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ABSTRACT OF THE DISSERTATION

A Characterization of Certain Bounded, Convex Domains

by

Dylan Patrick Noack

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2019

Professor Bun Wong, Chairperson

Because the Riemann Mapping Theorem does not hold in several complex variables, it is

of interest to fully classify the simply connected domains. By considering convex, bounded

domains with noncompact automorphism groups, we can de�ne a rescaling sequence based

on the boundary-accumulating automorphism orbit. If this orbit converges nontangentially

we prove the accumulation point is of �nite type in the sense of D'Angelo. This both

provides a partial proof to the Greene-Krantz conjecture and also classi�es such domains as

polynomial ellipsoids.
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Chapter 1

Introduction

The Riemann Mapping Theorem states that up to biholomorphism there are only two simply

connected domains in C. There is the complex plane itself and there is the unit disk.

Speci�cally, any open, simply-connected set that is not all of C is biholomorphic to the set

∆ = {z ∈ C : |z| < 1}. One would hope that this amazing characterization would also hold

true in several variables, but unfortunately this is not the case. Even the relatively simple

examples of the unit ball in C2 and the set ∆×∆ are not biholomorphic. A long-term goal

for the �eld of several complex variables is to generalize the Riemann Mapping Theorem

and ultimately come up with a classi�cation of simply connected domains in Cn.

In the pursuit of this classi�cation we will assume additional hypotheses on our domains

that allow us to use more specialized tools to classify them. For example, consider the group

of self-biholomorphic maps on a domain. We refer to this as the automorphism group. We

can split the domains into those with a compact automorphism group and those with a non-

compact automorphism group. While we will state some results for more general domains,

by far our interest lies in convex, bounded domains with non-compact automorphism group.

We will often assume a smooth boundary as well, though there are reasons to believe a C2

boundary is su�cient.

In the second chapter we will outline some preliminary results. In the third chapter we

will discuss the Kobayashi metric, Gromov hyperbolicity and some important results about
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smoothly bounded convex sets. One of these results will be the main contradiction in the

proof of our main result. In chapter four we discuss automorphism orbits and the Greene-

Krantz conjecture, a conjecture we provide a partial solution to. If proven in full generality

would be a useful tool in further classi�cation of simply connected domains. Finally in

chapter �ve we prove our main result:

Theorem 1.0.1. Let Ω ⊆ Cn be a bounded, convex domain with smooth boundary. Suppose

there exists p ∈ Ω and {φk}k∈N ⊆ Aut Ω such that limk→∞ φk(p) = q for q ∈ ∂Ω and φk(p)

approaches q nontangentially. Then q is of �nite type in the sense of D'Angelo.

We provide a brief sketch here.

1. First we will consider a 2-dimensional slice of Ω and de�ne a rescaling sequence for

those two dimensions.

2. Next we will show there exists a holomorphic disk contained in the boundary of our

rescaled 2-dimensional slice.

3. Then we apply a theorem of Frankel to show that there exists a rescaling sequence on

Ω such that its blow-up also has a disk in its boundary.

4. Our rescaled domain Ω̂ is then shown to be biholomorphic to the original domain Ω.

5. Lastly we show there exists a holomorphic map f : ∆ × ∆ → Ω̂ that is isometric in

one coordinate and isometric along a radius in another (with some error). This will

result in a contradiction.

It follows as a corollary of our main result that:

Corollary 1.0.2. Let Ω ⊆ Cn be a bounded, convex domain with smooth boundary. If there

exists p ∈ Ω and a sequence of automorphisms φk ∈ Aut Ω such that φk(p) → q ∈ ∂Ω

non-tangentially, then Ω is biholomorphic to a polynomial ellipsoid.

This gives us a nice characterization of certain bounded, convex domains.
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Chapter 2

Preliminaries

We begin with some basic preliminaries on several complex variables. Holomorphic functions

in several variables and domains in Cn will be our �rst topics before moving onto pseudo-

convexity. We also discuss the notion of �nite type in the sense of D'Angelo before �nishing

with the methods of rescaling. Readers familiar with all of these topics can safely skip this

chapter, though we suggest reviewing Theorem 2.5.3 as it will be critically important in the

proof of our main result.

2.1 Holomorphic Functions of Several Complex Variables

There are several equivalent de�nitions for a function to be holomorphic in several complex

variables. The one we take is the following:

De�nition 2.1.1. Let Ω ⊆ Cn be an open, connected set. A function f : Ω → C is

holomorphic if, for each j = 1, . . . , n and each �xed z1, . . . , zj−1, zj+1, . . . , zn, the function

ζ 7→ f(z1, . . . , zj−1, ζ, zj+1, . . . , zn)

is holomorphic in the classic one-variable sense on the set

Ω(z1, . . . , zj−1, zj+1, . . . , zn) ≡ {ζ ∈ C : (z1, . . . , zj−1, ζ, zj+1, . . . , zn) ∈ Ω}.
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A function g : Ω→ Cm is holomorphic if πi ◦ g is holomorphic for each 0 ≤ i ≤ m where πi

is the projection map onto the ith coordinate.

Another way to interpret this de�nition would be that for a function to be holomorphic in

several variables, it must be holomorphic in each varaible separately. As mentioned earlier,

there are a few equivalent de�nitions. These should come as no surprise to someone familiar

with single-variable complex analysis.

Theorem 2.1.2. Let Dn(z0, r) = {(z1, . . . , zn) ∈ Cn : |zj − z0| < r, 0 ≤ j ≤ n}, Ω ⊆ Cn be

an open, connected set and f : Ω → C be continuous in each variable separately. Then the

following are equivalent.

(1) f is holomorphic

(2) f satis�es the Cauchy-Riemann equations in each variable separately.

(3) For each z0 ∈ Ω there exists an r = r(z0) > 0 such that Dn(z0, r) ⊆ Ω and f can be

written as an absolutely and uniformly convergent power series

f(z) =
∑
α

aα(z − z0)α

for all z ∈ Dn(z0, r).

(4) For each w ∈ Ω there exists r = r(w) > 0 such that Dn(w, r) ⊂ Ω and

f(z) =
1

(2πi)n

∫
|ζn−wn|=r

· · ·
∫
|ζ1−w1|=r

f(ζ1, · · · , ζn)

(ζ1 − z1) · · · (ζn − zn)
dζ1 · · · ζn

for all z ∈ Dn(w, r).

We point the reader to Krantz [13] for a discussion and proof of the above theorem. While

such a de�nition may not appear to be more than a use of multi-indicies, the introduction

of several variables has drastically changed the �eld. Many results such as the Riemann

Mapping Theorem no longer hold true.

We will discuss such properties of domains in the next section, but �rst we mention our

notion of equivalence in several complex variables.
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De�nition 2.1.3. Let Ω,Ω′ ⊆ Cn be open, connected sets and f : Ω → Ω′ a holomorphic

function. If f is a bijection then we refer to f as a biholomorphism. We refer to Ω and Ω′

being biholomorphic. If Ω = Ω′, we refer to f as an automorphism.

Remark 2.1.4. It is a standard exercise to prove the existence of a holomorphic inverse given

a bijective holomorphic function f.

In later chapters we will further investigate properties of automorphisms. For now denote

the set of automorphisms of Ω ⊆ Cn by Aut Ω.

2.2 Domains in Cn

Like in single-variable complex analysis, we de�ne a domain to be an open, connected set.

Consider a domain Ω and a holomorphic function f de�ned on this domain. From an

analytical perspective, if our function f extends to a larger domain Ω′, there is little reason

to consider Ω. In the same way that we would not study the real function 1
x by looking at

its behavior on [7, 12], we are only interested in studying functions on their maximal domain

of de�nition.

What this means is that if we have a domain Ω such that every holomorphic function

f : Ω → C can extend to some larger domain, there would be little purpose in studying Ω.

Domains that are maximal domains of de�nition for some holomorphic function, however,

would be worth studying. Thus they are referred to as domains of holomorphy. We provide

a formal de�nition below.

De�nition 2.2.1. Ω ⊆ Cn is a domain of holomorphy if there do not exist nonempty open

sets U1, U2 with U2 connected, U2 6⊂ Ω, U1 ⊆ U2∩Ω such that for every holomorphic function

g on Ω, there is a holomorphic function h on U2 such that g = h on U1.

Remark 2.2.2. This de�nition is not usually brought up in a single variable complex text

because in one variable, every domain is a domain of holomorphy. However, in several

complex variables this is not true. The following example of Hartogs [8] should make this

apparent.
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Example 2.2.3. Consider the domain

Ω = {(z1, z2) ∈ C2 : |z1| < 3, |z2| < 3} \ {(z1, z2) ∈ C2 : |z1| ≤ 1, |z2| ≤ 1}.

We will show that every holomorphic function f : Ω→ C extends to the domain

{(z1, z2) ∈ C2 : |z1| < 3, |z2| < 3}.

For z1 �xed, |z1| < 3 we write

fz1(z2) = f(z1, z2) =
∞∑

j=−∞
aj(z1)zj2

where the coe�cients of the Laurent expansion are given by

aj(z1) =
1

2πi

∫
|ζ|=2

f(z1, ζ)

ζj+1
dζ.

Speci�cally, aj(z1) depends holomorphically on z1 by Morera's theorem. But aj(z1) = 0 for

j < 0 and 1 < |z1| < 3. Thus by analytic continuation, aj is identically zero for j < 0. But

then the series expansion becomes
∞∑
j=0

aj(z1)zj2

and this series de�nes a holomorphic function f̂ on {(z1, z2) ∈ C2 : |z1| < 3, |z2| < 3} such

that f̂ |Ω = f . Because f was arbitrary, all holomorphic functions on Ω can be continued to

a larger domain, and thus Ω is not a domain of holomorphy.

Remark 2.2.4. The above example can be used to prove that every isolated singularity in

several complex variables is removable. This is a major di�erence between single-variable

complex analysis and several complex variables.
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One of the �rst problems in several complex variables was �nding a characterization

of domains of holomorphy. It can be shown that any geometrically convex domain, the

de�nition of which we will provide below, is a domain of holomorphy.

De�nition 2.2.5. Let X ⊆ Rn. X is (geometrically) convex if for all x, y ∈ X,

{xt+ (1− t)y : t ∈ [0, 1]} ⊆ X

It would be nice if geometric convexity was a characterization of domains of holomorphy,

but unfortunately the reverse implication does not hold. Any non-convex domain in C

serves as a counter-example. However, convexity is not too far o� from a characterization.

In several complex variables, a notion of �complex� convexity was developed and proved

to characterize domains of holomorphy. This was known as the Levi problem, but before

discussing this problem we must build up some further background.

Since such a problem is a question on whether or not holomorphic functions can extend

to larger domains, it can be useful to describe our domains themselves in terms of functions.

