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INTRODUCTION
Groundwater flow is usually focused into

preferential flow pathways in fractured or
highly heterogeneous aquifers (e.g., Tsang and
Neretnieks, 1998). These “fast paths” pose a criti-
cal problem, because they can transmit contami-
nants rapidly yet may arise from subtle or hidden
natural features such as zones of increased frac-
ture density or connectivity. Detection of fast
paths can be attempted through observation of
anthropogenic and natural geochemical tracers.
Anthropogenic tracers such as tritium and chloro-
fluorocarbons are effective for tracking ground-
water flow when residence times are less than
~50 yr, but additional tools are needed for sys-
tems containing older groundwater. The natural
chemistry of groundwater is rich in information,
but new approaches to interpret the various solute
concentration and isotopic data must be devel-
oped to fully exploit them. 

The 87Sr/86Sr ratios in groundwater reflect the
water-rock reaction histories and flow pathways
of the waters. The 87Sr/86Sr ratios of rocks and
soils vary because 87Sr is produced by radioactive
decay of 87Rb. Groundwater 87Sr/86Sr ratios are
inherited from the soil or rock through which the
water passes, and several studies have used
87Sr/86Sr as a natural tracer of groundwater flow

and weathering (e.g., Blum et al., 1993; Bullen et
al., 1997; Johnson and DePaolo, 1994; Musgrove
and Banner, 1993). As water-rock interaction
progresses, 87Sr/ 86Sr in groundwater evolves
toward the ratio of Sr acquired from the host soil
or rock. In this paper we demonstrate the useful-
ness of 87Sr/86Sr data in imaging preferential flow

paths by using data from the Snake River Plain
aquifer in and near the Idaho National Engineer-
ing and Environmental Laboratory (INEEL).

HYDROGEOLOGIC SETTING AND
METHODS

The INEEL is located above the Snake River
Plain aquifer of Idaho (Fig. 1). Limited, local-
ized contamination at INEEL has motivated
groundwater monitoring and protection measures
(Barraclough et al., 1982; Mann and Cecil,
1990). Regional flow in the aquifer is from north-
east to southwest. Groundwater enters the aquifer
predominantly from the Snake River to the
southeast, the Yellowstone Plateau to the north-
east, and tributary groundwater systems from
several valleys extending to the north. Among
these are the Little Lost River and Birch Creek
valleys, which contribute a large flux of water to
the aquifer along the northern and northwestern
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edges of the INEEL. Recharge within the plain is
minor compared to these inputs (Barraclough
et al., 1982). An agricultural region that taps the
aquifer for irrigation water is located southwest
(down gradient) of the INEEL. 

The aquifer rock is composed of tongue-
shaped basaltic lavas, separated in some cases by
sheets of sediments (Barraclough et al., 1982).
Water flows readily through fractures, rubble
zones, and other features such as collapsed lava
tubes. Groundwater flow is rapid (e.g., 300 m/yr
pore velocity) in the upper 100–400 m of the
aquifer and is much slower in deeper layers
(Blackwell et al., 1992; Mann, 1986). The net-
work of fractures is highly heterogeneous, and
lava flow trends likely lead to hydraulic anisotropy
(Welhan and Reed, 1997). In fractured, hetero-
geneous systems such as this, preferential flow
zones with relatively high flow velocities com-
monly occur (Tsang and Neretnieks, 1998). 

Regional groundwater-flow simulations have
been developed for the aquifer (Ackerman,
1995; Garabedian, 1992), but these studies
sought to reveal broad regional flow patterns and
did not concentrate on finding fast-flow paths at
the 50 km scale as we do here. Studies tracking
contaminant plumes, chlorofluorocarbon com-
pounds, and/or anthropogenic radionuclides re-
veal flow directions and velocities (Barraclough
et al., 1982; Beasley et al., 1993; Busenberg
et al., 1993; Cecil et al., 2000). However, these
relatively recent anthropogenic tracers are
tracked for relatively short distances and do
not reveal regional flow patterns. The natural
groundwater chemistry reported in this study
provides regional flow information and thus
complements smaller scale studies using anthro-
pogenic tracers.

