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PREFACE

Like many other Ph.D. students, I did not begin my Ph.D. with the intention of writing

this particular dissertation. The ideas that led to this dissertation first appeared essentially as a

footnote — as a technical tool for a secondary result in our COLT 2021 conference paper on

Massart boosting. We isolated those ideas, formally defining replicability in a short manuscript

for the TPDP 2021 workshop. After we devised more complicated replicable algorithms, our

expanded submission “Reproducibility in Learning” was accepted by STOC 2022, one of the major

conferences in theoretical computer science. Our next paper, “Stability is Stable”, showed a broad

equivalence between replicability and differential privacy, another well-studied stability notion.

Replicability has become the dominant lens through which I approach research. For starters,

one can ask about replicability for any algorithmic learning problem with data. First, design an

algorithm that efficiently learns something about your data. Second, design an algorithm that

efficiently learns the data replicably. Comparing the efficiency of the best algorithm and the

best replicable algorithm tells us about the cost of replicability. In many cases, this cost is not

insurmountable, but also not negligible.

Moreover, replicability research asks about the role of randomness in learning. Replicable

algorithms sit on the boundary between random inputs and consistent outputs. By definition, the

output of a replicable algorithm is canonical — it represents a property of your universe, not just the

data you collected. When do these canonical objects exist? How can they be used? These questions,

about discovering consistent signals in noisy data, are central to all sciences.

There are many different reasons for why you might be reading this dissertation. Regardless

of your reasons, I hope you leave this document with a greater appreciation for replicability — as a

lens to learn about new algorithms, as a model that permits clever mathematics, and as a medium

for understanding what it means to be random.
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Reproducibility and replicability are central to the process of learning. Machine learning

algorithms can solve a variety of tasks, in turn allowing researchers to ask new questions. However,

reproducibility issues can limit the scope and utility of these algorithms. In this dissertation, we

investigate replicability from a theoretical perspective. We formalize a new mathematical definition

of replicability. Our definition applies to randomized algorithms that learn from independent

and identically distributed (i.i.d.) samples. We propose replicable algorithms for fundamental

learning tasks such as computing statistical queries, boosting weak learners, and learning halfspaces.

We discuss techniques for designing replicable algorithms, resolving tensions among accuracy,

xviii



replicability, and efficiency. Furthermore, we construct black-box algorithmic reductions between

replicability and other notions of algorithmic stability, such as differential privacy. We also note

possible directions for future replicability research.

• The introduction is a general-audience explanation of the contents of this dissertation.

• In Chapter 1, we formally introduce replicability, the central concept of this dissertation.

We mathematically define replicability and the associated model, noting key features and

limitations. This chapter summarizes the theorems and algorithms in the remaining chapters.

We mention promising future directions and argue why researchers should pursue them.

• In Chapter 2, we list central definitions and briefly note how they are used.

The remaining three chapters are reprints of three published conference papers related to

replicable learning algorithms, with readability edits.

• In Chapter 3, we mathematically define replicability and motivate our definition. We design

new replicable algorithms for fundamental learning tasks such as computing statistical queries

and learning halfspaces. This chapter discusses basic properties of replicability, including

alternate definitions.

• In Chapter 4, we exhibit a paper that predates and greatly contributed to this dissertation’s

work on replicability.

• In Chapter 5, we prove strong connections between replicability and other well-studied

stability notions such as differential privacy. We show black-box ways to transform certain

stable algorithms to replicable algorithms and vice versa. These transformations may increase

the required sample sizes and run times. We prove these increases are necessary. Applications

of our connections include new replicable learning algorithms and resolving open questions

in algorithmic stability.

xix



Introduction

This dissertation is concerned with the theoretical study of replicable algorithms. The

following introduction is a general-audience explanation of what this entails.

Every day, we use algorithms to process our surroundings and inform our decision making.

Algorithm users want algorithms to be efficient: to terminate quickly (run time), use little memory

(space), require minimal data (sample sizes), and more. We also want algorithms to be accurate: to

precisely compute statistics, deftly maneuver robots, faithfully simulate reality, and more.

In this dissertation, we investigate algorithms that are not only efficient and accurate, but

also stable. Generally speaking, a stable algorithm can overcome irregularities, such as corrupted

data, and still provide useful outputs. Designing stable algorithms expands the range of problems

that can be solved. Stability can imply other desirable properties for algorithms, such as data privacy

and better accuracy on unseen data.

Thanks to increasing computational resources and new algorithmic paradigms, many new

questions can be investigated computationally. Across the sciences, researchers can use tools from

machine learning and statistics to deduce correlations and infer causation. Often, machine learning

algorithms are used iteratively — the results of one experiment inform the goals of the next.

Replicability is the phenomenon of reaching the same conclusion despite starting from

different data. Replicability is often desired when creating new knowledge. Lack of replicability,

if not caught immediately, may lead to pointless experiments with nonsensical conclusions. Or,

lack of replicability could lead researchers to discover flaws in their understanding. Either way,

investigating replicability itself is key to improving research.
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This dissertation investigates replicability for machine learning algorithms, from a mathemat-

ical perspective. Broadly, we ask, “For which learning problems do there exist efficient replicable

algorithms?” Our methodology involves defining a model, analyzing replicable algorithms, and

comparing replicable algorithms with other (possibly non-replicable) algorithms.

To define a model for replicable learning algorithms, we need to define:

1. how input data is produced,

2. how algorithms can interact with the data,

3. what additional resources algorithms have (e.g., randomness),

4. which outputs are acceptable (correctness), and

5. what counts as replicability.

In order to permit meaningful mathematical guarantees, models make assumptions that can

be unrealistic in practice. For example, a model may assume input data is chosen in a representative

way. We should be careful to not wrongly extrapolate and make broad conclusions.

Instead, models are stepping stones, allowing us to use mathematics to explain phenomena

in idealized settings. Models let us design new algorithmic techniques and explain why they work.

Models let us quantify how efficient and effective algorithms are. Models let us define tough

problems and explain why they are hard to solve. Later, we can carefully branch outwards, either by

expanding the scope of the model or by switching to more experimental means.

Using the definitions of our model, we can analyze a replicable algorithm by:

1. writing a learning algorithm,

2. mathematically proving it is correct,

3. mathematically proving it is replicable, and

2



4. quantifying the computational resources needed to run the algorithm.

In this dissertation, we consider randomly generated inputs and allow algorithms to be

randomized. Because of randomness, it might not be possible to design algorithms that are always

correct and replicable. So, we focus on proving that our algorithms have these properties with high

probability (low failure rate).

At this point, it might be helpful to discuss an example: computing statistical queries.

Problem. Estimate the average height of a group of people.

Say you are asked to estimate the average height of a group of one million people, but it is

too costly to measure everyone individually. You could randomly sample a small subset, say 1000

people, and compute the average height. In fact, Law-of-Large-Numbers-style arguments tell us

that small random subsets are sufficient to get very accurate statistics for the entire population.

However, this algorithm may not be replicable, even if it is accurate. For example, one

sample may lead to a height estimate that is too large, and another sample may lead to a height

estimate that is too small. Without knowing the true mean, which estimate should we believe?

In this case, there is a straightforward way to improve both accuracy and replicability: draw

larger sample sets. Then, the sample means are not just more likely to be closer to the true mean,

but also closer to each other.

We can do more to ensure replicability. The least significant digits of empirical means are

probably a consequence of the sample, not of the population. By rounding these digits, we probably

won’t lose much accuracy. And, if estimates are close enough, we will round many estimates to the

same number. Rounding might sacrifice closeness to the true mean (accuracy), but improves the

likelihood of our algorithm producing a consistent output (replicability).

This approach can be summarized in the following algorithm sketch.
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Algorithm 1. Replicable algorithm for computing average height
1: Draw a small random sample S

2: Compute an empirical average height ĥ using S

3: Round ĥ and output the result

By formalizing these arguments mathematically, we can prove this algorithm replicably

computes statistics of populations. At the expense of larger sample sizes, the algorithm is both

accurate and replicable (most of the time).

Statistical query algorithms (i.e., algorithms using only statistical queries) have a rich

academic literature and many applications. This simple argument implies that all such applications

can be computed replicably.

Designing replicable algorithms is a principal goal of this dissertation. Another central task

is connecting replicability to other stability notions. There are many ways an algorithm could be

stable, depending on the choice of the model. We show that, for many stability notions N, it is

possible to transform algorithms that are replicable into algorithms that satisfy N, and vice versa.

These connections connect replicability research to existing literature, automatically producing

algorithms in new contexts. They also consolidate techniques for designing stable algorithms.

Our mathematical investigation of replicable algorithms takes many other forms in this

dissertation. We discuss what replicable algorithms cannot do (lower bounds), properties of

replicability, algorithmic techniques, proof techniques, applications of our results, and promising

future directions. This dissertation contains direct connections from replicability to algorithmic

stability, statistical learning theory, geometry, and cryptography.
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Chapter Outline

In Chapter 1, we formally introduce replicability, the central concept of this dissertation. We

mathematically define replicability and the associated model, noting key features and limitations of

our choices. We discuss the inspirations of the model, as well as follow-up research. We summarize

the theorems and algorithms in the remaining chapters, discussing some techniques used to design

and analyze these algorithms. We mention some promising future directions, and we argue why

researchers should pursue them.

In Chapter 2, we list central definitions and briefly note how they are used.

The remaining three chapters are reprints of three published conference papers related to

replicable learning algorithms, with readability edits. For full bibliographic information, see the

chapter acknowledgements pages in the preliminary pages.

In Chapter 3, we mathematically define replicability and motivate our definition. We design

new replicable algorithms for fundamental learning tasks such as computing statistical queries,

heavy-hitters, and approximate medians of distributions. We also give replicable algorithms for

weak learning halfspaces and boosting weak learners into strong learners. This chapter discusses

basic properties of replicability, including alternative definitions and a lower bound for replicable

statistical queries.

In Chapter 4, we exhibit a paper that predates and greatly contributed to this dissertation’s

work on replicability. This paper is not about replicability — rather, it concerns using boosting

algorithms to learn noisy data. However, replicability makes its appearance in the lower bound

argument (a secondary result of the paper). Replicability is combined with cryptographic assump-

tions to prove the optimality of our primary result, a new Massart noise boosting algorithm. To

better understand the motivations for the project and its early usage of replicability, we include the

paper in its entirety. Chapter 1 contains a more detailed explanation of this paper’s relationship with

replicability research.
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In Chapter 5, we prove strong connections between replicability and other well-studied

stability notions such as differential privacy. We show that, for a wide array of statistical tasks,

there are black-box ways to transform certain stable algorithms to replicable algorithms and vice

versa. These equivalences imply that many stability notions are not distinct, but instead variations

on the same theme. These transformations may increase the needed sample sizes, and we show that

these sample increases are necessary. One transformation increases the computational complexity

as well, and we use standard cryptographic assumptions to show that the computational increase

is necessary. Furthermore, we show that the usage of the cryptographic assumption is necessary,

by arguing that computational efficiency would be achievable if that cryptographic assumption is

false. Investigating correlated sampling is key to our computational results. In addition, we give

applications of our new connections between replicability and other stability notions. These include

designing new learning algorithms and resolving open questions in algorithmic stability.
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Chapter 1

What Is Replicability?

1.1 Why Replicability?

Reproducibility is vital to ensuring scientific conclusions are reliable, and researchers

have an obligation to ensure that their results are replicable. In the last twenty years, lack of

reproducibility has been a major concern in most scientific fields. For example, a 2012 Nature

article by Begley and Ellis reported that the biotechnology company Amgen was only able to

replicate 6 out of 53 landmark studies in haematology and oncology [BE12]. In a 2016 Nature

article, Baker published a survey of 1500 researchers, reporting that 70% of scientists had tried and

failed to replicate the findings of another researcher, and that 52% believed there is a significant

crisis in reproducibility [Bak16].

A key issue underlying the “reproducibility crisis” and “credibility revolution”, as articulated

in many articles (e.g., [Ioa05]), is the massive increase of new data and publications. This has come

with explosion of methods for data generation, screening, testing, and analysis, where only the

combinations producing the most significant results are reported. P-hacking, data dredging, and

researcher degrees of freedom can lead to erroneous findings that appear significant but cannot be

replicated by other researchers.

Identifying and mitigating these problems is quite subtle. First, is not easy to come up with

an agreed-upon set of practices that guarantees reproducibility. Second, testing whether a finding is
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statistically significant is a complex task.

Within machine learning and data science, there are similar concerns about the reliability of

published findings. For example, the performance of models produced by machine learning algo-

rithms may be highly dependent on the values of random seeds or hyperparameters chosen during

training [HIB+17, IHGP17, LKM+18]. To begin addressing concerns about reproducibility, several

prominent machine learning conferences started hosting reproducibility workshops and challenges.

These are part of a broader effort to encourage researchers to share their methodology/code and

create a new academic culture supporting replicability [PVLS+20].

In this dissertation, we initiate the mathematical study of replicable learning algorithms.

We define replicability solely as a property of algorithms, rather than the process by which their

results are collected and reported. We define a new notion of replicability — informally, it says

that a randomized algorithm is replicable if, with high probability, two runs of the algorithm on two

distinct sets of samples drawn from the same distribution, with internal randomness fixed between

both runs, produces the same output.

Replicability is an extremely strong stability constraint to place on an algorithm. Never-

theless, replicability is achievable for many fundamental data analysis tasks, including computing

statistical queries, identifying heavy hitters, and learning large-margin halfspaces.

Replicability is not the first algorithmic stability definition aimed at improving the utility of

machine learning algorithms. Other definitions play central roles in more mature research areas,

such as differential privacy and adaptive data analysis. In this dissertation, we show that there are

black-box reductions between replicable algorithms and algorithms that satisfy other well-studied

stability notions.
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1.2 Defining Replicability

Definition 1.2.1 (Replicability). Let D be a distribution over domain X . Let A be a randomized

algorithm that takes as input samples from D. We say that A is ρ-replicable if

PrS1,S2,r[A (S1;r) = A (S2;r)]≥ 1−ρ,

where S1,S2 are sets of samples drawn independently and indentically distributed (i.i.d.) from D

and r represents the internal randomness of A .

Let’s start by discussing the model’s scope.

Which algorithms? Algorithms with . . .

No implementation issues: In our model, algorithms do exactly as they are told. We

overlook any possible implementation issues of the algorithms, including those that might lead

to nonreplicability. Possible issues may arise from running algorithms using different hardware,

programming languages, operating systems, random number generators, etc.

One might expect that running an algorithm twice on the same computational system should

always automatically yield the same result. However, especially for complex machine learning

models, it can be difficult to resolve every possible discrepancy between independent algorithm

runs. Ensuring algorithmic reproducibility, the phenomenon of producing the same output when

starting from the same input, is an active area of machine learning research. Instead, this dissertation

assumes there are no implementation issues with the algorithms and instead focuses on replicability.

Access to samples: Definition 1.2.1 concerns algorithms that learn from samples. These

samples are given to the algorithm, and then the algorithm produces some output. Other interaction

between the algorithm and its data source, perhaps through directly querying the data source for

specific information, is not allowed.
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Access to i.i.d. samples: Furthermore, the samples are drawn independently and identically

distributed (i.i.d.) from some unknown distribution. The assumption of a distribution is very

powerful. To define replicability, we want to say two separate runs of the algorithm will yield

similar outputs. There needs to be some underlying reason why we should expect any algorithm to

yield similar results for different inputs. For us, that reason is that samples are drawn from the same

underlying distribution.

The independence of samples allows us to apply tools such as concentration inequalities to

prove high probability bounds. However, it means our model does not cover situations where the

data may not be so strongly related. For example, elements in data sets could depend on each other,

some small proportion of the data could be corrupted, or the distribution may evolve over time.

To some extent, the assumption of i.i.d. samples greatly simplifies achieving replicability. In

many machine learning applications, acquiring usable sample data is incredibly hard and a source

of nonreplicability. Here, we assume there is no issue in the sampling portion of the learning task.

For this and other reasons, our definition of replicability is an algorithmic property, not a property

of the entire process of learning.

Access to randomness: We consider algorithms that can make random decisions. To

formalize this, we give algorithms access to random coin flips (bits b ∈ {0,1}), which can be used

at any point for any algorithmic purpose. For example, these bits can be used to randomly sample a

number in [0,1] or randomly invoke subroutines.

Modeling randomness with individual bits is standard in the study of randomized algorithms,

but it is not the only way. One limitation is that it requires an infinite number of bits to write any

number in [0,1]. One could circumvent this limitation by proving that approximations are sufficient

(e.g., truncate numbers after n-many bits) or by redefining the model to permit more powerful

random operations. For more information on the study of randomized algorithms, there are many

good resources (e.g., [MR95]).

In this dissertation, we do not focus on quantifying randomness needed to run replicable

10



algorithms. Nevertheless, it is a very interesting question to determine how limited access to

randomness can affect replicable algorithms.

Any inputs and outputs: No restrictions are made on the types of inputs and outputs of

the algorithm. They can be real numbers, polynomials, neural networks — whatever. However, if

we want our algorithms to be efficient, we usually restrict our attention to inputs and outputs that

can be efficiently represented.

Which algorithms are replicable?

Our definition formalizes replicability by considering what happens when we run the

algorithm twice, with different samples but the same randomness r.

Per Definition 1.2.1, A is ρ-replicable if PrS1,S2,r[A (S1;r) = A (S2;r)] ≥ 1−ρ, where

S1,S2 ∼i.i.d. D and r is random.

Replicability parameter ρ: Replicability is measured as a probability. Replicability ρ = 0

implies an algorithm that is always consistent, and replicability ρ = 1 implies the algorithm is never

consistent. In fact, replicability ρ = 1 implies that, fixing any random string r, the output A(S;r) is

different for every possible input sample S.

For all distributions D: In this setting, the distribution D is unknown and only accessible

through random samples. Nevertheless, we require algorithms to be replicable on all distributions.

This property has some interesting consequences. For example, the outputs of any randomized

algorithm form a distribution, so replicable algorithms can be combined sequentially and analyzed.

Another consequence is using replicable algorithms for distribution testing. Say you have

a sample S drawn i.i.d. from some unknown distribution D in a small family of distributions

{D1, . . . ,Dn}. If a replicable algorithm A outputs different answers for each distribution, you can

identify D by comparing A(S;r) with A(Si;r) for Si drawn i.i.d. from Di and multiple random

strings r. An example of this approach appears in Section 5.4.1.

Exact same outputs: Under these conditions, an algorithm is replicable if it outputs the
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exact same output. It may seem difficult to ensure this, especially when solving problems with

infinite output domains. Nevertheless, it is achievable for a variety of tasks, including when outputs

are real numbers or functions. One may consider algorithms that produce “approximately equal”

outputs, but this has its own slew of complications. Say your algorithm outputs descriptions of

new algorithms. Depending on your definition of approximate equality, the same algorithm could

be either replicable or not replicable. Furthermore, approximate equality may lose transitivity —

A≈ B and B≈C does not necessarily imply A≈C.

In this dissertation, we interpret “exact same” as having the same representation. Never-

theless, there are many ways to relax the “exact same output” condition to create new, interesting

models. For example, computer programs can be written in many different ways. However, testing

if two programs (Turing machines) behave identically on all inputs is impossible (undecidable). Re-

laxing the equality constraint of our replicability definition could lead to new connections between

replicability and indistinguishability.

Shared randomness r: Another key component of our definition of replicability is shared

randomness. An algorithm is only required to behave replicably when the same random string r is

used for both runs. One way to view this is by thinking of a randomized algorithm as a collection of

deterministic algorithms, indexed by their randomness. Each deterministic algorithm may perform

well (i.e., be replicable and accurate) on certain samples and perform poorly on others.

We want our algorithms to be replicable on samples from unknown distributions. (If we knew

the distribution, there’s no need to learn something about the distribution.) Certain distributions

may produce certain “bad” samples more often than others, so a replicable algorithm needs to be a

mixture of deterministic algorithms that do not all fail on the same bad samples.

Using the same random string r naturally defines a canonical output Zr for each string r. In

other words, if the algorithm is very replicable, then PrS∼D[A(S;r) = Zr] > .5 for many random

strings r. This observation is the key to understanding the relationship between the single-parameter

definition (ρ-replicability) and the two parameter definition (η ,ν)-replicability. See Section 3.8 for
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more details.

Algorithmic stability: To reiterate, we define replicability as an algorithmic property. We

care not just about what an algorithm outputs (its distribution of outputs), but how it outputs them

(if that distribution of outputs correlates with the randomness r).

Practical Limitations

What are the practical limitations of mathematical replicability research? Although re-

producibility and replicability are key to scientific discovery, naively replacing algorithms with

replicable algorithms (as defined in Definition 1.2.1) will not alone solve existing replicability issues

in science.

As discussed, this definition abstracts away the implementation of algorithms across differing

systems and programming languages. Data is assumed to be nicely independent and identically

distributed. Writing replicable pseudocode is not sufficient to create an entire algorithmic system

that is replicable. Instead, replicable algorithms can be combined with reproducible computing

environments to create overall systems that are replicable.

Mathematical replicability can be too costly in samples. For example, our replicable

statistical query algorithm has an approximately 1/ρ2 factor increase in its sample complexity,

compared to nonreplicable statistical queries. In Section 3.7, we show this is essentially tight.

Depending on the context, a 10000-fold increase in samples may be too much to pay for 99%

replicability. Changing the objective may help — one could transform the data, focus on average-

case instead of worst-case analysis, or pivot to relaxed notions of replicability.

Using a replicable learning algorithm does not enforce honest research. Just like with

p-hacking, a researcher could search for random strings r or data samples S that pair well. Then,

they could publish their most significant result, falsely suggesting that their input data was randomly

chosen. Dishonest or nonreplicable research can result from perverse incentives, which cannot be

mitigated by simply restricting which algorithms can be used.
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Optimistically, this replicability research is new — future researchers may find ways to

circumvent these and other issues.

1.3 An Example: Replicable Statistical Queries

To better explain the definition of replicability, we explain and analyze the first algorithm in

Chapter 3. This algorithm replicably computes statistical queries. For full details, see Section 3.2.

A query is a function φ from data domain X to real values in [0,1]. A statistical query for

distribution D over X estimates the average value of φ(x) when x∼ D. A statistical query oracle

OD is an algorithm that takes queries φ and outputs estimates for Ex∼Dφ(x). OD is allowed a small

failure probability δ and tolerance τ . Formally:

Definition 1.3.1 (Statistical query oracle). Let τ ∈ [0,1] and φ : X → [0,1] be a query. Let D be a

distribution over domain X . A statistical query oracle for D, denoted OD(τ,φ), takes as input a

tolerance parameter τ and a query φ , and outputs a value v such that |v−Ex∼D[φ(x)]| ≤ τ.

The statistical query model introduced by [Kea98] is a restriction of the PAC-learning

model introduced by [Val84]. Many learning problems can be solved using only statistical queries

(SQs). Therefore, replicably simulating an SQ oracle implies that these problems all have replicable

algorithms.

