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Abstract

Terrestrial	ecosystems	are	an	important	sink	for	atmospheric	carbon	dioxide	(CO2),	
sequestering	~30%	of	annual	anthropogenic	emissions	and	slowing	the	rise	of	atmos‐
pheric	CO2.	However,	the	future	direction	and	magnitude	of	the	land	sink	is	highly	
uncertain.	We	examined	how	historical	and	projected	changes	in	climate,	land	use,	
and	ecosystem	disturbances	affect	the	carbon	balance	of	terrestrial	ecosystems	in	
California	over	the	period	2001–2100.	We	modeled	32	unique	scenarios,	spanning	4	
land	use	and	2	radiative	forcing	scenarios	as	simulated	by	four	global	climate	models.	
Between	2001	and	2015,	carbon	storage	 in	California's	 terrestrial	ecosystems	de‐
clined	by	−188.4	Tg	C,	with	a	mean	annual	flux	ranging	from	a	source	of	−89.8	Tg	C/
year	to	a	sink	of	60.1	Tg	C/year.	The	large	variability	in	the	magnitude	of	the	state's	
carbon	 source/sink	was	primarily	 attributable	 to	 interannual	 variability	 in	weather	
and	climate,	which	affected	the	rate	of	carbon	uptake	in	vegetation	and	the	rate	of	
ecosystem	respiration.	Under	nearly	all	future	scenarios,	carbon	storage	in	terrestrial	
ecosystems	was	projected	to	decline,	with	an	average	loss	of	−9.4%	(−432.3	Tg	C)	by	
the	year	2100	from	current	stocks.	However,	uncertainty	in	the	magnitude	of	carbon	
loss	was	high,	with	individual	scenario	projections	ranging	from	−916.2	to	121.2	Tg	C	
and	was	largely	driven	by	differences	in	future	climate	conditions	projected	by	cli‐
mate	models.	Moving	from	a	high	to	a	low	radiative	forcing	scenario	reduced	net	eco‐
system	carbon	loss	by	21%	and	when	combined	with	reductions	in	land‐use	change	
(i.e.,	moving	from	a	high	to	a	low	land‐use	scenario),	net	carbon	losses	were	reduced	
by	55%	on	average.	However,	reconciling	large	uncertainties	associated	with	the	ef‐
fect	 of	 increasing	 atmospheric	CO2	 is	 needed	 to	 better	 constrain	models	 used	 to	
establish	baseline	conditions	from	which	ecosystem‐based	climate	mitigation	strate‐
gies	can	be	evaluated.
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California,	carbon	balance,	climate	change,	disturbance,	land	use,	scenarios
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1  | INTRODUC TION

Changes	 in	 land	 use	 have	 been	 a	 primary	 factor	 in	 the	 global	
rise	 of	 atmospheric	 carbon	 dioxide	 (CO2)	 and	 a	major	 driver	 of	
global	 climate	change	 (Le	Quéré	et	al.,	2017).	Since	1850,	 land‐
use	 change	 (LUC)	 has	 added	 nearly	 half	 as	much	 carbon	 to	 the	
atmosphere	as	 fossil	 fuel	emissions	and	has	exerted	a	dominant	
influence	 on	 the	 storage	 of	 carbon	 in	 terrestrial	 ecosystems	
(Houghton	 &	 Nassikas,	 2017;	 Le	 Quéré	 et	 al.,	 2017).	 Changes	
in	 land	 use	 have	 primarily	 resulted	 in	 the	 conversion	 of	 natural	
ecosystems	to	produce	food,	fiber,	and	for	establishment	of	set‐
tlements	 (Foley	 et	 al.,	 2005).	 Combined,	 land	 use	 and	manage‐
ment	have	the	potential	 to	undermine	the	ability	of	ecosystems	
to	produce	a	wide	 range	of	services	 (Foley	et	al.,	2005),	 includ‐
ing	 the	 storage	and	 sequestration	of	 carbon	 to	mitigate	climate	
change	(Houghton	&	Nassikas,	2017).	Meanwhile,	climate	change	
affects	ecosystem	carbon	balance	by	changing	the	rate	of	carbon	
uptake	 in	 vegetation	 (Ballantyne,	 Alden,	 Miller,	 Tans,	 &	White,	
2012;	Ballantyne	et	al.,	2017)	and	the	decay	and	decomposition	
of	dead	organic	matter	(DOM)	and	soils	(Melillo	et	al.,	2017;	Pries,	
Castanha,	Porras,	&	Torn,	2017),	 and	 remains	 the	 subject	of	 in‐
tense	study	(Fahey,	Doherty,	Hibbard,	Romanou,	&	Taylor,	2017;	
Domke	 et	 al.,	 2018).	 Furthermore,	 studies	 indicate	 that	 climate	
change	 is	 increasing	 the	 frequency	 and	 magnitude	 of	 extreme	
events	(Mann	et	al.,	2017)	which	can	alter	ecosystem	carbon	bal‐
ance	by	increasing	gaseous	emissions	and	through	the	transfer	of	
carbon	from	live	to	DOM	pools	(Kurz	et	al.,	2008).	The	combined	
effects	 of	 climate	 and	 land	 change	 can	 result	 in	 either	 positive	
(i.e.,	net	emissions)	or	negative	(i.e.,	net	sequestration)	feedbacks	
from	the	biosphere	on	the	climate	system	 (USGCRP,	2017).	The	
direction	and	magnitude	of	these	feedbacks	will	either	hinder	or	
facilitate	the	achievement	of	local	to	global‐scale	greenhouse	gas	
reduction	targets.

Accounting	 for	 and	 minimizing	 anthropogenically	 linked	 eco‐
system	carbon	emissions	and/or	maximizing	 the	biosphere	carbon	
sink	is	important	for	meeting	the	2°C	target	of	the	Paris	Agreement	
(Fargione	et	al.,	2018).	Despite	the	historically	negative	role	 in	the	
carbon	cycle,	 land	use	and	management	 is	 increasingly	being	eval‐
uated	 instead	 as	 a	 tool	 for	 climate	 mitigation	 (Cameron,	 Marvin,	
Remucal,	&	Passero,	2017;	Fargione	et	al.,	2018;	Griscom	et	al.,	2017;	
Houghton,	Byers,	&	Nassikas,	2015).	To	evaluate	the	effectiveness	of	
land‐based	mitigation	efforts,	regional	baseline	estimates	of	carbon	
stocks	and	 fluxes	are	needed.	At	management	scales,	 spatially	ex‐
plicit	projections	spanning	long	temporal	periods	(i.e.,	50–100	years)	
need	to	consider	the	interactive	effects	of	changes	in	land	use/land	
cover	(LULC)	and	climate.	Such	projections	provide	a	reference	point	
against	which	the	effects	of	mitigation	actions,	applied	to	different	
locations	at	different	times,	can	be	evaluated.	With	the	rise	in	subna‐
tional	emission	reduction	targets	(Galarraga,	de	Murieta,	&	França,	
2017)	 jurisdictions	must	work	not	only	 to	mitigate	emissions	 from	
both	the	energy	and	land	sectors	but	also	to	understand	future	cli‐
mate‐biosphere	 feedbacks	 and	 their	 effect	 on	 ecosystem	 carbon	
balance.

The	State	of	California	 exemplifies	many	of	 the	 challenges	 as‐
sociated	with	projecting	 integrated	effects	of	climatic	and	LUC	on	
ecosystem	 carbon	 balance.	 California	 is	 a	 large	 and	 ecologically	
diverse	 region	 overlain	 by	 a	 complex	 land‐use	 mosaic	 (Figure	 1).	
California	 ranks	 first	 among	 the	United	 States	 in	 population,	 eco‐
nomic	activity,	and	agricultural	production	value,	while	at	the	same	
time	maintains	nearly	half	of	its	land	area	in	some	form	of	protected	
status.	California	is	a	leader	in	subnational	climate	action	with	one	
of	 the	only	 economy‐wide	 regulatory	 climate	 targets	 in	 the	world	
(U.S.	 Climate	 Alliance,	 2018).	 Recognizing	 the	 importance	 of	 eco‐
systems	for	emissions	mitigation,	the	state	has	started	to	integrate	
ecosystem	management	as	part	of	its	emissions	reduction	strategy	
(California	Air	Resources	Board,	2017).	California's	climate	is	highly	

F I G U R E  1  Land	use/land	cover	map	of	California.	Ecological	
regions	are	shown	as	black	lines.	CR	is	Coast	Range,	KM	is	Klamath	
Mountains,	C	is	Cascades,	SN	is	the	Sierra	Nevada	Mountains,	
EC	is	East	Cascades	Slopes	and	Foothills,	CV	is	Central	California	
Valley,	OW	is	Central	and	Southern	California	Chaparral	and	
Oak	Woodlands,	SCM	is	Southern	California	Mountains,	NBR	is	
Northern	Basin	and	Range,	CBR	is	Central	Basin	and	Range,	MBR	is	
Mojave	Basin	and	Range,	and	SBR	is	Sonoran	Basin	and	Range
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variable	(Swain,	Langenbrunner,	Neelin,	&	Hall,	2018),	with	a	recent	
severe	drought	killing	more	than	100	million	trees	(Stephens	et	al.,	
2018)	 and	 a	 high	 probability	 of	 a	 multidecadal	 drought	 occurring	
this	century	(Cook,	Ault,	&	Smerdon,	2015).	Anthropogenic	climate	
change	is	increasing	the	frequency	of	climate	extremes	in	California	
(Cvijanovic	et	al.,	2017;	Diffenbaugh,	Swain,	&	Touma,	2015),	leading	
to	changes	 in	natural	disturbance	regimes	 (Abatzoglou	&	Williams,	
2016;	Crockett	&	Westerling,	2018).	However,	the	future	effects	of	
climate	and	land	change	on	ecosystem	carbon	balance	are	difficult	to	
predict,	and	pose	additional	challenges	to	meeting	greenhouse	gas	
reduction	targets.	Furthermore,	no	existing	studies	have	attempted	
to	quantitate	the	effects	of	major	controlling	processes	such	as	land	
use,	 LUC,	 natural	 disturbance,	 and	 climate	 change,	 on	 the	 carbon	
balance	of	California	ecosystems.

We	consider	32	unique	future	scenarios	exploring	alternative	as‐
sumptions	about	land	use	and	LUC,	reductions	in	global	emissions,	
and	 future	 climate	 conditions.	We	used	a	 fully	 coupled	 state‐and‐
transition	simulation	model	with	carbon	stocks	and	flows	to	estimate	
changes	in	ecosystem	carbon	balance	for	California's	natural	and	ag‐
ricultural	 lands	 on	 an	 annual	 time	 step	 for	 the	 period	 2001–2100	
(Daniel,	Sleeter,	Frid,	&	Fortin,	2018;	Sleeter	et	al.,	2018).	Scenario	
projections	explored	low,	medium,	high,	and	business‐as‐usual	(BAU)	
LUC	pathways	(Sleeter	et	al.,	2018)	and	were	combined	with	climate	
projections	 for	 two	 radiative	 forcing	 scenarios	 (i.e.,	 representative	
concentration	pathway	[RCP]	4.5	and	RCP	8.5).	RCPs	were	simulated	
by	four	bias‐corrected,	statistically	down‐scaled	global	climate	mod‐
els	 (GCMs)	 (Pierce,	Cayan,	&	Thrasher,	 2014)	 chosen	 to	 represent	
a	wide	 range	 of	 future	 climate	 pathways	 in	 California.	 Finally,	we	
integrated	projections	of	climate‐driven	drought‐induced	tree	mor‐
tality	and	wildfire,	overcoming	a	major	limitation	of	previous	studies	
(Allen,	Breshears,	&	McDowell,	2015).	The	goals	of	this	study	were	
to	(a)	estimate	changes	in	California	ecosystem	carbon	balance	and	
their	uncertainties	over	the	recent	historical	past	and	under	a	range	
of	plausible	future	scenarios;	(b)	estimate	how	changes	are	distrib‐
uted	across	different	components	(i.e.,	carbon	pools),	LULC	classes	
(e.g.,	forests,	grasslands),	and	regions;	and	(c)	develop	understanding	
of	 the	 relative	 impact	 of	major	 controlling	 processes	 such	 as	 land	
use,	disturbances,	and	climate	change.

