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Abstract Single-particle tracking (SPT) has become an important method to bridge biochemistry

and cell biology since it allows direct observation of protein binding and diffusion dynamics in live

cells. However, accurately inferring information from SPT studies is challenging due to biases in

both data analysis and experimental design. To address analysis bias, we introduce ‘Spot-On’, an

intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known

biases, including molecules moving out-of-focus, and robustly infers diffusion constants and

subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases,

we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-

blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and

show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live

mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On

consistently and robustly infers subpopulation fractions and diffusion constants.

DOI: https://doi.org/10.7554/eLife.33125.001

Introduction
Advances in imaging technologies, genetically encoded tags and fluorophore development have

made single-particle tracking (SPT) an increasingly popular method for analyzing protein dynamics

(Liu et al., 2015). Recent biological applications of SPT have revealed that transcription factors (TFs)

bind mitotic chromosomes (Teves et al., 2016), how Polycomb interacts with chromatin

(Zhen et al., 2016), that ‘pioneer factor’ TFs bind chromatin dynamically (Swinstead et al., 2016),

that TF binding time correlates with transcriptional activity (Loffreda et al., 2017) and that different

nuclear proteins adopt distinct target search mechanisms (Izeddin et al., 2014; Rhodes et al.,

2017). Compared with indirect and bulk techniques such as Fluorescence Recovery After Photo-

bleaching (FRAP) or Fluorescence Correlation Spectroscopy (FCS), SPT is often seen as less biased

and less model-dependent (Goulian and Simon, 2000; Mueller et al., 2013; Shen et al., 2017). In

particular, SPT makes it possible to directly follow single molecules over time in live cells and has

provided clear evidence that proteins often exist in several subpopulations that can be characterized

by their distinct diffusion coefficients (Mueller et al., 2013; Shen et al., 2017). For example, nuclear

proteins such as TFs and chromatin binding proteins typically show a quasi-immobile chromatin-

bound fraction and a freely diffusing fraction inside the nucleus. However, while SPT of slow-diffus-

ing membrane proteins is an established technology (Weimann et al., 2013), 2D-SPT of proteins
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freely diffusing inside a 3D nucleus introduces several biases that must be corrected for in order to

obtain accurate estimates of subpopulations. First, while a frame is acquired, fast-diffusing molecules

move and spread out their emitted photons over multiple pixels causing a ‘motion-blur’ artifact (Ber-

glund, 2010; Deschout et al., 2012; Frost et al., 2012; Goulian and Simon, 2000; Izeddin et al.,

2014), whereas immobile or slow-diffusing molecules resemble point spread functions (PSFs;

Figure 1A). This results in under-counting of the fast-diffusing subpopulation. Second, high particle

densities tend to cause tracking errors when localized molecules are connected into trajectories. This

can result in incorrect displacement estimates (Figure 1B). Third, since SPT generally employs 2D

imaging of 3D motion, immobile or slow-diffusing molecules will generally remain in-focus until they

photobleach and therefore exhibit long trajectories, whereas fast-diffusing molecules in 3D rapidly

move out-of-focus, thus resulting in short trajectories (we refer to this as ‘defocalization’; Figure 1C).

This results in a time-dependent under-counting of fast-diffusing molecules (Goulian and Simon,

2000; Kues and Kubitscheck, 2002). Fourth, SPT analysis methods themselves may introduce

biases; to avoid this, an accurate and validated method is needed (Figure 1D).

Here, we introduce an integrated approach to overcome all four biases. The first two biases must

be minimized at the data acquisition stage and we describe an experimental SPT method to do so

(spaSPT), whereas the latter two can be overcome using a previously developed kinetic modeling

framework (Hansen et al., 2017; Mazza et al., 2012) now extended and implemented in Spot-On.

eLife digest Proteins, the molecules that make up the cells’ internal machinery, are responsible

for almost every process that keeps cells alive. Watching how proteins move and interact within a

living cell can help scientists to better understand these biological mechanisms. Single-particle

tracking is a recent technique that makes these observations possible by taking ‘live’ recordings of

individual proteins in a cell. Typically, the goal of a single-particle tracking experiment is to assign

proteins into groups, or subpopulations, based on the way they move in the cell. For example, one

subpopulation may be bound to other cellular structures, a second moving freely at a high speed,

and a third diffusing slowly. This informs on the biological roles of the proteins.

The method involves an experimental stage and an analysis stage. During the experiment,

proteins of interest are labeled with a small dye molecule that produces light when excited by a

laser. The laser then illuminates the cell, stimulating all the labels in a thin layer. The position of each

molecule is then determined with a microscope and a ‘snapshot’ taken. By repeating this process

over multiple images, the movement of each molecule over time can be tracked. However,

experimental problems can make the interpretation difficult. Motion blurring takes place when the

proteins move so fast they appear as blurs in the images; tracking errors happen when so many

proteins are present in the same space their trajectories overlap.

Here, Hansen, Woringer et al. combine two pre-existing methods to improve the experimental

set-up. Using lasers that flash like a strobe light reduces motion blurring by essentially taking

snapshots of the proteins at short time intervals. Tracking errors are addressed by a technique

whereby only one protein at a time produces light.

Once the images are obtained and analyzed to yield trajectories, the trajectories themselves

need to be analyzed to determine the number and properties of the protein subpopulations. Several

factors can skew this analysis stage. For example, there is often a bias against fast-moving particles

because the laser only lights up a thin layer of the cell. The proteins travelling slowly stay in focus

long enough to be detected across many images; the fast ones quickly move out of the layer and

are therefore counted less often. Hansen, Woringer et al. designed a free and user-friendly

algorithm package called Spot-On to correct for this issue. Spot-On was thoroughly benchmarked

against other solutions, demonstrating both its accuracy and robustness.

Single-particle tracking can lead to misleading results if used incorrectly. It is essential to

publically share solutions that help make this technique more rigorous, especially since a growing

number of scientists have already started to use the method.

DOI: https://doi.org/10.7554/eLife.33125.002
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Spot-On is available as a web-interface (https://

SpotOn.berkeley.edu) as well as Python and Mat-

lab packages.

Results

Overview of Spot-On
Spot-On is a user-friendly web-interface that ped-

agogically guides the user through a series of

quality-checks of uploaded datasets consisting of

pooled single-molecule trajectories. It then per-

forms kinetic model-based analysis that leverages

the histogram of molecular displacements over

time to infer the fraction and diffusion constant

of each subpopulation (Figure 2). Spot-On does

not directly analyze raw microscopy images, since

a large number of localization and tracking algo-

rithms exist that convert microscopy images into

single-molecule trajectories (for a comparison of

particle tracking methods, see (Chenouard et al.,

2014); moreover, Spot-On can be one-click inter-

faced with TrackMate (Tinevez et al., 2017),

which allows inspection of trajectories before

uploading to Spot-On).

To use Spot-On, a user uploads their SPT tra-

jectory data in one of several formats (Figure 2).

Spot-On then generates useful meta-data for

assessing the quality of the experiment (e.g.

localization density, number of trajectories etc.).

Spot-On also allows a user to upload multiple

datasets (e.g. different replicates) and merge

them. Spot-On then calculates and displays histo-

grams of displacements over multiple time

delays. The next step is model fitting. Spot-On

models the distribution of displacements for each

subpopulation using Brownian motion under

steady-state conditions without state transitions

(full model description in Materials and Methods).

Spot-On also accounts for localization errors

(either user-defined or inferred from the SPT

Figure 1. Bias in single-particle tracking (SPT)

experiments and analysis methods. (A) ‘Motion-blur’

bias. Constant excitation during acquisition of a frame

will cause a fast-moving particle to spread out its

emission photons over many pixels and thus appear as

a motion-blur, which make detection much less likely

with common PSF-fitting algorithms. In contrast, a

slow-moving or immobile particle will appear as a well-

shaped PSF and thus readily be detected. (B) Tracking

ambiguities. Tracking at high particle densities

prevents unambiguous connection of particles between

frames and tracking errors will cause displacements to

be misidentified. (C) Defocalization bias. During 2D-

SPT, fast-moving particles will rapidly move out-of-

focus resulting in short trajectories, whereas immobile

particles will remain in-focus until they photobleach

and thus exhibit very long trajectories. This results in a

bias toward slow-moving particles, which must be

corrected for. (D) Analysis method. Any analysis

method should ideally avoid introducing biases and

accurately correct for known biases in the estimation of

subpopulation parameters such as DFREE, FBOUND,

DBOUND.

DOI: https://doi.org/10.7554/eLife.33125.003

Figure 2. Overview of Spot-On interface. To use Spot-On, a user uploads raw SPT data in the form of pooled SPT

trajectories to the Spot-On web-interface. Spot-On then calculates displacement histograms. The user inputs

relevant experimental descriptors and chooses a model to fit. After model-fitting, the user can then download

model-inferred parameters, meta-data and download publication-quality figures.

DOI: https://doi.org/10.7554/eLife.33125.004
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data). Crucially, Spot-On corrects for defocalization bias (Figure 1C) by explicitly calculating the

probability that molecules move out-of-focus as a function of time and their diffusion constant

(Video 1). In fact, Spot-On uses the gradual loss of freely diffusing molecules over time as additional

information to infer the diffusion constant and size of each subpopulation.

Spot-On considers either 2 or 3 subpopulations. For instance, TFs in nuclei can generally exist in

both a chromatin-bound state characterized by slow diffusion and a freely diffusing state associated

with rapid diffusion. In this case, a 2-state model is generally appropriate (‘bound’ vs. ‘free’). Spot-

On allows a user to choose their desired model and parameter ranges and then fits the model to the

data. Using the previous example of TF dynamics, this allows the user to infer the bound fraction

and the diffusion constants. Finally, once a user has finished fitting an appropriate model to their

data, Spot-On allows easy download of publication-quality figures and relevant data (Figure 2; Full

tutorial in Supplementary file 1).

Validation of Spot-On using simulated SPT data and comparison to
other methods
We first evaluated whether Spot-On could accurately infer subpopulations (Figure 1D) and success-

fully account for known biases (Figure 1C) using simulated data. We compared Spot-On to a popu-

lar alternative approach of first fitting the mean square displacement (MSD) of individual trajectories

of a minimum length and then fitting the distribution of estimated diffusion constants (we refer to

this as ‘MSDi’) as well as a sophisticated Hidden-

Markov Model-based Bayesian inference method

(vbSPT) (Persson et al., 2013). Since most SPT

data is collected using highly inclined illumina-

tion (Tokunaga et al., 2008) (HiLo), we simu-

lated TF binding and diffusion dynamics (2-state

model: ‘bound vs. free’) confined inside a 4 mm

radius mammalian nucleus under realistic HiLo

SPT experimental settings subject to a 25 nm

localization error (Figure 3—figure supplement

1). We considered the effect of the exposure

time (1 ms, 4 ms, 7 ms, 13 ms, 20 ms), the free

diffusion constant (from 0.5 mm2/s to 14.5 mm2/s

in 0.5 mm2/s increments) and the bound fraction

(from 0% to 95% in 5% increments) yielding a

total of 3480 different conditions that span the

full range of biologically plausible dynamics (Fig-

ure 3—figure supplements 2–3; Appendix 1).

Spot-On accurately inferred subpopulation

sizes with minimal error (Figure 3A–B, Table 1),

but slightly underestimated the diffusion con-

stant (�4.8%; Figure 3B; Table 1). However, this

underestimate was due to particle confinement

inside the nucleus: Spot-On correctly inferred

the diffusion constant when the confinement was

relaxed (Figure 3—figure supplement 4; 20 mm

nuclear radius instead of 4 mm). This emphasizes

that diffusion constants measured by SPT inside

cells should be viewed as apparent diffusion con-

stants. In contrast, the MSDi method failed under

most conditions regardless of whether all trajec-

tories were used (MSDi (all)) or a fitting filter

applied (MSDi (R
2 >0.8); Figure 3A–B; Table 1).

vbSPT performed almost as well as Spot-On for

slow-diffusing proteins, but showed larger devia-

tions for fast-diffusing proteins (Figure 3—figure

supplements 2–3).

Video 1. Related to Figure 1. Illustration of

defocalization bias. Illustration of a single-particle

tracking experiment with two subpopulations (one

‘immobile’, D = 0.001 mm2/s, the other ‘free’, D = 4

mm2/s with a 1:1 ratio, observed using 20 ms time

interval). The red region corresponds to the axial

detection range (1 mm) and molecules randomly

appear when they photo-activate. For each trajectory,

the detected localizations inside the detection range

are shown as red spheres and undetected localizations

outside the detection range are shown as white

spheres. Each particle has a mean lifetime of 15 frames,

25 nm localization error and trajectories consisting of at

least two frames are plotted. Epi illumination is

assumed. The SPT data was simulated and plotted

using simSPT (available at https://gitlab.com/tjian-

darzacq-lab/simSPT).