Definition 1.3.2 (Simulating a statistical query oracle ). Let δ ∈ [0,1] and τ,φ ,D be as above. Let

OD be a statistical query oracle for D. Let~s denote an i.i.d. sample drawn from D. We say that a

routine STAT simulates OD with failure probability δ if for all τ,δ ,φ , there exists an n0 ∈ N+ such

that if n > n0, v← STAT(τ,φ ,~s) satisfies |v−Ex∼D[φ(x)]| ≤ τ except with probability δ .

To simulate an SQ oracle with tolerance τ and replicability ρ , our algorithm first estimates

the statistical query to tolerance τ ′ ≈ τρ . Then, the interval [0,1] is divided into intervals of size

α ≈ 2τ/(1+ρ). These intervals do not start at 0; rather, they start at a value αoff chosen randomly
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in [0,α]. The algorithm then finds the interval in which the statistical query falls, and outputs the

midpoint of that region.

The randomness of the algorithm r is only used to choose αoff. By randomly rounding

empirical estimates, we can guarantee that multiple runs of the algorithm have one canonical output

to return — the midpoint of the closest interval. The better tolerance τ ′ is necessary to ensure that

multiple estimates will land in the same interval.

Even with the better tolerance, the randomness r and random offset αoff are crucial for

replicability. A replicable algorithm does not know the distribution producing its samples, and it

must be prepared for all distributions. A deterministic rounding scheme is nonreplicable when the

true mean Ex∼Dφ(x) is near a rounding boundary. By randomizing the rounding boundaries, we

can argue that empirical estimates avoid rounding boundaries with high probability.

Algorithm 2. rSTATρ,τ,φ (~s)
Parameters: τ - tolerance parameter
ρ - replicability parameter
φ : a query X → [0,1]

1: α = 2τ

ρ+1−2δ

2: αoff←r [0,α]

3: Split [0,1] in regions: R = {[0,αoff), [αoff,αoff +α), . . . , [αoff + iα,αoff +(i+1)α), . . . , [αoff +

kα,1)}

4: v← 1
|~s| ∑

x∈~s
φ(x)

5: Let rv denote the region in R that contains v

6: return the midpoint of region rv

The following theorem upper bounds the sample complexity of rSTATτ,ρ,φ . In Section 3.7,

we show this upper bound is tight as a function of ρ .
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Theorem 1.3.3 (rSTAT simulates a statistical query oracle). Let τ,δ ,ρ ∈ [0,1], ρ > 2δ , and let~s

be a sample drawn i.i.d. from distribution D. Then if

|~s| ∈ Õ
(

1
τ2(ρ−2δ )2

)

rSTATρ,τ,φ (~s) ρ-replicably simulates an SQ oracle OD,τ,φ with failure rate δ .

The following is a proof sketch. See Section 3.2 for full details.

Proof. Assume sample set~s contains at least 4log(2/δ )
2τ2(ρ−2δ )2 examples.

Tolerance (accuracy): rSTATρ,τ,φ simulates an SQ oracle OD,τ,φ with failure rate δ .

Let τ ′ = τ(ρ−2δ )
ρ+1−2δ

. By a Chernoff bound, empirical estimate 1
|~s| ∑

x∈~s
φ(x) is within τ ′ of the

true mean with failure probability δ . Moving the empirical estimate to the midpoint of region rv

can further offset the estimate by α/2, giving overall tolerance τ.

Replicability: To show rSTATρ,τ,φ is ρ-replicable, consider running rSTATρ,τ,φ with com-

mon randomness r on samples ~s1,~s2 ∼ D independently. By the same Chernoff bound, with

probability at least 1−2δ , both empirical estimates of Ex∼D[φ(x)] are within tolerance τ ′ of the

true mean. rSTAT only outputs different results between the two runs if the estimates do not land in

the same random intervals. Since αoff is chosen uniformly in [0,α], this happens with probability at

most 2τ ′/α = ρ−2δ . Combining rSTATρ,τ,φ (~s) is ρ-replicable.

This example exhibits the tradeoffs among replicability, tolerance (accuracy), and sample

complexity. In order to add replicability and achieve the same tolerance, we needed to increase

the sample complexity and start from a smaller tolerance. Optimizing these tradeoffs is a key

component of replicability research. For statistical query algorithms, in Section 3.7 we show this

algorithm’s tradeoffs are essentially tight.

To reiterate, shared randomness r is only used in rSTAT to pick random offset αoff. The

random offset makes the algorithm replicable for all distributions D.
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The main replicability technique of rSTAT is randomized rounding. If multiple runs of

the algorithm are guaranteed to produce close outputs, rounding can convert these into a single,

canonical output. The statistical query algorithm involves rounding in one dimension, on the

interval [0,1]. A standard concentration bound guarantees closeness of outputs. In other words,

concentration plus randomized rounding implies replicability.

In subsequent algorithms, this concept been generalized and applied more broadly. In

Section 3.5, we replicably solve the problem of learning halfspaces in d dimensions. There, we

combine a sum-of-vectors concentration bound with d-dimensional rounding schemes to create

a replicable halfspace weak learning algorithm. Throughout Chapter 5, we investigate and use

correlated sampling in our algorithms and reductions. Correlated sampling is a tool to sample from

close distributions and, using shared randomness, output the same elements as often as possible. The

randomized rounding procedure in rSTAT is a simple example of a correlated sampling procedure.

Section 2.4 briefly describes correlated sampling and where it explicitly appears in this dissertation.

1.4 Properties of Replicability

We observe the following key properties of Definition 1.2.1.

Stability. Replicability is a strong stability property that implies independent parties can

replicate previous results with high probability, so long as the randomness used to achieve these

results is made public.

Generalization. Replicability implies generalization. A replicable learning algorithm, with

high probability, outputs a hypothesis h such that the difference between the risk of h and the

empirical risk of h on the training set is small. Intuitively, replicabilitiy implies that h is independent

of the training set with high probability. Thus, a Hoeffding bound can be applied to bound the risk

in terms of the empirical risk.

Privacy. Differential privacy (DP) is an important notion that requires small distance
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between the two distributions induced by an algorithm, when run on any two datasets that differ in

a single element. Crucially, it asks for the guarantees in the worst case over datasets. Replicable

algorithms guarantee a different form of privacy: If A is replicable, then what A learns (for

example, a trained classifier) is almost always the same; thus, A is typically independent of the

chosen training data. In this way, replicable algorithms are prevented from memorizing anything

that is specific to the training data, similar to differentially private algorithms. Replicability is

weaker than differential privacy in the sense that replicability only applies to in-distribution samples,

whereas differential privacy applies to any training set. On the other hand, replicability is stronger

in the sense that its guarantee for in-distribution samples is global rather than local.

Testability. While differential privacy has become the standard for privacy-preserving

computation, an important issue that is the subject of extensive research is testing and verifying

differential privacy. As discussed in [GNP20], DP-algorithms and their implementations are

usually analyzed by hand, and proofs of differential privacy are often intricate and prone to errors.

Implementing such an algorithm in practice often gives rise to DP leaks, due to coding errors

or assumptions made in the proof that do not hold on finite computers (such as the ability to

sample from continuous distributions). Moreover, the complexity of verifying differential privacy

is hard. Verification in the black-box setting (where the auditor has oracle access to the learning

algorithm) was recently shown to be infeasible, as low query complexity implies high values of the

the privacy parameters ε and δ [GM18]. In the white-box setting where A is given to the tester,

[GNP20] shows that testing for differential privacy is coNP#P-complete. This has led to an active

research area aiming at developing automated as well as interactive testing and verification methods

for differential privacy [NFPH15, GHH+13, RP10, AH18, BGA+15, BCK+21, FJ14, ZK17]. In

contrast, replicability is a form of privacy that can be efficiently tested in (randomized) polynomial

time (in the dimension of the data universe and ρ) for individual distributions D.
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1.4.1 Connections between Replicability and Algorithmic Stability Notions

Let us briefly recall the types of algorithmic stability that arise in these other areas:

Differential privacy.

A randomized algorithm is differentially private [DMNS16] if changing a single input record

results in a small change in the distribution of the algorithm’s output. When each input record

corresponds to one individual’s datum, differential privacy guarantees that nothing specific to any

individual can be learned from the output of the algorithm. (See Section 5.2.4.) Differential privacy

comes with a rich algorithmic toolkit and understanding of the feasibility of fundamental statistical

tasks in query estimation, classification, regression, distribution estimation, hypothesis testing, and

more.

Generalization in adaptive data analysis.

Generalization is the ability of a learning algorithm to reflect properties of a population,

rather than just properties of a specific sample drawn from that population. Techniques for provably

ensuring generalization form a hallmark of theoretical machine learning. However, generalization is

particularly difficult to guarantee in settings where multiple analyses are performed adaptively on the

same sample. Traditional notions of generalization do not hold up to downstream misinterpretation

of results. For example, a classifier that encodes detailed information about its training sample

in its lower order bits may generalize well, but can be used to construct a different classifier that

behaves very differently on the sample than it does on the population. Interactive processes such

as exploratory data analysis or feature selection followed by classification/regression can ruin the

independence between the training sample and the method used to analyze it, invalidating standard

generalization arguments.

Adaptivity in data analysis has been identified as one contributing factor to the replication

crisis, and imposing stability conditions on learning algorithms offers solutions to this part of the

problem. A variety of such stability conditions have been studied [DFH+15a, DFH+15b, BNS+21,
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RZ16, CLN+16, BF16, RRT+16, BMN+18, LS19, SZ20], each offering distinct advantages in

terms of the breadth of their applicability and the quantitative parameters achievable. Two specific

notions play a central role in this work. The first is perfect generalization [CLN+16, BF16], which

ensures that whatever can be inferred from the output of a learning algorithm when run on a sample

S could have been learned just from the underlying population itself:

Definition 1.4.1. An algorithm A : X n→ Y is (β ,ε,δ )-perfectly generalizing if, for every distri-

bution D over X , there exists a distribution SimD such that, with probability at least 1−β over S

consisting of n i.i.d. samples from D, and every set of outcomes O ⊆ Y ,

e−ε(PrSimD [O]−δ )≤ Pr[A(S) ∈ O]≤ eεPrSimD [O]+δ . (1.1)

The second is max-information [DFH+15a] which constrains the amount of information

revealed to an analyst about the training sample:

Definition 1.4.2. An algorithm A : X n→ Y has (ε,δ )-max-information with respect to product

distributions if for every set of outcomes O ⊆ (Y ×X n) we have

Pr[(A(S),S) ∈ O]≤ eεPr[(A(S),S′) ∈ O]+δ ,

where S and S′ are independent samples of size n drawn i.i.d. from an arbitrary distribution D over

X .

As with differential privacy, both perfect generalization and max-information are robust to

post-processing.

Each stability definition described above is tailored to model a distinct desideratum. At

first glance, they may all appear technically incomparable. For instance, differential privacy is

stricter than the other definitions in that it holds in the worst case over all input datasets without
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any assumptions on the data-generating procedure. On the other hand, it is weaker in that it only

requires insensitivity to changing one input record, rather than to resampling the entire input dataset

as in max-information, perfect generalization, or replicability. Meanwhile, differential privacy,

max-information, and perfect generalization quantify the sensitivity of the algorithm’s output in a

weaker way than replicability; the former three notions only require that the distributions on outputs

are similar, whereas replicability demands that precisely the same output realization is obtained

with high probability.

Nevertheless, the (surprising!) technical connections between these definitions have enabled

substantial progress on the fundamental questions in their respective areas. For example, it was

exactly the adaptive generalization guarantees of differential privacy that kickstarted the framework

of adaptive data analysis from [DFH+15b]; the definition of max-information was subsequently

introduced [DFH+15a] to unify existing analyses based on differential privacy and description

length bounds. As another illustration, variants of replicability were introduced in [BLM20,

GGKM21, GKM21] for purely technical reasons, as it was observed that such algorithms could be

immediately used to construct differentially private ones. This connection was essential in proving

the characterization of private PAC learnability in terms of the Littlestone dimension from online

learning [ALMM19, BLM20]. In fact, this characterization shows, that, in principle a private PAC

learner using n samples can be converted to a replicable PAC learner using a number of samples

that is an exponential tower of height n, but it is non-constructive and does not suggest what such a

learner looks like in general.

1.4.2 Terminology: “Reproducibility” and “Replicability”

Chapter 3 is based on [ILPS22], which was titled “Reproducibility in Learning”. In sub-

sequent work, including this dissertation, we use the term “replicability” to refer to the same

mathematical definition introduced in [ILPS22].

This terminology choice is more in line with the most recent Association for Computing
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Machinery (ACM) guidance regarding artifact review and badging [Ass20], version 1.1, updated

on August 24, 2020. This update changed the ACM’s definitons of the terms “reproducible” and

“replicable” to be more agreeable with the terminology currently used by the National Academies of

Sciences, Engineering and Medicine (see Chapter 3: Understanding Reproducibility and Replicabil-

ity, page 46, in [Nat19]).

According to both the ACM’s and National Academies’ current definitions, “reproducibility”

refers to the ability of a second experimental group to obtain similar results using the same input

data. Meanwhile, “replicability” refers to the ability of a second experimental group to obtain

similar results using input data and methods that may be different than those used by the original

experimental group.

The mathematical definition introduced in [ILPS22] is a guarantee that, with high probability,

two executions of the same algorithm with the same randomness and different sample sets will

produce the same answer. Since this guarantee is over different sample sets, the mathematical

definition does not fit the “same input data” condition in the above definitions of reproducibility.

Instead, the mathematical definition is a specific type of replicability — if the second experimental

group runs the same algorithm with the same random string (but on a new sample), the two groups’

results are guaranteed to be identical with high probability.

1.5 Results in this Dissertation

Next, we explain the main results of Chapters 3, 4, and 5.

1.5.1 Chapter 3: Replicability in Learning

This chapter establishes basic properties of our definition of replicability, designs efficient

replicable algorithms for some fundamental statistical tasks, and investigates basic properties of

replicability such as amplification and composition.
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Replicability: Properties and Alternative Definitions

We discuss alternative definitions of replicability and show that they are all essentially

equivalent. Then, we also prove some other nice properties of replicable algorithms.

1. Alternative Definitions and Amplification. We start by discussing two alternative defini-

tions of replicability and relate them to our definition. First, we can generalize the definition

to include algorithms A that not only have access to internal randomness and to random

samples from an underlying distribution D, but that also have access to extra non-random in-

puts. This more general definition captures both the original definition of pseudodeterministic

algorithms as well as our definition of replicable learning algorithms, and all of our results

remain unchanged. Second, we discuss an alternative two-parameter definition, and show that

the definitions are qualitatively the same. We show how to amplify the replicability parameter

by a standard argument where the sample complexity is increased modestly.

2. Public versus Private Randomness. Recall that we define replicability as the probability

that an algorithm returns the same answer when run twice using different random samples

from D but the same internal randomness. In [GL19], the authors define a related concept in

which the internal randomness is divided into two pieces, public and private randomness, but

the algorithm should return the same answer when just the public randomness is held fixed.

We show that, without loss of generality, it suffices to use only public randomness.

3. Replicability Implies Generalization. Learning algorithms attempt to use finite samples to

generate hypotheses on unknown, possibly complex distributions. The error of a hypothesis

h on the underlying distribution is called the generalization error. A replicable algorithm

outputs the same hypothesis with high probability, and thus the algorithm seldom draws

distinctions between specific samples and the entire distribution.

4. Connections to Data Reuse. We explore the connection between replicable algorithms and
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the adaptive data analysis model discussed in [DFH+15b] and [DFH+15a]. We show that

replicable algorithms are strongly resilient against adaptive queries. Informally, with respect

to replicable algorithms, the sample complexity and accuracy of (replicably) answering

m adaptively chosen queries behaves similarly to the sample complexity and accuracy of

replicably answering m nonadaptively chosen queries.

Upper Bounds

Our main technical results are replicable algorithms for some well-studied statistical query

and learning problems that are used as building blocks in many other algorithms.

1. Simulating SQ Algorithms. In Section 3.2, we give a generic algorithm that reduces the

problem of ρ-replicably estimating a single statistical query with tolerance τ and error δ to

that of nonreplicably estimating the same query within a smaller tolerance and error.

Theorem 1.5.1 (Theorem 3.2.3, Restated). Let ψ : X →{0,1} be a statistical query. Then

the sample complexity of ρ-replicably estimating ψ within tolerance τ and error δ is at most

the sample complexity of (nonreplicably) estimating ψ within tolerance τ ′ = τρ and error

δ ′ = τδ .

The basic idea is to obtain an estimate of the statistical query with a smaller tolerance τ ′ and

then use a randomized rounding scheme where the interval [0,1] is divided into intervals of

size roughly τ/ρ . Then, every value in the interval is rounded to the midpoint of the region

it occurs in. The partition into intervals is chosen with a random offset so that with high

probability nearby points will lie in the same region.

2. Heavy-hitters. Using our simulation of SQ queries, in Section 3.3, we demonstrate the

usefulness of replicability by giving a replicable algorithm rHeavyHitters for identifying

approximate v-heavy-hitters of a distribution, i.e. the elements in the support of the distribution

with probability mass at least v.
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Lemma 1.5.2 (Lemma 3.3.3, Restated). For all ε ∈ (0,1/2), v ∈ (ε,1− ε), with probability

at least 1−ρ , rHeavyHittersρ,v,ε is ρ-replicable, and returns a list of v′-heavy-hitters for

some v′ ∈ [v− ε,v+ ε]. Furthermore, the sample complexity is bounded by Õ(ρ−2).

The high level idea of our algorithm is to first draw sufficiently many samples,~s1, Q1 = |~s1|,

so that with high probability all heavy-hitters are in~s1. In the second stage, we draw a fresh

set~s2 of Q2 many samples and use them to empirically estimate the density of each element

in ~s1, and remove those that aren’t above the cutoff v′, where v′ is chosen randomly from

[v− ε,v+ ε] to avoid boundary issues.

3. Median Finding. In Section 3.4, we design a replicable algorithm for finding an approximate

median in an arbitrary distribution over a finite domain. Approximate median finding is a

fundamental statistical problem, and is also extensively studied in the privacy literature.

Theorem 1.5.3 (Theorem 3.4.2, Restated). Let τ,ρ ∈ [0,1] and let δ = 1/3. Let D be

a distribution over X , where |X | = 2d . Then rMedianρ,d,τ,δ is ρ-replicable, outputs a

τ-approximate median of D with success probability 1−δ , and has sample complexity

Ω̃

((
1

τ2(ρ−δ )2

)
·
(

3
τ2

)log∗ |X |
)

To describe the key ideas in the algorithm, we first show how approximate-median finding

is useful for turning many algorithms into replicable ones. Consider any problem where the

correct answers form an interval, and assume we start with a (not-necessarily) replicable

algorithm that is mildly accurate. Then we can run a replicable approximate-median finding

algorithm on the distribution of outputs of the original algorithm to construct a very accurate

replicable algorithm.

We will actually use this strategy recursively to replicably solve approximate median itself.

Our algorithm recursively composes a mildly accurate replicable median algorithm with a
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generic very accurate non-replicable median algorithm. This recursive technique is inspired

by, but simpler than, previous algorithms in the privacy literature [BNSV15, KLM+20], and

like these algorithms, the sample complexity of our algorithm has a non-constant but very

slowly growing dependence on the domain size.

4. Learning Halfspaces. In Section 3.5, we obtain a replicable algorithm rHalfspaceWkL for

weakly learning halfspaces. In Section 3.6, we transform it into a replicable strong learner by

way of a replicable boosting algorithm rBoost. We stress that our algorithms for halfspaces

are replicable in the stronger distribution-free setting.

Theorem 1.5.4 (Corollary 3.6.5, Restated). Let D be a distribution over Rd , and let f : Rd→

{±1} be a halfspace with margin τ in D. For all ρ,ε > 0. Algorithm rBoost run with weak

learner rHalfspaceWkL ρ-replicably returns a hypothesis h such that, with probability at

least 1− ρ , Pr~x∼D[h(~x) = f (~x)] ≥ 1− ε . Furthermore, the overall sample complexity is

Õ
(

d10/9

τ76/9ρ20/9ε28/9

)
.

In order to replicably learn halfspaces, we start with a simple weak learning algorithm for

halfspaces [Ser02] that takes examples (~xi,yi)∈X ×{±1}, normalizes them, and returns the

halfspace defined by vector ∑i~xi ·yi. We show a concentration bound on the sum of normalized

vectors from a distribution, and then argue that all vectors within the concentration bound are

reasonable hypothesis with non-negligible advantage.

Our randomized rounding scheme is a novel application of the randomized rounding technique

developed in the study of foams [KORW12]. The concentration bound together with the

foams rounding scheme [KORW12] yields a replicable halfspace weak learner. We then

obtain our replicable strong learner for halfspaces by combining it with a (new) replicable

boosting algorithm. Our algorithm is sample-efficient but inefficient with respect to runtime,

due to the inefficiency of the foams rounding scheme. We also give another randomized
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rounding procedure that gives a polynomial-time strong replicable halfspace learner, but with

polynomially larger sample complexity.

The Price of Replicability.

In Section 3.7 we ask what is the cost of turning a nonreplicable algorithm into a replicable

one. We first show that a τ-tolerant ρ-replicable SQ algorithm A for φ implies a ρ-replicable

algorithm for the τ-coin problem: given samples from a p-biased coin with the promise that either

p ≥ 1/2+ τ or p ≤ 1/2− τ , determine which is the case. Our main result in this section are

nearly tight upper and lower bound bounds of Θ(τ−2ρ−2) on the sample complexity of ρ-replicably

solving the τ-coin problem (for constant δ ), and thus the same bounds for ρ-replicably answering

SQ queries. On the other hand, it is well-known that the nonreplicable sample complexity of the

τ-coin problem is Θ(τ−2 log(1/δ )) (see, e.g. [Mou]). So the cost of guaranteeing ρ-replicability

for SQ queries is a factor of ρ−2.

For upper bounds, our generic algorithm in Section 3.2 converts any SQ query into a replica-

ble one: if our end goal is a ρ-replicable algorithm for estimating a statistical query with tolerance

τ and error δ , then the sample complexity is at most the sample complexity of nonreplicably

answering the query to within tolerance τ ′, and success probability 1−δ ′ where τ ′ = O(τρ) and

δ ′ = O(δτ), which has sample complexity O(τ−2ρ−2 log(1/δ ′)). The main result in this section is

the following lower bound for ρ-replicably answering statistical queries.

Theorem 1.5.5 (Theorem 3.7.1, Restated). Let τ > 0 and let δ < 1/16. Any ρ-replicable algorithm

for solving the τ-coin coin problem with success probability at least 1−δ requires sample complexity

Ω(τ−2ρ−2).

1.5.2 Chapter 4: Massart Boosting

This chapter is devoted to investigating boosting algorithms that are robust to Massart noise.

Its main connection to this dissertation is the use of replicability to prove a lower bound theorem —
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assuming one-way functions exist, no (computationally efficient) Massart noise boosting algorithm

can achieve better accuracy than our boosting algorithm. Specifically, we construct a replicable,

adversarial, “rude” weak learning algorithm rWkL. The material in this chapter was published

prior to that of the other chapters, and portions of rWkL became the replicable statistical query and

replicable heavy-hitters algorithms in Chapter 3.