2  | MATERIAL S AND METHODS

We	used	the	land	use	and	carbon	scenario	simulator	(LUCAS),	an	em‐
pirical	model	of	LUC	coupled	with	a	gain–loss	model	of	ecosystem	
carbon	dynamics	 (Selmants,	Giardina,	 Jacobi,	&	Zhu,	2017;	Sleeter	
et	al.,	2018;	Sleeter,	Sleeter,	et	al.,	2017)	to	project	changes	in	eco‐
system	carbon	balance	for	the	state	of	California	under	a	range	of	
climate	 and	 land‐use	 scenarios.	 The	 LUCAS	model	 utilizes	 a	 fully	
coupled	state‐and‐transition	simulation	model	with	stocks	and	flows	
(STSM‐SF;	Daniel	et	al.,	2018)	to	estimate	changes	in	ecosystem	car‐
bon	pools	resulting	from	changes	in	land	use,	land	cover,	and	distur‐
bances	 (Sleeter	et	 al.,	2018).	The	model	estimates	annual	 changes	
in	 carbon	 pools	 resulting	 from	 vegetation	 productivity,	 litterfall,	

mortality,	 decay/decomposition,	 emission,	 leaching,	 and	 harvest.	
Carbon	stocks	and	fluxes	respond	to	changes	 in	 land	use	and	land	
cover	resulting	from	processes	associated	with	urbanization,	agricul‐
tural	expansion	and	contraction,	forest	and	agricultural	harvest	and	
management	activities,	and	wildfire	and	drought‐induced	tree	mor‐
tality.	The	model	also	considers	the	effects	of	short‐	and	long‐term	
climate	 variability	 on	 growth	 of	 live	 biomass	 and	 the	 turnover	 of	
DOM.	Land‐use	transitions	in	this	study	are	based	on	a	set	of	projec‐
tions	developed	for	the	state	of	California	(Sleeter,	Wilson,	Wilson,	
Sharygin,	&	Sherba,	2017).	Carbon	stocks	and	fluxes	are	based	on	
a	national	assessment	of	ecosystem	carbon	balance	 (Sleeter	et	al.,	
2018)	modified	 for	 the	 State	 of	 California	 based	 on	methods	 de‐
scribed	in	Daniel	et	al.	(2018).

2.1 | Study area

The	 spatial	 extent	of	 this	 study	was	 the	 state	of	California	 cover‐
ing	423,812	km2	 (Figure	1).	The	State	of	California	was	subdivided	
into	a	 regular	grid	of	1	km	×	1	km	simulation	cells.	The	state	type	
of	 each	 simulation	 cell	was	 based	 on	 combinations	 of	 12	 ecologi‐
cal	regions,	58	counties	(administrative	units),	and	12	discrete	LULC	
classes,	 including	water,	wetlands,	 snow/ice,	 barren,	 forest,	 grass‐
land,	shrubland,	annual	cropland,	perennial	cropland,	development,	
and	transportation/roads.	For	the	forest,	grassland,	shrubland,	and	
cropland	classes	we	also	tracked	the	age	and	time‐since‐transition	
(TST)	of	each	cell	as	additional	state	variables.	A	general	description	
of	the	structure	of	STSMs	can	be	found	in	Daniel,	Frid,	Sleeter,	and	
Fortin	(2016).

2.2 | States and transitions

The	STSM	divides	a	landscape	into	a	grid	of	simulation	cells	and	then	
simulates	the	state	type	of	each	cell	forward	in	time,	as	a	discrete‐
time	stochastic	process,	in	response	to	any	number	of	possible	tran‐
sitions	 (Daniel	 et	 al.,	 2016).	 Transitions	 between	 state	 types	were	
defined	to	represent	the	processes	associated	with	urbanization,	ag‐
ricultural	expansion	and	contraction,	agricultural	harvest	and	man‐
agement,	forest	harvest,	wildfire,	and	drought	mortality	(Figure	2).	In	
total,	39	unique	transition	pathways	were	defined	for	this	study	and	
were	based	on	the	model	described	in	Sleeter,	Wilson,	et	al.	(2017)	
and	Sleeter,	Sleeter,	et	al.	(2017).	The	order	in	which	transitions	were	
applied	was	randomized	in	each	time	step.	Several	important	modi‐
fications	to	the	model	were	made	for	this	study	and	are	described	
below.	 For	 a	 thorough	 description	 of	 the	 structure	 of	 the	 STSM	
developed	for	California,	see	Sleeter,	Wilson,	et	al.	 (2017);	Sleeter,	
Sleeter,	et	al.	(2017)	and	Wilson,	Sleeter,	and	Cameron	(2016).

The	base	land	change	model	included	a	BAU	and	three	popula‐
tion‐based	scenarios	which	explored	alternative	urbanization	path‐
ways	(Sleeter,	Wilson,	et	al.,	2017;	Sleeter,	Sleeter,	et	al.,	2017).	The	
BAU	 scenario	 was	 based	 entirely	 on	 extending	 historical	 rates	 of	
LULC	change	into	the	future	and	represents	a	future	scenario	path‐
way	describing	a	continuation	of	recent	historical	trends.	The	three	
population‐based	scenarios	were	originally	designed	to	explore	the	
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effect	of	different	rates	of	population	growth	on	urban	land	expan‐
sion.	For	this	study,	we	further	modified	the	population‐based	sce‐
narios	to	also	include	varying	rates	of	other	anthropogenic	land	uses,	
such	as	agricultural	expansion	and	contraction	and	forest	harvest.

The	‘high’	land‐use	scenario	utilized	a	high	population	projection	
to	 characterize	 urbanization,	 and	was	 further	modified	 to	 explore	
a	 future	with	 high	 rates	 of	 other	 anthropogenic	 land	 uses.	 Under	
this	 scenario,	 transition	 rates	 associated	 with	 agricultural	 expan‐
sion	and	contraction	were	derived	by	sampling,	with	 replacement,	
from	the	period	1997–2002,	which	was	a	period	of	sustained	growth	
in	 the	areal	extent	of	California	agricultural	 lands	 (Sleeter,	Wilson,	 
et	 al.,	 2017;	 Sleeter,	 Sleeter,	 et	 al.,	 2017).	 Similarly,	 for	 transitions	
associated	with	forest	harvest,	we	sampled,	with	replacement,	from	
the	 2002–2009	 period.	A	 similar	 approach	was	 used	 to	 construct	
the	‘low’	land‐use	scenario,	where	the	rates	of	agricultural	land	use	
were	 sampled	 from	 the	 1993–1996	 period	 and	 transitions	 associ‐
ated	with	forest	harvest	were	sampled	from	the	2010–2014	period.	
These	 rates	were	 combined	with	 a	 low	population	 projection	 and	
corresponding	low	rate	of	urbanization.	For	the	‘BAU’	and	‘medium’	
scenarios,	we	sampled,	with	replacement,	from	the	full	time	series	
of	historical	land‐use	data	for	each	transition	type.	As	such,	the	only	
difference	between	the	‘BAU’	and	‘medium’	land‐use	scenarios	was	
the	rate	of	urbanization.	The	‘BAU’	scenario	projected	urbanization	
using	 the	 full	 time	 series	 of	 historical	 urbanization	 data	while	 the	
‘medium’	land‐use	scenario	used	a	medium	population	projection	as	

described	in	Sleeter,	Wilson,	et	al.	(2017)	and	Sleeter,	Sleeter,	et	al.	
(2017).

Forest	 harvest	 activities	 in	 California	 are	 dominated	 by	 soft‐
woods,	which	make	up	approximately	58%	of	the	total	forest	area	
of	the	state	and	are	dominated	by	a	mixed	conifer	group	(includes	
mixed	stands	of	Douglas	fir,	ponderosa	pine,	sugar	pine,	Jeffrey	pine,	
white	 and	 red	 fir,	 incense	 cedar,	 and	 other	 true	 fir	 species),	 pon‐
derosa	 pine,	 and	 other	western	 softwoods	 (Christensen,	Waddell,	
Stanton,	&	Kuegler,	2016).	Hardwoods	make	up	approximately	40%	
of	the	state's	 forest	 lands	and	are	dominated	by	western	oak	spe‐
cies;	 however,	 they	 make	 up	 less	 than	 1%	 of	 the	 total	 statewide	
harvest	 (McIver	 et	 al.,	 2015).	 Conversely,	 the	 combined	 harvest	
of	Douglas	 fir,	 true	 firs,	 ponderosa	pine,	 redwood,	 and	 sugar	pine	
accounts	 for	 nearly	94%	of	 all	 harvest	 in	California	 (McIver	 et	 al.,	
2015).	In	the	LUCAS	model,	forest	harvest	was	characterized	as	ei‐
ther	stand	replacing	(clear‐cut)	or	partial	harvest	(selection)	events.	
Annual	historical	harvest	rates	were	derived	from	annual	historical	
maps	of	forest	disturbance	(U.S.	Geological	Survey	[USGS]	LandFire	
Program,	 2014)	 available	 for	 the	 period	 1999–2014.	 In	 projected	
years,	 forest	harvest	 transitions	were	estimated	by	sampling,	with	
replacement,	from	the	historical	time	series	of	data,	where	covari‐
ance	between	harvest	types	and	rates	by	county	was	preserved.	The	
minimum	age	for	forest	harvest	was	set	to	40	years	old	for	clear‐cut	
and	20	years	old	for	selection	harvest.	Cells	selected	for	clear‐cut	
harvest	subsequently	had	their	age	reset	to	0	while	cells	selected	for	

F I G U R E  2  Conceptual	diagram	of	(a)	state‐and‐transition	simulation	model	and	(b)	carbon	stock‐flow	model	used	in	this	study.	Green	
boxes	denote	ecosystem	state	classes	and	carbon	pools	included	in	the	estimation	of	ecosystem	carbon	storage.	Gray	diamonds	indicate	
land	change	transition	processes	and	carbon	fluxes	considered	in	the	model.	Dynamic	global	vegetation	model	with	subscripts	indicates	that	
flux	was	parameterized	with	a	dynamic	global	vegetation	model	as	a	function	of	the	subscripts	indicated.	LUC,	land‐use	change
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selection	harvest	did	not	experience	a	change	in	age.	Spatial	maps	
were	used	to	prohibit	harvest	from	protected	lands	(U.S.	Geological	
Survey	[USGS]	Gap	Analysis	Program	[GAP],	2016).	Carbon	transfer	
rates	resulting	from	clear‐cuts	were	based	on	Sleeter	et	al.	 (2018).	
For	 selection	 harvest,	we	 assumed	 20%	 of	 live	 biomass	 pool	was	
transferred	to	the	harvested	wood	products	(HWP)	pool.

Wildfire	 and	 drought‐induced	 tree	 mortality	 were	 estimated	
based	on	submodels	which	were	integrated	into	the	LUCAS	frame‐
work.	An	exogenous	statistical	fire	model	was	used	to	derive	burn	
area	 projections	 for	 each	 climate	 scenario	 (Sleeter,	Wilson,	 et	 al.,	
2017;	Sleeter,	Sleeter,	et	al.,	2017).	For	 the	projected	period,	burn	
area	was	 estimated	 for	 each	GCM	and	RCP	based	on	 a	 statistical	
model	of	wildfire	which	considered	the	effects	of	climate,	vegeta‐
tion,	 population	 density,	 and	 fire	 history	 (Westerling,	 2018).	 For	
each	scenario,	the	annual	projected	burn	area	was	summarized	for	
each	ecoregion	and	climate	 scenario.	The	LUCAS	model	was	 then	
used	to	simulate	individual	fire	events	which	spread	across	the	land‐
scape	within	a	time	step.	Fire	events	were	projected	based	on	(a)	the	
expected	annual	burn	area	within	an	ecoregion	as	provided	by	the	
exogenous	statistical	fire	model;	(b)	the	relative	probability	of	an	in‐
dividual	cell	experiencing	a	fire;	(c)	the	stationary	distribution	of	fire	
size	as	calculated	from	historical	fire	maps	for	each	ecoregion;	and	
(d)	the	distribution	of	fire	severity	classes	as	calculated	from	histori‐
cal	fire	maps	for	each	ecoregion.

A	 similar	 approach	was	 used	 to	 estimate	 the	 annual	 extent	 of	
drought‐induced	tree	mortality.	We	used	the	60‐month	Standardized	
Precipitation	 Evapotranspiration	 Index	 (SPEI;	 Vicente‐Serrano,	
Beguera,	&	Lopez‐Moreno,	2010)	to	track	long‐term	drought	annu‐
ally	 across	California	using	PRISM	 (PRISM	Climate	Group,	Oregon	
State	 University,	 2016)	 4‐km	 historical	 climate	 data	 for	 monthly	
temperature	and	precipitation	 inputs	calibrated	to	aerial	detection	
survey	 forest	mortality	maps	 (Moore,	McAfee,	&	 Iaccarino,	2018).	
We	 fit	 a	 binomial	 generalized	 linear	 model	 for	 each	 of	 the	 three	
mortality	classes,	using	SPEI	as	a	single	predictor	in	the	model.	We	
used	these	models	to	estimate	future	drought‐induced	mortality	for	
each	GCM	and	RCP	scenario	on	an	annual	time	step.	We	estimated	
the	annual	mortality	area	 for	each	ecoregion	 from	the	model	out‐
puts	and	 sampled,	with	 replacement,	 from	a	Gaussian	distribution	
created	from	these	annual	ecoregional	means	and	an	assumed	50%	
standard	deviation.	Annual	 relative	probability	maps	derived	 from	
the	 spatial	 predictions	 were	 used	 within	 LUCAS	 to	 constrain	 the	
pattern	of	disturbance.	Additional	details	describing	the	wildfire	and	
drought‐induced	tree	mortality	submodels	can	be	found	in	the	Data	
S1:	Methods.