DOI: https://doi.org/10.7554/eLife.33125.005
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Figure 3. Validation of Spot-On using simulations and comparisons to other methods. (A–B) Simulation results. Experimentally realistic SPT data was

simulated inside a spherical mammalian nucleus with a radius of 4 mm subject to highly-inclined and laminated optical sheet illumination

(Tokunaga et al., 2008) (HiLo) of thickness 4 mm illuminating the center of the nucleus. The axial detection window was 700 nm with Gaussian edges

and particles were subject to a 25 nm localization error in all three dimensions. Photobleaching corresponded to a mean trajectory length of 4 frames

inside the HiLo sheet and 40 outside. 3480 experiments were simulated with parameters of DFREE=[0.5;14.5] in steps of 0.5 mm2/s and FBOUND=[0;95% in

steps of 5% and the frame rate correspond to Dt=[1,4,7,10,13,20] ms. Each experiment was then fitted using Spot-On, using vbSPT (maximum of 2

states allowed) (Persson et al., 2013), MSDi using all trajectories of at least five frames (MSDi (all)) or MSDi using all trajectories of at least five frames

where the MSD-curvefit showed at least R2 >0.8 (MSDi (R
2 >0.8)). (A) shows the distribution of absolute errors in the FBOUND–estimate and (B) shows the

distribution of relative errors in the DFREE–estimate. (C) Single simulation example with DFREE = 2.0 mm2/s; FBOUND = 70%; 7 ms per frame. The table on

the right uses numbers from CDF-fitting, but for simplicity the fits to the histograms (PDF) are shown in the three plots. (D) Single simulation example

with DFREE = 14.0 mm2/s; FBOUND = 50%; 20 ms per frame. Full details on how SPT data was simulated and analyzed with the different methods is given

in Appendix 1.

DOI: https://doi.org/10.7554/eLife.33125.006

The following figure supplements are available for figure 3:

Figure supplement 1. Overview of SPT simulations.

DOI: https://doi.org/10.7554/eLife.33125.007

Figure supplement 2. Comparison of Spot-On, vbSPT and MSDi estimates of DFREE and FBOUND to ground-truth simulation results inside a 4 mm radius

nucleus.

DOI: https://doi.org/10.7554/eLife.33125.008

Figure supplement 3. Representative fits for Spot-On, vbSPT and MSDi to ground-truth simulations.

DOI: https://doi.org/10.7554/eLife.33125.009

Figure supplement 4. Comparison of Spot-On, vbSPT and MSDi estimates of DFREE and FBOUND to ground-truth simulations inside a 20 mm radius

nucleus.

DOI: https://doi.org/10.7554/eLife.33125.010

Figure supplement 5. Effect of defocalization bias correction.

DOI: https://doi.org/10.7554/eLife.33125.011

Figure supplement 6. Evaluation of the 3-states model.

DOI: https://doi.org/10.7554/eLife.33125.012

Figure supplement 7. Sensitivity of Spot-On to the axial detection range estimate.

DOI: https://doi.org/10.7554/eLife.33125.013

Figure supplement 8. Sensitivity of Spot-On to the number of time points considered.

DOI: https://doi.org/10.7554/eLife.33125.014

Figure supplement 9. Comparison of Spot-On and MSDi estimates of DFREE and FBOUND to ground-truth simulation results inside a 4 mm radius

nucleus using PDF-fitting.

DOI: https://doi.org/10.7554/eLife.33125.015

Figure 3 continued on next page
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To illustrate how the methods could give such divergent results when run on the same SPT data,

we considered two example simulations (Figure 3C–D; more examples in Figure 3—figure supple-

ment 3). First, we considered a mostly bound and relatively slow diffusion case (DFREE: 2.0 mm2/s;

FBOUND: 70%; Dt: 7 ms; Figure 3C). Spot-On and vbSPT accurately inferred both DFREE and FBOUND.

In contrast, MSDi (R
2 > 0.8) greatly underestimated FBOUND (13.6% vs. 70%), whereas MSDi (all)

slightly overestimated FBOUND. Since MSDi-based methods apply two thresholds (first, minimum tra-

jectory length: here five frames; second, filtering based on R2) in many cases less than 5% of all tra-

jectories passed these thresholds and this example illustrate how sensitive MSDi-based methods are

to these thresholds. Note that although we show the fits to the probability density function since

this is more intuitive (PDF; histogram), we performed the fitting to the cumulative distribution func-

tion (CDF). Second, we considered an example with a slow frame rate and fast diffusion, such that

the free population rapidly moves out-of-focus (DFREE: 14.0 mm2/s; FBOUND: 50%; Dt: 20 ms;

Figure 3D). Spot-On again accurately inferred FBOUND, and slightly underestimated DFREE due to

high nuclear confinement (Figure 3—figure supplement 4). Although vbSPT generally performed

well, because it does not correct for defocalization bias (vbSPT was developed for bacteria, where

defocalization bias is minimal), vbSPT strongly overestimated FBOUND in this case (Figure 3D). Con-

sistent with this, Spot-On without defocalization-bias correction also strongly overestimates the

bound fraction (Figure 3—figure supplement 5). We conclude that correcting for defocalization

bias is critical. The MSDi-based methods again gave divergent results despite seemingly fitting the

data well. Thus, a good fit to a histogram of log(D) does not necessarily imply that the inferred DFREE

and FBOUND are accurate. A full discussion and comparison of the methods is given in Appendix 1.

Finally, we extended this analysis of simulated SPT data to three states (one ‘bound’, two ‘free’

states) and compared Spot-On and vbSPT. Spot-On again accurately inferred both the diffusion con-

stants and subpopulation fractions of each population and slightly outperformed vbSPT (Figure 3—

figure supplement 6).

Having established that Spot-On is accurate, we next tested whether it was also robust. Spot-

On’s ability to infer DFREE and FBOUND was robust to misestimates of the axial detection range

of ~100–200 nm (Figure 3—figure supplement 7), was minimally affected by the number of time-

points considered and fitting parameters (Figure 3—figure supplements 8–9; see also Appendix 2

for parameter considerations) and was not strongly affected by state changes (e.g. binding or

unbinding) provided the time-scale of state changes is significantly longer than the frame rate (Fig-

ure 3—figure supplement 10). Moreover, Spot-On inferred the localization error with nanometer

precision provided that a significant bound fraction is present (Figure 3—figure supplement 11).

Finally, we sub-sampled the data sets and found that just ~3000 short trajectories (mean length ~3–4

frames) were sufficient for Spot-On to reliably infer the underlying dynamics (Figure 3—figure sup-

plement 12). We conclude that Spot-On is robust.

Taken together, this analysis of simulated SPT data suggests that Spot-On successfully overcomes

defocalization and analysis method biases (Figure 1C–D), accurately and robustly estimates subpo-

pulations and diffusion constants across a wide range of dynamics and, finally, outperforms other

methods.

spaSPT minimizes biases in experimental SPT acquisitions
Having validated Spot-On on simulated data, which is not subject to experimental biases

(Figure 1A–B), we next sought to evaluate Spot-On on experimental data. To generate SPT data

with minimal acquisition bias we performed stroboscopic photo-activation SPT (spaSPT; Figure 4A),

which integrates previously and separately published ideas to minimize experimental biases. First,

spaSPT minimizes motion-blurring, which is caused by particle movement during the camera

Figure 3 continued

Figure supplement 10. Sensitivity of Spot-On to state changes and comparison with vbSPT.

DOI: https://doi.org/10.7554/eLife.33125.016

Figure supplement 11. Robustness of localization error estimates from Spot-On.

DOI: https://doi.org/10.7554/eLife.33125.017

Figure supplement 12. Sensitivity of Spot-On, vbSPT and MSDi (R
2 >0.8) to sample size.

DOI: https://doi.org/10.7554/eLife.33125.018
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exposure time (Figure 1A), by using stroboscopic excitation (Elf et al., 2007; Frost et al., 2012).

We found that the bright and photo-stable dyes PA-JF549 and PA-JF646 (Grimm et al., 2016a) in

combination with the HaloTag (‘Halo’) labeling strategy made it possible to achieve a signal-to-back-

ground ratio greater than 5 with just 1 ms excitation pulses, thus providing a good compromise

between minimal motion-blurring and high signal (Figure 4B). Second, spaSPT minimizes tracking

errors (Figure 1B) by using photo-activation (Figure 4A) (Grimm et al., 2016a; Manley et al.,

2008). Tracking errors are generally caused by high particles densities. Photo-activation allows track-

ing at extremely low densities (�1 molecule per nucleus per frame) and thereby minimizes tracking

errors (Izeddin et al., 2014), whilst at the same time generating thousands of trajectories. To con-

sider the full spectrum of nuclear protein dynamics, we studied histone H2B-Halo (overwhelmingly

bound; fast diffusion; Figure 4C), Halo-CTCF (Hansen et al., 2017) (largely bound; slow diffusion;

Figure 4D) and Halo-NLS (overwhelmingly free; very fast diffusion; Figure 4F) in human U2OS cells

and Halo-Sox2 (Teves et al., 2016) (largely free; intermediate diffusion; Figure 4E) in mouse embry-

onic stem cells (mESCs). We labeled Halo-tagged proteins in live cells with the HaloTag ligands PA-

JF549 or PA-JF646 (Grimm et al., 2016a) and performed spaSPT using HiLo illumination (Video 2). To

generate a large dataset to comprehensively test Spot-On, we performed 1064 spaSPT experiments

across 60 different conditions.

Validation of Spot-On using spaSPT data at different frame rates
First, we studied whether Spot-On could consistently infer subpopulations over a wide range of

frame rates. We experimentally determined the axial detection range to be ~700 nm (Figure 4—fig-

ure supplement 1) and performed spaSPT at 200 Hz, 167 Hz, 134 Hz, 100 Hz, 74 Hz and 50 Hz using

the four cell lines. Spot-On consistently inferred the diffusion constant (Figure 4G) and total bound

fraction across the wide range of frame rates (Figure 4H). This is notable since all four proteins

exhibit apparent anomalous diffusion (Figure 4—figure supplement 2) and this demonstrates that

Spot-On is also robust to anomalous diffusion despite modeling Brownian motion. While the

ground-truth is unknown when considering experiments, Spot-On gave biologically reasonable

results: histone H2B was overwhelmingly bound and free Halo-3xNLS was overwhelmingly unbound

(comparison with vbSPT: Figure 4—figure supplement 3). These results provide additional valida-

tion for the bias corrections implemented in Spot-On. We also note that although Spot-On was vali-

dated on spaSPT data, SPT data with non-photoactivatable dyes is also suitable for Spot-On analysis

provided that the density is sufficiently low to minimize tracking errors (see also Appendix 3: "Which

datasets are appropriate for Spot-On?”). Finally, we demonstrated above that just ~3000 short tra-

jectories (mean length ~3–4 frames) were sufficient for Spot-On to accurately infer DFREE and FBOUND

(Figure 3—figure supplement 12). Here we obtain well above 3000 trajectories per cell even at ~1

localization/frame. More generally, with spaSPT this should be generally achievable for all but the

most lowly expressed nuclear proteins. Thus, this now makes it possible to study biological cell-to-

cell variability in TF dynamics.

Table 1. Summary of simulation results and comparison of methods.

The table shows the bias (mean error), ‘std’ (standard deviation) and ‘iqr’ (inter-quartile range: differ-

ence between the 75th and 25th percentile) for each method for all 3480 simulations. The left column

shows the relative bias/std/iqr for the DFREE-estimate and the right column shows the absolute bias/

std/iqr for the FBOUND-estimate.