Replicability ideas appear solely in the lower bound section of Chapter 4. Nevertheless, the

chapter contains the full paper, so that an interested reader can fully appreciate the context of one of

the first applications of replicability theory.

In the remainder of this section, we explain the statement of the lower bound and summarize

how replicability is used in that argument. A reader familiar with boosting and Massart noise can

skip to the end of this section, immediately before Section 1.5.3, for an explanation of the role

replicability plays.

We study the problem of boosting the accuracy of a weak learner in the (distribution-

independent) PAC model with Massart noise. In the Massart noise model, the label of each example

x is independently misclassified with probability η(x)≤ η , where η < 1/2. The Massart model

lies between the random classification noise model and the agnostic model. Our main positive

result is the first computationally efficient boosting algorithm in the presence of Massart noise that

achieves misclassification error arbitrarily close to η . Prior to our work, no non-trivial booster

was known in this setting. Moreover, we show that this error upper bound is best possible for

polynomial-time black-box boosters, under standard cryptographic assumptions. Our upper and

lower bounds characterize the complexity of boosting in the distribution-independent PAC model

with Massart noise. As a simple application of our positive result, we give the first efficient Massart

learner for unions of high-dimensional rectangles.

Boosting is a general learning technique that combines the outputs of a weak base learner —

a learning algorithm with low but non-trivial accuracy — to obtain a hypothesis of higher accuracy.

Boosting has been extensively studied in machine learning and statistics since initial work by
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Schapire [Sch90]. Here we study boosting in the context of learning classes of Boolean functions

with a focus on Valiant’s distribution-independent PAC model [Val84]. During the past three

decades, several efficient boosting procedures have been developed in the realizable PAC model,

i.e., when the data is consistent with a function in the target class. On the other hand, boosting in

the presence of noisy data remains less understood.

In this work, we study the complexity of boosting in the presence of Massart noise. In

the Massart (or bounded noise) model, the label of each example x is flipped independently with

probability η(x)≤ η , for some parameter η < 1/2. The flipping probability η(x) is bounded but

is unknown to the learner and can depend on the example x in a potentially adversarial manner.

Formally, we have the following definition.

Definition 1.5.6 (PAC Learning with Massart Noise). Let C be a concept class over X = Rn,

Dx be any fixed but unknown distribution over X, and 0 ≤ η < 1/2 be the noise parameter. Let

f ∈ C be the unknown target concept. A noisy example oracle, EXMas( f ,Dx,η(x)), works as

follows: Each time EXMas( f ,Dx,η(x)) is invoked, it returns a labeled example (x,y), where x∼Dx,

y = f (x) with probability 1−η(x) and y =− f (x) with probability η(x), for an unknown function

η(x) : X → [0,η ]. Let D denote the joint distribution on (x,y) generated by the above oracle. A

learning algorithm is given i.i.d. samples from D and its goal is to output a hypothesis h such that

with high probability the misclassification error Pr(x,y)∼D[h(x) 6= y] is as small as possible. We will

use OPT def
= infg∈C Pr(x,y)∼D[g(x) 6= y] to denote the optimal misclassification error.

Background on Massart Noise.

The Massart model is a natural semi-random input model that is more realistic and robust

than random classification noise. Noise can reflect computational difficulty or ambiguity, as well as

random factors. For example, a cursive “e” might be substantially more likely to be misclassified as

“a” than an upper case Roman letter. Massart noise allows for these variations in misclassification

rates, while not requiring precise knowledge of which instances are more likely to be misclassified.
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That is, algorithms that learn in the presence of Massart noise are likely to be less brittle than those

that depend on uniformity of misclassification noise. Agnostic learning is of course even more

robust, but unfortunately, it can be computationally infeasible to design agnostic learners for many

applications.

Boosting With Noisy Data.

An important research direction, which was asked in Schapire’s original paper [Sch90],

is to design boosting algorithms in the presence of noisy data. This broad question has been

studied in the past two decades by several researchers. See Section 4.1.4 for a detailed summary of

related work. Specifically, prior work has obtained efficient boosters for RCN [KS03] and agnostic

noise [Ser03, Fel10]. It should be emphasized that these prior works do not immediately extend to

give boosters for the Massart noise setting.

In this work, we ask the following question:

Can we develop efficient boosting algorithms for PAC learning with Massart noise?

Our focus is on the distribution-independent setting. Given a distribution-independent

Massart weak learner for a concept class C , we want to design a distribution-independent Massart

learner for C with high(er) accuracy. Prior to this work, no progress had been made on this front.

We resolve the complexity of the aforementioned problem by providing (1) an efficient boosting

algorithm and (2) a matching computational lower bound on the error rate of any black-box booster.

This work is the first step of the broader agenda of developing a general algorithmic theory of

boosting for other “benign” semi-random noise models, lying between random and fully adversarial

corruptions.

Our main result is the first computationally efficient boosting algorithm for distribution-

independent PAC learning in the presence of Massart noise that guarantees misclassification arbi-

trarily close to η , where η is the upper bound on the Massart noise rate. To state our main result,

we will require the definition of a Massart weak learner (see Definition 4.2.5 for additional details).
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Definition 1.5.7 (Massart Weak Learner). Let α,γ ∈ (0,1/2). An (α,γ)-Massart weak learner WkL

for concept class C is an algorithm that, for any distribution Dx over examples, any function f ∈ C ,

and any noise function η(x) with noise bound η < 1/2−α , outputs a hypothesis h that with high

probability satisfies Pr(x,y)∼D[h(x) 6= y]≤ 1/2− γ , where D is the joint Massart noise distribution.

Theorem 1.5.8 (Main Result). There exists an algorithm Massart-Boost that for every concept

class C , given samples to a Massart noise oracle EXMas( f ,Dx,η(x)), where f ∈ C , and black-

box access to an (α,γ)-Massart weak learner WkL for C , Massart-Boost efficiently computes a

hypothesis h that with high probability satisfies Pr(x,y)∼D[h(x) 6= y] ≤ η(1+O(α)). Specifically,

Massart-Boost makes O(log2(1/η)/γ2) calls to WkL and draws

polylog(1/(ηγ))/(ηγ
2) mWkL+poly(1/α,1/γ,1/η)

samples from EXMas( f ,Dx,η(x)), where mWkL is the number of samples required by WkL.

Prior to this work, no such boosting algorithm was known for PAC learning with Massart

noise. Moreover, as we explain in Section 4.1.4, previous noise-tolerant boosters do not extend to

the Massart noise setting. In Section 4.1.3, we provide a detailed overview of our new algorithmic

ideas to achieve this.

Some additional comments are in order. First, we note that the η + ε error guarantee

achieved by our efficient booster can be far from the information-theoretic minimum of OPT+ ε .

The error guarantee of our generic booster matches the error guarantee of the best known polynomial-

time learning algorithm for Massart halfspaces [DGT19]. Interestingly, the learning algorithm

of [DGT19] can be viewed as a specialized boosting algorithm for the class of halfspaces, in

which the halfspace structure is used to downweight specific regions on which the current classifier

achieves high accuracy. Theorem 4.1.3 is a broad generalization of this result that applies to any

concept class. This connection was one of the initial motivations for this work.

A natural question is whether the error upper bound achieved by our booster can be improved.
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Perhaps surprisingly, we show that our guarantee is best possible for black-box boosting algorithms

(under cryptographic assumptions). Specifically, we have the following theorem:

Theorem 1.5.9 (Lower Bound on Error of Black-Box Massart Boosting). Assuming one-way

functions exist, no polynomial-time boosting algorithm, given black-box access to an (α,γ)-Massart

weak learner, can output a hypothesis h with misclassification error Pr(x,y)∼D[h(x) 6= y]≤ η(1+

o(α)), where η is the upper bound on the Massart noise rate. In particular, this statement remains

true on Massart distributions with optimal misclassification error OPT = Ex∼Dx [η(x)]� η .

The reader is referred to Theorem 4.4.1 for a detailed formal statement. Our lower bound

establishes that the error upper bound achieved by our boosting algorithm is best possible.

We show that no “black-box” generic boosting algorithm for Massart noise can have

significantly better error than that for our algorithm, i.e., η +Θ(ηα). While this seemingly matches

the lower bound for RCN boosting from [KS03], the RCN bound only implies a lower bound for

RCN weak learners in the special case of Massart noise when η = OPT. We show a similar lower

bound in the Massart noise setting for a small but polynomial value of OPT. That is, Massart noise

boosting algorithms cannot be improved even when only a very small fraction of instances are

actually noisy.

To prove our lower bound, we consider a situation where the function r to be learned is

highly biased, and there is a tiny fraction of inputs with the majority value that are noisy and

indistinguishable from non-noisy inputs. If the distribution queried by a boosting algorithm does

not reweight values in some way to favor the minority answer, an uncooperative weak learner can

return the majority answer and have advantage γ . Doing so, the weak learner provides essentially no

additional information to the boosting algorithm. Alone, the boosting algorithm cannot efficiently

learn the function f , by the definition of pseudorandomness.

The boosting algorithm could try to reweight values, in an attempt to extract information

from its weak learners. However, it risks adding too much noise to the small fraction of already noisy
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examples, violating the Massart condition. Again, we invoke pseudorandomness — if the boosting

algorithm manages to avoid incorrectly reweighting the noisy examples x with nonnegligible

probability, then it must have some advantage in inverting the function f , (which partially determines

which examples are noisy).

We formalize these intutions by exhibiting an adversarial weak learner rWkL. rWkL returns a

hypothesis h that outputs the maximum likelihood label for each heavy-hitter of given distribution D′

and outputs a constant value for non-heavy-hitters. rWkL has a stability property called replicability.

Using replicability, we argue that i) boosting with rWkL can be efficiently simulated without knowing

the function f and ii) rWkL satisfies the definition of a Massart noise weak learner. We conclude that

a black-box boosting algorithm must be able to efficiently learn pseudorandom functions in order to

extract useful information from rWkL or achieve misclassification error better than η +Θ(ηα).

Replicability implies that, with high probability, rWkL does not reveal much about its input

S. If rWkL were not replicable, it could leak information about which samples likely influenced its

output. In turn, the boosting algorithm could attempt to use this information in subsequent rounds

to get better than η +Θ(ηα) misclassifcation error. While it may be possible to argue that some

nonreplicable weak learner cannot be used by any boosting algorithm to achieve error o(η(1+α)),

rWkL’s replicability immediately implies that the boosting algorithm is not learning from rWkL.

In order to invoke pseudorandomness to prove properties of black-box boosting algorithms,

we first show how to use boosting algorithms’ subroutines to construct efficient distinguishers for f .

Using pseudorandomness, we prove rWkL’s input does not even have to be drawn from the original

distributions (the “honest example generator”, Algorithm 20). Rather, with high probability, giving

rWkL random input with correct marginal distributions (Algorithm 22) yields the same output.

Substituting hEG with rEG saves the distinguisher from making additional function queries,

simplifying the analysis. As boosting algorithms are iterative, subsequent rounds of computation

may depend on the results of previous rounds. In absense of this substitution, one needs to be

careful that simulating the sample generation process (for the weak learner in a boosting algorithm)
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does not require superpolynomial queries, and thus superpolynomial time. With this substitution,

all nested subroutines can be simulated quickly, by using random samples.

1.5.3 Chapter 5: Stability is Stable

This chapter establishes new connections and separations between replicability and standard

notions of algorithmic stability. In particular, we give sample-efficient algorithmic reductions

between perfect generalization, approximate differential privacy, and replicability for a broad class of

statistical problems. Conversely, we show any such equivalence must break down computationally:

there exist statistical problems that are easy under differential privacy, but that cannot be solved

replicably without breaking public-key cryptography. Furthermore, these results are tight: our

reductions are statistically optimal, and we show that any computational separation between DP and

replicability must imply the existence of one-way functions.

Our statistical reductions give a new algorithmic framework for translating between notions

of stability, which we instantiate to answer several open questions in replicability and privacy.

This includes giving sample-efficient replicable algorithms for various PAC learning, distribution

estimation, and distribution testing problems, algorithmic amplification of δ in approximate DP,

conversions from item-level to user-level privacy, and the existence of private agnostic-to-realizable

learning reductions under structured distributions.

Equivalences

Our main result is a complete characterization of the relationships between these quantities.

We prove that all four central stability notions — replicability, differential privacy, perfect general-

ization, and bounded max-information w.r.t. product distributions — are equivalent to one another

via constructive conversions that incur at most a near-quadratic overhead in sample complexity.

Our equivalences apply to an abstract and broad class of statistical tasks that capture learning

from i.i.d. samples from a population. An instance of such a task is obtained by considering a
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distribution D from a pre-specified family of distributions. Given i.i.d. samples from D, the goal

of a learning algorithm is to produce an outcome that is “good” for D with high probability. This

formulation of a statistical task captures problems such as PAC learning, where a sample from

D is a pair (x, f (x)) ∈X ×{0,1} where x is drawn from an arbitrary marginal distribution over

X , and f is an arbitrary function from a fixed concept class H. A “good” outcome for such a

distribution D is a hypothesis h : X →{0,1} that well-approximates f on D. Many other objectives

such as regression, distribution parameter estimation, distribution learning, hypothesis testing, and

confidence interval construction can be naturally framed as statistical tasks. (See Section 5.6.4 for

other examples.)

The following figure illustrates the known relationships between the various stability notions

that hold with respect to any statistical task.

From these equivalences we obtain the following consequences, resolving several open

questions.

Sample-efficient replicable algorithms.

Any differentially private algorithm solving a statistical task (with a finite outcome space)

can be converted into a replicable algorithm solving the same task with a near-quadratic blowup in

its sample complexity. Thus, the wealth of research on private algorithm design can be brought to

bear on designing replicable algorithms. We illustrate this algorithmic paradigm by describing new

replicable algorithms for some PAC learning, distribution parameter estimation, and distribution

testing problems in Section 5.6.4.

Equivalence between perfect generalization and differential privacy.

For simplicity, the relationships summarized in Figure 5.1 are stated in terms of a one-way

variant of perfect generalization, where only the inequality on the right of (5.1) is required to hold.

But the original two-way definition turns out to be statistically equivalent for tasks with a finite

outcome space. This is because a one-way perfectly generalizing algorithm can be converted to
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(0.1)-replicability (ε,δ )-differential privacy

(ε,δ )-max-information
w.r.t. product distributions

(δ ,ε,δ )-one-way
perfect generalization

n 7→ n · log(1/δ )
ε

, Thm. 5.3.1 [GKM21]

n 7→ n2

Cor. 5.3.13 [RRST16]

Lem. 5.3.14

n 7→ n
Thm. 5.3.17

n 7→ n · poly log(1/ε,1/δ )
ε2

Thm. 5.3.19

Figure 1.1. Algorithmic relationships among replicability, differential privacy, max information,
and perfect generalization.
The solid arrow from A to B means that every algorithm satisfying A also satisfies B. A dashed
arrow means that for every statistical task, a solution satisfying A can be computationally efficiently
transformed into a solution satisfying B with the stated blowup in sample complexity. The thin
dotted arrow means an explicit transformation exists, but is not always computationally efficient,
and assumes the outcome space is finite.
This figure suppresses constant factors everywhere and polynomial factors in δ , assumes ε is below
a sufficiently small constant, and assumes that δ is a sufficiently small inverse polynomial in n.

a replicable algorithm using Theorem 5.3.17, and Theorem 5.3.19 actually yields the stronger

conversion back to a two-way perfectly generalizing algorithm (See Theorem 5.6.3). Thus, an

(ε,δ )-differentially private algorithm (with a finite outcome space) can be converted to a perfectly

generalizing one solving the same statistical task with a near quadratic blow-up in sample complexity.

This resolves an open question of [CLN+16]. Their work also gave a conversion from perfectly

generalizing algorithms to differentially private ones with no sample complexity overhead, and

while their transformation preserves accuracy for (agnostic) PAC learning, it is not clear how to

analyze it for general statistical tasks. Our conversion from perfect generalization to replicability

and then to differential privacy holds for all statistical tasks with a finite outcome space.
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Converting item-level to user-level privacy.

Consider a “user-level” learning scenario in which n individuals each hold m training exam-

ples drawn i.i.d. from the same distribution. When is (ε,δ )-differentially private learning possible

if we wish to guarantee privacy with respect to changing all of any individual’s samples at once?

Ghazi, Kumar, and Manurangsi [GKM21] showed that this is possible when n≥ O(log(1/δ )/ε)

and the task admits a replicable learner. For the special case of PAC learning a concept class H,

they argued that this implies a user-level private learning algorithm whenever H is privately PAC

learnable with respect to changing a single sample. They posed the open problem of extending this

result beyond PAC learning, e.g., to private regression [JKT20, Gol21]. Our conversion from any

differentially private algorithm to a replicable one implies that such a transformation is possible for

any statistical task with a finite outcome space (Section 5.6.1). Moreover, one can always take each

indvidual’s number of samples m to be nearly quadratic in the sample complexity of the original

item-level private learner.

Amplifying differential privacy parameters.

While almost all (ε,δ )-differentially private algorithms enjoy a mild ∝ log(1/δ ) dependence

in their sample complexity on the parameter δ , it was not known how to achieve this universally, say

by amplifying large values of δ to asymptotically smaller ones. [BLM20] showed that for private

PAC learning, such amplification is possible in principle, but posed the open question of giving an

explicit amplification algorithm. By converting an (ε,δ )-differentially private algorithm with weak

parameters to a replicable one, and then back to a differentially private one with strong parameters,

we resolve this question for the general class of statistical tasks with a finite outcome space, and

with a much milder sample complexity blowup (Section 5.6.2).

Agnostic-to-realizable reductions for distribution-family learning.

[HKLM22] introduced a simple and flexible framework for converting realizable PAC

learners to agnostic learners without relying on uniform convergence arguments. The framework

37



applies to diverse settings such as robust learning, fair learning, partial learning, and (as observed in

this work) replicable learning, with differential privacy providing a notable exception.1 While an

agnostic-to-realizable reduction for private PAC learning is known [BNS16b, ABMS20], it relies on

uniform convergence and is only known to hold in the distribution-free PAC model. By converting

a realizable private learner to a realizable replicable learner, then to an agnostic replicable learner,

and back to an agnostic private learner, we obtain a reduction that works in the absence of uniform

convergence (Section 5.6.3). In particular, this reduction applies to the distribution-family learning

model, where one is promised that the marginal distribution on unlabeled examples comes from a

pre-specified family of distributions.

Separating Stability: Computational Barriers and the Complexity of Correlated Sampling

All of the transformations appearing in Figure 5.1 preserve computational efficiency, with

the lone exception of the transformation from perfectly generalizing algorithms to replicable ones.

This transformation makes use of the technique of correlated sampling from the distribution of

outputs of a perfectly generalizing algorithm A when run on a fixed sample S (elaborated on more

in Sections 5.1.2 and 5.2.5). This step can be explicitly implemented via rejection sampling from

the output space of A, with the rejection threshold determined by the probability mass function of

A(S), but in general it is not computationally efficient.

We show that under cryptographic assumptions, this is inherent (Section 5.4). Specifically,

we show that under standard assumptions in public-key cryptography, there exists a statistical task

that admits an efficient differentially private algorithm, but does not have any efficient replicable

algorithm. The task is defined in terms of a public-key encryption scheme with the following

rerandomizability property: Given a ciphertext Enc(pk,b), there is an efficient algorithm producing

a uniformly random encryption of b. Fixing such a rerandomizable PKE, the statistical task is as

1We note the technique we introduce to adapt [HKLM22] to the replicable setting has no clear translation to the
private setting.
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follows. Given a dataset consisting of random encryptions of the form Enc(pk,b) where pk is a

fixed public key and b ∈ {0,1} is a fixed bit, output any encryption of b.

One can solve this problem differentially privately, essentially by choosing a random

ciphertext from the input dataset and rerandomizing it. On the other hand, there is no efficient

replicable algorithm for this task. If there were, then one could use the public key to produce

many encryptions of 0 and 1 and run the replicable algorithm on the results to produce canonical

ciphertexts c0 and c1, respectively. Then, given an unknown ciphertext, one could repeatedly

rerandomize it, run the replicable algorithm on the results, and compare the answer to c0 and to c1

to identify the underlying plaintext.

We also show that cryptographic assumptions are necessary even to separate replicability

from perfect generalization. Recalling again that the bottleneck in computationally equating the

two notions is in implementing correlated sampling, we show in Section 5.4.2 that if one-way

functions do not exist, then correlated sampling is always tractable. In addition to addressing a

natural question about the complexity of correlated sampling, this shows that function inversion

enables an efficient transformation from perfectly generalizing algorithms into replicable ones. (See

Section 5.2.5 for more discussion.)

Separating Stability: Statistical Barriers

Our equivalences show that the sample complexities of perfectly generalizing and replicable

learning are essentially equivalent. Moreover: (1) An approximate-DP algorithm can be converted

to a perfectly generalizing/replicable algorithm with near-quadratic blowup; and (2) A perfectly

generalizing/replicable algorithm can be converted to an approximate-DP one using roughly the

same number of samples. We prove that both of these conversions are optimal by showing:

1. Quadratic separations between differential privacy and (perfect generalization, repli-

cability). We first consider the problem of estimating the parameters of a product of d

Bernoulli distributions. By simply taking the empirical mean of an input dataset, this problem
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can be solved using O(logd) without any stability constraints. However, with differential

privacy, it is known that Θ̃(
√

d) samples are necessary and sufficient. By adapting the “fin-

gerprinting” method underlying these privacy lower bounds [BUV18, DSS+15, BSU19] to

perfect generalization, we prove that any perfectly generalizing or replicable algorithm for

this problem requires Ω̃(d) samples (Section 5.5.1).

By reducing from a variant of this one-way marginals problem, we also show a general

lower bound for replicable agnostic learning. Namely, we show that every concept class

H requires Ω̃(VC(H)2) samples. For concept classes of maximal VC dimension VC(H) =

log |H|, this too gives a quadratic separation between replicable learning and both private and

unconstrained learning (Section 5.5.2).

2. No separation between differential privacy and (perfect generalization, replicability).

Complementing our lower bounds, we also show that every finite class H can be replicably

PAC learned (in the realizable setting) to error α with sample complexity ÕH(1/α) (Sec-

tion 5.5.3). Up to logarithmic factors, this matches the learning rate achievable for both

unconstrained and differentially private learning. Our learner works by selecting a random

threshold v, and selecting a random concept from H whose error with respect to the sample is

at most v. A more involved random thresholding strategy also yields an agnostic learner with

sample complexity ÕH(1/α2).

1.6 Related Work

1.6.1 Prior Work

Our definition of replicability is inspired by the literature on pseudodeterministic algorithms

[GG11, GGR13, GG17, GGH18, GGMW19, GL19, Gol19]. In particular, [GL19] and [Gol19]

define reproducibility in the context of pseudodeterminism. In the pseudodeterministic setting,

40



the primary concern is replicating the output of an algorithm given the same input, over different

choices of the algorithm’s internal randomness. There, the input of a reproducible algorithm is

a fixed string. In our setting, the input of a replicable learning algorithm is a distribution, only

accessible by randomly drawing samples.

