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Notre Dame, IN 46556 
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Abstract 
People have shown sensitivity to variance in studies in which 
variance has been provided separately from other statistical 
information, but not in other studies in which variance must 
be derived from raw data. However, such studies typically 
test people’s sensitivity to variance via probability judgments: 
participants are asked to make judgments based on how 
confident they are that sample means are representative of a 
population. In this study, we instead investigate whether 
people are able to use variability when making likelihood 
judgments: participants determined from which of two 
possible populations a sample was more likely to have been 
drawn. Choices were influenced by variance, even when 
controlling for sample size, base rate, and the absolute 
difference between sample means and population µs. 

Keywords: statistical inference; judgment; decision making; 
probability; normative behavior; variance; categorization 
 
In this day and age, statistical information is widely 

available to any person with an internet connection. 
However, although people do have some statistical 
intuitions (e.g. Obrecht, Chapman, & Gelman, 2006), they 
do not make use of statistical factors - such as mean, sample 
size and variance - in a precisely normative fashion 
(Kahneman & Tversky, 1972). It remains in question how 
people’s statistical intuitions affect their judgments. In this 
paper, we offer evidence that people are not only sensitive 
to the effect of variance on probability, but also that they 
can use variance information to judge the likelihood that a 
sample came from a particular population rather than 
another. 

Both Obrecht, Chapman, and Gelman (2007) and 
Masnick and Morris (2008) examined whether people can 
use within group variability in statistical datasets when 
making judgments. In Obrecht et al.’s study, participants 
considered rating data given to pairs of hypothetical 
products. Participants saw not only the raw rating data but 
also were told the means and standard deviations of the data 
sets. Based on this information, participants judged their 
confidence that the product with the higher mean rating was 
really better than the product with the lower mean rating. 
Within group variability was manipulated across 
comparison pairs. Normatively, one should be more 
confident in a difference when within group variability is 
low, compared to when it is high. Indeed, they found that 
when the within group variability of the product ratings was 
low, participants were slightly, but significantly, more 

confident in a difference between groups, compared to when 
the variability was high. Masnick and Morris’ study was 
similar in design to Obrecht et al.’s (2007). Child and adult 
participants compared pairs of datasets (e.g. a set of six 
throwing distances from two different players) so as to 
judge whether they differed from each other. However, in 
that study, means and standard deviations were not 
explicitly given. Masnick and Morris’ participants failed to 
use within group variance in a normative fashion. In fact, 
their adult participants were sometimes actually more 
confident when within group variability was high.   

Other studies have examined use of variability when such 
information comes from prior knowledge, rather than from 
sample data. Nisbett, Krantz, Jepson, and Kunda (1983) 
gave adult participants information about small samples that 
all shared some characteristic (i.e. three samples of an 
element are all conductive; three members of a tribe are all 
obese). Participants were willing to attribute the property 
found in the samples (e.g. conductivity, obesity) to a higher 
percentage of the general population from which the 
samples were drawn for cases referring to properties which 
have prototypically low variability (such as conductivity), 
rather than properties which are typically quite variable 
(such as people’s weight). Jacobs and Narloch (2001) found 
that children also have the ability to use their prior 
knowledge of category variability to make inferences. 
Further, Obrecht, Chapmen, & Suárez, (2010) showed that 
people can combine statistical data with their prior 
knowledge about category variability to make reasonable 
inferences. 

