
UCLA
UCLA Electronic Theses and Dissertations

Title
Physiology From Anatomy Using Spatial Transcriptomic Mapping

Permalink
https://escholarship.org/uc/item/57g737r1

Author
Hemminger, Zachary Edward

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/57g737r1
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA 

Los Angeles 

 

“Physiology From Anatomy Using Spatial Transcriptomic Mapping” 

 

A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of 

Philosophy in Biochemistry, Molecular and Structural Biology 

 
by 

 
Zachary Edward Hemminger 

 

2022



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Zachary Edward Hemminger 

2022 



ii 
 

 

ABSTRACT OF THE DISSERTATION 

“Physiology From Anatomy Using Spatial Transcriptomic Mapping” 

by  
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Doctor of Philosophy in Biochemistry, Molecular and Structural Biology 

University of California, Los Angeles, 2022 

Professor Roy Wollman, Chair 

 Understanding the physiology of complex systems like tissues and organs is likely 

impossible without detailed structural maps of the anatomy, especially in the context of 

perturbations. Spatial transcriptomic techniques like Multiplexed Error Robust Fluorescence In 

Situ Hybridization or MERFISH have ushered in methods that are capable of generating these 

detailed anatomical maps for small regions of interest. Existing work primarily focuses on 

technological development, and few if any have compared perturbed to wild-type conditions. 

Here we present three cases of increasing difficulty where MERFISH can be used to compare a 

perturbed state to wild type. Existing spatial transcriptomic approaches, including MERFISH, 

lack the scale necessary to generate anatomical maps of large tissues and whole organs. Here 

we present Dimensionally Reduced Fluorescence In Situ Hybridization or dredFISH which 

allows the generation of detailed anatomical maps at scales far exceeding existing other 

approaches. Together the fundamental shift towards comparing biological conditions as well as 

the technological improvements in scale will provide a wealth of detailed anatomical maps which 

should provide unique physiological insights which likely would have been missed.  
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Chapter 1 

Bridging scales: from cell biology to physiology using in situ single-cell technologies 

Nagle, Maeve P; Tam, Gabriela S; Maltz, Evan; Hemminger, Zachary; Wollman, Roy 

Abstract  

Biological organization crosses multiple spatial scales: from molecular, cellular, to 

tissues and organs. The proliferation of molecular profiling technologies enables increasingly 

detailed cataloging of the components at each scale. However, the scarcity of spatial profiling 

has made it challenging to bridge across these scales. Emerging technologies based on highly 

multiplexed in situ profiling are paving the way to study the spatial organization of cells and 

tissues in greater detail. These new technologies provide the data needed to cross the scale 

from cell biology to physiology and identify the fundamental principles that govern tissue 

organization. Here, we provide an overview of these key technologies and discuss the present 

and future insights these powerful techniques enable.  

Introduction  

In biology, structure and function are tightly linked. For example, it is the structure of a 

protein that determines its function, and not simply its amino-acid composition. To solve a 

protein structure the x, y, and z coordinates of each atom are determined, the local organization 

identified (e.g. alpha-helix, beta-sheets) and the different domains of the proteins are defined. It 

is the detailed understanding of the spatial organization of the different amino acids that make 

up the protein that allows researchers to build a model that explains how its structure (and the 

dynamics of that structure) determines its function. Similarly, at the cellular level, a list of all the 

molecules in a cell is insufficient to understand a cell’s function. Historically, the electron 

micrographs obtained by cell biology pioneers such as Palade and Porter in the 1950s were key 
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to defining cellular organelles and determining the structural organization of the cell (Palade and 

Porter, 1954). In the 70 years that followed, modern cell biology connected these structural 

insights to the molecular composition of a cell providing key understanding of how the spatial 

organization of the molecules that make up a cell determines the cell’s function. At the next 

level, the connection between an organ’s anatomy (i.e. structure) and its physiology (i.e. 

function) has always been a core perspective used to investigate tissues and organs. 

Histological sections observed using light microscopy have been a key tool that enabled 

understanding of organ function through insights into their microstructure. However, similar to 

Palade and Porter’s electron micrograph, existing histological approaches lack sufficient 

molecular details. Histological staining is often based on a combination of non-specific dyes and 

a handful of molecular markers and does not provide sufficient information to fully understand 

the complex molecular and cellular structure of the organ. Therefore, while anatomical 

information is ubiquitous, the lack of spatio-molecular details limits the ability to connect a 

structure to its function across biological scales.  

Body 

From dissociative to spatial measurements  

Technological advances in single-cell measurements allow the cataloging of all cells into 

types, subtypes, and states. These catalogs provide key insights into the cellular composition of 

different organs. The most widespread single-cell technology is undoubtedly single-cell RNA 

sequencing (scRNA-seq) (Tang et al., 2009). Named “method of the year” for 2013 (2014), 

scRNA-seq has since become a fixture across many biology labs and has led to many new 

biological insights due to the ease of analyzing large numbers of cells in a short time frame. In 

scRNA-seq, cells are dissociated from each other, isolated, barcoded, and sequenced. Due to 

its dissociative nature, scRNAseq is especially suited for the task of cell classification. However, 
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this dissociative approach loses the spatial context of cells. Therefore, while this technique 

provides an invaluable new vocabulary of cell type taxonomy, the lack of spatial information 

limits its use for organ-scale structure-function analysis.  

In recent years, new technologies have been developed that measure the characteristics 

of single cells in situ (in the original site). These technologies link the detailed compositional 

information obtained through dissociative measurement with spatial histological measurements. 

These new measurement technologies have transformative potential as they provide the 

missing data on organs’ molecular and cellular structures. By bridging the gap left by 

dissociative techniques in situ technologies provide a route to connect organs’ functions to their 

molecular and cellular structure.  

In this review, we discuss the main technologies for characterizing cells in situ. We 

additionally discuss the ways in which in situ measurements are contributing to our 

understanding of biological organization from the subcellular scale to the physiological scale. 

This review will not focus on the technical aspects of each technology, as previous reviews for 

scRNA-seq (Chen et al., 2019; Stark et al., 2019) and spatial technologies (Asp et al., 2020; 

Lundberg and Borner, 2019; Young et al., 2020) have thoroughly addressed these topics. 

Rather, we provide an overview of key approaches and how they can be used to bridge scales 

and connect organ cellular structure to its function.  

In Situ Technologies 

The fast pace of technology development in this space introduces some ambiguity 

related to terminology. In this review, we make a distinction between the establishment of a cell 

taxonomy, i.e. classification, and the creation of a cell atlas that requires spatial mapping of cell 

types in tissues and organs. Similarly, the term in situ technologies is ill-defined as in situ 

measurement technologies are as old as histology itself (Motta, 1998) and, depending on the 
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definition, can include a vast range of measurements. In the scope of this review, we will use a 

more narrow definition of in situ measurements to focus on highly multiplexed spatial 

measurements of RNA and proteins. RNA measurements are based on in situ hybridization, in 

situ sequencing, or RNA capture and cDNA barcoding. Protein measurements are based on 

antibodies that recognize a specific antigen that can be read either using many rounds of 

imaging or conjugation with metal ions that are read with a rastering mass spectrometer. Figure 

1.1 provides an overview of current approaches for spatial in situ measurements.  
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Figure 1.1: Overview of key in situ technologies.  
(A) Hierarchical classification of the main approaches used for in situ measurements. At the top 
level, methods are split depending if their main targets are nucleic acids or proteins. Nucleic 
acid approaches are divided based on the main readout mechanism, hybridization of fluorescent 
probes to the transcript of interest, or use sequencing to read out the transcript identity. 
Hybridization approaches are further split into individual approaches or combinatorial 
approaches. Sequencing approaches either measure RNA in the cell directly or measure DNA 
barcodes. Antibodies are frequently used to measure protein in situ and contain either 
fluorophore attachments that can be read by fluorescent imaging or metals that are read out by 
mass cytometry. (B) Schematic representations of key technologies. (i) Individual hybridization 
techniques, like smFISH, employ many fluorescently-label DNA probes that bind to a transcript 
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of interest. Each transcript appears as a diffraction-limited fluorescent spot in an image and is 
identifiable by its unique color. (ii) Combinatorial hybridization techniques utilize similar 
principles to individual hybridization but utilize consecutive binding of probes to the same 
molecules and sequential imaging to create a “barcodes” of fluorescent spots across imaging 
rounds that are used to determine a transcript’s identity. An additional set of probes are used in 
combination hybridization that bind directly to an RNA transcript with overhangs for fluorescent 
readout probes to bind to. (iii) In situ sequencing involves the readout of an RNA transcript 
directly or of a barcoded primer used to amplify that transcript. The transcript is first reverse 
transcribed into cDNA, then that cDNA is amplified, frequently by rolling circle amplification. The 
amplified cDNA is either sequenced directly or the sequence of a specific primer that binds to 
the cDNA is sequenced. (iv) In in situ barcoding methods, a sample is applied to a slide covered 
with DNA-barcoded microbeads. The sample is lysed and the resulting RNA binds to the beads, 
which are then sequenced. The location of the RNA is mapped back to the known location of 
the DNA barcode sequence from the bead. (v) In each round of fluorescent-based antibody 
readout, proteins are bound to an antibody with a fluorescently labeled molecule attached, 
similar to in (i). Each protein is represented by a single-colored fluorescent spot in an image. (vi) 
Metal-based antibody readouts are similar to fluorescent-based antibody readouts but utilize 
unique metal atoms attached to antibodies instead of fluorescent molecules. These metal atoms 
are read out using a mass cytometer.  
 

RNA hybridization  

Single-molecule RNA fluorescence in situ hybridization (smFISH) (Femino et al., 1998; 

Raj et al., 2008) was the first widespread single-molecule in situ RNA measurement technology. 

smFISH counts the number of mRNAs transcribed from a gene of interest within a cell by using 

DNA probes specific to the mRNA target sequence. These DNA probes are attached to a 

fluorescent molecule and collectively create a single diffraction-limited spot in the position of the 

mRNA molecule. The number of diffraction-limited fluorescent spots in a cell is counted to 

determine the number of mRNA molecules present. Several techniques seek to improve upon 

the probe design of smFISH. A partial list of these extensions includes RNAscope ((Wang et al., 

2012), which uses Z-shaped DNA probes to enhance specificity, osmFISH (Codeluppi et al., 

2018) which is optimized for use in thin tissue sections such as brain slices, ExFISH (Chen et 

al., 2016) which uses expansion microscopy to further separate mRNA spots and make image 

analysis easier, and SABER-FISH which uses multi-part probes to enhance the signal from 

each mRNA (Kishi et al., 2019). Overall, the principle that is shared between smFISH and its 

many subsequent versions is that expression of pre-defined genes is measured in a targeted 
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manner with one measurement per gene. The high accuracy and mRNA capture rate (both 

>95%) have led smFISH to become the “gold standard” among validation techniques (Torre et 

al., 2018). However, the high accuracy comes at a price: smFISH-based approaches assign 

each gene a specific measurement (i.e. color), so there can only be as many genes measured 

in a single hybridization as there are non-overlapping fluorescent molecules available. Four 

rounds of hybridization with this approach using four different types of fluorescent probes can 

measure a maximum of 16 genes. This linear scaling limits the ability of smFISH-based 

approaches to provide full and detailed structural information.  

Combinatorial FISH approaches address the key limitation of smFISH by increasing the 

number of genes that can be counted per experiment and thereby provide much more detailed 

information on the cellular composition in the tissue. These techniques include MERFISH (Chen 

et al., 2015; Moffitt et al., 2016a, 2016b; Wang et al., 2020; Xia et al., 2019a), seqFISH+ (Eng et 

al., 2019), and most recently split-FISH (Goh et al., 2020). These approaches, while very 

similar, differ in some of the details related to barcoding strategy and how they remove the 

fluorescently-tagged oligo probes. The core improvement over smFISH is that combinatorial 

FISH approaches utilize barcodes for each RNA to increase the measurement capacity. Each 

gene is given a ‘barcode’ that is a combination of colors, so the gene identity is uncovered by 

the data from every round of hybridization. This process scales exponentially, so four rounds of 

hybridization with four different types of fluorescent probes would allow for up to 256 genes to 

be analyzed, instead of 16. Using four dyes and eight rounds of hybridization (48 = 65,536), in 

principle an entire transcriptome can be measured. However, the use of RNA barcodes comes 

at a price. In the 48 scheme, any error in “calling” one of the four measurements needed to 

assign a gene identity to an RNA molecule will result in an incorrect assignment. Such errors 

have the potential to substantially reduce the accuracy of combinatorial FISH approaches. To 

address this limitation, the barcodes are typically chosen sparsely from a large set of possible 
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codes. This intentional reduction in chosen barcodes can substantially reduce the error rates of 

combinatorial approaches at a cost of an increase in the number of hybridization rounds. In 

typical combinatorial measurement, 24 rounds are used with each molecule having 4 

measurements out of the possible 24 rounds. The sparsity of barcode assignment is such that 

200-500 genes can be measured using 24 rounds of imaging. Both MERFISH and seqFISH+ 

were used to demonstrate that transcriptome scale (~10,000 genes) is possible but at a cost of 

a much higher number of measurements and overall reduced throughput (Chen et al., 2015; 

Eng et al., 2019). The flexibility of combinatorial FISH approaches is important as the complexity 

of the approach often requires tailoring measurements to specific samples and experiments. 

Optical crowding of many RNA spots per image can impede RNAs from being resolved and 

require integration of some smFISH rounds for highly expressed genes or a substantial increase 

in the number of measurements. As a result, large samples can require weeks of continuous 

imaging and can generate terabytes of image data. Overall, combinatorial FISH approaches 

provide a very powerful platform for targeted spatial RNA counting that can be tailored to the 

specific needs of a project.  

Antibodies  

Immunohistochemistry (IHC) has been used since 1942 to study the spatial location of 

proteins in a tissue (American Association of Immunologists, 1942). IHC involves adding labeled 

antibodies to a sample in order to visualize proteins and other molecules of interest. Despite the 

high specificity achieved by antibodies, IHC is difficult to multiplex. Only in the last two decades 

have a few approaches been successfully implemented to enable 30+ protein readouts in a 

sample. The first difficulty is the generation of validated high-quality antibodies. In practice, this 

is a non-trivial issue that has been partially addressed by both commercial and academic 

groups (Edfors et al., 2018) but is by no means a solved problem. The second difficulty relates 

to how the spatial distribution of these antibodies is read. To prevent cross-reactions and due to 



9 
 

the limited number of host animals used in antibody production, the use of primary and 

secondary antibodies, common in standard IHC, is difficult. This limits antibody selection to 

mostly primary antibodies that need to be read across multiple measurements. Here, we focus 

on solutions that address the readout problem. Overall the multiple attempts at “cracking” the 

multiplexing challenge can be divided into two types: 1) repeated imaging on a light microscope 

and 2) coupling antibodies to unique metal ions.  

A straightforward way to increase the number of readouts is to use existing tools for 

fluorescence-based antibody detection and simply repeat them many times (Fig 2.1.1). For 

example, a set of antibodies would be added to a sample, imaged, then stripped away and 

replaced with a new set of antibodies. This idea is implemented in methods such as MxIF 

(Gerdes et al., 2013), CycIF (Lin et al., 2015, 2018), and 4i (Gut et al., 2018). The key distinction 

between the different variants is in how the multiple rounds of staining are achieved, i.e. are the 

antibodies themselves stripped from the sample, or are they simply quenched by 

photobleaching. An important advantage of these approaches is that since they are based on 

standard microscopy; they can also be coupled to live-cell imaging (Lin et al., 2015). Borrowing 

from the relative ease of repeated imaging after RNA hybridization a few methods, CODEX 

(Goltsev et al., 2018), DEI (Wang et al., 2017), and Immuno-SABER (Saka et al., 2019) use 

oligo-conjugated antibodies and fluidics systems almost identical to the one used by 

combinatorial FISH approaches.  

An alternative approach for multiplexing antibody staining is based on changing the 

readout from a light microscope to a mass spectrometer. Mass cytometry imaging approaches 

have been developed to avoid some of the practical limitations encountered by attempts to 

multiplex IHC-based analysis. Specific implementations of imaging mass cytometry include 

Multiplexed Ion Beam Imaging (MIBI) (Angelo et al., 2014; Keren et al., 2019; Ptacek et al., 

2020) and Imaging Mass Cytometry (IMC) (Giesen et al., 2014; Ijsselsteijn et al., 2019). Each of 
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these approaches uses secondary ion mass spectrometry to image antibodies tagged with 

isotopically pure elemental metal reporters. The main distinction between the two methods 

arises in sample ablation which leads to differences in image resolution and acquisition times 

between IMC and MIBI (Baharlou et al., 2019). Though these techniques can analyze up to 40 

proteins in a sample at a given time, they are both limited by antibody availability and quality. 

Additionally, MIBI and IMC require specialized equipment to point-scan small fields, and 

therefore imaging large samples can be slow and costly.  

Sequencing  

The accessibility of DNA sequencing, achieved in part due to six orders of magnitude 

decrease in sequencing cost per base pair (Stark et al., 2017), motivated innovative approaches 

that leverage DNA sequencing while still preserving spatial information. The approaches that 

couple spatial information to RNA sequencing can be divided into three distinct categories: 1) 

separation of RNA based on their spatial location followed by sequencing, 2) use of spatially 

distinct DNA barcodes during library preparation, and 3) performing the sequencing reactions 

themselves in situ. The first two categories directly leverage existing sequencing technologies 

whereas the latter use many of the chemistry developed for sequencing however the readout 

itself is microscopy-based and shares many similarities to combinatorial FISH-based 

approaches.  

Perhaps the most straightforward way to assign spatial information to RNA molecules is 

to only collect RNAs from a specific spatial domain. This concept is the basis of highly useful 

methods such as LCM-seq (Nichterwitz et al., 2016) and GEO-seq (Chen et al., 2017) that use 

laser capture microscopy to sequence a small number of cells at a time. A more systematic 

application of a spatial collection of RNA from distinct regions was applied using a method 

called Tomo-seq (Burkhard and Bakkers, 2018) that uses cryosectioning to the tissue before 
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sequencing. Photoactivation is another useful tool that was used to encode spatial information 

and capture RNAs in spatially distinct domains. Transcriptome in vivo analysis (TIVA) exposes 

live cells to multifunctional caged mRNA-capture molecule tags called TIVA that upon 

photocleavage hybridize to mRNAs within a cell allowing sequencing of RNAs from specific 

spatial position (Lovatt et al., 2014). A similar idea was implemented by ZipSeq (Hu et al., 2020) 

that used patterned light and three distinct colors to label cells according to their spatial position. 

Labeled cells are sorted and sequenced using standard scRNAseq tools. These spatial-specific 

capture approaches have been effective tools in understanding the organization of tissues. 

However, they suffer from an inherent tradeoff between resolution and throughput. While Tomo 

seq allowed sequencing entire embryos, this was done in linear sections of 18-micron thickness. 

On the other extreme TIVA can be used for subcellular localization of RNA molecules however it 

can only process one location at a time. Therefore, while the approaches that are based on 

spatially restricted RNA collection provide important spatial information they stop short of 

enabling the cellular structure of organs and tissues.  

To overcome the tradeoff between spatial resolution and throughput, an alternative 

approach is based on localized barcoding of cDNA during library preparation prior to 

sequencing. The key advantage of position-based barcoding is that once each region is labeled 

by a specific code the entire sample can be sequenced as one and using prior knowledge of the 

XY position of each barcode, the spatial position of all RNA molecules is reconstructed 

computationally. These approaches involve capturing RNA from tissue samples on a spatially 

barcoded bead array which is later sequenced. Both High Definition Spatial Transcriptomics 

(Salmén et al., 2018; Ståhl et al., 2016; Vickovic et al., 2019) and Slide-seq (Rodriques et al., 

2019; Stickels et al., 2020) use this approach. While this technique cannot define cell 

boundaries, High Definition Spatial Transcriptomics can achieve two-micron resolution and 

allows for fast, high-throughput processing (Vickovic et al., 2019). A key advantage of these 
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approaches is that they leverage many of the experimental and computational tools developed 

for scRNASeq. In fact, popular analysis tools such as Seurat were able to add the spatial 

capture analysis despite the scarcity of datasets that used this approach partially due to its 

similarity to scRNAseq (Stuart et al., 2019). Spatially resolved sequencing is a promising 

approach, however, presently it suffers from low RNA capture efficiency. The low capture 

efficiency means that the capture bin (i.e. spatial domain of a single barcode) needs to be big 

enough to contain a sufficient number of RNA molecules. Furthermore, even if the capture 

chemistry will improve, similar to other capture-based approaches there is an inherent tradeoff 

between resolution, i.e. the size of a single capture bin and the number of bins. To allow 

subcellular information, capture bins need to be <100 micrometer2 which means that a standard 

tissue section of 100 mm2 will need 106 distinct barcodes, a non-trivial library to sequence.  