Our work is related to other notions of stability in machine learning which, like our definition,

are properties of learning algorithms. In the supervised learning setting, stability is a measure of how

much the output of a learning algorithm changes when small changes are made to the input training

set. An important body of work establishes strong connections between the stability of a learning

algorithm and generalization [DW79b, DW79a, KR99, BE02, SSSSS10]. Distributional notions of

stability which remain stable under composition and postprocessing, were defined and shown to be

closely connected to differential privacy and adaptive data analysis (e.g., [BNS+16a, DFH+15a]).

In fact, the definition of differential privacy itself is a form of stability known as max-KL stability.

Stability-based principles have also been explored in the context of unsupervised learning where

model selection is a difficult problem since there is no ground truth. For example, a stable algorithm

for clustering has the property that when the algorithm is applied to different data sets from the

same distribution, it will yield similar outputs (e.g., [vL10]).

In all of these settings, stability depends on how close the outputs are when the inputs are

close; what varies is the particular measure of closeness in input and output space. For example,

closeness in the output can be with respect to function or parameter space; for distributional stability

close means that the output distributions are close with respect to some metric over distributions.

Our definition of replicability can be viewed as an extreme form of stability where the output is

required to be identical almost all of the time, and not just similar. Thus replicability enjoys many

of the nice properties of stable algorithms (e.g., postprocessing, composition) but has the advantage

of being far easier to verify.

Stability has a long history as a tool for ensuring generalization. Early work [RW78,

DW79a, BE02, SSSSS10] showed that the stability of a learning algorithm with respect to a specific
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loss function could ensure strong generalization guarantees with respect to that loss. A more

recent literature has focused on stability notions that are not tied to a specific loss, and which

ideally are robust under post-processing and adaptive composition. This includes understanding

the generalization guarantees of differential privacy [DFH+15a, DFH+15b, BNS+21, RRST16,

RRS+20, ZH19, JLN+20] and other constraints on the information-theoretic relationship between

the input and output of a learning algorithm [RZ16, BMN+18, XR17, RRT+16, LS19, SZ20]. A

related line of work [CLN+16, BF16, NSS+18] considers more “semantic” notions of stability,

defining it in terms of the difficulty of inferring properties specific to the sample rather than of the

underlying distribution. Perfect generalization, one of the main definitions we study in Chapter 5,

was introduced by [CLN+16] and is a special case of typical stability that was introduced in

independent work of Bassily and Freund [BF16].

1.6.2 Concurrent Work

Independently of the work in Chapter 3, [GKM21] defines a property equivalent to repli-

cability, called “pseudo-global stability”. Their (α,β )-accurate (η ′,ν ′)-pseudo-global stability

definition is equivalent to the (η ,ν)-replicability definition discussed in Appendix 3.8, except that

pseudo-global stability includes explicit parameters for correctness and sample complexity. In

Appendix 3.8, we show that these two definitions are equivalent to Definition 3.1.1 up to polynomial

factors. [GKM21] gives pseudo-globally stable SQ algorithms, an amplification of the stability

parameter, and an algorithm to find a heavy-hitter of a distribution. The authors use pseudo-global

stability to show that classes with finite Littlestone dimension can be learned user-levelly privately,

and they connect pseudo-global stability to approximate differential privacy. Pseudo-global stability

is a generalization of global stability, introduced in [BLM20]. Those authors use global stability as

an intermediate step to show that classes with finite Littlestone dimension can be learned privately,

and they show how global stability implies generalization.

Several elements of our approach in Chapter 5 were inspired by [GKM21]. Correlated
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sampling played a crucial role in their work by allowing individuals to use shared randomness to

reach consensus on a learned hypothesis. In fact, it provided a key step in their conversion from “list

globally stable” algorithms [GGKM21] (learning algorithms that output a short list of hypotheses,

one of which is almost guaranteed to be canonical for the given distribution) to pseudo-globally

stable ones.

Independent of the work in Chapter 5, [KKMV23] study similar relationships between

notions of stability. They focus on the PAC-learning setting, where they show a statistical equiva-

lence between differential privacy, replicability, and a notion called “TV-indistinguishability” which

can be thought of as a special case of perfect generalization with ε = 0. Our approach gives us

a constructive procedure for converting a private algorithm for a general statistical task into a

replicable algorithm, so long as the private algorithm has finite range. Our transformations induce

a modest sample complexity increase, resulting in a replicable algorithm with sample complexity

n2, given a private learner with sample complexity n. By contrast, the results of [KKMV23], while

non-constructive, apply to countably infinite domains (and therefore to some uncountably infinite

ranges). However, their results go through Littlestone dimension, which may be an exponential

tower in n, and so they obtain sample complexity bounds which are an exponential tower in n as

well. For more details, see Section 5.1.3.

1.6.3 Subsequent Work on Mathematical Replicability

Our research has inspired other researchers to design provably replicable algorithms and to

extend mathematical replicability to new contexts.

The following is a brief, incomplete list of follow-up work that has been published or

accepted for publication. These papers are grouped together for ease of exposition. However, these

categories and short descriptions do not entirely capture the scope of each works’ results.

Researchers have defined similar notions of replicability in other learning models. These

include replicable reinforcement learning [KVYZ23, EHKS23] and replicable bandits [EKK+23].
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Researchers have developed the new replicable algorithms and theory for the i.i.d. set-

ting. [EKM+23] gives replicable clustering algorithms, [KKL+24] improves the efficiency of

halfspace learners in Section 3.5 and Section 3.6, and [HIK+24] connects replicable algorithms to

isoperimetric tilings.

Researchers have defined relaxed and stricter notions of replicability, further connecting

stability to the learning theory landscape. [DPVWV23, CMY23, CCMY24] explore list replicability,

a variant of replicability where an algorithms output are required to belong to a short list of canonical

outputs, rather than a single output per random string. In fact, [CMY23] shows an equivalence

between list replicability and global stability, introduced in [BLM20] (and a precursor to pseudo-

global stability, introduced in [GKM21] and equivalent to replicability).

[DPVWV23] defines certificate replicability, where the canonical hypothesis an algorithm

must return depends on the first l bits of the random string r. [KKVZ24] explores computational

relationships between replicability, privacy, and online learning. [MSS23] summarizes relationships

among “Bayesian definitions of stability” — these include replicability, differential privacy, finite

clique dimension, mutual information stability, and distribution-dependent KL-stability.

1.7 Future Directions for Replicability Research

Why should we study replicability mathematically?

Replicability can be used as a tool to prove theorems outside of replicability theory. In fact,

the first applications of replicability (according to Definition 2.1.1) were for proving a Massart

boosting lower bound (Section 4.8) and an item-level to user-level reduction for differential privacy

[GKM21]. Section 5.6 contains additional applications of replicability.

Replicability itself may be a desired property. Our definition of replicability may not be

suitable for a specific application, but it may be helpful in finding a definition that is. For example,

this work on replicability has led to theory for replicability variants (Section 1.6.3). The new context
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necessitates new algorithms and new techniques for algorithm designers to examine.

Broadly, theory can be used to contextualize individual applications and problems. Theory

can guide algorithm designers towards successful paradigms (upper bounds) and away from impos-

sible situations (lower bounds). Theory can help suggest new heuristics and verify that heuristics

are not captured under known lower bounds.

Even if replicability is not explicitly desired, replicability theory may be useful because

replicability implies other desirable properties. Section 3.1.1 summarizes how replicable algorithms

can be amplified, adaptively compose, and generalize. Section 5.3 describes how replicable

algorithms can be transformed to have other algorithmic stability properties, such as differential

privacy. So, an algorithm designer looking for such properties can examine replicable algorithms as

a starting point for designing their own algorithm.

Similarly, replicability theory has connections across mathematics. In this dissertation, we

see connections between replicability and

• cryptography: one-way functions (Sections 4.8, 5.4),

• geometry: randomized rounding and tilings (Sections 3.5.2, 3.5.3, 5.7),

• learning theory: statistical queries, halfspaces, boosting, agnostic learning, (Sections 3.2, 3.5,

3.6, 5.5.2), and

• algorithmic stability: differential privacy, perfect generalization, and max information (Chap-

ter 5).

As discussed in Section 1.6.3, subsequent work has expanded these connections. For

example, [CMY23] and [CCMY24] connect replicability to topology by applications of the Poincaré-

Miranda theorem and the Borsuk-Ulam theorem!

Mathematical academic research in universities is fractured. Replicability research is a

possible avenue for reconvening researchers from segregated areas of mathematics.
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As an example, numerical stability may have connections with replicability research. Nu-

merical stability is a subarea of mathematics concerning the propagation of errors in numerical

algorithms. For example, rounding errors in an algorithm’s inputs may be magnified, depending on

the design of the algorithm. How can the replicability theory established so far influence numerically

stable algorithms, and vice versa?

Coordination games could be another new connection. Replicable algorithms given canon-

ical outputs, even when there may be many acceptable outputs. In coordination games, multiple

players want to make optimal individual decisions with minimal communication (e.g., crossing a

traffic light). Replicable algorithms could be possible subroutines for players to reach equilibria.

We conclude this chapter by discussing future directions. These directions are presented

in sections, divided by context. However, all contexts share the following themes: deciding on an

appropriate notion of replicability, designing replicable algorithms, and pursuing their applications.

For additional open questions, see the open question sections of papers listed in Section 1.6.3.

1.7.1 Replicability in This Dissertation’s Model

First, we discuss theoretical directions for the model and definition of replicability introduced

in this dissertation (Definition 2.1.1).

New Replicable Algorithms

As replicability is defined as a property of algorithms, any algorithmic learning problem

using i.i.d. data can be made to also ask about replicability. By comparing the best possible

non-replicable algorithm for a problem with the best replicable algorithm, one can quantify the

parameter tradeoffs (accuracy, efficiency) in making algorithms ρ-replicable.

For algorithms and algorithmic paradigms that operate on samples, without any distributional

assumptions, one can ask if these algorithms are replicable when their data is sampled from an

arbitrary distribution.
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For example: replicable parity learning, replicable principle component analysis (PCA),

replicable stochastic gradient descent, replicable dimensionality reduction, replicable regression,

replicable naive Bayes algorithms, replicable random forest algorithms, etc.

Adaptive Composition — Combining Replicable Algorithms

What is the best way to run a series of replicable algorithms? Is there any advantage to

running algorithms together, rather than just separately?

In Chapter 3, we show that replicable algorithms compose adaptively. That is, a sequence of

k adaptively chosen ρ-replicable algorithms yields a transcript that is O(kρ)-replicable. One way to

interpret this result is as follows: Given a sequence of k analyses that are each (0.01)-replicable

using a sample of size n, one can amplify their individual replicability parameters to O(1/k) at the

expense of increasing their sample complexity to O(k2n). This yields a (0.01)-replicable algorithm

for performing all k analyses at a sample cost of O(k2n).

Our conversions between replicability and differential privacy yield a different tradeoff, at

least for simulating non-adaptive composition. Given k analyses that are each (0.01)-replicable

using a sample of size n, one can convert them to Õ(1/
√

k)-differentially private algorithms each

using a sample of size Õ(
√

kn). “Advanced” composition of differential privacy [DRV10] yields

an (0.01,δ )-differentially private algorithm using Õ(
√

kn) samples, which can then be turned back

into a (0.01)-replicable algorithm using Õ(kn2) samples.

What is the optimal sample cost for conducting, or at least statistically simulating, the

adaptive composition of k replicable algorithms? Is it possible to do so at a cost of O(kn) samples?

Transformations between Replicability and Differential Privacy

The main result of Chapter 5 is a general equivalence between replicable algorithms and

differentially private algorithms. While an individual algorithm may not satisfy both notions

simultaneously, we show how to transform replicable algorithms to DP-algorithms and vice versa.
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Furthermore, we show that these black-box reductions are tight (i.e. tight when we do not make

additional assumptions about the problem).

Are there natural problems for which there are larger separations than those suggested by

our reductions? For example, in Section 5.5.3, we give a direct replicable algorithm for the task of

realizable PAC learning of finite classes with sample cost inverse linear in the accuracy parameter

α . If we directly apply our reduction from replicability to approximate DP, we get inverse quadratic.

See Theorem 5.6.13 and the following discussion for more information.

For which problems does our replicability to approximate DP reudction give tight bounds?

Can we prove tight bounds for other problems?

Turning to computational efficiency, what are the minimal cryptographic assumptions under

which a computational separation between replicability and differential privacy exists? Our results in

Section 5.4 show that one-way functions are necessary, while public-key assumptions are sufficient.

Correlated Sampling over Infinite Domains

While correlated sampling introduces no sample complexity overhead in terms of the output

space, it is only known to be possible when the output space is finite or the class of distributions

to be sampled from is structured. Examples of such structures include when the distributions in

the class all have uniformly bounded Radon-Nikodym derivative with respect to some fixed base

measure. Formally, this case falls into a restricted notion of correlated sampling over a subset of

distributions, similar to the multiple coupling of [AS19].

One application is in reinforcing the connection between perfect generalization and replica-

bility. Is a transformation from one-way perfectly generalizing algorithms to replicable algorithms

possible for infinite output spaces in general?

In independent work, [KKMV23] make progress towards this goal by giving a transformation

from TV-indistinguishability to replicability when there are only countably many options for the TV-

indistinguishable algorithm {A(S)}S∈Xn . It follows from Lemma 5.3.8 that (β ,ε,δ )-one-way perfect
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generalization implies (4ε + 2δ + 2β )-TV indistinguishability, and so the result of [KKMV23]

gives the following corollary.

Corollary 1.7.1. Fix n ∈ N, β ,ε,δ ∈ (0,1]. Let X be a countable domain and A : X n → Y

be a (β ,ε,δ )-one-way perfectly generalizing algorithm for a statistical task. Then there exists

an algorithm A′ : X n→ Y that is
(

2ρ

1+ρ

)
-replicable for ρ = 4ε +2δ +2β , and for all S ∈X n,

A(S) = A′(S).

The existence of an analogous transformation for general measure spaces remains an

open problem. In the PAC-setting, one can resolve this issue via factoring through Littlestone

Dimension and replicable heavy-hitters (Section 3.3), but this results in tower sample complexity.

In Section 5.6.3 we discuss the list heavy-hitters problem, that may be a candidate for separating

perfect generalization from replicability over infinite output spaces.

Replicable Smooth Boosting and Connections

In Section 3.6, we present the first replicable smooth boosting algorithm. We do this

by modifying the smooth boosting algorithm in [Ser03]. Smooth boosting has been shown to

have deep connections with complexity theory, combinatorics, and number theory via hard-core

lemmas, dense-model theorems, and regularity lemmas [KS99, GT08, RTTV08, Gow10, TTV09].

What implications do replicable smooth boosting algorithms have for these intimately related

mathematical objects?

1.7.2 New Models for Replicability

As discussed in Section 1.2, our definition of replicability only applies to algorithms that use

samples drawn i.i.d. from some distribution. This may not be a sensible assumption. For example,

datasets may evolve over time, or the algorithm may have interactive access to portions of the data.

To be clear, the scientific term “replicability” is not identical to our mathematical term

“replicability” (Definition 2.1.1).
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In 2019, the National Academies defined replicability as follows: “Replicability is obtaining

consistent results across studies aimed at answering the same scientific question, each of which has

obtained its own data” [Nat19].

In 2020, the Association for Computing Machinery (ACM) defined replicability as follows:

“The measurement can be obtained with stated precision by a different team, a different measuring

system, in a different location on multiple trials. For computational experiments, this means that

an independent group can obtain the same result using artifacts which they develop completely

independently” [Ass20].

These definitions can be summarized as “different experimental setup, same results”.

Our mathematical definition (Definition 2.1.1) makes explicit choices. The different

data/artifacts are different samples S1, S2, while the same results are exactly identical outputs

to the underlying computational problem. But these choices represent only one type of replicability.

For example, “studies aimed at answering the same scientific question” could refer to

different methods of gathering samples or different algorithmic approaches entirely. Similarly,

independent “artifacts” could refer to the algorithms run themselves, not just independent samples.

Whereas, in our definition, the sampling method is the same (i.i.d. samples for both experiments)

and the algorithm run is the same (fixing the randomness r makes both experiments run the same

deterministic algorithm).

If we want a broad mathematical theory of replicability, we must investigate replicability in

different models. This involves defining a sensible notion of replicability, generalizing previous

techniques for designing replicable algorithms, and analyzing limitations of replicability.

Models without I.I.D. Samples

As defined in Definition 2.1.1, replicable algorithms interact with the underlying data source

through a fixed sample. However, there are many other models of learning from data. An algorithm

could interact by querying a data source, receiving data insertions and deletions dynamically, get
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rewards from its environment, handle corrupted data, build a data structure, etc. Our definition of

replicability may not naturally generalize to these new settings; yet, some form of replicability may

be desired.

Shared randomness is key to the definition of replicability introduced in this dissertation.

It acts as advice that two groups can use to correlate the results of their algorithms. In this

sense, shared randomness may be useful for achieving replicability in new algorithmic models.

For example, see the replicability models in the context of bandits [EKK+23] and reinforcement

learning [KVYZ23, EHKS23].

Models with I.I.D. Samples

Even without changing the i.i.d. sample assumption, one can create new, mathematically

interesting models for replicability. For example, [DPVWV23, CMY23, CCMY24, HIK+24]

already have defined certificate replicability, list replicability, and other related notions.

One immediate motivation for such models is to overcome limitations of replicable algo-

rithms in the existing i.i.d. model. In Section 3.7, we proved a lower bound showing a (1/ρ2)-factor

increase in the sample complexity of computing statistical queries replicably. Roughly, this implies

that guaranteeing 99% replicability requires a 10,000-fold increase in the sample size, which may

be prohibitive for applications. While replicability can be tested on known distributions, there

are adversarial situations in which it is computationally infeasible to determine an algorithm’s

replicability on other (arbitrary) distributions.

Refocusing on approximate replicability notions is one way to circumvent these and other

limitations. Investigating these notions will lead to new techniques for analyzing and designing

replicable algorithms.

As defined in Definition 2.1.1, algorithms are replicable if their outputs are exactly the same.

We could relax this equality condition to outputs that behave the same. For example, consider

algorithms that output functions. An algorithm is conduct replicable on domain X if the functions
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output across two runs f1←A (S1;r) and f2←A (S2;r) are consistent on all points x ∈X . In

other words, f1(x) = f2(x)∀x ∈X . Functions f1 and f2 need not have the same representation.

One motivation of this definition is that many machine learning models are complex and

difficult to precisely write down. Checking exact representation equality may be time-consuming

and not as important as checking behavioral equality.

Say we devise a conduct replicable algorithm for some problem. Can one efficiently test the

outputs of the algorithm for consistency on all x ∈X ? Even if the replicable algorithm is efficient,

it may produce functions that cannot be efficiently checked by brute force. The complexity of

testing replicability in this model could offer connections to computational indistinguishability and

meta-complexity, the study of determining complexities of problems about complexities.

Another way to relax the exact equality condition of Definition 2.1.1 is the following. Again,

consider algorithms that output functions. Rather than guarantee that output functions are the

same with high probability, we guarantee that output functions are the same on any individual

point x ∈ X with high probability. Formally, A is ρ-per-point replicable if: ∀D,∀x ∈ X :

PrS,S′∼Dn,r∼R[A(S;r)(x) = A(S′;r)(x)]≥ 1−ρ . This notion is weaker than Definition 2.1.1, and it

may be easier to achieve.

One possible application is constructing replicable PAC-learners. We do not know if replica-

bility can always be achieved for PAC-learning problems. Rather than trying to build replicable

PAC-learning algorithms directly from nonreplicable PAC learners, we could use approximate

replicability notions as stepping stones in between. The techniques we used for amplification and

composition of replicability do not directly work for per-point replicability. So, this investigation

will yield new ways to design and analyze replicable algorithms.

There are many other sensible ways to define approximate replicability notions. For example,

one can allow perturbations to the input distribution, restrict the algorithm’s randomness usage (e.g.,

[DPVWV23]), or allow algorithms to produce lists of outputs (e.g., [CMY23, DPVWV23]). One

could also consider restricting replicability to a set of known distributions, leveraging properties of
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distributions specific to that set (e.g., the Distribution-Family Model discussed in Section 5.6.3).

Characterizing the relationships between these notions will provide a more fine-grained

understanding of the scope of replicable algorithms. A larger repertoire of replicable algorithms

will help researchers incorporate replicability into new contexts.

Distributional Shift

To what extent is replicability preserved under distributional shift? One way the i.i.d. sample

data assumption can be violated is if the underlying distribution D changes between sampling

sample S1 and sample S2. For example, a city may see residents come and go over time, changing

the city’s population. Does replicability give accuracy guarantees, if the distributions are close?

In Appendix 5.9, we give a trivial argument showing that a ρ-replicable algorithm is ρ(1−

δ )2m-replicable across two close distributions. Are there tighter replicability and non-replicability

bounds for specific families of distributions, problems, and algorithms under distributional shifts?

In other words, is there an algorithmic model that cleanly connects replicability to metrics between

distributions?

Properties Implied by Replicability

Once a mathematical model of replicability is formalized, one can ask if replicability

automatically implies other desirable properties for algorithms.

• Testability: Given an algorithm, can we efficiently test that it is replicable? There are many

subtleties to consider. For example, how is the algorithm given to us? Do we get black-box

access to the algorithm itself? Or maybe a description of the algorithm? Perhaps a definition of

replicable algorithm could require the algorithm come with a more efficient prover algorithm

that provides an interactive proof. It could also be interesting if there are settings in which

replicability testing is hard in the worst case but easy “on average”.
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• Amplification: When can the replicability of an algorithm be improved? For our i.i.d.-setting

notion of replicability, the replicability parameter ρ can be amplified in a black-box way.

Therefore, users of replicable algorithms can easily determine what sample sizes are needed

for their desired replicability. Is this true for other notions of replicability, or are there

specific characteristics of different notions of replicability that lend themselves better to

amplification? For example, do approximate replicability notions always admit efficient

black-box amplification? If not, why not?

• Composition and adaptivity: Are there benefits to running multiple replicable algorithms at

once? In the i.i.d. setting, replicability composes almost by definition with a linear (union-

bound-style) increase in the replicability loss. However, our work connecting replicability to

differential privacy directly implies a not-directly-comparable replicability loss. What is the

true replicability loss when running multiple replicable algorithms, perhaps one after another?

Are there situations in which we can reuse computational resources to save overall? Which

replicability definitions lend themselves better to these savings?

1.7.3 Applying Replicability Theory Beyond Mathematics

At the beginning of this section, we discussed connections between replicability theory and

other areas of mathematics. Next, we discuss the potential for applications beyond mathematics.

First, a clarification: theoretical work is often inspired by practical concerns, but the methods

of evaluating theoretical work are different than those of evaluating non-mathematical work. Doing

theory for theory’s sake is valuable. In principle, theoretical research can be influenced by practical

concerns, but there is no mathematical reason why theory should be restricted to practical concerns.

However, there is room for translation error when extrapolating a theoretical model outside

of its original setting. Even if a mathematical model is inspired by a specific application, that

model may still be a bad starting point for applications. For example, the mathematical notion

of replicability could completely ignore the true sources of non-replicability. How should the
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responsibility of determining how theory should influence practice be divided? How can we all

(theorists, algorithm designers, algorithm implementers, regulatory bodies, and those affected by

algorithmic decisions) make this responsibility easier to manage?