In many of the studies discussed, participants were asked 
to use statistical data to rate their confidence in an answer 
already given (Masnick and Morris, 2008; Obrecht, et al. 
2007; Obrecht, et al. 2010) or to make inferences about the 
general population from sample data (Nisbett et al., 1983; 
Jacobs & Narloch, 2001; Obrecht, under review). Such 
contexts supply a great deal of information to the 
participants. For instance, participants are told which 
populations the samples came from. Additionally, Masnick 
and Morris (2008), Obrecht, et al. (2007), and Obrecht, et al. 
(2010) all informed participants that samples came from 
different populations. Further, which population is more 
likely to be “better” (better player, better product, etc.) was 
often already implied by the difference between the sample 
means and by the phrasing of the questions participants 
were asked.  
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It might also be noted that in the work described above, 
participants only appeared sensitive to variability when such 
information was provided separately from the raw data, 
whether given explicitly in the tasks (Obrecht et al., 2007, 
Obrecht et al. 2010) or implied via prior category 
knowledge (Jacobs & Narloch, 2001; Nisbett et al., 1983, 
Obrecht et al. 2010). When Masnick and Morris (2008) did 
not provide variance information explicitly, but rather left it 
to be derived from raw data, their participants did not 
respond at all normatively to within group variability. 
Similarly, Kahneman and Tversky (1972) found that people 
failed to reason normatively about variance in dichotomous 
data (e.g. male vs. female), for which variability is not an 
independent parameter, but rather is a function of sample 
size and the percentage of the group sharing a particular 
feature. Participants in their study typically claimed that 
large and small hospitals would have about the same 
number of days in a year in which more than 60% of the 
children born were male. Normatively, a small hospital will 
have more days when more than 60% of children are born 
male, given a dichotomous population (male vs. female) 
with a µ of 50% (about half of children born are male). 
However, using variance information in Kahneman and 
Tversky’s task was not a simple proposition: One must 
combine the information that the µ of male births is 50% 
and that the number of births was higher at the larger than 
the smaller hospital and also note that means of smaller 
samples typically depart farther from population µs than 
means of larger samples before one can use variance to 
determine the relative likelihood of a sample with a 
particular mean coming from either population. It is likely 
that this complexity contributed to people’s non-normative 
behavior (e.g. Evans & Dusior, 1977). 

Here, we further explored the question of whether people 
can make use of variance when determining which of two 
populations they believe a sample was more likely to have 
been drawn from. Like Kahneman and Tversky (1972), we 
tested whether people’s choices took variance - as implied 
by sample size and the percentage of a group sharing a 
dichotomous feature - into account. However, unlike 
Kahneman and Tversky, we held sample size constant and 
instead manipulated variability via population µs and 
sample means.  Also, we asked participants to consider the 
likelihood of a particular sample having come from one 
population or another, rather than to reason about a range of 
possible samples.   

Method 
The purpose of this study was to see whether people can use 
variance information when determining whether a sample 
was more likely drawn from one population or another. As 
has been done for a number of prior studies (Kahneman & 
Tversky, 1972; Nisbett et al., 1983; Obrecht, under review), 
we chose to use a dichotomous feature as the basis of 
comparison. This allowed the variance of a sample to be 
determined solely from sample size and the proportion of 
the sample exhibiting that dichotomous feature: 

 
σ2 = np(1 – p) 

 
Participants were given information about two different 

populations of trees (i.e. 2% of Aoco trees have white 
flowers, 18% of Boco trees have white flowers) and a 
sample (i.e. 10% of trees in a grove of 100 trees have white 
flowers). They were asked to indicate which population the 
sample was more likely to have come from, and how sure 
they were of their choice. 

Participants 
The participants in this study were 266 undergraduate 
students at the University of Notre Dame participating for 
course credit. Of these, 40 were excluded for failure to 
complete the task. An additional 5 were excluded from the 
analysis for failure to complete the task within a reasonable 
time period (taking either less than five minutes or more 
than two hours).  