In situ sequencing leverages the conceptual advances of DNA sequencing, but not the 

sequencing machines themselves. In situ sequencing converts RNA in a cell to cross-linked 

cDNA amplicons that are sequenced within a cell on a microscope. These molecules can either 

be the RNAs of interest themselves, as in FISSEQ (Lee et al., 2014, 2015), or an RNA barcode 

specific to transcripts of interest, like in ISS (Ke et al., 2013), STARmap (Wang et al., 2018), 

and Baristaseq (Chen et al., 2018). FISSEQ (Lee et al., 2014, 2015) cross-links DNA amplicons 

to a matrix to directly sequence the amplicon inside a cell. ISS, STARmap, and Baristaseq add 

barcoded oligos specific to targets of interest and sequence the barcodes to determine the 

presence of transcripts. Similar to combinatorial FISH approaches, barcode-based in situ 

sequencing requires an oligo library that targets genes of interest. While in principle in situ 

sequencing approaches can provide an unbiased view of RNA in tissues and organs, in practice 

this comes at a cost associated with the need to sequence many copies of highly abundant 

RNA molecules. The targeted methods have shown more robustness in their implementations 

and have dominated over unbiased ones. Interestingly, given their targeted nature, the 
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distinction between them and combinatorial hybridization-based approaches diminishes. This is 

exemplified in a new protocol called HybISS that merges the rolling circle amplification typical to 

in situ sequencing approaches with hybridization-based multi-round readout that is common in 

combinatorial FISH (Gyllborg et al., 2020).  

Integrative in situ measurements  

Integrative spatial multi-modal in situ approaches combine the measurements across 

modalities, i.e. RNA and protein. The integrative and multi-model data will likely enable a more 

comprehensive understanding of single-cell processes and functions. Many recent innovations 

in this direction point to an exciting future with complex datasets that span different data types. 

Techniques like Digital Spatial Profiling (DSP) (Merritt et al., 2020), RNAscope (Kann and 

Krauss, 2019), smFISH-IF (Tutucci and Singer, 2020), and ImmunoFISH (Kwon et al., 2020) 

combine FISH and immunofluorescence methods to measure RNA and protein levels within a 

single cell. RNAscope has additionally been paired with mass cytometry to read RNA and 

protein levels (Schulz et al., 2018). SABER-FISH also allows for the in situ measurement of 

DNA or RNA transcripts and can combine protein staining for simultaneous detection of a 

gene’s transcript and protein levels (Kishi et al., 2019). Another venture involves reading out 

DNA and RNA within the same cell in situ. ClampFISH (Rouhanifard et al., 2018) probes can be 

used on both DNA and RNA sequences, allowing for the measurement of DNA and RNA in the 

same cell in the same experiment. Additionally, live-cell imaging has been combined with in situ 

transcriptomics to allow for mapping the transcriptional state of a cell to its phenotype. CycIF 

tracked the translocation of a YFP-FoxO3a reporter followed by the readout of seven additional 

protein levels (Lin et al., 2015). A recent paper analyzed calcium signaling response and gene 

expression of calcium signaling-related genes in over 5,000 cells (Foreman and Wollman, 

2020). New avenues of spatial multi-omics are just now being explored and could have a great 

impact on the construction of atlases with many maps. Furthermore, these technologies open 
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up new avenues to study gene perturbations (Wang et al., 2019), cell lineage tracing (Chen et 

al., 2018; Frieda et al., 2017), and other aspects of functional DNA and RNA biology (Cai et al., 

2020; Maiser et al., 2020).  

Integrative reconstructions have been developed by combining large dissociative 

datasets with a smaller number of spatial measurements used as a “ruler”. For example, 

algorithms have been developed to infer the original spatial location of cells analyzed by 

scRNA-seq by correlating the level of key marker genes with levels of those genes found within 

in situ datasets (Achim et al., 2015; Satija et al., 2015). Other algorithms such as trendsceek 

and LIGER have also been used to integrate scRNA-seq data with spatial transcriptomics 

information (Edsgärd et al., 2018; Welch et al., 2019). The integration across spatial and non 

spatial datasets enabled spatial reconstruction by combining laser capture microdissection, bulk 

sequencing those cells, and then reconstructing the whole tissue through spatial tissue 

reconstruction (Moor et al., 2018). These reconstruction-based approaches are very powerful as 

they merge the strengths of dissociative and spatial measurements. However, care needs to be 

taken in the interpretation of these reconstructions. The recovered maps are based on spatially 

stratified averaging of many cells. These averaging could mask additional spatial differences 

that are lost due to averaging. Therefore, the details of the reconstruction matter and care 

should be used in the interpretation of these measurements.  

Challenges are truly opportunities  

The ultimate in situ measurement technology will have sub-cellular resolution, high 

detection sensitivity, will be applicable to 3D volumes, compatible with multiple fixation protocols 

including FFPE, and provide highly multiplexed data on a wide range of molecular species. 

Given the inherent tradeoff between resolution, sensitivity, and throughput, none of the 

technologies described above should be considered a “winner”. It is likely that many different 
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technologies will be developed where each will be a “winner” for a specific subset of 

applications. As a result, in situ technologies contain a smorgasbord of different approaches, 

each with their own acronym and nuances. Despite the variety, these technologies face some 

similar challenges. The first challenge is the computational and data complexity. Despite the 

differences in methods, many computational steps, such as spot calling and cell segmentation 

(Littman et al., 2020), are shared across approaches. Development of standards and mature 

computational libraries that can allow the separation of the computational analysis from data 

acquisition will allow more cross-fertilization in this field. Currently, the Chan Zuckerberg 

Initiative (CZI) has begun building a unified data-analysis tool and file format called starfish to 

address this issue (Perkel, 2019). These standards will allow the use of modern machine 

learning methods that will invariably be key to solving many of these problems (Bannon et al., 

2021; Chen et al., 2020a; Moen et al., 2019; Stringer et al., 2021). The second challenge relates 

to scale. MERFISH imaging of a volume comparable to a mouse brain would require more than 

a year of continuous imaging. Other technologies, such as spatial RNA barcoding, have a 

similar order of magnitude time requirements. To achieve cellular resolution for such volume 

requires ~1013 reads which, even on an advanced NovaSeq 6000 will take multiple years to 

sequence. The third challenge is the dissemination of these technologies to the scientific 

community. The complexity of many of these protocols makes the open-source / open hardware 

model challenging. Many companies are actively working on bringing these innovations to 

market which will help. However, whether these efforts will democratize the best technologies 

remain to be seen. Finally, once spatial data is collected, how to fully analyze it and maximize 

the insights such data provides is very much an open research question. As was the case for 

single-cell biology, we anticipate that increase in data availability will result in further 

developments in statistical and bioinformatics methodology to analyze these rich and interesting 

datasets. We are optimistic that these challenges will act as a catalyst for innovation and we 

expect further technological development in this space.  
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From cell biology to physiology  

The technologies introduced above are paving the way for bridging the gap between 

intracellular, cellular, and physiological scales (Fig 2.1.2).  

 

Figure 1.2: Bridging scales with in situ technologies.  
In situ technologies can reveal new biology across many scales of biology, including within a 
cell, cell types, cellular neighborhoods, tissue organization, and physiology. By bridging these 
scales, in situ technologies can provide insights into the structure-function relationship across 
multiple scales.  
 

Within a cell  

In situ measurements provide three key benefits over dissociative approaches in the 

analysis of single cells: 1) higher accuracy, 2) spatial context, and 3) subcellular information:  

Accuracy: Many in situ techniques like MERFISH and seqFISH are more sensitive and 

less biased than their dissociative counterparts like scRNAseq. Therefore, for a broad range of 

biological questions that require accurate transcript numbers in situ technologies should be 

used. For example, analysis of gene expression variability is non-trivial using scRNAseq data 

with sensitivities around 10%. Analysis of gene expression variability based on scRNAseq data 

requires accounting for this large measurement error with complex error models. Unfortunately, 

these are non-trivial and introduce a large number of additional assumptions, such as a high 



17 
 

degree of transcriptional bursting (Jiang et al., 2017; Larsson et al., 2019), that are not always 

fully substantiated (Battich et al., 2015; Foreman and Wollman, 2020).  

Spatial Context: The spatial context of in situ technologies allow for analysis of cellular 

heterogeneity in a much more physiological context. To fully understand the sources of cellular 

heterogeneity, we need to understand what factors influence cell state. Does spatial position in 

a tissue affect the variance of key genes? How does a cells’ gene expression predict its present 

and future behavior? Efforts to track cells over time have revealed that understanding a cell’s 

gene expression is insufficient to understand the choices that cells make (Weinreb et al., 2020). 

More information about a cell is therefore imperative to know in order to understand how a cell 

makes decisions. Recent work identified more than 40 genes in the mouse hippocampus to be 

cell subtype-specific spatial differentially expressed genes (spDEGs) (Littman et al., 2020). 

These results suggest that a spatial position can explain much of the heterogeneity seen using 

dissociative approaches.  

Subcellular Information: A subset of in situ techniques are capable of discerning RNA and 

protein localization at the subcellular level. High resolution allows for the determination of 

expression patterns in organelles as well as the analysis of coexpression of genes by 

subcellular localization. MERFISH is one such technique and has characterized the RNA 

enrichment in the endoplasmic reticulum and the nucleus (Xia et al., 2019b) as well as the 

dendrites and axons of neurons (Wang et al., 2020). On the proteomics side, 4i allows 

subcellular detection of protein abundances (Gut et al., 2018). 4i goes further and determines 

that the subcellular spatial protein distribution between single cells that experience different cell 

cycle states, microenvironments, or growth conditions affects the localization of EGFR upon the 

cell’s exposure to EGF. Collectively, the accuracy, context, and resolution of many in situ 

technologies enable a more accurate picture of the biology of cells in a true physiological 

context.  
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Cell types: the building blocks of tissues  

Classification of cells into (sub)types and states is an important step toward deciphering 

the structure/function relationship of tissues and organs. The two key advantages of 

classification of cells into (sub)types and state are 1) reduction of data complexity, i.e. a single 

cell type label can be used to replace a complex vector of transcriptome scale gene expression 

values. 2) interoperability between different experiments including across spatial and dissociate 

measurements, i.e the same nomenclature can be prescribed to cells across experiments. 

These benefits of cell classification systems and the existence of a large body of data from 

dissociative studies motivate many ongoing efforts to create robust cell classification systems 

(Trapnell, 2015; Yuste et al., 2020). However, the definition of a cell type and cell states is not 

consistent across fields, or even across researchers within a field. In addition, the appropriate 

criteria to use to classify cells are debated. This heterogeneity adds additional complications to 

cell classification, so it remains unclear if a single classification system will emerge or whether 

classification will have to be redefined for each analysis.  

Three complementary and non-mutually exclusive views of cell types have been used as 

frameworks to determine cellular classification systems: landscape, microenvironment, and task 

(Fig 2.1.3). The first view, famously referred to as the Waddington landscape (Waddington, 

1957a), suggests that intracellular biological regulatory networks are configured such that they 

can exist in a finite number of steady states. In the landscape point-of-view, cellular 

classification is molecular in origin and depends on stability analysis in high-dimensional phase 

space (Ferrell, 2012; Trapnell, 2015). While inputs to the cell during its developmental trajectory 

can influence cell fate decisions, these transitions are still encoded by the underlying regulatory 

network and therefore the classification is focused on a cell’s internal state (Waddington, 

1957b). The second view is that a cell type is defined by its microenvironment: the chemical, 

mechanical, and biological cues surrounding the cell. The cell is influenced and shaped by its 
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neighbors, its resources, and its environmental cues. The third view is that classification of cells 

into types has to follow the functional tasks cells are required to perform for the organism as a 

whole. Under this view, there are key cell archetypes, each specialized in a specific task. Each 

individual cell performs one or a few of these tasks and its molecular state will match the tasks it 

performs (Korem et al., 2015). Not only are the three views of landscape, microenvironment, 

and task non-mutually exclusive, they are in fact complementary and are likely different views of 

roles and states of cells in a multicellular organism. For example, the transition from monocyte 

to macrophage is guided by an internal epigenetic regulatory network (Álvarez-Errico et al., 

2015). Macrophages can polarize to perform different tasks based on stimulatory cytokines 

(Murray, 2017) while at the same time are heavily influenced by the tissue microenvironment 

(Lavin et al., 2014). Combining multiple viewpoints to create one (or more) cell classification 

system is an important stepping stone in analyzing the cellular structure of tissues and organs.  



20 
 

 

Figure 1.3: Geometrical representation of cell types.  
Three complementary views of the concept of cell type. These concepts are non-mutually 
exclusive and represent complementary views. (Top) The Waddington landscape uses the 
geometrical analogy of landscape. In this view, a cell type is a specific valley in ‘cell space’. As 
pluripotent cells differentiate they pass through the landscape to reach their final position. This 
view is largely focused on the intracellular epigenetic and gene regulatory networks that define 
the possible valleys in the landscape. (Left) The task-based view proposes that each cell 
performs one or a few tasks. Each task (cell archetype) is represented as a vertice on a high 
dimensional polyhedron. The specific tasks each cell performs will determine its position within 
the polyhedron. (Right) The microenvironment view proposes that cell types are defined by the 
chemical, mechanical, and biological cues surrounding a cell. The cartoon shows a simplified 
view with two signaling gradients and the position of the cell in that space will determine its 
type.  
 

In situ measurement technologies are well suited to generate and utilize cell classification 

systems. MERFISH and seqFISH were used to categorize the organization of predefined cell 

types within the brain (Chen et al., 2015; Littman et al., 2020; Shah et al., 2016). Other in situ 
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technologies, such as in situ sequencing leverage the existing cell type taxonomies to overcome 

low RNA detection efficiency and still provide key cell type information (Qian et al., 2020). 

Rather than solely focusing on existing classification systems, work based on seqFISH in 

combination with scRNAseq redefined cell types based on a Hidden Random Markov Field 

analysis of expression domains (Zhu et al., 2018). With further improvement of cell 

segmentation algorithms, it is likely that morphological information could be incorporated into 

classification models based on in situ measurements. Together with existing spatial information, 

it is expected that in situ technologies will play a key role in further refinement and development 

of cell type and state classification.  

Cellular neighborhoods and communities  

Cellular neighborhoods, the local spatial distribution of different cell types on the scale of 

hundreds of micrometers, are poorly understood. However, such length scales likely play an 

important role in bridging the gap between individual cell function and complex organ function. A 

good analogy for cellular communities is urban planning for human residential neighborhoods. A 

typical neighborhood with many houses will also have a coffee shop, a grocery store, and will be 

served by major roads and key public transportation. Similarly, cellular communities will have 

many cells of a few types that are needed for the specific organ (i.e. neurons in the brain, 

hepatocytes in the liver), but will also have resident macrophages, mast cells, and fibroblasts 

and will be in proximity to blood vessels. The number and spatial distribution of these 

specialized cell types have major implications for the function of the organ in their ability to relay 

information and perform their function (Bagnall et al., 2018). A good example of these principles 

come from recent cell-type mapping in the brain were in situ multiplexed RNA FISH uncovered a 

high spatial self-affinity of ependymal cells as well as spatial self-avoidance of inhibitory 

neurons, microglia, and astrocytes (Codeluppi et al., 2018). The paper also found that 

endothelial cells were found within roughly 65 microns of all other cell types. Another principle 
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that will likely help identify cellular communities is communication between cells. Direct 

measurement of communication between cells is challenging, but a useful proxy is ligand-

receptor interactions in neighboring cells (Browaeys et al., 2020). Work that used multiplexed 

RNA measurement in brain slices (Eng et al., 2019) found that endothelial cells next to microglia 

in the olfactory bulb express endoglin and activin A receptor mRNA while the microglia 

expressed TGFB ligand mRNA (Eng et al., 2019). By contrast, endothelial cells adjacent to 

microglia in the cortex expressed Lrp1 and Pdgfb mRNA. Collectively such studies bring an 

intriguing hypothesis that there are key principles that could be generalized to identify 

community-level ‘rules’ of cellular patterning. What exactly are these rules and what are the 

molecular mechanisms used to implement them, e.g. the chemical gradient (Lander et al., 2009) 

and differential adhesion (Tsai et al., 2020), are key open questions.  

In situ technologies coupled with new analysis approaches are well-positioned to make 

valuable contributions to our understanding of cellular communities. The highly multiplexed and 

inherently spatial nature of in situ measurement technologies makes them an ideal tool to 

acquire the data needed to understand cellular community organization. However, data 

collection is only the first step in identifying the rules and principles that govern cellular 

community organization. New bioinformatics and statistical tools will be required to allow 

researchers to convert the raw data on molecular distributions of RNA and proteins into insights. 

The rich literature of statistical learning including ideas related to community detection in multi 

layer networks (Mucha et al., 2010) and concepts from topic modeling (Blei et al., 2003) will 

accelerate the development of these much-needed statistical analysis tools for cellular 

community organization. Initial implementation of ideas from topical modeling to cellular 

communities is very promising (Chen et al., 2020c). Overall, while the amount of work done so 

far to understand cellular neighborhoods remains small, the iterative development of data 
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collection and analysis tools presents enticing prospects for understanding the role of the 

microenvironment in cellular organization.  

Principles of tissue organization  

How do multiple cellular communities interact together to form complex organs is a 

fundamental question. It is unclear whether there are few fundamental principles that can 

explain cellular self-organization across multiple organs or whether the way that multiple cellular 

communities synergy is organ dependent. It is likely that the organization of complex organs 

such as the brain or the liver that perform many distinct functions are different from each other 

and from simpler tissues such as the intestine or cornea. Nonetheless, the lack of complete data 

on cell type, RNA, and protein distribution across entire organs makes answering such 

questions difficult.  

The liver was the first organ to be studied in depth with in situ approaches. The largest 

internal organ in the body, it performs roughly 500 tasks, including bile production, fat 

metabolization, vitamin and mineral storage, and blood filtration (Ben-Moshe and Itzkovitz, 

2019). These tasks are non-homogeneously carried out by different subsets of cells within the 

liver. While it has long been understood that the various functions of the liver are not all carried 

out in the same spaces, in situ approaches have allowed researchers to dive further into the 

detailed arrangement of cell types and functions throughout the liver. Halpern et al. showed that 

roughly half of the hepatocyte genes, the main cells of the liver, are expressed in a zonated 

manner (Halpern et al., 2017). A subsequent study showed that liver endothelial cells are also 

highly zonated, with more than 30% of their genes expressed in a zonated manner (Halpern et 

al., 2018). Using spatial mapping, a high-resolution, global expression map of liver zonation was 

created that showed tasks that are high-energy are carried out in the highly oxygenated 

periportal locule layers where hepatocytes can more readily generate ATP through respiration 
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(Halpern et al., 2017). This conclusion supports theoretical results on spatial task allocation in 

organs (Adler et al., 2019). While the work on the liver has shown exciting insights into its 

spatial organization it is still nascent and does not differentiate between the different lobes of the 

liver, begging the question of whether each lobe shows additional sub-specializations. 

Outstanding questions of the liver organization still remain, including whether specific cell types 

including Kupffer cells (Bykov et al., 2004) and hepatic stellate cells (Friedman, 2008) are 

spatially heterogeneous. As technology develops, we anticipate exciting findings on the spatial 

organization of the liver’s 500 tasks. The example of the liver shows how much was already 

learned, yet at the same time how much more there is to discover on tissue spatial organization 

using in situ measurement technologies.  

To physiology and beyond  

The ultimate goal of biomedical research is to improve our understanding of human 

biology and how it is disrupted during disease. From a translational point of view, it is often an 

organ function that is impacted by disease. In situ measurement technologies are poised to 

provide new insights on normal physiology and importantly provide detailed information on what 

goes wrong in a disease state. In situ techniques have been applied to a subset of organ 

diseases. Systematic charting of the brain (Moffitt et al., 2018; Shah et al., 2017; Zhang et al., 

2020), heart (Asp et al., 2019), liver (Ben-Moshe and Itzkovitz, 2019; Halpern et al., 2017, 

2018), intestine (Moor et al., 2018), and bone marrow (Baccin et al., 2020) are starting to 

uncover the single-cell architecture of multiple tissues and organs. Spatial Transcriptomics has 

been used to study ALS (Maniatis et al., 2019), prostate cancer (Berglund et al., 2018), 

melanoma (Thrane et al., 2018), and Alzheimer’s disease (Chen et al., 2020b) while MIBI-TOF 

and imaging mass cytometry have been applied to the study of breast cancer (Jackson et al., 

2020; Keren et al., 2018). Systematic efforts to scale in situ mapping to tumors are ongoing 

(Rozenblatt-Rosen et al., 2020).  
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Spatial maps of prostate cancer transcriptomes have shown prostate cancer samples 

have high heterogeneity across the tumor and that distinct cancer expression regions can 

extend beyond the boundaries of annotated tumor areas (Berglund et al., 2018). These findings 

suggest using spatial information of tumors is important in classification schemes to rank tumor 

severity and could be used to predict further ‘high risk’ areas of potential cancer growth. 