De�nition 2.2.6. Let Ω ⊆ Rn be an open set with Ck boundary. A function ρ : Rn → R

is said to be a de�ning function for Ω if ρ is Ck and

1. ρ(x) < 0 for all x ∈ Ω

2. ρ(x) > 0 for all x 6∈ Ω and

3. ∇ρ(x) 6= 0 for all x ∈ ∂Ω.

A domain is said to have smooth boundary if its de�ning function is smooth in the real

sense. We will refer to a domain as being smoothly bounded if the domain has smooth

boundary and is also bounded.

With this notion of de�ning function, we can come up with an alternate de�nition of

convexity that depends on the di�erential properties of the boundary.
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De�nition 2.2.7. Let Ω ⊂ Rn have C1 de�ning function ρ. Let p ∈ ∂Ω. We consider the

vector w = (w1, . . . , wn) to be tangent to ∂Ω at p if

n∑
k=1

∂ρ

∂xk

∣∣∣∣
p

wk = 0.

In this case we write w ∈ Tp∂Ω.

De�nition 2.2.8. Let Ω ⊆ Rn have C2 de�ning funtion ρ. Let p ∈ ∂Ω. We say that ∂Ω is

convex at p if
n∑

j,k=1

∂2ρ

∂xj∂xk

∣∣∣∣
p

wjwk ≥ 0

for all w = (w1, . . . , wn) ∈ Tp∂Ω. If the inequality is strict we refer to p as a point of strong

convexity.

Example 2.2.9. We mention a few common domains and their de�ning functions. All of

them are convex.June

1. The unit disk in C is given by ∆ = {z ∈ C : |z| − 1 < 0}.

2. The halfplane in C is given by H = {z ∈ C : Imz > 0}.

3. The unit polydisk in Cn is given by

∆n = {(z1, . . . , zn) ∈ Cn : |z1| < 1, |z2| < 1, . . . , |zn| < 1}.

We note for this domain the de�ning function is piecewise smooth.

4. The ball in Cn centered at a of radius r is given by

Br(a) = {(z1, . . . , zn ∈ Cn : |z1|2 + · · ·+ |zn|2 − 1 < 0}.
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2.2.1 Polynomial Ellipsoids

We will �nish o� our discussion of domains with a speci�c class called polynomial ellipsoids.

It will follow as a corollary of our main result that domains satisfying certain properties

belong to this class. Given m = (m1, . . . ,mn) ∈ Zn≥0 we can de�ne a weight function

wtm : Zn≥0 → Q by

wtm(α) =
n∑
i=1

αi
2m

.

De�nition 2.2.10. A domain Ω is called a polynomial ellipsoid if

Ω = {(w, z) ∈ C× Cn : |w|2 + p(z) < 1}

where p(z) : Cn → R is a polynomial such that there exists an m ∈ Zn≥0 so that

p(z1, . . . , zn) =
∑

wtm(α)=wtm(β)=0.5

Cα,βz
αzβ.

Example 2.2.11. The domain

{(w, z) ∈ C2 : |w|2 + |z|2m < 1}

is a polynomial ellipsoid for all integers m ≥ 1.

2.3 Pseudoconvexity

In the early 20th ceuntury a large amount of research activity was invested in classifying

domains of holomorphy. In this section we will describe the notion of pseudoconvexity, which

can be thought of as a compexi�ed de�nition of convexity. Pseudoconvexity is the typical

classi�cation taken today. A longer disussion of psuedoconveity and the Levi problem can

be found in [13]. We start with the following de�nition.
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De�nition 2.3.1. Let Ω ⊆ Cn. We refer to a function φ : Ω → R ∪ {−∞} as being

plurisubharmonic if it is upper semi-continuous and given any complex line {a + bz} the

function that sends z 7→ φ(a+ bz) is subharmoinc on the set {z ∈ C : a+ bz ∈ Ω}.

Another way to think about the above de�nition is that a function is plurisubharmonic

if it is subharmonic on any complex line cutting through the domain. The connection to

convexity here should be apparent. With this we can de�ne (Hartogs) pseudoconvexity.

De�nition 2.3.2. A domain Ω is (Hartogs) pseudoconvex if there exists a continuous

plurisubharmonic function φ de�ned on Ω such that, given any r ∈ R the set {z ∈ Ω :

φ(z) < r} is relatively compact.

It turns out that with this de�nition, we have the following theorem of Oka [17].

Theorem 2.3.3 (Levi Problem). Let Ω ⊂ Cn. Ω is a domain of holomorphy if and only

if Ω is pseudoconvex.

While we have stated this theorem quite brie�y, it is a culmination of decades of research.

The development of a characterization of domains of holomorphy was a massive undertaking

that still has mathematicians interested to this day. Even with more sophisticated tools such

as the ∂−method, the proof of the Levi problem is highly non-trivial.

In the case that we have a domain with a twice-di�erentiable boundary, there is an

equivalent notion of pseudoconvexity that better illustrates how it naturally arises from the

de�nition of convexity.

De�nition 2.3.4. Let Ω ⊆ Cn have C2 de�ning function ρ. Let p ∈ ∂Ω. We say that p is

a point of Levi pseudoconvexity if

n∑
j,k=1

∂2ρ

∂zj∂zk

∣∣∣∣
p

wjwk ≥ 0

for all w ∈ Cn such that
n∑
j=1

∂ρ

∂zj∂zk

∣∣∣∣
p

wj = 0.
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If the inequality is strict, we refer to p as being a point of strong pseudoconvexity. If

every point in the boundary is strongly pseudoconvex, then the domain itself is strongly

pseudoconvex. Otherwise, it is (weakly) pseudoconvex.

The notion of pseudoconvexity is fundamental to the study of several complex variables,

but for our purposes we take the stronger assumption of convexity. The following proposition

follows from the de�nitions:

Proposition 2.3.5. Let Ω ⊂ Cn be a domain with C2 boundary and p ∈ ∂Ω. If ∂Ω is

convex at p, then it is pseudoconvex at p.

2.4 Finite Type

We now discuss an algebro-geometric method of characterizing boundary points. Consider

the following scenario.

Example 2.4.1. Let f(x) = x2 and g(x) = 2 − 2
√

1− x2 be two real-valued functions. It

follows f ′(0) = 0 and g′(0) = 0. Thus they are both tangent to the line y = 0. Furthermore,

by direct calculation it follows f ′′(0) = 2 and g′′(0) = 2. Thus they also have the same

second derivatives.

The signi�cance of this is that f and g have similar geometric behavior around the point

x = 0, up to second derivatives. If we imagine that g describes the boundary of some

domain, this means that we could classify the boundary behavior of this domain by the

�base function� f.

The above is known as order of contact. While order of contact gives us a way to

characterize points on the boundary, we will be using the more general notion of D'Angelo

�nite type [4].

De�nition 2.4.2. Let Ω ⊆ Cn and f : Ω → C be a holomorphic function. If p ∈ Ω, then

the multiplicity of f at p is the least positive integer k such that the kth derivative of f does

not vanish at p. We use the notation νp(f) to denote this least positive k. If g : Ω → Cn,

11



then the multiplicity of g at p ∈ Ω is the minimum of the multiplicities of its component

functions. We may omit the subscript from ν if context makes it apparent.

Remark 2.4.3. In the case where f : Ω → C is not holomorphic, we have an alternative

de�nition of multiplicity. A function f has multiplicity k if

lim
z→0

f(z)

|z|n
= 0

for all n < k.

De�nition 2.4.4. Let Ω ⊆ Cn be a smooth domain and q ∈ ∂Ω. Let ρ be a de�ning function

for Ω in a neighborhood of q. We say that q is of �nite type C in the sense of D'Angelo if

sup
f

{
ν(ρ ◦ f)

ν(f)

}
= C <∞

where f ranges through nonconstant holomorphic curves with f(0) = q. If every point

q ∈ ∂Ω is of �nite type, we say Ω is a �nite type domain. If C =∞ we refer to the domain

as being an in�nite type domain and the point q as a point of in�nite type.

It can be di�cult to explicitly calculate the type of a given domain, even simple domains

like the unit ball. Needing to consider arbitrary holomorphic curves is the source of such

di�culty, but there are results that ease the scope of what we need to consider. This is one

reason why we limit ourselves to convex domains in our main result. Consider the following

de�nition.

De�nition 2.4.5. Suppose that Ω = {z ∈ Cn : ρ(z) < 0} where ρ is a de�ning function.

We say a point q ∈ ∂Ω has �nite line type L if

sup{ν0(r ◦ `) | ` : C→ Cn is a non-trivial a�ne map and `(0) = q} = L

where L <∞. If L =∞ we say x has in�nite line type.

Remark 2.4.6. Notice that ν0(r ◦ `) ≥ 2 if and only if `(C) is tangent to Ω.
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Another way to think about the above de�nition is that instead of arbitrary holomorphic

curves, we limit ourselves to complex lines in the de�nition of �nite type. Due to a result of

Je�ery McNeal [15], this is su�cient for convex domains:

Theorem 2.4.7. Let Ω ⊆ Cn be a convex domain with q ∈ ∂Ω. Then q is a point of �nite

type if and only if it is of �nite line type.

Now that we can limit our scope to complex lines, we can calculate a few examples

explicitly.

Example 2.4.8. Consider B1(0) ⊆ C2. This has de�ning function ρ(z1, z2) = |z1|2+|z2|2−1.

Consider the line tangent to ∂B1(0) at (1, 0) given by ` : C→ Cn, `(z) = (1, z). It follows

ρ ◦ `(z) = 1 + |z|2 − 1

= zz

and thus ν0(ρ ◦ `) = 2. Any other line is not going to be tangent to (1, 0) and thus will

not have matching �rst partial derivatives. Thus the line type at (1,0) is equal to 2, and

therefore (1,0) is of �nite type. By applying a rotation to the unit ball it follows that every

boundary point is of �nite type, so the entire domain is of �nite type.

Example 2.4.9. Consider ∆2, the polydisk in dimension 2. This domain has local de�ning

function ρ(z1, z2) = |z1|2 − 1 around the point (1, 0). Consider the line ` : C→ Cn given by

`(z) = (1, z). It follows

ρ ◦ `(z) = 12 − 1 = 0

and all derivatives will be 0. Thus ν(ρ ◦ `) =∞, and so (1, 0) is a point of in�nite type.

In this example, the complex line actually overlaps the boundary of our domain. This

implies the existence of a holomorphic disk contained in the boundary of Ω, and in this

instance suggested the existence of a point of in�nite type. This idea will be crucial in later

chapters, but this is not the only way that points of in�nite type come about.

13



Example 2.4.10. The exponentially-�at domain is given by

Ω = {(z1, z2) ∈ C2 : |z1|2 + 2 exp(−|z2|2)− 1 < 0}.