Design 
This study used a within subjects design. Every participant 
was asked 48 pairs of questions. Every set of questions 
involved comparing a sample mean to a pair of population 
µs. In each pair of population µs, one was more central 
(closer to 50%) and one was more extreme (farther from 
50%). Sample means always fell between the population µs. 
We manipulated: 

 
a) Centrality: Whether the population µs were Central 

or Extreme When comparing conditions where the 
absolute difference between the population µs is the same, 
the relative likelihood of samples coming from the 
population with the more central µ as opposed to the more 
extreme µ was greater when the population µs and sample 
means were from a more Extreme range (e.g. 18% vs. 
2%) rather than from a more Central range (e.g. 48% vs. 
32%). This is because populations from the Central range 
have inherently higher variance (σ2 = np(1 – p)). This 
manipulation allowed us to vary the relative likelihood of 
a sample being produced by either population 
independently of the difference between the sample 
means and the population µs. 

 
b) Spread: Whether the spacing between population µs 

was Narrow or Wide  Population µs either differed from 
each other by 16 percentage points in the Narrow 
condition (e.g. 2% vs. 18%) or 29 percentage points in the 
Wide condition (e.g. 2% vs. 31%).  

 
c)Parity: Whether the population µs were Low or High 

Populations with µs equally distant from 50% (e.g. 25% 
& 75%, 10% & 90%) are also equally variable. Thus 
when constructing questions sets, the values of population 
µs and sample means were reflected under (Low) and 
over (High) 50%. For example, if one question referred to 
populations µs of 2% and 18%, with a sample mean of

3135



Table 1: Population µs and sample means used in constructing stimuli, with their absolute and relative probabilities 
 

Population Centrality, 
Spread, and Parity 

Central µ 
(SD)* 

Extreme µ 
(SD)* 

Sample %s 
(Location) 

P of sample 
%s given 
Central µ 

P of sample 
%s given 
Extreme µ 

Ratio of Ps of sample 
%s (PCentral/PExtreme) 

8%   (Extreme) 2.4 x 10-3 7.4 x 10-4 3.3 
10% (Mid) 1.1 x 10-2 2.9 x 10-5 3.8 x 102 

Extreme/Narrow/Low 18% 
(14.76) 

2% 
(1.96) 

12% (Central) 3.2 x 10-2 7.3 x 10-7 4.4 x 104 
16% (Extreme) 2.8 x 10-4 1.6 x 10-10 1.8 x 106 
20% (Mid) 4.6 x 10-3 1.1 x 10-14 4.1 x 1011 

Extreme/Wide/Low 31% 
(21.39) 

2% 
(1.96) 

24% (Central) 2.8 x 10-2 2.9 x 10-19 9.7 x 1016 
38% (Extreme) 1.1 x 10-2 3.7 x 10-2 2.9 x 10-1 
40% (Mid) 2.2 x 10-2 2.0 x 10-2 1.1 

Central/Narrow/Low 48% 
(24.96) 

32% 
(21.76) 

42% (Central) 3.9 x 10-2 9.0 x 10-3 4.4 
36% (Extreme) 8.7 x 10-4 5.2 x 10-4 1.7 
40% (Mid) 7.1 x 10-3 2.3 x 10-5 3.1 x 102 

Central/Wide/Low 51% 
(24.99) 

22% 
(17.16) 

44% (Central) 3.0 x 10-2 5.2 x 10-7 5.2 x 104 
92% (Extreme) 2.4 x 10-3 7.4 x 10-4 3.3 
90% (Mid) 1.1 x 10-2 2.9 x 10-5 3.8 x 102 

Extreme/Narrow/High 82% 
(14.76) 

98% 
(1.96) 

88% (Central) 3.2 x 10-2 7.3 x 10-7 4.4 x 104 
84% (Extreme) 2.8 x 10-4 1.6 x 10-10 1.8 x 106 
80% (Mid) 4.6 x 10-3 1.1 x 10-14 4.1 x 1011 

Extreme/Wide/High 69% 
(21.39) 

98% 
(1.96) 

76% (Central) 2.8 x 10-2 2.9 x 10-19 9.7 x 1016 
62% (Extreme) 1.1 x 10-2 3.7 x 10-2 2.9 x 10-1 
60% (Mid) 2.2 x 10-2 2.0 x 10-2 1.1 

Central/Narrow/High 52% 
(24.96) 

68% 
(21.76) 

58% (Central) 3.9 x 10-2 9.0 x 10-3 4.4 
64% (Extreme) 8.7 x 10-4 5.2 x 10-4 1.7 
60% (Mid) 7.1 x 10-3 2.3 x 10-5 3.1 x 102 

Central/Wide/High 49% 
(24.99) 

78% 
(17.16) 

56% (Central) 3.0 x 10-2 5.2 x 10-7 5.2 x 104 
*Standard deviation of the sampling distribution from a dichotomous population with the given µ where N = 100. 
Note: P refers to probability of drawing a sample (N=100) with a given % from a population with a given µ: P(sample % | µ). 
 