2.3 | Carbon stocks and flows

With	the	STSM‐SF	method,	the	fate	of	continuous	carbon	stocks	
can	be	simulated	for	each	simulation	cell,	based	on	a	suite	of	con‐
tinuous	 flows	 (i.e.,	 carbon	 fluxes)	 specifying	 the	 rates	 at	 which	
these	 stock	 levels	 change	over	 time	 (Daniel	 et	 al.,	 2018).	Carbon	
stocks	 considered	 in	 this	 study	 included	 a	 single	 live	 pool	 (living	
biomass),	three	DOM	pools	(standing	deadwood,	down	deadwood,	

and	 litter),	 and	a	soil	pool	 (SOC,	 soil	organic	carbon).	 In	addition,	
we	tracked	carbon	in	three	product	pools,	including	HWP	and	car‐
bon	stored	 in	agricultural	products	 (grain	and	straw	pools).	Pools	
representing	 carbon	 stored	 in	 the	 atmosphere	 and	 aquatic	 pools	
were	tracked	to	ensure	the	mass	balance	of	carbon	was	maintained.	
For	live,	DOM,	and	soil	pools,	initial	carbon	stocks	were	estimated	
for	 each	 land	 cover	 class	 (forest,	 grasslands,	 shrublands,	 and	 an‐
nual	and	perennial	agriculture)	and	ecoregion	based	on	a	regionally	
calibrated	dynamic	global	vegetation	model	(DGVM;	Daniel	et	al.,	
2018;	Selmants	et	al.,	2017;	Sleeter,	Liu,	Daniel,	Frid,	&	Zhu,	2015;	
Sleeter	et	al.,	2018)	and	a	remote	sensing‐derived	map	of	forest	age	
(see	Data	S1:	Methods).

The	LUCAS	model	estimates	change	in	carbon	stocks	(i.e.,	fluxes)	
resulting	from	growth,	mortality,	litterfall,	deadfall	(e.g.,	standing	to	
down	deadwood),	decomposition,	emission,	and	leaching	(Figure	2).	
In	addition,	LUCAS	estimates	change	in	carbon	stocks	and	fluxes	re‐
sulting	from	land	use,	LUC,	and	disturbances.	Average	annual	growth	
was	estimated	for	each	LULC	class	and	ecoregion	based	on	an	empir‐
ical	model	of	net	primary	production	(NPP;	Del	Grosso	et	al.,	2008).	
Ecoregion	and	land	cover‐specific	turnover	rates	were	then	used	to	
represent	the	flow	of	carbon	from	live	to	DOM	pools	resulting	from	
litterfall	and	mortality	based	on	an	analysis	of	output	from	a	DGVM	
(Daniel	et	al.,	2018;	Sleeter	et	al.,	2018).	Rates	of	decay	and	decom‐
position	 of	 DOM,	 as	well	 as	 the	 lateral	 flux	 from	 of	 carbon	 from	
terrestrial	to	aquatic	systems	(i.e.,	leaching),	were	specified	for	each	
ecoregion	(Sleeter	et	al.,	2018).	An	annual	multiplier	was	applied	to	
DOM	turnover	rates	based	on	a	Q10	function	(Kurz	et	al.,	2009).	We	
assumed	a	Q10	of	2.0	for	the	decay	of	down	deadwood,	decompo‐
sition	of	litter,	and	gaseous	emissions	from	the	soil	pool	(Pries	et	al.,	
2017),	 and	 a	Q10	 of	 2.65	was	 assumed	 for	 the	 litter	 pool.	 Lastly,	
transition‐triggered	flows	(e.g.,	flows	resulting	from	transitions	such	
as	harvest	or	urbanization;	Daniel	 et	 al.,	 2018)	 result	 in	 additional	
fluxes	to	product	pools	and	the	atmosphere	and	were	derived	from	
Sleeter	et	al.	(2018).

2.4 | Initial conditions

The	 LUCAS	model	was	 initialized	with	 spatially	 explicit	maps	 rep‐
resenting	 spatial	 strata,	 LULC	 type,	 and	 age	 (Figure	 S1).	 All	 maps	
were	projected	to	an	Albers	Equal	Area	Conical	Projection	using	the	
NAD83	Datum.	Each	cell	had	a	spatial	 resolution	of	1	km	×	1	km.	
Three	levels	of	spatial	stratification	were	used	in	the	model,	including	
ecological	regions,	counties,	and	land	ownership.	First,	an	ecoregion	
map	was	developed	based	on	Level	III	ecoregions	of	the	contermi‐
nous	United	States	as	defined	by	the	US	Environmental	Protection	
Agency	 (Omernik,	 1987).	 Second,	 an	 administrative	 boundaries	
map	was	derived	based	on	county	boundaries	from	the	US	Census	
Bureau.	 Lastly,	 three	 levels	 of	 ownership	 were	 defined,	 including	
federal,	nonfederal,	and	private,	based	on	the	US	Protected	Areas	
Database	v1.4	(U.S.	Geological	Survey	[USGS]	Gap	Analysis	Program	
[GAP],	2016).	 Initial	LULC	class	for	each	cell	was	based	on	Sleeter,	
Wilson,	et	al.	(2017)	and	Sleeter,	Sleeter,	et	al.	(2017)	with	modifica‐
tions	for	perennial	croplands	described	in	Data	S1:	Methods.
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Initial	 carbon	 stocks	 for	 each	 simulation	 cell	 were	 estimated	
based	 on	 the	 ecoregion,	 LULC	 class,	 and	 age	 of	 each	 cell	 and	 an	
age‐to‐carbon	look‐up	table	derived	from	the	output	of	the	DGVM	
(Daniel	et	al.,	2018;	Sleeter	et	al.,	2018;	Figure	S2).	Initial	stock	esti‐
mates	were	then	scaled	using	a	stationary	spatial	growth	multiplier	
to	reflect	within‐ecoregion	heterogeneity	of	carbon	pools.	The	spa‐
tial	multiplier	was	estimated	using	30	year	climate	normal's	and	the	
empirical	NPP	model,	where	values	for	each	cell	reflected	the	NPP	
anomaly	relative	to	each	cell’s	ecoregion	and	LULC	class	type.	The	
soil	carbon	pool	was	estimated	from	a	soil	carbon	stock	spatial	layer	
using	soil	property	prediction	maps	(see	Data	S1:	Methods).	We	used	
this	 soil	 carbon	map	 to	scale	 the	 regional	output	 from	the	DGVM	
following	methods	developed	and	described	in	Daniel	et	al.	(2018).

2.5 | Scenario simulations

We	simulated	32	scenarios	 in	total,	spanning	all	combinations	of	4	
LULC	scenarios,	2	radiative	forcing	scenarios	(i.e.,	RCPs),	and	4	cli‐
mate	models	(i.e.,	GCMs).	For	each	scenario	we	ran	100	Monte	Carlo	
realizations	of	 the	model.	The	four	LULC	scenarios	were	based	on	
those	published	in	Sleeter,	Wilson,	et	al.	(2017)	and	Sleeter,	Sleeter,	
et	 al.	 (2017)	 which	 explored	 alternative	 futures	 based	 on	 ‘BAU’	
trends	and	three	scenarios	exploring	alternative	projections	of	pop‐
ulation	growth	 (low,	medium,	and	high).	Down‐scaled	climate	data	
from	the	Localized	Construction	Analogs	(LOCA)	dataset	were	used	
to	represent	future	climate	conditions	for	the	RCP	4.5	and	RCP	8.5	
radiative	forcing	scenarios	(Pierce	et	al.,	2014).	Climate	models	cho‐
sen	represent	‘hot‐dry’	(HadGEM2‐ES),	‘hot‐wet’	(CNRM‐CM5),	‘av‐
erage’	(CanESM2),	and	‘complementary’	(MIROC5)	conditions,	which	
were	the	subset	of	global	climate	models	selected	for	the	California	
Fourth	Climate	Change	Assessment	as	models	meant	to	represent	a	
range	of	possible	futures	for	the	state	(Bedsworth,	Anderson,	Franco,	
Anderson,	&	Wilhelm,	2017;	Pierce,	Cayan,	&	Dehann,	2016).	All	sce‐
nario	simulations	were	run	at	1	km	×	1	km	spatial	resolution	on	an	
annual	time	step	for	the	period	2001–2101.	A	baseline	period	span‐
ning	 the	 years	2001–2015	was	defined	where	 simulations	utilized	
real	historical	LULC	and	climate	data	inputs;	projections	departed	in	
2016	based	on	1	of	the	32	individual	future	pathways.	Positive	val‐
ues	reported	in	this	study	denote	a	net	increase	in	carbon	storage	in	
terrestrial	ecosystems	while	negative	values	denote	a	net	loss	from	
ecosystems.	The	term	‘net	ecosystem	productivity’	 (NEP)	refers	to	
the	net	difference	in	carbon	storage	resulting	from	plant	productiv‐
ity	 (i.e.,	NPP)	and	respiration	by	heterotrophic	organisms	 (Rh).	Net	
ecosystem	carbon	balance	(NECB)	refers	to	the	net	change	in	total	
carbon	stored	in	ecosystems.	For	this	study,	the	primary	difference	
between	NEP	and	NECB	is	the	inclusion	of	carbon	losses	resulting	
from	LUC,	disturbances,	harvest,	and	aquatic	leaching	in	the	calcula‐
tion	of	NECB.

2.6 | Effect of CO
2
 fertilization

Increasing	atmospheric	CO2	(Ca)	concentration	has	a	direct,	posi‐
tive	effect	on	carbon	assimilation	by	plants	through	photosynthesis	

(Franks	 et	 al.,	 2013).	However,	 there	 is	 a	 large	 degree	 of	 uncer‐
tainty	in	the	persistence	and	magnitude	of	this	effect,	particularly	
over	 long	 time	 horizons.	 To	 explore	 the	 importance	 of	 the	 CO2 
fertilization	 effect	 (CFE)	 on	 ecosystem	 carbon	 balance,	we	 con‐
ducted	a	series	of	simulations	to	test	the	sensitivity	of	the	model	
to	the	introduction	of	a	CFE	on	NPP.	We	used	the	‘BAU’	land‐use	
scenario	 and	CanESM2	 (‘average’)	 climate	model	 to	 test	 a	 range	
of	 CFE	 rates	 for	 both	 the	 RCP	 4.5	 and	 RCP	 8.5	 scenarios.	 CFE	
rates	were	selected	 to	span	 the	 range	of	values	observed	 in	 the	
literature,	which	generally	show	increases	in	NPP	ranging	from	9%	
to	23%	when	Ca	 levels	were	 increased	by	~50%	(i.e.,	an	 increase	
of	 ~180	 ppm	 CO2;	 Norby	 et	 al.,	 2005;	 Norby,	Warren,	 Iversen,	
Medlyn,	&	McMurtrie,	2010).	The	LUCAS	model	was	parameter‐
ized	with	an	NPP	CFE	multiplier	based	on	a	β	factor	representing	
the	annual	 change	 in	NPP	 (%)	 for	every	100	ppm	 increase	 in	Ca. 
We	tested	five	β	levels,	ranging	from	2%	to	14%,	which	are	gener‐
ally	consistent	with	the	range	of	observed	CFEs	from	free	air	CO2 
enrichment	(FACE)	experiments	(5%–25%	increases	in	NPP	given	
exposure	to	an	increase	of	~180	ppm	of	CO2).	Additionally,	we	in‐
troduced	a	third	scenario	where	we	assumed	the	CFE	reached	sat‐
uration	at	600	ppm	which	is	generally	the	upper	limit	from	FACE	
experiments;	 this	 threshold	 is	 reached	 in	 ~2060	 under	 the	 RCP	
8.5	scenario.	Under	 this	scenario	we	assumed	no	additional	CFE	
occurred	despite	Ca	levels	increasing	to	~930	ppm	by	2100.	Thus,	
the	NPP	CFE	multiplier	was	calculated	as:

where	NPPt,s

CFE
	is	the	projected	NPP	including	CFE	for	year	t	(a	year	

between	2001	and	2100)	and	scenario	s	(either	RCP	4.5	or	RCP	8.5),	
NPP

t,s

NOCFE
	is	the	NPP	projected	by	the	model	in	the	absence	of	CFE	

for	year	t	and	scenario	s,	ΔCt,s
a 	 is	the	difference	in	Ca	between	year	

t	and	the	base	year	of	2001	for	scenario	s,	and	β	is	a	percentage	in‐
crease	in	NPP	for	a	100	ppm	increase	in	Ca.