Similarly, an analysis of triple-negative breast cancer by MIBI-TOF found that the spatial 

organization of infiltrating immune cells inside solid tumors is predictive of patient survival, 

where patients with more compartmentalized immune cells inside tumors fared better than 

patients where immune cells were well mixed within the tumor (Keren et al., 2018). Spatial 

transcriptomics has also been used in other diseases to track how disease progression occurs 

molecularly. A recent study of ALS quantified over 11,000 genes in mice and over 9,000 genes 

in humans to show that microglial dysfunction occurs well before ALS symptom onset and this 

dysfunction is mediated by the phagocytosis-related genes TREM2 and TYROBP (Maniatis et 

al., 2019). These technologies are pushing our frontier of understanding and even show areas 

where in situ analyses can suggest improvements in current medical practices. On a longer 

timescale, it is possible that in situ measurements will become an important diagnostic tool.  

Conclusion  

Spatial Biology is still an emerging field driven in large part by new in situ technologies. 

The ability of these approaches to provide rich spatially defined datasets about molecular and 

cellular distribution across multiple spatial scales poise these technologies to make critical 

contributions to our understanding of the inherent relationship between structure and function at 

multiple levels. The future of this field is quite bright, with applications ranging from 

understanding disease progression and how the structure of organs such as the brain and the 

liver relates to their functions. As was the case with single-cell biology, an increase in the 

adoption of these technologies will increase data availability and will result in innovation in data 
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analysis. Such iterative improvements in data acquisition and analysis will provide key insights 

that will allow researchers to bridge the gap from molecular and cellular biology to complex 

human physiology. The best is yet to come.  
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Chapter 2 

Joint cell segmentation and cell type annotation for spatial transcriptomics 

Littman, Russell; Hemminger, Zachary; Foreman, Robert; Arneson, Douglas; Zhang, Guanglin; 

Gómez-Pinilla, Fernando; Yang, Xia; Wollman, Roy 

Abstract 

RNA hybridization-based spatial transcriptomics provides unparalleled detection 

sensitivity. However, inaccuracies in segmentation of image volumes into cells cause 

misassignment of mRNAs which is a major source of errors. Here, we develop JSTA, a 

computational framework for joint cell segmentation and cell type annotation that utilizes prior 

knowledge of cell type-specific gene expression. Simulation results show that leveraging 

existing cell type taxonomy increases RNA assignment accuracy by more than 45%. Using 

JSTA, we were able to classify cells in the mouse hippocampus into 133 (sub)types revealing 

the spatial organization of CA1, CA3, and Sst neuron subtypes. Analysis of within cell subtype 

spatial differential gene expression of 80 candidate genes identified 63 with statistically 

significant spatial differential gene expression across 61 (sub)types. Overall, our work 

demonstrates that known cell type expression patterns can be leveraged to improve the 

accuracy of RNA hybridization-based spatial transcriptomics while providing highly granular cell 

(sub)type information. The large number of newly discovered spatial gene expression patterns 

substantiates the need for accurate spatial transcriptomic measurements that can provide 

information beyond cell (sub)type labels. 

Introduction 

Spatial transcriptomics has been employed to explore the spatial and cell type-specific 

gene expression to better understand physiology and disease (Asp et al, 2019; Burgess, 2019). 
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Compared to other spatial transcriptomics methods, RNA hybridization-based approaches 

provided the highest RNA detection accuracies with capture rates > 95% (Lubeck et al, 2014). 

With the development of combinatorial approaches for RNA hybridization, the ability to measure 

the expression of hundreds to thousands of genes makes hybridization-based methods an 

attractive platform for spatial transcriptomics (Beucher, 1979; Najman & Schmitt, 1994; Al-

Kofahi et al, 2010; Lubeck et al, 2014; Chen et al, 2015; Eng et al, 2019; preprint: Park et al, 

2019; Vu et al, 2019; preprint: Petukhov et al, 2020; Qian et al, 2020; Yuste et al, 2020). 

Nonetheless, unlike dissociative approaches, such as single-cell RNA sequencing (scRNAseq) 

where cells are captured individually, RNA hybridization-based approaches have no a priori 

information of which cell a measured RNA molecule belongs to. Segmentation of image 

volumes into cells is therefore required to convert RNA detection into spatial single-cell data. 

Assigning mRNA to cells remains a challenging problem that can substantially compromise the 

overall accuracy of combinatorial FISH approaches. 

Generation of spatial single-cell data from imaging-based spatial transcriptomics relies 

on algorithmic segmentation of images into cells. Current combinatorial FISH work uses 

watershed-based algorithms with nuclei as seeds, and the total mRNA density to establish cell 

borders (Najman & Schmitt, 1994; Chen et al, 2015; Eng et al, 2019). Watershed algorithm was 

proposed more than 40 years ago (Beucher, 1979), and newer segmentation algorithms that 

utilize state of the art machine learning approaches have been shown to improve upon classical 

watershed approach (Al-Kofahi et al, 2010; Vu et al, 2019). However, their performance is 

inherently bounded by the quality of the “ground truth” dataset used for training. In tissue 

regions with dense cell distributions, there is simply not enough information in the images to 

perform accurate manual labeling and create a sufficiently accurate ground truth training 

datasets. Therefore, there is an urgent need for new approaches that can combine image 
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information with external datasets to improve image segmentation and thereby the overall 

accuracy of spatial transcriptomics. 

Due to the deficiency in existing image segmentation algorithms, a few segmentation-

free spatial transcriptomic approaches were proposed. pciSeq's primary goal is to assign cell 

types to nuclei by using proximity to mRNA, and an initialized segmentation map to compute the 

likelihood of each cell type (Qian et al, 2020). Similarly, SSAM creates cell type maps based on 

RNA distributions, without creating a cell segmentation map because it ignores cellular 

boundaries (preprint: Park et al, 2019). Therefore, while both pciSeq and SSAM leverage cell 

type catalogs to provide insights into the spatial distribution of different cell types, they do not 

produce a high-quality cell segmentation map. More recently, an approach for updating cell 

boundaries in spatial transcriptomics data has been developed (preprint: Petukhov et al, 2020). 

Baysor uses neighborhood composition vectors and Markov random fields to segment spatial 

transcriptomics data and identify cell type clusters. 

Here, we present JSTA, a computational framework for jointly determining cell 

(sub)types and assigning mRNAs to cells by leveraging previously defined cell types through 

scRNAseq. Our approach relies on maximizing the internal consistency of pixel assignment into 

cells to match known expression patterns. We compared JSTA to watershed in assigning 

mRNAs to cells through simulation studies to evaluate their accuracy. Application of JSTA to 

MERFISH measurements of gene expression in the mouse hippocampus together with 

Neocortical Cell Type Taxonomy (NCTT) (Yuste et al, 2020) provides a highly granular map of 

cell (sub)type spatial organization and identified many spatially differentially expressed genes 

(spDEGs) within these (sub)types (Lein et al, 2007). 
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Results 

Our computational framework of JSTA is based on improving initial watershed 

segmentation by incorporating cell (sub)type probabilities for each pixel and iteratively adjusting 

the assignment of boundary pixels based on those probabilities (Fig 2.1A). 

To evaluate JSTA, we chose to use the mouse hippocampus for two reasons: (i) The 

mouse hippocampus has high cell (sub)type diversity as it includes more than 35% of all cell 

(sub)types defined by the NCTT. (ii) The mouse hippocampus has areas of high and low cell 

density. These two reasons make the mouse hippocampus a good test case for the hypothesis 

that external cell (sub)type-specific expression data could be leveraged to increase the 

accuracy of spatial transcriptomics, as implemented in our approach. We performed multiplexed 

error robust fluorescent in situ hybridization (MERFISH) of 163 genes which include 83 selected 

cell marker genes, which show distinct expression between cell types and are used for cell 

classification and segmentation and 80 genes previously implicated with biological importance 

in traumatic brain injury (Fig 2.1B). Combining this MERFISH dataset, DAPI stained nuclei, and 

the NCTT reference dataset using JSTA, we created a segmentation map that assigns all 

mRNAs to cells while simultaneously classifying all cells into granular (sub)types based on 

NCTT. 

In JSTA, we leverage the NCTT information to infer probabilities at the pixel level. 

However, learning these probabilities from NCTT is challenging for two reasons. (i) NCTT data 

were acquired with scRNAseq technology that has higher sparsity due to low capture rates and 

needs to be harmonized. (ii) NCTT data provide expression patterns at the cell level and not the 

pixel level. We expect the mean expression among all pixels in a cell to be the same as that of 

the whole cell. Yet, variance and potentially higher distribution moments of the pixel-level 

distribution are likely different from those of the cell-level distribution due to sampling and 
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biological factors such as variability in subcellular localization of mRNA molecules (Eng et al, 

2019). To address these issues, JSTA learns the pixel-level cell (sub)type probabilities using 

two distinct deep neural network (DNN) classifiers, a cell-level type classifier, and a pixel type 

classifier. Overall, JSTA learns three distinct layers of information: segmentation map, pixel-

level classifier, and cell-level classifier. 

Learning of model parameters is done using a combination of NCTT and the MERFISH 

data. The cell type classifier is learned directly from NCTT data after harmonization. The other 

two layers are learned iteratively using expectation maximization (EM) approach (Chen et al, 

2015). Given the current cell type assignment to cells, we train a pixel-level DNN classifier to 

output the cell (sub)type probability of each pixel. JSTA can be applied on any user-selected 

subset of the genes; the local mRNA density of these selected genes around each pixel is used 

as the input for the pixel-level classifier. The selection of genes drives how well the cell type 

classifier can distinguish between distinct cell types. The updated pixel classifier is used to 

assign probabilities to all border pixels. The new probabilities are then used to “flip” border 

pixels' assignment based on their type probabilities. The updating of the segmentation map 

requires an update of the cell-level type classification which triggers a need for an update of 

pixel-level classifier training. This process is then repeated until convergence. Analysis of the 

mean pixel-level cell (sub)type classification accuracy shows an increase in the algorithm's 

classification confidence over time demonstrating that the NCTT external information gets 

iteratively incorporated into the tasks of cell segmentation and type annotation (Fig 2.1.1). For 

computational efficiency, we iterate between training, reassignment, and reclassification in 

variable rates. As this approach uses cell type information to improve border assignment 

between neighboring cells, in cases where two neighboring cells are of the same type, the 

border between them will stay the same as the initial watershed segmentation. The final result is 

a cell type segmentation map that is initialized based on watershed and adjusted to allow pixels 
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to be assigned to cells to maximize consistency between local RNA density and cell type 

expression priors. 

Performance evaluations 

Performance evaluation using simulated hippocampus data 

To test the performance of our approach, we utilized synthetic data generated based on 

the NCTT (Lein et al, 2007) (Fig 2.2A and B). Details on the synthetic generation of cell position, 

morphologies, type, and expression profiles are available in the Materials and Methods section. 

Using this synthetic data, we evaluated the performance of JSTA in comparison with watershed 

at different cell type granularities. For example, two cells next to each other that are of subtypes 

CA1sp1 and CA1sp4 would add to the error in segmentation, but if the cell type resolution 

decreases to CA1 cells, these would be considered the same type, and misassignment of 

mRNA between these cells is no longer penalized. Evaluating the methods in this manner 

allows us to explore the trade-off between cell type granularity and mRNA assignment accuracy. 

Our analysis shows that JSTA consistently outperforms watershed at assigning spots to cells 

(Fig 2.2C). Interestingly, the benefit of JSTA was evident even with a small number of genes 

(Fig 2.2D). With just 12 genes, the performance jumps to 0.50 at the highest cell type 

granularity, which is already higher than watershed's accuracy; at a granularity of 16 cell types, 

the accuracy reached 0.62 (Fig 2.2C and D). Overall the synthetic data showed that JSTA 

outperforms watershed approach, and at physiologically relevant parameters, can increase 

mRNA assignment accuracy by > 45%. We additionally compared JSTA to pciSeq (Qian et al, 

2020), in the assignment of mRNA molecules to cells. We note that pciSeq is mainly designed 

to assign cell types to nuclei based on surrounding mRNA and therefore is not primarily focused 

on assigning most mRNA molecules to cells as JSTA does. Furthermore, since pciSeq is not 

designed to operate on 3D data, we simulated 2D data and applied both JSTA and pciSeq. We 
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found that JSTA was more accurate at assigning mRNA molecules to cells than pciSeq (Fig 

2.1.1A). pciSeq tends to incorrectly assign many spots to background, as segmentation is not its 

primary goal. However, when ignoring mRNAs assigned to background in a true-positive 

calculation, pciSeq performs well as it primarily assigns mRNAs close to the nuclei, which is an 

easier task. In this case, JSTA has comparable performance (Fig 2.1.1B). 

Time requirements of JSTA 

We simulated data of different sizes and ran JSTA to determine how the run time scales 

with larger datasets. We simulated three replicates of data with a width and height of 100, 200, 

300, 400, 500, and 1,000 μm. The run time of JSTA scales linearly with both the area and 

number of cells in the section (Fig 2.1A and B). 

Performance evaluation using empirical spatial transcriptomics of mouse hippocampus 

We next tested the performance of JSTA using empirical data and evaluated its ability to 

recover the known spatial distribution of coarse neuron types across the hippocampus (Fig 2.3). 

First, we subset the NCTT scRNAseq data to the shared genes we have in our MERFISH data 

and harmonized the MERFISH and scRNAseq datasets (Moffitt et al, 2018). Using the cell type 

annotations from the single-cell data, we trained a DNN to classify cell types. As expected, our 

classifier derived a cell type mapping agreeing with known spatial patterns in the hippocampus 

(Fig 2.3A). For example, CA1, CA3, and DG cells were found with high specificity to their known 

subregions (Fig 2.3B). We found that the gene expression of the segmented cells in MERFISH 

data highly correlated with their scRNAseq counterparts, and displayed similar correlation 

patterns between different cell types (Fig 2.3C) as seen in scRNAseq data (Fig 2.3D). These 

results show that our data and JSTA algorithm can recover existing knowledge on the spatial 

distribution of cell types and their gene expression patterns in the mouse hippocampus. 

JSTA performs high-resolution cell type mapping in the mouse hypothalamic preoptic region 
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We applied JSTA to a MERFISH dataset from a previously published mouse hypothalamic 

preoptic region with 134 genes provided (Moffitt et al, 2018). Using the provided scRNAseq 

reference dataset, we accurately mapped 87 high-resolution cell types in this region (Fig 

2.3.1A). The mapped cell types follow spatial distributions of high-resolution cell types of this 

region previously annotated through clustering and marker gene annotation. We find the gene 

expression profiles of the cell types from the MERFISH data are highly correlated with their 

scRNAseq counterparts (Fig 2.3.1B). 

JSTA performs high-resolution cell type mapping in the mouse somatosensory cortex 

Next, we applied JSTA to an osmFISH dataset from the mouse somatosensory cortex with the 

35 genes provided (Codeluppi et al, 2018). Using the NCTT reference, we mapped 142 high-

resolution cell types in this region. We found that the glutamatergic neuronal populations follow 

known spatial organization (Fig 2.3.2A) and that the gene expression patterns of high-resolution 

cell types in the osmFISH data are highly correlated with their NCTT counterparts (Fig 2.3.2B). 

Applications of JSTA for biological discovery 

JSTA identifies spatial distribution of highly granular cell (sub)types in the hippocampus 

A key benefit of JSTA is its ability to jointly segment cells in images and classify them into highly 

granular cell (sub)types. Our analysis of mouse hippocampus MERFISH data found that these 

subtypes, defined only based on their gene expression patterns, have high spatial localization in 

the hippocampus. From lateral to medial hippocampus, the subtypes transitioned spatially from 

CA1sp10 to CA1sp6 (Fig 2.4A). Likewise, JSTA revealed a non-uniform distribution of subtypes 

in the CA3 region. From lateral to medial hippocampus, the subtypes transitioned from CA3sp4 

to CA3sp6 (Fig 2.4B). This gradient of subtypes reveals a high level of spatial organization and 

points to potentially differential roles for these subtypes. 



43 
 

JSTA shows that spatially proximal cell subtypes are transcriptionally similar 

Next, we tested whether across different cell types spatial patterns match their expression 

patterns by evaluating the colocalization of cell subtypes and their transcriptional similarity. 

Indeed, spatially proximal CA1 subtypes showed high transcriptional similarity (Figs 2.5A and 

2.5.1A and B). For example, cells in the subtypes CA1sp3, CA1sp1, and CA1sp6 are proximal 

to each other and show a high transcriptional correlation. Interestingly, this relationship was not 

bidirectional, and transcriptional similarity by itself is not necessarily predictive of spatial 

proximity. For example, subtypes CA1sp10, CA1sp7, and CA1sp4 show > 0.95 correlation but 

are not proximal to each other. Similar findings were seen in the CA3 region as well (Figs 2.5B 

and, 2.5.1A and B). 

To test whether this principle goes beyond subtypes of the same type, we compared 

CA1 neurons and the Sst interneurons. We found that many Sst subtypes have high specificity 

in their localization and are transcriptionally related to their non-Sst neighbors. Using 

permutation tests, we found that subtypes Sst12, Sst19, Sst20, Sst28 are significantly 

colocalized with these same subtypes and are specific to the CA1 region (Fig 2.5C and D, 

Materials and Methods). Analysis of their transcriptional similarity showed that these subtypes 

are highly correlated in their gene expression to all CA1 subtypes (Fig 2.5E) but not to CA3 

subtypes. These results show that both within a cell type and across cell types spatial proximity 

indicate similarity in expression patterns. 

JSTA identifies spatial differential gene expression 

Given our results on the relationship between spatial localization and gene expression 

patterns across cell subtypes, we next tested whether spDEGs within the highly granular cell 

subtypes can be identified. We focused our analysis on the 80 genes in our dataset that were 

not genes used to classify cells into cell (sub)types. We identified spDEGs by determining if the 
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spatial expression pattern of a given gene was statistically different from a null distribution by 

permuting the gene expression values. Importantly, the null model was restricted to the 

permutation of only the cells within that subtype. As a result, our spDEG analysis specifically 

identifies genes whose expression within a specific subtype has a spatial distribution that is 

different than random. We found that within hippocampal cell subtypes, many genes were 

differentially expressed based on their location (Fig 2.6). For example, Tox in CA1sp1 shows 

higher expression on the medial side of the hippocampus and decreases to the lateral side. 

Leng8 in subtype CA3sp3 is highly expressed closer to the CA1 region and lower in the medial 

CA3. Hecw1 in the DG2 subtype has varying spatial distribution in the DG region. The lower 

portion of the DG has clusters of higher expression, while the upper portion has lower 

expression. These spatial differences in gene expression are not limited to neuronal subtypes. 

Astrocyte subtype “Astro1” shows spatial heterogeneity in expression of Thra, with large 

patches of high expression levels and other patches of little to no expression (Fig 2.2.6A). 

Overall, we tested for spDEGs in 61 (sub)types with more than 40 cells. We found that all 61 of 

the tested hippocampal cell subtypes have spDEGs (Figs 2.6B and 2.6.1B), with more than 50% 

(63 of 80) of the tested genes showing non-random spatial pattern (Figs 2.6C and 2.6.1C). 

Certain genes also show spatial patterns in many subtypes (e.g., Thra 2.6.1ac), while others are 

more specific to a one or a few subtypes (e.g., Farp1, 2.6.1ac). Identification of spDEGs 

highlights an interesting application of highly accurate cell type and mRNA assignment in spatial 

transcriptomic data. 
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Figure 2.1: Overview of JSTA and the spatial transcriptomic data used for performance 
evaluation  
A. Joint cell segmentation and cell type annotation (JSTA) overview. Initially, watershed-based 
segmentation is performed and a cell-level type classifier is trained based on the Neocortical 
Cell Type Taxonomy (NCTT) data. The deep neural network (DNN) parameterized cell-level 
classifier then assigns cell (sub)types (red and blue in this cartoon example). Based on the 
current assignment of pixels to cell (sub)types, a new DNN is trained to estimate the 
probabilities that each pixel comes from each of the possible (sub)types given the local RNA 
density at each pixel. In this example, two pixels that were initially assigned to the “red” cells got 
higher probability to be of a blue type. Since the neighbor cell is of type “blue”, they were 
reassigned to that cell during segmentation update. Using the updated segmentation and the 
cell type classifier cell types are reassigned. The tasks of training, segmentation, and 
classification are repeated over many iterations until convergence.B. Multiplexed error robust 
fluorescent in situ hybridization (MERFISH) and DAPI stained nuclei in the mouse 
hippocampus. Each gene is represented by a different color. For the entire hippocampus (left), 
only the mRNA spots are shown with a scale bar of 500 μm. On the zoomed-in section (right), 
each gene is represented by a different color dot, and the DAPI intensity is displayed in white. 
The scale bar is 20 μm. 
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Figure 2.1.1: Performance evaluation of JSTA, pciSeq, and watershed.  
A, B.pciSeq is unable to run on 3D data (solid line), so we simulated additional 2D data (dotted 
line). We evaluated these methods on the performance of accuracy of assigning mRNA to the 
correct cell (A). JSTA is more accurate than pciSeq on the accuracy metric. pciSeq is not very 
accurate here, because many mRNA are incorrectly assigned to background. We additionally 
tested these methods on their performance of assigning mRNA to the correct cell while ignoring 
mRNA assigned to background (B). pciSeq is highlighted here, because it mainly assigns spots 
close to the nucleus; JSTA is comparable. 

 
Figure 2.2: Performance evaluation of JSTA using simulated data.  

