and have at 
least two back-to-back (
φ > 2.0) jets with ET > 40 GeV and 
−2.5 < η < 2.5. One jet is required to satisfy the modified ATLAS 
good-jet criteria used by the analysis. The second is used to mea-
sure two probabilities: one, called P , for a jet to pass the trigger 
and the ET > 60 GeV jet requirement and the other, called Q , for a 
jet to satisfy the requirement ET > 40 GeV. For both P and Q the 
jet must also pass the log10(EH/EEM), track isolation, and all other 
analysis jet selection requirements including the modified ATLAS 
good-jet criteria. The probabilities are determined as a function of 
jet ET and η. The jet ET and η dependence is calculated indepen-
dently because the sample is not large. A systematic uncertainty to 
account for any potential correlation is included in the analysis. To 
calculate this systematic uncertainty the change in the mean ET as 
a function of η and the change in the mean η as a function of ET
is measured in the multi-jet data sample. The maximum variation 
is 2% for both ET and η. The ET or η of each jet are systematically 
shifted by this amount as P and Q are recalculated. The new P
and Q distributions are used to estimate the multi-jet background 
as described below, and the maximum variation in the result (6%) 
is used as the systematic uncertainty.

Binned fits of the probabilities as a function of ET are made 
to a Landau function and an exponential function for P and Q , 
respectively. The ET requirement is ignored when fitting to allow 
the curve to best match the distribution’s shape. The fit errors are 
propagated through to the systematic in the multi-jet background. 
The η dependence is strongly correlated with the distribution of 
material in the calorimeters and cannot be well described by any 
simple functional form. Thus the probability is obtained directly 
from the distribution. The P (ET) parameterisation is additionally 
split into leading jet and sub-leading jet samples because the prob-
ability is different for the two types of jets. This effect is also 
present for Q ; however, it is accounted for by the correction for jet 
correlations discussed below. Plots of P (ET) and Q (ET) are shown 
in Fig. 3. The peak present in P (ET) is the result of the trigger 
turn-on for the full trigger chain. The trigger jets are dominated 
by leading jets, and so dominated by the leading jet P .

The probability P is verified using the CalRatio-triggered data. 
The CalRatio-triggered events are required to pass the same event 
selection used to derive the single-jet probabilities as well as the 
requirements for calculating P . The CalRatio-triggered data con-
tains 501 387 events that fired the unprescaled CalRatio trigger and 
passed the required selection, and the single-jet probabilities pre-
dict 513 000 ± 94 000 (statistical error only) events.

To calculate the raw multi-jet background prediction the prob-
abilities P and Q are applied to jets in events selected by the 
15 GeV single-jet trigger. These single-jet probabilities are com-
bined into an event probability using a combinatoric calculation 
that requires at least one jet in the event to fire the trigger and ex-
actly two jets to pass all the jet selection criteria. The event prob-
ability is scaled to account for single-jet trigger prescales, yielding 
a weight for each event. The sum of all weights in the data sample 
yields a raw background prediction of 13.2 ± 2.9 (statistical ⊕ sys-

Fig. 3. The probability, P , that a jet from the multi-jet data sample passes the trig-
ger and all jet requirements including the ET > 60 GeV requirement is shown in (a). 
A Landau function is fitted to the leading and sub-leading jet distributions sep-
arately (solid and dashed lines). The probability, Q , to pass all jet requirements 
including the ET > 40 GeV requirement as a function of jet ET is shown in (b). An 
exponential function is fitted to the distribution (solid line). The ET requirement is 
ignored when fitting to allow the curve to best match the shape of the data, but is 
used explicitly when P and Q are applied to a jet. The multi-jet data was gathered 
using a range of prescaled, single-jet triggers.

tematic error) events. The uncertainty is dominated by the small 
number of jets firing the CalRatio trigger in multi-jet events.

In multi-jet events the log10(EH/EEM) and track isolation val-
ues of one jet are correlated with those of the second jet. If an 
event contains one jet of high log10(EH/EEM), the second jet is 
more likely to have high log10(EH/EEM) as well. Likewise, if one jet 
has no tracks associated with it, the other is more likely to have 
no associated tracks as well. The single-jet probabilities above ig-
nore this correlation because each is calculated independently of 
the log10(EH/EEM) and ntrack of other jets in the event. As a re-
sult, Q is lower than if it were calculated only in events with an 
accompanying low ntrack, high log10(EH/EEM) jet.