3  | RESULTS

3.1 | Contemporary change in carbon stocks

In	 2001,	 California	 ecosystems	 stored	 an	 estimated	 4,823.1	 Tg	 C	
with	 37.4%	 (1,804.3	 Tg	 C)	 stored	 in	 live	 vegetation,	 54.8%	
(2,643	Tg	C)	stored	in	soils,	and	7.8%	(375.9	Tg	C)	stored	in	DOM.	
Between	2001	and	2016,	 the	 total	 ecosystem	carbon	declined	by	
−188.4	 (−203.5	 to	−173.4)	Tg	C	 (mean	and	95%	Monte	Carlo	 con‐
fidence	 intervals)	 with	 the	 mean	 annual	 source/sink	 rate	 ranging	
from	−89.8	(source)	to	60.1	Tg	C/year.	Between	2001	and	2011,	the	
NECB	of	California	 ecosystems	was	 −2.5	 Tg	C/year,	with	 the	 car‐
bon	 losses	 increasing	 11‐fold	 (−40.8	 Tg	C/year)	 during	 the	 severe	
drought	of	2012–2015	(Table	1).	During	this	period,	the	cumulative	
change	in	total	ecosystem	carbon	was	−163.1	Tg	C,	equivalent	to	ap‐
proximately	34%	of	the	state's	total	greenhouse	gas	emissions	over	

NPP
t,s

CFE
=NPP

t,s

NOCFE
×

(

1+ΔC
t,s
a ×!

100

)
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the	 same	 period	 (California	Air	 Resources	Board,	 2018;	 Figure	 3).	
Between	 2001	 and	 2015,	 the	mean	 annual	NECB	 from	California	
ecosystems	(−13.5	Tg	C/year)	was	equivalent	to	11%	of	the	state's	

average	annual	total	greenhouse	gas	emissions.	Table	1	shows	the	
estimated	carbon	stocks	and	fluxes	for	each	time	step	over	the	his‐
torical	period.

TA B L E  1  Annual	carbon	stocks	and	fluxes	for	California	for	the	period	2001–2015.	The	transfer	column	represents	the	cumulative	
carbon	transferred	from	ecosystem	classes	to	nonecosystem	classes	(e.g.,	development).	The	LULCC	column	represents	carbon	losses	due	to	
land	use,	LUC,	and	disturbances

Stocks Fluxes

Timestep Live DOM Soil TEC NPP Rh NEP LULCC NECB Transfer

2001 1804.3 375.9 2,643 4,823.1 — — — — — —

2002 1782.6 371.5 2,639.9 4,794 136.2 126 10.1 37.5 −27.3 1.8

2003 1783.1 368.7 2,634.8 4,786.7 155.9 124.7 31.2 37.5 −6.3 2.9

2004 1791 373.2 2,628.6 4,792.9 165.6 121 44.6 37.3 7.2 3.9

2005 1827.5 379.5 2,623.4 4,830.4 198.2 119.1 79.1 40.5 38.6 5.1

2006 1826.3 386.4 2,621.1 4,833.8 168.6 121.1 47.5 43 4.5 6.2

2007 1775.3 387.9 2,619.7 4,782.9 108.2 121.9 −13.7 36.4 −50.1 7.1

2008 1756.1 382.2 2,614.9 4,753.3 138.5 118.6 19.9 48.7 −28.7 8.1

2009 1740.9 383 2,609.5 4,733.4 132.6 116.1 16.4 35.7 −19.2 8.7

2010 1799.3 389.2 2,604.4 4,793 209.4 109.2 100.1 40 60.1 9.4

2011 1780.7 402.3 2,605.5 4,788.4 144.4 113.4 31 35.1 −4.1 9.8

2012 1781.7 393.2 2,607 4,781.9 155.9 123.7 32.2 38.4 −6.2 10.2

2013 1698.3 387.5 2,605.4 4,691.2 63.7 121.9 −58.2 31.6 −89.8 11.2

2014 1705.5 365 2,597.3 4,667.8 142.4 127.9 14.5 37 −22.5 12.2

2015 1658.5 376.9 2,586.9 4,622.3 113.1 120.7 −7.6 37 −44.6 13.1

Abbreviations:	LULCC,	land	use	and	land	cover	change;	NECB,	net	ecosystem	carbon	balance;	NEP,	net	ecosystem	productivity;	NPP,	net	primary	
production;	DOM,	dead	organic	matter;	Rh,	heterotrophic	respiration;	TEC,	total	ecosystem	carbon.

F I G U R E  3  Total	CO2	emissions	and	net	ecosystem	sink	in	California	by	sector	and	source	for	the	period	2002–2015.	Anthropogenic	
emissions	are	show	in	gray	bars	and	ecosystem	emissions	and	sinks	are	shown	in	colored	bars.	Positive	values	shows	emissions	to	the	atmosphere	
and	negative	values	show	a	net	sink	in	ecosystems.	Anthropogenic	emissions	(gray	bars)	are	from	the	California	Air	Resources	Board
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3.2 | Contemporary drivers of carbon stock change

Declines	 in	 ecosystem	 carbon	 were	 driven	 by	 a	 combination	 of	
factors,	 including	 interannual	 variability	 in	 weather	 and	 climate,	
changes	in	land	use	and	land	cover,	wildfire,	and	drought,	and	repre‐
sents	an	important	positive	feedback	to	the	climate	from	terrestrial	
ecosystems.	The	largest	drivers	of	ecosystem	carbon	loss	were	asso‐
ciated	with	declines	in	plant	growth	during	years	with	poor	growing	
conditions,	gaseous	emissions	resulting	from	wildfire,	and	removal	
of	 carbon	 resulting	 from	 agricultural	 and	 forest	 harvest	 activities.	
Over	the	contemporary	period,	NPP	averaged	145.2	Tg	C/year	while	
heterotrophic	respiration	(Rh)	remained	relatively	constant	at	an	av‐
erage	annual	rate	of	120.4	Tg	C/year.	A	declining	trend	in	NPP,	owing	
primarily	to	sustained	drought	conditions	over	much	of	the	state	be‐
ginning	in	2013,	and	a	relatively	stable	rate	of	ecosystem	respiration,	
resulted	 in	NEP	of	24.8	Tg	C/year	 (Table	1).	However,	 the	effects	
of	year‐to‐year	variability	in	weather	and	climate	had	profound	im‐
pacts	on	ecosystem	carbon	balance.	For	example,	in	2013,	statewide	
NPP	was	estimated	to	be	reduced	by	59%	over	the	2001–2010	av‐
erage	while	NEP	was	estimated	to	be	reduced	by	256%.	Moreover,	
since	2007,	statewide	NPP	has	been	on	average	15%	lower	than	the	

average	of	the	previous	decade	with	only	a	single	year	(2010)	with	
above	average	productivity	(Table	1).

Carbon	 losses	due	 to	 land	use,	LUC,	disturbances	such	as	 fire,	
and	 lateral	 transfer	 to	 aquatic	 systems,	 removed	 an	 average	 of	
38.3	Tg	C/year.	Table	2	 shows	 the	estimated	mean	annual	 rate	of	
carbon	 flux	between	various	pools	over	 the	historical	 period.	The	
largest	annual	removals	were	associated	with	harvest	of	agricultural	
lands	with	an	average	annualized	rate	of	16.7	Tg	C/year	(9.8	Tg	C/
year	 in	 grain	 and	 6.9	 Tg	C/year	 in	 straw).	 The	 removal/replanting	
of	orchards	contributed	an	additional	loss	of	0.5	Tg	C/year	through	
emissions	 from	biomass	and	soils.	On	average,	wildfire	 resulted	 in	
annual	ecosystem	carbon	losses	of	4	Tg	C/year.	However,	large	in‐
terannual	 variability	 in	 burn	 area	 resulted	 in	 annual	 carbon	 losses	
ranging	from	a	low	of	0.4	Tg	C	year	in	2010	to	a	high	of	14.4	Tg	C	year	
in	2008.	Forest	harvest	activities,	 including	both	clear‐cut	and	se‐
lection	 harvest,	 represented	 the	 second	 largest	 LULC‐related	 flux	
(after	harvest	of	agricultural	products),	accounting	 for	a	combined	
4.3	 Tg	C/year	 being	 transferred	 from	 live	 carbon	 pools.	 Transfers	
from	ecosystems	to	HWP	pools	accounted	for	3.9	Tg	C/year	of	the	
annual	carbon	loss,	while	an	additional	0.4	Tg	C/year	was	lost	to	the	
atmosphere	through	gaseous	emissions.	Other	 land	use	and	LUCs,	

TA B L E  2  Annual	carbon	fluxes	for	the	historical	period.	Unless	specified	otherwise,	emissions	fluxes	reflect	the	combined	emissions	
from	all	ecosystem	carbon	pools	(e.g.,	living	biomass,	litter,	standing	deadwood,	down	deadwood,	and	soil).	Values	represent	the	mean,	
minimum,	and	maximum	annual	values	for	the	period	2001–2015

Transition group Flow From stock To stock Mean Min Max

Automatic	flows Growth Atmosphere Living	biomass 145.2 63.5 209.8

Litterfall Living	biomass Litter 105 87.2 118.1

Mortality Living	biomass Standing	deadwood 10.6 9.9 11

Deadfall Standing	deadwood Down deadwood 13.2 12.5 14.3

Decay Down deadwood Litter 14.1 13.6 14.4

Decomposition Litter Soil 62.2 56.2 66.5

Emission	(biomass) Living	biomass Atmosphere 9.2 8.7 9.5

Emission	(litter) Litter Atmosphere 58.1 51.3 62.1

Emission	(soil) Soil Atmosphere 62.3 57.3 67.1

Leaching Soil Aquatic 2.3 2.3 2.3

Harvest	(grain) Living	biomass Ag	products 9.8 6.4 13.9

Harvest	(straw) Living	biomass Ag	products 6.9 3.8 10

Ag	expansion Emission All	pools Atmosphere 0.5 0.1 0.9

Harvest Living	biomass Wood	products 0.1 0 0.2

Urbanization Emission All	pools Atmosphere 0.7 0.2 1.8

Harvest Living	biomass Wood	products 0.1 0 0.4

Clear‐cut	harvest Emission All	pools Atmosphere 0.4 0.1 0.7

Harvest Living	biomass Wood	products 3.2 0.9 5.6

Mortality Living	biomass Deadwood 1.6 0.4 2.8

Selection	harvest Harvest Living	biomass Wood	products 0.7 0.1 1.3

Orchard	removal Emission All	pools Atmosphere 0.5 0 2.2

Fire Emission All	pools Atmosphere 4 0.3 15.2

Mortality Living	biomass Deadwood 2.7 0.2 11

Drought Mortality Living	biomass Deadwood 3.2 0.6 17.3
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including	urbanization	(0.8	Tg	C/year)	and	expansion	of	agriculture	
(0.5	Tg	C/year)	accounted	for	an	additional	1.3	Tg	C/year	removed	
from	terrestrial	ecosystems.	Other	carbon	losses	resulted	from	the	
lateral	 flux	 from	 terrestrial	 to	 aquatic	 ecosystems	 (i.e.,	 ‘Leaching’)	
and	background	emissions	 from	biomass	which	were	estimated	at	
2.3	 and	 9.2	 Tg	 C/year,	 respectively.	 Cumulatively	 over	 the	 2001–
2015	period,	 LULC	and	disturbances	 resulted	 in	535.7	Tg	C	being	
removed	from	terrestrial	ecosystems.