A. Representative synthetic dataset of nuclei (black) and mRNAs, where each color 
represents a different gene. B. Ground truth segmentation map of the cells in the 
representative synthetic dataset. Each color represents a different cell. C. Average Accuracy of 
calling mRNA spots to cells at different cell type resolutions using 83 genes across 10 
replicates. Accuracy was determined by the assignment of each mRNA molecule to the correct 
cell type. JSTA (solid line) is more accurate than watershed (dashed line) at assigning mRNA 
molecules to the correct cells (FDR < 0.05). Statistical significance was determined with a 
Mann–Whitney test and false discovery rate correction. D. Accuracy (as described in (C)) of 
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calling mRNA spots to cells when using JSTA to segment cells with a lower selection of cell type 
marker genes (8–44 genes tested). The color of the line gets progressively darker as the 
number of genes used increases. 

 
Figure 2.2.1: Application of JSTA to osmFISH data from the mouse somatosensory 
cortex.  
A. Glutamatergic neurons are consistent with previously identified spatial patterns of the 
somatosensory cortex. B. JSTA-mapped high-resolution (sub)types are correlated with their 
NCTT counterparts in terms of gene expression patterns (Table 2.3.2). Cell types with at least 
five cells were kept. 
 

 
Figure 2.3: Segmentation of MERFISH data from the hippocampus using JSTA.  
A. High-resolution cell type map of 133 cell (sub)types segmented and annotated by JSTA. 
Colors match those defined by Neocortical Cell Type Taxonomy (NCTT). Scale bar is 500 μm. 
B. JSTA-based classification of CA1 (green), CA3 (cyan), and DG (red) neurons matches their 
known domains. C. Correlation of the average expression of 163 genes across major cell types 
between MERFISH measurements to scRNAseq data from NCTT. D. Correlation of the average 
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expression of the same genes as in (C) between expression of types in scRNAseq data from 
NCTT. The correlation structure in panel (C) closely mirrors the structure in panel (D). 

 
Figure 2.3.1: Run time evaluation of JSTA on simulated data.  
A. B. We ran JSTA on data simulated with a width and height of 100, 200, 300, 400, 500, and 
1,000 μm, with three replicates each. We evaluated the time taken to run JSTA by the area of 
the section (A), and the number of cells in each section (B). 



49 
 

 
Figure 2.3.2: Application of JSTA to MERFISH data from the mouse hypothalamic 
preoptic region.  
A. High-resolution cell types identified by JSTA. The spatial mappings of these high-resolution 
cell types are consistent with the manually annotated data from Moffit et al (2018). B. JSTA-
mapped high-resolution (sub)types are highly correlated with their scRNAseq reference 
counterparts in terms of gene expression patterns (Table 2.3.1). Cell types with at least five 
cells were kept. 
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Figure 2.4: Spatial distribution of neuronal subtypes in the hippocampus.  
A. (i) Cell subtype map of CA1 neurons in the hippocampus as annotated by JSTA. Scale bar is 
500 μm. Distribution of CA1 subtypes in the hippocampus, computed by projecting cell centers 
to the lateral to medial axis. CA1 neuronal subtypes show a non-uniform distribution across the 
whole CA1 region. (ii) Smoothed histogram highlighting the density of CA1 subtypes across the 
CA1 region. B. (i) Cell subtype map of CA3 neurons in the hippocampus as annotated by JSTA. 
Distribution of CA3 subtypes in the hippocampus, computed by projecting the cell centers to the 
lateral to medial axis. CA3 neuronal subtypes show a non-uniform distribution across the whole 
CA3 region. (ii) Smoothed histogram highlighting the density of CA3 subtypes across the CA3 
region. 
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Figure 2.5: Agreement between spatial proximity and gene coexpression in highly 
granular cell subtypes in the hippocampus.  
A, B. Relationship between the frequency of a (sub)type's neighbors and its transcriptional 
Pearson correlation between CA1 subtypes (A) and between CA3 subtypes (B). C. Cell type 
map in the hippocampus shows specific colocalization patterns between a subset of Sst 
subtypes (purple) and CA1 neurons (green); these Sst subtypes do not colocalize with CA3 
neurons (cyan). Scale bar is 500 μm. D. Colocalization patterns of Sst subtypes with CA1 and 
CA3 subtypes. Sst subtypes that colocalize with the CA1 subtypes have high transcriptional 
similarity. Colocalization was defined as the percent of neighbors that are of that subtype 
(Materials and Methods). E. Transcriptional correlation patterns between Sst subtypes and CA1 
and CA3 neurons. Green, purple and cyan sidebars highlight the subset of Sst colocalized with 
CA1 (purple), CA1 (green), and CA3 (cyan). 
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Figure 2.5.1: Correlation structure of cell types compared with their colocalization  
Neuronal subtypes that are highly colocalized are often correlated in their gene expression. Cell 
types with more than 10 cells were included. A. Pearson correlation of 122 (sub)types across 83 
selected genes. B. Frequency of neighbors between each of 122 (sub)types. Only significant 
(FDR < 0.05) colocalizations are shown. Labels and values are detailed in Tables 2.5.1 and 
2.6.1. 
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Figure 2.6: Identification of spatial differential gene expression (spDEGs).  
A. Normalized expression of Tox in CA1sp1, Leng8 in CA3sp3, Hecw1 in DG3, and Thra in 
Astro1 shows variable expression throughout the hippocampus. Scale bar is 500 μm. spDEGs 
were computed by comparing the true variance in gene expression between cell subtype 
neighborhoods to that of randomly permuted cell (sub)type neighborhoods. B. Histogram of the 
number of statistically significant spDEGs (Benjamini–Hochberg-corrected FDR < 0.05) in each 
subtype. C.  Histogram of the number of subtypes that have an spDEG for each gene. 
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Figure 2.6.1: Identification of spatial differentially expressed genes (spDEGs).  
A. spDEGs were computed by comparing the true variance in gene expression between cell 
subtype neighborhoods to that of randomly permuted cell (sub)type neighborhoods. B. 63 genes 
across 61 cell types show significant spDEGs. Heatmap values correspond to −log2(P-value). 
C. Number of spDEGs in each of the 61 cell types. D. Number of cell types with each of the 63 
spDEGs. 
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Figure 2.6.2: Cross-entropy loss and accuracy of cell type (A, B) and pixel (C, D) 
classifier during training for the train (blue) and validation (orange) datasets.  
A, B. Cross-entropy (A) loss and accuracy (B) during training cell type classifier. The cell type 
classifier overfits the training data and is mitigated by stopping training after 40 epochs. C, D. 
Cross-entropy loss (C) and accuracy (D) during training of the pixel classifier. Black lines 
indicate new training iteration after pixel reassignment. 
 

Discussion 

Spatial transcriptomics provides the coordinates of each transcript without any 

information on the transcript cell of origin (Lee, 2017). Here, we present JSTA, a new method to 

convert raw measurements of transcripts and their coordinates into spatial single-cell 

expression maps. The key distinguishing aspect of our approach is its ability to leverage existing 

scRNAseq-based reference cell type taxonomies to simultaneously segment cells, classify cells 

into (sub)types, and assign mRNAs to cells. The unique integration of spatial transcriptomics 

with existing scRNAseq information to improve the accuracy of image segmentation and 

enhance the biological applications of spatial transcriptomics, distinguishes our approach from 
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other efforts that regardless of their algorithmic ingenuity are bounded by the available 

information in the images themselves. As such, JSTA is not a generalist image segmentation 

algorithm rather a tool specifically designed to convert raw spatial transcriptomic data into single 

cell-level spatial expression maps. We show the benefits of using a dedicated analysis tool 

through the insights it provides into spatial organization of distinct (sub)types in the mouse 

hippocampus and the hundreds of newly discovered cell (sub)type-specific spDEGs. These 

insights into the molecular- and cellular-level structural architecture of the hippocampus 

demonstrate the types of biological insights provided by highly accurate spatial transcriptomics. 

The promise of single cell and spatial biology lends itself to intense focus on 

technological and computational development and large-scale data collection efforts. We 

anticipate that JSTA will benefit these efforts while at the same time benefit from them. On the 

technology side, we have demonstrated the performance of JSTA for two variants of spatial 

transcriptomics, MERFISH and osmFISH. However, the algorithm is extendable and could be 

applied to other spatial transcriptomic approaches that are based on in situ sequencing (Lee et 

al, 2014; Lee et al, 2015; Turczyk et al, 2020), subcellular spatial barcoding (Ståhl et al, 2016; 

Salmén et al, 2018), and potentially any other spatial “omics” platforms (Gerdes et al, 2013; Lin 

et al, 2015; Goltsev et al, 2018; Keren et al, 2018; Lin et al, 2018; Lundberg & Borner, 2019). 

Additionally, cell segmentation results from JSTA can be used as input for other tools such as 

GIOTTO (Dries et al, 2021) and TANGRAM (preprint: Biancalani et al, 2020) to facilitate single 

cell and spatial transcriptomic data analysis. The benefits of JSTA are evident even with a small 

number of measured genes. This indicates that it is applicable to a broad range of platforms 

across all multiplexing capabilities. JSTA is limited by its ability to harmonize technical 

differences between spatial transcriptomic data modalities and the scRNAseq reference. 

Harmonization between datasets is an active area of research, and JSTA will benefit from these 

advances (preprint: Lopez et al, 2019; Stuart et al, 2019; Welch et al, 2019; Abdelaal et al, 
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2020; Tran et al, 2020). JSTA relies on initial seed identification (nuclei or cell centers), and 

incorrect identification can lead to split or merged cells. JSTA currently does not split or merge 

cells, but this postprocessing step could be added to further improve segmentation (Chaudhuri 

& Agrawal, 2010; Surut & Phukpattaranont, 2010; Correa-Tome & Sanchez-Yanez, 2015; 

Gamarra et al, 2019). On the data side, as JSTA leverages external reference data, it will 

naturally increase in its performance as both the quality and quantity of reference cell type 

taxonomies improve (HuBMAP Consortium, 2019). We see JSTA as a dynamic analysis tool 

that could be reapplied multiple times to the same dataset each time external reference data is 

updated to always provide highest accuracy segmentation, cell (sub)type classification, spDEG 

identification. 

Due to the nascent status of spatial transcriptomics, there are many fundamental 

questions related to the interplay between cell (sub)types and other information gleaned from 

dissociative technologies and tissue and organ architecture (Trapnell, 2015; Mukamel & Ngai, 

2019). Our results show that strong codependency between spatial position and transcriptional 

state of a cell in the hippocampus, these results mirror findings from other organs (Halpern et al, 

2017; Moor et al, 2018; Egozi et al, 2020). This codependency supports the usefulness of the 

reference taxonomies that were developed without the use of spatial information. Agreements 

between cell type taxonomies developed solely based on scRNAseq and other measurement 

modalities, i.e., spatial position, corroborate the relevance of the taxonomical definitions created 

for mouse brain (Yuste et al, 2020). At the same time, the spatial measurements demonstrate 

the limitation of scRNAseq. We discovered many spatial expression patterns within most cell 

(sub)types that prior to these spatial measurements would have been considered biological 

heterogeneity or even noise but in fact they represent key structural features of brain 

organization. High accuracy mapping at the molecular and cellular level will allow us to bridge 
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cell biology with organ anatomy and physiology pointing toward a highly promising future for 

spatial biology. 

Materials and Methods 

Tissue preparation 

All experiments were performed in accordance with the United States National Institutes 

of Health Guide for the Care and Use of Laboratory Animals and were approved by the 

University of California at Los Angeles Chancellor's Animal Research Committee. B6 mouse 

was euthanized using carbon dioxide with cervical dislocation. Its brain was harvested and 

flash-frozen in Optimal Cutting Temperature Compound (OCT) using liquid nitrogen. 15 μm 

sections were prepared and placed on pretreated coverslips. 

Coverslip functionalization 

Coverslips were functionalized to improve tissue adhesion and promote gel attachment 

(Moffitt & Zhuang, 2016). Briefly, 40 mm No.1 coverslips were cleaned with a 50:50 mixture of 

concentrated 37% hydrochloric acid and methanol under sonication for 30 min. Coverslips were 

silanized to improve gel adhesion with 0.1% triethylamine and 0.2% allyltrichlorosiloxane in 

chloroform under sonication for 30 min then rinsed once with chloroform then twice with ethanol. 

Silanization was cured at 70°C for 1 h. An additional coating of 2% aminopropyltriethoxysilane 

to improve tissue adhesion was applied in acetone under sonication for 2 min then washed 

twice with water and once with ethanol. Coverslips were dried at 70°C for 1 h then stored in a 

desiccator for less than 1 month. 

Probe design and synthesis 

A total of 18 readout probes were used to encode the identity of each gene. Each gene 

was assigned four of the possible 18 probes such that each combination was a minimum 
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hamming distance of 4 away from any other gene. This provides classification that is robust up 

to 2-bit errors. 80–120 encoder probes were designed for each target gene. Encoder probes 

contained a 30 bp region complementary to the transcript of interest with a melting point of 65°C 

and less than 17 bp homology to off-target transcripts including highly expressed ncRNA and 

rRNA. Probes also contained three of four readout sequences assigned to each gene. 

Sequences are available in supplementary material. Probes were designed using modified 

MATLAB code developed by the Zhuang Lab (Moffitt & Zhuang, 2016). Probes were ordered 

from custom arrays as a single strand pool. A T7 promoter was primed into each sequence with 

a limited cycle qPCR to allow amplification through in vitro transcription and reverse 

transcription (Moffitt & Zhuang, 2016). 

Hybridization 

Hybridization was performed using a modified MERFISH protocol (Moffitt & Zhuang, 

2016). Briefly, tissue sections were fixed in 4% PFA in 1xPBS for 15 min and washed three 

times with 1×PBS for 5 min each. Tissue was permeabilized with 1% Triton X-100 in 1×PBS for 

30 min and washed three times with 1×PBS. Tissue was incubated in 30% formamide in 2×TBS 

at 37°C for 10 min. Encoding probes were hybridized at 5 nM per probe in 30% formamide 10% 

dextran sulfate 1 mg/ml tRNA 1 μM poly-T acridite anchor probed and 1% murine RNAse 

inhibitor in 2xTBS. A 30 μl drop of this encoding hybridization solution was placed directly on the 

coverslip, and a piece of parafilm was placed on the coverslip to prevent evaporation. Probes 

were hybridized for 30–40 h at 37°C in a humidity chamber. Tissue was washed twice with 30% 

formamide in 2×TBS for 30 min each at 45°C. Tissue was washed three times with 2×TBS. 

Tissue was embedded in a 4% polyacrylamide hydrogel with 0.5 μl/ml TEMED 5 μl 10% APS 

and 200 nm blue beads for 2 h. Tissue was cleared with 1% SDS, 0.5% Triton x-100, 1 mM 

EDTA, 0.8 M guanidine HCl 1% proteinase K in 2×TBS for 48 h at 37°C replacing clearing 

solution every 24 h. Sample was washed with 2×TBS and mounted for imaging. Readout 
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hybridization was automated using a custom fluidics system. Sample was rinsed with 2×TBS 

and buffer exchanged into 10% dextran sulfate in 2×TBS for hybridization. Hybridization was 

performed in 10% dextran sulfate in 2×TBS with a probe concentration of 3 nM per probe. 

Sample was washed with 10% dextran sulfate then 2×TBS. Sample chamber was filled with a 2 

mM pca 0.1& rPCO 2 mM VRC 2 mM Trolox in 2×TBS Imaging Buffer. Sample was imaged at 

63× using a custom epifluorescent microscope. After imaging, fluorophores were stripped using 

50 mM TCEP in 2×TBS and the next round of readout probes was hybridized. 

Image analysis 

Image analysis was performed using custom python code (Wollman lab). To register 

multiple rounds of imaging together with subpixel resolution, fiduciary markers were found and a 

rigid body transformation was performed. Images were preprocessed using hot pixel correction, 

background subtraction, chromatic aberration correction, and deconvolution. An 18-bit vector 

was generated for each pixel where each bit represented a different round and fluorophore. 

Each bit was normalized so that background approached 0 and spots approached 1. An L2 

normalization was applied to the vector, and the Euclidean distance was calculated to the 18-bit 

gene barcode vectors. Pixels were classified if their Euclidean distance was less than a 2-bit 

error away from the nearest gene barcode. Individual pixels that were physically connected 

were merged into a spot. Dim spots and spots that contained 1 pixel were removed. 

Nuclei segmentation 

Nuclei were stained using dapi and imaged after MERFISH acquisition. Each 2D image 

was segmented using cellpose with a flow threshold of 1 and a cell probability threshold of 0 

(preprint: Stringer et al, 2020). 2D masks of at least 10 μm2 area were merged if there was at 

least 30 percent overlap between frames. 3D masks that were present in < 5 z frames (2 μm) 

were removed. 
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Simulation 

scRNAseq reference preparation 

The NCTT was subset to the cells found in the hippocampus and to the genes from our 

MERFISH data. Expression levels of simulated genes were taken from scRNAseq reference 

and were harmonized to qualitatively match the variance observed in measured in MERFISH 

data. These were then rounded to create a scaled count matrix. For each of the 133 

hippocampal cell types from the NCTT, we computed a mean vector and covariance matrix of 

gene expression. We additionally computed the cell type proportions in the single-cell data for 

later use in cell type assignment. 

Creating the cell map 

Initially, the cell centers were placed in a 200 × 200 × 30 μm grid, equidistant from one 

another, with an average distance between cell centers of 4 μm. The cell centers were then 

moved around in each direction (x, y, z) based on a Gaussian function with mean 0 and 

standard deviation 0.6. Pixels were then assigned to their closest center with a minimum 

distance of 5 μm and maximum distance of 7 μm. Cells with less than 30 pixels were removed 

due to small unrealistic sizes. To create more realistic and non-round cells, we merged 

neighboring, touching cells twice. Each cell was assigned a (sub)type uniformly across all 133 

types in our dataset. Nuclei were randomly placed within each cell with 20 pixels. Nuclei pixels 

placed on the border were removed. We simulated 10 independent replicates in each simulation 

study. 

Generating cell transcriptional profiles and placing spots 

Each cell's gene expression profile was drawn from a multivariate Gaussian using the 

mean vector, and covariance matrix computed from the scRNAseq reference. This vector and 
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matrix are cell type specific, and each cell's gene expression profile is sampled from these cell 

type-specific distributions. The mRNA spots were then placed inside of each cell, slightly 

centered around the nucleus, but mostly uniform throughout. 

Simulated data on limited genes 

To perform feature selection and extract a limited number of important genes (4, 12, 20, 

28, 36, 44), we used a random forest classifier with 100 trees to predict cell types in the 

reference dataset. The top n important features for classifying cell types were used. Other 

simulation parameters were the same as above. 

K-nearest neighbor-based density estimation method 

We used a K-nearest neighbor approach to estimate density for many genes at each 

point (Wasserman, 2006). The volume required to reach the 5th spot was computed and used 

to compute the density estimation (equation 1). Where r is the radius to the 5th closest spot of 

that gene, we repeated this process for all genes. 

JSTA overview 

Expectation maximization can be used to jointly classify the identity of an observation of 

interest, while learning the parameters that describe the class distributions. In EM, the object 

classes are initialized with a best guess. The parameters of the classifying function are learned 

from this distribution of initialized classes (M-step). The objects are reclassified according to the 

updated function parameters (E-step). These steps are repeated until the function parameters 

converge. JSTA is designed with an EM approach for reclassifying border pixels in the 3-

dimensional grid of pixels based on their estimated transcriptional densities. First, we initialize 

the spatial map with watershed, in Euclidean space with a maximum radius. Next, we classify 

cell types of the segmented cells based on the computed count matrix. We then randomly 
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sample a fraction of the pixels' gene expression vectors, and train a pixel classifier (M-step). 

The pixel classifier is used to reclassify the cell identity of pixels that are at the border between 

different cell types, or between a cell and empty space (E-step). 

Cell type classification 

Data preparation 

To match the distributions of both scRNAseq and MERFISH, we centered and scaled 

each cell across all genes. We then subsequently centered and scaled each gene across all 

cells. We note that other harmonization approaches could be applied here. 

Cell type classifier 

We parameterized the cell type classifier as a neural network, with three intermediate 

layers with three times the number of input genes as nodes. We used a tanh activation function 

with L1 regularization (1e-4) allowing for the influence of negative numbers in the scaled values 

and parameter space sparsity (preprint: Bach et al, 2011). Batch normalization was used on 

each layer (preprint: Ioffe & Szegedy, 2015), and a softmax activation was used for the output 

layer (Goodfellow et al, 2016) (Table 1.1). 

Training the classifier 

The network parameters were initialized with Xavier initialization (Glorot & Bengio, 

2010). The neural network was trained with two steps with learning rates of 5e-3 and 5e-4 for 20 

epochs each, with batch size of 64, and the Adam optimizer was used (preprint: Kingma & Ba, 

2014). A 75/25 train validation split was used to tune the L1 regularization parameter and 

reduce overfitting. We used 75/25 to increase the representation of lower frequency cell 

classes. Cross-entropy loss was used to penalize the model and update parameters accordingly 

(Fig 2.2.6.2A and B). 
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Pixel classification 

Pixel classifier 

We parameterized the pixel classifier as a neural network with three intermediate layers. 