We measured 87Sr/86Sr and concentrations of
14 elements (Li, B, Na, Mg,Al, Si, K, Ca, Mn, Fe,
Rb, Sr, Ba, and U) in groundwater samples col-
lected in and near the INEEL.1 We acquired
55 water samples from purged wells; the samples
were filtered and preserved with HNO3. Sr was
purified from the waters via Sr-specific ion-
exchange resin (Eichrom Industries). The 87Sr/86Sr
ratios were measured with a VG Sector 54 thermal
ionization mass spectrometer and a dynamic
multiple-collector routine to a precision of about
±0.002%. Results for the NBS-987 standard
during this study were 0.710275 ± 0.000013 (2 σ).
Dissolved concentrations were measured by in-
ductively coupled plasma–mass spectrometry
(Perkin-Elmer ELAN 6000). Calibration drift was
corrected for via an internal standard containing
Be, Ge, and Tl and periodic analysis of standards.
Duplicate analyses of several samples indicate a
2 σ uncertainty of ±5% or better.

RESULTS AND DISCUSSION
Contour plots of 87Sr/86Sr ratios and selected

elemental concentrations are given in Figure 2.
The pattern exhibited by the 87Sr/ 86Sr data is
striking. Water entering the aquifer from the
Birch Creek and Little Lost River valleys to the
north has high 87Sr/86Sr ratios (>0.71100) rela-
tive to waters originating east of the INEEL; the
high ratios are inherited from Paleozoic sedi-
ments to the north. The 87Sr/86Sr ratios decrease
along all possible southwestward flow paths, but
in some areas they decrease strongly, whereas in
other areas they decrease less. Particularly well
defined is a relatively narrow zone of high
87Sr/86Sr ratios (the high isotope-ratio zone) that
extends southward from the Little Lost River
valley through the southern boundary of the
INEEL. Zones with relatively low 87Sr/86Sr
ratios occur near the center of the INEEL (central
low isotope-ratio zone) and in the western part of
the INEEL (western low isotope-ratio zone).
Visually, the 87Sr/86Sr patterns in Figure 2A sug-
gest a channeling of the high-ratio northern
groundwater through preferential flow zones be-
tween and around the western and central low
isotope-ratio zones. In this paper we develop this
hypothesis in light of hydrologic features of the
aquifer, including flow rates and directions, mix-
ing of chemically distinct water masses, and
chemical interaction with the host rock. 

One process that controls groundwater chem-
istry in this area is regional mixing of contrasting
water masses (McLing, 1994). Mixing between
the northern water masses entering from the
Little Lost River valley and Birch Creek valley
and waters originating east of the INEEL results
in a northwest to southeast gradient in water
chemistry. This gradient is apparent in all solute-
concentration and isotope-ratio plots, particularly
in the Li data (Fig. 2B). Mixing thus plays a role in
defining the 87Sr/86Sr patterns, but the shapes and
locations of the high and low isotope-ratio zones
cannot be produced by this process alone. The
narrowness of the high isotope-ratio zone cannot
be explained by regional mixing; the water enter-
ing from the Little Lost River valley would spread
out into a relatively wide zone were it not chan-
neled by hydrologic heterogeneity. 

Preferential Flow Model 
Channeling of groundwater flow through the

high isotope-ratio zone and relatively slow flow
in the western and central low isotope-ratio zones
can readily produce the observed isotope-ratio
pattern. In this scenario, the high isotope-ratio
zone is a fast-flow zone, where high 87Sr/ 86Sr
ratios originating in the Little Lost River valley
and the Birch Creek valley persist far to the south
because the water has relatively brief contact
with the host rock. In the low 87Sr/ 86Sr zones,
the same groundwater evolves closer to the iso-
topic composition of the host rock (87Sr/86Sr =
0.7070 ± 0.0003; Leeman and Manton, 1971;

Reed et al., 1997) because of slower groundwater
flow, prolonged contact with the rock, and greater
rock dissolution.

The reaction rate required to produce the ob-
served groundwater 87Sr/ 86Sr evolution is not
unreasonable. The groundwater pore velocity is
300 m/yr in the high isotope-ratio zone, accord-
ing to contaminant migration data (Barraclough
et al., 1982). The 87Sr/86Sr evolution from 0.711
to 0.705 occurs over 50 km distance there. Using
an effective porosity of 20%, Sr concentrations of
300 ppm and 0.2 mg/L in the rock and water,
respectively, and published mass-balance equa-
tions (Johnson and DePaolo, 1994), we calculate
that 5% of the rock’s Sr must be transferred to the
fluid per million years. The basalt host rocks are
1 Ma or younger (Lanphere et al., 1993) and con-
tain an unstable glass phase, so rapid reactions
are expected. In addition, some of the decrease in
87Sr/86Sr within the high isotope-ratio zone is
caused by mixing with lower 87Sr/ 86Sr water
from outside the zone and thus the actual reaction
rate is probably lower than this estimate. 