Consider the point (1, 0) and the complex line l(z) = (1, z). Then

ρ ◦ l(z) = 2 exp(−|z|2).

It follows

lim
z→0

2 exp(−|z|2)

|z|n
= 0

for all n ≥ 0, and thus the point 0 is a point of in�nite type. However,

l(C) ∩ ∂Ω = {(1, 0)},

and thus there is no open set where they overlap.

2.5 The Method of Rescaling

Our main result will involve rescaling a domain Ω about a point of in�nite type. This means

constructing a sequence of a�ne transformations Aj and looking at the limit under the local

Hausdor� notion of set convergence.

De�nition 2.5.1. For a set A ⊂ Cn, let Nε(A) be the ε−neighborhood of A under the

standard Euclidean distance. The Hausdor� distance between two compact sets is given by

dH(A,B) = inf{ε > 0 | A ⊂ Nε(B) and B ⊂ Nε(A)}.

We say that a sequence of open sets {Ak} converges to A in the local Hausdor� topology if,

for all R > 0,

lim
k→∞

dH(Ak ∩BR(0), A ∩BR(0)) = 0.
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For notation, if we write Ak → A we mean convergence in the local Hausdorf topology.

If we write (Ak, ak) → (A, a), we mean Ak → A in the local Hausdor� topology and

ak → a ∈ A in the Euclidean metric.

Example 2.5.2. Consider Ω = {z ∈ C : |z−i|2−1 < 0}. This is ∆ shifted up so 0 sits on the

boundary. Let us rescale this domain by the sequence of a�ne transformations An(z) = nz.

Take ζ ∈ C such that Imζ > 0. It follows that for large enough n, ζ ∈ AnΩ. Thus H ⊆ Ω̂.

Furthermore, consider ζ ′ ∈ C such that Imζ ′ < 0. Because every point in Ω had positive

imaginary part and we are rescaling by positive integers, ζ ′ 6∈ Ω̂. Thus Ω̂ = H in the local

Haudsor� topology. While it turns out that ∆ is biholomorphic to H, this example does not

show it.

The most useful results can be gleaned when Ω̂ is biholomorphic to our original domain

Ω. The following theorem of Frankel [5] gives us a condition for when this is true.

Theorem 2.5.3. Suppose that Ω ⊆ Cn is a convex set that does not contain a complex line

in its boundary, K ⊆ Ω is compact and {φk} ⊆ Aut Ω. If there exists a sequence {pk} ⊆ K

and complex a�ne maps Ak such that

Ak(Ω, φkpk)→ (Ω̂, p)

where Ω̂ does not contain a complex line in its boundary, then Ω is biholomorphic to Ω̂.

Example 2.5.4. Consider the unit disk with the following sequence of automorphisms:

φk(z) =
z + k−1

k

1 + k−1
k z

We de�ne the Frankel rescaling sequence as wk(z) = [dφk|0]−1(φk(z) − φk(0)). It follows

limk→∞ φk(0) = 1, so this sequence pushes 0 towards 1. Then the Frankel rescaling map is

given explicitly by the following equation:
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wk(z) = [dφk|0]−1(φk(z)− φk(0))

=

(
1

1− |k−1
k |2

)(
z + k−1

k

1 + k−1
k z
− k − 1

k

)
=

(
1

1− |k−1
k |2

)(
z + k−1

k −
k−1
k − (k−1

k )2z

1 + k−1
k z

)
=

z(1− (k−1
k )2)

(1− |k−1
k |2)(1 + k−1

k z)

=
z

1 + k−1
k z

.

It follows by our above calculations that w(z) = limk→∞wk(z) = z
1+z . Furthermore, wk(0) =

0. This gives us an explicit biholomorphism between the unit disk and the half plane. The

Frankel rescaling sequence can be de�ned on more arbitrary domains. We point the reader

to [5] for further investigation into this rescaling sequence.
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Chapter 3

Geometry of Bounded Convex Sets

In this chapter we will discuss a few tools that allow us to investigate bounded, convex

sets. We will assume a smooth boundary for the duration of this chapter, but having a C2

boundary is su�cient in several of the results. We start our discussion with the Schwarz

lemma from single-variable complex analysis:

Lemma 3.0.1. Let f : ∆ → C be a holomorphic map such that f(0) = 0 and |f(z)| ≤ 1

on ∆. Then |f(z)| ≤ |z| for all z ∈ ∆ and |f ′(0)| ≤ 1. Moreover, if |f(z)| = |z| for some

non-zero z or |f ′(0)| = 1, then f(z) = cz for some c ∈ C with |c| = 1.

It follows from this lemma that

|f ′(z)|
1− |f(z)|2

≤ 1

1− |z|2
.

Before explaining the signi�cance of the above inequality we introduce the de�nition of

Poincaré metric below.

De�nition 3.0.2. The Poincaré metric on the unit disk is de�ned by

K∆(z; v) =
|v|

1− |z|2
.
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It yields a pseudodistance function given by

d∆(z, w) = tanh−1

∣∣∣∣ z − w1− zw

∣∣∣∣ =
1

2
log

(
|1− zw|+ |z − w|
|1− zw| − |z − w|

)
.

Remark 3.0.3. Recall that a pseudodistance or pseudometric is a distance/metric that can

not distinguish points. In other words, it is possible for d∆(x, y) = 0 but x 6= y.

One might notice a similarity between the de�nition of Poincaré metric and the previous

inequality. Indeed it becomes the case that on the unit disk, holomorphic functions are

distance-decreasing with respect to the Poincaré metric. It follows that automorphisms are

thus isometries. This property would be excellent to have on domains other than the unit

disk, and this is what motivated the invention of the Kobayashi metric.

3.1 Kobayashi Pseudometric

The Kobayashi pseudometric is a generalization of the Poincaré metric to more arbitrary

domains Ω ⊆ Cd. Besides the Euclidean metric, this will be our standard way of measuring

distances. The original construction of this metric can be found in [12], but we will be using

the following de�nition instead. Let Hol(U, V ) denote the set of holomorphic functions from

U to V.

De�nition 3.1.1. Given Ω ⊆ Cn, p ∈ Ω and v ∈ Cn, the Kobayashi pseudometric is given

by

KΩ(p; v) = inf{|ζ| | f ∈ Hol(∆,Ω), f(0) = p, f ′(ζ) = v}

Given any two points z, w ∈ Ω, the Kobayashi pseudodistance is given by

dΩ(z, w) = inf
γ

∫ 1

0
KΩ(γ(t), γ′(t))dt

where z, w ∈ Ω and γ : [0, 1]→ Ω is a curve such that γ(0) = z and γ(1) = w.
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It is not always the case that the Kobayashi pseudodistance is an actual distance (in the

sense that dΩ(x, y) = 0 if and only if x = y). A domain is referred to as being Kobayashi

hyperbolic if dΩ is an actual distance and can distinguish points. Not every domain is

Kobayashi hyperbolic as the following example will demonstrate.

Example 3.1.2. Consider (C, dC). For any z, w, there exists a holomorphic map f : ∆→ C

such that f(0) = z and f(r) = w which is nothing but a rescaling and a rotation. However,

we could adjust this rescaling to make r arbitrarily small, and thus dC(z, w) = 0. Therefore

C is not Kobayashi hyperbolic.

Remark 3.1.3. A domain that does not contain any complex lines is Kobayashi hyperbolic.

Thus bounded domains are Kobayashi hyperbolic. Because of this we limit our scope to

such domains, though when dealing with rescalings we will need to verify our new blowup

domain is still Kobayashi hyperbolic.

The value in equipping our domains with the Kobayashi pseudometric is found in its

distance-decreasing property.

Proposition 3.1.4 (Distance-Decreasing Property). Let U, V be domains in Cn and f :

U → V be a holomorphic map. Then

KV (f(p); f ′(v)) ≤ KU (p; v)

and

dV (f(z), f(w)) ≤ dU (z, w).

Proof. Suppose that g : ∆ → U is such that g(0) = p and g′(ζ) = v. Then g ◦ f(0) = f(p)

and g′ ◦ f ′(ζ) = f(v). This implies the following set inclusion:

{|ζ| | h ∈ Hol(∆, U), h(0) = p, h′(ζ) = v} ⊂ {|ζ| | h ∈ Hol(∆, V ), h(0) = p, h′(ζ) = v}.

Thus KV (f(p); f ′(v)) ≤ KU (p; v).
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As for the second inequality, it follows that

dV (f(z), f(w)) = inf
γ

∫ 1

0
KV (f ◦ γ(t), f ′ ◦ γ′(t))dt

≤ inf
γ

∫ 1

0
KU (γ(t), γ′(t))dt

= dU (z, w)

and the proposition is proved.

This implies in the following corollary that the Kobayashi pseudometric is a biholomor-

phic invariant.

Corollary 3.1.5. If U, V are domains in Cn and f : U → V is a biholomorphism, then

KV (f(p), f ′(v)) = KU (p, v)

and

dV (f(z), f(w)) = dU (z, w).

Proof. Apply f−1 to the previous proposition.

Lastly we mention one �nal result on the Kobayashi metric regarding product domains.

Proposition 3.1.6. Let U, V ⊂ Cn be domains. Then for any (u, v), (u′, v′) ∈ U × V,

dU×V ((u, v), (u′, v′)) = max{dU (u, u′), dV (v′, v′)}.

While the Kobayashi metric is a useful tool to use, it is often di�cult to calculate

explicitly. Instead we describe it in terms of estimates in the Euclidean metric. Before

introducting these estimates we describe some common notations.
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3.2 Notations

We describe brie�y some notations that we will be using regarding di�erent metrics.

• dΩ(p, q) denotes the Kobayashi pseudodistance between p and q in a domain Ω.

• dEUC(p, q) denotes the Euclidean distance between p and q in Cn.

• δΩ(p) denotes the Euclidean distance from p to ∂Ω.

• δΩ(p; v) denotes the Euclidean distance from p to ∂Ω in the direction v.

• Our notations for balls will be Br(a) = {z ∈ Cn : dEUC(a, z) < r} for Euclidean balls

of radius r centered at a, and Kr(a) = {z ∈ Ω : dΩ(a, z) < r} for Kobayashi balls of

radius r centered at a.

Remark 3.2.1. Given a real number r > 0 and any domain Ω, Kr(a) ⊆ Ω for a ∈ Ω. This

follows from the de�nition of the Kobayashi metric. A way to visualize the Kobayashi metric

on a domain is to imagine the boundary of the domain being �in�nitely far away.� Points

close to the boundary in a Euclidean sense are, in fact, far away in a hyperbolic sense.

3.3 Kobayashi Estimates

Given an arbitrary domain, it is often di�cult to calculate the Kobayashi metric directly.