In	 addition	 to	 the	direct	 carbon	 losses	 (through	gaseous	emis‐
sions	and/or	transfer	to	product	pools)	discussed	above,	ecosystem	
disturbances	 resulted	 in	 the	 transfer	 of	 carbon	 between	 live	 and	
DOM	 pools	 which	 result	 in	 future	 committed	 emissions	 through	
decay	and	decomposition	(Table	2).	Cumulatively,	wildfire	accounted	
for	38.1	Tg	C	 (2.7	Tg	C/year)	being	 transferred	 from	 live	 to	DOM	
pools	 (primarily	 to	 standing	 deadwood),	 although	 as	with	 gaseous	
emissions,	interannual	variability	was	high	with	annual	fluxes	rang‐
ing	from	0.2	to	10.1	Tg	C/year.	Similarly,	forest	harvest	activities	re‐
sulted	in	the	cumulative	transfer	of	22.4	Tg	C	(1.6	Tg	C/year)	from	
live	to	(primarily)	down	deadwood	pools	resulting	from	the	mortal‐
ity	 of	 tree	 roots	 on	 harvested	 stands.	 Drought	mortality	was	 the	
largest	overall	driver	of	 increases	in	DOM	statewide,	however,	the	
effects	of	drought	were	highly	variable	 in	space	and	time.	Prior	to	
2015,	drought‐induced	mortality	accounted	 for	an	annual	 transfer	
of	 3.2	 Tg	 C/year.	 However,	 in	 response	 to	 prolonged	 exceptional	
drought	conditions,	mortality	increased	to	16.9	and	29.4	Tg	C/year	
in	 2015	 and	 2016,	 respectively.	 As	 a	 result,	 the	 historical	 period	

(including	2016)	realized	a	net	increase	in	DOM	pools	statewide	of	
9.8%	(36.9	Tg	C).

3.3 | Projected change in ecosystem carbon balance

This	 study	projected	changes	 in	ecosystem	carbon	balance	 for	32	
unique	 future	 pathways	 representing	 all	 possible	 combinations	 of	
two	radiative	forcing	trajectories	(RCP	4.5	and	RCP	8.5)	as	simulated	
by	four	global	climate	models	(CanESM2,	CNRM‐CM5,	HadGEM2‐
ES,	and	MIROC5),	and	four	land‐use	scenarios	(BAU,	high,	medium,	
low;	Sleeter,	Sleeter,	et	al.,	2017;	Sleeter,	Wilson,	et	al.,	2017).	Each	
scenario	was	replicated	for	100	Monte	Carlo	simulations.	Figure	4	
shows	the	mean	projected	total	ecosystem	carbon	(Figure	4a),	live,	
DOM,	and	soil	carbon	stocks	(Figure	4b),	and	NECB	(Figure	4c)	for	
California	over	the	historical	and	projected	periods.	When	averaged	
across	all	scenario	simulations,	carbon	stored	 in	terrestrial	ecosys‐
tems	was	projected	 to	decline	by	−432.3	Tg	C	between	2015	and	
2100,	representing	a	loss	of	−9.4%	from	2015	levels.	An	additional	
68.5	Tg	C	was	transferred	from	ecosystem	classes	(e.g.,	forest,	grass‐
land,	 shrublands,	 agricultural	 lands)	 to	 other	 LULC	 classes	 which	
were	not	 further	considered	 in	 this	 study	 (e.g.,	development,	wet‐
lands).	The	magnitude	of	the	decline	in	ecosystem	carbon	was	highly	
uncertain,	with	estimates	ranging	from	a	decline	of	−916.2	Tg	C	to	
a	net	increase	of	121.2	Tg	C;	the	mean	annualized	source/sink	rate	
was	projected	to	range	from	−10.8	to	1.4	Tg	C/year	depending	on	
climate	 model,	 radiative	 forcing	 scenario,	 and	 land‐use	 scenario.	

F I G U R E  4  Projected	changes	in	total	
ecosystem	carbon	(a),	carbon	stocks	
including	dead	organic	matter,	live	
biomass,	and	soil	(b),	and	net	ecosystem	
carbon	balance	(NECB;	c).	Mean	and	
Monte	Carlo	confidence	intervals	were	
calculated	across	all	32	scenarios	and	
iterations	of	the	model.	Ecosystem	
carbon	pools	include	carbon	stored	only	
in	ecosystem	classes,	including	forests,	
grasslands,	shrublands,	and	agriculture
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Declines	 in	 ecosystem	 carbon	were	 driven	by	 declines	 in	 live	 and	
soil	pools	averaging	−290.1	and	−328.3	Tg	C,	respectively,	while	car‐
bon	stored	in	DOM	was	projected	to	increase	by	159.1	Tg	C.	For	the	
period	2015–2100,	 the	mean	annual	net	 flux	 from	 terrestrial	 eco‐
systems	(−5.1	Tg	C/year),	was	on	average,	62%	lower	than	the	rate	
estimated	for	the	historical	period	(−13.5	Tg	C/year).

3.4 | Effects of different scenario pathways

Climate	models	were	the	primary	source	of	uncertainty	in	projected	
ecosystem	carbon	balance	(Table	3;	Figure	5).	When	averaged	across	
all	 scenario	 simulations,	 mean	 annualized	 net	 carbon	 flux	 ranged	

from	 −8.4	 to	 −0.8	 Tg	 C/year.	 The	 largest	 cumulative	 declines	 in	
carbon	 storage	were	 projected	 under	 the	MIROC5	 (‘Complement’;	
−713.5	Tg	C)	and	HadGEM2‐ES	(‘hot‐dry’;	−703.7	Tg	C)	models.	The	
smallest	declines	were	associated	with	the	‘hot‐wet’	model	(CNRM‐
CM5)	with	a	projected	cumulative	loss	of	−71.4	Tg	C.	The	‘averages’	
model	(CanESM2)	was	chosen	specifically	to	represent	an	average	of	
down‐scaled	climate	models	 for	California	 (Bedsworth	et	al.,	2017;	
Pierce	et	al.,	2014)	and	projected	a	net	decline	of	−240.6	Tg	C	by	2100	
with	a	mean	annualized	rate	of	−2.8	Tg	C/year.	On	average,	simula‐
tions	based	on	the	RCP	8.5	pathway	resulted	in	a	loss	of	−481.8	Tg	C	
from	ecosystems,	however,	variability	was	large,	with	estimates	rang‐
ing	 from	a	 source	of	−925.8	Tg	C/year	 to	 a	 net	 sink	of	23.5	Tg	C.	

LUC RCP GCM ΔNPP ΔRh ΔNEP ΔLULCC ΔNECB

BAU RCP	4.5 CanESM2 4.2 −4.3 8.6 −1 9.6

CNRM‐CM5 15 0.3 14.7 2.3 12.3

HadGEM2‐ES −6.8 −10.6 3.8 −3 6.8

MIROC5 −11.9 −14 2.1 −3.2 5.3

RCP	8.5 CanESM2 18.1 6.3 11.9 1.2 10.7

CNRM‐CM5 16 3.4 12.6 1.4 11.2

HadGEM2‐ES −7.1 −7 −0.1 −3.4 3.3

MIROC5 −12.2 −11.1 −1.1 −4.9 3.8

High RCP	4.5 CanESM2 5.5 −4.7 10.3 0.9 9.3

CNRM‐CM5 16.7 0 16.6 4.5 12.2

HadGEM2‐ES −5.6 −11 5.4 −1.1 6.5

MIROC5 −10.8 −14.4 3.6 −1.5 5.1

RCP	8.5 CanESM2 19.6 5.9 13.8 3.3 10.4

CNRM‐CM5 17.5 3 14.5 3.6 10.9

HadGEM2‐ES −5.7 −7.3 1.6 −1.4 3.1

MIROC5 −11.2 −11.5 0.3 −3.2 3.5

Medium RCP	4.5 CanESM2 5.2 −3.7 9 −1.3 10.3

CNRM‐CM5 16.5 1.2 15.3 2 13.3

HadGEM2‐ES −5.8 −10 4.2 −3.2 7.4

MIROC5 −10.9 −13.4 2.5 −3.5 5.9

RCP	8.5 CanESM2 19.6 7.2 12.4 0.9 11.5

CNRM‐CM5 17.5 4.3 13.3 1.2 12

HadGEM2‐ES −6 −6.3 0.3 −3.5 3.8

MIROC5 −11.4 −10.5 −0.9 −5.2 4.3

Low RCP	4.5 CanESM2 7.1 −1.9 9.1 −2.3 11.3

CNRM‐CM5 18.3 3 15.3 0.9 14.4

HadGEM2‐ES −4 −8.3 4.3 −4.1 8.5

MIROC5 −9.3 −11.8 2.5 −4.5 7

RCP	8.5 CanESM2 21.5 9 12.5 0 12.5

CNRM‐CM5 19.2 6.1 13.2 0 13.1

HadGEM2‐ES −4.3 −4.5 0.3 −4.5 4.8

MIROC5 −9.8 −8.8 −0.9 −6.1 5.3

Abbreviations:	BAU,	business‐as‐usual;	GCM,	global	climate	model;	LUC,	land‐use	change;	LULCC,	
land	use	and	land	cover	change;	NECB,	net	ecosystem	carbon	balance;	NPP,	net	primary	production;	
RCP,	representative	concentration	pathway;	Rh,	heterotrophic	respiration;	TEC,	total	ecosystem	
carbon.

TA B L E  3  Differences	in	mean	annual	
projected	carbon	fluxes	compared	to	
historical	period	for	each	land	use	and	
RCP	scenario	as	simulated	by	four	climate	
models	(GCM)
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Switching	from	the	RCP	8.5	to	RCP	4.5	climate	pathway	resulted	in	
a	 reduction	 in	net	 carbon	 losses	of	20.5%.	However,	 reductions	 in	
carbon	losses	were	inconsistent,	and	highly	dependent	upon	climate	
model.	For	example,	when	switching	 from	the	RCP	8.5	 to	RCP	4.5	
pathway,	ecosystems	sequestered	an	additional	267.3	Tg	C	by	2100	
under	the	‘hot‐dry’	model	(HadGEM2‐ES),	while	under	the	‘average’	
model	(CanESM2),	ecosystem	carbon	losses	increased	by	76.4	Tg	C.	
Increases	in	precipitation	under	the	CanESM2	RCP	8.5	scenario	re‐
sulted	 in	 large	 increases	 in	NPP	which	 led	to	 increased	rates	of	se‐
questration	not	 realized	under	 the	RCP	4.5	 future	 (Table	3).	These	
results	suggest	the	overall	benefits	of	global‐scale	reductions	in	ra‐
diative	forcing	and	reductions	in	atmospheric	greenhouse	gasses	may	
not	be	realized	at	local‐to‐regional	scales	and	may	result	in	positive	
feedbacks	 on	 the	 climate	 system	 through	 reductions	 in	 ecosystem	
sequestration	potential.

The	four	land‐use	scenarios	used	in	this	study	were	developed	
to	explore	alternative	future	pathways	based	on	low,	medium,	and	
high	 population	 and	 land‐use	 intensity	 assumptions,	 along	with	 a	
scenario	which	 explored	 a	 continuation	 of	 current	 trends	 in	 land	
use	and	LUC	(e.g.,	BAU;	Sleeter,	Wilson,	et	al.,	2017;	Sleeter,	Sleeter,	
et	al.,	2017).	Projected	changes	in	land	use	are	shown	in	Figure	S3.	
Urbanization	was	projected	to	occur	primarily	on	agricultural	lands,	
grasslands,	 and	 shrublands	while	 changes	 in	 agriculture	were	pri‐
marily	 located	 in	 grassland	 and	 shrubland	 ecosystems.	 The	 ‘high’	
scenario	was	the	only	scenario	where	agricultural	lands	were	pro‐
jected	 to	 increase	 in	overall	 area	 (Figure	S4).	Under	all	 scenarios,	
forest,	 grassland,	 and	 shrubland	 were	 projected	 to	 decline	 from	
current	 levels.	When	 averaged	 across	 all	 climate	model	 and	 RCP	
simulations,	 the	 ‘high’	 scenario	 resulted	 in	 the	 largest	net	decline	
in	 ecosystem	 carbon	 balance	 (−521.7	 Tg	 C)	 of	 the	 four	 land‐use	

F I G U R E  5  Net	carbon	fluxes,	calculated	as	rolling	10	year	averages,	under	the	business‐as‐usual	land‐use	scenario	for	each	of	the	eight	
climate	pathways	(representative	concentration	pathway	[RCP]	8.5	shown	in	red,	RCP	4.5	shown	in	green).	Fluxes	are	shown	from	top	to	
bottom	as	net	primary	productivity	(NPP),	heterotrophic	respiration	(Rh),	net	ecosystem	productivity	(NEP),	losses	from	land	use	and	land	
cover	change	(losses	shown	as	positive	values),	and	net	ecosystem	carbon	balance	(NECB).	Rh	includes	carbon	baseline	emissions	from	
litter	and	soil	pools,	NEP	is	estimated	as	NPP‐Rh,	and	NECB	is	estimated	as	NEP	minus	ecosystem	carbon	removals	from	land	use,	land‐use	
change,	disturbance,	and	leaching.	Negative	values	indicate	a	net	loss	of	carbon	from	ecosystems
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scenarios	 (−6.1	 Tg	 C/year).	 Under	 the	 ‘BAU’	 scenario,	 which	 ex‐
plored	an	extrapolation	of	recent	historical	rates	of	change,	ecosys‐
tem	carbon	was	projected	to	decline	by	a	cumulative	−479.2	Tg	C	
by	 2100	 (−5.6	 Tg	 C/year).	 Reducing	 the	 rate	 of	 various	 land	 use	
and	LUCs	 (e.g.,	 rate	of	 timber	harvest,	urbanization,	expansion	of	
agriculture)	consistently	achieved	reductions	in	ecosystem	carbon	
losses,	regardless	of	climate	or	RCP	scenario.	Relative	to	the	‘high’	
land‐use	 scenario,	 ecosystems	 sequestered	 an	 additional	 −1.1	 Tg	 
C/year	 under	 the	 ‘medium’	 land‐use	 scenario	 and	−2.5	Tg	C/year	
under	the	‘low’	scenario.