Analysis method

DFREE FBOUND

bias std iqr bias std iqr

Spot-On (all) �4.8% 3.3% 3.5% �1.7% 1.2% 1.8%

vbSPT (2-state) 0.8% 12.5% 6.8% 5.0% 4.6% 6.1%

MSDi (R
2 > 0.8) 8.0% 28.5% 4.9% �20.6% 26.4% 32.1%

MSDi (all) �39.6% 41.8% 19.0% 22.0% 15.8% 17.8%

DOI: https://doi.org/10.7554/eLife.33125.019
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Effect of motion-blur bias on parameter estimates
Having validated Spot-On on experimental SPT data, we next applied Spot-On to estimate the

effect of motion-blurring on the estimation of subpopulations. As mentioned, since most localization

algorithms (Chenouard et al., 2014; Sergé et al., 2008) achieve super-resolution through PSF-fit-

ting, this may cause motion-blurred molecules to be undersampled, resulting in a bias towards slow-

moving molecules (Figure 1A). We estimated the extent of the bias by imaging the four cell lines at

100 Hz and keeping the total number of excitation photons constant, but varying the excitation

pulse duration (1 ms, 2 ms, 4 ms, 7 ms, constant; Figure 4I). For generality, we performed these

experiments using both PA-JF549 and PA-JF646 dyes (Grimm et al., 2016a). We used Spot-On to fit

the data and plotted the apparent free diffusion constant (Figure 4J) and apparent total bound frac-

tion (Figure 4K) as a function of the excitation pulse duration. For fast-diffusing proteins like Halo-

Figure 4. Overview of spaSPT and experimental results. (A) spaSPT. HaloTag-labeling with UV (405 nm) photo-activatable dyes enable spaSPT. spaSPT

minimizes tracking errors through photo-activation which maintains low densities. (B) Example data. Raw spaSPT images for Halo-CTCF tracked in

human U2OS cells at 134 Hz (1 ms stroboscopic 633 nm excitation of JF646). (C–F) Histograms of displacements for multiple Dt of histone H2B-Halo in

U2OS cells (C), Halo-CTCF in U2OS cells (d), Halo-Sox2 in mES cells (E) and Halo-3xNLS in U2OS cells (F). (G–H) Effect of frame-rate on DFREE and

FBOUND. spaSPT was performed at 200 Hz, 167 Hz, 134 Hz, 100 Hz, 74 Hz and 50 Hz using the 4 cell lines and the data fit using Spot-On and a 2-state

model. Each experiment on each cell line was performed in four replicates on different days and ~5 cells imaged each day. (I) Motion-blur experiment.

To investigate the effect of ‘motion-blurring’, the total number of excitation photons was kept constant, but delivered during pulses of duration 1, 2, 4,

7 ms or continuous (cont) illumination. (J–K) Effect of motion-blurring on DFREE and FBOUND. spaSPT data was recorded at 100 Hz and 2-state model-

fitting performed with Spot-On. The inferred DFREE (J) and FBOUND (K) were plotted as a function of excitation pulse duration. Each experiment on each

cell line was performed in four replicates on different days and ~5 cells imaged each day. Error bars show standard deviation between replicates.

DOI: https://doi.org/10.7554/eLife.33125.020

The following figure supplements are available for figure 4:

Figure supplement 1. Experimental measurement of axial detection range.

DOI: https://doi.org/10.7554/eLife.33125.021

Figure supplement 2. Sensitivity of Spot-On to anomalous diffusion.

DOI: https://doi.org/10.7554/eLife.33125.022

Figure supplement 3. Re-analysis of experimental data using vbSPT.

DOI: https://doi.org/10.7554/eLife.33125.023
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3xNLS and H2B-Halo, motion-blurring resulted in

a large underestimate of the free diffusion con-

stant, whereas the effect on slower proteins like

CTCF and Sox2 was minor (Figure 4J). Regarding

the total bound fraction, motion-blurring caused

a ~2 fold overestimate for rapidly diffusing Halo-

3xNLS (Figure 4K), but had a minor effect on

slower proteins like H2B, CTCF and Sox2. Similar

results were obtained for both dyes for proteins

with a significant bound fraction, but we note

that JF549 appears to better capture the dynam-

ics of proteins with a minimal bound fraction such

as Halo-3xNLS (Figure 4J–K). Finally, we note

that the extent of the bias due to motion-blurring

will likely be very sensitive to the localization

algorithm. Here, using the MTT-algorithm

(Sergé et al., 2008), motion-blurring caused up

to a 2-fold error in both the DFREE and FBOUND

estimates.

Taken together, these results suggest that Spot-On can reliably be used even for SPT data col-

lected under constant illumination provided that protein diffusion is sufficiently slow and, moreover,

provides a helpful guide for optimizing SPT imaging acquisitions (we include a full discussion of con-

siderations for SPT acquisitions and a proposal for minimum reporting standards in SPT in Appendix

3 and 4).

Discussion
In summary, SPT is an increasingly popular technique and has been revealing important new biologi-

cal insight. However, a clear consensus on how to perform and analyze SPT experiments is currently

lacking. In particular, 2D SPT of fast-diffusing molecules inside 3D cells is subject to a number of

inherent experimental (Figure 1A–B) and analysis (Figure 1C–D) biases, which can lead to inaccurate

conclusions if not carefully corrected for.

Here, we introduce approaches for accounting for both experimental and analysis biases. Several

methods are available for localization/tracking (Chenouard et al., 2014; Sergé et al., 2008) and for

classification of individual trajectories (Monnier et al., 2015; Persson et al., 2013). Spot-On now

complements these tools by providing a bias-corrected, comprehensive open-source framework for

inferring subpopulations and diffusion constants from pooled SPT data and makes this platform

available through a convenient web-interface. This platform can easily be extended to other diffusion

regimes (Metzler et al., 2014) and models (Lee et al., 2017) and, as 3D SPT methods mature, to

3D SPT data. Moreover, spaSPT provides an acquisition protocol for tracking fast-diffusing mole-

cules with minimal bias. We hope that these validated tools will help make SPT more accessible to

the community and contribute positively to the emergence of ‘gold-standard’ acquisition and analy-

sis procedures for SPT.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

cell line (Homo sapiens) Halo-CTCF Hansen et al. eLife 2017;6:e25776;
PMID 28467304;
doi: 10.7554/eLife.25776

U2OS C32
FLAG-Halo-CTCF

Previously reported homozygous
endogenous knock-in cell line where
all endogenous copies of CTCF
have been N-terminally tagged with
FLAG-HaloTag

Continued on next page

Video 2. Related to Figure 4. Representative raw

spaSPT movie (Halo-hCTCF at 134 Hz). spaSPT movie

(1 ms of 633 nm laser delivered at the beginning of

each frame; 405 nm laser photo-activation pulses

delivered in between frames) of endogenously tagged

CTCF (C32 Halo-hCTCF) in human U2OS cells imaged

at ~134 Hz (7.477 ms per frame). Dye: PA-JF646. One

pixel: 160 nm.

DOI: https://doi.org/10.7554/eLife.33125.024
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

cell line (Homo sapiens) Halo-3xNLS Hansen et al. eLife 2017;6:e25776;
PMID 28467304;
doi: 10.7554/eLife.25776

U2OS Halo-3xNLS U2OS cell line stably expressing
Halo-3xNLS (3 copies of the SV40 Nuclear
Localization Signal) generated by
G418 selection. Generously provided
by David T McSwiggen.

cell line (Homo sapiens) H2B-Halo Hansen et al. eLife 2017;6:e25776;
PMID 28467304;
doi: 10.7554/eLife.25776

U2OS H2B-Halo-SNAP U2OS cell line stably expressing histone
H2B-Halo-SNAP generated by G418
selection. Generously provided
by David T McSwiggen.

cell line (Mus musculus) Halo-Sox2 Teves et al. eLife 2016;5:e22280;
PMID 27855781;
doi: 10.7554/eLife.22280

mESC JM8.N4 C3
Halo-FLAG-Sox2

Previously reported homozygous
endogenous knock-in cell line where
both endogenous copies of Sox2 have
been N-terminally tagged with
HaloTag-FLAG. Generously provided
by Sheila S Teves.

software, algorithm Spot-On Matlab this paper Spot-On Matlab Please see Materials and Methods
for a full description. Open-source code
is freely available at GitLab: : https://gitlab.com/tjian-darzacqla
com/elifesciences-publications/spot-on-matlab)

software, algorithm Spot-On Python this paper Spot-On Python Please see Materials and Methods for
a full description. Open-source code is
freely available at GitLab: https://gitlab.com/tjian-darzacqlab/
elifesciences-publications/spot-on-cli)

software, algorithm Spot-On this paper Spot-On Please see Materials and Methods for a
full description. The web-interface can be
found at https://spoton.berkeley.edu/
and the underlying source-code is
freely available at GitLab: https://gitlab.com/tjian-darzacqlab/
elifesciences-publications/spot-on)

software, algorithm simSPT this paper simSPT Code for efficiently simulating experimentally
realistic SPT data. Please see Materials and
Methods for a full description.
Open-source code is
freely available at GitLab:
https://gitlab.com/tjian-darzacq-lab/simSPT

software, algorithm MSDi; vbSPT; this paper and Persson et al.
Nature Methods 2013;
PMID: 23396281;
DOI: 10.1038/nmeth.2367

MSDi; vbSPT; Supplementary software used for MSDi
and vbSPT analysis as well as for
generating the simulated data can be
found at: https://zenodo.org/record/835171

chemical compound, drug PA-JF549 Grimm et al. Nature
Methods 2016;
PMID 27776112;
DOI: 10.1038/nmeth.4034

PA-JF549 Please contact Luke D Lavis for distribution.

chemical compound, drug PA-JF646 Grimm et al. Nature
Methods 2016;
PMID 27776112;
DOI: 10.1038/nmeth.4034

PA-JF646 Please contact Luke D Lavis for distribution.

Spot-On model
Spot-On implements and extends a kinetic modeling framework first described in Mazza et al.

(2012) and later extended in Hansen et al. (2017). Briefly, the model infers the diffusion constant

and relative fractions of two or three subpopulations from the distribution of displacements (or histo-

gram of displacements) computed at increasing lag time (1Dt, 2Dt,. ..). This is performed by fitting a

semi-analytical model to the empirical histogram of displacements using non-linear least squares fit-

ting. Defocalization is explicitly accounted for by modeling modeling the fraction of particles that

remain in focus over time as a function of their diffusion constant.

Mathematically, the evolution over time of a concentration of particles located at the origin as a

Dirac delta function and which follows free diffusion in two dimensions with a diffusion constant D

can be described by a propagator (also known as Green’s function). Properly normalized, the
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probability of a particle starting at the origin ending up at a location r = (x,y) after a time delay, Dt,

is given by:

P r;Dtð Þ ¼N
r

2DDt
e

�r2

4DDt

Here N is a normalization constant with units of length. Spot-On integrates this distribution over

a small histogram bin window, Dr, to obtain a normalized distribution, the distribution of displace-

ment lengths to compare to binned experimental data. For simplicity, we will therefore leave out N

from subsequent expressions. Since experimental SPT data is subject to a significant mean localiza-

tion error, s, Spot-On also accounts for this (Matsuoka et al., 2009):

P r;Dtð Þ ¼ r

2 DDtþs2ð Þe
�r2

4 DDtþs2ð Þ

Many proteins studied by SPT can generally exist in a quasi-immobile state (e.g. a chromatin-

bound state in the case of transcription factors) and one or more mobile states. We will first consider

the 2-state model. Under most conditions, state transitions can be ignored ((Hansen et al., 2017)

and Figure 3—figure supplement 10). Thus, the steady-state 2-state model considered by Spot-On

becomes:

P r;Dtð Þ ¼ FBOUND

r

2 DBOUNDDtþs2ð Þe
�r2

4 DBOUNDDtþs2ð Þ þ 1�FBOUNDð Þ r

2 DFREEDtþs2ð Þe
�r2

4 DFREEDtþs2ð Þ

Here, the quasi-immobile subpopulation has diffusion constant, DBOUND, and makes up a fraction,

FBOUND, whereas the freely diffusing subpopulation has diffusion constant, DFREE, and makes up a

fraction, FFREE ¼ 1�FBOUND. To account for defocalization bias (Figure 1C), Spot-On explicitly con-

siders the probability of the freely diffusing subpopulation moving out of the axial detection range,

Dz, during each time delay, Dt. This is important. For example, only ~25% of freely-diffusing mole-

cules will remain in focus for at least five frames (assuming Dt = 10 ms; Dz=700 nm; one gap allowed;

D = 5 mm2/s), resulting in a 4-fold undercounting if uncorrected for. If we assume absorbing bound-

aries such that any molecule that contacts the edges of the axial detection range located at zMAX ¼
Dz=2 and zMIN ¼�Dz=2 is permanently lost, the fraction of freely diffusing molecules with diffusion

constant, DFREE, that remain at time delay, Dt, is given by (Carslow and Jaeger, 1959; Kues and

Kubitscheck, 2002):

Premaining Dt;Dz;DFREEð Þ ¼ 1

Dz

Z

Dz=2

�Dz=2

1�
X

¥

n¼0

�1ð Þn erfc

2nþ1ð ÞDz
2

� z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4DFREEDt
p
 !

þ erfc

2nþ1ð ÞDz
2

þ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4DFREEDt
p
 !" #( )

dz

However, this analytical expression overestimates the fraction lost since there is a significant

probability that a molecule that briefly contacted or exceeded the boundary re-enters the axial

detection range. The re-entry probability depends on the number of gaps allowed in the tracking

(g), Dt, and Dz and can be approximately accounted for by considering a corrected axial detection

range, Dzcorr, larger than Dz: Dzcorr>D z:

Dzcorr Dz;Dt;DFREE;gð Þ ¼ Dzþ a Dz;Dt;gð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

DFREE

p
þ b Dz;Dt;gð Þ

Although Dzcorr depend on the number of gaps (g) allowed in the tracking, we will leave it out for

simplicity in the following. We determined the coefficients a and b from Monte Carlo simulations.