Replicable Algorithms for Statistical Tests

Statistical tests, such as linear regression, Student’s t-test, analysis of variance (ANOVA),

principal component analysis, and chi-squared test, have seen wide application in experimental

sciences. Creating versions of these tests with additional replicability guarantees is an interesting

theoretical question and deserves investigation.

Practical application of replicable statistical tests raises additional concerns. Which groups

have a stake in the implementation and outcome of these tests? By what mechanism are these

groups’ opinions combined to produce an algorithm? If these mechanisms are lacking, how can we

improve them?

Even if all groups agree on using a replicable algorithm, there are still important decisions

that need to be made. What does replicability mean? Are the tradeoffs of replicability clearly

communicated and understood? Can a quantity ρ for replicability be agreed upon by all parties in a

reasonable and fair way?

Focusing on theorists: what role should a theorist play after designing an algorithm that

inherently includes value judgements (e.g., “What parameter of ρ is acceptable?”)? Is warning

about possible pitfalls in the original publication enough, or should the theorist interactively engage

with future users of the algorithm?

Replicability and Differential Privacy

Differential privacy is a notion of algorithmic stability that has seen both theoretical and

practical applications. Perhaps most notably, differential privacy was incorporated into the release

of data collected for the 2020 United States Census. Differential privacy has been incorporated not
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only in various theoretical data analysis algorithms, but also implemented in software libraries (see,

e.g., the Theory and Practice of Differential Privacy Workshop Series).

In Chapter 5, we prove black-box algorithmic reductions between replicability and differen-

tial privacy. These reductions may not directly yield sample-efficient or computationally efficient

replicable algorithms. Nevertheless, the reductions suggest that many previously implemented

differentially private algorithms have replicable counterparts.

Using a differentially private algorithm requires a value judgement for the implemented

(ε,δ ) parameters. Similarly, scientists make a collective value judgement when agreeing to fix a

threshold of .05 for signifiance of p-values. In the absence of infinite samples and computational

power, concessions to the privacy parameters must be made to preserve efficiency and accuracy.

Moreover, using differentially private algorithms requires value judgements regarding the incorpo-

ration of privacy itself. Namely, is differential privacy (and all its associated, implied properties)

appropriate for the algorithmic context? Of course, replicability shares these issues. Is replicability,

as defined mathematically, appropriate for the algorithmic context? How can this determination

lead to more appropriate solutions?

In the previous discussion of replicable statistical tests, we posed a question of agency

— how do the groups involved in implementing stable algorithms and those affected by their

outputs collectively decide on an implementation? There is also a question of progress — does

implementing an algorithm in a specific way preclude better algorithms and better implementations?

Or, can implementing a suboptimal algorithm be constructively used towards improving future

implementations? These questions, in the implementation process, are necessarily answered.

To be clear: new research necessitates mistakes. These arguments are not meant to suggest

that specific research is invalid or impossible to do. Rather, these arguments are meant as an

encouragement to examine our own behavior and reevaluate possible improvements.
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How “Should” Theory and Practice Collaborate?

How can the theory of replicable algorithms inform reliable data science?

The theoretical study of replicability provides algorithmic tricks such as randomized round-

ing, correlated sampling, and algorithmic reductions. Knowledge of these tools can expedite the

design of new replicable algorithms. Furthermore, one does not necessarily need to use theoretically

proven replicable algorithms to benefit. Replicability theory may be used as a starting point for

developing heuristics for algorithmic stability. Lower bounds for replicable algorithms can suggest

new, efficient approaches.

However, these facts cannot be helpful if they are not clearly conveyed. How should

decisions about algorithmic choices be recorded and disseminated, so that algorithm implementers

can more easily identify the validity of their approach? Maybe these facts are clearly conveyed,

but they are not applicable because of discrepancies between the model and the application. Early

collaboration may help avoid these pitfalls. What incentives are there for different groups to

engage in such collaboration? Are these incentives appropriate, and should they be adjusted by

organizations (e.g., universities, conferences, funding agencies, and governments)?

Replicability is a concern shared among all researchers, including those in mathematics.

Is there value in future interdisciplinary collaboration regarding replicability? Are the current

mechanisms for creating these collaborations sufficient? What replicability research do we, as a

society, want?
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Chapter 2

Preliminaries

In this section, we briefly list relevant definitions for this dissertation.

2.1 Replicability

The following is the main definition in this dissertation. For a detailed discussion of this

definition, see Section 1.2.

Definition 2.1.1 (Replicability). Let D be a distribution over domain X . Let A be a randomized

algorithm that takes as input samples from D. We say that A is ρ-replicable if

PrS1,S2,r[A (S1;r) = A (S2;r)]≥ 1−ρ,

where S1,S2 are sets of samples drawn i.i.d. from D and r represents the internal randomness of A .

One could also parametrize replicability with two parameters (η ,ν), instead of just ρ .

Definition 2.1.2 ((η ,ν)-Replicability). Let A(S;r) be an algorithm operating on a sample set

S ∈X n and internal coins r. We say that coin tosses r are η-good for A on distribution D if

there exists a “canonical output” zr such that PrS∼Dn[A(S;r) = zr] ≥ 1−η . We say that A is

(η ,ν)-replicable if, for every distribution D, with probability at least 1−ν , the coin tosses r are

η-good on distribution D.
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Two-parameter replicability is qualitatively the same as ρ-replicability, but might differ by

polynomial factors. For every 0≤ ρ ≤ v≤ 1,

1. Every ρ-replicable algorithm is also (ρ/v,v)-replicable.

2. Every (ρ,ν)-replicable algorithm is also ρ +2ν-replicable.

See Section 3.8 for a short proof.

Given an replicable algorithm A , one can create a new replicable algorithm A ′ with better

replicability but worse sample complexity.

Theorem 2.1.3 (Amplification of Replicability). Let 0 < η ,ν ,β < 1/2 and m > 0. Let A be an

(η ,ν)-replicable algorithm for distribution D with sample complexity m and failure rate β . If

ρ > 0 and ν +ρ < 3/4, then there is a ρ-replicable algorithm A ′ for D with sample complexity

m′ = Õ(m(log1/β )3/(ρ2(1/2−η)2) and failure rate at most O(β +ρ). The construction of A ′

does not depend on D.

2.2 Algorithmic Stability Notions

In this section, we list other definitions of algorithmic stability. This section is not a

comprehensive list of algorithmic stability notions, nor is it a comprehensive list of algorithmic

stability notions that are mathematically related to replicability.

In Section 3.8, we show an equivalence between replicability and pseduo-global stability.

In Section 5.3, we show equivalences between replicability, approximate differential privacy, β -

approximate max information, and one-way perfect generalization.

2.2.1 Pseudo-Global Stability

Independently of the work in this dissertation, [GKM21] introduced a definition called

pseudo-global stability.
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Definition 2.2.1 (Pseudo-global stability, Definition 15 in [GKM21]). A learning algorithm A with

sample complexity m is said to be (α,β )-accurate, (η ′,ν ′)-pseudo-globally stable if there exists a

hypothesis hr for every r ∈ supp(R) (depending on D) such that Prr∼R[errD(hr)≤ α]≥ 1−β and

Prr∼R
[
Pr~s∼Dm [A (~s;r) = hr]≥ η

′]≥ ν
′

where~s is a sample of m (labeled) examples (xi,yi) drawn from distribution D.

Pseudo-global stability is very similar to two-parameter replicability. The final condition of

the pseudo-global-stability definition is equivalent to saying that i) a randomly chosen r is η ′-good

with probability at least ν ′, and ii) for every r, hr is the output that witnesses the η-goodness.

2.2.2 Differential Privacy

Total variation distance is commonly used to quantify how different two distributions are.

Definition 2.2.2 (Total Variation Distance). Let P and Q be probability distributions over some

domain S. Then

dTV (P,Q) := sup
E⊆S
|PrP[E]−PrQ[E]|.

For differential privacy, (ε,δ )-indistinguishability is used to quantify how different two

distributions are.

Definition 2.2.3 ((ε,δ )-indistinguishability). Let P and Q be probability distributions over some

domain Y . Then, we say that P is (ε,δ )-indistinguishable from Q (denoted as P≈ε,δ Q) if for all

O⊆ Y ,

e−ε [PrP[O]−δ ]≤ PrQ[O]≤ eεPrP[O]+δ .

For notational convenience, we say random variables are (ε,δ )-indistinguishable to mean

that their distributions are (ε,δ )-indistinguishable.
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Two datasets S,S′ ∈X n are neighboring if the difference in datasets is exactly one entry.

An algorithm is differentially private if its distributions of outputs are indistinguishable, when run

on neighboring datasets.

Definition 2.2.4 (Differential Privacy [DMNS16]). A randomized algorithm A : X n→ Y is said

to be (ε,δ )-differentially private if for every pair of neighboring datasets S,S′ ∈X n, we have that

for all subsets O⊆ Y ,

Pr[A (S) ∈ O]≤ eε ·Pr[A (S′) ∈ O]+δ .

That is, we have A (S)≈ε,δ A (S′) for all neighboring S,S′.

Differential privacy is closed under post-processing by arbitrary functions.

Lemma 2.2.5 (Post-Processing [DMNS16]). If A : X n→ Y is (ε,δ )-differentially private, and

B : Y →Z is any randomized function, then the algorithm B ◦A is (ε,δ )-differentially private.

The sensativity of a function measures how different a function’s outputs can be on neigh-

boring datasets.

Definition 2.2.6 (`1-Sensitivity). Let f : X n→ Rd be a function. Its `1-sensitivity is

∆ f = max
S,S′∈X n

S,S′neighbors

‖ f (S)− f (S′)‖1.

The exponential mechanism is one technique used to make differentially private algorithms.

Lemma 2.2.7 (Exponential Mechanism [MT07]). Let L be a set of outputs and g : L×X n→ R

be a function that measures the quality of each output on a dataset. Assume that for every m ∈ L,

the function g(m, .) has `1-sensitivity at most ∆. Then, for all ε > 0, there exists an (ε,0)-DP

mechanism that, on input S ∈X n, outputs an element m ∈ L such that, for all a > 0, we have

Pr
[

max
i∈[L]

g(i,S)−g(m,S)≥ 2∆
ln |L|+a

ε

]
≤ e−a.
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Standard (ε,δ )-differential privacy implies privacy for groups of individuals.

Lemma 2.2.8 (Group Privacy [DMNS16]). Let k ∈ N+ and let A : X m→ Y be an (ε,δ )-DP

algorithm. Then for all datasets S,S′ ∈X m such that ‖S−S′‖0 ≤ k,

A (S)≈
kε,δ ekε−1

eε−1
A (S′).

Privacy parameters are amplified when a differentially private algorithm is run on a subsam-

ple of a dataset.

Lemma 2.2.9 (Secrecy of the sample [KLN+11, BBG18]). Let algorithm A : X n→ Y be (ε,δ )-

differentially private. Consider the algorithm A′ : X m → Y that, given a dataset of size m,

randomly samples n items without replacement and runs A on the resulting subsample. Then A′ is

(ε ′,δ ′)-differentially private for

ε
′ =

n
m
(eε −1), δ

′ =
n
m
·δ .

2.2.3 Perfect Generalization

An algorithm satisfies perfect generalization if its outputs on i.i.d. sample data S can be

simulated using just the underlying distribution.

Definition 2.2.10 (Perfect Generalization [CLN+16, BF16]). Algorithm A : X n→ Y is (β ,ε,δ )-

perfectly generalizing if, for every distribution D over X , there exists a distribution SimD such

that, with probability at least 1−β over S consisting of n i.i.d. samples from D, and every set of

outcomes O ⊆ Y ,

e−ε(PrSimD [O]−δ )≤ Pr[A(S) ∈ O]≤ eεPrSimD [O]+δ . (2.1)

Perfect generalization has many versions, including sample perfect generalization and
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one-way perfect generalization. See Section 5.3.2 for more details about the variations of perfect

generalization and their relationships.

2.2.4 Max Information

Max information quantifies the information revealed about an algorithm’s training sample.

Definition 2.2.11 (Max Information [DFH+15a]). An algorithm A : X n → Y has (ε,δ )-max-

information with respect to product distributions if for every set of outcomes O ⊆ (Y ×X n) we

have

Pr[(A(S),S) ∈ O]≤ eεPr[(A(S),S′) ∈ O]+δ ,

where S and S′ are independent samples of size n drawn i.i.d. from an arbitrary distribution D over

X .

The dissertation uses the following two-sided version of max information.

Definition 2.2.12 (β -Approximate Max Information, based on [DFH+15a]). The β -approximate

max information between two correlated random variables X and Z, denoted Iβ
∞(X ,Z), is defined as

the minimum (infimum) value k such that for all output sets O, we have that

Pr(a,b)∼(X ,Z)[(a,b) ∈ O]≤ 2kPr(a,b)∼X⊗Z[(a,b) ∈ O]+β (2.2)

where X⊗Z represents the product measure of the 2 random variables.

See Section 5.3.2 for more details about the relationships among differential privacy,

bounded max information, and perfect generalization.

2.3 Statistical Tasks, PAC Learning, and Noise

Solving problems replicably is a central issue of this dissertation. Next, we list some settings

in which we consider designing replicable algorithms.
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Definition 2.3.1. A statistical task with data domain X and output space Y is a set of pairs

T = {(D,GD)}, where D is a distribution over X and GD ⊆ Y is a “good” set of outputs for

distribution D. A randomized algorithm A solves statistical task T using m samples and with

failure probability β if for every (D,GD) ∈T ,

PrS∼Dm,A [A (S) ∈ GD]≥ 1−β .

In Chapter 5, we give broad equivalences for statistical tasks. The definition of a statistical

task generalizes many well-studied problems and models, including PAC learning.

2.3.1 PAC Learning

Definition 2.3.2 (Realizable PAC learning, [Val84, VC74]). A learning problem is defined by

a hypothesis class H. For any distribution D over the input space X , consider m indepen-

dent draws x1,x2, . . . ,xm from distribution P. For f ∈ H, a labeled sample of size m is the set

{(x1, f (x1)),(x2, f (x2)), . . . ,(xm, f (xm))}. We say an algorithm A is an (α,β )-accurate PAC learner

for the hypothesis class H if for all functions f ∈ H and for all distributions D over the input space,

A on being given a labeled sample of size m drawn from D and labeled by f , outputs a hypothesis h

such that with probability greater than or equal to 1−β over the randomness of the sample and the

algorithm,

Prx∈D[h(x) 6= f (x)]≤ α.

Uniform convergence is a powerful tool in PAC learning.

Theorem 2.3.3 (Uniform Convergence, e.g., [BEHW89]). Let H be a binary class of functions with

domain X . Let its VC dimension be d. Then, for any distribution D over X , for all m > 0,

Prx1,...,xm∼D

[
sup
hz∈H

∣∣∣∣∣ 1
m

m

∑
i=1

1[hz(xi) = 1]−Prx∼D[hz(x) = 1]

∣∣∣∣∣≥ γ

]
≤ 4(2m)de−γ2m/8.
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2.3.2 PAC Learning with Agnostic Noise

Agnostic PAC learning is one PAC learning variant that considers corrupted input data.

Definition 2.3.4 (Agnostic PAC learning, [Hau92, VC74]). A learning problem is defined by a

hypothesis class H. We say an algorithm A is an (α,β )-accurate PAC learner for the hypothesis

class H if for all distributions D over input, output pairs, A on being given a sample of size m

drawn i.i.d. from D outputs a hypothesis h such that with probability greater than or equal to 1−β

over the randomness of the sample and the algorithm,

errD(h)≤ inf
f∈H

errD( f )+α.

where errD(h) = Pr(x,y)∈D[h(x) 6= y]. In this context, we will sometimes refer to PAC learning as

the realizable setting.

2.3.3 PAC Learning with Massart Noise

Chapter 4 is concerned with PAC learning in the presence of Massart noise.

Definition 2.3.5 (PAC Learning with Massart Noise [MN06]). Let C be a concept class over

X = Rn, Dx be any fixed but unknown distribution over X, and 0≤ η < 1/2 be the noise parameter.

Let f ∈ C be the unknown target concept. A noisy example oracle, EXMas( f ,Dx,η(x)), works as

follows: Each time EXMas( f ,Dx,η(x)) is invoked, it returns a labeled example (x,y), where x∼Dx,

y = f (x) with probability 1−η(x) and y =− f (x) with probability η(x), for an unknown function

η(x) : X → [0,η ]. Let D denote the joint distribution on (x,y) generated by the above oracle. A

learning algorithm is given i.i.d. samples from D and its goal is to output a hypothesis h such that

with high probability the misclassification error Pr(x,y)∼D[h(x) 6= y] is as small as possible.

The Massart noise model is a semi-random input model, in which different inputs are

allowed to have different probabilities of being corrupted. For more information, see Section 4.1.1.
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2.4 Correlated Sampling

Correlated sampling is an important primitive for designing replicable algorithms.

In the correlated sampling problem, multiple players are given probability distributions

P,Q over the same (typically finite) set and access to shared randomness. Without communicating,

the players want to sample from their respective distributions, while maximizing the probability

that their outputs agree (i.e., are correlated).

Formally, let Y = {0,1}, and for a set Ω, 2Ω denotes the set of all functions from Ω to Y ,

and ∆Ω denotes the set of all sampleable distributions on Ω. For two distributions P , Q over Ω, let

dTV (P,Q) denote the total variational distance between P and Q.

Definition 2.4.1. (Correlated Sampling) A correlated sampling strategy for a finite set Ω with error

ε : [0,1]→ [0,1] is an algorithm CS : ∆Ω×R ′ and a distribution R ′ on random strings such that:

• (Marginal Correctness) For all P ∈ ∆Ω and w ∈Ω, Prr′∼R′[CS(P,r′) = w] = P(w).

• (Error Guarantee) For all P,Q ∈ ∆Ω, Prr′∼R′[CS(P,r′) 6=CS(Q,r′)]≤ ε(dTV (P,Q))

Correlated sampling can be used to construct replicable algorithms as follows. First, design

an algorithm A(S;r) with stable outputs. Then, apply a correlated sampling strategy on the outputs.

This overall procedure is replicable if algorithm the outputs distributions of A are close in

total variational distance. Let PS be the distribution over outputs induced by running algorithm

A(S;r) on a fixed input S. Say we designed algorithm A such that, for most i.i.d. samples S1,S2,

the total variation distance dTV (PS1,PS2) is small. Then, a correlated sampling strategy can use

shared randomness r to correlate the outputs of A(S1;r) and A(S2;r), without prior knowledge of

the specific S1 and S2 chosen. Correctness and replicability of this procedure are implied by the

definition of correlated sampling strategies.

However, there are computational limitations with respect to using correlated sampling

generally. For more information, see Section 5.2.5.
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In Section 5.4.2, we show how to design correlated sampling algorithms, assuming the

existence of uniform one-way function inverters. We model samplable distributions by considering

the distribution induced by evaluating circuits on random inputs. Furthermore, we incorporate

a distributional error parameter ν , giving some slack in the marginal correctness guarantee of a

correlated sampler.

Definition 2.4.2 (Implicit Correlated Sampling Algorithm). Let m,n ∈ Z+, and let C : {0,1}m→

{0,1}n denote a circuit. Let distributional error parameter ν > 0. B(C,ν ;r) is an (m,n,ν)-implicit

correlated sampling algorithm if the following conditions hold:

1. Inputs/Outputs: B takes as input a circuit C : {0,1}m → {0,1}n, a distributional error

parameter ν , and a random string r. B outputs a string in {0,1}n.

2. ν-distributional accuracy: For all circuits C : {0,1}m→ {0,1}n, the distributions DC and

DB(C,ν) satisfy dTV (DC,DB(C,ν))≤ O(ν).

Here, DC denotes the distribution over {0,1}n induced by querying C(r) on uniformly random

inputs r, i.e., probability density function pDC(x) = Prr∼Um[C(r) = x]. Similarly, DB(C,ν)

denotes the distribution over {0,1}n induced by querying B(C,ν ;r) with uniformly random

strings r.

3. Correlated sampling: For all pairs of circuits C1,C2 : {0,1}m→{0,1}n, Prr[B(C1,ν ;r) 6=

B(C2,ν ;r)] ∈ O(dTV (DC1 ,DC2)+ν).

We construct correlated sampling algorithms from the assumption that one can invert any

one-way function on almost all inputs.

Definition 2.4.3 (Uniform One-Way Function Inverters). Let ν ′ > 0. Iν ′(C,y) is a uniform one-

way function inverter with error ν ′ if I runs in randomized polynomial time in m, n, and 1/ν ′ and

if, for any circuit C : {0,1}m→{0,1}n, Prr′∼{0,1}m[C(Iν ′(C,C(r′))) =C(r′)]≥ 1−ν ′.

68



Pairwise-independent hash families are also used in our correlated sampler’s subroutines.

Definition 2.4.4 (Pairwise-Independent Hash Family). A family of Boolean functions H = {H|H :

{0,1}m → {0,1}n} is pairwise-independent if, for all r1 6= r2 ∈ {0,1}m and x1,x2 ∈ {0,1}n,

PrH∈H [H(r1) = x1∧H(r2) = x2] = 2−2n.

See Section 5.4.2 for more details.
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Chapter 3

Replicability* in Learning

We introduce the notion of a replicable1 algorithm in the context of learning. A replicable

learning algorithm is resilient to variations in its samples — with high probability, it returns the

exact same output when run on two samples from the same underlying distribution. We begin

by unpacking the definition, clarifying how randomness is instrumental in balancing accuracy

and replicability. We initiate a theory of replicable algorithms, showing how replicability implies

desirable properties such as data reuse and efficient testability. Despite the exceedingly strong

demand of replicability, there are efficient replicable algorithms for several fundamental problems

in statistics and learning. First, we show that any statistical query algorithm can be made replicable

with a modest increase in sample complexity, and we use this to construct replicable algorithms

for finding approximate heavy-hitters and medians. Using these ideas, we give the first replicable

algorithm for learning halfspaces via a replicable weak learner and a replicable boosting algorithm.

Interestingly, we utilize a connection to foams [KORW12] as a higher-dimension randomized

rounding scheme. Finally, we initiate the study of lower bounds and inherent tradeoffs for replicable

algorithms, giving nearly tight sample complexity upper and lower bounds for replicable versus

nonreplicable SQ algorithms.

1Terminology Note: This chapter is largely based on a publication originally titled “Reproducibility in Learning”.
In that work, we defined a mathematical notion of algorithmic stability and termed it “reproducibility”. Since then,
we have renamed this mathematical notion “replicability”. We changed the terminology to be more consistent with
current guidance from the Association for Computing Machinery [Ass20] and the broader scientific community [Nat19],
regarding usage of the terms “replicability” and “replicability”. Section 5.2.6 discusses this change in more detail.