The	BAU	and	medium	scenarios	share	the	same	set	of	assump‐
tions,	aside	from	the	rate	of	urbanization.	Under	the	BAU	scenario,	
historical	 rates	 of	 urbanization	were	 extrapolated	 into	 the	 future,	
while	under	the	medium	scenario,	urbanization	was	based	on	a	me‐
dium	population	growth	projection	(see	Sleeter,	Sleeter,	et	al.,	2017;	
Sleeter,	Wilson,	et	al.,	2017	for	additional	details).	When	averaged	
across	 all	GCM	and	RCP	 scenarios,	California	 ecosystems	 seques‐
tered	an	additional	57.4	Tg	C	when	urbanization	was	reduced	from	
the	BAU	(historical	rates)	to	the	medium	scenario	(e.g.,	slowing	pop‐
ulation	growth	after	mid‐century).	Under	the	‘average’	climate	model	
(CanESM2),	urbanization	reductions	alone	represented	17%–25%	of	

NECB,	while	under	the	‘hot‐wet’	model	(CNRM‐CM5)	and	low	emis‐
sions	scenario	 (RCP	4.5),	reducing	urbanization	accounted	for	94%	
of	NECB.

Figure	6	shows	the	cumulative	estimate	of	NEP	and	NECB	for	
each	of	the	32	scenarios	used	in	this	study.	In	general,	the	‘hot‐dry’	
(HadGEM2‐ES)	 and	 ‘complement’	 (MIROC5)	 models,	 combined	
with	high	global	emissions	and	high	rates	of	LUC,	resulted	in	the	
scenarios	with	 the	 largest	cumulative	declines	 in	ecosystem	car‐
bon	 (−916.2	 and	 −846.9	 Tg	C	 by	 2100,	 respectively).	Under	 the	
‘hot‐dry’	model,	reducing	global	emissions	resulted	in	similar	rates	
of	NPP	and	increases	in	NEP,	indicating	the	avoided	warming	asso‐
ciated	with	the	RCP	4.5	scenario	decreases	carbon	losses	associ‐
ated	with	ecosystem	respiration;	NECB	was	projected	to	increase	
by	 28.3%.	 Under	 the	 same	 ‘hot‐dry’	 model,	 switching	 from	 the	
‘high’	 to	 the	 ‘low’	 land‐use	scenario	 resulted	 in	a	21.1%	 increase	
in	NECB	while	combining	both	global	emissions	reductions	and	re‐
ductions	in	land	use	resulted	in	net	ecosystem	carbon	losses	being	
reduced	by	51.2%.	Under	the	most	optimistic	scenario	(low	nega‐
tive	climate	impacts,	global	emissions	reductions,	and	low	LUCs),	
California	ecosystems	were	projected	to	be	a	net	sink	of	carbon	at	
a	rate	of	1.4	Tg	C/year.

F I G U R E  6   (a)	Relative	effects	of	climate	change	(y‐axis;	increasing	from	top	to	bottom)	and	land	use	and	disturbances	(including	wildfire;	
x‐axis,	increasing	from	left	to	right)	for	each	of	the	32	scenario	simulations	for	the	period	2017–2100.	Error	bars	represent	the	Monte	Carlo	
confidence	intervals	calculated	for	each	scenario.	Shaded	area	represents	the	area	within	the	plot	space	where	ecosystems	were	estimated	
to	be	a	net	carbon	sink	over	the	projected	period.	All	values	are	cumulative	over	the	simulation	period	and	were	rescaled	as	the	difference	
from	the	mean	of	the	32	scenarios.	(b)	Box‐plot	showing	the	change	in	total	ecosystem	carbon	for	each	climate	model	when	switching	from	
high	to	low	land‐use	scenarios	(top;	local	land‐use	mitigation	achieved	through	avoided	conversion)	and	switching	from	the	representative	
concentration	pathway	(RCP)	8.5	to	RCP	4.5	radiative	forcing	scenarios	(bottom;	global	mitigation).	Box‐plots	show	the	median	(black	
bar),	25th	and	75th	percentiles	(boxes),	10th	and	90th	percentiles	(whiskers),	and	outliers	(points).	Negative	values	indicate	a	net	loss	of	
ecosystem	carbon	storage	while	positive	values	indicate	net	carbon	sequestration.	LULCC,	land	use	and	land	cover	change;	NECB,	net	
ecosystem	carbon	balance
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3.5 | Effect of CO
2
 fertilization

The	 effect	 of	 Ca	 enrichment	 on	 ecosystem	 productivity	 has	 a	
major	 impact	 on	 uncertainty	 in	 the	 estimation	 of	 regional	 scale	
carbon	balance	(Figure	7).	The	inclusion	of	a	CFE	effect	with	β val‐
ues	ranging	from	0.027	to	0.136	resulted	in	increases	in	carbon	se‐
questration	by	the	end‐of‐century	ranging	from	1.7–12.4	Tg	C/year	
(assuming	the	CFE	effect	was	limited	to	Ca	of	600	ppm).	Assuming	
no	CFE	 limitation	 based	 on	Ca,	NECB	was	 projected	 to	 increase	
between	 5.7	 and	 24.3	 Tg	 C/year	 under	 the	 RCP	 8.5	 scenario.	
Compared	to	the	reference	scenario	(β	=	0),	total	carbon	stored	in	
California	ecosystems	was	projected	to	 increase	by	12.5%	under	
RCP	 4.5	 and	 17.1%	 under	 RCP	 8.5	 (limited	 at	 600	 ppm)	 assum‐
ing	a	moderate	CFE	 (β	=	0.082).	For	RCP	4.5,	 the	moderate	CFE	
effect	was	 enough	 to	 offset	 all	 other	 carbon	 losses	 resulting	 in	
California	ecosystems	being	relatively	carbon	neutral	by	the	end	
of	the	century	while	under	RCP	8.5,	high	rates	of	Ca	accumulation	
result	in	rapid	increases	in	carbon	storage	through	the	midcentury	
before	leveling	off	after	year	2060	when	the	CFE	reaches	satura‐
tion.	Under	the	unlimited	RCP	8.5	scenario,	carbon	sequestration	
continues	unabated	reaching	a	cumulative	increase	of	31.9%	rela‐
tive	to	the	reference	scenario.

4  | DISCUSSION

Historically,	 California	 ecosystems	 have	 been	 a	 net	 source	 of	
carbon	 at	 an	 average	 rate	 of	 −13.5	 Tg	 C/year.	 Estimates	 of	 the	

annual	source–sink	rate	were	high,	and	largely	the	result	of	inter‐
annual	 variability	 in	 weather	 and	 climate	 conditions	 and	 persis‐
tent	extreme	drought	conditions.	Major	drivers	of	NECB	included	
changes	 in	 vegetation	 productivity,	 ecosystem	 respiration,	 and	
the	episodic	nature	of	disturbances	such	as	wildfire	and	drought.	
Future	projections	suggest	ecosystems	of	California	will	continue	
to	lose	carbon	at	a	mean	annual	rate	of	−5.1	Tg	C/year.	However,	
uncertainty	in	the	source/sink	rate	was	large,	with	estimates	rang‐
ing	from	−10.8	to	1.4	Tg	C/year.	The	large	degree	of	uncertainty	
in	the	future	source–sink	rate	was	primarily	due	to	differences	in	
future	climate	conditions	projected	by	climate	models.	Scenarios	
exploring	the	effect	of	global	emission	reductions	(i.e.,	RCPs)	did	
not	achieve	ecosystem	carbon	benefits	across	all	climate	futures,	
and	 may	 result	 in	 unanticipated	 positive	 feedbacks	 on	 climate	
forcing.	Reducing	land	use	consistently	achieved	reductions	in	net	
ecosystem	carbon	losses	and	was	a	reliable	way	of	increasing	car‐
bon	storage	in	ecosystems,	regardless	of	future	climate	scenario.	
However,	 uncertainties	 resulting	 from	 the	 effect	 of	 increases	 in	
atmospheric	CO2	are	large,	and	must	be	reconciled	in	order	to	bet‐
ter	constrain	model	projections.

4.1 | Implications of different climate and land‐
use pathways

By	 comparing	 various	 scenario	 combinations,	 we	 can	 determine	
the	 relative	 impact	 of	 both	 global	 adherence	 to	 a	 lower	 emission	
trajectory	and	 jurisdictional	actions	to	reduce	emissions	from	 land	
use	 and	 LUC	 (Figure	 6).	 On	 average,	 the	 cumulative	 effect	 of	 a	

F I G U R E  7  Effect	of	CO2	fertilization	(CFE)	on	total	ecosystem	carbon	storage	(TEC)	and	net	ecosystem	carbon	balance	(NECB).	(a)	
Projected	TEC	over	time	under	three	alternative	CFE	scenarios	(No	CFE,	With	CFE,	and	Limited	CFE)	for	two	climate	models	(representative	
concentration	pathway	[RCP]	4.5	and	RCP	8.5).	All	CFE	scenarios	are	based	on	the	business‐as‐usual	land‐use	scenario	and	CanESM2	
climate	model.	Colors	show	the	projected	mean,	minimum	and	maximum	estimates	for	scenarios	with	no	CFE,	with	a	range	of	CFE	values,	
and	with	CFE	limited	to	600	ppm	(under	RCP	8.5	only).	(b)	CFE	rate	(percent	change	in	NPP	for	a	100	ppm	increase	in	atmospheric	CO2)	
plotted	against	projected	average	NECB	(from	year	2001	to	2100).	Points	falling	above	the	horizontal	line	at	zero	denote	scenarios	where	
California	is	a	net	sink	of	carbon	while	values	below	zero	indicate	a	net	source	of	carbon	to	the	atmosphere
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lower	emission	 trajectory	 (i.e.,	 from	RCP	8.5	 to	RCP	4.5)	 changed	
net	ecosystem	carbon	losses	in	California	by	−17%	to	57%	through	
2100,	with	 a	mean	 estimate	 of	 99	Tg	C	 sequestered	 in	 terrestrial	
ecosystems.	Global	emission	reduction	had	the	largest	positive	im‐
pact	 under	more	 extreme	 climate	 futures;	 for	 example,	 under	 the	
‘hot‐dry’	 future	 (HadGEM2‐ES),	 reducing	global	emissions	 leads	 to	
an	 additional	 267.3	 Tg	 C	 sequestered	 by	 ecosystems,	 resulting	 in	
a	 reduction	of	31.9%	 in	net	 ecosystem	carbon	 losses.	Conversely,	
under	 the	 ‘average’	 climate	 future	 (CanESM2),	 the	global	emission	
reduction	scenario	resulted	in	a	37.7%	increase	in	ecosystem	carbon	
losses	compared	to	the	RCP	8.5	pathway,	suggesting	that	 local	ef‐
fects	of	reductions	in	global	radiative	forcing	are	uncertain	and	may	
result	in	a	positive	feedback	to	the	climate	system.

While	the	effect	of	global	climate	mitigation	on	ecosystem	car‐
bon	balance	in	California	can	be	variable,	reducing	LUC	produced	a	
reliable	 increase	 in	 carbon	 sequestration	 regardless	of	 the	climate	
future.	Switching	 from	the	 ‘high’	 to	 the	 ‘low’	 land‐use	scenario	 re‐
sulted	 in	 a	37%	 to	46%	 reduction	 in	net	ecosystem	carbon	 losses	
across	all	climate	futures,	with	a	median	cumulative	retention	of	an	
additional	215.3	Tg	C	 in	California	ecosystems	by	2100.	The	com‐
bination	 of	 global	 climate	 mitigation	 and	 a	 reduction	 in	 land‐use	
conversions	 results	 in	 the	 largest	 potential	 benefits	 to	 ecosys‐
tem	carbon	storage,	reducing	cumulative	net	losses	by	316.1	Tg	C.	
Under	a	 ‘hot‐dry’	climate	 future,	global	emissions	 reductions	com‐
bined	with	a	shift	from	high	to	low	rates	of	LUC	reduced	ecosystem	
carbon	emissions	by	51%	 (from	−916.2	 to	−447	Tg	C).	Relative	 to	
global	 emission	 reduction	 scenarios,	 results	 suggest	 that	 reducing	
ecosystem	carbon	losses	due	to	harvest	and	land	use	is	an	import‐
ant	and	reliable	approach	for	subnational	jurisdictions	like	California	
to	achieve	greenhouse	reduction	goals	and	to	reduce	positive	feed‐
backs	to	the	climate	system.	These	results	highlight	the	benefits	of	
subnational	 jurisdictions	 fully	 participating	 in	 reducing	 emissions	
from	 the	 energy	 and	 transportation	 sectors—thereby	 contributing	
to	global	mitigation—while	reducing	land‐use	emissions	to	minimize	
potential	climate‐driven	ecosystem	carbon	losses.