Each layer was twice the size of the last to increase the modeling power of this network and 

indirectly model the other genes not in the MERFISH dataset. Each layer used the tanh 

activation function and used an l2 regularizer (1e-3). Each layer was centered and scaled with 

batch normalization, and the output activation was an l2 regularized softmax function (Table 

2.1). 

Training the classifier 

Each time cell types are reclassified, a new network was reinitialized with Xavier 

initialization. The network was initially trained with learning rates or 1e-3 and 1e-4 for 25 

epochs. After the first round of classifying and flipping the assignment of pixels, the network was 

retrained on a new sample of pixels starting from the previous parameter values. This was then 

trained with a learning rate of 1e-4 for 15 epochs. All training was performed with the Adam 

optimizer and a batch size of 64. We used an 80/20 train validation split to help monitor any 

overfitting that might be occurring, and adjust the hyperparameter selection accordingly. We 

used cross-entropy loss (Fig 2.2.6.2C and D). 

Identifying border pixels 

Border pixels are defined as pixels that are between two cells of different types, or 

between a cell and empty space. To enhance the smoothness of cells' borders, we require a 

border pixel to have 5 of its surroundings be from a different cell, and 2 of its surroundings be 

from the same cell. 

Classifying pixels 
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The trained classifier was then used to estimate the cell type class of border pixels. The 

pixel classifier outputs a probability vector for each cell type, and the probabilities are scaled by 

a distance metric based on the distance to the cells' nuclei that it could flip to. Probabilities less 

than 0.05 are set to 0. The classification is sampled from that probability vector subset to cell 

types of its neighbors, and renormalized to 1. If the subset probability vector only contains 0, the 

pixel identity is set to background. To balance the exploration and exploitation of pixel 

classification map, we anneal the probability of selecting a non-maximum probability cell type by 

multiplying the maximum probability by (1 + number of iterations run*0.05). If this is selected as 

0, complete stochasticity presides, and if it is large, the maximum probability will be selected. 

JSTA formalization 

Definitions and background 

The gene expression level of nc cells and np pixels is described by the matrices Ec 

(cells) and Ep (pixels) which are nc × m and np × m matrices, respectively, where m is the 

number of genes. Likewise, cell type probability distributions of all cells or pixels can be 

described by matrices. These distributions for cells and pixels are Pc and Pp, respectively, 

represented as nc × k and np × k matrices, where k is the number of cell types. We aim to learn 

θ and ϕ, such that fθ and gϕ, accurately map from Ec to Pc and Ep to Pp. We used the cross-

entropy loss function for penalizing our models. 

Cell type classification 

First, we learn the parameters of fθ by: 

where Eref is an nref × m gene expression matrix representing the harmonized NCTT data and 

Tref is an nref vector of cell type labels provided by NCTT. We then use the newly learned 

mapping to infer the cell type probability distributions in the initialized dataset Ec with: 
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We classify each cell as the highest classification probability for that cell: 

where Tc are the predicted cell types for each of the cells in the matrix Ec. 

Joint pixel and parameter updates 

We initialize the labels Tp for all pixels based on the current segmentation map that 

assigns pixels to cells. We then learn the parameters of the mapping function gϕ (maximization). 

Learning is performed by updating the parameters of the mapping function gϕ with: 

The updated mapping function is then used to infer the probability of observing a type Tp given 

expression Ep in all pixels: 

The next step is to update Pp based on spatial proximity to cells of each type. Using the 

notation q for the vector of probabilities of a single pixel (q = Ppj=[q0…, qi,… qk]), we next 

update the elements in the vector q based on neighborhood information. We scaled the values 

of qi based on its distance from the nuclei and its neighbors. q′ is intermediate in the calculation 

that does not represent true probabilities. 

 

where r is the distance from the nucleus of the closest cell of cell type i, d is the distance 

threshold for which a pixel should automatically be assigned to that nucleus. The values 10 and 

5 were determined empirically to modify the sharpness of probability decline based on distance. 

10 was chosen to be much bigger than probabilities produced by gϕ, and 5 was chosen to allow 

the probability to decay to half over 5d. 

We then only kept probabilities for cell types of neighboring cells: 

We then used the intermediate q' to recalculate the pixel type probabilities: 
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The updated values per cell (qj) are then used to update the probability matrix Pp. The type per 

pixel (Tp). The assignment of pixel to cells is then stochastically assigned according to the 

inferred probability Pp per pixel basis. 

We then repeat updating gϕ and Tp until convergence. 

Segmentation 

Density estimation 

The 3-dimensional space was broken into a grid of pixels with the edge of each pixel 2 

μm in length (1 μm in simulation). The density was estimated at the center of each pixel, for 

each gene. The volume required to reach five mRNA molecules was used as the denominator 

of the density estimation. 

Segmentation with JSTA 

The cell assignment map was initialized with watershed on the distance transform with a 

maximum distance from the nucleus of 2 μm. The cells were only classified once. The pixel 

classifier was trained six times (5 in simulation) on 10% of the pixels excluding pixels without 

assignment. After each training step, we reassigned pixels for 10 iterations (5 in simulation). 

The lowest probability kept in the predicted pixel assignment vector was 0.05 (0.01 in 

simulation). 

Segmentation with watershed 

The overall gene density was the sum of each gene in a given pixel. To smooth the 

range of the density, we log2 transformed the density values. Log-transformed density values 

less than 1 were masked. The segmentation used the nuclei locations as seeds and watershed 

from the skimage python package, with compactness of 10. Using compactness of 10 was the 
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highest performing value for watershed. A watershed line was used to separate cells from one 

another. 

Evaluation of segmentation in simulated data 

mRNA spot call accuracy was evaluated at different taxonomic levels. For a given cell, 

the accuracy was defined as the number of mRNA spots correctly assigned to that cell divided 

by the total number of mRNA spots assigned to that cell. To match the algorithm's ability to 

segment based on cell type information, RNAs that were assigned to a neighboring cell of the 

same (sub)type were also considered correct assignment. The overall segmentation accuracy 

was the mean accuracy across all cells in a given sample. To evaluate accuracy at different 

levels, we utilized the NCTT dendrogram. We used dendrogram heights at 0 through 0.8 with a 

step size of 0.05 (133, 71, 32, 16, 11, 8, 5, 4, 3, 2 cell types). 

Correlation of segmented MERFISH with scRNAseq 

The NCTT scRNAseq data were subset to the genes from our MERFISH data. Cells in 

the segmented MERFISH dataset were assigned to canonical hippocampus cell types 

(Astrocyte, CA1 pyramidal neuron, CA2 Pyramidal neuron, CA3 Pyramidal, Dentate Gyrus, 

Inferior temporal cortex, Macrophage, Oligodendrocyte, Subiculum, Interneuron) based on their 

high-resolution cell type classification. In each cell type, the average expression in each gene 

was calculated. Only genes were kept that had an average expression of at least five counts in 

one of the cell types. Values were centered and scaled across all cell types. The Pearson 

correlation was computed for each gene for the matching cell types between scRNAseq and 

MERFISH. 

Distribution of high-resolution cell types in the hippocampus 
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CA1 and CA3 subtypes were projected onto the lateral medial axis. The smoothed 

density across this dimension was plotted for each of the subtypes. 

Colocalization of high-resolution cell types 

Significant colocalization of subtypes was determined through a permutation test. First, 

the 20 nearest cell types around each cell were determined. We counted the number of cells 

from each type that surround each cell type and computed the fraction of neighbors coming 

from each subtype. This created a matrix with the fraction of colocalizations per cell between 

each cell type combination. We then permuted the labels of the cell types 1,000 times and 

recomputed this interaction matrix to create a null distribution. For each cell type colocalization, 

we determined the percentage of colocalizations in the null distribution that is higher than the 

true colocalization number to create a P-value for each colocalization. We corrected for multiple 

testing with the Benjamini–Hochberg procedure and determined significance using FDR < 0.05. 

Identification of spatial differential gene expression 

spDEGs were calculated in cell types with more than 40 cells. Within each cell type, we 

computed a local expression of each gene for each cell. The local expression was the mean 

expression of a gene in the cell and its nine nearest neighbors. We then built a null distribution 

by permuting gene expression values within the cell type, and repeating the local expression 

process for 100 permutations. Determining if a gene was spatially differentially expressed, we 

compared the variance of the null distribution within a cell type with the variance of the true 

distribution of local expression to get a P-value. We corrected for multiple testing with 

Benjamini–Hochberg procedure and determined significance using FDR < 0.05. 

Python packages used 
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python (3.8.3), numpy (1.18.5), pandas (1.0.5), matplotlib (3.2.2), scipy (1.5.0), scikit-learn 

(0.23.1), scikit-image (0.16.2), tensorflow (2.2.0). seaborn (0.10.1). 

Data availability 

Source code: GitHub (https://github.com/wollmanlab/JSTA; 

https://github.com/wollmanlab/PySpots). 

Raw images: Figshare (https://doi.org/10.6084/m9.figshare.14531553). 
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Chapter 3 

Spatial Tissue Perturbation Profiling At The Molecular Level Using Multiplexed Error 

Robust Fluorescence In Situ Hybridization  

Hemminger, Zachary; Tam, Gabriella; Aamodt, Caitlin; White, Stephanie; Wollman, Roy 

Abstract 

Image-based spatial single cell technologies have developed to a point where the 

molecular profiles of tens of thousands of single cells can be measured spatially with subcellular 

precision. The vast majority of the published work has been focused on technological 

development and demonstration. Few if any works exist where image-based spatial 

transcriptomics is used to compare biological conditions. Despite this, the high-quality data 

generated from these technologies is ideal for detailed molecular and spatial comparison across 

biological conditions. Here we apply an image-based spatial transcriptomic technique 

Multiplexed Error Robust Fluorescence In Situ Hybridization or MERFISH to three increasingly 

difficult biological systems to demonstrate the comparative utility of these technologies. We first 

perform MERFISH on cell culture to show TNF-a induced differential gene expression. We then 

investigate inflammation response in the homogeneous epithelium of the mouse cornea during 

wound healing. Lasty, we perform MERFISH on Zebra Finch brains to interrogate the role of 

mir128 on Area X and its role in vocal learning. Together we show that MERFISH is ideal for 

comparative studies but that important consideration is needed to minimize sample to sample 

bias.  

Introduction 

Understanding a system’s function often starts with determining the structure of the 

system, perturbing that system, and investigating how that system responds. Investigation into 



76 
 

the function (physiology) of biological systems like tissues and organs has always been 

connected to their structure (anatomy). Advances in single-cell transcriptomics have allowed 

measurements of hundreds of thousands to millions of cells in single datasets (Svensson et al 

2020). Despite deep profiling of the building blocks of biology, the lack of spatial resolution has 

limited their usefulness in advancing our understanding of anatomy and physiology. Historically 

histology has dominated the structural profiling of tissues at the cellular and molecular levels. 

Recent advances in our ability to profile biological tissues have allowed us to quantify detailed 

anatomy at levels that were previously impossible (Moses & Patcher 2022). Detailed molecular 

maps of tissues provide an immediate and transformative impact on our interpretation of how 

those tissues function. 

 Spatial profiling technology exists at the proteomic as well as the transcriptomic level 

(Nagle et al 2021). The proteomic level relies heavily on antibodies which need to be developed 

as well as be highly specific. This severely limits the number of proteomic measurements that 

can be performed on a single sample. The transcriptomic level also contains a division between 

sequencing and imaging-based approaches. Sequencing approaches label individual RNAs with 

a molecular barcode that encodes for their spatial positioning. Low capture efficiencies as well 

as the limited spatial resolution limit the biological processes that can be learned from this data. 

Image-based approaches rely on labeling targeted individual RNAs in situ. 

Multiplexed Error Robust Fluorescence In Situ Hybridization or MERFISH is a gold standard for 

image-based spatial transcriptomics (Chen et al 2015). This approach works by designing DNA 

probes that tag RNA with a combination of readout sequences that is unique to the specific 

gene of interest. A fluorescent readout probe is then used to read out each sequence and the 

specific location of all of the transcripts that have been tagged with that sequence. This is 

accomplished with iterative rounds of imaging and results in diffraction limited spots that 

represent transcripts that were assigned that molecular readout. This allows sub cellular 
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resolution and high capture efficiency but the technology is limited predominantly to hundreds of 

genes at a time and relatively small areas of interest. Despite the limitations of scale present in 

image-based approaches, the high-quality measurement allows in-depth profiling of tissues with 

accuracies that far exceed other approaches.  

Although a substantial amount of work has been done to develop as well as 

commercialize MERFISH, most work has been technical and focuses primarily on method 

development (Xia et al 2019, Moffit & Zhuang 2016, Wang et al 2018, Xia et al 2019, Littman et 

al 2021) .The biological applications of the work have overwhelmingly been on profiling the 

spatial composition of wild type tissues ( Zhang et al 2021,Fang et al 2022). While a few 

exceptions exist, they are limited to single condition experiments ( Foreman & Wollman 2020, 

Maltz & Wollman 2022) . Work including multiple conditions or experimental perturbations are 

essentially non-existent despite the benefit that they may provide.  

Understanding the spatial and temporal organization of various genetic and non genetic 

perturbations as well as complex biological processes requires the collection of multiple 

samples. Image based spatial transcriptomics while powerful have issues with throughput, 

signal to noise and robustness. Sensitivity to RNase contamination, fluidics, and imaging 

failures decrease the likelihood that samples successfully complete the long experimental 

protocol to completion with sufficient signal to be processed. The complex biological makeup of 

tissues can lead to high levels of background requiring improved clearing protocols. Even when 

signals are sufficient and background is low robust fluidics protocols are needed to ensure 

reproducibility across multiple samples. Image based transcriptomics relies on high 

magnification imaging of single molecules which has a small field of view and requires high 

exposure times to get usable signal to noise ratios. Successful acquisition can generate 

terabytes of image data that need to be processed in a reasonable timescale to iterate 

experimental conditions. Together these features make image based spatial transcriptomics a 
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difficult method to implement and limits the total number of samples that can be generated 

(Moses & Patcher 2022).  

Given the lack of datasets, it is not clear how technical and biological variation across 

samples will impact MERFISH. If this impact is large enough, even robust biological phenotypes 

can be difficult to observe. It is important to understand the limitations of any technology as well 

as designing ways to overcome these limitations. To better understand the limitations of 

MERFISH, we performed MERFISH on three different systems of ranging complexity. With the 

simplest system of cell culture we show that MERFISH can be used to quantify differences in 

inflammation response to various concentrations of TNF-a. In the homogeneous transparent 

epithelium of the mouse corneas, we show that MERFISH can detect inflammation response in 

epithelial cells in response to wounds as a function of distance from the wound and time since 

the wound. In a much more complex system of Zebra Finch brains, we identify cell type 

composition differences and differential expression involved in vocal learning and the 

microRNAs that are involved. Here we show that even through technical limitations, MERFISH 

can be used to investigate biological processes across samples.  



79 
 

Results 

 
Figure 3.1:  MERFISH Methodology  
MERFISH is performed by hybridizing DNA encoding probes to targeted RNAs, embedding the 
sample into a hydrogel and clearing away proteins and lipids. Through iterative rounds, readout 
probes are hybridized to these encoding probes. The presence or absence of signal in each 
round encodes the identity of the transcript of interest. These observed barcodes are compared 
to the barcodes that were encoded into the encoding probes to annotate detected transcripts 
with their identities.  
 

Reproducible biological measurements across samples are essential to profile the 

spatial gene expression changes that occur during a perturbation. The experimental, 

instrumental and computational infrastructure necessary for this is nontrivial and requires 

expertise in a broad range of technical skills from molecular biology and optical engineering to 

data science. This is likely why there are few examples of spatial transcriptomic measurements 

of perturbations in literature.  

MERFISH Experimental Outline 

The experimental procedure for MERFISH is a multi day protocol with the goal to 

localize and visualize single mRNA molecules with sufficient signal to noise ratio across multiple 

rounds of imaging. MERFISH experimental design typically begins with the determination of 
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which species, tissue type and perturbations or lack thereof will be used. Previously collected 

gene expression data for the system is then used to determine which genes should be 

measured. This reference gene expression data is pivotal to ensure effective use of the 

relatively few gene targets that MERFISH can perform. Genes that are not expressed are poor 

candidates for target while genes with high expression can also be poor candidates due to the 

optical crowding limitations of the technology. On top of the gene expression levels, genes are 

not all equally informative. Their usefulness is highly dependent on the biological system and 

what biological processes the experiment is hoping to uncover. Even highly informative genes 

with appropriate expression levels may not be ideal especially if the gene is short and few 

probes could be designed. Significant work has been done on the design of these probes but 

the decisions of which genes to target are often performed manually using literature to guide the 

process. This process is significantly easier in homogeneous samples where the gene 

expression of multiple cell types is not needed to be considered. 

Once these probes are designed and ordered they need to be amplified to sufficient 

purity and concentration for staining. This is predominantly done by using PCR to add a T7 

promoter sequence to the probes, T7 polymerase generates many ssRNA copies which are 

converted back to DNA with a reverse transcriptase (Moffit & Zhuang 2016). Given the short 

nature of these probes, standard protocols for PCR, IVT and Reverse Transcription give poor 

yield and increased template concentrations often improve yields. Cleaning up intermediates 

with a phenol chloroform extraction and dialysis columns also increase the yield of these 

reactions. Clean concentrated probes are essential for reproducibility across samples and can 

lead to differences in hybridization efficiency and non-specific binding.  

A key aspect of MERFISH and other image based spatial transcriptomic techniques is 

hydrogel embedding. In order to ensure that the hydrogel sample remains adherent to the 

coverslip across many protocol steps these coverslips need to be functionalized. Coverslips 
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after being cleaned in a mixture of concentrated hydrochloric acid and methanol are silanized in 

chloroform to add allyl groups to the surface of the glass. These allyl groups are then 

incorporated into the hydrogel to provide a covalent attachment to the glass surface. Other 

functionalizations can also be applied such as amination to improve tissue adherence prior to 

hydrogel embedding. These coverslip functionalizations are often made within a few weeks of 

use and stored in a dessicator. Ineffective functionalization can lead to tissue loss and 

morphology changes across the experimental protocol which may be inconsistent across 

datasets. 

Preservation of RNA during sample collection and sample preparation is essential for 

reproducible MERFISH. Many sample preparation protocols include a flash freeze in liquid 

nitrogen to stop any enzymatic activity including RNases. Other protocols include prefixing 

tissue to prevent biological changes during handling. Fixation, paraffin embedding and other 

related tissue preservation protocols can dramatically impact MERFISH results and often 

require additional protocol development to overcome the complications added by these 

approaches. RNase inhibitors are also in common use for experimental steps. While protein 

based RNAse inhibitors are expensive and often limited to the hybridization solutions, chemical 

based RNAse inhibitors are cheap enough to be used in all solutions to minimize the effects of 

RNAses on gene expression. Failure to account for differences in tissue preparation can lead to 

changes in the amount of RNA that is lost, the hybridization efficiency, and the clearing across 

samples.  

Without the use of optical sectioning MERFISH and most other image based spatial 

transcriptomics techniques are limited to relatively thin specimens. For cell culture this is not an 

issue but for tissues this requires sectioning to about the width of a single cell. Placing the thin 

section flat on the coverslip without wrinkles is also an unexpected difficulty of working with 

these thin sections. Given a complex tissue such as the mouse brain, accurate sectioning is 
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essential to ensure comparability across biological samples. The gene expression pattern in one 

~10 um section may vary from another ~10 um section that is 10’s to 100’s of micrometers 

further into the tissue. Comparing gene expression patterns across datasets requires accurate 

sectioning and biological replicates. Without these the changes across samples may be due to 

sectioning accuracy and not the difference between samples. 

After coverslip mounting the tissue is fixed to ensure that the RNA remains in the sample 

and to eliminate RNAses. While various fixation protocols exist, crosslinking protocols including 

paraformaldehyde are common. A caveat of these protocols is that they are sensitive to 

temperature and time. Variations in these factors can lead to some samples receiving more or 

less fixation. Under Fixation can lead to RNA and morphology loss. Overfixation can lead to 

autofluorescence and can reduce the diffusion of probes into the sample as well as decrease 

clearing efficiency. After fixation samples are often stored for later use. A common approach is 

to place the samples in 70% ethanol at -20C. This can also permeabilize the sample to allow 

probe penetration. Samples may be stored for shorter or longer times resulting in differences in 

permeabilization. One approach to account for this is to perform a secondary permeabilization 

with a detergent to ensure even permeabilization across samples. Differences in 

permeabilization can likely lead to differences in detected gene expression.  

 In order to perform hydrogel embedding and clearing, RNA must be anchored to the 

hydrogel. Without this RNA would be cleared away with lipids and proteins. Multiple approaches 

exist for this step but they can be simplified to covalent or non covalent. Non-covalent 

approaches include using a poly T DNA probe with an acridite modification which will be 

incorporated into the gel Moffit & Zhuang 2016). By hybridizing this to the mRNA within the 

sample the RNA cannot diffuse out of the sample as long as the probe is hybridized. Covalent 

methods often rely on modifying the RNA to add an acridite or allyl functionalization. The most 

common uses of this approach are Label-X and Melpha_X (Eng et al 2019, Wang et al 2021). 
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Covalent anchoring of RNA to hydrogels is ideal as it can allow for the preservation of non 

messenger RNAs and is robust to changes in temperature and salinity which do vary across the 

experimental protocol. Robust capture of RNAs is essential for consistent MERFISH across 

samples.  