Luckily there are a number of estimates relating the Kobayashi metric to the Euclidean

metric we can use instead. The �rst is the following upper bound.

Proposition 3.3.1. Let Ω ⊆ Cn be a domain, z ∈ Ω and v ∈ Cn. Then

KΩ(z; v) ≤ ‖v‖
δΩ(z; v)

Proof. Let D be the largest open disk contained in {z + Cv} ∩ Ω. Then δΩ(z; v) = δD(z).

Since translations, dilations and rotations are biholomorphisms we may assume the following:
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z = 0, v = (v1, 0, . . . , 0) and D = ∆. Thus by the distance-decreasing property of the

Kobayashi metric (with the inclusion map) it follows:

dΩ(z, v) ≤ dD(0, v) = |v1| =
|v1|
δD(0)

=
‖v‖

δΩ(z, v)

There also exists a similar lower bound in the case of convex domains, so we would be

remiss not to include it. Before that we mention the de�nition of the Poincaré metric on

the half-plane.

De�nition 3.3.2. For z ∈ H and v ∈ C, the Poincaré metric for the upper half plane H is

given by

KH(z; v) =
|v|

2Imz

Since there exists a biholomorphism between the unit disk and the upper half plane, it

can be shown that the two metrics coincide. With this de�nition, we can prove the following

estimate:

Proposition 3.3.3. Let Ω ⊆ Cn be a convex domain, z ∈ Ω and v ∈ Cn. Then

KΩ(z; v) ≥ 1

2

‖v‖
δΩ(z; v)

Proof. Take x ∈ ∂Ω so that δΩ(z; v) = dEUC(z, x). Via rotation and translation, we can

assume x = 0, z = (z1, 0, · · · , 0) and v = (v1, 0, · · · , 0) and Ω ⊂ {z ∈ Cn : Imz1 > 0}. Let

π : Cn → C be the projection onto the �rst coordinate. Then

KΩ(z; v) ≥ KπΩ(z1, v1) ≥ KH(z1, v1) =
|v1|

2Imz1
≥ |v1|

2|z1|
=

|v|
δΩ(z; v)

This next estimate gives a lower bound when we have two colinear points [20]. This

estimate is crucial in the proof of our main result.
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Theorem 3.3.4. Suppose Ω ⊂ Cn is an open convex set and p, q ∈ Ω. If L is the complex

line containing p, q and ξ ∈ L \ L ∩ Ω then

1

2
log

(
‖p− ξ‖
‖q − ξ‖

)
≤ dΩ(p, q)

Proof. Since p, q and ξ are all colinear we can apply an a�ne transformation to assume

ξ = 0, p = (p1, 0, · · · , 0), q = (q1, 0, · · · , 0), and Ω ⊂ {(z1, · · · , zd) ∈ Cn : Imz1 > 0}. If

π1 : Cn → C is the projection onto the �rst coordinate then we have

dΩ(p, q) ≥ dπ1(Ω)(p1, q1)

≥ dH(p1, q1)

=
1

2
arccosh

(
1 +

|p1 − q1|2

2Imp1Imq1

)
≥ 1

2
arccosh

(
1 +

(|p1| − |q1|)2

2|p1||q1|

)
=

1

2
arccosh

(
|p1|
2|q1|

+
|q1|

2|p1|

)
=

1

2

∣∣∣∣ log

(
|p1|
|q1|

)∣∣∣∣
=

1

2
log

(
‖p− ξ‖
‖q − ξ‖

)

We provide one last lower bound used in numerous results in [21] and is particularly

useful for the �eld. Let TC
x ∂Ω denote the complex tangent plane of ∂Ω at x ∈ ∂Ω.

Lemma 3.3.5. Suppose Ω ⊆ Cn is a bounded, convex domain with C1 boundary, x, y ∈ ∂Ω

and TC
x ∂Ω 6= TC

y ∂Ω. Then there exists ε > 0 and C ≥ 0 such that

KΩ(p, q) ≥ 1

2
log

1

δΩ(p)
+

1

2
log

1

δΩ(q)
− C

when p, q ∈ Ω, dEUC(p, TC
x ∂Ω) ≤ ε and dEUC(q, TC

y ∂Ω) ≤ ε.
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3.4 Gromov Hyperbolicity

While there exists a notion of holomorphic curvature, we will instead be using a di�erent

type of curvature known as Gromov hyperbolicity. Rather than using methods of di�erential

geometry, Gromov hyperbolicity uses a more rudimentary method to measure hyperbolic

curvature by measuring the �thinness� of triangles in a given domain.

De�nition 3.4.1. Let (X, d) be a metric space. A curve σ : [a, b]→ X is called a geodesic

if d(σ(t1), σ(t2)) = |t1 − t2| for all t1, t2 ∈ [a, b]. We may sometimes denote σ([a, b]) as

[σ(a), σ(b)]. If α, β ∈ X we may denote a geodesic between them as [α, β] if we are not

concerned with the actual map.

De�nition 3.4.2. Let (X, d) be a metric spae. A geodesic triangle is a choice of three points

pi ∈ X and three geodesic segments σi : [ai, bi]→ X for i = 0, 1, 2 such that σi(ai) = pi and

σi(bi) = p(i+1 mod 3).

De�nition 3.4.3. Let (X, d) be a metric space. We refer to X as a geodesic metric space

if given any two points p, q ∈ X there exists a geodesic σ : [a, b] → X such that σ(a) = p

and σ(b) = q.

De�nition 3.4.4. Let (X, d) be a metric space and consider a geodesic triangle formed

by geodesics [ai, bi] for ai, bi ∈ X and i = 0, 2, 3. Pick wi ∈ [ai, bi]. If there exists a

w′i ∈
⋃
j [aj , bj ] \ [ai, bi] such that d(wi, w

′
i) < δ then we refer to this geodesic triangle as

being δ-thin.

With these four de�nitions we can introduce the idea of Gromov hyperbolicity. In short,

given a metric space X we can de�ne a notion of global hyperbolic curvature without ap-

pealing to tools of di�erential geometry.

De�nition 3.4.5. Let (X, d) be a proper geodesic metric space. X is δ-hyperbolic if every

geodesic triangle is δ-thin. If (X, d) is δ-hyperbolic for some δ > 0 we refer to the space as

being Gromov hyperbolic.
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Example 3.4.6. In the upper half plane H equipped with the Poincaré metric, geodesics

are either half-circles with their centers on the x−axis or vertical rays. Consider the ideal

triangle formed by the geodesics x2 + y2 = 1, x = −1, and x = 1. Then the inscribed circle

is x2 + (y−2)2 = 1. Consider the diameter of this circle between the points (0, 1) and (0, 3).

Since the geodesic between these two points has parameterization γ(t) = (0, et) the distance

between (0, 1) and (0, 3) is given by | log 3 − log 1| = log 3. Because the diameter of the

inscribed circle is log 3, the largest distance between a point on any side and the other two

sides is less than or equal to log 3. As this is an ideal triangle let δ = log 3 and it follows H

is log 3−hyperbolic.

In practice we have an equivalent de�nition of Gromov hyperbolicity known as the four-

point condition. It starts with the Gromov product detailed below.

De�nition 3.4.7. Given a metric space (X, d), let x, y, z ∈ X. Then the Gromov Product

(x|y)z is de�ned as:

(x|y)z =
1

2

(
d(z, x) + d(z, y)− d(x, y)

)
Note that in the Euclidean, hyperbolic or spherical plane, (x|y)z is the distance between

the point z and where the inscribed circle intersects zy or zx (they are the same distance).

Thus the Gromov product gives us a notion of �how wide� a given triangle is in our metric

space. If (x|y)z is large, it implies that z is a long distance from x and y, but x and y are

very close. On the other hand, a small Gromov product implies that z is close to x and y,

x and y of which are far apart.

Theorem 3.4.8. Let (X, d) be a geodesic metric space. (X, d) is Gromov hyperbolic if and

only if given any four points x, y, z, w ∈ X there exists a δ > 0 such that

(x|y)w ≥ min{(x|z)w, (z|y)w} − δ.

This is referred to as the four-point condition.
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Proof. Assume all geodesic triangles are δ-thin and take x, y, z, w ∈ X. Consider ∆wxy.

Pick points aw ∈ [x, y], ax ∈ [w, y] and ay ∈ [w, x] with the following properties:

d(y, aw) = (w|x)y = d(y, ax)

d(x, aw) = (w|y)x = d(x, ay)

d(w, ax) = (x|y)w = d(w, ay)

Since our triangle ∆wxy is δ−thin there exists a t ∈ [w, x] ∪ [w, y] such that d(aw, t) ≤ δ.

Without loss of generality let t ∈ [w, y].

Case 1: d(ax, y) < d(t, y). By the triangle inequality and our choice of points it follows

that

d(t, y) ≤ d(t, aw) + d(aw, y) ≤ δ + d(aw, y) = δ + d(ax, y).

This implies d(t, y)− d(ax, y) = d(ax, t) ≤ δ since every point lies on a geodesic.

Case 2: d(ax, y) ≥ d(t, y). By the triangle inequality and our choice of points it follows

that

d(ax, y) = d(aw, y) ≤ d(t, aw) + d(t, y) ≤ δ + d(t, y).

This implies d(ax, y) = d(ax, t) ≤ δ since all these points lie on a geodesic. This means that

d(aw, ax) ≤ d(aw, t) + d(t, ax) ≤ 2δ.

Now consider the point z and pick t1 ∈ [y, z] and t2 ∈ [x, z] closest to aw. This means

by the δ−thin property, the minimum of these distances is less than δ. Putting everything

together leads us to the following inequality:

min{d(w, t1), d(w, t2)} ≤ min{d(aw, t1), d(aw, t2)}+ d(w, aw)

≤ δ + d(w, aw)

≤ δ + d(w, ax) + d(aw, ax) ≤ 3δ + (x|y)w.
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Now it su�ces to show that min{(x|z)w, (y|z)w} ≤ min{d(w, t1), d(w, t2)}. Observe that

(x|z)w =
1

2
(d(x,w) + d(z, w)− d(x, z))

=
1

2
(d(x,w)− d(x, t1) + d(z, w)− d(z, t1))

≤ 1

2
(2d(w, t1))

= d(w, t1),

and

(y|z)w =
1

2
(d(y, w) + d(z, w)− d(y, z))

=
1

2
(d(y, w)− d(y, t2) + d(z, w)− d(z, t2))

≤ 1

2
(2d(w, t2))

= d(w, t2).

Thus it follows

(x|y)w ≥ min{(x|z)w, (y|z)w} − 3δ.