4.2 | Driving forces of carbon change

In	this	study,	we	estimated	the	direct	effects	of	climate	change	on	
ecosystem	carbon	balance	through	both	changes	in	vegetation	pro‐
ductivity	and	 the	decay	and	decomposition	of	DOM.	Additionally,	
projected	changes	in	climate	were	used	to	estimate	changes	in	the	
magnitude	 and	 frequency	 of	 natural	 disturbance	 events	 including	
wildfire	 and	 drought‐induced	 tree	 mortality.	 The	 climate	 models	
considered	in	this	study	provided	a	wide	range	of	future	conditions,	
with	mean	annual	temperature	increases	ranging	from	1.7	to	4.5	C	
by	the	end‐of‐century	(Figure	S5).	The	effect	of	increased	warming	
resulted	in	large	declines	in	soil	carbon	pools	across	almost	all	sce‐
narios	 (Figure	4).	Although	more	variable,	 changes	 in	precipitation	
were	important	drivers	of	changes	in	NPP.	For	example,	under	the	
‘average’	climate	model	(CanESM2)	combined	with	the	high	emission	
scenario	 (RCP	8.5)	and	BAU	land‐use	scenario,	NPP	was	projected	
to	 increase	by	18.1	Tg	C/year	over	 the	historical	 period	 (Table	3),	

owing	primarily	to	hot‐wet	conditions	conducive	to	increased	plant	
productivity.	 Conversely,	 under	 the	 same	 RCP	 and	 land‐use	 sce‐
nario,	the	‘hot‐dry’	model	(HadGEM2‐ES)	projected	declines	in	NPP	
of	7.1	Tg	C/year	relative	to	the	historical	period.

Projected	 emissions	 from	wildfire	 under	RCP	4.5	were	 consis‐
tent	across	GCMs	and	more	pronounced	under	RCP	8.5.	While	all	
GCMs	 show	 an	 upward	 trend	 in	 projected	wildfire	 emissions,	 the	
much	higher	emissions	from	CanESM2	were	due	to	a	steep	increase	
in	wildfire	area	during	2080–2100	(Figure	S6).	High‐	and	medium‐	
severity	wildfire	also	led	to	an	additional	pulse	of	carbon	from	live	to	
DOM	pools	due	to	wildfire	mortality.	The	effect	of	climate	change	on	
drought‐induced	tree	mortality	was	only	evident	in	the	high‐severity	
mortality	class	under	RCP	8.5.	High‐severity	mortality	led	to	a	pro‐
jected	cumulative	average	transfer	of	613	Tg	C	from	the	live	to	the	
DOM	pools.	In	all	scenarios,	extreme	episodic	mortality	events	were	
driving	 carbon	 losses	 rather	 than	 consistent	 low‐level	background	
events	 (Figure	S6).	This	 is	characteristic	of	severe	drought	periods	
driven	by	a	combination	of	low	precipitation	and	high	temperatures,	
or	high	temperatures	alone.	Under	RCP	4.5,	high‐severity	mortality	
led	to	average	cumulative	losses	of	563	Tg	C	from	the	live	biomass	
pool,	but	no	GCM	differed	more	than	6%	from	this	mean	value.

4.3 | Comparison to other studies in California

The	 comprehensive	 nature	 of	 this	 study,	 which	 used	 a	 gain–loss	
method	to	estimate	carbon	stocks	and	fluxes	for	California's	forest,	
grassland,	shrubland,	and	agricultural	ecosystems	over	both	recent	
historical	conditions	as	well	as	32	alternative	future	pathways,	rep‐
resents	a	unique	contribution	to	understanding	the	interactions	and	
major	controlling	processes	of	ecosystem	carbon	balance.	As	such,	
we	 can	 compare	 our	 estimates	 of	 carbon	 stocks	 and	 fluxes	 with	
other	recent	studies	which	have	been	more	limited	in	scope,	often	
covering	only	a	subset	of	the	variables	included	in	this	study.

A	 recent	 study	 (Gonzalez,	 Battles,	 Collins,	 Robards,	 &	 Saah,	
2015)	estimated	that	in	2001,	California	ecosystems	stored	920	Tg	C	
in	 live	aboveground	vegetation,	of	which	830	Tg	C	was	 stored	on	
125,000	 km2	 of	 land	 classified	 as	 forest.	 Our	 study	 estimated	
California	 forests	 stored	1638.8	Tg	C	 in	 total	 live	biomass	 carbon	
(sum	of	above‐	and	belowground	stocks).	While	we	did	not	explic‐
itly	model	above	and	below	ground	carbon	stocks	as	separate	pools,	
we	can	infer	the	aboveground	portion	by	applying	a	standard	root:‐
shoot	 relationship	 of	 0.27	 (Mokany,	 Raison,	 &	 Prokushkin,	 2006).	
This	provides	an	estimate	of	forest	live	aboveground	carbon	storage	
of	1,196.3	Tg	C	in	2001.	Comparisons	are	further	complicated	due	to	
differences	in	land	classification,	particularly	differences	in	the	ex‐
tent	and	amount	of	forest	area.	We	estimated	the	2001	forested	land	
area	 in	California	was	~156,000	km2,	which	was	20%	higher	 than	
the	estimate	by	Gonzalez	et	al.	(2015).	Normalizing	for	differences	in	
the	extent	of	forest	area	provides	an	estimate	of	957	Tg	C	stored	in	
forest	aboveground	live	stocks,	an	amount	more	comparable	to	that	
provided	by	Gonzalez	et	al.	(2015)	(830	Tg	C).	For	forests,	the	stock	
change	study	(Gonzalez	et	al.,	2015)	estimated	a	decline	of	−50	Tg	C	
(−5.6	Tg	C/year)	between	2001	and	2010	which	was	approximately	
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two	times	 larger	 than	our	estimate	of	−25.6	Tg	C	 (−2.8	Tg	C/year)	
over	the	same	period.	However,	the	stock	change	approach	did	not	
include	carbon	accumulation	(e.g.,	growth)	on	forest	cells	which	did	
not	change	from	one	ordinal	forest	class	(e.g.,	forest	type,	cover,	and	
height)	to	another	(Gonzalez	et	al.,	2015),	whereas	this	study's	gain–
loss	approach	estimated	growth	on	an	annual	basis	for	all	simulation	
cells.	A	comparison	of	 this	study	 to	other	published	research	esti‐
mating	ecosystem	carbon	stocks	in	California	is	shown	in	Table	S1.

Our	estimates	of	statewide	NPP	are	within	15%–25%	of	 those	
from	satellite‐derived	estimates	(Zhao,	Heinsch,	Nemani,	&	Running,	
2005)	 for	 the	 historical	 period	 (2002–2015),	 but	 are	 consistently	
lower	and	have	higher	year‐to‐year	variability	 (Figure	S8),	suggest‐
ing	 the	 LUCAS	model	 estimates	 are	more	 sensitive	 to	 interannual	
climatic	 variability.	 Spatial	 and	 temporal	 variability	 in	 LUCAS‐esti‐
mated	NPP	is	represented	by	an	empirical	NPP	model	(Del	Grosso	
et	 al.,	 2008)	 which	 was	 calibrated	 using	 NPP	 estimates	 from	 the	
Ecosystem	Model‐Data	Intercomparison	(EMDI)	project	which	con‐
sists,	 in	 part,	 of	 thousands	 of	 regional‐scale	NPP	 estimates	 based	
on	growth	increment	from	the	Forest	Inventory	and	Analysis	data‐
base	(Olson,	Scurlock,	Prince,	Zheng,	&	Johnson,	2013).	Satellite‐de‐
rived	estimates	were	based	on	the	MOD17	algorithm	incorporating	
spectral	 reflectances	 and	 meteorological	 scalars	 (Zhao,	 Running,	
Heinsch,	&	Nemani,	n.d.),	which	tends	to	overestimate	NPP	 in	 low	
productivity	ecosystems	 (Turner	et	 al.,	 2006)	 that	dominate	much	
of	California.	 In	 addition,	MOD17‐based	estimates	of	productivity	
tend	to	be	 insensitive	to	 interannual	variation	and	drought	effects	
in	ecosystems	dominated	by	evergreen	vegetation,	which	make	up	
the	majority	of	California's	forests	and	shrublands	(He	et	al.,	2016;	
Hwang	et	al.,	2008;	Porcar‐Castell	et	al.,	2014;	Verma	et	al.,	2015).

Wildfire	is	a	major	source	of	carbon	emissions	to	the	atmosphere	in	
California.	The	California	Air	Resources	Board	(ARB)	estimates	carbon	
emissions	from	wildfire	(California	Air	Resources	Board,	2019)	using	
the	 First	 Order	 Fire	 Effects	Model	 (FOFEM)	 developed	 by	 the	 US	
Forest	Service	(Reinhardt,	Keane,	&	Brown,	1997)	with	fire	footprints	
from	 CalFIRE	 (2016).	 Estimates	 from	 our	 study	 compare	well	 with	
those	from	ARB	over	the	overlapping	historical	period	(2002–2016)	
and	are	shown	in	Figure	S9.	We	estimate	that	historical	fire	emissions	
averaged	14.3	(σ	=	12.6)	CO2	per	year	compared	to	an	average	histor‐
ical	rate	of	15.5	(σ	=	11.2)	CO2	per	year	based	on	the	ARB	methodol‐
ogy.	Annual	estimates	and	variability	also	show	a	strong	agreement	
with	estimates	produced	using	the	ARB	modeling	approach	with	an	
r2	value	of	0.92	based	on	a	comparison	of	annual	emission	estimates.

4.4 | Limitations of study

This	study	was	limited	to	just	4	of	the	32	LOCA	down‐scaled	global	
climate	 models	 from	 the	 CMIP5	 archive.	 While	 these	 four	 mod‐
els	were	chosen	by	a	working	group	for	the	California	4th	Climate	
Assessment	as	 representing	a	broad	 range	of	 future	California	cli‐
mates,	 our	 results	would	 likely	 be	 different	 if	 all	 32	models	were	
assessed	 in	 this	 framework.	More	 importantly,	 our	 current	 frame‐
work	did	not	include	variability	in	key	parameters	that	would	likely	
increase	the	uncertainty	of	the	results.	This	includes	the	uncertainty	

associated	with	parameters	related	to	climate	(i.e.,	effect	of	precipi‐
tation	and	 temperature	on	NPP	and	DOM	turnover	 rates),	 carbon	
(base	stocks	and	flows),	and	disturbance	(extent	of	wildfire	and	mor‐
tality).	Our	approach	did	not	account	for	changes	in	vegetation	type	
which	may	 result	 from	 the	 coupled	 effects	 of	 climate	 change	 and	
high‐severity	fire.	Specifically,	there	is	growing	concern	that	in	some	
regions,	 the	 ability	 of	 forests	 to	 recover	 after	 large	 high‐severity	
fires	is	reduced	in	response	to	climate	change	(Thorne	et	al.,	2017).	
Our	model	did	not	estimate	these	effects	and	may	result	in	an	over‐
estimation	of	carbon	storage	given	the	assumption	that	forests	will	
always	recover	after	disturbance.

Future	 warming,	 and	 its	 effect	 on	 DOM	 turnover	 rates,	 was	
represented	 using	 climate	 model	 temperature	 projections	 and	 a	
Q10	 function	 generally	 consistent	with	 those	 used	 in	 the	 Carbon	
Budget	Model	of	 the	Canadian	Forest	Sector	 (CBM‐CFS3;	Kurz	et	
al.,	2009).	However,	the	CBM‐CFS3	model	does	not	include	a	Q10	
for	the	decomposition	of	the	slow	recalcitrant	pool,	which	might	in‐
dicate	our	model	overestimates	the	temperature	sensitivity	of	decay	
rates	of	SOC.	However,	a	recent	whole‐profile	warming	experiment	
in	California	(Pries	et	al.,	2017)	determined	an	effective	Q10	for	soil	
CO2	efflux	to	be	2.4,	suggesting	our	estimate	of	SOC	temperature	
sensitivity	may	be	conservative.