 Hybridization of probes to the RNA is also essential for sufficient signal and 

reproducibility across datasets.  Probes are typically hybridized at 2-5 nm per probe. While 

protocols exist for faster hybridization using higher concentrations, this may be cost prohibitive 

for MERFISH with 10’s of thousands of probes. Hybridization conditions often include 

temperatures ranging from room temperature to 37C with formamide concentrations ranging 

from 10 to 50%. The addition of salts to stabilize charge interactions and dextran sulfate to 

satisfy hydrogen bonding interaction are also often added. Given the viscous nature of the 

hybridization solution, accurate consistency across samples can be difficult. Probes are typically 

hybridized anywhere from 12 to 36 hours although exceptions exist. Variations to these 

parameters between samples can lead to changes in hybridization efficiency as well as changes 

in non-specific binding.  

 Post hybridization, unbound and nonspecifically bound probes are removed through a 

series of washes. Often these steps occur at higher temperatures approaching the melting 

temperature for the probes. While this is optimal for ensuring specificity, the higher 

temperatures can cause correctly bound probes to fall off leading to a decrease in signal. Given 

the proximity to melting temperature minor variations in time or temperature can lead to vastly 

different signal across samples. By washing at the temperature that the probes were hybridized 

at this can be minimized leading to more consistent staining across samples.  

 Samples are then embedded within a hydrogel; often polyacrylamide or similar analogs. 

Efficient penetration of monomers within the sample is required for an even capturing of the 
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RNA within the sample. In addition to catalysts, these reactions are often temperature and 

oxygen sensitive. Changes in any of these are likely to lead to differences in hydrogel 

composition and RNA capture efficiency.  

 The purpose of the hydrogel embedding is to allow the removal of lipids and proteins 

without significant loss of RNA. This leads to improved optical clarity and can remove probes 

that were nonspecifically bound to lipids and proteins. Together the goal is to maximize signal 

light collection and decrease background. Detergents and proteases are often used together to 

accomplish this. In many of these digestion buffers EDTA is added to eliminate the activity of 

DNAses. Given that most DNAses will be inactivated with the paraformaldehyde, the benefit of 

the EDTA is limited compared to the decreased activity of proteinase k. Rather than using 

EDTA, CaCl2 can be added to increase the proteinase activity and clear proteins more 

efficiently [CITE FROM GABY]. Robust and consistent clearing is necessary to reproducibility 

and quantitatively perform MERFISH across multiple samples.  

 The hybridization of a fluorescent probe to the initial probe is necessary for 

measurement and localization of the RNA molecules. Between rounds of imaging the 

fluorophores are stripped off using a reducing agent which cleaves the disulfide between the 

DNA and fluorophore. These steps are predominantly done with an automated fluidics system 

and a closed chamber around the sample. These fluidics systems are sensitive to clogs as well 

as bubbles that can reduce the laminar flow of the system and lead to inconsistent hybridization 

and removal of fluorophores.  

During Imaging the sample is often put into an imaging buffer which reduces the 

photobleaching of the fluorophore. These buffers typically rely on an enzyme to catalyze the 

sequestration of molecular oxygen from the solution. These enzymes can go bad over time and 

the substrates can run out leading to more or less photobleaching depending on when the 
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imaging buffer was created. This adds another inconsistency that can lead to difficulties 

generating reproducible gene expression measurements across samples.  

Individual RNA molecules will at most have about 100 fluorophores bound to it at any 

time. Given that the hybridization efficiency is much lower than perfect, this number is likely 

smaller. In order to have sufficient signal over background, a bright excitation light is necessary 

and longer exposure times may be required. It can be expensive to optimize a system for 

multiple excitation wavelengths. One option is to focus on maximizing the excitation of a single 

fluorophore. While using fewer fluorophores means more rounds of hybridization, the optimized 

signal can lead to more consistent signal across rounds of imaging. 

High resolution imaging is necessary to identify and localize individual RNA molecules in 

situ with voxel sizes of about 100 nm x 100 nm x 400 nm. This leads to small field of views and 

many zindexes that need to be imaged in order to capture all of the RNA within the cells of a 

sample. The combination of this and the time it takes to perform hybridization on the microscope 

with a fluidics system makes acquisition of MERFISH data a time consuming step. Imaging over 

long time periods like days to weeks introduces its own set of challenges to reproducibility. 

Throughput for MERFISH experiments and collecting enough biological replicates to statistically 

quantify a difference across samples is difficult to say the least.  

 
Figure 3.2: MERFISH Experimental Workflow  
Samples undergo various experimental procedures during the MERFISH protocol. These 
procedures each take hours to days and each can affect the resulting MERFISH data quality.  
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MERFISH Computational Outline  

MERFISH experiments can generate Terabytes of data per sample. In short images 

must be processed so that the signal from the RNA is preserved while competing signals are 

minimized. Images must be registered to ~100 nm accuracy to allow the pairing of the same 

RNA spot across multiple rounds. Individually measured spots must be correctly paired to 

localize and identify transcripts. These transcripts must then be assigned to their respective 

cell.  Computationally processing and analyzing this data in a scalable and reproducible manner 

is its own challenge. Completing this in a way that the detected RNA transcripts are comparable 

across samples adds significant complexity to the problem. 

There are multiple image artifacts that should be corrected to improve the signal to noise 

ratio of the RNA spots prior to detection. The first artifact is hot/dead pixels, these are pixels that 

don't change with the change in photons within the sample. They can be detected by looking at 

how different pixels are from the median of their neighbors. Given that pixels are ~100 nm apart 

they should have similar measurements. Pixels that are consistently different can be replaced 

with the median of their neighbors.  

Another artifact is that across the field of view fluorophores can be excited and their 

emissions can be collected unevenly. This is a multiplicative effect that can be measured and 

then applied to each image. Correction ensures that RNA spots with the same number of 

fluorophores have the same signal no matter where they are located in the field of view. 

Light travels differently through optics depending on the wavelength. In order to use 

multiple fluorophores for MERFISH the divergence should be corrected. This is done by using 

multicolor beads. The centers of these beads can be measured across the different emissions 

bands and the chromatic aberration can be measured. Individual images can then be 

interpolated so that all wavelengths have the same chromatic aberration.  
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Many photons detected in the image will not be coming from the MERFISH signal. This 

background signal can be uneven across the image but is often of lower frequency than the 

MERFISH RNA spots. One approach to correcting this is to apply a gaussian blur with a sigma 

larger than the RNA spots across the image. This calculated background can then be 

subtracted from the image leaving just the high frequency signal. Not all of the high frequency 

signal is RNA spots as some can be due to poisson noise in the image. This high frequency 

noise can also be smoothed out with a gaussian blur with a sigma between the size of an RNA 

spot and the high frequency noise. These steps are essential to ensure that sample to sample 

background is removed and that the RNA are detected accurately across samples. 

Light does not travel directly between the fluorophore and the camera pixel. Given that it 

is a wave there is a pattern of constructive and destructive interferences that generate what is 

known as a point spread function. This can lead to photons from a fluorophore appearing in the 

wrong place within the image. One method to correct this is deconvolution. By computationally 

returning the signal back to where it is most likely to have originated from the image can be 

made sharper and the blur induced by the interference patterns can be removed. This is most 

useful for out of focus light in the z axis where the point spread function is widest. Performing 

this step after background subtraction has minimal benefits since the out of focus light typically 

is of lower frequency and is removed. 

Images across multiple rounds may not necessarily be aligned perfectly. Inaccuracies in 

the stage as well as shifts induced by the fluidics can lead to images across different rounds not 

being aligned. This alignment can be measured and corrected with the use of fiduciary markers. 

These are fluorescent markers that were added within the hydrogel and do not move 

independently of the sample. By imaging these each round the distance that the sample has 

moved in xy and z can be calculated. This registration is done by localizing and pairing beads 

across different rounds of imaging and then measuring the differences in their localizations. 
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These are often rigid transformations which can be applied to the processed images to ensure 

that the same RNA molecule imaged across multiple rounds of imaging are located at the same 

pixel regardless of which round they had signal in. Inaccuracies in this step can lead to 

misidentification of RNA transcripts and lower detection efficiency which may not be consistent 

across all genes and especially across fields of views and samples.  

 While image processing generates images that by eye are visually cleaner the purpose 

is actually to allow quantitative measurement of the remaining RNA signal. Given that the goal 

of MERFISH is to identify and localize individual RNA molecules, the RNA’s present in the 

images need to be detected and then matched to the genes that were targeted by the probes. 

Multiple methods exist to convert images to gene expression each with their own caveats and 

sensitivities. Accurate and reproducible detection and quantification is ideal in order to compare 

gene expression patterns across samples. 

A pixel based approach exists where a vector is generated for each pixel across the 

different rounds of imaging. This vector is then normalized so that rounds in which an RNA had 

signal will be bright and the rounds without signal will be dim. By comparing this vector to each 

of the designed MERFISH barcodes the gene can be decoded. The localization of this gene will 

be the average of the neighboring pixels which are also classified as the same gene. This 

approach works well for optically crowded samples as you only need a few pixels to accurately 

decode but is sensitive to variations across rounds of imaging, especially registration errors. 

Given that the vector is normalized prior to decoding, this approach is also sensitive to high 

frequency noise.  

 A spot based approach also exists where spots are detected in each image either using 

a feature matching approach or looking for peaks of maximal intensity. The localization of these 

spots is determined by fitting a gaussian to their intensity. These spots are paired with spots in 



89 
 

the same xyz location within a defined radius across different rounds of imaging. This approach 

is less sensitive to high frequency noise and round to round variations in intensity as well as 

registration inaccuracies. Optical crowding does complicate this approach as nearby spots from 

other transcripts within the defined radius could be inaccurately paired leading to inaccurate 

gene assignment and lower detection efficiency.  

 Detected and identified transcripts must be accurately assigned to the correct cell. This 

is done by image segmentation. Nuclear stains and occasionally cytoplasmic stains are 

acquired during the imaging to allow quantification as to which pixels belong to each cell. Even 

with these stains it is possible to misassign RNAs to the wrong cell, especially in densely 

populated tissues. Computational approaches can be applied to decide which cell the gene 

expression pattern within image voxels correlate more with. This can be done purely based on 

the gene expression of the nucleus or by using reference single cell RNA sequencing data to 

generate expected gene expression patterns for cell types. Inaccurate RNA transcript 

assignment can lead to inaccurate cell type identification and complicate comparative analysis 

across samples. 

 Despite the best efforts to control experimental bias, some will exist. On top of that 

experimental bias will be biological variation that is independent of the experimental conditions. 

Together these can affect the gene expression detection efficiency as well as the false positive 

rate. Systematic changes across datasets can be corrected with batch correction. One common 

approach is Harmony which projects the data from multiple samples into their principal 

components and then iteratively corrects the batch effects until the datasets align. This 

correction can either be correcting one dataset to another or finding a middle ground between 

multiple datasets. While technical bias and unwanted biological bias can be corrected this way 

there may be unexpected artifacts that are created and experimental gene expression 

differences may be artificially minimized.  Generating high quality data is essential to minimize 
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the amount of batch correction that is needed to ensure meaningful results are not lost across 

samples. 

Experimentally there are multiple steps in which minor variations to protocol steps can 

lead to differences in measured gene expression. Minimizing these differences and collecting 

sufficient data to ensure that the measured differences are non trivial. Developing the 

infrastructure to automate data collection and image processing in a robust way also requires 

significant technical knowledge. It is not surprising that few spatial gene expression datasets 

exist that compare across biological conditions in a statistically quantitative manner.  

 
Figure 3.3: MERFISH Computational Workflow  
Collected data must be processed to detect individual molecules across the rounds of imaging 
as well as decode the identities of these molecules and assign these decoded transcripts to 
cells. This processing consists of multiple image processing steps and inconsistencies in 
processing can limit the quality of MERFISH data.  
Mouse 3T3 Cells TNF Stimulation 

One of the simplest samples that can be performed with MERFISH is cell culture. 

Relatively flat cells can be grown directly on coverslips with minimal autofluorescence. Their 

flatness ensures that there is minimal sample above or below the plane of focus resulting in 

minimal out of focus light. The gene expression profiles of these cells are often well understood 

so MERFISH gene target decisions are easier to make. Segmentation of cells in cell culture is 

also trivial as they are rarely dense and well separated from the background. Cell culture allows 
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you to place multiple experimental conditions on the same coverslip. This significantly reduced 

the amount of technical variation between samples.  

Here we show mouse 3T3 cells that were stimulated with varying amounts of TNF-a. 

MERFISH was performed on these cells with an inflammation gene probe set. With low 

background signal levels and high spot intensity over 600 transcripts were detected per cell on 

average with a pearson correlation to reference RNAseq data of 0.72 (Wang et al 2022) . 

Inflammation genes were shown to vary with TNF concentrations in a dose dependent manner 

for some but not all genes.  

 
Figure 3.4: Cell Culture MERFISH.   
A. Processed Images of a single mouse 3T3 cell and the diffraction limited spots that are 
observed for each transcript that has been tagged with encoding probes for this specific round 
of imaging. B. Histogram of the Number of transcripts detected per cell average of ~600 
transcripts per cell. C . Correlation of 0.72  between bulk RNAseq and MERFISH. D . Violin 
plots of expression distribution for cells exposed to 0, 1 or 10 ng/ uL of TNF-A for 3 hours 
showing a dose-dependent increase in gene expression for some genes but not all.  
Mouse Cornea: Wound Healing 

 Cell culture is significantly different from tissue in the context of MERFISH. Tissues 

contain orders of magnitude more extracellular matrix which can limit probe diffusion and lead to 

light scatter. One middle ground is the use of the mouse cornea. The mouse cornea is 

composed of an epithelial sheet on top of a thick sparsely populated collagen rich stroma and 
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then a thin layer of endothelium. The epithelial layers are relatively homogeneous making gene 

selection simple. The optical transparent nature of the cornea means minimal light scatter 

despite the extracellular matrix. Segmentation within a dense epithelium is notoriously difficult 

as all cells are in contact with each other but primarily the same shape and size.  

 Corneas have biological interest as they are notoriously good at healing (Stepp et al 

2014). After an epithelial debridement the epithelium slides in to fill the wound while immune 

cells migrate through the stroma (Oyler-Yaniv et al 2021). This process is highly reproducible 

and scars rarely form. While the global cell type migrations of the cornea wound healing process 

were known the gene expression patterns present in the epithelial layers were not. It was clear 

that some cells migrate or apoptose while others proliferate and possibly differentiate.  

 Using a MERFISH gene panel consisting of Inflammation markers the gene expression 

profiles of the whole mount epithelium were measured 2 and 15 hours after epithelial 

debridement and compared to an unwounded control. The dense epithelium limited our ability to 

segment due to too much out of focus light from cells above and below each other. This limited 

our ability to look at single cell gene expression. Despite this we could look for overall patterns 

of gene expression. Flatness issues of the whole mount also limited our ability to quantify 

differences across timepoints. Minimal evidence suggested that cells proximal to the wound 

may have upregulated expression of the inflammation markers as well as epithelial cells after 

they migrate into the wound bed although without biological replicates we were unable to 

statistically prove this. Given that the majority of cornea wound healing is performed in the 

stroma and that inflammation in the epithelium can lead to scarring it is not surprising that we 

didn't see much gene expression changes beyond the wound bed (Stepp et al 2014).  

 Our work in corneas highlights the importance of biological replicates as well as tissue 

flatness in performing MERFISH. This also highlights the differences between tissues and cell 
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culture. Even in a homogenous transparent epithelium technical artifacts limit our ability to 

quantify differences across experimental conditions. In addition to artifacts, the MERFISH 

datasets generated took significant time to generate which limited the number of biological 

replicates that could reasonably be expected.  

 
Figure 3.5: Mouse Cornea MERFISH  
A,B,C. 2D Histograms of detected transcripts for (A: Unwounded, B: 2 Hours post Wound, C: 15 
Hours post wound). D,E,F. Heatmaps for each gene binned into ~50 um bins as a function of 
distance from the center of the cornea or wound (Left is Center, Right is Edge). Colormap is 
Zscore for individual genes from -2.5 (Blue) to 7.5 (Red) standard deviations from mean. 
 

Zebra Finch Vocal Learning Regulation 

Moving from a relatively homogenous tissue like the mouse corneal epithelium to a more 

complex tissue like the Zebra Finch Brain possess greater challenges to MERFISH 

reproducibility. In a homogeneous tissue bulk RNAseq can be used to decide gene targets. 

When multiple cell types are present scRNAseq or extensive literature search is necessary to 
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ensure that genes targets are expressed in at least some of the cell types but not 

overexpressed in any of the cell types. In an ideal MERFISH experiment there will be many but 

not too many spots present in each cell during each round of imaging. Since higher expressed 

genes lead to optical crowding, MERFISH gene target decisions must be made with highly noisy 

genes. This can lead to non ideal staining where some cell types receive more spots in a single 

round while others receive less. The closer you get to optical crowding the higher false positive 

rate and the lower detection efficiency. This applies not only to the highly expressed genes but 

also to the other genes that share bits with them. This bias will not be consistent across cell 

types. This also proposes an issue for reproducibility across biological conditions. If a gene is 

upregulated compared to control it will increase the optical crowding leading to bias in those bits 

compared to the control. While capturing as many transcripts as possible is enticing, designing 

probe sets for fewer transcripts per cell can lead to more reproducible decoding across 

biological conditions.  

Zebra finches are a model organism of vocal learning which correlates with patterns of 

human vocal learning. A specific region within the zebra finch brain Area X has been shown to 

be heavily involved in this vocal learning which mirrors regions of the human brain. A microRNA 

mir128 known for regulating genes associated with vocal learning in zebra finch and analogs 

have also shown to be dysregulated in certain autism spectrum disorder data (Aamodt & White 

2022). Knock down experiments were performed in order to understand how dysregulation of 

this microRNA affects the structure and gene expression patterns within the zebra finch Area X 

and MERFISH was performed on these samples.  

The zebra finch transcriptome is less well studied compared to mammalian 

transcriptomes. To compensate for this an extensive literature search was performed to identify 

cell type marker genes as well as genes known to be regulated by mir128.  
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Given the small size of the Zebra Finch Brains, different experimental samples could be 

placed on the same coverslip to minimize batch effects between conditions and allow us to 

elucidate the effect of this regulating microRNA on the circuitry involved in vocal learning. A 

marker for Area X was used to ensure that the areas measured were indeed Area X. Expression 

of this marker did not vary significantly between control and knock down. Expression of the 

mir128 targets were shown to be enriched in the knock down. Given that the knockdown was 

performed when the zebra finch was an adolescent and then the samples were collected when 

the zebra finches were adults, it wasn't guaranteed that the knockdown would still be active. 

Given that mir128 expression decreases the expression of these targets, the higher expression 

suggested that the knockdown was generating lasting effects.  

Using markers for known cell types as well as neurogenesis we saw relatively consistent 

compositions of cell types between the knock down and control with the exception of astrocytes 

and neurons. Compositions of astrocytes seem to be a technical artifact present only in one 

hemisphere of the control brain. Cells expressing higher amounts of neuronal markers were 

enriched in the knock down. This matches well with literature that shows a connection between 

mir128 and neuronal apoptosis, migration and proliferation (Zhang 2016).  

For the cell types that did not show composition differences, we looked at the expression 

levels of the mir128 targets. We noted that all cell types show similar upregulation of mir128 

targets suggesting that the knockdown was affecting all cells rather than a specific cell type. We 

next looked at individual genes to see how the mir128 targets were upregulated in these cells. 

Rather than higher expression levels within single cells for each gene, it seems like there are 

more cells expressing these genes in general. Given that the overall expression of the mir128 

targets was upregulated suggests that knocking down mir128 increases the number of target 

genes that are expressed, not the expression levels of each gene. This is true for some mir128 

targets but not all.  



96 
 

These preliminary results support the role of mir128 in suppressing certain gene 

expression programs associated with vocal learning and that at least some of these programs 

are involved with recruiting neurons to area X within the zebra finch brain. Having both samples 

on the same coverslip ensured that minor variations in experimental and instrumental conditions 

were consistent between samples allowing for clearer interpretation of the results with no batch 

correction. Having multiple samples on a coverslip does significantly increase the acquisition 

time for the dataset. This significantly decreases the number of biological replicates that can be 

performed and increases the risk of experimental failure at any point during acquisition.  
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Figure 3.6: Zebra Finch Area X MERFISH  
A. dots represent individual cells within Knock Down or Scramble Brain. Coordinates represent 
spatial position within Area X. B. Percent of Cells expressing Markers. C-H Spatial map of cells 
colored by the number of transcripts for each marker set present in each cell.  
 