For a given diffusion constant, D, 50,000 molecules were randomly placed one-dimensionally along

the z-axis drawn from a uniform distribution from zMIN ¼�Dz=2 to zMAX ¼ Dz=2. Next, using a time-

step Dt, one-dimensional Brownian diffusion was simulated along the z-axis using the Euler-Mar-

uyama scheme. For time delays from 1Dt to 15Dt, the fraction of molecules that were lost was calcu-

lated in the range of D=[1;12] mm2/s. a Dz;Dt;gð Þ and b Dz;Dt;gð Þ were then estimated through least-

squares fitting of Premaining Dt;Dzcorr;Dð Þ to the simulated fraction remaining. The process was

repeated over a grid of plausible values of (Dz;Dt;g) to derive a grid of 134,865 (a,b) parameter

pairs. This pre-calculated library of (a,b) parameters enables Spot-On to perform model fitting on

nearly any SPT dataset with minimal overhead.

Thus, the 2-state model Spot-On uses for kinetic modeling of SPT data is given by:
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P2 r;Dtð Þ ¼ FBOUND
r

2 DBOUNDDtþs2ð Þe
�r2

4 DBOUNDDtþs2ð Þ

þZCORR Dt;Dzcorr;DFREEð Þ 1�FBOUNDð Þ r
2 DFREEDtþs2ð Þe

�r2

4 DFREEDtþs2ð Þ

where:

ZCORR Dt;Dzcorr;DFREEð Þ ¼ 1

Dzcorr

R
Dzcorr

2

�Dzcorr
2

1�
P

¥

n¼0
�1ð Þn erfc

2nþ1ð ÞDzcorr
2

�z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4DFREEDt
p

� �

þ erfc
2nþ1ð ÞDzcorr

2
þz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4DFREEDt
p

� �� �� �

dz

Having derived the 2-state model, generalization to a 3-state model with 1 bound and 2 diffusive

states is straightforward. If the three subpopulations have diffusion constants DBOUND, DSLOW, DFAST,

and fractions FBOUND, FSLOW, FFAST, such that FBOUNDþFSLOWþFFAST=1, then the 3-state model

considered by Spot-On becomes:

P3 r;Dtð Þ ¼ FBOUND
r

2 DBOUNDDtþs2ð Þe
�r2

4 DBOUNDDtþs2ð Þ

þZCORR Dt;Dzcorr;DSLOWð ÞFSLOW
r

2 DSLOWDtþs2ð Þe
�r2

4 DSLOWDtþs2ð Þ

þZCORR Dt;Dzcorr;DFASTð Þ 1�FBOUND�FSLOWð Þ r
2 DFASTDtþs2ð Þe

�r2

4 DFASTDtþs2ð Þ

Where ZCORR Dt;Dzcorr;Dð Þ is as described above.

Numerical implementation of models in Spot-On
Spot-On calculates the empirical histogram of displacements based on a user-defined bin width.

Spot-On allows the user to choose between PDF- and CDF-fitting of the kinetic model to the empiri-

cal displacement distributions; CDF-fitting is generally most accurate for smaller datasets and the

two are similar for large datasets (Figure 3—figure supplement 9). The integral in ZCORR Dt;Dzcorrð Þ
was numerically evaluated using the midpoint method over 200 points and the terms of the series

computed until the term falls below a threshold of 10�10. Model fitting and parameter optimization

was performed using a non-linear least squares algorithm (Levenberg-Marquardt). Random initial

parameter guesses are drawn uniformly from the user-specified parameter range. The optimization

is then repeated several times with different initialization parameters to avoid local minima. Spot-On

constrains each fraction to be between 0 and 1 and for the sum of the fractions to equal 1.

Theoretical characteristics and limitations of the model
Although Spot-On performs well on both experimental and simulated SPT data, the model imple-

mented by Spot-On has several limitations. First, the kinetic model assumes diffusion to be ideal

Brownian motion, even though it is widely acknowledged that the motion of most proteins inside a

cell shows some degree of anomalous diffusion. Nevertheless, Figure 4G–H and Figure 4—figure

supplement 2 show that the parameter inference for experimental data of proteins presenting vari-

ous degrees of anomalous diffusion is quite robust.

Second, Spot-On models the localization error as the static mean localization error and this fea-

ture can be used to infer the actual localization error from the data. However, the localization error

is affected both by the position of the particle with respect to the focal plane (Lindén et al., 2017)

and by motion blur (Deschout et al., 2012). Even though a high signal-to-background ratio and fast

framerate/stroboscopic illumination help to mitigate these disparities, it is likely that the localization

error of fast moving particles will be higher than the bound/slow-moving particles. In that case, one

would expect Spot-On to infer a localization error that is the weighted mean of the ‘bound/static’

localization error and the ‘free’ localization error. However, in many situations DfreeDt>> s2 (even

assuming a 2 mm2/s particle imaged at a 5 ms framerate with a ~30 nm localization error, there is still

an order of magnitude difference between the two terms). As a consequence, the estimate of s

reflects the static localization error (that is, the localization error of the bound fraction), and the local-

ization error estimate becomes less reliable if the bound fraction is very small (Figure 3—figure sup-

plement 11).

Third, following (Kues and Kubitscheck, 2002) the axial detection profile is assumed to be a step

function, which is an approximation. However, all simulations here were performed using a detection
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profile with Gaussian edges (Figure 3—figure supplement 1) and as shown in Figure 3A–B Spot-

On still works quite well and moreover is relatively robust to slight mismatches in the axial detection

range (Figure 3—figure supplement 7).

Fourth, unlike the original implementation by Mazza et al. (2012), Spot-On ignores state transi-

tions. This reduces the number of fitted parameters and simplifies the generalization to more than

two states, but as shown in Figure 3—figure supplement 10 it also causes the parameter inference

to fail unless the timescale of state changes is at least 10–50 times longer than the frame rate. Thus,

in cases where a molecule is known to exhibit state changes on a time-scale of tens to a few hun-

dreds of milliseconds, Spot-On may not be appropriate.

Fifth and finally, Spot-On ignores correlations between adjacent displacements, although taking

such information into account can potentially improve the parameter inference (Vestergaard et al.,

2014).

Cell culture
Halo-Sox2 (Teves et al., 2016) knock-in JM8.N4 mouse embryonic stem cells ((Pettitt et al., 2009)

Research Resource Identifier: RRID:CVCL_J962; obtained from the KOMP Repository at UC Davis)

were grown on plates pre-coated with a 0.1% autoclaved gelatin solution (Sigma-Aldrich, St. Louis,

MO, G9391) under feeder free conditions in knock-out DMEM with 15% FBS and LIF (full recipe: 500

mL knockout DMEM (ThermoFisher, Waltham, MA, #10829018), 6 mL MEM NEAA (ThermoFisher

#11140050), 6 mL GlutaMax (ThermoFisher #35050061), 5 mL Penicillin-streptomycin (ThermoFisher

#15140122), 4.6 mL 2-mercapoethanol (Sigma-Aldrich M3148), 90 mL fetal bovine serum (HyClone

Logan, UT, FBS SH30910.03 lot #AXJ47554)) and LIF. mES cells were fed by replacing half the

medium with fresh medium daily and passaged every two days by trypsinization. Halo-3xNLS, H2B-

Halo-SNAP and knock-in C32 Halo-CTCF (Hansen et al., 2017) Human U2OS osteosarcoma cells

(Research Resource Identifier: RRID:CVCL_0042) were grown in low glucose DMEM with 10% FBS

(full recipe: 500 mL DMEM (ThermoFisher #10567014), 50 mL fetal bovine serum (HyClone FBS

SH30910.03 lot #AXJ47554) and 5 mL Penicillin-streptomycin (ThermoFisher #15140122)) and were

passaged every 2–4 days before reaching confluency. For live-cell imaging, the medium was identical

except DMEM without phenol red was used (ThermoFisher #31053028). Both mouse ES and human

U2OS cells were grown in a Sanyo copper alloy IncuSafe humidified incubator (MCO-18AIC(UV)) at

37˚C/5.5% CO2. Cell lines were pathogen tested and authenticated through STR profiling (U2OS) as

described previously (Hansen et al., 2017; Teves et al., 2016). All cell lines will be provided upon

request.

Single-molecule imaging
The indicated cell line was grown overnight on plasma-cleaned 25 mm circular no 1.5H cover glasses

(Marienfeld, Germany, High-Precision 0117650) either directly (U2OS) or MatriGel coated (mESCs;

Fisher Scientific, Hampton, NH, #08-774-552 according to manufacturer’s instructions just prior to

cell plating). After overnight growth, cells were labeled with 5–50 nM PA-JF549 or PA-JF646
(Grimm et al., 2016a) for ~15–30 min and washed twice (one wash: medium removed; PBS wash;

replenished with fresh medium). At the end of the final wash, the medium was changed to phenol

red-free medium keeping all other aspects of the medium the same. Single-molecule imaging was

performed on a custom-built Nikon TI microscope (Nikon Instruments Inc., Melville, NY) equipped

with a 100x/NA 1.49 oil-immersion TIRF objective (Nikon apochromat CFI Apo TIRF 100x Oil), EM-

CCD camera (Andor, Concord, MA, iXon Ultra 897; frame-transfer mode; vertical shift speed: 0.9 ms;

�70˚C), a perfect focusing system to correct for axial drift and motorized laser illumination (Ti-TIRF,

Nikon), which allows an incident angle adjustment to achieve highly inclined and laminated optical

sheet illumination (Tokunaga et al., 2008). The incubation chamber maintained a humidified 37˚C
atmosphere with 5% CO2 and the objective was also heated to 37˚C. Excitation was achieved using

the following laser lines: 561 nm (1 W, Genesis Coherent, Santa Clara, CA) for PA-JF549; 633 nm (1

W, Genesis Coherent, Pala Alto, CA) for PA-JF646; 405 nm (140 mW, OBIS, Coherent) for all photo-

activation experiments. The excitation lasers were modulated by an acousto-optic Tunable Filter (AA

Opto-Electronic, France, AOTFnC-VIS-TN) and triggered with the camera TTL exposure output sig-

nal. The laser light is coupled into the microscope by an optical fiber and then reflected using a

multi-band dichroic (405 nm/488 nm/561 nm/633 nm quad-band, Semrock, Rochester, NY) and then
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focused in the back focal plane of the objective. Fluorescence emission light was filtered using a sin-

gle band-pass filter placed in front of the camera using the following filters: PA-JF549: Semrock 593/

40 nm bandpass filter; PA-JF646: Semrock 676/37 nm bandpass filter. The microscope, cameras, and

hardware were controlled through NIS-Elements software (Nikon).

spaSPT experiments and analysis
The spaSPT experimental settings for Figure 4G–H were as follows: 1 ms 633 nm excitation (100%

AOTF) of PA-JF646 was delivered at the beginning of the frame; 405 nm photo-activation pulses

were delivered during the camera integration time (~447 ms) to minimize background and their inten-

sity optimized to achieve a mean density of �1 molecule per frame per nucleus. 30,000 frames were

recorded per cell per experiment. The camera exposure times were: 4.5 ms, 5.5 ms, 7 ms, 9.5 ms,

13 ms and 19.5 ms.

For the motion-blur spaSPT experiments (Figure 4I–K), the camera exposure was fixed to 9.5 ms

and photo-activation performed as above. To keep the total number of delivered photons constant,

we generated an AOTF-laser intensity calibration curve using a power meter and adjusted the AOTF

transmission accordingly for each excitation pulse duration. The excitation settings were as follows:

1 ms, 561 nm 100% AOTF, 633 nm 100% AOTF; 2 ms, 561 nm 43% AOTF, 633 nm 40% AOTF; 4 ms,

561 nm 28% AOTF, 633 nm 27% AOTF; 7 ms, 561 nm 20% AOTF, 633 nm 19% AOTF; constant illu-

mination, 561 nm 17% AOTF, 633 nm 16% AOTF.

spaSPT data was analyzed (localization and tracking) and converted into trajectories using a cus-

tom-written Matlab implementation of the MTT-algorithm (Sergé et al., 2008) and the following set-

tings: Localization error: 10-6.25; deflation loops: 0; Blinking (frames): 1; max competitors: 3; max D

(mm2/s): 20. The spaSPT trajectory data was then analyzed using the Matlab version of Spot-On

(v1.0; GitLab tag 1f9f782b) and the following parameters: dZ = 0.7 mm; GapsAllowed = 1; Time-

Points: 4 (50 Hz), 6 (74 Hz), 7 (100 Hz), 8 (134 Hz), 9 (167 and 200 Hz); JumpsToConsider = 4; Model-

Fit = 2; NumberOfStates = 2; FitLocError = 0; LocError = 0.035 mm; D_Free_2State=[0.4;25];

D_Bound_2State=[0.00001;0.08];

SPT simulations
We developed a utility to simulate diffusing proteins in a confined geometry (simSPT). Briefly,

simSPT simulates the diffusion of an arbitrary number of populations of molecules characterized by

their diffusion coefficient, under a steady state assumption. Particles are drawn at random between

the populations and their location in the 3D nucleus is initialized following a uniform law within the

confinement volume. The lifetime of the particle (in frames) is also drawn following an exponential

law of mean lifetime b. Then, the particle diffuses in 3D until it bleaches. Diffusion is simulated by

drawing jumps following a normal law of parameters N 0;
ffiffiffiffiffiffiffiffiffiffiffi

2DDt
p� �

, where D is the diffusion coeffi-

cient and Dt the exposure time. Finally, a localization error (N 0;sð Þ) is added to each (x,y,z) localiza-

tion in the simulated trajectories.