While	rising	atmospheric	CO2	undoubtedly	plays	a	role	in	vegeta‐
tion	productivity,	the	magnitude	and	duration	of	this	effect	and	how	it	
manifests	in	specific	ecosystems	is	highly	uncertain	(Smith	et	al.,	2016),	
especially	 under	 long‐term	 scenario	 projections	 (Arora	 et	 al.,	 2013;	
Friedlingstein	et	al.,	2014;	Piao	et	al.,	2013;	Sitch	et	al.,	2008).	Early	re‐
sults	from	FACE	studies	appeared	to	support	this	strong	positive	CFE	
on	NPP	at	the	ecosystem	level	across	a	range	of	forest	types	(Norby	
et	al.,	2005).	However,	there	is	also	substantial	evidence	that	an	array	
of	feedback	responses	and	constraints	can	dampen	or	eliminate	CO2‐
induced	increases	in	plant	carbon	assimilation	and	growth	(Franks	et	
al.,	2013;	Norby	et	al.,	2010;	Smith	&	Dukes,	2013).	Longer	term	re‐
sults	from	FACE	studies	in	both	forests	and	grasslands	have	demon‐
strated	that	the	initial	CFE‐induced	growth	stimulation	declined	over	
time	as	nitrogen	(N)	became	more	limiting	(Norby	et	al.,	2010;	Reich	
et	al.,	2006).	The	magnitude	of	this	progressive	N	limitation	on	CFE	is	
highly	site‐specific,	and	sometimes	does	not	appear	to	dampen	CFE	
at	all	because	of	high	site	N	status	or	positive	feedbacks	to	N	cycling	
(Smith	&	Dukes,	2013).	Moreover,	FACE	experiments	represent	a	step	
change	in	Ca	of	often	~150%.	Results	from	these	experiments	can	be	
difficult	to	interpret	in	the	context	of	gradual,	year‐by‐year	increases	
in Ca	over	decades,	especially	at	regional	to	continental	scales.	Studies	
based	on	remote	sensing	have	also	not	been	able	to	constrain	the	CFE	
effect	on	NPP.	For	example,	although	CFE	explains	70%	of	increased	
plant	greenness	over	time	at	a	global	scale	(Zhu	et	al.,	2016),	a	compar‐
ison	with	ecosystem	models	demonstrated	that	models	overestimate	
CFE‐induced	increases	in	NPP	by	~150%	compared	to	satellite‐based	
estimates	over	a	30‐year	period	(Smith	et	al.,	2016).

The	β	values	included	in	the	sensitivity	analysis	generally	cover	
the	 range	of	values	observed	at	 forested	FACE	sites	 (Norby	et	al.,	
2005;	Smith	et	al.,	2016;	Zaehle	et	al.,	2014).	These	estimates	tend	
to	 be	 higher	 than	 β	 values	 derived	 from	 a	 remote	 sensing–based	
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approach	 (Smith	 et	 al.,	 2016),	which	 have	 been	 criticized	 as	 likely	
underestimating	 the	 CFE	 (De	 Kauwe,	 Keenan,	 Medlyn,	 Prentice,	
&	Terrer,	 2016),	 and	 considerably	 lower	 than	 values	 reported	 in	 a	
range	of	Earth	System	Models	 (see	 figure	4	 in	Smith	et	 al.,	2016),	
indicating	 that	 the	uncertainty	 in	ecosystem	carbon	storage	 (TEC)	
and	flux	(NECB)	is	likely	to	be	much	larger	than	the	estimates	shown	
in	Figure	7.	The	 large	degree	of	uncertainty	 resulting	 from	the	 in‐
troduction	of	a	 range	of	CFE's	 in	 this	 study	underscores	 the	need	
for	 more	 research	 on	 the	 role	 of	 increasing	 atmospheric	 CO2 on 
terrestrial	carbon	cycling,	especially	under	long‐term	projections,	as	
studies	 have	 indicated	 that	 the	 role	 of	 increasing	CO2	 on	 ecosys‐
tem	carbon	balance	 can	be	 as	much	as	 four	 times	 larger	 than	 the	
effect	of	climate	change	(Arora	et	al.,	2013;	Gregory,	Jones,	Cadule,	
&	Friedlingstein,	2009).	In	the	context	of	climate	mitigation	planning,	
assuming	no	CFE	 is	 the	most	 conservative	 approach	and	 that	 any	
realized	CFE	in	the	future	will	likely	only	further	increase	carbon	se‐
questration	in	ecosystems.

Similar	 to	 most	 other	 carbon	 cycle	 models,	 our	 model	 might	
overestimate	recovery	rates	of	carbon	sink	strength	after	prolonged	
drought	(Anderegg	et	al.,	2015).	Between	2013	and	2015,	California	
entered	a	period	of	sustained	and	exceptional	drought	which	affected	
most	areas	and	ecosystems	of	the	State.	Evidence	suggests	the	ex‐
treme	 drought	 conditions	 experienced	 in	 recent	 years	 were	with‐
out	precedent	over	 instrumented	and	millennial	 records	 (Robeson,	
2015),	 and	 while	 primarily	 the	 result	 of	 natural	 climate	 variability	
(Berg	&	Hall,	 2015;	Williams	 et	 al.,	 2015),	 anthropogenic	warming	
was	an	import	contributing	factor	(Diffenbaugh	et	al.,	2015;	Shukla,	
Safeeq,	AghaKouchak,	Guan,	&	Funk,	2015;	Williams	et	 al.,	 2015).	
In	this	study,	the	effect	of	drought	conditions	on	ecosystem	carbon	
balance	was	 significant.	Between	2013	and	2015,	NECB	was	esti‐
mated	at	−52.3	Tg	C/year	with	an	estimated	loss	of	−90	Tg	C/year	in	
2013	alone,	and	was	largely	driven	by	a	large	negative	precipitation	
anomaly	(Figure	S7).	The	range	of	climate	models	and	RCP	scenarios	
used	in	this	study	produced	a	single	time	step	with	a	1	year	decline	
in	NECB	similar	to	that	of	2013	(−98.8	Tg	C/year;	CanESM2,	RCP	8.5	
in	2096).	Under	the	RCP	8.5	scenario,	three	of	the	four	climate	mod‐
els	(CanESM2	in	2063,	HadGEM2‐ES	in	2058–2059,	and	MIROC5	in	
2059)	projected	NECB	declines	similar	to	that	of	the	recent	drought	
period,	suggesting	that	while	the	probability	of	a	single	year	event	
such	 as	 2013	was	 low,	 severe	multiyear	 drought	 conditions	 in	 the	
future	 are	 represented	 in	 future	 projections.	Of	 particular	 note	 is	
the	projection	of	a	sustained	drought	period	occurring	midcentury	
under	 the	RCP	8.5	 scenario	 as	 simulated	by	 the	HadGEM2‐ES	 cli‐
mate	model;	between	2051	and	2070,	ecosystems	were	estimated	
to	be	a	net	source	of	carbon	in	16	of	20	years	(−22.9	Tg	C/year),	a	
rate	nearly	twice	as	high	as	the	14	year	historical	average.	To	better	
understand	the	context	of	these	extreme	events,	future	work	should	
extend	the	baseline	period	of	analysis	to	encompass	additional	pe‐
riods	of	 severe	drought	 in	California	 (e.g.,	1976–1977,	1987–1992).	
While	the	uncertainty	associated	with	projecting	extreme	events	is	
large	 (Swain	 et	 al.,	 2014),	 substantial	 evidence	 suggests	 anthropo‐
genic	climate	change	will	increase	the	probability	of	extreme	drought	
conditions	in	California	(Cook	et	al.,	2015;	Diffenbaugh	et	al.,	2015;	

Williams	et	al.,	2015)	which	may	have	significant	impacts	on	ecosys‐
tem	carbon	balance.
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Changes	in	ecosystem	carbon	balance	are	an	important	driver	of	
global	 climate	 change.	 However,	 there	 is	 a	 great	 deal	 of	 uncer‐
tainty	in	the	direction	and	magnitude	of	the	carbon	source	or	sink.	
Results	 of	 this	 study	 show	 that	 uncertainty	 primarily	 resulted	
from	future	climate	conditions	driven	by	different	climate	models	
and	are	consistent	with	other	studies	in	this	regard	(Zaehle	et	al.,	
2007).	However,	these	uncertainties	are	relatively	small	compared	
to	the	uncertainties	associated	with	increasing	CO2	and	its	effect	
on	carbon	storage	and	flux.	While	NECB	was	projected	to	increase	
relative	to	recent	historical	rates,	carbon	stored	in	California	eco‐
systems	was	projected	to	decline	in	30	of	the	32	future	scenarios	
considered	in	this	study.	Reducing	global	greenhouse	gas	emissions	
did	not	always	result	in	increased	carbon	storage	in	California	eco‐
systems,	suggesting	there	may	be	unanticipated	feedbacks	to	the	
climate	system	resulting	from	ecosystem	carbon	flux.	Conversely,	
reducing	LUC	was	a	 reliable	and	consistent	approach	 to	 increas‐
ing	carbon	sequestration,	regardless	of	future	climate	conditions.	
These	findings	are	useful	for	establishing	a	set	of	baseline	projec‐
tions	 from	which	 additional	 ecosystem‐based	 climate	mitigation	
strategies	can	be	evaluated	(Cameron	et	al.,	2017;	Fargione	et	al.,	
2018).	Such	studies	are	needed	to	understand	the	role	of	ecosys‐
tems	 in	 regulating	 greenhouse	 gas	 emissions	 and	 for	 achieving	
local	to	global‐scale	climate	mitigation	goals.
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CODE AND DATA AVAIL ABILIT Y

The	model,	source	code,	and	data	required	to	replicate	this	study,	as	
well	as	the	output	data	supporting	the	conclusions	of	the	study	are	
available	through	the	USGS	ScienceBase	repository.

The	 LUCAS	model	 runs	within	 the	 Syncro‐Sim	 software	 appli‐
cation.	All	simulations	were	run	using	Syncro‐Sim	software	version	
2.0.18,	under	the	Mono	framework	for	Linux.	The	STSM	and	SF	mod‐
ules	used	in	this	study	were	version	3.1.18.	We	ran	the	simulations	on	
the	Comet	system	at	the	San	Diego	Supercomputing	Center	under	
the	NSF	Extreme	Science	and	Engineering	Discovery	Environment	
(XSEDE)	program	through	allocation	TG‐DEB17001767.

The	following	steps	are	 required	to	 run	the	model	used	 in	 this	
analysis:

•	 Download	and	install	the	latest	Windows	or	LINUX	version	of	the	
Syncro‐Sim	software,	available	at	http://www.apexr	ms.com.

•	 Download	and	unzip	the	model	files,	including	spatial	input	files	
and	a	 ‘.ssim’	 (SQLite)	database	from	the	online	repository	 (to	be	
filled	in	upon	publication).

•	 Use	 the	 Syncro‐Sim	 software	 to	 open	 the	 ‘California	 Carbon	
Model.ssim’	file	and	select	a	scenario	to	run.

•	 Alternatively,	 the	 model	 can	 be	 built	 from	 scratch	 using	 the	 R	
programming	language	with	the	rsyncrosim	package	installed.	To	
follow	 this	approach,	download	 the	 ‘California	Carbon	Model	R	
Code.zip’	data	package	and	run	the	necessary	R	scripts.

All	output	results	from	the	32	scenarios	described	in	this	report	are	
available	from	the	ScienceBase	online	repository.	Each	scenario	in‐
cludes	an	SQLite	database	(SyncroSim	‘.ssim’	file)	and	a	compressed	
folder	with	all	spatial	output.	Tabular	output	are	contained	entirely	
within	each	SQLite	database.	Each	database	file	is	~36	GB	and	the	
corresponding	 compressed	 spatial	 output	 maps	 are	 an	 additional	
~18	GB.	The	entire	library	is	~1.7	Tb.	Given	the	large	volume	of	data,	
several	intermediate	products	were	generated	from	which	all	results	
present	in	the	paper	were	derived.
This	paper	was	compiled	using	R	Markdown.	All	results,	including	
tables,	figures,	and	values	presented	within	text	can	be	auto‐gen‐
erated	by	downloading	and	running	the	R	Markdown	file	includ‐
ing	in	the	data	repository.	The	data	used	within	the	R	Markdown	
file	 is	dependent	upon	a	number	of	data	summaries	which	were	
generated	and	written	to	disk	and	are	stored	in	the	‘Data>Report_
Tables’	folder.
Tabular	data	summaries	are	archived	here:	https	://doi.org/10.5066/
P9KVF795
Model	 and	code	are	 available	on	Github:	https	://github.com/bslee	
ter/calif	ornia‐carbon‐scena	rios
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