10% (a low population parity question), another question 
referred to population µs of 98% and 82% with a sample 
mean of 90%. This allowed us to balance whether the µ of 
the population that the sample was more likely to have 
been drawn from was greater or less than the mean of the 
sample (see Table 1.) High Parity conditions might be 
thought of as negative parity versions of Low Parity 
conditions: “98% of Doco mango trees have white 
flowers” is logically equivalent to “2% of Doco mango 
trees do not have white flowers.” 
 

Control: Sample % locations Three different sample 
percentages were presented with each of the eight pairs of 
µs: one closer to the extreme µ (Extreme), one closer to the 
central µ (Central), and one half way between the other two 
sample means (Mid).  (See Table 1.)  
 
Additional controls For half of the trials the population 
with the more central µ was described first, while for the 
other half the population with the more extreme µ was 
described first. This yielded 6 questions sets per pair of µs 
(see Table 1). The question sets were presented in random 
order. Sample size and base rate were also controlled. 
Participants were always told that there were 100 trees in 
the grove and that groves of either population occurred with 

equal frequency. Additionally, the relative and absolute 
likelihoods of µs in the Wide & Central conditions were 
matched as closely as possible using µs described by whole 
number percentages to the relative and absolute likelihoods 
of µs in the Narrow & Extreme conditions (see Table 1). 
This allowed us to manipulate both variance and the 
absolute difference between population µs while controlling 
the relative and absolute probability of a sample being 
produced by either population. 

Procedure 
This study was conducted online. Participants signed up via 
a university system, and followed a link to a web page that 
included the following text:  

“In this study you will be given information about 
different types of trees. For example, Ukon cherry trees 
tend to have yellow blossoms. In contrast, Kanzan 
cherry trees tend to have pink blossoms. Suppose you 
see a grove where someone planted either all Ukon or 
all Kanzan trees. If you did not know which kind of tree 
was planted, you could use the color of the blossoms in 
the grove to make an inference. For example, if the 
blossoms were mostly yellow, you might guess that 
Ukon, rather than Kanzan, trees were planted. 

In this study you will be asked to make inferences 
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about which of two types of trees seems more likely to 
have been planted in a grove based on the percent of 
blossoms that are a certain color.” 

  After viewing this text, participants followed a link to a 
survey made up of 48 pairs of questions, presented in 
random order, constructed using the sets of population µs 
and sample percentages described in Table 1. Each pair of 
questions was preceded by an information block, like the 
one below: 

“Mango trees can have either white or yellow flowers.  
2% of Aoco mango trees have white flowers.  
18% of Boco mango trees have white flowers.  
There are equal numbers of Aoco and Boco groves. 
You see a grove of 100 mango trees. This grove 
consists of either all Aoco trees or all Boco trees. You 
see that 8% of the trees have white flowers.” 

Participants were then asked to indicate which kind of 
grove this was more likely to be. For example, “Is this more 
likely to be an Aoco mango grove or Boco mango grove?” 
They are also asked to rate on a scale of 1-7 how sure they 
were of their answer, where 1 means “no idea” and 7 
indicated one was “completely sure.” 

After completing these 48 sets of questions, participants 
completed a 10 question multiple choice numeracy 
evaluation similar to that used by Obrecht et al. (2007) that 
required conversions between percentages, proportions and 
frequencies. They were also asked their math and verbal 
SAT scores, as well as what math and/or statistics classes 
they had taken or were currently taking. 