For comparisons of Spot-On, MSDi and vbSPT using a 2-state scenario, we parameterized simSPT

to consider two subpopulations of particles diffusing in a sphere (the nucleus) of 8 mm diameter illu-

minated using HiLo illumination (assuming a HiLo beam width of 4 mm), with an axial detection range

of ~700 nm, centered at the middle of the HiLo beam with Gaussian edges. Molecules are assumed

to have a mean lifetime of 4 frames (when inside the HiLo beam) and of 40 frames when outside the

HiLo beam. The localization error was set to 25 nm and the simulation was run until 100,000 in-focus

trajectories were recorded. More specifically, the effect of the exposure time (1 ms, 4 ms, 7 ms, 13

ms, 20 ms), the free diffusion constant (from 0.5 mm2/s to 14.5 mm2/s in 0.5 mm2/s increments) and

the fraction bound (from 0% to 95% in 5% increments) were investigated, yielding a dataset consist-

ing of 3480 simulations. More details on the simulations, including scripts to reproduce the dataset,

are available on GitLab as detailed in the ‘Computer code’ section. Full details on how the simula-

tions were analyzed by Spot-On, vbSPT and MSDi are given in Appendix 1.

We also considered a 3-state scenario featuring a bound subpopulation (‘bound’), a relatively

slow diffusing free subpopulation (‘slow’) and a relatively faster diffusing free subpopulation (‘free’).

In this case, we only compared Spot-On and vbSPT (Figure 3—figure supplement 6), since the

MSDi methods did not perform well. As in the 2-state simulations, we parameterized simSPT to con-

sider that three subpopulations of particles diffusing in a sphere (the nucleus) of 8 mm diameter
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illuminated using HiLo illumination (assuming a HiLo beam width of 4 mm), with an axial detection

range of ~700 nm, centered at the middle of the HiLo beam with Gaussian edges. Molecules are

assumed to have a mean lifetime of 4 frames (when inside the HiLo beam) and of 40 frames when

outside the HiLo beam. The localization error was set to 40 nm and the simulation was run until

100,000 in-focus trajectories were recorded. We considered three different subpopulation condi-

tions: (1) FBOUND = 25%; FSLOW = 25%; FFAST = 50%; (2) FBOUND = 25%; FSLOW = 50%; FFAST = 25%;

(3) FBOUND = 50%; FSLOW = 25%; FFAST = 25%. Specifically, for each of these condition, the effect of

of the exposure time (1 ms, 4 ms, 7 ms, 10 ms, 13 ms, 20 ms), the slower free diffusion constant

(from 0.5 mm2/s to 2.5 mm2/s in 0.5 mm2/s increments) and the faster free diffusion constant (from 4

mm2/s to 11 mm2/s in 1 mm2/s increments) were investigated, yielding a dataset of 720 simulations.

Both vbSPT and Spot-On (all) were constrained to three subpopulations. Full details on how the sim-

ulations were analyzed by Spot-On and vbSPT are given in Appendix 1.

Data availability
All raw 1064 spaSPT experiments (Figure 4) as well as the 3480 simulations (Figure 3) are freely

available in Spot-On readable Matlab and CSV file formats in the form of SPT trajectories at Zenodo.

The experimental data is available at: https://zenodo.org/record/834781; The simulations are avail-

able in Matlab format at: https://zenodo.org/record/835541; The simulations are available in CSV

format at: https://zenodo.org/record/834787; And supplementary software used for MSDi and

vbSPT analysis as well as for generating the simulated data at: https://zenodo.org/record/835171

Computer code
Spot-On is fully open-source. The web-interface can be found at: https://SpotOn.berkeley.edu. All

raw code is available at GitLab: https://gitlab.com/tjian-darzacq-lab. The web-interface code can be

found at https://gitlab.com/tjian-darzacq-lab/Spot-On; the Matlab command-line version of Spot-On

can be found at: https://gitlab.com/tjian-darzacq-lab/spot-on-matlab; the Python command-line ver-

sion of Spot-On can be found at https://gitlab.com/tjian-darzacq-lab/Spot-On-cli; the SPT simulation

code (simSPT) can be found at: https://gitlab.com/tjian-darzacq-lab/simSPT; finally, the ‘TrackMate

to Spot-On connector’ plugin, which adds an extra menu to TrackMate which allows one-click upload

of datasets to Spot-On can be found at: https://gitlab.com/tjian-darzacq-lab/Spot-On-TrackMate
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Appendix 1

DOI: https://doi.org/10.7554/eLife.33125.027

Fitting of simulations using Spot-On, vbSPT and MSDi
To systematically evaluate the performance of Spot-On as well as other common analysis tools

such as MSDi and vbSPT (Persson et al., 2013), we developed simSPT, a simulation tool to

generate a comprehensive set of realistic SPT simulations spanning the range of plausible

dynamics (almost a billion trajectories were simulated in total). simSPT is freely available at

GitLab: https://gitlab.com/tjian-darzacq-lab/simSPT. simSPT simulates 3D SPT trajectories

arising from an arbitrary number of subpopulations confined inside a sphere under HiLo

illumination and takes into account a limited axial detection range, realistic photobleaching

rates and optionally state interconversion. The simulation methods are described in detail at

GitLab.

Briefly, we parameterized simSPT to consider that particles diffuse inside a sphere (the

nucleus) of 8 mm diameter illuminated using HiLo illumination (assuming a HiLo beam width of

4 mm), with an axial detection range of ~700 nm with Gaussian edges, centered at the middle

of the HiLo beam. Molecules are assumed to have a mean lifetime of 4 frames (when inside

the HiLo beam) and of 40 frames when outside the HiLo beam.

For the 2-state comparisons, the localization error was set to 25 nm and the simulation was

run until 100,000 in-focus trajectories were recorded. More specifically, the effect of the time

between frames (1 ms, 4 ms, 7 ms, 13 ms, 20 ms), the free diffusion constant (from 0.5 mm2/s

to 14.5 mm2/s in 0.5 mm2/s increments) and the fraction bound (from 0% to 95% in 5%

increments) were investigated, yielding a dataset consisting of 3480 simulations. All 3480

simulated datasets are also available (see Data Availability section). The advantage of

simulations is that the ground truth is known.

For the 3-state comparisons (Figure 3—figure supplement 6), the localization error was set

to 40 nm and the simulation was run until 100,000 in-focus trajectories were recorded. We

then simulated one bound state (DBOUND=0.001 mm2/s) and two free states (DSLOW=0.5 to 2.5

mm2/s in 0.5 mm2/s increments; DFAST= 4.0 to 11.0 mm2/s in 1.0 mm2/s increments) and also

varying the fractions (FBOUND=25%, FSLOW=25%, FFAST= 50%; or FBOUND=25%, FSLOW=50%,

FFAST= 25%; or FBOUND=50%, FSLOW=25%, FFAST= 25%;) as was the time between frames (1

ms, 4 ms, 7 ms, 10, 13 ms, 20 ms).

For more specific simulations, extra parameters were varied, such as the width of the axial

detection range (Figure 3—figure supplement 7), localization error (Figure 3—figure

supplement 11), or the presence/absence of interconversion between states (Figure 3—

figure supplement 10).

Comparison of methods for 2-state simulations
In the case of the main 3480 simulated SPT datasets for the 2-state comparison, we analyzed

the data using the Matlab version of Spot-On (either using JumpsToConsider = 4 or all), MSDi

(either R2 >0.8 or all) or vbSPT. We describe the analysis in details below.

Spot-On (4 jumps)

Rational and parameters
Spot-On allows a user to use the entirety of each trajectory or to use only the first n jumps by

adjusting the parameter, JumpsToConsider. For example, consider a trajectory consisting of 6

localizations and without gaps. If JumpsToConsider = 4 and TimePoints = 6, then this

trajectory will contribute four displacements to the 1Dt histogram, four displacements to the

2Dt histogram, three displacements to the 3Dt histogram, two displacements to the 4Dt

histogram and one displacement to the 5Dt histogram. Thus, even though the trajectory
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contains 5 1Dt displacements, only the first four will be used for analysis if

JumpsToConsider = 4. While on simulated data, using a subset of the trajectories is always

slightly less accurate than using the entire trajectory since it slightly underestimates the bound

fraction, we previously (Hansen et al., 2017) used this as an empirical way of compensating

for all the other experimental biases that cause undercounting of freely diffusing molecules

that cannot fully be taken into account in simulations. We therefore also tested this approach

in the simulations. To fit the simulations using Spot-On we fed the following parameters to the

function SpotOn_core.m (v1.0; GitLab tag 1f9f782b):

. dZ = 0.700;

. GapsAllowed = 1;

. BinWidth = 0.010;

. UseAllTraj = 0;

. JumpsToConsider = 4;

. MaxJump = 6.05;

. ModelFit = 2;

. DoSingleCellFit = 0;

. NumberOfStates = 2;

. FitIterations = 2;

. FitLocError = 0;

. LocError = 0.0247;

. D_Free_2State = [0.4 25];

. D_Bound_2State = [0.00001 0.08];

. TimePoints: 10 if 1 ms; 9 if 4 ms; 8 if 7 ms; 7 if 10 ms; 6 if 13 ms; 5 if 20 ms;

. The empirical a,b parameters used to correct for defocalization bias were as follows:
� Dt = 1 ms; Dz = 0.7 mm; 1 gap: a = 0.0387 s12; b = 0.3189 mm;
� Dt = 4 ms; Dz = 0.7 mm; 1 gap: a = 0.1472 s1/2; b = 0.2111 mm;
� Dt = 7 ms; Dz = 0.7 mm; 1 gap: a = 0.1999 s1/2; b = 0.2058 mm;
� Dt = 10 ms; Dz = 0.7 mm; 1 gap: a = 0.2379 s1/2; b = 0.2017 mm;
� Dt = 13 ms; Dz = 0.7 mm; 1 gap: a = 0.2656 s1/2; b = 0.2118 mm;
� Dt = 20 ms; Dz = 0.7 mm; 1 gap: a = 0.3133 s1/2; b = 0.2391 mm;

CDF-fitting was then performed in MATLAB R2014b using the Matlab version of Spot-On

(v1.0; GitLab tag 1f9f782b) and the estimated free diffusion constant, DFREE, and bound

fraction, FBOUND, recorded for each of the 3480 simulations. The estimated DFREE and FBOUND

were then compared to the ground truth known from the simulations. Three parameters were

estimated in the fit.