3.1 Introduction

Reproducibility is vital to ensuring scientific conclusions are reliable, and researchers

have an obligation to ensure that their results are replicable. In the last twenty years, lack of

reproducibility has been a major issue in nearly all scientific areas of study. For example, a 2012

Nature article by Begley and Ellis reported that the biotechnology company Amgen was only able

to replicate 6 out of 53 landmark studies in haematology and oncology [BE12]. In a 2016 Nature

article, Baker published a survey of 1500 researchers, reporting that 70% of scientists had tried and

failed to replicate the findings of another researcher, and that 52% believed there is a significant

crisis in reproducibility [Bak16].

A key issue underlying the reproducibility crisis (as articulated in many articles, e.g.,

[Ioa05]) is the fact that new data/publications are growing at an exponential rate, giving rise to an

explosion of methods for data generation, screening, testing, and analysis, where, crucially, only

the combinations producing the most significant results are reported. Such practices (also known

as P-hacking, data dredging, and researcher degrees of freedom) can lead to erroneous findings

that appear to be significant, but that don’t hold up when other researchers attempt to replicate

them. Identifying and mitigating these problems is quite subtle. First, is not easy to come up with

an agreed-upon set of practices that guarantees reproducibility, and secondly, testing to determine

whether or not a finding is statistically significant is a complex task.

Within the subfields of machine learning and data science, there are similar concerns about

the reliability of published findings. The performance of models produced by machine learning

algorithms may be affected by the values of random seeds or hyperparameters chosen during

training, and performance may be brittle to deviations from the values disseminated in published

results [HIB+17, IHGP17, LKM+18]. To begin addressing concerns about reproducibility, several

prominent machine learning conferences have begun hosting reproducibility workshops and holding

reproducibility challenges, to promote best practices and encourage researchers to share the code
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used to generate their results [PVLS+20].

In this work, we aim to initiate the study of replicability as a property of algorithms

themselves, rather than the process by which their results are collected and reported. We define the

following notion of replicability, which informally says that a randomized algorithm is replicable if

two distinct runs of the algorithm on two sets of samples drawn from the same distribution, with

internal randomness fixed between both runs, produces the same output with high probability.

Definition 3.1.1 (Replicability). Let D be a distribution over a universe X , and let A be a

randomized algorithm with sample access to D. A (~s) is ρ-replicable if

Pr~s1,~s2,r [A (~s1;r) = A (~s2;r)]≥ 1−ρ,

where~s1 and~s2 denote sequences of samples drawn i.i.d. from D, and r denotes a random binary

string representing the internal randomness used by A .

Our definition of replicability is inspired by the literature on pseudodeterministic algorithms,

particularly the work of Grossman and Liu [GL19] and Goldreich [Gol19]. In the pseudodetermin-

istic setting, the primary concern is replicating the output of an algorithm given the same input,

over different choices of the algorithm’s internal randomness. Our notion (Definition 3.1.1) is more

suitable for the setting of machine learning, where it is desirable to reproduce the exact same output

of an algorithm (with high probability) over different sample sets drawn from a distribution D.

We observe the following key properties of Definition 3.1.1.

Stability. Replicability is a strong stability property that implies independent parties can

replicate previous results with high probability, so long as the randomness used to achieve these

results is made public. For researchers solving machine learning and data analysis tasks, replicability

allows researchers to verify published results with high probability, as long as the datasets are drawn

from the same distribution.
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Generalization. Replicability implies generalization. A replicable learning algorithm, with

high probability, outputs a hypothesis h such that the difference between the risk of h and the

empirical risk of h on the training set is small. Intuitively, replicabilitiy implies that h is independent

of the training set with high probability. Thus, a Hoeffding bound can be applied to bound the risk

in terms of the empirical risk.

Privacy. Differential privacy (DP) is an important notion that requires small distance

between the two distributions induced by an algorithm, when run on any two datasets that differ in

a single element. Crucially, it asks for the guarantees in the worst case over datasets. Replicable

algorithms guarantee a different form of privacy: If A is replicable, then what A learns (for

example, a trained classifier) is almost always the same; thus, A is usually independent of the

chosen training data. In this way, replicable algorithms are prevented from memorizing anything

that is specific to the training data, similar to differentially private algorithms. Replicability is

weaker than differential privacy in the sense that replicability only applies to in-distribution samples,

whereas differential privacy applies to any training set. On the other hand, replicability is stronger

in the sense that its guarantee for in-distribution samples is global rather than local (for neighboring

samples).

Testability. While differential privacy has become the standard for privacy-preserving

computation, an important issue that is the subject of extensive research is testing and verifying

differential privacy. As discussed in [GNP20], DP-algorithms and their implementations are

usually analyzed by hand, and proofs of differential privacy are often intricate and prone to errors.

Implementing such an algorithm in practice often gives rise to DP leaks, due to coding errors

or assumptions made in the proof that do not hold on finite computers (such as the ability to

sample from continuous distributions). Moreover, the complexity of verifying differential privacy

is hard. Verification in the black-box setting (where the auditor has oracle access to the learning

algorithm) was recently shown to be infeasible, as low query complexity implies high values of the

the privacy parameters ε and δ [GM18]. In the white-box setting where A is given to the tester,
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[GNP20] shows that testing for differential privacy is coNP#P-complete. This has led to an active

research area aiming at developing automated as well as interactive testing and verification methods

for differential privacy [NFPH15, GHH+13, RP10, AH18, BGA+15, BCK+21, FJ14, ZK17]. In

contrast, replicability is a form of privacy that can be efficiently tested in (randomized) polynomial

time (in the dimension of the data universe and ρ).

3.1.1 Our Main Results

Replicability: Properties and Alternative Definitions

We discuss alternative definitions of replicability and show that they are all essentially

equivalent. Then, we also prove some other nice properties of replicable algorithms. (All formal

statements and proofs are in Appendix A.)

1. Alternative Definitions and Amplification. We start by discussing two alternative defini-

tions of replicability and relate them to our definition. First, we can generalize the definition

to include algorithms A that not only have access to internal randomness and to random

samples from an underlying distribution D, but that also have access to extra non-random in-

puts. This more general definition captures both the original definition of pseudodeterministic

algorithms as well as our definition of replicable learning algorithms, and all of our results

remain unchanged. Second, we discuss an alternative two-parameter definition, and show that

the definitions are qualitatively the same. We show how to amplify the replicability parameter

by a standard argument where the sample complexity is increased modestly.

2. Public versus Private Randomness. Recall that we define replicability as the probability

that an algorithm returns the same answer when run twice using different random samples

from D but the same internal randomness. In [GL19], the authors define a related concept in

which the internal randomness is divided into two pieces, public and private randomness, but

the algorithm should return the same answer when just the public randomness is held fixed.
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We show that, without loss of generality, it suffices to use only public randomness.

3. Replicability Implies Generalization. Learning algorithms attempt to use finite samples to

generate hypotheses on unknown, possibly complex distributions. The error of a hypothesis

h on the underlying distribution is called the generalization error. A replicable algorithm

outputs the same hypothesis with high probability, and thus the algorithm seldom draws

distinctions between specific samples and the entire distribution.

4. Connections to Data Reuse. We explore the connection between replicable algorithms and

the adaptive data analysis model discussed in [DFH+15b] and [DFH+15a]. We show that

replicable algorithms are strongly resilient against adaptive queries. Informally, with respect

to replicable algorithms, the sample complexity and accuracy of (replicably) answering

m adaptively chosen queries behaves similarly to the sample complexity and accuracy of

replicably answering m nonadaptively chosen queries.

Upper Bounds

Our main technical results are replicable algorithms for some well-studied statistical query

and learning problems that are used as building blocks in many other algorithms.

1. Simulating SQ Algorithms. In Section 3.2, we give a generic algorithm that reduces the

problem of ρ-replicably estimating a single statistical query with tolerance τ and error δ to

that of nonreplicably estimating the same query within a smaller tolerance and error.

Theorem 3.1.2 (Theorem 3.2.3, Restated). Let ψ : X →{0,1} be a statistical query. Then

the sample complexity of ρ-replicably estimating ψ within tolerance τ and error δ is at most

the sample complexity of (nonreplicably) estimating ψ within tolerance τ ′ = τρ and error

δ ′ = τδ .

The basic idea is to obtain an estimate of the statistical query with a smaller tolerance τ ′ and

then use a randomized rounding scheme where the interval [0,1] is divided into intervals of
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size roughly τ/ρ . Then, every value in the interval is rounded to the midpoint of the region

it occurs in. The partition into intervals is chosen with a random offset so that with high

probability nearby points will lie in the same region.

2. Heavy-hitters. Using our simulation of SQ queries, in Section 3.3, we demonstrate the

usefulness of replicability by giving a replicable algorithm rHeavyHitters for identifying

approximate v-heavy-hitters of a distribution, i.e. the elements in the support of the distribution

with probability mass at least v.

Lemma 3.1.3 (Lemma 3.3.3, Restated). For all ε ∈ (0,1/2), v ∈ (ε,1− ε), with probability

at least 1−ρ , rHeavyHittersρ,v,ε is ρ-replicable, and returns a list of v′-heavy-hitters for

some v′ ∈ [v− ε,v+ ε]. Furthermore, the sample complexity is bounded by Õ(ρ−2).

The high level idea of our algorithm is to first draw sufficiently many samples,~s1, Q1 = |~s1|,

so that with high probability all heavy-hitters are in~s1. In the second stage, we draw a fresh

set~s2 of Q2 many samples and use them to empirically estimate the density of each element

in ~s1, and remove those that aren’t above the cutoff v′, where v′ is chosen randomly from

[v− ε,v+ ε] to avoid boundary issues.

3. Median Finding. In Section 3.4, we design a replicable algorithm for finding an approximate

median in an arbitrary distribution over a finite domain. Approximate median finding is a

fundamental statistical problem, and is also extensively studied in the privacy literature.

Theorem 3.1.4 (Theorem 3.4.2, Restated). Let τ,ρ ∈ [0,1] and let δ = 1/3. Let D be

a distribution over X , where |X | = 2d . Then rMedianρ,d,τ,δ is ρ-replicable, outputs a

τ-approximate median of D with success probability 1−δ , and has sample complexity

Ω̃

((
1

τ2(ρ−δ )2

)
·
(

3
τ2

)log∗ |X |
)
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To describe the key ideas in the algorithm, we first show how approximate-median finding

is useful for turning many algorithms into replicable ones. Consider any problem where the

correct answers form an interval, and assume we start with a (not-necessarily) replicable

algorithm that is mildly accurate. Then we can run a replicable approximate-median finding

algorithm on the distribution of outputs of the original algorithm to construct a very accurate

replicable algorithm.

We will actually use this strategy recursively to replicably solve approximate median itself.

Our algorithm recursively composes a mildly accurate replicable median algorithm with a

generic very accurate non-replicable median algorithm. This recursive technique is inspired

by, but simpler than, previous algorithms in the privacy literature [BNSV15, KLM+20], and

like these algorithms, the sample complexity of our algorithm has a non-constant but very

slowly growing dependence on the domain size.

4. Learning Halfspaces. In Section 3.5, we obtain a replicable algorithm rHalfspaceWkL for

weakly learning halfspaces. In Section 3.6, we transform it into a replicable strong learner by

way of a replicable boosting algorithm rBoost. We stress that our algorithms for halfspaces

are replicable in the stronger distribution-free setting.

Theorem 3.1.5 (Corollary 3.6.5, Restated). Let D be a distribution over Rd , and let f : Rd→

{±1} be a halfspace with margin τ in D. For all ρ,ε > 0. Algorithm rBoost run with weak

learner rHalfspaceWkL ρ-replicably returns a hypothesis h such that, with probability at

least 1− ρ , Pr~x∼D[h(~x) = f (~x)] ≥ 1− ε . Furthermore, the overall sample complexity is

Õ
(

d10/9

τ76/9ρ20/9ε28/9

)
.

In order to replicably learn halfspaces, we start with a simple weak learning algorithm for

halfspaces [Ser02] that takes examples (~xi,yi)∈X ×{±1}, normalizes them, and returns the

halfspace defined by vector ∑i~xi ·yi. We show a concentration bound on the sum of normalized
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vectors from a distribution, and then argue that all vectors within the concentration bound are

reasonable hypothesis with non-negligible advantage.

Our randomized rounding scheme is a novel application of the randomized rounding technique

developed in the study of foams [KORW12]. The concentration bound together with the

foams rounding scheme [KORW12] yields a replicable halfspace weak learner. We then

obtain our replicable strong learner for halfspaces by combining it with a (new) replicable

boosting algorithm. Our algorithm is sample-efficient but inefficient with respect to runtime,

due to the inefficiency of the foams rounding scheme. We also give another randomized

rounding procedure that gives a polynomial-time strong replicable halfspace learner, but with

polynomially larger sample complexity.

The Price of Replicability.

In Section 3.7 we ask what is the cost of turning a nonreplicable algorithm into a replicable

one. We first show that a τ-tolerant ρ-replicable SQ algorithm A for φ implies a ρ-replicable

algorithm for the τ-coin problem: given samples from a p-biased coin with the promise that either

p ≥ 1/2+ τ or p ≤ 1/2− τ , determine which is the case. Our main result in this section are

nearly tight upper and lower bound bounds of Θ(τ−2ρ−2) on the sample complexity of ρ-replicably

solving the τ-coin problem (for constant δ ), and thus the same bounds for ρ-replicably answering

SQ queries. On the other hand, it is well-known that the nonreplicable sample complexity of the

τ-coin problem is Θ(τ−2 log(1/δ )) (see, e.g. [Mou]). So the cost of guaranteeing ρ-replicability

for SQ queries is a factor of ρ−2.

For upper bounds, our generic algorithm in Section 3.2 converts any SQ query into a replica-

ble one: if our end goal is a ρ-replicable algorithm for estimating a statistical query with tolerance

τ and error δ , then the sample complexity is at most the sample complexity of nonreplicably

answering the query to within tolerance τ ′, and success probability 1−δ ′ where τ ′ = O(τρ) and

δ ′ = O(δτ), which has sample complexity O(τ−2ρ−2 log(1/δ ′)). The main result in this section is
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the following lower bound for ρ-replicably answering statistical queries.

Theorem 3.1.6 (Theorem 3.7.1, Restated). Let τ > 0 and let δ < 1/16. Any ρ-replicable algorithm

for solving the τ-coin coin problem with success probability at least 1−δ requires sample complexity

Ω(τ−2ρ−2).

Related Work.

A subset of these results [ILS21] was presented at the TPDP 2021 workshop.

Our Definition 3.1.1 is inspired by the literature on pseudodeterministic algorithms [GG11,

GGR13, GG17, GGH18, GGMW19, GL19, Gol19]. In particular, [GL19] and [Gol19] define

reproducibility in the context of pseudodeterminism. There, the input of a reproducible algorithm

is a fixed string. In our setting, the input of a replicable learning algorithm is a distribution, only

accessible by randomly drawing samples.

Independently of our work, [GKM21] define a property equivalent to replicability, called

“pseudo-global stability”. Their (α,β )-accurate (η ′,ν ′)-pseudo-global stability definition is equiv-

alent to the (η ,ν)-replicability definition discussed in Appendix 3.8, except that pseudo-global

stability includes explicit parameters for correctness and sample complexity. In Appendix 3.8,

we show that these two definitions are equivalent to Definition 3.1.1 up to polynomial factors.

[GKM21] gives pseudo-globally stable SQ algorithms, an amplification of the stability parameter,

and an algorithm to find a heavy-hitter of a distribution. The authors use pseudo-global stability to

show that classes with finite Littlestone dimension can be learned user-levelly privately, and they

connect pseudo-global stability to approximate differential privacy. Pseudo-global stability is a

generalization of global stability, introduced in [BLM20]. Those authors use global stability as an

intermediate step to show that classes with finite Littlestone dimension can be learned privately, and

they show how global stability implies generalization.

Our work is related to other notions of stability in machine learning which, like our definition,

are properties of learning algorithms. In the supervised learning setting, stability is a measure of how
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much the output of a learning algorithm changes when small changes are made to the input training

set. An important body of work establishes strong connections between the stability of a learning

algorithm and generalization [DW79b, DW79a, KR99, BE02, SSSSS10]. Distributional notions of

stability which remain stable under composition and postprocessing, were defined and shown to be

closely connected to differential privacy and adaptive data analysis (e.g., [BNS+16a, DFH+15a]).

In fact, the definition of differential privacy itself is a form of stability known as max-KL stability.

Stability-based principles have also been explored in the context of unsupervised learning where

model selection is a difficult problem since there is no ground truth. For example, a stable algorithm

for clustering has the property that when the algorithm is applied to different data sets from the

same distribution, it will yield similar outputs (e.g., [vL10]).

In all of these settings, stability depends on how close the outputs are when the inputs are

close; what varies is the particular measure of closeness in input and output space. For example,

closeness in the output can be with respect to function or parameter space; for distributional stability

close means that the output distributions are close with respect to some metric over distributions.

Our definition of replicability can be viewed as an extreme form of stability where the output is

required to be identical almost all of the time, and not just similar. Thus replicability enjoys many

of the nice properties of stable algorithms (e.g., postprocessing, composition) but has the advantage

of being far easier to verify.

Open Questions and Future Work

One motivation for examining replicability in algorithms is the “replicability crisis” in

experimental science. Can we use replicability to create statistical methodologies that would

improve replicability in published scientific work? A concrete step towards this would be to design

replicable hypothesis testing algorithms. We can view a null hypothesis as postulating that data

will come from a specific distribution D, and want algorithms that accept with high probability

if the data comes from D (or a “close” distribution) and reject with good probability if the data
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distribution is “far” from D. For example, the coin problem is a degenerate case in which the data

are Boolean and the distance is the difference in the expected values. For different types of data and

distance metrics, what is the optimal sample complexity of hypothesis testing, and how much more

is that for replicable hypothesis testing?

A related problem is that of learning under distributional shifts, or individual-based fair

learning (where we want the learning algorithm to treat similar people similarly with respect to a

similarity metric defining closeness). A key step in making algorithms replicable is a randomized

procedure to round the output of a standard empirical learner to a single hypothesis in a way that is

independent of the underlying distribution. Can similar ideas be used to design learning algorithms

robust to distributional shifts, or to give more informed performance metrics?

This work establishes that there exist replicable algorithms for a variety of learning problems.

However, we do not characterize exactly which learning algorithms can be made replicable, or how

replicability affects the required sample complexity. Is it possible to identify an invariant of concept

classes which characterizes the complexity of replicable learning, analogous to VC-dimension for

PAC learning [VC71], representation dimension and one-way communication complexity for exact

differential privacy [FX14, BNS13], and Littlestone Dimension for approximate differential privacy

[BLM20]? A specific problem of interest is that of learning linear functions over finite fields. If the

data has full dimension, the function can be solved for uniquely; so, designing replicable algorithms

when the data does not form a basis seems interesting.

Also, we described the first replicable boosting algorithm. Are there natural conditions

under which a boosting algorithm can always be made replicable? Are the sample complexity upper

bounds we obtain for our applications tight or close to tight? In particular, is there a replicable

algorithm for approximate median that has only log∗ |X | dependence on the domain size?

Replicability provides a distinctive type of privacy. Except with the small probability

ρ , a replicable algorithm’s outputs are a function entirely of the underlying distribution and the

randomness of the algorithm, not the samples. Thus, a replicable algorithm seldom leaks information
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about the specific input data. We borrowed techniques from the study of private data analysis and

differential privacy, and we hope that future work will formalize connections between replicability

and private data analysis. We also hope that some applications of differential privacy will also be

achievable through replicability.

3.2 Statistical Queries

We show how to use randomized rounding to replicably simulate any SQ oracle and therefore

any SQ algorithm. The statistical query model introduced by [Kea98] is a restriction of the PAC-

learning model introduced by [Val84]. We consider the statistical query oracle primarily in the

context of unsupervised learning (e.g., see [Fel16]).

Definition 3.2.1 (Statistical query oracle). Let τ ∈ [0,1] and φ : X → [0,1] be a query. Let D be a

distribution over domain X . A statistical query oracle for D, denoted OD(τ,φ), takes as input a

tolerance parameter τ and a query φ , and outputs a value v such that |v−Ex∼D[φ(x)]| ≤ τ.

Definition 3.2.2 (Simulating a statistical query oracle ). Let δ ∈ [0,1] and τ,φ ,D be as above. Let

OD be a statistical query oracle for D. Let~s denote an i.i.d. sample drawn from D. We say that a

routine STAT simulates OD with failure probability δ if for all τ,δ ,φ , there exists an n0 ∈ N+ such

that if n > n0, v← STAT(τ,φ ,~s) satisfies |v−Ex∼D[φ(x)]| ≤ τ except with probability δ .

To denote a routine simulating a statistical query oracle for fixed parameters τ,φ , and

(optionally) ρ , we write these parameters as subscripts.
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Algorithm 3. rSTATρ,τ,φ (~s)
Parameters: τ - tolerance parameter
ρ - replicability parameter
φ : a query X → [0,1]

1: α = 2τ

ρ+1−2δ

2: αoff←r [0,α]

3: Split [0,1] in regions: R = {[0,αoff), [αoff,αoff +α), . . . , [αoff + iα,αoff +(i+1)α), . . . , [αoff +

kα,1)}

4: v← 1
|~s| ∑

x∈~s
φ(x)

5: Let rv denote the region in R that contains v

6: return the midpoint of region rv

Theorem 3.2.3 upper bounds the sample complexity of rSTATτ,ρ,φ . In Section 3.7, we show

this upper bound is tight as a function of ρ .

Theorem 3.2.3 (rSTAT simulates a statistical query oracle). Let τ,δ ,ρ ∈ [0,1], ρ > 2δ , and let~s

be a sample drawn i.i.d. from distribution D. Then if

|~s| ∈ Õ
(

1
τ2(ρ−2δ )2

)

rSTATρ,τ,φ (~s) ρ-replicably simulates an SQ oracle OD,τ,φ with failure rate δ .

In Section 3.7, we will prove a near matching lower bound on the sample complexity of

ρ-replicably estimating a statistical query with tolerance τ and success probability 1−δ .

Proof. We begin by showing that rSTATρ,τ,φ simulates an SQ oracle OD,τ,φ with failure rate δ .
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Let τ ′ = τ(ρ−2δ )
ρ+1−2δ

. Recall α
def
= 2τ

ρ+1−2δ
, so 2τ ′

α
= ρ−2δ . A Chernoff bound gives that

∣∣∣∣∣ 1
|~s|∑x∈~s

φ(x)− E
x∼D

φ(x)

∣∣∣∣∣≤ τ
′ =

τ(ρ−2δ )

ρ +1−2δ

except with failure probability δ , so long as |~s| ≥ log(2/δ )/(2τ ′2). Outputting the midpoint of

region rv can further offset this result by at most α/2 = τ

ρ+1−2δ
. Therefore

|v−Ex∼Dφ(x)| ≤ τ(ρ−2δ )

ρ +1−2δ
+

τ

ρ +1−2δ
= τ,

except with probability δ , so long as the sample~s satisfies

log(2/δ )/(2τ
′2) =

log(2/δ )(ρ +1−2δ )2

2τ2(ρ−2δ )2 ≤ 4log(2/δ )

2τ2(ρ−2δ )2 ≤ |~s|.