Now we prove the reverse implication. Let the four-point condition hold for any four

points in X. Let ∆xyz be an arbitrary geodesic triangle. Without loss of geneality let

w ∈ [x, y] and suppose that d(w, [x, z]) ≤ d(w, [y, z]). In the same manner as before we

choose aw, ax, az. Again, without loss of generality we can assume (z|aw)w ≤ (x, aw)w. We

now choose three more points bz, bw and baw on the triangle ∆wzaw in the same manner we

chose aw, ax and az.

By the four-point condition we have

(x|y)w ≥ min{(x|z)w, (y|z)w} − δ = (x|z)w − δ,

but w ∈ [x, y], so we must have (x|y)w = 0. Thus (x|z)w ≤ δ.
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Now observe

2d(ax, baw) = 2(aw|z)w − 2(x|z)w

= d(aw, w) + d(x, z)− d(aw, z)− d(x,w)

= d(aw, x) + d(w, bz) + d(aw, bz)− d(w, az)− d(aw, x)

= d(ax, baw) + d(aw, bw).

This implies d(ax, baw) = d(aw, bw). It follows

d(w, [x, z]) ≤ d(w, aw)

= d(w, bz) + d(bz, aw)

= d(w, baw) + d(aw, bw)

= d(w, ax) + d(baw, ax) + d(aw, bw)

= d(w, ax) + 2d(baw, ax)

≤ (x|z)w + 2δ

≤ 3δ.

Thus every geodesic triangle is 3δ-thin.

The applications of Gromov hyperbolicity are best showcased by the following theorem

of Andrew Zimmer [20].

Theorem 3.4.9. Suppose Ω ⊆ Cn is a bounded domain with smooth boundary. Then (Ω, dΩ)

is Gromov hyperbolic if and only if Ω has �nite type in the sense of D'Angelo.

We �nish our section on Gromov hyperbolicity by providing an example of a space that

is not Gromov hyperbolic.

Example 3.4.10. Consider ∆ ×∆ equipped with the Kobayashi metric. We note that in

each coordinate we are working with the Poincaré metric ρ.
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Let pn = (1− 1
n ,−1+ 1

n) and qn = (−1+ 1
n ,−1+ 1

n). Then there is a sequence of geodesic

triangles ∆0pnqn. By de�nition of pn, qn the geodesic midpoint of [pn, qn] is zn = (0,−1+ 1
n).

We claim that d(zn, [0, pn] ∪ [0, qn])→∞.

Let sn = (s1
n, s

2
n) ∈ [0, pn] ∪ [0, qn]. Without loss of generality assume sn ∈ [0, pn]. We

observe the points ±(1 + 1
n) lie along the geodesic γ : R→ ∆ parameterized as γ(t) = et−1

et+1

which means sn has the form

sn =

(
et − 1

et + 1
,
e−t − 1

e−t + 1

)

for some 0 ≤ t ≤ log(2n− 1). It follows

d(zn, [0, pn] ∪ [0, qn]) = inf
sn
{d(zn, sn)}

= inf
sn
{max{ρ(0, s1

n), ρ(−1 +
1

n
, s2
n)}

= inf
0≤t≤log(2n−1)

{
max{ρ(0,

et − 1

et + 1
), ρ(−1 +

1

n
,
e−t − 1

e−t + 1
)}
}

= inf
0≤t≤log(2n−1)

{max{t, log(2n− 1)− t}}

= min

{
inf

0.5 log(2n−1)≤t≤log(2n−1)
{t}, inf

0≤t≤0.5 log(2n−1)
{log(2n− 1)− t}

}
= 0.5 log(2n− 1)

which goes to ∞ as n→∞. Thus this geodesic triangle is not δ−thin for any δ. Our space

is not Gromov hyperbolic.

3.5 Boundary-Approaching Sequences

We now discuss properties of sequences of points that approach the boundary of a bounded,

convex domain. Because under the Kobayashi metric such a sequence is divergent (even if

it is convergent in the Euclidean metric) it is imperative we develop ways to control that

divergence.
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De�nition 3.5.1. Suppose (X, d) is a metric space and I ⊂ R an interval. A curve σ : I →

X is an (A,B)−quasi-geodesic if

1

A
|t− s| −B ≤ d(σ(s), σ(t)) ≤ A|t− s|+B

for all s, t ∈ I.

The following two results are taken directly from [21]. We reproduce the proofs here

because of their relevance to our main result.

Proposition 3.5.2. Suppose Ω ⊆ Cn is a bounded convex domain with smooth boundary.

Then there exists ε > 0 and K ≥ 1 so that if x ∈ ∂Ω then the curve σx : R≥0 → Ω given by

σx(t) = x+ εe−2tnx

is a K−quasi geodesic.

Proof. Let x ∈ ∂Ω. Because the domain is convex and the boundary is smooth, there exists

some disk Dx ⊆ Ω, Dx
∼= ∆, such that ∂Dx∩∂Ω = {x} and the normal real line attached to

x is the diameter of Dx. Let the radius of Dx be εx and consider infx∈∂Ω{εx}. Because ∂Ω

is compact, if the in�mum were equal to zero then there would be some point x ∈ ∂Ω where

this is attained, which would contradict our �rst statement. Thus there exists some ε > 0

such that for any x ∈ ∂Ω, we can take Dx to have radius ε. If we let σx(t) = x + εe−2tnx

then this describes the path along the radius connecting x to the center of the disk.

Because Dx is biholomorphic to the unit disk ∆, it follows because of the distance-

decreasing property of the Kobayashi metric that

dΩ(σx(t), σx(s)) = dΩ(x+ εe−2tnx, x+ εe−2snx) ≤ d∆(1− e−2t, 1− e−2s).

We can assume without loss of generality that 0 ≤ s < t.
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By the de�nition of the Kobayashi metric on ∆, we know

d∆(1− e−2t, 1− e−2s) =
1

2
log

(
(1 + (1− e−2t))(1− (1− e−2s)

(1− (1− e−2t))(1 + (1− e−2s)

)
=

1

2
log

(
2− e−2t

2− e−2s

)
+

1

2
log

(
e−2s

e−2t

)
≤ 1

2
log 2 + log(et−s)

=
1

2
log 2 + |t− s|.

On the other hand, we note that by Theorem 3.3.4,

dΩ(σx(t), σx(s)) ≥ 1

2

∣∣∣∣ log

(
dEuc(T

C
x ∂Ω, σx(t))

dEuc(TC
x ∂Ω, σx(s))

)∣∣∣∣
=

1

2

∣∣∣∣ log

(
x− (x+ εe−2tnx)

x− (x+ εe−2tnx)

)∣∣∣∣
=

1

2

∣∣∣∣ log

(
e−2t

e−2s

)∣∣∣∣
= |s− t|

≥ |s− t| − 1

2
log 2.

So let K = 1
2 log 2. Then σx is a K−quasi-geodesic for all x ∈ ∂Ω.

Theorem 3.5.3. Suppose Ω ⊆ Cd is a bounded, convex domain with a smooth boundary,

o ∈ Ω and pn, qm ∈ Ω are sequences such that pn → x ∈ ∂Ω and qm → y ∈ ∂Ω. If x = y

then

lim
n,m→∞

(pn|qm)o =∞.

Furthermore, if

lim sup
n,m→∞

(pn|qm) =∞

then TC
x ∂Ω = TC

y ∂Ω.
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Proof. Suppose x = y. By Proposition 3.5.2 there exists a �xed global K, ε, and R such that

given any z ∈ ∂Ω, there exists a K-quasi-geodesic

σz(t) = z + εe−2tnz.

Furthermore, given z, z′ ∈ ∂Ω, d(σz(0), σz′(0)) ≤ R. As in the hypothesis of the theorem,

let pn → x and qm → y.

Let p̂n be the closest point on the boundary to pn. Then there exists sn, tm such that

pn = σp̂n(sn) and qm = σq̂m(tm). Since pn, qm → x then sn, tm →∞. Let us �x T > 0. Then

it follows for sn, tm > T,

2(pn|qm)o = dΩ(pn, o) + dΩ(qm, o)− dΩ(pn, qm)

≥ dΩ(pn, σp̂n(0))− dΩ(o, σp̂n(0)) + dΩ(qm, o)− dΩ(pn, qm)

≥ sn −K −R+ tm −K −R− dΩ(pn, qm)

= sn + tm − 2K − 2R− dΩ(pn, qm).

However,

dΩ(pn, qm) ≤ dΩ(pn, σp̂n(T )) + dΩ(σp̂n(T ), σq̂m(T )) + dΩ(σq̂m(T )), qm)

≤ |sn − T |+K + dΩ(σp̂n(T ), σq̂m(T )) + |tm − T |+K,

which implies (pn|qn)o ≥ T − R − 2K − 1
2dΩ(σp̂n(T ), σq̂m(T )). But the last term tends

to zero since p̂n and q̂m are both approaching x. Since T completely arbitrary, this means

(pn|qm)o →∞.

Now suppose lim supn,m→∞(pn|qm)o = ∞. For sake of contradiction, suppose TC
x ∂Ω 6=

TC
y ∂Ω. Then by the earlier construction,
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dΩ(o, pn) ≤ d(o, σp̂n(0)) + dΩ(σp̂n(0), pn)

≤ R+
1

2
log

ε

δΩ(pn)

= R+ ε+
1

2
log

1

δΩ(pn)
.

Similarly,

dΩ(o, qn) ≤ R+ ε+
1

2
log

1

δΩ(qn)
,

but there exists a C by Lemma 3.3.5 such that

dΩ(pn, qm) ≥ 1

2
log

1

δΩ(pn)
+

1

2
log

1

δΩ(qn)
− C

which together imply 2(pn|qm)o ≤ 2R+ 2ε+C. This is a contradiction since (pn|qm)o tends

to in�nity.

3.6 Two Useful Results on Bounded Convex Domains

To �nish this chapter we provide two results given a bounded, convex domain. We highlight

these results because they are crucial in the proof of our main result. The �rst is a result

by Lee, Thomas and Wong [14].

Theorem 3.6.1. Let Ω ⊆ Cn be a C2 bounded convex domain. Suppose there exists a

sequence {φj} ⊆ Aut Ω such that {φj(z)} accumulates non-tangentially at some boundary

point for all z ∈ Ω. Then there does not exist a non-trivial analytic disk on ∂Ω passing

through any orbit accumulation point on the boundary.

Proof. We point the reader to [14] for a proof of this result.

We also have the following fact about bounded, convex domains proven by Zimmer [21].

This fact will be what we ultimately contradict in the main result.
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Theorem 3.6.2. Suppose Ω ⊆ Cn is a bounded, convex domain with smooth boundary.