Analysis and Results 
For dichotomous features, the variance of a population (σ2 = 
np(1 – p)) becomes smaller as the proportion of the 
population exhibiting that feature becomes increasingly 
distant from 50%. There is 0 variance in populations where 
the percent of the population exhibiting a feature is 0% or 
100% and maximal variance in populations where that 
percentage is 50%. As a result, it is more likely that, for 
example, a population for which 82% of trees have white 
flowers would produce a sample of 100 trees where 90% 
have white flowers, than that a population for which 98% of 
trees have white flowers would do so. Similarly, it is more 
likely that a population for which 18% of trees have white 
flowers would produce a sample of 100 trees where 10% 
have white flowers, than that a population for which 2% of 
trees have white flowers would do so. Thus, in our analysis, 
we coded participants’ responses by whether or not they 
indicated that the grove was more likely to have come from 
the population with the more central population µ (close to 
50%), as this allowed us to most directly compare 
participants’ behavior across Low and High Parity 
conditions. 
 As can be seen in Table 1, samples were more likely to 
have come from populations with more central µs when µs 
were Extreme rather than Central, due to differences in 
variance. However, samples were more likely to have come 
from populations with more central µs when µ Spread was 

Wide rather than Narrow, due to the differences in means as 
well as the variance.  Further, Parity has no effect on 
likelihood. Thus, effects of Centrality can be attributed to 
the normative influence of variance, effects of Spread can 
be attributed to the normative influence of both variance and 
mean difference, and effects of Parity are not normative. 

We ran a 2 x 2 x 2 repeated measures ANOVA where the 
factors were a) Centrality, b) Spread, and c) Parity. 
Participants were asked 6 forced choice questions (3 sample 
% locations x 2 presentation orders) regarding each of the 8 
pairs of population µs. Thus, they were given scores 
corresponding to the proportion of these 6 questions for 
which they responded that the sample was more likely to 
have been drawn from the population with the more central 
µ for each of these 8 population conditions.  
 
Variance influenced likelihood judgments 
We found that individuals were more likely to choose the 
population with the more central µ in the Extreme than the 
Central conditions (F(1,205) = 48.4, p < .0005, η2

p  = .18), 
indicating that indeed, variance influenced participants’ 
likelihood judgments. Results are displayed in Figure 1. A 
non-parametric test further supports this conclusion. Each 
participant was asked 24 pairs of questions that only 
differed in centrality (Spread, Parity, sample % location, and 
presentation order being otherwise matched).  Of the 221 
participants that answered all the forced choice questions, 
137 gave more central answers when µs were extreme, 
while 42 gave more central answers when µs were central, 
and 42 showed no difference. This is significant by a 
binomial test (p<.0005). 
 
Non-normative influence of Parity  
The more central µ was chosen more often in the Low than 
the High Parity conditions (F(1,205) = 159.106, p < .0005, η2

p 
= .42)  Participants were also more strongly affected by 
Centrality when Parity was Low (F(1,220) = 13.777, p < 
.0005, η2

p = .06).  
 
Mean difference influenced likelihood judgments more 
strongly than variance  
The more central µ was chosen more often in the Wide than 
the Narrow Spread conditions (F(1,220) = 259.3, p < .0005, η2

p 
= .54), an effect that can be attributed to a sensitivity to 
mean difference as well as variance. Results are displayed in 
Figure 1. The initial analysis was followed up with a test to 
see whether relative influence of a) variance and b) absolute 
differences between population µs and sample means on 
people’s choices was normative. We ran a 2 (Narrow & 
Extreme vs. Wide & Central) x 2 (Parity) repeated measures 
ANOVA that compared data compiled from cases where the 
population µs were both Central and Wide to data compiled 
from cases where the population µs were both Extreme and 
Narrow. As previously mentioned, absolute and relative 
probabilities were closely matched in these conditions.  
Thus, normatively, no effect of the Narrow & Extreme vs. 
Wide & Central condition should be expected. However, 
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though in Narrow conditions sample percentages were, on 
average, equidistant from the more central and the more 
extreme population µs, in Wide conditions sample 
percentages were, on average, closer to the more central 
population µ. Thus, if the participants were being more 
strongly influenced by these mean differences than by 
variance, they would tend to give more central answers in 
the Wide & Central than the Narrow & Extreme conditions. 
Indeed, this effect was observed (F(1,220) = 79.8, p < .0005 η2