A scale factor to account for the correlation is calculated from 
the multi-jet data sample and the CalRatio-triggered data sample 
by examining numbers of events in regions in the log10(EH/EEM)

and number-of-tracks (ntrack) plane that are outside the signal re-
gion (log10(EH/EEM) > 1.2 and ntrack = 0). The log10(EH/EEM) bin-
ning is chosen such that binning is uniform in EMF.3 A range from 
0 to 7 was used for ntrack. The regions outside the signal region are 
expected to have very little signal contamination.

In each region the ratio of the number of events observed in the 
CalRatio-triggered data to the raw prediction is calculated. Two se-
ries of ratios are calculated, one as a function of log10(EH/EEM)

and one as a function of ntrack. To determine the trend in the ra-

3 log10(EH/EEM) = log10((1 − EMF)/EMF).
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tio as a function of log10(EH/EEM) the ntrack requirement is held 
constant: a jet is required to have 5 or 6 tracks. The ratio is then 
determined for several non-overlapping ranges of log10(EH/EEM). 
The same procedure is used for ntrack by requiring jets to have 
0.55 < EMF < 0.65. Because the ratio is taken with respect to the 
observed data, this ratio will correct for any normalisation errors 
in P or Q .

Both sets of ratios are fitted to allow extrapolation into the sig-
nal region. The product of the two ratios in the signal region yields 
a scale factor to correct for the correlation between jets. A sys-
tematic error is added to account for the assumption that the two 
ratios are uncorrelated. The calculated scale factor is 1.8 ± 0.5. The 
uncertainty on the scale factor is due to the limited sample size.

To verify the procedure eight other bins on the log10(EH/EEM)

and ntrack plane were chosen and the full background predic-
tion method was applied. Because signal contamination is negli-
gible outside of the signal region, the predicted number of events 
can be directly compared to the number of events in the same 
log10(EH/EEM)–ntrack region in the CalRatio-triggered data. In all 
cases the prediction is consistent with data to within one standard 
deviation.

The final multi-jet prediction is 23.2 ± 8.0 (statistical ⊕ sys-
tematic error) events in the signal region. The uncertainty is dom-
inated by the statistical uncertainty, which is in turn dominated 
by the small number of jets matching the CalRatio trigger in the 
multi-jet data sample. The systematic contribution comes from the 
correlation between ET and η as well as from the inclusion of a 
requirement on 
φ (not used in the signal selection) in the deter-
mination of P and Q .

Particles from a cosmic-ray shower may pass through and de-
posit energy in the calorimeter without passing through the ID. 
These energy deposits can be reconstructed as trackless jets. The 
overall contribution to the expected background is reduced by the 
jet-timing and Emiss

T requirements.
The cosmic-ray background was studied using a trigger similar 

to the CalRatio trigger, but active only during an empty cross-
ing. Each proton beam is divided up into buckets, most of which 
are filled with protons. An empty crossing occurs when an empty 
bucket in each beam coincides in the centre of the detector, and 
five buckets on either side in each beam are also empty. Data gath-
ered from these empty crossings are used to study backgrounds 
that are not beam related.

The analysis selection, with the exception of the jet-timing re-
quirement and the good-vertex requirement, are applied to all 
events triggered in empty crossings. The −1 < t < 5 ns timing 
requirement is removed to retain more events to give a more accu-
rate determination of the background. A simple scaling can be used 
to predict the expected cosmic-ray event rate within the timing 
window because the arrival time of cosmic-ray muons is uniformly 
distributed. It is found that about 5% of cosmic-ray events firing 
the trigger and containing two jets are events where both jets sat-
isfy the −1 < t < 5 ns requirement.

Two additional corrections are applied to determine the final 
background prediction due to cosmic-ray events. The first accounts 
for the different live-times of the triggers. The number of empty 
crossings is 2.9 times smaller than the number used to collect the 
full data of 20.3 fb−1. The second correction weights each event to 
account for soft tracks due to pile-up and underlying-event effects 
that would have caused the jet to fail the track isolation require-
ment had it occurred in a collision environment. To determine the 
weights a trigger that selects random collision events is used to 
determine the probability as a function of η that a track with 
pT > 1 GeV is present in a 
R < 0.2 cone anywhere in the de-
tector as a function of η. This probability is applied to each jet in 
each event to determine an event weight. The event weights range 

from 0.55 to 0.63. Combining all the corrections results in a pre-
dicted number of cosmic-ray events of 0.3 ± 0.2 (statistical error).

Another possible background contribution comes from a beam-
halo muon that undergoes bremsstrahlung in the HCal. Two selec-
tion criteria reduce this type of background. A jet-timing require-
ment is imposed because most of the jets produced by beam-halo 
interactions are not coincident in time with jets from pp interac-
tions. In addition, events are rejected when track segments in the 
endcap muon chambers, from the entering beam-halo muon, align 
in φ with a jet. These two requirements reduce the background 
considerably with no discernible effect on the signal.