Discussion 

 While there is still a wealth of information to be gained from understanding the spatial 

gene expression of individual samples, the ability to compare those spatial gene expression 

profiles across different experimental conditions is essential for understanding non wild type 

biological processes. Here we have shown that performing MERFISH across biological 

conditions is non trivial but worth the effort.  

Experimental variation can be minimized by developing robust protocols and placing 

multiple samples on the same coverslip but is not always feasible when imaging large samples. 

Failure to minimize the experimental variation can lead to differences in signal as well as noise 

which can contribute to inconsistent processing across samples. Designing and implementing 

efficient computational pipelines for processing terabytes of this data in ways that minimize 

technical artifacts is essential. Tradeoffs exist between maximizing the decoding efficiency of a 

single field of views versus generating more consistent decoding and assignment to cells. 

Using these approaches, we have shown spatial gene expression differences across 

conditions in three increasingly difficult samples. In cell culture we show high performance 

MERFISH that aligns well across technologies and can identify dose dependent gene 

expression changes to TNF-a. In a wound healing model ,mouse cornea. We have shown 

upregulated inflammation response in epithelial cells as they migrate into the wound bed but 

were unable to generate the biological replicates needed to statistically quantify. In the vocal 

learning model zebra finch brains we show the role of mir128 in regulating the activity of gene 

expression programs some of which contribute to migration of neurons into area x and may lead 

to better understanding and potential treatments in autism spectrum disorder.  
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Generating and processing these datasets took years of experimental, instrumentation, 

computational and design development and required technical expertise in a number of areas. 

Given this it is not surprising that there are few examples of Image based spatial gene 

expression datasets that compare gene expression patterns across different experimental 

conditions. With the commercialization of MERFISH and other related technologies, the design 

of systems that can perform various steps of the experimental protocol is promising to help 

reduce the batch effects in each dataset. This should lead to more and more high quality 

comparative studies but that is yet to be seen. High spatial resolution single cell spatial gene 

expression data should provide unique insights into biological processes that currently cannot 

be elucidated through either low throughput or noisy sequencing approaches. Significant work is 

needed to approach the reproducibility needed to produce this data.  

Materials And Methods 

Encoding Probe Design and Synthesis 

Encoding probes were designed using existing software to generate 30 base pair 

specific homology to RNA targets with a gc content of 45 to 65% and a melting temperature of 

65 to 72C. Readout probe bonding sequences were concatenated to the encoding regions and 

amplification primers were designed and appended to both ends.  

Coverslip functionalization 

40mm round type 1.5 coverslips were cleaned in a 50:50 mixture of 37% concentrated 

HCl and Methanol for 30 minutes with sonication. Coverslips were rinsed with deionized water 3 

times for 5 minutes each, once in Ethanol, and dried at 70C. Coverslips were modified with 

0.2% allyltrichlorosiloxane in chloroform with 0.1% triethylamine for 30 minutes with sonication 

to facilitate hydrogel adhesion. Coverslips were rinsed once with chloroform, twice with ethanol 

and dried for 1 hour at 70C. In cases where additional sample adhesion is necessary, 
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Coverslips were modified with 2% aminopropyltriethoxysilane in acetone for 2 minutes. 

Coverslips were rinsed with deionized water twice, ethanol once, and dried at 70C. 

Fixation 

Samples were placed on functionalized 40mm round coverslips and fixed in cold 4% 

paraformaldehyde in 1xPBS for 5 minutes for cells and 15 minutes for tissues with agitation and 

washed three times in 1xPBS with 3 mg/mL poly vinylsulfonic acid (PVSA) and 0.1% triton x-

100 for 5 minutes each with agitation. Samples were buffer exchanged into 70% ethanol and 

stored at -20C.  

Permeabilization 

Samples were rinsed with 1xPBS with PVSA and 0.1% triton x-100 three times for five 

minutes each with agitation. Samples were permeabilized with 1% triton in 1xPBS with PVSA 

for 30 minutes at 37 C with agitation. Samples were rinsed with 1xPBS with 0.1% triton x-100 

and PVSA three times for five minutes each with agitation.  

RNA Modification with MelphaX 

Samples were rinsed with 30 mM MOPS ph 7.7 + 0.1% triton x-100 + 3mg/mL PVSA 

three times for five minutes each with agitation. To the same 50 uL of 1 mg/ml MelphaX in 

MOPS was added and a parafilm square was placed on top to prevent evaporation. Sample 

was reacted at 37 C overnight in a humidity chamber. Sample was washed with 1xPBS + 0.1% 

triton x-100 + PVSA three times for 5 minutes each with agitation.  

Encoding Hybridization 

Sample was rinsed with 1xTBS + 0.1% tween20 + 3mg/ml PVSA three times for five 

minutes with agitation. Sample was rinsed at 37 C with 30% formamide in 1xTBS + 0.1% 
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tween20 + 3mg/ml PVSA for ten minutes with agitation. To the sample 30uL of 2-5nM each 

encoding probe in 30% formamide + 1xTBS +0.1% tween20 + 3mg/ml PVSA + 10% dextran 

sulfate + 1mg/ml yeast tRNA + 1% murine RNase Inhibitor was added and a parafilm square 

was placed on top to prevent evaporation. 1 uM polyT acridite probe was added to hybe unless 

MelphaX was used. Sample was hybridized at 37 C for 36 hours in a humidity chamber. Sample 

was rinsed at 37 C with 30% formamide in 1xTBS + 0.1% tween20 + 3mg/ml PVSA four times 

for fifteen minutes with agitation. Sample was rinsed with 1xTBS + 0.1% tween20 + 3mg/ml 

PVSA three times for five minutes with agitation. 

Hydrogel Embedding 

Sample was embedded in 50 uL of degassed 4% 19:1 acrylamide:bis-acrylamide in 

1xTBS + 0.1% tween20 + 3mg/ml PVSA + 0.1% temed + 1% APS by inverting coverslip onto 50 

uL of gel solution on a gel slick treated glass plate for 3 hours. Sample was rinsed with 1xTBS + 

0.1% tween20 + 3mg/ml PVSA three times for five minutes with agitation. 

Clearing 

Samples were digested in 1% proteinase k + 1xTBS + 0.1% triton x-100 + 3 mg/ml 

PVSA + 2mM CaCl2 800 mM Guanidine HCl ph 8 for 24-48 hours at 37 C with agitation. 

Sample was rinsed with 1xTBS + 0.1% tween20 + 3mg/ml PVSA three times for five minutes 

with agitation. 

Readout hybridization 

Samples were hybridized in a custom built fluidics system. Samples were rinsed with 

1xTBS + 0.1% tween20 + 3mg/ml PVSA and stripped of previous fluorophores in 25mM TCEP 

in 1xTBS + 0.1% tween20 + 3mg/ml PVSA for 10 minutes. Samples were rinsed with 1xTBS + 

0.1% tween20 + 3mg/ml PVSA and 10% ethylene carbonate in 1xTBS + 0.1% tween20 + 
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3mg/ml PVSA. Readout probes were hybridized at 3nm in 10% ethylene carbonate in 1xTBS + 

0.1% tween20 + 3mg/ml PVSA for 10 minutes. Samples were rinsed in 10% ethylene carbonate 

in 1xTBS + 0.1% tween20 + 3 mg/ml PVSA and 1xTBS + 0.1% tween20 + 3mg/ml PVSA. 

Samples were imaged in 0.1% rPCO + 2mM PCA + 2mM Trolox + 1xTBS + 0.1% Tween 20 + 3 

mg/mL PVSA.  

Imaging 

Samples were imaged with a epifluorescent microscope at 63x with a ~100 nm pixel size 

and a flir camera.  

Image Registration 

Fiduciary markers embedded in the hydrogel were imaged for each round of 

hybridization. These markers were localized and paired to the first round of imaging. A rigid 

transformation was calculated in xyz to align all rounds of imaging.  

Image Processing 

Hot pixels were detected and corrected for each image. Chromatic aberrations between 

fluorophores were corrected. Backgrounds were calculated and subtracted using a high pass 

gaussian filter. High frequency noise was smoothed with a gaussian filter.  

Spot based Image Decoding 

Spots were detected and localized in the processed images and paired across rounds of 

imaging to form candidate transcripts. Candidates were matched to designed barcodes and 

candidates with more than a 1 bit error were removed. Additional transcripts were filtered based 

on signal to noise ratio by a logistic regressor using blank barcodes.  

Pixel based Image Decoding 
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Processed images for each round of imaging were zscored and stacked. Vectors across 

the rounds of imaging for each individual pixel in xy were pulled. These vectors were l2 

normalized and their Euclidean distance to l2 normalized codebook was generated. Neighboring 

pixels with the same decoded gene were collapsed into candidate transcripts. These transcripts 

were further filtered based on the number of pixels per transcript, their codeword 

distances(equivalent to a 1 but error), and their signal to noise ratios.  

Image Segmentation 

Nuclear images were background subtracted using a high pass gaussian filter. Cellpose 

was used to generate nuclear masks and a 5 um diameter voronoi dilation was used to 

generate cytoplasm masks. Transcripts within these masks were assigned to their respective 

cells. 

3T3 Cell TNF Stimulation 

Mouse 3T3 cells were plated onto coverslips within PDMS wells and allowed to grow 

overnight to a density of 60 to 80% confluency in DMEM. Cells were stimulated with 0, 1 or 10 

ng of TNF-a for 3 hours prior to fixation.  

Cornea Ex Vivo Wound 

Mice were euthanized with carbon dioxide and cervical dislocation and their eyes were 

harvested with forceps. Eyes were washed and stored in 1xPBS at 4C for no more than a few 

hours. Epithelial debridement was induced using a 0.5mm rotating burr until a visible wound 

was formed. Eyes were cultured in DMEM at 37C for 2 or 15 hours. Corneas were removed 

from eyes with spring scissors under a dissecting microscope. Corneas were incubated at 37C 

in 0.5M EDTA to detach epithelium from stroma. Forceps were used to further separate the 
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epithelial whole mount from stroma. Epithelium was placed basal side down onto treated 

coverslips prior to fixation.  

Zebra Finchmir128 Knock Down 

Subjects were juvenile male zebra finches (Taeniopygia guttata), beginning at 30 days 

post-hatch. (30d) and raised to 75d. A total of 20 birds underwent stereotaxic neurosurgeries 

targeting Area X bilaterally. Ten birds from seven breeding pairs were treated by focal injection 

of an AAV bearing a miR-128 sponge sequence and 10 siblings were treated with a scrambled 

sequence as a control. Birds were primarily housed in home cages with parents and siblings, 

unless being recorded individually in a sound attenuation chamber. The vivarium and recording 

chambers are humidity- and temperature-controlled (22°C) and on a 12 hr light: dark cycle with 

half hour ‘dusks’ and ‘dawns’. Birdseed, water, millet, cuttlebone, and grit were provided ad 

libitum. Baths, hard boiled egg, and vegetables were provided weekly. Animal use was in 

accordance with the Institutional Animal Care and Use Committee at the University of California, 

Los Angeles and complied with the American Veterinary Medical Association Guidelines. Birds 

were isolated from the tutor at 10d and housed in a recording chamber with the mother and 

another female for care support. Birds were isolated in a recording chamber at 35d. At 120d 

surgeries were performed and the birds were allowed to recover for two weeks, then returned to 

their home cage with both parents. Birds were housed in their home cage for four weeks, with a 

break at two weeks to record changes in song. At ~165d birds were returned to recording 

chambers for behavioral experiments. On the final day birds were allowed to sing for two hours 

and then tissue was collected. 

Author Contributions 

ZH performed sample preparation, data acquisition for culture and cornea MERFISH. GT&ZH 

performed sample preparation and data acquisition for Zebra Finch MERFISH. ZH performed 
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data processing and data analysis for all MERFISH datasets. CA performed Zebra Finch mir128 

Knockdown. ZH&RW designed the project. ZH wrote the manuscript. 
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Chapter 4 

Highly Scalable Biocartographic Surveying At The Cellular Level Using Dimensionally 

Reduced Fluorescence In Situ Hybridization 

Hemminger, Zachary; Tam, Gabriella; Xie, Fangming; Underwood, Thomas; Dong, Hong Wei; 

Wollman, Roy 

Abstract 

Single Cell technologies have allowed the molecular profiling of hundreds of thousands to 

millions of cells. These datasets have been used to generate catalogs of the cell types present 

in tissues and organs often referred to as atlases. Predominantly these technologies lose the 

spatial information of where in the tissue each cell originated from. Advances in spatial 

transcriptomics has allowed researchers to generate anatomical maps of where these cataloged 

cell types are within tissues. These approaches rely on single molecule imaging which requires 

high optical resolution. This limits the use of these technologies to relatively small regions of 

interest. In order to profile whole organs as well as larger tissues like human samples, multiple 

orders of magnitude scale increase is needed. Here we present Dimensionally Reduced 

Fluorescence In Situ Hybridization or dredFISH. dredFISH works by using cell type catalogs to 

design a linear projection matrix which can be used to measure a highly informative low 

dimensional representation of the cells gene expression. This measurement can be performed 

at the cell level as opposed to the single molecule level meaning that low magnification imaging 

can be used. With larger fields of view, more tissue can be profiled in the same amount of time 

by orders of magnitude. Using the mouse brain as a model, we show that this low dimensional 

gene expression measurement is highly informative, containing the cell type identity as well as 

information that can be used to reconstruct individual genes. dredFISH provides the scale 

improvements needed to begin generating detailed anatomical maps for entire organs as well 
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as larger tissues. The generation of these maps will be transformative for a number of biological 

fields and their understanding of physiology.  

 

Introduction 

 A primary goal of biology is to understand how biological systems function. The scale of 

these systems can range from molecular to organismal and even beyond. A common approach 

to elucidate the function of a system is to determine the structure and composition of that 

system. For the organ and organismal level, the connection between the structure (anatomy) 

and the function (physiology) has been a key guiding principle. Historically this has been carried 

out through histological stains which measure a single anatomical component. Given the 

complexity of multicellular organisms, a single or even a handful of anatomical measurements is 

vastly insufficient to generate comprehensive anatomical maps. Complete structures of proteins 

have been pivotal in the understanding of their function. In order to understand the biological 

physiology at the organ and organismal level, complete anatomical maps are needed.  

 The importance to physiology of anatomical maps that detail the cellular composition of 

tissues as well as the location of every single cell is comparable to the importance of a fully 

mapped and annotated genome to genomics. Every subfield of physiology including:, 

neuroscience, oncology, developmental biology, immunology and every tissue specific 

physiology field will gain immediate and transformative understanding of their systems if 

provided a comprehensive single cell map ( Lien et al 2017, Close et al 2021, Smith et al 2019, 

Baron et al 2020, Moncada et al 2020, Berglund et al 2018, Lohoff et al 2020, Mantri et al 2021, 

Chen et al 2022, Nerurkar et al 2020, Allam et al 2020) . Even beyond basic physiology, the 

generation of these maps will transform the field of pathology and is likely to lead to greater 

understanding of disease which should lead to novel therapeutics that are unlikely to be 
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discovered without these maps. The need for and impact of cartographic mapping of tissues at 

the cellular level is clear, yet the generation of these maps has been slow.  

 Since the 1700’s histology has been the primary technique for generating maps of 

tissues (alturkistani et al 2015). While not surprising, the approach of taking samples and 

viewing a single or at most a handful of molecular markers fails to map the majority of the 

complexity present in a tissue. This can be overcome by performing different stains on different 

samples although something is lost when molecular markers cannot be visualized on the same 

sample. Sequential staining has allowed the number of markers mapped to increase. For 

proteins, the limitation here is the cost to generate a large number of highly specific antibodies 

and the need to measure one at a time.  The introduction of multiplexed measurements has 

allowed scientists to generate spatial maps of many primarily nucleic acid molecular markers. 

These approaches do generate comprehensive maps of tissues but fundamental limitations in 

scalability prevent the scale of cartographic mapping that is needed to map all of the tissues, 

organs and organisms that anatomy currently studies (Lubeck et al 2014, Eng et al 2019,Shah 

et al 2017, Moffit et al 2016, Moffit et al 2016, Chen et al 2015, Rodriques et al 2019, vickovic et 

al 2019, salmen et al 2018, stahl et al 2016, Liu et al 2020, Chen et al 2021, Qian et al 2020, 

Lee et al 2014, Gyllborg et al 2020, Wang et al 2018, Ke et al 2013, Alon et al 2020). 

All of these approaches rely on single molecule imaging or barcoded sequencing. 

Sequencing approaches are limited by their nucleic acid capture efficiency, predominantly lower 

spatial resolution, and the high cost of sequencing. Image based approaches are limited by their 

need to work with high optical resolution. This significantly reduces the area that can be imaged. 

While exceptions exist for image based approaches that can handle large areas, they typically 

come at the expense of nucleic acid capture efficiency or the number of molecular markers that 

can be measured at a time. There is a clear need for techniques that can capture a large 
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amount of molecular information at high spatial resolution at scales that far exceed the current 

approaches.  

Extensive single cell transcriptomics is actively being performed to identify cell type 

populations present in the organs of common model systems as well as humans and to 

characterize them transcriptionally (Svensson et al 2020). The outcome of these efforts is cell 

type labeled single cell gene expression data. In order to improve the scalability of spatial 

transcriptomics is to only target highly informative genes. For imaging based spatial 

transcriptomics, these datasets have been used to identify which genes should be targeted. 

While this decreases the number of target genes dramatically, a large number of genes are still 

needed in order to map closely related cell types. Sequencing based approaches are 

predominantly untargeted and so do not gain any benefit in scalability from these composition 

datasets. For both image and sequencing based spatial transcriptomics these datasets have 

been used to assign cell type labels to their measured data (Korsunsky et al 2019). With cell 

type assignment being a key goal of these technologies, this raises the question as to what is 

the minimal amount of information necessary to call cell types accurately and how few 

measurements are needed to capture that information? 

 Dimensionality reduction directly addresses this question. Linear dimensionality 

reduction in the form of principal component analysis is often a first step in the analysis of single 

cell transcriptomic data including spatial transcriptomics data. It is computationally expensive 

and a bit noisy to compare the entire gene expression profile of every single cell to every other 

single cell. Dimensionality reduction compresses the full gene expression vector into a few 

dozen highly informative numbers.This dimensionally reduced transcriptome is a weighted linear 

sum of gene expression. This allows cell to cell comparison in a computationally efficient 

manner to group cells of similar gene expression profiles as defined by convention. Not only is 

dimensionality reduction used to group cells from the same dataset, it is also used to integrate 
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multiple datasets and to transfer labels across datasets. Clearly these dimensionally reduced 

transcriptomes still contain the cell type information. This raises the question as to why it is 

necessary to measure individual genes at all.  

Here we present dimensionally reduced fluorescence in situ hybridization or dredFISH 

which is a nucleic acid and image based technique for designing highly informative 

dimensionally reduced measurements of gene expression which contains sufficient information 

for cell type classification which  can be measured without the need for high optical resolution. 

dredFISH also includes the computational framework necessary to recover cell type information 

from these measured stains. This allows labeled single cell cartographic maps of large tissue 

areas with multiple orders of magnitude speed increase due to large field of views. We 

performed dredFISH on the mouse brain to generate spatially resolved single cell cartographic 

maps at throughputs that far exceed alternatives. We also present a framework for taking these 

single cell maps and identifying anatomical features which are visually interpretable to 

classically trained physiologists and pathologists as well as statistically accessible for 

bioinformaticians.  
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Results 

 
Figure 4.1: dredFISH Methodology 
 

 
Figure 4.2: dredFISH Molecular Example  
A. Block matrix diagram showing the expression of three genes for two cells, a projection matrix 
showing the weight that each gene has in the two basis measurements and a low dimensional 
representation of the gene expression of both cells for each basis. B. Molecular diagram of A 
showing the expression of three genes within two cells. The projection matrix is implemented by 
generating bivalent dna probes for each non negative value within the projection matrix. These 
probes contain 2 sets of binding sequences the first targets the gene and the second targets a 
fluorescent readout probe that will be used to measure the basis. The number of probes that 
connect a gene to a basis is equal to the value within the projection matrix (i.e. a value of 3 
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means 3 probes that connect G1 to B1). By binding these probes to the transcripts within the 
cell a composite readout is generated. The sum of the basis sequences for each cell is equal to 
the low dimensional basis for that cell. Each of these basis sequences will be read out with a 
unique fluorescent readout probe. C . Together this low dimensional representation or dredFISH 
space can be used to separate cells by their gene expression in a way that does not require 
measuring each gene individually. The positions of cells in this space are the same if measured 
directly with dredFISH or if measuring genes individually like scRNAseq and projecting with the 
projection matrix.  
 

dredFISH Methodology 

 dredFISH can be broken into three key parts, encoding, measurement and 

decoding.  Encoding consists of using reference single cell RNA seq data to design a projection 

matrix that will be used to compress the gene expression into basis factors without losing cell 

type information. The experimental measurement consists of implementing the designed 

projection matrix into molecular probes that will be used to stain samples and the acquiring of 

the in situ basis factor measurement for each cell spatially as scale. Decoding consists of 

grouping measured cells with similar basis factor measurements and then using the original 

reference single cell RNAseq data to transfer labels to the measured cells.  