Then there does not exist a holomorphic map f : ∆ ×∆ → Ω and an E ≥ 0 such that for

all z, w ∈ ∆,

dΩ(f(z, 0), f(w, 0)) = d∆(z, w)

and for all r, s ∈ [0, 1),

d∆(r, s)− E ≤ dΩ(f(0, r), f(0, s)) ≤ d∆(r, s) + E

The idea of this theorem is that if we have a holomorphic embedding of ∆ × ∆ into a

domain Ω, such an embedding cannot be isometric in one variable and also isometric up to

some error term E along a radius in the other variable.

Proof. Let r, r′ ∈ [0, 1). Fix θ ∈ [0, 2π). It follows

(f(reiθ, 0)|f(r′eiθ, 0)f(0,0) ≥ d∆(reiθ, 0) + d∆(r′eiθ, 0)− d∆×∆((reiθ, 0), (r′eiθ, 0))

= d∆(reiθ, 0) + d∆(r′eiθ, 0)− d(reiθ, r′eiθ)

≥ min{d∆(reiθ, 0), d∆(r′eiθ)}.

Thus it follows limr,r′→1(f(reiθ, 0)|f(r′eiθ, 0)f(0,0) =∞. Thus by the lemma above, there

exists some xθ ∈ ∂Ω such that limr→1 f(reiθ, 0) ∈ TC
xθ
∂Ω ∩ ∂Ω and limr′→1 f(r′eiθ, 0) ∈

TC
xθ
∂Ω∩ ∂Ω. No matter how we approach along the radius, in the image of f that sequence

will always approach the same tangent plane. The same proof works symmetrically along

the real line in the second variable, except with an error term E.

Now take xθ, y ∈ ∂Ω such that limr→1 f(reiθ, 0) ∈ TC
xθ
∂Ω ∩ ∂Ω and

lim
s→1

f(0, s) ∈ TC
y ∂Ω ∩ ∂Ω.
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It follows

(f(reiθ, 0)|f(0, s))f(0,0) ≥ d∆(reiθ, 0) + d∆(0, s)− E − d∆×∆((reiθ, 0), (0, s))

= d∆(reiθ, 0) + d∆(0, s)−max{d∆(reiθ, 0), d∆(0, s)} − E

≥ min{d∆(reiθ, 0), d∆(0, s)} − E

and thus

lim
r,s→1

(f(reiθ, 0)|f(0, s))f(0,0) =∞.

Therefore by the lemma above, TC
xθ
∂Ω = TC

y ∂Ω for all θ. This means that there exists a

single tangent plane TC
y ∂Ω such that given any straight-line approach from 0 to ∂∆ in the

�rst coordinate, its image approaches TC
y ∂Ω∩∂Ω.We can assume without loss of generality

that TC
y ∂Ω = {(z1, · · · , zd) ∈ Cd : z1 = 0} and the Imz1 axis points normally inward at y.

Thus, every point z ∈ Ω has positive imaginary z1 component by convexity.

Let f = (f1, · · · , fd). It follows that, if we �x a ∈ ∆, f1(z, a) is a function of one complex

variable z. Furthermore, because Ω is bounded, f1(z, a) is bounded. Thus, by the Cauchy

Integral Formula and Dominated Convergence Theorem,

f1(z, a) = lim
r→1

1

2π

∫ 2π

0

f1(reit, a)

reit − z
reitdt =

1

2π

∫ 2π

0
lim
r→1

f1(reit, a)

reit − z
reitdt = 0.

However, f1 cannot be the zero function as every point in Ω must have positive imaginary

z1 component. This is a contradiction. Thus, no such map can exist.
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Chapter 4

Automorphism Orbits and the

Greene-Krantz Conjecture

In the previous chapters we laid out several avenues for studying the structure of domains.

We have methods that are based on the boundary, such as pseudoconvexity and �nite type,

and we have methods that depend more on the interior such as Gromov hyperbolicity. In

this chapter we study another such interior avenue: the automorphism group. By looking

at what sorts of self-biholomorphisms exist for a certain domain, we can make conclusions

about its geometry. Furthermore, automorphisms prove to be crucial in the construction of

biholomorphisms between domains and their rescalings.

4.1 Automorphism Groups

In this section we describe a useful connection between the orbits of automorphism groups

and their compactness. We �rst provide the following de�nitions.
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De�nition 4.1.1. Let Aut Ω denote the set of automorphisms of a domain Ω ⊆ Cn. It is

a straightforward exercise to prove that Aut Ω is a group under composition, and thus we

will refer to Aut Ω as the automorphism group of Ω.

De�nition 4.1.2. Let G be a group and X a topological space. Let x ∈ X. The orbit of x

under the action σ is the set

{y ∈ X : σ(g, x) = y for some g ∈ G}.

Given a domain Ω, the automorphism group Aut Ω acts on Ω by the mapping (φ, z) 7→

φ(z).

Example 4.1.3. Consider ∆. By the Schwarz lemma, automorphisms of ∆ are generated

by maps of the form

φ(z) = eiθ
z − a
1− az

where |a| < 1, θ ∈ [0, 2π). The automorphisms of the polydisk ∆n are the maps whose

component functions are automorphisms of ∆.

Example 4.1.4. The automorphisms of the unit ball B1(0) ⊆ Cn are given by the following

two classes of generators. The �rst generator are mappings of the form

φ(z) =

(
z1 − a
1− az1

,

√
1− |a|2z2

1− az1
, · · · ,

√
1− |a|2zn
1− az1

)
.

We draw the reader's attention to the denominator of each term, which is a repetition of

z1. This is the crucial di�erence between the unit ball and the polydisk. The polydisk has

no inter-dependence between its variables, but the unit ball does (though the z1 direction is

arbitrary).

Our second generators are are complex rotations in a �xed variable. The automorphisms

of the unit ball are thus generated by these two types of maps.
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It is not always possible to calculate automorphism groups so explicitly, but on occasion

we can get close. We can use our knowledge of the unit ball to describe the automorphisms

of the exponentially �at domain in the following example.

Example 4.1.5. Let Ω = {(z, w) ∈ C2 : |z|2 + 2 exp(−1/|w|2) < 1}. This is the exponen-

tially �at domain.

First, we quickly demonstrate this domain is circular. Take (z, w) ∈ Ω. If |z′| < |z|, then

|z′|2 + 2 exp(−|w|−2) < |z|2 + 2 exp(−|w|−2) < 1.

Similarly, because 2 exp(−1/|w|2) is an increasing function of |w|, it follows |w′| < |w| implies

|z|2 + 2 exp(−|w′|−2) < |z|2 + 2 exp(−|w|−2) < 1.

So for any (z, w) ∈ Ω, it follows (z′, w′) ∈ Ω for all z′ and w′ such that |z′| < |z| and|w′| < |w|.

Thus this domain is circular.

Because our domain is circular, by Bell and Boas [2] we know automorphisms extend

smoothly to the boundary. Let φk refer to the extended automorphism. Furthermore,

automorphisms cannot send weakly pseudoconvex boundary points to strongly pseudoconvex

ones. Let S denote the set of weakly pseudoconvex boundary points. Because S is precisely

the set of (z, w) ∈ ∂Ω such that w = 0, we can conclude φk(S) = S.

Because φk(S) = S, it must also be true that φ({(z, 0) : |z|2 < 1}) = {(z, w) : |z|2 < 1}

as S is the boundary. Thus, if we restrict φk to the z variable it must be an automorphism

of the unit disk. So we can conclude, after perhaps composing φk with a rotation in the z

variable, it has the following form:

φk(z, 0) =

(
z − ak
1− akz

, 0

)

for some ak ∈ C, |ak| < 1.
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By [13] each φk commutes with rotations in the w variable. Thus, vertical disks fα =

{(α, ζ) : |α|2 + ψ(|ζ|) < 1} are sent to other vertical disks under φk. Furthermore, the

centers are sent to each other.

Because biholomorphisms of di�erent-sized one-variable disks can only rotate and scale,

we can conclude φk must have the form:

φ(z, w) =

(
z − ak
1− akz

, wλk(z)

)

Where λk is holomorphic and by the de�ning function of Ω,

|λk(z)| =
ψ−1

(
1−

∣∣∣∣ z − ak1− akz

∣∣∣∣2)
ψ−1(1− |z|2)

as λk must rescale each disk to the correct radius. By the de�nition of ψ, it follows

ψ−1(t) =
1√

− log(t/2)
.

Thus we have a solid grasp of the behavior of the automorphisms of the exponentially �at

domain.

De�nition 4.1.6. Let Ω ⊆ Cn be a domain and p ∈ Ω. We say that q ∈ Cn is an orbit

accumulation point of Aut Ω if there is a sequence {φk} ⊂ Aut Ω such that φk(p) → q. If

q ∈ ∂Ω then we say q is a boundary orbit accumulation point. We may also refer to the

sequence {φk} as a boundary-accumulating automorphism orbit.

The following theorem follows from classical results of Cartan.

Theorem 4.1.7. Let Ω ⊆ Cn be a bounded domain. Aut Ω admits a boundary orbit accu-

mulation point if and only if Aut Ω is non-compact.

Proof. Suppose there exists p ∈ Ω and a sequence {φk} ⊂ Aut Ω such that φ(p)→ q ∈ ∂Ω.

Suppose for the sake of contradiction that Aut Ω is compact. Then there should exist a

subsequence {φkj} such that φkj → φ ∈ Aut Ω. It follows
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φ(p) = lim
j→∞

φkj (p) = q ∈ ∂Ω,

but φ ∈ Aut Ω. This is a contradiction, and thus the automorphism group must be non-

compact.

Now for the reverse direction. Suppose Aut Ω is non-compact. Then there exists a

sequence {φk} such that φk → φ 6∈ Aut Ω. It is a theorem of Cartan that either φ ∈ Aut Ω

or φ(Ω) ⊆ ∂Ω. See Narasimhan [16] for more details. Therefore, for any z ∈ Ω,

lim
k→∞

φk(z) = φ(z) ∈ ∂Ω

and so Aut Ω admits a boundary orbit accumulation point.

Given a domain Ω, we are inclined to characterize them by properties of their automor-

phism group. Two major classes are those domains who have compact automorphism group

and those who have non-compact automorphism group. Thanks to the previous result the

latter case can be further broken down by properties of the accumulating sequence. This

leads to the Greene-Krantz conjecture and the notion of non-tangential convergence.

4.2 The Greene-Krantz Conjecture

An important conjecture in the pursuit of a generalized Riemann Mapping Theorem is the

following conjecture by Greene and Krantz.

Conjecture 4.2.1 (Greene-Krantz). Let Ω ⊆ Cn be a bounded domain with smooth bound-

ary. If q ∈ ∂Ω is a boundary orbit accumulation point for Aut Ω then ∂Ω is of �nite type at

the point q.

We can classify the bounded domains with smooth boundary into two classes, those with

compact automorphism group and those with non-compact automorphism group. By the

result of Cartan, if the Greene-Krantz conjecture proved to be true then it would imply every
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bounded domain with smooth boundary and noncompact automorphism group is of �nite

type. In two dimensions this would classify every such domain, and in higher dimensions it

would provide an important tool for further classi�cation.