Unpaired isolated crossings, i.e. crossings where only protons 
from a single beam are present and at least three buckets on ei-
ther side of the empty beam’s bucket are also empty, can be used 
to study beam-halo events. To estimate this background, artificial 
events are created by sampling two jets from a collection of jets 
passing both a CalRatio trigger active only during unpaired isolated 
crossings and the leading jet requirements from unpaired isolated 
crossings. All possible pairs of jets are used and the Emiss

T < 50 GeV
requirement is applied to each constructed event. The number of 
jets passing the jet analysis selection and the fraction of con-
structed events satisfying the Emiss

T requirement are combined to 
estimate the background. This method, which also accounts for 
cosmic-ray muon contamination, predicts 0.07 ± 0.07 events. The 
large uncertainty is due primarily to the small number of jets pass-
ing all required cuts.

Backgrounds from combinations of these non-beam interac-
tions, i.e. a beam-halo jet plus a multi-jet, or a beam-halo jet plus 
a jet due to a cosmic-ray muon, were found to be negligible.

6. Systematic uncertainties

Table 2 presents a summary of systematic uncertainties asso-
ciated with the signal sample. The overall uncertainty, taken as 
the sum in quadrature of all positive and negative contributions 
respectively, is listed in the last column. The MC signal samples’ 
statistical uncertainty is shown in Table 3 and it is accounted for in 
the statistical analysis. The overall normalisation uncertainty of the 
integrated luminosity is 2.8% obtained following the same method-
ology as that detailed in Ref. [26] from a preliminary calibration 
of the luminosity scale derived from beam-separation scans per-
formed in November 2012. The uncertainties on the Higgs bo-
son production cross-sections at 

√
s = 8 TeV, which are equal to 

the uncertainties on the � production cross-sections, are about 
10% [18].

The uncertainty on the signal MC samples due to parton dis-
tribution functions (PDF) is calculated by reweighting each event 
using three different PDF sets (MSTW2008nlo68cl [17], CT10 [27], 
and NNPDF2.3 [28]) and their associated error sets. The RMS 
change in acceptance for the error sets of each PDF is calculated 
and combined with the difference in acceptances for each of the 
three PDFs.

Pile-up primarily affects the acceptance by adding extra tracks 
and degrading the track isolation of a jet. All MC samples are 
reweighted to reproduce the observed distribution of the num-
ber of interactions per bunch crossing in the data. To determine 
if pile-up is simulated properly in the MC samples, a direct com-
parison of data and MC multi-jet samples is performed. The jet ET, 
EMF, η, φ, associated tracks and timing distributions as a function 
of the mean number of pile-up interactions are compared in data 
and MC simulation. A 10% systematic uncertainty is assigned to 
the acceptance covers all the observed differences.

The jet energy scale (JES) uncertainty is evaluated as a function 
of the jet EMF and η, following the same strategy used in the in 
situ jet energy intercalibration [24]. The JES is rederived for low 
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EMF jets for this analysis. The relative jet calorimeter response is 
studied by balancing the transverse momenta of dijets. The sys-
tematic uncertainty is obtained by comparing the pT-balance in 
data to the pT-balance in MC samples. This difference is used to 
calculate a difference in the JES in data and MC simulation and is 
propagated to the signal MC samples to get a systematic uncer-
tainty on the acceptance. This study also provides a useful perfor-
mance comparison between data and MC jets that resemble signal 
jets.

The Emiss
T uncertainty accounts for variations in missing trans-

verse momentum scale and resolution [29]. The timing systematic 
accounts for mismodeling of jet timing between MC and data. Both 
of these uncertainties were determined by smearing the associated 
cut to determine the impact on the acceptance.

The simulation of the trigger is verified by comparing the per-
formance of the trigger in data with the performance in MC simu-
lation on the same multi-jet sample used to evaluate the multi-jet 
background. Each trigger requirement is studied individually: the 
jet ET, the log10(EH/EEM), and the track isolation. Each require-
ment is adjusted to make the performance match in data and MC 
events, and the resulting differences in acceptance from the nom-
inal acceptance, for each requirement, are added in quadrature to 
determine the systematic uncertainty.