Encoding 

 The reference single cell RNA sequencing data that was used to generate the encoding 

was the Allen Brain Atlas which consisted of ~70 thousand cells measured with smart seq and 

~1.3 million cells measured with 10X. These cells were labeled with multiple hierarchical labels, 

the coarsest of which are inhibitory neurons, excitatory neurons, and non-neurons while the 

finer labels delineated to canonical cell types and even finer clusters. Lowly expressed genes 

were excluded due to their noisy nature in the reference data. Highly expressed genes were 

also excluded because they would disproportionately affect the optimization function compared 

to other normally expressed genes. The projection matrix was calculated with discriminant 

projective non-negative matrix factorization or DPNMF. The optimization function for this 

algorithm was to maximize the gene reconstruction as well as minimize variability within a cell 
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type and maximize the variability between cell types (Song et al 2021). A mu parameter 

weighted the reconstructive versus the discriminant aspects of the cost function. A large mu 

parameter of 50 was chosen to provide greater discriminant performance at the price of 

reconstruction accuracy. DPNMF was chosen over PCA as the resulting weights were non-

negative and sparse which is essential when converting the projection matrix to molecular 

probes. 

 
Figure 4.3: dredFISH Encoding Example  
A. The first 12 basis of PCA and DPNMF calculated using the Allen institute for Brain Science 
scRNAseq reference data. DPNMF contains only non-negative values and the majority of gene 
to basis projections are zero.  
 

Converting Encoding to Molecular Probes 

The projection matrix was scaled and integerized so that the total sum of integers across 

all genes and basis would be ~90 thousand. This number was chosen based on the maximum 

number of DNA probes that could be purchased at the time. Integerized projection weights were 

directly converted into the number of FISH probes that needed to be designed for each gene. 

Genes that required more probes than could be designed had their projection matrix values 

clipped to the maximum designable probes. For each probe 3x20bp sequences were added 

depending on which basis the gene had weight in on the integerized projection matrix. Probes 

were ordered as a pool from custom arrays.  

Measurement 
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 Samples were prepared in a method sharing most steps with MERFISH. In short, 

Samples were sectioned to 10 um and placed on treated coverslips. Samples were fixed with 

PFA, permeabilized with Triton in PBS and stored at -20C in 70% Ethanol. Samples had their 

RNA modified with melphaX to allow anchoring to a later hydrogel. Ordered Probes were 

amplified using PCR to add a T7 promoter then IVT to increase the number of copies and lastly 

RT to convert ssRNA to ssDNA. Probes were hybridized in a 30% formamide hybridization 

solution at 37C for 36 hours and washed at 37 C with a 30% formamide wash buffer for 1 hour. 

Samples were embedded in a thin 4% polyacrylamide hydrogel and then cleared in a proteinase 

k buffer with CaCl overnight at 37C.  

Fluorescent readout probes were hybridized in an automated fluidics system for 10 

minutes and then imaged with a custom epifluorescent microscope. Fluorophores were stripped 

off of the readout probes with a reducing agent between rounds of imaging.  Background 

images were acquired prior to the first readout probe as well as after stripping of each round’s 

fluorophore. Images for each round and background were stitched together using a nuclear 

stain. Cells were segmented using cellpose on the nuclear stain as well as a polyT staining. 

Intensities for each cell for each measurement was pulled from the stitched images and 

collapsed to generate a vector of basis expression for each measured cell. This provides a cell 

by basis matrix as well the spatial coordinates for each cell's location within the sample. 

Basis measurements show clear spatial patterns that change for each basis 

measurement which align visually with known anatomical features. Cells within this 

dimensionally measured space also show separable patterns of basis factor expression when 

projected into UMAP. This shows a visualization of the amount of cell type specific information 

that was preserved during the measurement. dredFISH measurements are shown to be highly 

informative for generating cartographic maps as shown when the cells umap localization is 
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projected onto their spatial coordinates. This visualization shows how highly informative the 

dredFISH measurements are for generating spatial maps of tissues. 

 
Figure 4.4: dredFISH Measurement.  
A. 12 representative experimental dredFISH Measurements out of 24 in one hemisphere of the 
mouse brain coronal section containing ~50k cells. Cells expressing more of the genes which 
contained non zero values within a single basis of the projection matrix show higher dredFISH 
signal when measured. Distinct patterns are present as the result of different basis measuring 
different weighted sets of genes. B. UMAP visualization of all 24 dredFISH measurements. 
Colors show the position within this UMAP space. C. Spatial coordinates of a whole coronal 
section ~100k cells. Cells are colored according to B. Clear known anatomical features are 
visible within this visualization.  
TMG 

 Visual inspection of cartographic maps is useful but lacks the quantitative nature 

necessary for rigorous statistical analysis. For that reason, we developed a computational 

architecture for analyzing these spatially measured dimensionally reduced transcriptomes. This 

can be done in approaches that mimic how other forms of single cell and spatial single cell 

transcriptomics data are analyzed. On the gene expression side: cells can be grouped together 

based on their shared gene expression measurement, labels can be transferred and gene 

expression can be imputed across datasets. On the spatial side: space can be used to define 
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the granularity at which cell types should be resolved, zones of homogeneous cell types can be 

found, and more complex regions making up homogeneous or heterogeneous populations can 

be defined quantitatively.  

Supervised Decoding 

Cells present in regions that were captured within the reference can use their highly 

informative dimensionally reduced gene expression vector to find cells with similar gene 

expression in the reference dataset. Reference single cell RNA seq datasets were projected 

using the same projection matrix that was used to generate the molecular probes. Normalization 

operations were performed on the reference as well as measured data. Basis vectors for each 

cell were normalized by their sum to account for uneven staining efficiencies as well as 

differences in segmentation and total RNA content. Basis measurements were normalized using 

Zscore to correct for differences in staining efficiency across rounds of imaging and to move the 

sequencing data and the dredFISH data to the same shared space. By aligning the measured 

and reference datasets into the same space, we can transfer information known about the 

reference data onto dredFISH cells that are nearby in the shared space as defined by a cosine 

similarity metric. The simplest but possibly most useful bit of information that can be transferred 

is the labeled cell type.  

dredFISH is also shown to be useful for cells that were not present in the reference 

dataset. Areas outside of the Hippocampus and Cortex were not sampled in the current Allen 

Mouse Brain Atlas. Despite this for coarse level cell types like excitatory neuron, inhibitory 

neuron and non-neuron, the dredFISH cells that were outside of the hippocampus and cortex 

shown spatial organization that qualitatively aligns well with spatial transcriptomic data 

generated by other technologies.  
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Figure 4.5: dredFISH Cell Type Labeling.  
A. UMAP Embedding of measured dredFISH data as well as scRNAseq data that has been 
projected using the DPNMF projection matrix. Datasets were harmonized by iterative zscore 
normalization through 3 hierarchical cell type annotations. B. Visual of the cell type average low 
dimensional gene expression projection for measured and reference data. C. Average Pearson 
correlation of 0.79 between reference and measured data for each cell type. D. Iterative 
hierarchical label transfer results showing coarse cell type of excitatory, inhibitory and non-
neuronal then finer cell types like the layers of the cortex as well as even finer cell type 
annotations like excitatory hippocampal neuronal cell types (CA1,CA3, and DG). G. Fine cell 
type localization of excitatory hippocampal neuronal cell types (CA1, CA3, and DG) detected 
using a gold standard MERFISH. H. Immunofluorescence standards for cell type markers 
showing agreement of dredFISH and MERFISH cell type localizations.  
Unsupervised Clustering 

Fine cell types are notoriously difficult to transfer labels between datasets .For this 

reason unsupervised clustering of cells at finer resolution than transferred labels is common. 

This can also be applied to measured dredFISH data. Clustering of cells can be highly sensitive 

to the resolution you allow. Too high of resolution and you may split cells of the same type 

arbitrarily. Too low of resolution and you may lump different cell types into the same type. One 

approach to do this is to define distinct cell types as those that differ transcriptionally as well as 

spatially. By using leiden clustering and optimizing the resolution parameter to maximize 
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difference in the entropy in the gene expression label space and the spatial zone space. This 

approach splits cells into finer and finer cell types until the types are no longer heterogeneously 

situated in space. Doing this generates ~100 cell types of finer resolution than label transfer. 

Regions 

Cell types and their locations are useful visually but can also be used to generate 

quantitative definitions for regions within tissues. Using these finer cell types we can cluster 

cells based on the identities of their neighbors. Like clustering of cell types this can also be 

sensitive to resolution. By using space as well as neighbor composition, we can set resolution 

limits that generate informative spatial regions. These regions align visually remarkably well with 

known anatomical features. Surprisingly this was true for anatomical features whose gene 

expression was outside of the cortex and hippocampus and as such was not designed for. This 

suggests a generalizable nature to the dredFISH stain for cells not sampled in the reference.  

 
Figure 4.6: Unsupervised Clustering and Region Identification.  
A. ~100 cell types identified with leiden graph based cluster analysis shown to be different 
transcriptionally as well as spatially. B. Regions identified by nearest neighbors identity topic 
modeling. C Established anatomical regions defined by the Allen Brain Atlas showing strong 
agreement with de novo generated regions.  
Gene Reconstruction 

  Labels are not the only information that can be gained by aligning measured dredFISH 

data and reference scRNAseq data. Gene expression can be reconstructed for measured data 

by using the average of the 10 nearest neighbors within the reference dataset. The 

reconstruction accuracy can be predicted by comparing the average of 10 nearest neighbors in 
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dredFISH space for the reference data to the actual measured expression for that 

cell.  Reconstruction accuracy varied but correlated strongly with the weight that a gene has in 

the projection matrix as well as how much variance can be explained for that gene by PCA. 

Genes with low variance explained by PCA are likely noisy either due to technical noise in 

sequencing or other factors that make some of the variance unexplainable by linear 

approaches. To show the accuracy of reconstructed gene expression the reconstructed gene 

expression patterns for three genes are compared to measured in situ hybridization provided by 

the Allen Brain Atlas. Expression patterns show strong agreement between measured and 

reconstructed gene expression patterns.  

 

 
Figure 4.7: Gene Reconstruction.  
A. Gene expression patterns reconstructed from dredFISH measurements as well as Allen ISH 
data for the same genes showing qualitative agreement. B. Expected gene reconstruction 
accuracy for each gene versus variance explained for that gene by PCA. Genes with >1 
reconstruction occur when KNN out performs linear PCA.  
 

Discussion 

 Detailed anatomical maps provide a clear path to increasing our understanding of the 

physiology of multicellular biology. Despite improvements to spatial single cell technologies, the 

scale needed to generate these anatomical maps is not present especially for larger complex 

tissues. As of 2022, the largest anatomical map generated by spatial transcriptomics was ~1 

million cells with the average being closer to between 10,000 and 100,000 cells (Moses & 

Patcher 2022). Relatively small model systems such as the mouse brain contain ~100 million 
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cells. It is unlikely that most of the anatomical detail can be captured if less than 1 percent of the 

cells are measured spatially. When thinking about larger systems like the human brain, which 

contains ~100 billion cells, it is clear that we need technology that can measure cells at multiple 

orders of magnitude scale increase.  

 Here we present dredFISH, an imaging based spatial transcriptomic method that works 

by designing a weighted aggregate gene expression measurement that can be measured at the 

cell level using FISH. We show that DPNMF can be used to learn a projection matrix from an 

annotated single cell reference dataset. We show that this projection matrix can be implemented 

in a molecular probe and can be measured using standard epifluorescent microscopy. Lastly we 

show that the information contained within the low dimensional gene expression measurement 

is informative and can be used to identify cell types, identify spatial regions within a tissue and 

even reconstruct gene expression with similar performance to standard linear approaches. 

These show that dredFISH is as capable of generating highly detailed data as existing spatial 

transcriptomic methods. The key distinction between dredFISH and existing methods is the 

scale at which dredFISH can be performed.  

 Existing image based spatial transcriptomic techniques rely on detecting diffraction 

limited spots. Optical resolutions in the hundreds of nanometers are needed in order to detect a 

reasonable number of transcripts per round of imaging. dredFISH relies on detecting and 

quantifying cells rather than diffraction limited spots which are 10’s to 100’s of times smaller 

than cells. Due to this, dredFISH can operate with optical resolutions in the micron range and 

potentially higher. This means dredFISH can be measured with at least 10 fold lower 

magnification than single molecule techniques. This translates to a 10 fold larger field of view in 

each dimension. In two dimensions this means dredFISH can measure the same cells 100 fold 

faster while in three dimensions dredFISH should perform at 1000 fold faster.  
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 The ability to generate detailed anatomical maps at single cell resolution hundreds to 

thousands of times faster than existing technologies is likely to cause a paradigm shift in how 

we approach investigating physiology. Having the ability to profile every cell in an organ with 

biological replicates and even across experimental conditions will generate enormous datasets 

that cannot be interpreted by eye. This is especially true if datasets are collected for entire 

human tissues and organs.  Computational algorithms will need to be developed to quantify and 

summarize the detailed information present in these datasets. Just as single cell sequencing 

sparked a wave of bioinformaticians generating algorithms, we expect dredFISH to generate 

sufficient data to spark a new wave focused not only on the gene expression space but also on 

the anatomical space. Together dredFISH and these algorithms are likely to generate unique 

physiological insights that likely could not have been understood without the scale increase that 

dredFISH provides.  

Materials And Methods 

Encoding Probe Design and Synthesis 

Encoding probes were designed using existing software to generate 30 base pair 

specific homology to RNA targets with a gc content of 45 to 65% and a melting temperature of 

65 to 72C. Readout probe bonding sequences were concatenated to the encoding regions and 

amplification primers were designed and appended to both ends.  

Coverslip functionalization 

40mm round type 1.5 coverslips were cleaned in a 50:50 mixture of 37% concentrated 

HCl and Methanol for 30 minutes with sonication. Coverslips were rinsed with deionized water 3 

times for 5 minutes each, once in Ethanol, and dried at 70C. Coverslips were modified with 

0.2% allyltrichlorosiloxane in chloroform with 0.1% triethylamine for 30 minutes with sonication 

to facilitate hydrogel adhesion. Coverslips were rinsed once with chloroform, twice with ethanol 
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and dried for 1 hour at 70C. In cases where additional sample adhesion is necessary, 

Coverslips were modified with 2% aminopropyltriethoxysilane in acetone for 2 minutes. 

Coverslips were rinsed with deionized water twice, ethanol once, and dried at 70C. 

Fixation 

Samples were placed on functionalized 40mm round coverslips and fixed in cold 4% 

paraformaldehyde in 1xPBS for 5 minutes for cells and 15 minutes for tissues with agitation and 

washed three times in 1xPBS with 3 mg/mL poly vinylsulfonic acid (PVSA) and 0.1% triton x-

100 for 5 minutes each with agitation. Samples were buffer exchanged into 70% ethanol and 

stored at -20C.  

Permeabilization 

Samples were rinsed with 1xPBS with PVSA and 0.1% triton x-100 three times for five 

minutes each with agitation. Samples were permeabilized with 1% triton in 1xPBS with PVSA 

for 30 minutes at 37 C with agitation. Samples were rinsed with 1xPBS with 0.1% triton x-100 

and PVSA three times for five minutes each with agitation.  

RNA Modification with MelphaX 

Samples were rinsed with 30 mM MOPS ph 7.7 + 0.1% triton x-100 + 3mg/mL PVSA 

three times for five minutes each with agitation. To the same 50 uL of 1 mg/ml MelphaX in 

MOPS was added and a parafilm square was placed on top to prevent evaporation. Sample 

was reacted at 37 C overnight in a humidity chamber. Sample was washed with 1xPBS + 0.1% 

triton x-100 + PVSA three times for 5 minutes each with agitation.  

Encoding Hybridization 
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Sample was rinsed with 1xTBS + 0.1% tween20 + 3mg/ml PVSA three times for five 

minutes with agitation. Sample was rinsed at 37 C with 30% formamide in 1xTBS + 0.1% 

tween20 + 3mg/ml PVSA for ten minutes with agitation. To the sample 30uL of 2-5nM each 

encoding probe in 30% formamide + 1xTBS +0.1% tween20 + 3mg/ml PVSA + 10% dextran 

sulfate + 1mg/ml yeast tRNA + 1% murine RNase Inhibitor was added and a parafilm square 

was placed on top to prevent evaporation. 1 uM polyT acridite probe was added to hybe unless 

MelphaX was used. Sample was hybridized at 37 C for 36 hours in a humidity chamber. Sample 

was rinsed at 37 C with 30% formamide in 1xTBS + 0.1% tween20 + 3mg/ml PVSA four times 

for fifteen minutes with agitation. Sample was rinsed with 1xTBS + 0.1% tween20 + 3mg/ml 

PVSA three times for five minutes with agitation. 

Hydrogel Embedding 

Sample was embedded in 50 uL of degassed 4% 19:1 acrylamide:bis-acrylamide in 

1xTBS + 0.1% tween20 + 3mg/ml PVSA + 0.1% temed + 1% APS by inverting coverslip onto 50 

uL of gel solution on a gel slick treated glass plate for 3 hours. Sample was rinsed with 1xTBS + 

0.1% tween20 + 3mg/ml PVSA three times for five minutes with agitation. 

Clearing 

Samples were digested in 1% proteinase k + 1xTBS + 0.1% triton x-100 + 3 mg/ml 

PVSA + 2mM CaCl2 800 mM Guanidine HCl ph 8 for 24-48 hours at 37 C with agitation. 

Sample was rinsed with 1xTBS + 0.1% tween20 + 3mg/ml PVSA three times for five minutes 

with agitation. 

Readout hybridization 

Samples were hybridized in a custom built fluidics system. Samples were rinsed with 

1xTBS + 0.1% tween20 + 3mg/ml PVSA and stripped of previous fluorophores in 25mM TCEP 
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in 1xTBS + 0.1% tween20 + 3mg/ml PVSA for 10 minutes. Samples were rinsed with 1xTBS + 

0.1% tween20 + 3mg/ml PVSA and 10% ethylene carbonate in 1xTBS + 0.1% tween20 + 

3mg/ml PVSA. Readout probes were hybridized at 3nm in 10% ethylene carbonate in 1xTBS + 

0.1% tween20 + 3mg/ml PVSA for 10 minutes. Samples were rinsed in 10% ethylene carbonate 

in 1xTBS + 0.1% tween20 + 3 mg/ml PVSA and 1xTBS + 0.1% tween20 + 3mg/ml PVSA. 

Samples were imaged in 0.1% rPCO + 2mM PCA + 2mM Trolox + 1xTBS + 0.1% Tween 20 + 3 

mg/mL PVSA.  

Imaging 

Samples were imaged with a epifluorescent microscope at 10x with a ~~500 nm pixel 

size and a flir camera after readout hybridization and between the strip of the previous round.  

Image Registration 

 Images for the first round of imaging were stitched together using a 10% overlap to 

correct for stage inaccuracy. In short a rigid transformation was calculated from phase cross 

correlation between neighboring images using nuclear stain images. For subsequent rounds of 

imaging, a rigid transformation was calculated from phase cross correlation between the nuclear 

stain images of the first round and the subsequent rounds.  

Image Processing 

 Background images for each round were subtracted from readout images and a flatfield 

correction was applied. Flatfield was calculated for each pixel as the median after background 

subtraction and the entire flatfield was divided by the median across all pixels. A secondary 

background subtraction was performed using a minimum filter with a window of ~100 um.  

Segmentation 
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 Stitched nuclear images were binned into ~100 bins. A background subtraction was 

performed for each image using a minimum filter with a window of ~100 um. Images were 

segmented using cellulose with a diameter of ~10um. For Cytoplasm segmentation, the same 

operation was performed on a poly T readout.  

Vector Pulling and Normalization 

 The median intensity of the pixels within a mask for each round of imaging was used as 

the basis measurement for that cell for that round. To account for uneven staining, the basis 

vector for each cell was divided by the sum of the vector. To account for round to round 

variation and to put the vector into a common space, the basis was zscored across all cells.  

Supervised Classification 

 Reference scRNAseq data was first cell size normalized and then projected using the 

same projection matrix that was used to design the encoding probes. Each bit was normalized 

using zscore to put the cells in the same common space as the measured dredFISH cells. For 

each cell the 10 nearest neighbors in the reference data was calculated using cosine distance. 

The most comment label within these 10 neighboring cells was assigned to the measured cell. 

This was first performed for the coarsest level of annotation. Which contained 3 cell types. For 

each of the assigned cell types, the reference and measured data was subsetted to cells that 

contained that annotation. The whole process including z score normalization across cells within 

a bit was performed and the next level of annotation was transferred to the measured data using 

the 10 nearest neighbors within the subset. This process was repeated iteratively for the first 3 

hierarchical annotations within the reference dataset.  

Unsupervised Classification 
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 Cells were clustered using leiden clustering on the normalized dredFISH vectors. The 

optimal resolution for this clustering was calculated to be the resolution that maximized the 

entropy difference between the number of cell types and the number of homogeneous spatial 

zones.  

Regions 

 Regions were identified using Latent Dirichlet Allocation (LDA) on the local cell type 

composition for each cell using their unsupervised clustering labels. Cells were labeled to be 

part of a region by the topic that explained most of that cell's local composition.  
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