There are numerous results that suggest this conjecture to be true. The �rst is of Bun

Wong [19].

Theorem 4.2.2. Let Ω ⊆ C2 be a bounded domain and {φk} ⊂ Aut Ω be such that (1)

W = {limk→∞ φk(Ω)} is a complex variety of positive dimension contained in ∂Ω, (2) W is

contained in an open subset U ⊆ ∂Ω such that ∂U is C1 and there is an open set N ⊂ C2

such that N ∩∂Ω = U and N ∩Ω is convex. (3) There exists a point x ∈ Ω such that {φk(x)}

converges to p ∈W ⊆ ∂Ω non-tangentially. Then Ω is biholomorphic to ∆2.

And the next by Kim [11].

Theorem 4.2.3. Suppose that Ω ⊆ C2 is a bounded convex domain with piecewise-smooth

Levi �at boundary. If Aut Ω is non-compact then Ω is biholomorphic to ∆2.

We also mention this classical result which provides a characterization of strongly pseu-

doconvex domains in Cn.

Theorem 4.2.4. If Ω ⊆ Cn is a strongly pseudoconvex bounded domain with non-compact

automorphism group, then Ω is biholomorphic to the n-dimensional unit ball.

Because of the above theorem, when studying domains with non-compact automorphism

groups we can restrict ourselves to weakly pseudoconvex domains. In addition to also pro-

viding a strong characterization of domains in Cn, because the unit ball is of �nite type it

provides further evidence that the Greene-Krantz conjecture is true.

The previous discussion suggests the conjecture to be true, but none prove it. A proof of

this conjecture would provide a valuable tool for further characterizing domains in Cn and

ultimately generalizing the Riemann Mapping Theorem. Our main result provides a partial

proof of Greene-Krantz.
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4.3 Nontangential Convergence

Since every domain with non-compact automorphism group has a boundary-accumulating

automorphism orbit, we can study such domains by considering the properties of that accu-

mulating sequence.

Given a domain Ω equipped with the Kobayashi metric, consider a sequence of points

{pk} approaching the boundary. When rescaling a domain it is often di�cult to deal with

the tangential direction. For this reason the assumption of normal convergence allows us to

disregard the tangential direction entirely. However, we can generalize normal convergence

to nontangential convergence so we do not have quite as restrictive a class of domains.

De�nition 4.3.1. For a domain Ω ⊆ Cn with C1 boundary, a sequence {qk} ⊂ Ω and a

point q ∈ ∂Ω, we say that qk → q nontangentially if for su�ciently large k > 0,

qk ∈ Γα(q) = {z ∈ Ω : ‖z − q‖ ≤ αδΩ(z)}

for some α > 1. We say that qk → q normally if qk approaches q along the real normal line

to ∂Ω at q.

Remark 4.3.2. We encourage the reader to investigate the connection between this de�nition

and proposition 3.3.1 in the previous chapter.

We can visualize this in terms of angles and a cone-like object pointing inwards. The

following lemma makes this more clear.

Lemma 4.3.3. Let Ω ⊂ Cn be a convex domain with C1 boundary. Let z ∈ Ω and q′ = q+tnq

for some t > 0. Then

Γα(q) ⊂
{
z ∈ Ω : 0 ≤ ∠zqq′ ≤ arccos

(
1

α

)}
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Proof. We can assume without loss of generality that q = 0, nq = (i, 0, · · · , 0) and Ω ⊂

H× Cn−1. Then δΩ(z) ≤ δH×Cd−1(z) = Imz1, which implies

||z − q|| ≤ αImz1 = α‖(Imz1, 0, . . . , 0)‖.

Since

cos(∠zqq′) =
||(Imz1, 0, · · · , 0)||

||z − q||

it follows ∠zqq′ ≤ arccos(1/α).

The following result of Lee, Thomas and Wong [14] shows us that in the case of non-

tangential convergence, we retain control over the speed of divergence of the Kobayashi

metric. Speci�cally, we can bind the approach of φk(p) → ∂Ω to an approach along the

normal direction. This lets us de�ne rescalings in terms of sequences approaching normally

without having to worry about also controlling the tangential rescaling of our sequence.

Lemma 4.3.4. Let Ω ⊆ Cn be a convex domain with C1 boundary. Suppose {φk} ⊆ Aut Ω

and φk(p)→ q ∈ ∂Ω non-tangentially for some p ∈ Ω. Then there exists {pk} ⊆ Ω such that

φk(pk)→ q normally and that dΩ(p, pk) ≤ r for some r > 0.

Proof. Let `q = {q+ tnq : t ∈ R} and de�ne π : Cn → `q as the projection mapping onto `q.

Set qk = φk(p), q̃k = π(qk) and pk = φ−1(q̃k). Then q̃k → q along the normal direction and

||q̃k − qk|| ≤ ||qk − q||. Now by the previous lemma

1

α
≤ cos(∠zqq′) =

||q̃k − q||
||qk − q||

.

Let γ(t) = (1− t)qk + tq̃k. Then

dΩ(p, pk) = dΩ(qk, q̃k)

≤
∫ 1

0

||γ′(t)||
δΩ(γ(t); γ′(t))

dt

≤
∫ 1

0

||γ′(t)||
δΩ(γ(t))

dt
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≤
∫ 1

0

||γ′(t)||
||γ(t)− q||

dt

≤ ||q̃k − qk||α
||q̃k − q||

≤ ||q̃k − q||α
||q̃k − q||

≤ α2

Thus dΩ(p, pk) ≤ r for r = α2.
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Chapter 5

Main Result

Our main result of this section will be the following theorem.

Theorem 5.0.1. Let Ω ⊆ Cn be a bounded, convex domain with smooth boundary. Suppose

there exists p ∈ Ω and {φk}k∈N ⊆ AutΩ such that limk→∞ φk(p) = q for q ∈ ∂Ω and φk(p)

approaches q nontangentially. Then q is of �nite type in the sense of D'Angelo.

We recall the brief sketch of our proof from the introduction:

1. First we will consider a 2-dimensional slice of Ω and de�ne a rescaling sequence for

those two dimensions.

2. Next we will show there exists a holomorphic disk contained in the boundary of our

rescaled 2-dimensional slice.

3. Then we apply a theorem of Frankel to show that there exists a rescaling sequence on

Ω such that its blow-up also has a disk in its boundary.

4. Our rescaled domain Ω̂ is then shown to be biholomorphic to the original domain Ω.

5. Lastly we show there exists a holomorphic map f : ∆×∆→ Ω̂ that is isometric in one

coordinate and isometric along a radius in another (with some error). This contradicts

lemma 3.6.2.
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Before proving our main theorem, we prove two lemmas.

Lemma 5.0.2. Let Ω ⊆ Cn be bounded, convex with smooth boundary such that 0 ∈ ∂Ω, the

positive imaginary zn−axis points normally inward with all other directions tangent, and Ω

is described locally around 0 by:

Ω ∩ U = {(z1, · · · , zn) ∈ U : f(z1, · · · , zn−1,Rezn) < Imzn)

where f : Cn−1 × R→ R is smooth, non-negative and convex and U is a neighborhood of 0.

If 0 ∈ ∂Ω is a point of in�nite line type then there exists a change of coordinates so for all

k,

lim
z→0

f(z, 0 · · · , 0, 0)

|z|k
= 0

Proof. By de�nition of in�nite line type, there exists a sequence of linear maps `k such that

ν(r ◦ `k) ≥ k. By compactness of the sphere, `k → ` in subsequence after choosing the

correct parameterizations. By continuity of the de�ning function f , ν(f ◦ `) = ∞. If we

choose our coordinates so ` is the z1−axis, then the conclusion follows.

Lemma 5.0.3. Let Ω ⊆ Cn be a convex domain that contains no complex lines in its

boundary, ∆×{0, · · · , 0} ⊂ ∂Ω, ∆×H×{0, · · · , 0} ⊆ Ω and (1, i, 0, · · · , 0) 6∈ Ω. Then there

exists a map h : ∆×∆→ Ω such that for all z, w ∈ ∆,

d∆(z, w) = dΩ(h(0, z), h(0, w))

and there exists an E > 0 such that for all 0 ≤ r, s < 1,

d∆(r, s)− E ≤ dΩ(h(r, 0), h(s, 0)) ≤ d∆(r, s) + E.

Proof. First we show that the injection map ι : H → Ω̂ de�ned as ι(z) = (0, z, 0, · · · , 0) is

an isometry. By the distance-decreasing property dΩ(ι(z), ι(w)) ≤ dH(z, w), so it su�ces

to show the opposite direction. Let π2 : Cn → C be the projection map onto the second
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coordinate. Then π2(Ω) = H. So π2 ◦ ι : H → H is the identity map and thus an isometry.

Since π2 is holomorphic it is distance-decreasing under the Kobayashi metric, and so it must

be that dΩ̂(ι(z), ι(w)) ≥ dH(z, w). Therefore ι is an isometry.

De�ne h : ∆×∆→ Ω by h(z, w) = (z, i1+w
1−w , 0, · · · , 0). Then

d∆(w1, w2) = dH(i
1 + w1

1− w1
, i

1 + w2

1− w2
)

= dΩ(ι(i
1 + w1

1− w1
), ι(i

1 + w2

1− w2
))

= dΩ

(
(0, i

1 + w1

1− w1
, 0, · · · , 0), (0, i

1 + w2

1− w2
, 0, · · · , 0)

)
= dΩ(h(0, w1), h(0, w2)).

It follows h is isometric in the second variable. Now consider r, s ∈ [0, 1). Then by the

distance-decreasing property of the Kobayashi metric,

dΩ(h(r, 0), h(s, 0)) ≤ d∆×∆((r, 0), (s, 0)) = d∆(r, s).