The simulation of initial state radiation (ISR) cannot be di-
rectly verified because it is difficult to uniquely identify ISR jets 
in data [30]. An incorrect ISR rate in the simulation impacts the 
acceptance by altering the number of jets in the event and by 
altering the boost of the � boson. Each of these is studied in-
dependently. The ISR jet population is altered event by event so 
that the number of ISR jets is halved or doubled (jets in MC sam-
ples are labelled as containing ISR if they contain a gluon with 
pT > 2 GeV). The population of πv jets is not altered by this pro-
cess, but an added ISR jet may overlap with one of the πv jets. The 
effect of a boost caused by an ISR jet is studied by exploiting the 
correlation between the πv jet ET and the � boost. From Ref. [30], 
the � pT spectrum has an uncertainty of 5%, which directly corre-
lates with a 5% uncertainty in the πv jet energy. To calculate the 
systematic uncertainty associated with the boost, the pT of ISR jets 
is conservatively varied by 5% and the change in acceptance is ob-
served.

The changes in acceptance from both sources of ISR uncertainty 
are taken as correlated systematic errors and added to get the total 
systematic for ISR simulation.

An incorrect simulation of final state radiation (FSR) has a neg-
ligible effect on the analysis’ acceptance. FSR can occur in a prompt 
or displaced jet. But even if displaced, the extra jet cannot degrade 
track isolation or deposit extra energy in the ECal if the πv has 
decayed in the HCal.

7. Results and exclusion limits

The global acceptance of the selected event topology in the sig-
nal MC samples is a function of m� , mπv and the proper decay 
length of the πv. At a proper decay length of 1.5 m the accep-
tance ranges from 0.07% to 0.61%. The main efficiency loss is due 
to the low probability that both πv decay inside the calorime-
ter. High mass samples suffer further efficiency loss due to the 
Emiss

T requirement. Table 3 lists the expected number of events 
from all signal MC samples and the background expectation in 
20.3 fb−1. The mH = 126 GeV mass samples use the SM Higgs 
boson cross-sections of σSM = 19.0 pb for the gluon fusion pro-
cess: other production modes are ignored. The number of events 
observed in data, 24, is also shown for comparison. No excess of 
events is observed since the expected background is 23.5 ± 8.0. 
The CLs method [31] is used to derive an upper limit on the 

Table 2
Summary of systematic uncertainties for the � and Higgs boson production cross-
section, jet energy scale, trigger, missing transverse momentum, and the require-
ment on jet timing as a percentage of the signal yield. Systematic errors that have 
common values across samples are not listed (pile-up at 10%, ISR at +2.9

−1.2%, and PDF 
at 2.1%). The last column reports the total systematic uncertainty (including the lu-
minosity and common systematic errors).

Sample 
mH , mπv

[GeV]

H σ
[%]

JES 
[%]

Trigger 
[%]

Emiss
T

[%]
Time 
Cut 
[%]

Total 
[%]

126, 10 +10.4
−10.4

+2.2
−2.7 ±1.1 +5.5

−2.4
+1.6
−6.6

+16.4
−16.7

126, 25 +10.4
−10.4

+1.5
−1.6 ±1.3 +3.1

−1.8
+0.8
−3.3

+15.6
−15.5

126, 40 +10.4
−10.4

+2.6
−6.2 ±1.1 +7.7

−4.6
+1.9
−5.9

+18.2
−16.9

Sample 
m� , mπv

[GeV]

� σ
[%]

JES 
[%]

Trigger 
[%]

Emiss
T

[%]
Time 
Cut 
[%]

Total 
[%]