p 
= .27). The effect of Parity also remained significant (F(1,220) 
= 132.9, p < .0005, η2

p = .38). Further, the effect of Narrow 
& Extreme vs. Wide & Central populations was stronger in 
the High Parity conditions (F(1,220) = 10.0, p < .005, η2

p = 
.04). These findings are in line with previous research 
(Obrecht et al., 2007; Obrecht, under review) indicating that 
differences in means have a stronger influence on people’s 
decisions than differences in variance.  
 
Individual differences  
There is literature (e.g. Nisbett et al. 1983, Obrecht et al., 
2007) suggesting that individual differences in statistical 
training and numerical knowledge influence how people 
make use of statistical information. Thus, we performed a 
subsequent 2 x 2 x 2 repeated measures ANCOVA 
including as a covariate whether or not participants had a 
perfect score on the numeracy evaluation (40% had a perfect 
score). Participants who had perfect scores on the numeracy 
scale were more likely to respond that a sample was drawn 
from the population with the more central µ; that is, these 
participants gave more normative responses compared to 
those who scored lower on the numeracy measure (F(1,219) = 
4.4, p < .05, η2

p = .02). Further, such participants were more 
strongly influenced by numerical factors that affected 
likelihood (interaction between Numeracy and Spread: 
F(1,219) = 8.3, p < .005, η2

p = .04; interaction between 
Numeracy and Centrality: F(1,219) = 3.4, p < .07, η2

p = .015, 
marginally significant), and less strongly influenced by 
factors that did not affect likelihood (interaction between 
Numeracy and Parity: F(1,219) = 7.6, p < .01, η2

p = .03).  It 
should be noted that effects of Centrality, Parity, and 
Spread, as well as the interaction between Centrality and 
Parity remained significant when having a perfect score on 
the numeracy evaluation was included as a covariate (all ps 
< .0005). Results are displayed in Figure 1.  

These findings may be taken as evidence that, as 
suggested by Obrecht et al. (2007), more numerate 
individuals are more strongly influenced by numerical 
factors that affect probability than less numerate individuals. 
Individuals who scored perfectly on the numeracy 
evaluation had slightly higher mean SAT scores compared 
to those who made errors (727 (SD = 45) vs. 689 (SD = 70); 
t = 4.25, p < .005; 31 participants did not report SAT 
scores.)  One point of note however is that a second 
ANCOVA found no effect of having taken a statistics 
course when this factor, rather than numeracy, was included 
as a covariate (F(1,215) = .01, p > .9). It appears that statistical 
training did not boost performance on this task. 

  

Figure 1: Mean proportion of central responses from 
participants with perfect and imperfect numeracy scores for 
questions referring to the eight different population pairs 
(see Table 1). Error bars represent standard error. 

Discussion 
These results indicate that participants’ decisions were 
influenced by both normatively relevant and irrelevant 
numerical factors. As would be normatively correct, 
participants tended to indicate that the samples came from 
the population with the more central µ more often when the 
spacing between the populations was wide, rather then 
narrow, and when the populations were from a more 
extreme, rather than more central range. This offers 
evidence that a) people have some sensitivity to the 
likelihood of a sample being drawn from a given population 
and b) people can use variance when making such 
determinations. Although variance shifts people’s behavior 
in the normative direction, one cannot call their behavior 
precisely normative. An ideal observer would have selected 
the central population in all of the extreme population range 
trials and 80% of the central population range trials. This 
was not the case (see Figure 1).  