It now su�ces to �nd a lower bound. By Theorem 3.3.4, because (1, i, 0, · · · , 0) 6∈ Ω,

dΩ(h(r, 0), h(s, 0)) ≥ 1

2

∣∣∣∣ log

∣∣∣∣h(s, 0)− (1, i, 0, · · · , 0)

h(r, 0)− (1, i, 0, · · · , 0)

∣∣∣∣∣∣∣∣
=

1

2

∣∣∣∣ log

∣∣∣∣s− 1

r − 1

∣∣∣∣∣∣∣∣
=

1

2

∣∣∣∣ log

∣∣∣∣(1− s)(1 + r)(1 + s)

(1− r)(1 + r)(1 + s)

∣∣∣∣
=

1

2

∣∣∣∣ log

∣∣∣∣(1− s)(1 + r)

(1− r)(1 + s)

∣∣∣∣+
1

2
log

∣∣∣∣1 + s

1 + r

∣∣∣∣∣∣∣∣
=

1

2

∣∣∣∣ log

(
(1− s)(1 + r)(1− rs)
(1− r)(1 + s)(1− rs)

)
+

1

2
log

∣∣∣∣1 + s

1 + r

∣∣∣∣∣∣∣∣
=

1

2

∣∣∣∣ log

(
(1− s)(1 + r)

1− rs

)
+ log

(
1− rs

(1− r)(1 + s)

)
+

1

2
log

∣∣∣∣1 + s

1 + r

∣∣∣∣∣∣∣∣
=

1

2

∣∣∣∣ log

(
(1− s)(1 + r)

1− rs

)
− log

(
(1− r)(1 + s)

1− rs

)
+

1

2
log

∣∣∣∣1 + s

1 + r

∣∣∣∣∣∣∣∣
=

1

2

∣∣∣∣ log(1 +
r − s
1− rs

)− log(1− r − s
1− rs

) +
1

2
log

∣∣∣∣1 + s

1 + r

∣∣∣∣∣∣∣∣
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=

∣∣∣∣d∆(r, s) +
1

2
log

∣∣∣∣1 + s

1 + r

∣∣∣∣∣∣∣∣
≥ d∆(r, s)− 1

2

∣∣∣∣ log

∣∣∣∣1 + s

1 + r

∣∣∣∣∣∣∣∣
≥ d∆(r, s)− 1

2
log 2.

Thus d∆(r, s)− 1
2 log 2 ≤ dΩ(h(r, 0), h(s, 0)) ≤ d∆(r, s). This proves the lemma.

We will also need the following lemma from Frankel [6]. Let Xn,0 denote the space of

convex domains of dimension n that do not contain any complex lines.

Lemma 5.0.4. Suppose Ω ⊆ Cn is a convex domain that does not contain any complex

lines. If V ⊂ Cn is a complex a�ne m−dimensional subspace intersecting Ω, pk ∈ V ∩ Ω

and {Ak} is a sequence of complex a�ne maps such that

Ak(Ω ∩ V, pk)→ (Ω̂V , u)

in Xm,0 then there exists complex a�ne maps Bk such that

Bk(Ω, pk)→ (Ω̂, u)

in Xn,0. Furthermore, Ω̂ ∩ V = Ω̂V .

5.1 Proof of the Main Result

Theorem 5.1.1. Let Ω ⊆ Cn be a bounded, convex domain with smooth boundary. Suppose

there exists p ∈ Ω and {φk}k∈N ⊆ Aut Ω such that limk→∞ φk(p) = q for q ∈ ∂Ω and φk(p)

approaches q nontangentially. Then q is of �nite type in the sense of D'Angelo.

Proof. For the sake of contradiction suppose that q is of in�nite type. By applying an a�ne

transformation we can assume q = 0 and in some neighborhood U of 0,

Ω ∩ U = {(z1, · · · , zn) ∈ U : f(z1,Rez2, z3, · · · , zn) < Imz2}
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where f : C × R × Cn−2 → R is a smooth, convex, non-negative function, the imaginary

z2−axis points normally inward in the positive direction and the remaining directions are

tangent. Let V = {(z1, z2, 0, · · · , 0) : z1, z2 ∈ C} and consider ΩV = Ω ∩ V . For ease of

notation, let z = z1 and w = z2.

1. A scaling sequence for the 2-dimensional slice:

Let εki be the projection of φk(p) onto the normal axis. Then εk > 0 and εk → 0. De�ne

the function gj : C \ {0} → R by

gj(z) =
f(z, 0)

|z|j
.

Because of Lemma 5.0.2, for all j > 0,

lim
z→0

gj(z) = 0.

By Theorem 3.6.1, if ∂Ω contains a holomorphic disk then it is of �nite type and we have

a contradiction. So assume not. In particular, for all j the set Zj = {z ∈ C : f(z, 0) = εj} is

nonempty. Choose zj ∈ Zj such that g(zj) is maximal. By this construction and the in�nite

type condition, zj → 0, fj(zj , 0)→ 0 and given any |w| < |zj |,

gj(w) ≤ gj(zj).

Let us re-index by setting k = j and εk = εkj .

We de�ne the linear transformation Ak : C2 → C2 by

Ak(z, w) =

(
z

zk
,

w

f(zk, 0)

)
.

Let CV = limk→∞Ak(ΩV ) in the local Hausdor� topology, possibly in subsequence, and Ω̂V

be the interior of CV . By construction of Ak we note that {0} ×H ⊆ C. We will now show

that Ω̂V contains a holomorphic disk in its boundary.
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2. Ω̂V contains a holomorphic disk in its boundary:

Let Ωk = Ak(ΩV ). Fix a ∈ ∆ and consider the smallest real number bk > 0 such that

(a, bki) ∈ ∂Ωk. It follows A
−1
k (a, bki) ∈ ∂ΩV . Since

A−1
k (a, bki) = (azk, bkf(zk, 0)i)

it follows by de�nition of f that f(azk, 0) = bkf(zk, 0). Because |a| < 1, |azk| < |zk|. It

follows

bk =
f(azk, 0)

f(zk, 0)
=
gk(azk)|azk|k

gk(zk)|zk|k
=
gk(azk)|a|k

gk(zk)
≤ gk(zk)|a|k

gk(zk)
= |a|k

and thus limk→∞ bk = 0. So

lim
k→∞

Ak(a, bki) = (a, 0).

Since a was arbitrary, it follows ∆× {0} ⊆ ∂Ω̂V . By convexity ∆×H ⊆ Ω̂V .

3. Ω can be rescaled to a domain satisfying the hypothesis of lemma 5.0.3:

By construction (1, 0) ∈ ∂Ω̂V . Furthermore, because Ak(zk, if(zk, 0)) = (1, i) for all k

it follows (1, i) ∈ ∂Ω̂V . So by convexity, {1} × H ⊆ ∂Ω̂V . Since Ω̂V has positive imaginary

part by construction of An and our original choice of coordinates on ΩV , it follows that

({1}×C)∩ Ω̂V = ∅ and Ω̂V does not contain a complex line in its boundary. Thus by lemma

5.0.4 there exists a sequence of a�ne maps Bk such that Bk(Ω)→ Ω̂ and Ω̂∩V = Ω̂V . That

is, Ω̂ has the same properties in its �rst two dimensions that Ω̂V does.

In particular, Ω̂ is a convex domain that does not contain any complex lines in its

boundary, (1, i, 0, · · · , 0) 6∈ Ω̂ and ∆×H × {0, · · · , 0} ⊆ Ω. Thus it satis�es the hypothesis

of Lemma 5.0.3 and so we have a map h : ∆ ×∆ → Ω̂ isometric in the second coordinate

and isometric along a radius in the �rst (with some error). It now su�ces to show Ω̂ is

biholomorphic to Ω.
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4. Ω̂ is biholomorphic to Ω:

De�ne the rescaling sequence:

ωk(z1, w, z2, . . . , zn−1) ≡ Bk ◦ φk(z1, w, z2, . . . , zn−1)

By lemma 4.3.4, as φk(p) → q nontangentially there exists an r such that dΩ(eki, φk(p)) <

r. Let Kr(p) be the Kobayashi ball around p of radius r. Then there exists a sequence

pk ∈ Kk(p) such that φk(pk) = eki. Note that these pk are contained within a compact

set. Furthermore, it follows by lemma 5.0.4 since Ak(0, eki)→ (0, i) that ωk(0, eki)→ (0, i).

Thus by theorem 2.5.3, ωk → ω̂ where ω̂ : Ω→ Ω̂ is a biholomorphism.

Since ω̂ is a biholomorphism it follows that ω̂ ◦ h contradicts theorem 3.6.2. Thus, the

point q is of �nite type in the sense of D'Angelo.
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Chapter 6

Conclusion

6.1 Applications

The result of the previous chapter directly provides a partial proof to the Greene-Krantz

conjecture. To recall, the Greene-Krantz conjecture states:

Conjecture 6.1.1 (Greene-Krantz). Let Ω ⊆ Cn be a bounded domain with smooth bound-

ary. If q ∈ ∂Ω is a boundary orbit accumulation point for Aut Ω then ∂Ω is of �nite type at

the point q.

We have proved this conjecture under the additional hypotheses that the domain is con-

vex and there exists a sequence of automorphisms such that φn(p) → q non-tangentially.

The hypothesis of non-tangential convergence is likely unneeded, and we suspect the tech-

niques of the proof in the previous chapter are on the right track for a complete proof in the

convex case. Unfortunately, in the non-convex case the results of Frankel do not necessarily

prove our rescaled domain is biholomorphic to our original. Thus further investigation into

the convergence of rescaling sequences is necessary before being able to discuss non-convex

domains.

In addition to the partial solution to the Greene-Krantz conjecture, we can apply a result

of Andrew Zimmer along with results of Bedford and Pinchuk to provide a characterization

of certain domains in Cn. The following theorem is taken from [21].
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Proposition 6.1.2. Suppose Ω ⊆ Cn is a bounded, convex domain with smooth boundary.

If there exists x ∈ ∂Ω with �nite line type, o ∈ Ω and φk ∈ Aut Ω such that φko → x

non-tangentially, then ∂Ω has �nite line type.

We also have this useful result from Bedford and Pinchuk [1].

Theorem 6.1.3. Suppose Ω is a bounded convex domain with smooth boundary and �nite

type in the sense of D'Angelo. Then Aut Ω is non-compact if and only if Ω is biholomorphic

to a polynomial ellipsoid.

Combining these two results with ours, we obtain the following corollary:

Corollary 6.1.4. Let Ω ⊆ Cn be a bounded, convex domain with smooth boundary. If there

exists p ∈ Ω and a sequence of automorphisms φk ∈ Aut Ω such that φk(p) → q ∈ ∂Ω

non-tangentially, then Ω is biholomorphic to a polynomial ellipsoid.

6.2 Further Results

We would like to remove the hypothesis of non-tangential convergence from our main result.

Currently it is needed to provide an upper bound on the distance between our boundary-

accumulating automorphism orbit and our normally-approaching sequence. Because we

de�ned our rescaling sequence based on the normal approach, were this distance to be

unbounded it would sabotage our result. We suspect a di�erent type of rescaling sequence

will be needed to tackle the case where the sequence approaches tangentially.

Beyond that, working to replace the convexity condition with pseudoconvexity is the

next goal. This requires further investigation into the Frankel rescaling sequence, as it is

only known to converge for convex domains. Work by Seungro Joo [10] suggests that the

Frankel rescaling sequence can be tinkered with to converge on more domains than just

convex ones. A new way to rescale pseudoconvex domains would open more possibilities for

classifying simply connected domains.
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