A concurrent study has measured 234U/238U
ratios in the same groundwater samples (Roback
et al., 1997). The spatial pattern in the data is very
similar to that of the 87Sr/86Sr data. This is espe-
cially significant because the systematics of
U isotopes are different from those of Sr isotopes.
Detailed examination of these data is beyond the
scope of this paper, but the similarity of the U and
Sr isotope results suggests that radiogenic isotope
ratios in general are effective groundwater tracers.

Alternative Interpretations
Several alternative interpretations of the data

were considered. The first invokes influxes of
low 87Sr/86Sr water from mountains bordering
the plain or below the surficial aquifer to form
the western and central low isotope-ratio zones,
without slower groundwater flow in these zones.
However, the flux of water from these sources
must be small, because the mountain-front
watersheds that discharge directly to the plain
are small (<30 km2) and because permeability is
low below the surficial aquifer (Mann, 1986).
Neither source could produce a water flux of
similar magnitude to that from the Little Lost
River valley, which drains an area of ~1000 km2.
Thus, the fluxes of water needed to create the
western and central low isotope-ratio zones in
this scenario do not exist. Furthermore, rocks in
the mountain-front watersheds are similar to
those in watersheds feeding into the Little Lost
River valley, and would likely produce similar
waters (87Sr/86Sr ≈ 0.711). 

Small influxes of solute-rich hydrothermal
water, for which there is some geochemical evi-
dence (McLing, 1994) are another potential source
of low 87Sr/86Sr solute. The Sr concentration of
this water would necessarily be very high if it were
to affect the 87Sr/86Sr of the fast-flowing surficial
aquifer, and thus influx of this water would elevate
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groundwater Sr concentrations in the western and
central low isotope-ratio zones. In reality, con-
centrations there are lower than in the high
isotope-ratio zone, so this not a viable scenario. 

Water infiltrating the aquifer from the Big Lost
River channel is a significant water input, mostly
near the INEEL spreading areas (Fig. 2F) and
near the channel’s end in the northern area of the
INEEL (Bennett, 1990). The 87Sr/86Sr ratio of a
Big Lost River water sample is 0.71056; this
value is lower than the Little Lost River valley
inputs (presumably because of differences in
source area geology) but is higher than the ob-
served values in the western and central low
isotope-ratio zones. Thus, the Big Lost River in-
put cannot create the low 87Sr/86Sr zones, though
it may influence 87Sr/86Sr values in some areas. 

Another alternative hypothesis invokes inter-
action of groundwater with chemically heteroge-
neous host rock, without fast- and slow-flow
zones, as the cause of the observed pattern. How-
ever, essentially all of the aquifer rocks in this
area are homogeneous basalts with a restricted
87Sr/86Sr range (Leeman and Manton, 1971;
Reed et al., 1997), and lava groups are contin-
uous between the high isotope-ratio zone and the
western and central low isotope-ratio zones
(Anderson, 1991). 

The preceding scenarios consider the likely
alternative hypotheses, but none of them appears
viable. We thus conclude that the 87Sr/86Sr pat-
tern reflects the presence of fast- and slow-flow
zones. In addition, the apparent direction of flow
in the high isotope-ratio zone is nearly due south;
this is consistent with a more local flow direction
revealed by a contaminant plume near the center
of the zone (Barraclough et al., 1982). Flow is not
parallel to the regional hydraulic gradient as
given in Barraclough et al. (1982). This diver-
gence implies hydraulic anisotropy, which is con-
sistent with the dominant northwest trend of the
lava flows and recent research on anisotropy
(Welhan and Reed, 1997). 