Performance evaluation
Spot-On (4 jumps) performs slightly worse than Spot-On (all) when it comes to estimating

FBOUND as expected and essentially identically to Spot-On (all) for estimating DFREE. The mean

error (bias) for estimating FBOUND was �6.4%, the inter-quartile range (IQR) was 5.9% and the

standard deviation 3.6%. The origin of the error is the undercounting of the bound population

due to considering only the first 4 jumps. Since bound molecules remain in focus until they

bleach, they always yield only a single trajectory, whereas a single freely diffusing molecule has

a probability of yielding multiple trajectories by diffusing in-focus for a while, then moving out-

of-focus for a while and then moving back in-focus. For estimating DFREE the bias for Spot-On

(4 jumps) was �5.4%, the IQR 3.6% and the standard deviation 3.2%. However, as shown in

Figure 3—figure supplements 2 and 4, the slight underestimate of the free diffusion constant

is not due to a limitation of Spot-On, but instead due to confinement inside the nucleus

(Figure 3—figure supplement 4). For example, a diffusing molecule close to the nuclear

boundary moving towards the nuclear boundary will ‘bounce back’ resulting in a large

distance travelled, but only a smaller recorded displacement. We validated that this indeed is

the origin of the underestimate of DFREE by considering a nucleus with virtually no

confinement (20 �m radius) and found that the DFREE-underestimate was now minimal

(Figure 3—figure supplement 4). Finally, Spot-On always estimated the bound diffusion

constant, DBOUND, with minimal error unlike MSDi or vbSPT, which were not able to accurately

estimate DBOUND. However, since there is generally less interest in DBOUND, we did not use this

further for evaluating the performance of the different methods.
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Spot-On (all)
Rational and parameters: Spot-On (all) was run on the simulations identically to Spot-On (4

jumps) except the entirety of each trajectory was used for calculating the histograms. To fit the

simulations using Spot-On we fed the following parameters to the function SpotOn_core.m

(v1.0; GitLab tag 1f9f782b):

. dZ = 0.700;

. GapsAllowed = 1;

. BinWidth = 0.010;

. UseAllTraj = 1;

. MaxJump = 6.05;

. ModelFit = 2;

. DoSingleCellFit = 0;

. NumberOfStates = 2;

. FitIterations = 2;

. FitLocError = 0;

. LocError = 0.0247;

. D_Free_2State = [0.4 25];

. D_Bound_2State = [0.00001 0.08];

. TimePoints: 10 if 1 ms; 9 if 4 ms; 8 if 7 ms; 7 if 10 ms; 6 if 12 ms; 5 if 20 ms;

. The empirical a,b parameters used to correct for defocalization bias were as follows:
� o Dt = 1 ms; Dz = 0.7 mm; 1 gap: a = 0.0387 s1/2; b = 0.3189 mm;
� o Dt = 4 ms; Dz = 0.7 mm; 1 gap: a = 0.1472 s1/2; b = 0.2111 mm;
� o Dt = 7 ms; Dz = 0.7 mm; 1 gap: a = 0.1999 s1/2; b = 0.2058 mm;
� o Dt = 10 ms; Dz = 0.7 mm; 1 gap: a = 0.2379 s1/2; b = 0.2017 mm;
� o Dt = 13 ms; Dz = 0.7 mm; 1 gap: a = 0.2656 s1/2; b = 0.2118 mm;
� o Dt = 20 ms; Dz = 0.7 mm; 1 gap: a = 0.3133 s1/2; b = 0.2391 mm;

As above, CDF-fitting was performed and the DFREE-estimate and FBOUND-estimate

compared to the ground truth for each of the 3480 simulations for which the ground truth is

known. Three parameters were estimated in the fit.

Performance evaluation
Spot-On (all) out-performed all other approaches. The mean error (bias) for estimating FBOUND

was �1.7%, the inter-quartile range (IQR) was 1.8% and the standard deviation 1.2%. For

estimating DFREE the bias for Spot-On (all) was �4.8%, the IQR 3.5% and the standard

deviation 3.3%. But as mentioned above, the slight underestimate of DFREE is simply due to

diffusion being confined inside a 4 �m radius nucleus (Figure 3—figure supplement 4). This

also helps to emphasize the point that diffusion constants measured inside a nucleus should

be interpreted as apparent diffusion constants.

MSDi (R
2>0.8)

Rational and parameters
A large number of papers have use different variations of the MSDi approach (Knight et al.,

2015; Li et al., 2016; Liu et al., 2014; Schmidt et al., 2016; Zhen et al., 2016). This

approach is of course very sensitive to how the MSD is estimated. For example, it is well-

known that accurately estimating diffusion constants from short trajectories (<100 frames)

subject to significant localization error is all but impossible as shown by Michalet and Berglund

(Michalet and Berglund, 2012). Nevertheless, several papers assign diffusion constants to

individual trajectories based on a MSD-fit. While the exact method differs somewhat from

paper to paper, the most popular approach is to set a threshold of a certain number of

localizations per trajectory (most commonly 5; though we note that some reports explicitly

attempt to compensate for the bias introduced by setting such a threshold (Zhen et al.,

2016)). Each trajectory with at least five localizations are then fit, often using the Matlab

library MSDAnalyzer (Tarantino et al., 2014), and thus assigned an apparent diffusion

Hansen et al. eLife 2018;7:e33125. DOI: https://doi.org/10.7554/eLife.33125 21 of 33

Tools and resources Biophysics and Structural Biology Computational and Systems Biology

https://doi.org/10.7554/eLife.33125


constant. An additional threshold is then applied: only if the fit to the MSD curve is judged

sufficiently good, is the diffusion constant then used. Otherwise the trajectory is ignored. This

fitting threshold is frequently set based on the coefficient of determination as R2>0.8 in some

recent papers (Knight et al., 2015; Li et al., 2016; Schmidt et al., 2016). Next, after

analyzing all trajectories in this way, a distribution of diffusion constants is then obtained. The

analysis is then performed on the logarithm of these diffusion constants (‘LogD histogram’)

(Knight et al., 2015; Li et al., 2016; Schmidt et al., 2016). Both the CDF (Knight et al.,

2015) and PDF (Knight et al., 2015; Li et al., 2016; Schmidt et al., 2016; Zhen et al., 2016)

can be considered. These are then fitted with a sum of Gaussian distributions: either two

(Knight et al., 2015; Schmidt et al., 2016; Zhen et al., 2016) or three (Schmidt et al., 2016;

Zhen et al., 2016). We note that it is not immediately clear which distribution fitted diffusion

constants should actually follow (e.g. Log-normal, Gamma, Normal, etc.). No justification is

given for sums of Gaussians (Knight et al., 2015; Li et al., 2016; Schmidt et al., 2016),

though we note that the fit is often quite good both in the previous reports (Knight et al.,

2015; Li et al., 2016; Schmidt et al., 2016) and also here as shown in Figure 3—figure

supplement 3. Please note that fitting a sum of normal distributions to the LogD histogram is

equivalent to fitting a sum of log-normal distributions to the D histogram. We also note here,

that in a theoretical study Michalet previously showed that the distribution of diffusion

constants is approximately Gaussian, but only under a set of stringent criteria

(Michalet, 2010). Since CDF-fitting is generally less susceptible to noise from binning and

since in this comparison Spot-On also uses CDF-fitting, we fit the LogD histogram with a sum

of 2 Gaussians using CDF-fitting. We refer to this whole procedure as MSDi (R
2>0.8).

Examples of fits are shown in Figure 3 and Figure 3—figure supplement 3 and the Matlab

code to perform the fitting is available together with the data (see “Data availability’). Five

parameters were estimated in the fit.

Performance evaluation
Overall, MSDi (R

2>0.8) generally performs reasonably well when it comes to estimating DFREE,

but extremely poorly when it comes to FBOUND and DBOUND. The mean error (bias) for

estimating DFREE was 8.0%, the inter-quartile range (IQR) was 4.9% and the standard deviation

28.5%. For estimating FBOUND the bias for MSDi (R
2>0.8) was �20.6%, the IQR 32.1% and the

standard deviation 26.4%. We note that since FBOUND necessarily has to take a value between

0% and 95% in the simulations and since half the simulations have FBOUND<50%, a mean error

of �20.6% is actually quite large. Although the bias for DFREE is much smaller, in ~5% of all

cases, the error in estimating DFREE is bigger than 2-fold. Moreover, in a few very rare cases,

not a single trajectory out of the 100,000 simulated trajectories pass both thresholds (R2>0.8;

at least five frames). Why is MSDi (R
2>0.8) fitting so unreliable? It is instructive to consider an

example. In the example dataset provided with the MSDi code (simulation with DFREE=2;

FBOUND ¼0.75; 1 ms frame rate), the estimated DFREE=2.06 is very good, but the estimated

FBOUND ¼0.16 is extremely poor. Even though the simulation dataset contains 100,000

simulated trajectories, only 3726 of them actually pass the threshold (R2>0.8; at least five

frames). Thus, MSDi (R
2>0.8) only uses around 4% of the data. Since the tiny fraction of the

dataset that is used for analysis is chosen based on how well it fits an MSD-curve and since

displacements of bound molecules are dominated by localization errors and therefore

generally poorly fit by MSD-analysis, the procedure enriches for the free population, which is

why the estimated bound fraction (16%) is so much lower than the true bound fraction (75%).

Additionally, we note that MSDi-based analysis is extremely sensitive to the fitting threshold: if

instead of R2>0.8, all trajectories had been used the estimated bound fraction would be 87%

instead of 16%.

In conclusion, MSDi (R
2>0.8) is unreliable for estimating FBOUND when short trajectories are

at stake, which is the usual case when performing intracellular SPT of fast-diffusing molecules.

MSDi (R
2>0.8) most likely fails due to a combination of the following reasons among others.

First, it poorly handles localization errors, which dominate the displacements of bound

molecules. Second, by only considering trajectories of a certain length (normally at least five

frames), it only analyzes a small subsample of the dataset. Third, there is no correction for

defocalization bias. Since fast-diffusing molecules move out-of-focus and thus have shorter
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trajectories, the 5-frame threshold introduces a large bias against freely-diffusing molecules.

Fourth, the fitting threshold (R2>0.8) is relatively arbitrary and the results of the analysis is

extremely sensitive to this threshold. Accordingly, in these simulations MSDi (R
2>0.8) only

analyzes a small fraction (~5%) of all the trajectories; note that this bias against the bound

population provides a compensatory bias against the bound population to account for the

bias against the free population due to defocalization bias. Fifth, it is difficult to justify the use

of Gaussian distributions. Even in cases where the CDF-fit to the data is excellent, the fitted

FBOUND-value is often very far off the ground truth. Thus, the goodness of the fit cannot be

used to judge how well the parameter-estimation went. Finally, we note that several variants

of the MSDi-based method exist (e.g. the approach used by Zhen et al. (Zhen et al., 2016)) is

a bit different than the one used here. However, a full validation test of all MSDi-based

methods is beyond the scope of this work.

MSDi (all)

Rational and parameters
The MSDi (all) analysis was identical to MSDi (R

2>0.8) except for a single difference: instead of

only using trajectories of at least five frames where the MSD-fit to individual trajectories was

judged good (R2>0.8), all trajectories of at least five frames were used, regardless of how

good the MSD-fit was. five parameters were estimated in the fit.

Performance evaluation
MSDi (all) analysis performed very poorly both when it comes to estimating DFREE and FBOUND.

The mean relative error (bias) for estimating DFREE was �39.6%, the inter-quartile range (IQR)

was 19.0% and the standard deviation 41.8%. For estimating FBOUND the bias for MSDi (all)

was 22.0%, the IQR 17.8% and the standard deviation 15.8%. Thus, in all but a few edge

cases, MSDi (all) cannot reliably estimate DFREE or FBOUND. As for MSDi (R
2>0.8), examples of

fits are shown in Figure 3—figure supplement 3 and the Matlab code to perform the fitting is

available together with the data (see “Data availability’). In the case of MSDi (all), the main

reason for the unreliable estimates is due to defocalization bias. Since fast-diffusing molecules

move out-of-focus and thus have shorter trajectories, the 5-frame threshold introduces a large

bias against freely-diffusing molecules. Overall, consistent with previous benchmarking efforts

on membrane proteins (Weimann et al., 2013), MSDi (all) performed least well among the

tested methods.

vbSPT

Rational and parameters
vbSPT performs single-trajectory classification using Hidden-Markov Modeling (HMM) and

Bayesian inference (Persson et al., 2013) and can assign different segments of a single

trajectory to different diffusive states, each associated with a particular diffusion constant.

vbSPT uses the information from all the estimates on single trajectories to consolidate an

estimate of diffusion coefficients and associated fractions in each state.

vbSPT additionally uses a statistical model to infer the most likely number of diffusive states

assuming all states to exhibit Brownian motion. Since the simulations used to evaluate vbSPT

performed contain only two states, it was not clear how to assign DFREE or FBOUND in cases

where e.g. three diffusive states were inferred. Therefore, to optimize the performance of

vbSPT and perform the fairest comparison, we restricted vbSPT to two states such that vbSPT

would infer the diffusion coefficient of up to two states and provide the associated fractions.

This method conceptually differs from the MSDi approach in several ways:

. The inferred parameters are not based on the MSD

. A specific and rigorous Bayesian statistical model is used to aggregate the parameters esti-

mated on single trajectories to global diffusion states.
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vbSPT was initially designed for SPT of diffusing proteins in bacteria (Persson et al., 2013),

where defocalization biases are virtually nonexistent since the axial dimension of most bacteria

are generally comparable to or smaller than the microscope axial detection range.

Furthermore, vbSPT does not explicitly model the localization error. It is then expected that

the software performs poorly when the localization error is high, as can be expected when

imaging intranuclear factors.