We now show that rSTATρ,τ,φ is ρ-replicable by considering two invocations of rSTATρ,τ,φ

with common randomness r on samples~s1,~s2 ∼D respectively. The probability that either empirical

estimate of Ex∼D[φ(x)] fails to satisfy tolerance τ ′ is at most 2δ . Denote by v1 and v2 the values

returned by the parallel runs rSTAT(~s1;r) and rSTAT(~s2;r) at line 4. Conditioning on success,

values v1 and v2 differ by at most 2τ ′. rSTAT outputs different values for the two runs if and only if

v1 and v2 are in different regions of R, determined by the common randomness r. This occurs if

some region’s endpoint is between v1 and v2; since αoff is chosen uniformly in [0,α], the probability

that v1 and v2 land in different regions is at most 2τ ′/α = ρ−2δ . Accounting for the 2δ probability

of failure to estimate Ex∼D[φ(x)] to within tolerance, rSTATρ,τ,φ (~s) is ρ-replicable.

3.3 Heavy-hitters

Next, we present our replicable approximate heavy-hitters algorithm, analyzing its sample

complexity and replicability. We will use this algorithm as a subroutine in later algorithms such

84



as in the approximate-median algorithm. Also, we will show how to use this algorithm to give a

generic way to boost replicability from constant ρ to arbitrarily small ρ .

Definition 3.3.1 (Heavy-Hitter). Let D be a distribution over X . Then we say x ∈X is a v-heavy-

hitter of D if Prx′∼D[x′ = x]≥ v.

Definition 3.3.2 ((Approximate) Heavy-Hitter Problem). Let Lv be the set of x ∈ supp(D) that are

v-heavy-hitters of D. Given sample access to D, output a set L satisfying Lv+ε ⊆ L⊆ Lv−ε .

Let D be a distribution over X . The following algorithm replicably returns a set of v′-heavy-

hitters of D, where v′ is a random value in [v− ε,v+ ε]. Picking v′ randomly allows the algorithm

to, with high probability, avoid a situation where the cutoff for being a heavy-hitter (i.e. v′) is close

to the probability mass of any x ∈ supp(D).

Algorithm 4. rHeavyHittersρ,v,ε

Input: samples X H, S from distribution D over X plus internal randomness r
Parameters: Target replicability ρ , target range [v− ε,v+ ε]
Output: List of v′-heavy-hitters of D, where v′ ∈ [v− ε,v+ ε]

X H← Q1
def
= ln(6/(ρ(v−ε)))

v−ε
examples from D // Step 1: Find candidate heavy-hitters

S←Q2
def
=

26 ln(Q1/ρ)·Q2
1

(ρε)2 fresh examples from D// Step 2: Estimate probabilities

for all x ∈X H do

p̂x← Prx′∼S[x′ = x] // Estimate px
def
= Prx′∼D[x′ = x]

v′←r [v− ε,v+ ε] uniformly at random // Step 3: Remove non-v′-heavy-hitters

Remove from X H all x for which p̂x < v′.

return X H

Algorithm rHeavyHitters returns exactly the list of v′-heavy-hitters so long as the follow-

ing hold:

1. In Step 1 of Algorithm 4, all (v− ε)-heavy-hitters of D are included in X H.
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2. In Step 2, the probabilities p̂x for all x∈X H are correctly estimated to within error ρε/(3Q1).

3. In Step 3, the randomly sampled v′ does not fall within an interval of width ρε/(3Q1) centered

on the true probability of a (v− ε)-heavy-hitter of D.

We show that these 3 conditions will hold with probability at least 1−ρ/2, and so will hold for two

executions with probability at least 1−ρ .

Lemma 3.3.3. For all ε ∈ (0,1/2), v ∈ (ε,1− ε), with probability at least 1−ρ , rHeavyHitters

is replicable, returns a list of v′-heavy-hitters for some v′ ∈ [v−ε,v+ε], and has sample complexity

Õ
(

1
ρ2ε2(v−ε)2

)
.

Proof. We say Step 1 of Algorithm 4 succeeds if all (v− ε)-heavy-hitters of D are included in X H

after Step 1. Step 2 succeeds if the probabilities for all x ∈X H are correctly estimated to within

error ρε/(3Q1). Step 3 succeeds if the returned X H is exactly the set of v′-heavy-hitters of D.

Quantities Q1 and Q2 are defined in the pseudocode of Algorithm 4.

In Step 1, an individual (v− ε)-heavy-hitter is not included with probabilility at most

(1− v+ ε)Q1; union bounding over all 1/(v− ε) possible (v− ε)-heavy-hitters, Step 1 succeeds

with probability at least 1− (1−v+ε)Q1

v−ε
> 1−ρ/6. Here, for clarity of presentation in the statement

of Lemma 3.3.3, we make use of the inequality v− ε < ln(1/(1− v+ ε)).

By a Chernoff bound, each px is estimated to within error ρε/(3Q1) with all but probability

ρ/(6Q1) in Step 2. Union bounding over all Q1 possible x ∈X H, Step 2 succeeds except with

probability ρ/6.

Conditioned on the previous steps succeeding, Step 3 succeeds if the randomly chosen v′

is not within ρε/(3Q1) of the true probability of any x ∈X H under distribution D. A v′ chosen

randomly from the interval [v− ε,v+ ε] lands in any given subinterval of width ρε/(3Q1) with

probability ρ/(6Q1), and so by a union bound, Step 3 succeeds with probability at least 1−ρ/6.

Therefore, Algorithm 4 outputs exactly the set of v′-heavy-hitters of D with probability

at least 1− ρ/2. If we consider two executions of Algorithm 4, both using the same shared
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randomness for chooosing v′, output the set of v′-heavy-hitters of D with probability at least 1−ρ ,

and so rHeavyHitters is ρ-replicable.

The sample complexity is Q1 +Q2 ∈ Ω̃
(
(ρε(v− ε))−2).

Corollary 3.3.4. If v, ε are constants, then rHeavyHittersρ,v,ε has sample complexity Õ
(
1/ρ2).

Learning Heavy-hitters using Statistical Queries.

Next, we show that any statistical query algorithm for the v-heavy-hitters problem requires

Ω(log |X |/ log(1/τ)) calls to the SQ oracle. Since Algorithm 4 has a sample complexity inde-

pendent of the domain size, this implies a separation between replicable problems and problems

solvable using only SQ queries.

Consider the ensemble {Dx}x∈X on X , where distribution Dx is supported entirely on a

single x ∈X .

Claim 3.3.5 (Learning Heavy-hitters using Statistical Queries). Any statistical query algorithm for

the v-heavy-hitters problem on ensemble {Dx}x∈X requires Ω(log |X |/ log(1/τ)) calls to the SQ

oracle.

Proof. An SQ algorithm for the v-heavy-hitters problem must, for each distribution Dx, output set

{x} with high probability. An SQ oracle is allowed tolerance τ in its response to statistical query φ .

So, for any φ , there must be some distribution Dx for which the following holds: at least a τ-fraction

of the distributions Dx′ in the ensemble satisfy |φ(x′)− φ(x)| ≤ τ . Thus, in the worst case, any

correct SQ algorithm can rule out at most a (1− τ)-fraction of the distributions in the ensemble

with one query. If X is finite, then an SQ algorithm needs at least log1/τ(|X |) queries.

3.4 Approximate Median

In this section, we design a replicable algorithm for finding an approximate median in an

arbitrary distribution over a finite domain. In addition to being a significant problem in its own
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right, and one studied extensively in the privacy literature, this is a key sub-routine for making many

algorithms replicable. In particular, for any problem where the correct answers form an interval, and

we have a (not-necessarily) replicable algorithm that is correct strictly more than half the time, we

can run the approximate median finding algorithm on the distribution of outputs of the original to

construct a reliably correct and replicable version. (In fact, we use this technique recursively within

our replicable median-finding algorithm itself. Our algorithm rMedianOfMedians composes a

mildly accurate replicable median algorithm with a generic very accurate non-replicable median

algorithm.) We use a recursive technique inspired by but simpler than previous algorithms in the

privacy literature [BNSV15, KLM+20], and like for these algorithms, the sample complexity of our

algorithm has a non-constant but very slowly growing dependence on the domain size.

Definition 3.4.1 (τ-approximate median). Let D be a distribution over a well-ordered domain X .

x ∈X is a τ-approximate median of D if Prx′∼D[x′ ≤ x]≥ 1/2− τ and Prx′∼D[x′ ≥ x]≥ 1/2− τ .

3.4.1 Replicable Approximate Median Algorithm

In this section, we present a pseudocode description of our τ-approximate median algorithm

rMedian (Algorithm 5), and prove the following theorem.

Theorem 3.4.2 (Replicable Median). Let τ,ρ ∈ [0,1] and let δ = ρ/2. Let D be a distribution over

X , where |X |= 2d . Then rMedianρ,d,τ,δ (Algorithm 5) is ρ-replicable, outputs a τ-approximate

median of D with all but probability δ , and has sample complexity

n ∈ Õ

((
1

τ2(ρ−δ )2

)
·
(

3
τ2

)log∗ |X |
)

As an introduction to the key ideas of Algorithm 5, we consider a weighted binary tree T

based on distribution D. Each internal node has two edges (a 0-edge and a 1-edge). Root-to-leaf

paths represent binary representations of numbers. The weight of each internal node v is the

probability that its associated binary prefix (induced by the root-to-v path) appears in an element
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drawn from D. If within this tree we can find a node v with weight in [1/4,3/4], then we can use the

associated prefix to return an approximate median of D with approximation parameter potentially

much larger than τ .

To achieve a specified approximation parameter τ , rather than using D itself to construct the

binary tree T , we will use a distribution Dm over medians of D. Specifically, we use a non-replicable

median algorithm to sample from τ-approximate medians of D. Identifying an approximate median

of distribution Dm for even a very large approximation parameter then ensures we return a τ-

approximate median of D.

The question remains of how to efficiently search T to find a node v of weight in [1/4,3/4]

(under Dm). We perform this search recursively by using rMedian to find a prefix length ` such that

the probability of sampling two elements from Dm agreeing on a prefix of length ` is large. We

can then restrict our search for v to nodes near level ` in T (starting from the root). We apply the

replicable heavy-hitters algorithm rHeavyHitters to find high weight nodes near level ` of T , and

then exhaustively search the list of heavy-hitters to find an appropriate v.

We use the following non-replicable approximate median algorithm, that returns the median

of its sample~s, as a subroutine of Algorithm 5.

Lemma 3.4.3 (Simple Median Algorithm). Let sample~s be drawn from distribution D. Algorithm

Median(~s) returns a τ-approximate median on D using |~s|= 3(1/2− τ) ln(2/δ )/τ2 samples with

success probability at least 1−δ .

Proof. Algorithm Median(~s) fails when more than half of the elements in sample ~s are either i)

smaller than the (1/2−τ)-percentile element of D or ii) larger than the (1/2+τ)-percentile element

of D. Let event Ei denote the first case and event Eii denote the second case. Since the elements in~s

are drawn i.i.d., the first event can be bounded by a Chernoff bound. Let X be a random variable
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denoting the number of elements in~s that are smaller than the (1/2− τ)-percentile element of D.

Pr[Ei] = Pr[X ≥ (1+ τ/(1/2− τ))E[X ]]

≤ exp(−(τ/(1/2− τ))2E[X ]/3)

≤ exp
(
− τ2

1/2− τ

|~s|
3

)
= exp(− ln(2/δ )) = δ/2

The same argument can be used to bound the second event Eii. By a union bound, the algorithm

succeeds with probability at least 1−δ .

Before proceeding with the description of Algorithm 5, we fix some useful notation for its

analysis.

• nm - sample complexity of Medianτ,δ0

• nh - sample complexity of rHeavyHittersρ0,v,ε

• nsq - sample complexity of rSTATτ,ρ0,φ

• nd - sample complexity of rMedianρ,d,τ,δ

• Dm - Algorithm 5 takes as input a sample from distribution D over X , where |X | = 2d .

We use Dm to denote the distribution induced by sampling nm examples from D, computing

Medianτ,δ0 on these examples, and returning the ouput

• Ddlogde - We use Ddlogde to denote the distribution induced by sampling 2 examples from

Dm and returning the longest prefix ` on which the two medians agree. Note that this new

distribution is over a new domain X ′ with |X ′|= 2dlogde ∈Θ(d).

• ρ0 ∈ O(ρ/ log∗ |X |)

• δ0 ∈ O
(
( δ

nh+nsq
)2log∗ |X | ·

(
τ2

3

)2(log∗|X |)2)
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Algorithm 5. rMedian(~s)
Input: ~s - a sample of n elements drawn i.i.d. from D
Parameters: ρ - target replicability parameter d - specifies domain size |X | = 2d τ - target
accuracy of median δ - target failure probability
Output: a τ-approximate median of D

1: if d = 1 then
2: Let φ0(x) =

{1 if x = 0
0 o/w

3: p0← rSTATρ0,τ/2,φ0(~s) // Base case
4: if p0 ≥ 1/2− τ/2 then
5: return 0
6: else
7: return 1
8: Break~s into |~s|/nm subsamples
9: Run Medianτ,δ0 on each subsample to generate a new sample ~m of τ-approximate medians of

Dd
10: Pair up elements ~m2i and ~m2i−1, for i ∈ {1, · · · , |~m|/2}
11: For each pair (~m2i,~m2i−1), let li denote the longest prefix on which they agree
12: Let~srm denote the multiset of li’s
13: `← rMedianρ,dlogde,τ,δ (~srm)
14: ~sh0,~sh1← nh new examples from ~m each
15: ~s`←{x|` : x ∈~sh0} //~s` is the set~sh0 projected onto length ` prefixes
16: V ← rHeavyHittersρ0,v,ε(~s`), for v = 5/16+ τ , ε = 1/16
17: if ` < d then
18: ~s`+1←{x|`+1 : x ∈~sh1}
19: V ←V ∪rHeavyHittersρ0,v,ε(~s`+1) // Find vertices at level ` and `+1 with weight ≥ 1/4
20: else
21: return the first element of V
22: for v ∈V do
23: Let φv(x) =

{1 if x||v| = v
0 o/w

24: ~sq← nsq new examples from ~m
25: pv← rSTATρ0,τ,φv(~sq), // Query Dm for probability x≤ v||1 · · ·1
26: if 1/4≤ pv ≤ 3/4 then
27: s← v // Find length ` prefix of weight in [1/4− τ,3/4+ τ]
28: s0 = s||0 · · ·0 // s0 is the prefix s padded with 0’s to length d
29: s1 = s||1 · · ·1 // s1 is the prefix s padded with 1’s to length d
30:
31: Let φs0(x) =

{
1 if x≤ s0
0 o/w

32: ~ss0 ← nm new examples from ~m
33: ps0 ← rSTATρ0,τ,φs0

(~ss0)

34: if ps0 ≥ 1/8−2τ then
35: return s0
36: else
37: return s1

Lemma 3.4.4 (Termination). Algorithm 5 terminates after T = log∗ |X | recursive calls.
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Proof. Algorithm 5 reaches its base case when invoked with parameter d = 1. At each successive

recursive call (Line 13), the domain size 2d is reduced to 2dlogde < 2d, and so d = 1 after no more

than T = log∗ |X | recursive calls.

Lemma 3.4.5 (Sample Complexity). Let τ,δ ,ρ ∈ [0,1]. Let D be a distribution over X , with

|X |= 2d . Then rMedianρ,d,τ,δ has sample complexity

n ∈ O

((
1

τ2(ρ−δ )2

)
·
(

3log(2/δ0)

τ2

)log∗ |X |
)

Proof. We begin by arguing that, for d > 1, rMedianρ,d,τ,δ has sample complexity nm(2ndlogde+

nh +4nsq). First, observe that Line 9 of Algorithm 5 is the only line that uses the sample~s directly,

and it uses ~s to generate a sample ~m of size |~s|/nm from Dm. The remaining subroutines use

subsamples from ~m. Therefore, if the sample complexity of the remaining subroutines is bounded

by some value N, then rMedianρ,d,τ,δ will have sample complexity Nnm. We now consider the

sequence of subroutines and their respective complexities.

1. Line 13: rMedianρ,dlogde,τ,δ requires ndlogde examples from Ddlogde. Line 11 generates an

example from Ddlogde from 2 examples from Dm, and so the call to rMedianρ,dlogde,τ,δ at

Line 13 contributes 2ndlogde to the sample complexity.

2. Line 16 and Line 19: rHeavyHittersρ0,v,ε requires nh examples from Dm

3. Line 22: the at most 3 calls to rSTATρ0,τ,φv require 3nsq examples from Dm

4. Line 33: rSTATρ0,τ,φs0
requires nsq examples from Dm

Therefore rMedianρ,d,τ,δ uses n = nm(2ndlogde+2nh +4nsq) examples from D.

In the base case, the entire contribution to the sample complexity comes from the call to

Medianτ,δ0 , which requires nm examples from D1. Unrolling the recursion, we have
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n ∈ O
(
(2nm)

log∗ |X |(nh +nsq)
)

∈ Õ

((
1

τ2(ρ−δ )2

)
·
(

3log(2/δ0)

τ2

)log∗ |X |
)
.

Lemma 3.4.6 (Accuracy). Let ρ,τ,δ ∈ [0,1] and let n denote the sample complexity proved in

Lemma 3.4.5. Let ~s be a sample of elements drawn i.i.d. from D such that |~s| ∈ Ω(n). Then

rMedian(~s) returns a τ-approximate median of D except with probability δ .

Proof. First, we prove that rMedian(~s) returns a τ-approximate median of D, conditioned on the

success of all recursive calls and subroutines. We proceed inductively. In the base case we have

that |X |= 2, and therefore at least one of the two elements in X must be a τ-approximate median.

The statistical query performed in line 6 of Algorithm 5 uses sample~s to estimate the fraction of D1

supported on 0, to within tolerance τ/2, so long as |~s| ≥ nm. This holds from Lemma 3.4.5, and so

a τ-approximate median for D1 is returned in the base case.

It remains to show that if a τ-approximate median for Ddlogde is returned at Line 13 of

Algorithm 5, that a τ-approximate median for D is returned. We first note that, except with

probability δ0 · |~s|/nm, all elements of ~m are τ-approximate medians of D. To generate the sample

supplied to rMedian at Line 13, we pair up the elements of ~m to obtain the |~s|/(2nm) li, which

denote the longest prefix on which a pair of elements from ~m agree. Then~srm constitutes a sample

of size ndlogde drawn i.i.d. from Ddlogde and by inductive assumption the call to rMedian at Line 13

returns a τ-approximate median of Ddlogde. Therefore we have that Prx1,x2∼Dm [x1|` = x2|`]≥ 1/2−τ

and Prx1,x2∼Dm[x1|`+1 = x2|`+1]< 1/2+τ . It follows that there must exist a prefix s of length ` such

that Prx∼Dm[x|` = s]≥ 1/4.

If `= d, then x|` = x, and so any prefix s such that Prx∼Dm[x|` = s]≥ 1/4 is a 3/8-median
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of Dm and therefore a τ-median of D. In this case s is returned at Line 21.

For the remainder of the proof, we assume ` < d. We argue that there must exist a prefix s of

length ` or `+1 for which 1/4≤ Prx∼Dm[x||s| = s]≤ 3/4. We already have that there exists a prefix

s of length ` such that Prx∼Dm[x` = s]≥ 1/4. Suppose that Prx∼Dm [x|` = s]> 3/4. Now suppose

that one of s||0 or s||1 had probability greater than 3/4 under Dm. Then it must be the case that

Prx1,x2∼Dm[x1|`+1 = x2|`+1] > 9/16, and so Pr`′∼Ddlogde[`
′ ≤ `] < 1− 9/16 = 7/16, contradicting

that ` is a τ-approximate median of Ddlogde. So both s||0 and s||1 must have probability less than

3/4 under Dm. Because s has probability at least 3/4, it follows that at least one of s||0 and s||1 must

have probability at least 1/4 under Dm, and so we have that there exists a prefix s′ of length `+1

such that 1/4≤ Prx∼Dm[x|`+1 = s′]≤ 3/4.

Now that we have the existence of such a prefix, we will argue that when the loop of Line 22

terminates, s is a prefix satisfying

1/4− τ ≤ Pr
x1∼Dm

[x1|` = s]≤ 3/4+ τ.

Observe that the calls to rHeavyHitters at Line 16 and Line 19 identify a common prefix s such

that Prx1∼Dm[x1|` = s]≥ 1/4. This follows from taking v = 5/16, ε = 1/16, and the fact that the

sample~s` and~s`+1 constitute i.i.d. samples of size nh drawn from Dm
|` and Dm

|`+1 respectively (where

we use Dm
|` to indicate the distribution induced by sampling from Dm and returning only the first `

bits). Then we have from the proof of Lemma 3.3.3 that all v− ε = 1/4-heavy hitters from Dm
|` and

Dm
|`+1 are contained in the set V . The loop beginning at Line 22 will use replicable statistical queries

to estimate the probability of each v ∈V under Dm
||v|. If the estimated probability pv ∈ [1/4,3/4],

then v is stored in s, and so the last such string visited by the loop is the value of s upon termination.

Now we show that if s0 = s||0 · · ·0 is returned at Line 35, then it is a τ-approximate median

of D, otherwise s1 = s||1 · · ·1 is a τ-approximate median. Conceptually, we partition the domain

X into three sets:
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1. Cs0 = {x ∈X : x < s0}

2. Cs = {x ∈X : s0 ≤ x≤ s1}

3. Cs1 = {x ∈X : x > s1}

Because s satisfies 1/4− τ ≤ Prx∼Dm[x||s| = s] ≤ 3/4+ τ , it must be the case that Dm assigns

probability mass at least 1/4− τ to the union Cs0 ∪Cs1 . Then it holds that at least one of Cs0 and

Cs1 is assigned probability mass at least 1/8− τ/2. The statistical query made at Line 33 estimates

the probability mass assigned to Cs0 by Dm to within tolerance τ , so if s0 is returned, it holds that

Prx∼Dm[x < s0]≥ 1/8−3τ . Because we know Prx∼Dm [x ∈Cs]≥ 1/4− τ , we then also have that

Prx∼Dm[x≥ s0]≥ 1/4−τ . Because Dm is a distribution over τ-approximate medians of D, we have

that s0 is a τ-approximate median of D as desired. If s0 is not returned, then it must be the case that

Prx∼Dm[x > s1]≥ 1/8−3τ , and a similar argument shows that s1 must be a τ-approximate median

of D.

Finally, we argue that all recursive calls and subroutines are successful, except with proba-

bility δ . Failures can occur exclusively at the following calls.

• Line 9: the log∗ |X | · |~s|/(nm) calls to Medianτ,δ0

• Line 13: the log∗ |X | recursive calls to rMedianρ,dlogde,τ,δ

• Line 16 and Line 19: the 2log∗ |X | calls to rHeavyHittersρ0,v,ε

• Line 22: the (at most) 4 log∗ |X | calls to rSTATρ0,τ,φv

• Line 33: the log∗ |X | calls to rSTATρ0,τ,φs0

Calls to Medianτ,δ0 dominate the total failure probability, and so taking δ0 ∈ O( δ

|~s| log∗ |X |) suffices

to achieve failure probability δ .
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Lemma 3.4.7 (Replicability). Let ρ,τ,δ ∈ [0,1] and let n denote the sample complexity proved

in Lemma 3.4.5. Let~s be a sample of O(n) elements drawn i.i.d. from D. Then rMedianρ,d,τ,δ is

ρ-replicable.