100, 10 +11.1
−10.6

+2.3
−4.0 ±0.1 +4.6

−3.4
+2.7
−9.5

+16.7
−18.5

100, 25 +11.1
−10.6

+5.5
−3.7 ±1.2 +3.4

−2.5
+1.7
−0.7

+17.0
−15.8

140, 10 +10.1
−10.3

+0.6
−1.1 ±0.5 +4.0

−5.6
+1.9
−6.6

+15.6
−17.2

140, 20 +10.1
−10.3

+1.2
−1.6 ±1.0 +4.0

−3.9
+0.4
−5.0

+15.5
−16.2

140, 40 +10.1
−10.3

+1.3
−1.6 ±1.5 +6.3

−4.6
+1.8
−2.4

+16.5
−15.8

300, 50 +9.6
−10.0

+0.1
−0.3 ±0.3 +9.0

−7.4
+0.5
−3.0

+13.9
−13.3

600, 50 +11.2
−10.1

+0.0
−0.1 ±0.2 +11.7

−11.3
+2.2
−4.4

+17.0
−16.2

600, 150 +11.2
−10.1

+0.2
−0.2 ±0.3 +11.5

−10.2
+2.7
−5.3

+17.5
−15.1

900, 50 +12.8
−11.5

+0.0
−0.1 ±0.1 +12.6

−9.7
+1.0
−3.7

+18.5
−15.9

900, 150 +12.8
−11.5

+0.2
−0.3 ±0.2 +11.8

−10.9
+0.9
−2.5

+18.1
−16.3

σ(�) × BR(� → πvπv). A profile likelihood ratio is used as the 
test statistic and a frequentest calculator is used to generate toy 
data. The likelihood includes a Poisson probability term describ-
ing the total number of observed events. Systematic uncertain-
ties are incorporated as nuisance parameters through their effect 
on the mean of the Poisson functions and through convolution 
with their assumed Gaussian distributions. The number of ex-
pected events in signal MC samples, together with the estimate 
of expected background, the observed collision events and all the 
systematic uncertainties are provided as input for computing the 
CLs value, which represents the probability for the given obser-
vation to be compatible with the signal + background hypothe-
sis.

The acceptance is a function of the � mass, the πv mass and 
πv proper decay length. To extrapolate to the number of expected 
events at different proper decay lengths, a large sample of πv de-
cays is generated in a range from 0 to 50 m and an efficiency 
map as a function of πv boost is used to determine the efficiency 
at each decay length. The resulting efficiencies are then converted 
into the final number of expected events shown in Fig. 4. Finally, 
Figs. 5 and 6 show the observed limit distribution for the three 
126 GeV Higgs samples and for the other � samples respectively. 
The derived 95% confidence level (CL) excluded ranges of proper 
decay length are listed in Table 4 for the mH = 126 GeV samples, 
under the alternative assumptions of a 30% BR or a 10% BR for 
H → πvπv.

8. Summary and conclusions

A search for the decay of a scalar boson in the mass range from 
100 GeV to 900 GeV, including a search for an exotic decay of the 
Higgs boson, to a pair of long-lived neutral particles decaying in 
the ATLAS hadronic calorimeter has been presented. The analysis 
is based on 20.3 fb−1 of pp collisions at 

√
s = 8 TeV collected in 

2012 by the ATLAS experiment at the LHC.
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Table 3
Summary of expected number of signal events, expected background present in the 
data sample, and the observed number of events in 20.3 fb−1. The global acceptance 
is also given. The error on the signal samples is statistical only, the error on the 
expected background is statistical ⊕ systematic. All results are normalised for a 
proper decay length of the πv of 1.5 m. A 100% branching ratio for �hs → πvπv is 
assumed.

Sample 
(mH , mπv [GeV])

Expected 
yields

Global 
acceptance (%)

126, 10 536 ± 23 0.139 ± 0.006
126, 25 941 ± 44 0.244 ± 0.011
126, 40 365 ± 31 0.095 ± 0.008

Sample 
(mH , mπv [GeV])

Expected 
yields

Global 
acceptance (%)

100, 10 440 ±29 0.073 ± 0.005
100, 25 424±37 0.070 ± 0.006

140, 10 525 ±20 0.168 ± 0.006
140, 20 900±37 0.287 ± 0.012
140, 40 641 ±30 0.205 ± 0.010

300, 50 444±11 0.609 ± 0.015

600, 50 35 ±1 0.330 ± 0.010
600, 150 41±2 0.386 ± 0.015

900, 50 3.5±0.1 0.304 ± 0.011
900, 150 4.6±0.2 0.397 ± 0.016

Background Expected events

SM Multi-jets 23.2 ±8.0
Cosmic rays 0.3±0.2
Total Expected Background 23.5 ±8.0

Data 24

Table 4
Ranges of πv proper decay lengths excluded at 95% CL assuming a 30% and a 10% 
BR for a mH = 126 GeV.

MC sample 
mH , mπv

[GeV]

Excluded range 
30% BR H → πvπv

[m]

Excluded range 
10% BR H → πvπv

[m]

126, 10 0.10–6.08 0.14–3.13
126, 25 0.30–14.99 0.41–7.57
126, 40 0.68–18.50 1.03–8.32

No significant excess of events is observed over the background 
estimate. Limits are set on the πv proper decay lengths for dif-
ferent scalar boson and πv mass combinations. For a SM Higgs 
decaying to πv proper decay lengths between 0.10 m and 18.50 m 
assuming a 30% BR are ruled out, and between 0.14 m and 8.32 m 
assuming a BR of 10%. Results for low mass � (100 GeV and 
140 GeV) and high mass � (300 GeV, 600 GeV, and 900 GeV) have 
also been presented as a function of proper decay length.
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