In practice, the following parameters were used to assess vbSPT performance. The software

was run on the full set of 3480 simulations. The priors and optimization parameters were left

as default and the scripts to perform the analysis are provided together with the experimental

data (please see Data Availability section):

dim = 2;

trjLmin = 2;

runs = 3;

maxHidden = 2;

bootstrapNum = 10;

fullBootstrap = 0;

init_D = [0.001, 16];

init_tD = [2, 20]*timestep;

Performance evaluation
Over the 3480 simulations, vbSPT accurately estimated both DFREE and FBOUND. The mean

relative error (bias) for estimating DFREE was 0.8%, the inter-quartile range (IQR) was 6.8% and

the standard deviation 12.5%. For estimating FBOUND the bias for vbSPT was 5.0%, the IQR

6.1% and the standard deviation 4.6%. Thus, vbSPT estimated values were quite consistent

(IQR <7% for both DFREE and FBOUND). These values were very close to Spot-On in

performance.

When looking at the heatmaps (Figure 3—figure supplement 2) more closely, it appeared

that vbSPT performs poorly on the estimation of the free diffusion constant when the mean

displacements are small. This case occurs either with small free diffusion constants (0.5–2 mm2/

s), or with short frame rates (1 ms) and could be explained by the fact that in such conditions,

the displacements of the free population and localization error have comparable magnitudes,

and that vbSPT does not account for localization error.

Regarding the estimate of the fraction bound, vbSPT tends to overestimate it more and

more as the mean displacement of the free population increases (that is, either the exposure

time or DFREE). This is most likely because vbSPT does not correct for defocalization bias.

Thus, the more free molecules diffuse out-of-focus, the more vbSPT will overestimate FBOUND.

Finally, we note that these two biases somewhat compensate for each other: not considering

localization errors causes a small overestimate of the free population, whereas not correcting

for defocalization bias causes an underestimate of the free population.

In summary, for conditions where the mean jump length of the free population can be

distinguished from the localization error, vbSPT performs reasonably well, while being slightly

outperformed by Spot-On.

Comparison of methods for 3-state simulations
In the case of the 720 simulated SPT datasets for the 3-state comparison, we analyzed the

data using the Matlab version of Spot-On (all) and vbSPT. We describe the analysis in details

below.

Spot-On (all)

Rational and parameters
Spot-On (all) was run on the simulations identically to the 2-state situation above except with

one added freely diffusive state. To fit the simulations using Spot-On we fed the following

parameters to the function SpotOn_core.m (v1.0; GitLab tag 1f9f782b):
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. dZ = 0.700;

. GapsAllowed = 1;

. BinWidth = 0.010;

. UseAllTraj = 1;

. MaxJump = 6.05;

. ModelFit = 2;

. DoSingleCellFit = 0;

. NumberOfStates = 3;

. FitIterations = 8;

. FitLocError = 0;

. LocError = 0.04;

. D_Free1_3State = [0.4 10];

. D_Free2_3State = [0.4 25];

. D_Bound_3State = [0.00001 0.04];

. TimePoints: 10 if 1 ms; 9 if 4 ms; 8 if 7 ms; 7 if 10 ms; 6 if 12 ms; 5 if 20 ms;

. The empirical a,b parameters used to correct for defocalization bias were as follows:
� Dt = 1 ms; Dz = 0.7 mm; 1 gap: a = 0.0387 s1/2; b = 0.3189 mm;
� Dt = 4 ms; Dz = 0.7 mm; 1 gap: a = 0.1472 s1/2; b = 0.2111 mm;
� Dt = 7 ms; Dz = 0.7 mm; 1 gap: a = 0.1999 s1/2; b = 0.2058 mm;
� Dt = 10 ms; Dz = 0.7 mm; 1 gap: a = 0.2379 s1/2; b = 0.2017 mm;
� Dt = 13 ms; Dz = 0.7 mm; 1 gap: a = 0.2656 s1/2; b = 0.2118 mm;
� Dt = 20 ms; Dz = 0.7 mm; 1 gap: a = 0.3133 s1/2; b = 0.2391 mm;

As above, CDF-fitting was performed and the diffusion constant- and subpopulation

fraction estimates compared to the ground truth for each of the 720 simulations for which the

ground truth is known. Five parameters were estimated in the fit.

Performance evaluation
As in the 2-state comparison, Spot-On (all) slightly, but significantly, outperformed vbSPT also

in the case of 3 states. The biggest error (bias) in estimating any of the subpopulation fractions

was 3% and the biggest standard deviation (3.6% std) was also small (see Figure 3—figure

supplement 6 for a full table for statistics). In the case of the diffusion constants, Spot-On also

accurately inferred all of these with minimal error. The main limitation of Spot-On 3-state

fitting, is that it sometimes gets stuck in local minima (we estimate this happens in <1% of

cases). Therefore, it was necessary to increase the number of fitting iterations to 8.

Nevertheless, Spot-On was very robust and accurately estimated all five parameters with

minimal error and outperformed vbSPT.

vbSPT

Rational and parameters
vbSPT analysis was performed exactly as in the 2-state case, except with three hidden states

instead of 2:

dim = 2;

trjLmin = 2;

runs = 3;

maxHidden = 3;

bootstrapNum = 10;

fullBootstrap = 0;

init_D = [0.001, 16];

init_tD = [2, 20]*timestep;

Although vbSPT was constrained to three states, it occasionally inferred that only 1 or 2

states exist. In case vbSPT inferred less than three states (1 or 2), the inferred diffusion

coefficients were matched to the closest diffusion coefficient of the ground truth, and the

proportion of the one or two unmatched diffusion coefficients was set to zero.
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Performance evaluation
vbSPT generally performed quite well. The maximal error (bias) in estimating any of the

subpopulation fractions was 6% and the maximal standard deviation (6.3% std; see Figure 3—

figure supplement 6 for a full table for statistics). The main limitation of vbSPT was its inability

to infer DSLOW: the mean error (bias) for estimating DSLOW was 36.6% and the standard

deviation was 64.7%. Therefore, vbSPT performed almost as well as Spot-On for estimating

the subpopulation fractions and for estimating DFAST, but vbSPT was unable to accurately

estimate both DBOUND and DSLOW and thus failed when estimating 2 out of the five

parameters. In conclusion, vbSPT performs almost as well as Spot-On when estimating

subpopulation fractions, but quite poorly when estimating diffusion constants unless they are

very high.
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Appendix 2

DOI: https://doi.org/10.7554/eLife.33125.028

Considerations for choosing Spot-On parameters
In order to run Spot-On, the user has to set a number of parameters. While some are

determined by the acquisition protocol (e.g. time between frames), others will have to be

carefully chosen. We provide a discussion of how to choose these here.

JumpsToConsider
Users can either choose to use all displacements from all trajectories (set ‘Use all trajectories’ to

‘Yes’ in the web-version of Spot-On or ‘UseAllTraj = 1’ in the Matlab version of Spot-On) or to

use only a subset by controlling the JumpsToConsider variable. For example, consider a

trajectory consisting of 6 localizations and without gaps. If JumpsToConsider = 4 and

TimePoints = 6, then this trajectory will contribute four displacements to the 1Dt histogram, four

displacements to the 2Dt histogram, three displacements to the 3Dt histogram, two

displacements to the 4Dt histogram and one displacement to the 5Dt histogram. Thus, even

though the trajectory contains 5 1Dt displacements, only the first four will be used for analysis if

JumpsToConsider = 4. Why would we want to limit the number of jumps that were used? Since

freely-diffusing molecules move out-of-focus, almost all very long trajectories will be bound

molecules. For example, a single trajectory of 21 localizations will provide 20 displacements to

the 1Dt histogram, whereas freely diffusing molecules with short trajectories will provide fewer

(e.g. 10 trajectories with three localizations would be necessary to also provide 20

displacements to the 1Dt histogram). Thus, by limiting JumpsToConsider, one is biasing the

displacement histogram against bound molecules. However, as demonstrated in the simulations

shown in Figure 3—figure supplement 2, whether all jumps or JumpsToConsider = 4 is used

has almost no effect on the DFREE-estimate, but using JumpsToConsider = 4 causes FBOUND to

be underestimated by on average of�5% (percentage points) relative to SpotOn (all). We see a

similar ~5–10% difference between Spot-On (four jumps) and Spot-On (all) on the experimental

spaSPT data shown in Figure 4. As we have discussed previously (Hansen et al., 2017),

restricting JumpsToConsider to four is a way one can compensate for all the many acquisition

biases (such as motion-blur) that generally cause undercounting for fast-diffusing molecules and

which cannot readily be taken into account in simulations. While the optimal value will depend

on the trajectory length distribution (JumpsToConsider should not take a value much smaller

than the mean trajectory length), we found that JumpsToConsider = 4 provides a good

compromise for our experimental data. We strongly recommend including experimental

controls (such as histone H2B-Halo and Halo-3xNLS to ensure that experimental and analysis

parameters have been reasonably set).

Number of timepoints
Spot-On considers how the histogram of displacement changes over time for multiple Dt. The

number of Dt that will be considered is equal to the number of timepoints – 1. So, if

timepoints = 8, the displacements from 1Dt to 7Dt will be considered. How many timepoints

to consider will depend on how much data you have and the frame-rate. For example, if the

mean trajectory length is two frames, setting timepoints to 20 will cause problems since only a

tiny fraction of trajectories will be at least 20 frames long and thus contribute to the 19Dt

histogram. Moreover, the correction for defocalization is approximate, so considering

timepoints where more than >95% of free molecules have moved out-of-focus is also not

recommended; when this happens will further depend on the free diffusion constant.

Nevertheless, as long as there is sufficient data to reasonably populate the displacement

histograms at all timepoints, Spot-On is highly robust to how this parameter is set (Figure 3—
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figure supplement 8). As a rule of thumb we generally do not recommend setting timepoints

above 10 or considering Dt beyond 80 ms.

Iterations for fitting
Spot-On almost always converges optimally in the first iteration, so generally 2 or three is

more than sufficient when using the 2-state model. For the 3-state model, the parameter

estimation is more complicated and here we recommend eight iterations as a starting point.

PDF or CDF fitting
Although for large datasets PDF- and CDF-fitting perform similarly as shown in Figure 3—

figure supplement 9, CDF-fitting tends to provide more reliable estimates of DFREE and

FBOUND when the number of trajectories decreases, likely because PDF-fitting is more

susceptible to binning noise. Thus, for quantitative analysis we always recommend CDF-fitting,

though PDF-fitting can be convenient for making figures since most people find histograms

more intuitive.

Fitting localization error
Spot-On can either use a user-supplied localization error or fit it from the data. As long as there

is a significant bound fraction, Spot-On will infer this with nanometer precision (Figure 3—

figure supplement 11), though we note that this is an average localization error that mostly

reflects the localization error of the bound fraction, and the actual localization error for each

individual localization will vary (Deschout et al., 2012; Lindén et al., 2017). In cases, where the

bound population is very small, fitting the localization error can be less accurate. Thus, in

situations where comparisons are being made between the same protein under different

conditions or e.g. between different mutants of the same protein, we recommend fitting to

obtain a mean localization error and then keeping it fixed in the comparisons.

Choosing allowed ranges for diffusion constants
Spot-On comes with default allowed ranges. For example, for the 2-state model, DFREE ¼
0:5; 25½ � and DBOUND ¼ 0:0001; 0:08½ �. These ranges are generally reasonable, but may not be

appropriate for all datasets. Whenever Spot-On infers a diffusion constant that is equal to the

min or max, caution is needed and it may be necessary to change these limits. In particular,

unless a molecule is bound to an unusually dynamic scaffold, DBOUND=0.08 mm2/s is almost

certainly too high. Thus, we recommend imaging a protein that is overwhelmingly bound, such

as histone H2B or H3, fitting the histone data with Spot-On and then use the inferred DBOUND

for histone proteins or a slightly larger value as the maximally allowed DBOUND value.

2-state or 3-state model
Spot-On considers either a 2-state or 3-state model. Since the 3-state model contains two

additional fitted parameters, the 3-state fit is almost always better. While there are many cases

where a 2-state model would be inappropriate (e.g. a transcription factor that can exist as

either a monomer or tetramer, thus exhibiting two very different diffusive states), generally

speaking, we prefer fitting a 2-state model for most transcription factors or similar nuclear

chromatin-interacting proteins. In part, deviations from the 2-state model will be due to

anomalous diffusion and confinement inside cells, which cause deviation from the ideal

Brownian motion model implemented by Spot-On. For this reason, traditional model-selection

techniques such as Akaike’s Information Criterion (AIC) or the Bayesian Information Criterion

(BIC) can also be misleading.
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Appendix 3

DOI: https://doi.org/10.7554/eLife.33125.029

SPT acquisition considerations in spaSPT experiments

Considerations for minimizing bias in SPT acquisitions
To obtain a good single-molecule tracking dataset, a series of requirements have to be met.