Further, even though Parity manipulation, normatively, 
should not have affected participants’ judgments, 
participants were less likely to choose the population with 
the more central µ when the population µs were in the High 
Parity condition. There are different possible interpretations 
for this effect. First, people have more difficulty performing 
categorical reasoning about information with negative parity 
(e.g. not red) than with positive parity (e.g. red) (see 
Feldman, 2000). Second, while the absolute differences 
between the sample means and population µs were matched 
across conditions with values from the High and Low 
Parities, the relative differences were not: 2 is 16 away from 
18, and 82 is 16 away from 98, but 2/18 is not equal to 
82/98. People’s ability to discriminate between numerical 
magnitudes is based on the relative, not the absolute, 
difference between them (Gallistel & Gelman, 2005). It is 
possible that performance was less normative for High vs. 
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Low Parity trials because the smaller relative differences 
between values used in High Parity trials made it more 
difficult for participants to discriminate between them and, 
subsequently, the probabilities they conveyed.  

Regardless of whether their use of variance information is 
precisely normative, these data show that people have some 
sensitivity to the probability that a sample with a particular 
mean might be drawn from a given population. This has 
implications for the interpretation of results from prior 
studies on normative use of statistical information. In a 
natural context, an observer is not in a position to assume 
that the samples they have information about are necessarily 
representative of the general population. Further, difference 
between means, standard deviations, and sample sizes can 
themselves convey information about the likelihood that 
sets were sampled from the same general population. Thus it 
is possible that some departures from “normative behavior” 
can be attributed, at least in part, to a sensitivity to the 
likelihood of the samples being randomly representative of 
the same general population.  

Consider, for example, the results of Obrecht, Chapman, 
and Gelman (2009). In this study participants were asked to 
make judgments about whether a particular kind of radio 
would break. They were told that a study found that 30 out 
of 1000 radios tested (3%) broke within a year. Some 
participants were also given sets of reports from individuals 
who owned that kind of radio of whom 2 out of 4, 3 out of 
4, 8 out of 16, or 12 out of 16 reported that the product 
broke. This study, like others before it (see Kahneman & 
Tversky, 1972), found that people did not use sample size in 
a normative fashion: participants gave more credence to the 
individual reports than they should have, given the much 
larger sample size of the radio study. In other words, 
participants did not weigh means by sample size, as the 
authors considered to be normatively correct. However, 
while it is typically considered normative to weight set 
means by sample size, this assumes that these data represent 
a random sampling of the population. Consider if, for 
example, the 1000 tested radios were made at a factory in 
Manhattan, but individuals’ reports were from owners of 
radios made in Nebraska. Lacking further information about 
the proportion of Manhattan and Nebraskan made radios in 
the general population, it may be reasonable to simply 
average these sample means without regard to sample size. 
The savvy statistician may determine that the randomness of 
the sampling was in question just from looking at the 
numbers: With a population µ of 3%, there would be less 
than a 1% chance of even 2 out of 4 sampled radios 
breaking, and less than a .0000001% chance that 12 out of 
16 would break. It would be quite legitimate for participants 
to conclude that the radios tested in the study were different 
then those that the customers were buying. 

Individuals may similarly be able to use statistical 
information to determine how likely it is that samples are 
drawn randomly from the same population (in which case 
weighting means by sample size is normative) or instead 
discretely sampled unknown subpopulations (in which case 

it is reasonable to average sample means without regard to 
sample size). A prerequisite to this ability is that people be 
sensitive to the likelihood that a sample is representative of 
a particular population. Our results indicate that people are 
indeed sensitive to such likelihoods. This interpretation is 
supported by the results from Obrecht (under review). 
Obrecht found that participants are more likely to weight 
means by their sample sizes when the sample sizes are 
smaller, rather than larger: The probability of a population 
producing samples with divergent means is lower when the 
sample sizes are larger, thus averaging means without 
weighting by sample size would be more normative in the 
higher than the lower sample size conditions. We are 
currently conducting a series of studies to further determine 
if people’s judgments about statistical information are 
influenced by likelihood in such a fashion. 
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