Radiogenic Isotopes Versus 
Concentration Data 

Because solute concentrations are sensitive to
water-rock interaction, they might be expected to
provide similar imaging of fast paths. Our con-
centration data (Fig. 2) exhibit spatial patterns
with some similarities to the 87Sr/ 86Sr data. A
tongue of high Mg concentration and low Na and
Si concentrations weakly resembles the high
isotope-ratio zone. In addition, an area of high Na
and Si concentrations in the western low isotope-
ratio zone apparently reflects net release of Na
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Figure 2. Contour plots of (A) 87Sr/86Sr and
concentrations of (B) Li, (C) Si, (D) Na, and
(E) Mg in groundwater (for tabulated data, see
footnote 1). F: Sampled well locations (circles) and locations of river channels. Arrows indicate groundwater influxes from north. Spreading areas
to which water is diverted during high runoff periods are shaded just south of southernmost point on Big Lost River channel. Contours were
derived initially by Kriging and were modified by hand to reflect existence of aquifer boundaries and regional flow directions.
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and SiO2 by the rock as a result of water-rock
interaction. However, there is an overall lack of
interelement coherence in the concentration data,
and the patterns are not as clear as the 87Sr/86Sr
pattern. Other elemental concentrations measured
but not plotted in Figure 2 are no better. This
complexity in behavior among the solute con-
centrations is not unexpected, as we describe in
the following.

The effects of water-rock interaction on radio-
genic isotope ratios are fundamentally different
from its effects on elemental concentrations. An
elemental concentration changes according to the
difference between solute gains due to dissolu-
tion, ion exchange, and desorption, and solute
losses due to precipitation, ion exchange, and
adsorption. A concentration can thus be expected
to evolve in a complex way along flow paths, as
the difference between solute losses and solute
gains changes spatially. For example, dissolution
of basalt is likely accompanied by precipitation
of clay minerals, because even small amounts of
Al in solution (0.1–1 µg/L) will result in super-
saturation (Drever, 1988). The compositions of
the precipitated clay minerals are sensitive to
spatial variations in pH, temperature, and other
variables, and thus the net effect of water-rock
interaction is difficult to predict. 

In contrast, the groundwater 87Sr/86Sr ratio is
unaffected by solute losses due to precipitation,
ion exchange, or adsorption, because the Sr trans-
ferred to the solid is isotopically identical to that
in the water. Transfer of Sr from rock to ground-
water drives the 87Sr/86Sr ratio toward the ratio of
the acquired Sr. Thus, isotope ratios provide a
record of water-rock interaction that is more
easily interpreted than that obtained from solute
concentration data. In this aquifer, 87Sr/ 86Sr
evolves toward a predictable isotopic equilibrium
value (0.70700) in response to water-rock inter-
action. In contrast, the evolution of solute con-
centrations is difficult to predict. Furthermore,
evaporation of water increases concentrations of
solutes but does not affect the 87Sr/ 86Sr ratio.
Evaporative effects on the concentrations are
present in the area downgradient from Mud Lake,
a closed basin with highly evaporated infiltrating
water (Fig. 2). Overall, 87Sr/86Sr and other radio-
genic isotope ratios have clear advantages over
concentration data. This is not to say that isotope
ratios should be studied to the exclusion of con-
centration data, but that they should be added
more commonly to the list of chemical measure-
ments made in groundwater studies. 

CONCLUSIONS
The fundamental properties of radiogenic iso-

tope ratios make them well-behaved natural
tracers and effective indicators of fast-flow paths
in systems where chemical interaction between
water and rock is important. Compared to con-
centration data, radiogenic isotopes may be more
easily interpreted because the effects of water-

rock interaction, and the equilibria toward which
the isotope ratios evolve, are more predictable.

Strong 87Sr/86Sr patterns observed in the Snake
River Plain aquifer reflect the presence of fast-
and slow-flow zones and arise from reaction of
groundwater with the relatively low 87Sr/86Sr
basalt host rocks. The inconsistent patterns
yielded by elemental concentration data pre-
sumably reflect the more complex evolution of
concentrations in groundwater. A zone of high
87Sr/86Sr groundwater trending southward from
the Little Lost River valley through the INEEL is
a high-velocity zone flanked by slower, low
87Sr/86Sr zones. Knowledge of this regional-scale
flow channeling is important for contaminant
management at the INEEL.

This approach should translate well to other
groundwater settings, such as karst-dominated
systems. Radiogenic isotope analyses are becom-
ing less expensive, and now have an important
role in the array of techniques used to reveal
fast-flow paths in groundwater systems.
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