First of all, it must be possible to image single-molecules at a high signal-to-noise ratio. This is

now relatively straightforward thanks to developments in fluorescence labeling strategies and

imaging modalities (Lavis, 2017; Liu et al., 2015). The development of the HaloTag protein-

labeling system and bright, photo-stable organic Halo-dyes such as TMR and the JF dyes

(Grimm et al., 2015) now make it possible to easily visualize single protein molecules inside

live cells. Moreover, imaging modalities such as highly inclined and laminated optical sheet

illumination (‘HiLo’)(Tokunaga et al., 2008) are relatively straightforward to implement and

combined with a high-quality EM-CCD camera make it possible to image single-molecules at

high signal-to-noise suitable for generating high-quality 2D SPT data. For details of our

imaging setup, which combines HaloTag-labeling with HiLo-illumination and which is relatively

common and easy to operate, please see the methods section. But we note that many other

imaging modalities, e.g. light-sheet or even epi-fluorescence imaging can generate high-

quality single-molecule tracking data.

Thus, in the following we will assume that the above condition is met: namely, that single

protein molecules can be tracked inside live cells at high signal-to-noise ratio. Nevertheless,

even if this condition is met, there are at least four other major sources of bias:

1. Detection: minimize ‘motion-blurring’
2. Tracking: minimize tracking errors
3. 3D loss: correct for molecules moving out-of-focus (defocalization bias)
4. Analysis methods: infer subpopulations with minimal bias

Spot-On addresses point 3 and 4, as described elsewhere, but point 1 and 2 must be

addressed in the experimental design. We discuss strategies to minimize these biases below

(spaSPT).

1. Detection – minimizing ‘motion-blurring’
Almost all localization algorithms achieve sub-diffraction localization accuracy (‘super-

resolution’) by treating individual fluorophores as point-source emitters, which generate

blurred images that can be described by the Point-Spread-Function (PSF) of the microscope.

Modeling of the PSF (typically as a 2-dimensional Gaussian) then allows extraction of the

particle centroid with a precision of tens of nanometers. But as illustrated in Figure 1A, while

this works extremely well for bound molecules, fast-diffusing molecules will spread out their

photons over many pixels during the camera exposure and thus appear as ‘motion-blurs’.

Thus, localization algorithms will reliably detect bound molecules, but may fail to detect fast-

moving molecules as has also been observed previously (Berglund, 2010; Deschout et al.,

2012; Elf et al., 2007; Izeddin et al., 2014; Lindén et al., 2017). Clearly, the extent of the

bias will depend on the exposure time and the diffusion constant: the longer the exposure and

higher D, the worse the problem. Assuming Brownian motion, we can calculate the fraction of

molecules that will move more than some distance, rmax, during an exposure time, texp, given a

free diffusion constant of DFREE using the following equation:

P r> rmaxð Þ ¼ e
�r2max

4DFREE texp

For example, if we define motion-blurring as moving more than two pixels (>320 nm

assuming a 160 nm pixel size) during the excitation, an exposure time of 10 ms and a typical

free diffusion constant of 3.5 mm2/s (e.g. ~Sox2), we get:
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P r>0:32�mð Þ ¼ e

� 0:32�mð Þ2

4�3:5�m
2

s �0:010s ¼ 0:48

Thus, even for a relatively slowly diffusing protein, with a 10 ms exposure we should expect

almost half (48%) of all free molecules to show significant motion-blurring, if we assume that

molecules move with a constant speed during the exposure. The most straightforward

solution, therefore, is to limit the exposure time: in the limit of an infinitely short exposure

time, there is no motion-blur. In practice, most EM-CCD cameras can only image at ~100–200

Hz for reasonably sized ROIs. Moreover, it is generally desirable for the mean jump lengths to

be significantly bigger than the localization error, thus for most nuclear factors in mammalian

cells it is not desirable to image at above >250 Hz. Accordingly, a reasonable solution is

therefore to use stroboscopic illumination. That is, using brief excitation laser pulses that last

shorter than the camera frame rate (e.g. 1 ms excitation pulse, 10 ms camera exposure time

for a 100 Hz experiment): this achieves minimal motion-blurring while maintaining a useful

frame-rate. However, this highlights a key experimental trade-off: shorter excitation pulses

minimize motion-blurring, but also minimize the signal-to-noise. Therefore, a reasonable

compromise has to be determined. Here we use 1 ms excitation pulses: this achieves minimal

motion blurring (0.067% > 320 nm using D = 3.5 mm2/s) and still yields very good signal

(signal-to-background >5). But users will need to decide this based on their expected D and

their experimental setup (signal-to-noise). Moreover, different localization algorithms

(Chenouard et al., 2014; Deschout et al., 2012) have different sensitivities to motion-

blurring; thus, the extent of the bias will also depend on the user’s localization algorithm. As

we show here, in the case of the MTT-algorithm (Sergé et al., 2008), the estimation of D is

quite sensitive to motion-blurring, but the estimation of the bound fraction is less sensitive as

long as the diffusion constant is <5 mm2/s. But other localization algorithms may be more or

less sensitive. Generally speaking, we do not recommend imaging at a signal-to-background

<3 and do not recommend using excitation pulses >5 ms, but the optimal conditions will need

to be determined on a case-by-case basis.

In conclusion, experimentally implementing stroboscopic excitation makes it possible to

minimize the bias coming from motion-blurring, while still achieving a sufficient signal for

reliable localization.

2. Tracking – minimizing tracking errors
It is necessary to minimize tracking errors in order to obtain high-quality SPT data. Tracking

errors bias the estimation of essentially all parameters we could want to estimate from SPT

experiments including diffusion constants, subpopulations, anomalous diffusion etc. While

many different tracking algorithms exist, it is fundamentally impossible to perform tracking,

that is connecting localized molecules between subsequent frames, at high densities without

introducing many tracking errors. Thus, the simplest solution is to image at low densities: in

principle, if there is only one labeled molecule per cell, there can be no tracking errors. Yet,

because dyes generally bleach quite quickly under most SPT imaging conditions, this has

traditionally led to a serious trade-off between data quality and the number of trajectories

which can be obtained. However, with the recent development of bright photo-activatable JF-

dyes (Grimm et al., 2016a; 2016b) (PA-dye), it is now possible to combine the superior

brightness of the Halo-JF dyes with photo-activation SPT (also called sptPALM (Manley et al.,

2008)). That is, a large fraction of Halo-tagged proteins in a cell can be labeled with Halo-PA-

JF dyes and then photo-activated one at a time: this allows imaging at extremely low densities

(<1 fluorescent molecule per cell per frame) and nevertheless tens of thousands of trajectories

from a single cell can be obtained. Thus, PA-dyes now make it possible to nearly eliminate

tracking errors without compromising on signal-to-noise or amount of data. In fact, imaging at

extremely low densities generally also improves signal-to-noise since out-of-focus background

is reduced and overlapping point emitters are avoided (Izeddin et al., 2014).

Nevertheless, even with paSPT it is still necessary to decide on an optimal density. The key

parameters are size of the ROI (ideally the whole nucleus for studies in cells) and D: a large
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nucleus and a slow D can support a higher density than fast-diffusing molecules in a small

nucleus. As a general rule of thumb, we recommend a density of ~1 fluorescent molecule per

ROI per frame. This will keep tracking errors at a minimum and still support rapid acquisition

of large datasets. All data acquired for this study was acquired at approximately this density.

In practice, keeping an optimal density will require some trial-and-error optimization of the

405 nm photo-activation laser intensity. 405 nm excitation does contribute background

fluorescence, so we prefer to pulse the 405 nm laser during the camera ‘dead-time’ (~0.5 ms

in our case) to avoid this. Moreover, this also makes it easier to keep the photo-activation level

constant when changing the frame rate. However, the optimal photo-activation power will

depend on the expression level of the protein, protein half-life and the dye concentration and

will therefore have to be optimized in each case. We recommend recording initial datasets

and then analyzing them using Spot-On which reports the mean number of localizations per

frame and then using this information to determine the optimal photo-activation level.

However, even then some cell-to-cell variation may be unavoidable: especially in transient

transfection experiments where there is large cell-to-cell variation in expression level or when

studying proteins expressed from stably integrated transgenes (e.g. Halo-3xNLS and H2b-Halo

in our case). In these cases, some cells will likely exhibit too high a density. To deal with this,

Spot-On includes the option to analyze datasets from individual cells first and then excluding a

cell with too high a density before analyzing the merged dataset.

Which datasets are appropriate for Spot-On?
In the sections above, we have discussed how to minimize common experimental biases in SPT

experiments and proposed spaSPT as a general solution. However, many 2D SPT datasets

recorded under different conditions are also appropriate for Spot-On. For example, SPT

experiments without photo-activation or with continuous illumination may also be appropriate

for analysis with Spot-On. For example, there may be situations where photo-activation SPT is

not possible: in such cases, it will be essential to keep the labeling density sufficiently low that

tracking errors are minimized and it might thus be necessary to image substantially more cells

to get enough statistics. Likewise, as we show in Figure 4JK, motion-blurring is a major

concern for fast-diffusing molecules, but for a slowly diffusing molecule like Halo-CTCF it

makes only a small difference. Thus SPT datasets recorded with continuous illumination may

also be appropriate provided that the protein of interest is known to diffuse sufficiently slowly.

We also note that since Spot-On uses the loss of fast-diffusing molecules over time to

correct for bias and to estimate the free population, it is essential that all trajectories are

included in Spot-On for analysis. For example, some tracking and localization algorithms

ignore all trajectories below a certain length (e.g. five frames), but this will cause Spot-On to

misestimate the loss of molecules moving out-of-focus and thus it is imperative that

trajectories of all lengths be included when analyzing data using Spot-On. Furthermore,

trajectories of only a single localization are required to accurately compute the average

number of localizations per frame, which is a key quality-control metric for SPT data.

Moreover, Spot-On does not currently support 3D SPT data. Furthermore, Spot-On

assumes diffusion to be Brownian. This is a reasonable approximation even for molecules

exhibiting some levels of anomalous diffusion as shown in Figure 4—figure supplement 2,

but Spot-On is not appropriate for molecules undergoing directed motion (e.g. a protein

moving on microtubules). Additionally, in cases where there are frequent state transitions at a

time-scale similar to the frame rate (e.g. transcription factor with a 10 ms residence time

imaged at 100 Hz), Spot-On may give inaccurate results since it ignores state transitions

(Figure 3—figure supplement 10). Finally, the correction for molecules moving out-of-focus

assumes that molecules are not fully confined within small compartments, that prevent

molecules from moving out-of-focus.
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Appendix 4

DOI: https://doi.org/10.7554/eLife.33125.030

Proposed minimal reporting guidelines for SPT data and
kinetic modeling analysis
To ensure reproducibility of results and subsequent analyses, datasets, statistics and analysis

metrics should be provided. This should allow the reader to quickly assess the quality and

statistical significance of the presented results and datasets. So far, to our knowledge, no

consensus exists on minimal reporting guidelines for single particle tracking datasets and

kinetic modeling analyses. We note, however, that a recent preprint suggests a similar

conceptual framework, although less applicable to single-molecule experiments (Rigano and

Strambio De Castillia, 2017),

We propose that published single-particle datasets be published and reported

accompanied with the following metadata. We suggest that these metrics constitute a minimal

reporting guideline for single-particle datasets and subsequent kinetic modeling (though

additional information may be appropriate and necessary in some cases).

Dataset description

Criterion How to obtain it
Example
value

Exposure time Determined at the acquisition step 5 ms

Signal-to-background ratio
Mean peak value of detected particle divided by mean
background value

5

Detection algorithm used
MTT (version
xxx)

Tracking algorithm used
MTT (version
xxx)

Number of particles per
frame

Provided by Spot-On Mean: 0.76

Number of detections Provided by Spot-On 360000

Number of trajectories of
length >3

Provided by Spot-On 10000

Mean trajectory length Provided by Spot-On 4.5 frames

Localization error Provided by Spot-On 30 nm

Spot-On parameters
In addition to these metrics, it is important to report the parameters specified in the

detection and tracking algorithms, since this can greatly affect the results. For Spot-On, we

recommend reporting the following parameters:

. Jump length distribution parameters: BinWidth (mm), Number of timepoints, Jumps to con-

sider or Use all trajectories, MaxJump (mm),
. Fitting parameters: Number of states (2 or 3), localization error fitted from data (Yes or No,

if no, specify the value, in nm), dZ (mm), a (s-1/2), b (mm), PDF or CDF fit (PDF or CDF), num-

ber of iterations. Finally, the bounds used for the fitting algorithm should be reported, e.g:
� Dbound: [0.0005, 0.08] mm

2/s

� Dfree [0.15, 25] mm
2/s

� Fbound [0,1]

� Obviously, if a 3-state model is used, the bounds for the additional subpopulation should

also be reported.
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In case a custom-modified version of Spot-On is used, we recommend that the code be

made available and that a summary of the modifications be included in the methods section.
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