Proof. We prove the lemma by inductive argument. First, we observe that replicability of the value

returned in the base case depends only on the value p0← rSTATρ0,τ/2,φ0(~s) in Line 3. Therefore,

replicability in the base case follows from the ρ0-replicability of rSTATρ0,τ/2,φ0 .

We now argue that if the i+1th recursive call is ρ-replicable, that the ith recursive call is

(ρ +5ρ0)-replicable.

Two parallel executions of the ith level of recursion, given samples~s1 and~s2 drawn i.i.d.

from the same distribution D, will produce the same output so long as the following values are the

same:

1. `← rMedianρ,d,τ,δ (~srm) at Line 13

2. V ← rHeavyHittersρ0,v,ε(~s`) at Line 16

3. V ←V ∪rHeavyHittersρ0,v,ε(~s`+1) at Line 19

4. s← rSTATρ0,τ,φs0
(~smeds) when the loop at Line 22 terminates

5. ps0 ← rSTATρ0,τ,φs0
(~ss0) at Line 33

produce the same value. We have that 1 holds by inductive assumption.

Conditioning on 1, the calls to rHeavyHittersρ0,v,ε are made on samples drawn i.i.d. from

the same distribution, and so the ρ0-replicability of rHeavyHittersρ0,v,ε guarantees that V contains

the same list of heavy-hitters in both runs except with probability 2ρ .

Conditioning on both 1 and 2, it follows that the loop at Line 22 iterates over the same

strings V , and so both runs make the same sequence of statistical queries rSTATτ,ρ0,φv . From

conditioning on 2, and the values of v and ε , we have that |V | ≤ 3, and so the ρ0-replicability of
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rSTATτ,ρ0,φs0
gives us that sequence of values pv← rSTATρ0,τ,φv(~sq) is the same in both runs, except

with probability 3ρ0 .

Finally, conditioning on 1, 2, and 3, the values of s0 and s1 are the same across both runs,

and so the same statistical query rSTATρ0,τ,φs0
is made in both runs. Whether s0 or s1 is returned

depends only on the value rs0← rSTATτ,ρ0,φs0
(~ss0), and so the ρ0-replicability of rSTATρ0,τ,φs0

gives

us that the same string is returned by both executions. A union bound over all failures of replicability

then gives us that the ith recursive call will be (ρ +6ρ0)-replicable.

From Lemma 3.4.4, we have that no more than T = log∗ |X | recursive calls are made by

the algorithm. Therefore rMedianρ,d,τ,δ is replicable with parameter ρ0 +5T ρ0 ≤ 6ρ0 log∗ |X |=

ρ .

Theorem 3.4.2 then follows as a corollary of Lemma 3.4.5, Lemma 3.4.6, and Lemma 3.4.7.

Theorem 3.4.2 (Replicable Median). Let τ,ρ ∈ [0,1] and let δ = ρ/2. Let D be a distribution over

X , where |X |= 2d . Then rMedianρ,d,τ,δ (Algorithm 5) is ρ-replicable, outputs a τ-approximate

median of D with all but probability δ , and has sample complexity

n ∈ Õ

((
1

τ2(ρ−δ )2

)
·
(

3
τ2

)log∗ |X |
)

3.5 Learning Halfspaces

In Section 3.2, we saw how combining a concentration bound with a randomized rounding

technique yielded a replicable algorithm. Specifically, given a statistical query algorithm with an

accuracy guarantee (with high probability) on the 1-dimensional space [0,1], we can construct a

replicable statistical query algorithm using randomized rounding. By sacrificing a small amount of

accuracy, our replicable statistical query algorithm can decide on a canonical return value in [0,1].
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In this section, we extend this argument from R to Rd , by way of an interesting application of

a randomized rounding technique from the study of foams [KORW12]. Algorithm 1 in [KORW12]

probabilistically constructs a tiling of Rd such that every point is rounded to a nearby integer

lattice point. This tiling has an additional property that the probability that two points are not

rounded to the same point by a constructed tiling is at most linear in their l2 distance. In the usual

PAC-learning setting, there is a simple weak learning algorithm for halfspaces that takes examples

(~xi,yi) ∈X ×{±1}, normalizes them, and returns the halfspace defined by vector ∑i~xi · yi [Ser02].

We show a concentration bound on the sum of normalized vectors from a distribution, and then

argue that all vectors within the concentration bound are reasonable hypotheses with non-negligible

advantage. The combination of this concentration bound and the foam-based rounding scheme

yields a replicable halfspace weak learner rHalfspaceWkL.

However, constructing this foam-based rounding scheme takes expected time that is exponen-

tial in the dimension d. We give an alternative rounding scheme that randomly translates the integer

lattice and rounds points to their nearest translated integer lattice point. This construction yields

another replicable halfspace weak learner rHalfspaceWkLbox with roughly an additional factor of

d in the sample complexity, but with polynomial runtime. In Section 3.6, we show how to combine

these replicable weak learners with a replicable boosting algorithm, yielding an polynomial-time

replicable strong learner for halfspaces.

3.5.1 Replicable Halfspace Weak Learner: An Overview

Let D be a distribution over Rd , and let EX be an example oracle for D and f , where

f : Rd →{±1} is a halfspace that goes through the origin. Let ‖~x‖ denote the l2 norm of vector~x.

We assume that D satisfies a (worst-case) margin assumption with respect to f .

Definition 3.5.1. [Margin] Let D be a distribution over Rd . We say D has margin τ f with respect

to halfspace f (~x) def
= sign(~w ·~x) if ~x· f (~x)

‖~x‖ ·
~w
‖~w‖ ≥ τ f for all x ∈ supp(D). Additionally, we say D has

(worst-case) margin τ if τ = sup f τ f .
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Our replicable halfspace weak learner rHalfspaceWkL uses its input to compute an empiri-

cal estimation~z of the expected vector E~x∼D[~x · f (x)]. Then, rHalfspaceWkL uses its randomness to

construct a rounding scheme R via Algorithm ConstructFoams. R is used to round our (rescaled)

empirical estimation ~z, and the resulting vector defines the returned halfspace. The algorithm

relies on the margin assumption to ensure that the weak learner’s returned hypothesis is positively

correlated with the true halfspace f .2

Algorithm 6. rHalfspaceWkL(~s;r) a ρ-replicable halfspace weak learner using foams
Parameters: ρ - desired replicability
d - dimension of halfspace
τ - assumed margin
a - a constant, a = .05

Input: A sample~s of m =
(

896
√

d
τ2ρ

)1/(1/2−a)
examples (~xi,yi) drawn i.i.d. from distribution D

Output: A hypothesis with advantage τ/4 on D against f

k← 1
m

8
√

d
τ2 = 8 ·

(
ρ

896

(
τ2
√

d

)1/2+a
)1/(1/2−a)

// Scaling factor

~z← ∑S
~xi
‖~xi‖ · yi

R←r ConstructFoams(d) (Algorithm 7) // Rounding scheme R : Rd → Zd

~w← R(k ·~z)

return Hypothesis h(~x) def
= ~x
‖~x‖ ·

~w
‖~w‖

The subroutine ConstructFoams previously appeared as Algorithm 1 in [KORW12]. For

completeness, we include a description below (Algorithm 7).

2The parameter a is a constant, but we leave it in variable form for convenience in the analysis; we choose a = .05 in
this proof for clarity of presentation, but one could optimize the choice of a to yield a slightly better sample complexity.
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Algorithm 7. ConstructFoams(d) // Algorithm 1 in [KORW12]
Input: dimension d
Output: rounding scheme R : Rd → Zd

Let f : [0,1]d → R s.t. f (x1, . . . ,xd)
def
= ∏

d
i=1(2sin2(πxi))

Let all points in Rd be unassigned

for stage t = 1,2, . . . until all points are assigned do

Uniformly at random sample Zt ,Ht from [0,1)d× (0,2d).

Let droplet Di be the set of points {x|x ∈ −Zt +[0,1)d, f (x+Zt)> Ht}.

Let R map all currently unassigned points in Di to (0,0, . . . ,0) and extend this assignment

periodically to all integer lattice points.

return R

The following is the main result of this section.

Theorem 3.5.2. Let D be a distribution over Rd , and let f : Rd → {±1} be a halfspace with

margin τ in D. Then rHalfspaceWkL(~s;r) is a (ρ,τ/4,ρ/4)-weak learner for halfspaces. That

is, Algorithm 6 ρ-replicably returns a hypothesis h such that, with probability at least 1−ρ/2,

1
2E~x∼Dh(~x) f (~x)≥ τ/4, using a sample of size m =

(
896
√

d
τ2ρ

)20/9
.

Proof. Correctness (Advantage): We argue correctness in two parts. First, we show the expected

weighted vector E~x∼D

[
~x· f (~x)
‖~x‖

]
defines a halfspace with good advantage (see Lemma 3.5.8), following

the arguments presented in Theorem 3 of [Ser02]. Then, we argue that rounding the empirical

weighted vector~z in Algorithm 6 only slightly rotates the halfspace. By bounding the possible loss

in advantage in terms of the amount of rotation (Lemma 3.5.9), we argue that the rounded halfspace

~w/|~w| also has sizable advantage.

By Lemma 3.5.8, the expected weighted vector E~x∼D

[
~x· f (~x)
‖~x‖

]
has advantage τ/2 on D and

f . The martingale-based concentration bound in Corollary 3.5.11 implies that the distance between
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~z and E[~z] = m ·E~x∼D

[
~x· f (~x)
‖~x‖

]
is less than 4m1/2+a with probability at least 1− e−m2a/2 for any

a ∈ (0,1/2) (chosen later). Then, the vector is scaled by k and rounded. Any rounding scheme R

randomly generated by ConstructFoams always rounds its input to a point within distance
√

d

(Observation 3.5.4). Combining, the total distance between vectors ~w
k·‖E[~z]‖ and E[~z]

‖E[~z]‖ is at most

4m1/2+a +
√

d/k
‖E[~z]‖

.

As D has margin τ with respect to f , for all ~x ∈ supp(D), ~x
‖~x‖ · f (~x) has length at least τ in the

direction of the expected weighted vector E~x∼D

[
~x· f (~x)
‖~x‖

]
. Thus, ‖E[~z]‖ ≥ τm, and the above quantity

is at most 4m1/2+a+
√

d/k
τm . Simplifying, 4m1/2+a

τm = 4
τm1/2−a =

4τ

896
ρ√
d
< τ/8 and

√
d/k

τm =
√

d
τ

τ2

8
√

d
= τ/8.

By applying Lemma 3.5.9 with θ = τ/8+τ/8 = τ/4, we can conclude that h has advantage at least

τ/2− τ/4 = τ/4, as desired.3

Replicability: Let ~z1 and ~z2 denote the empirical sums of vectors ~xiyi from two sepa-

rate runs of rHalfspaceWkL. It suffices to show that the rounding scheme R constructed by

ConstructFoams rounds k ·~z1 and k ·~z2 to the same vector ~w with high probability. The distance

between~z1 and~z2 is at most 2 ·4m1/2+a with probability at least 1−2e−m2a/2, by Corollary 3.5.11,

the triangle inequality, and a union bound. After scaling by k, this distance is at most 8km1/2+a. By

Lemma 3.5.3, the probability that R does not round k ·~z1 and k ·~z2 to same integer lattice point is at

most 7 ·8km1/2+a. Altogether, the replicability parameter is at most

2e−m2a/2 +56km1/2+a.
3A dedicated reader may notice that the scaling factor k is subconstant. A possible error may arise if the scaling factor

is so small that the halfspace vector~z ·k gets rounded to 0 by the rounding function R (constructed by ConstructFoams).
Fortunately, with our choice of parameters, this turns out to not be an issue. The empirical vector sum~z has norm
at least τ ·m, where τ is the margin size and m is the sample complexity. As we have chosen scaling factor k such
that m · k = 8

√
d/τ2, the input given to R has norm at least 8

√
d/τ . Every rounding function R constructed by

ConstructFoams rounds its input to a point at distance at most
√

d away (Observation 3.5.4), so we can be sure that R
never rounds our vector to the zero vector.
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The second term satisfies 56km1/2+a = 448 · ρ

896 ·1 = ρ/2, and the first term 2e−m2a/2 ≤ ρ/2 when

m≥ (2ln(4/ρ))1/(2a). As long as a is chosen such that m =
(

896
√

d
τ2ρ

)1/(1/2−a)
≥ (2ln(4/ρ))1/(2a),

the algorithm is ρ-replicable. This occurs if
(

896
ρ

)2a/(1/2−a)
≥ 2ln(4/ρ), which is true for all

values of ρ ∈ (0,1) when a = .05.4

Failure rate: The algorithm succeeds when the martingale concentration bound holds. So,

the failure probability of rHalfspaceWkL is at most e−m2a/2 ≤ ρ/4.

Sample complexity: Plugging in a = .05 in the expression m =
(

896
√

d
τ2ρ

)1/(1/2−a)
yields

the conclusion.

3.5.2 Replicable Weak Halfspace Learner – Definitions and Lemmas

Foams-Based Rounding Scheme from [KORW12]

For completeness, we restate relevant results from [KORW12] for our construction.

Lemma 3.5.3 (Combining Theorem 1 and Theorem 3 of [KORW12]). Let R : Rd → Zd be the

randomized rounding scheme constructed by Algorithm 7 (Algorithm 1 in [KORW12]). Let x,y ∈

Rd , and let ε
def
= dl2(x,y). Then Pr[R(x) = R(y)] ≥ 1−O(ε), where the probability is over the

randomness used in the algorithm.

Proof. Theorem 3 of [KORW12] states that f (~x) = Πd
i=1(2sin2(πxi)) is a proper density function

and
∫
[0,1)d |〈∇ f ,u〉| ≤ 2π for all unit vectors u. Theorem 1 of [KORW12] states the following. Let f

be a proper density function, and points x,y ∈Rd such that y = x+ ε ·u, where ε > 0 and u is a unit

vector. Let N denote the number of times the line segment xy crosses the boundary between different

droplets (potentially mapping to the same integer lattice point) in an execution of ConstructFoams.

Then E[N] ≈ ε ·
∫
[0,1)d ] |〈∇ f ,u〉|, where the ≈ notation is hiding a Wε2 term, where W > 0 is a

universal constant depending only on f . The authors refine this statement ([KORW12], page 24) to

show that the Wε2 term can be made arbitrarily small. Combining, E[N]≤ 2πε +Wε2 < 6.3ε . By

Markov’s inequality, Pr[N = 0]< 1−6.3ε .
4The constant a can be improved slightly if a is chosen as a function of ρ .
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Observation 3.5.4. ConstructFoams always outputs a rounding scheme R with the following

property: the (l2) distance between any vector~v ∈ Rd and R(~v) is at most
√

d.

This follows from noticing that R maps each coordinate of~v to its floor or ceiling.

Theorem 3.5.5 (Runtime of ConstructFoams; [KORW12], page 25). There are universal con-

stants 1 < c <C such that Algorithm 7, when run with f (~x) = Πd
i=1(2sin2(πxi)), takes between cd

and Cd stages except with probability at most c−d .

Weak Learning Definitions

Definition 3.5.6 (Weak Learning Algorithm (in the Filtering Model)). Let C be a concept class of

functions from domain X to {±1}, and let f ∈ C . Let D be a distribution over X . Let WkL be an

algorithm that takes as input a labeled sample S = {(xi, f (xi))}m drawn i.i.d. from D, and outputs

a hypothesis h : X → [−1,1]. Then WkL is a (γ,δ )-weak learner for C with sample complexity m

if, for all f ,D, with probability at least 1−δ , WkL(S) outputs a hypothesis h : X → [−1,1] such

that Ex∼D f (x)h(x)≥ 2γ , where S is a sample of size |S|= m drawn i.i.d. from D.

We say a (γ,δ )-weak learner has advantage γ . Equivalently, if a hypothesis h satisfies

1
2Ex∼D f (x)h(x)≥ γ , then we say h has advantage γ (on D and f ).

Definition 3.5.7 (Replicable Weak Learning Algorithm). Algorithm rWkL is a (ρ,γ,δ )-weak learner

if rWkL is ρ-replicable and a (γ,δ )-weak learner.

Halfspaces and Their Advantage

Definition 3.5.1. [Margin] Let D be a distribution over Rd . We say D has margin τ f with respect

to halfspace f (~x) def
= sign(~w ·~x) if ~x· f (~x)

‖~x‖ ·
~w
‖~w‖ ≥ τ f for all x ∈ supp(D). Additionally, we say D has

(worst-case) margin τ if τ = sup f τ f .

Lemma 3.5.8 (Advantage of Expected Weighted Vector Hypothesis [Ser02]). Let f (~x) def
= sign(~w ·~x)

be a halfspace, and let D be a distribution over Rd with margin τ with respect to f . Let ~z =

E~v∼D

[
~v
‖~v‖ f (~v)

]
. Then the hypothesis h~z(~x) = ~x

‖~x‖ ·
~z
‖~z‖ has advantage at least τ/2.
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Proof. The advantage of h~z is 1
2E~x∼D[h~z(~x) f (~x)] = 1

2E~x∼D

[
~x
‖~x‖ ·

~z
‖~z‖ · f (~x)

]
= ~z·~z

2‖~z‖ =
‖~z‖
2 ≥

~z·~w
2‖~w‖ , by

the Cauchy-Schwarz inequality. Vector~z is a convex combination of ~x· f (~x)
‖~x‖ terms, for~x ∈ supp(D).

By the margin assumption, ~x· f (~x)‖~x‖ ·
~w
‖~w‖ ≥ τ for all x ∈ supp(D). Thus, ~z·~w

2‖~w‖ ≥
τ

2 .

Lemma 3.5.9 (Advantage of Perturbed Halfspaces). Consider a halfspace defined by unit vector

~w, and let h(~x) = ~x
‖~x‖ ·~w. Assume h has advantage γ , i.e. 1

2Ex∼D f (x)h(x)≥ γ . Let~u be any vector

such that ‖~u‖ ≤ θ , where θ ∈ [0,
√

3/2). Let perturbed vector ~w′ = ~w+~u
‖~w+~u‖ , and let h′(~x) = ~x

‖~x‖ · ~w′.

Then h′ has advantage at least γ−θ .

Proof. First, we bound the maximum distance between ~w and ~w′. Then, we apply Cauchy-Schwarz

to bound the advantage loss. ~w′ is constructed by perturbing ~w by a vector~u, and then normalizing

to norm 1. ~w′ is furthest away from ~w when the vector ~w′ is tangent to the ball of radius ‖~u‖

around ~w. In this case, ‖~w′− ~w‖2 = (1−
√

1−θ 2)2 + θ 2 = 2− 2
√

1−θ 2. Since θ <
√

3/2,

2−2
√

1−θ 2 < 4θ 2. So, ‖~w′−~w‖2 < 4θ 2. The advantage of h′ is

1
2
E~x∼D

[
~x
‖~x‖
· ~w′ · f (~x)

]
=

1
2
E~x∼D

[
~x
‖~x‖
· (~w+(~w′−~w)) · f (~x)

]
= γ +

1
2
(~w′−~w) ·E~x∼D

[
~x
‖~x‖
· f (~x)

]

By Cauchy-Schwarz, the second term has magnitude at most
√

4θ 2 ·1/2, so the advantage

of h′ is at least γ−θ .

Concentration Bound on Sum of Normalized Vectors

Let D be a distribution on Rn. Let v = {v1, . . . ,vT} ∈ DT be a random sample of T vectors

from D with the following properties:

1. Ev∈DT [∑T
i=1 vi]−Ev∈D[v] = 0.

2. ∀v ∈ D, ||v||2 ≤ c.
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Lemma 3.5.10. Let D,v ∈DT satisfy properties (1) and (2) above, and let v≤T = ∑
T
i=1 vi. Then for

all ∆ > 0,

Prv[||v≤T||2 ≥
√

T (1+ c/2)+∆]≤ e−∆2/2c2T .

For a proof, see Appendix 3.9.

Corollary 3.5.11. Let D be a distribution supported on the unit ball in d dimensions, and let f be a

halfspace. Let S be a sample of T examples (~xi, f (~xi)) drawn i.i.d. from D, and let~z = ∑S~xi · f (~xi).

Let a ∈ (0,1/2). Then PrS∼D

[
‖~z−TE~v∼D[~v f (~v)]‖ ≥ 4T 1/2+a

]
≤ e−T 2a/2.

Proof. In order to have D satisfy the properties (1) and (2) above, we must translate D by the

expectation E~v∼D[~v f (~v)]. After this translation, the maximum length of a vector in the support is

c = 2. Plugging in ∆ = 2T 1/2+a and noting 2T 1/2+a ≥ 2T 1/2 yields the conclusion.

3.5.3 Coordinate-Based Rounding Scheme

Algorithm rHalfspaceStL uses polynomial sample complexity and runs in polynomial

time except for subroutine ConstructFoams, which runs in expected exponential time in the

dimension d (Theorem 3.5.5). Next, we consider a simpler rounding scheme that rounds points

coordinate-by-coordinate to a randomly shifted integer lattice. This rounding scheme requires tighter

concentration bounds, resulting in approximately another factor of d in the sample complexity. In

return, it can be constructed by ConstructBoxes and executed in linear time in sample complexity

m and dimension d.

105



Algorithm 8. ConstructBoxes(d) // constructs coordinate-based rounding schemes
Input: dimension d
Output: rounding scheme R : Rd → Rd

Uniformly at random draw Z from [0,1)d .

Let box B be the set of points {x|∀i ∈ [d],xi ∈ [−1/2+ zi,1/2+ zi)}

Let R map all points in B to point Z and extend this assignment periodically by integer lattice

points

return R

Lemma 3.5.12. Let R : Rd → Rd be the randomized rounding scheme output by ConstructBoxes.

Let~x,~y ∈ Rd , and let ε
def
= dl2(~x,~y). Then Pr[R(~x) = R(~y)]≥ 1−dε .

Proof. We bound this probability by a crude l2 to l1 distance conversion. If ~x and ~y have l2

distance ε , then the distance between xi and yi is at most ε for all coordinates i ∈ [d]. The i’th

coordinate of~x and~y are not rounded to the same point with probability |xi− yi|. By a union bound,

Pr[R(~x) = R(~y)]≥ 1−dε .

Observation 3.5.13. ConstructBoxes always outputs a rounding scheme R with the following

property: the (l2) distance between any vector~v ∈ Rd and R(~v) is at most
√

d/2.

This follows from noticing that R maps each coordinate of~v to value within distance 1/2.
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Replicable Halfspace Weak Learner using Boxes

Algorithm 9. rHalfspaceWkLbox(~s;r) // a ρ-replicable halfspace weak learner
Parameters: desired replicability ρ , dimension d, assumed margin τ , constant a = .1

Input: A sample S of m =
(

64d3/2

τ2ρ

)1/(1/2−a)
examples (~xi,yi) drawn i.i.d. from distribution D

Output: A hypothesis with advantage γ/4 on D against f

k← 1
m

4
√

d
τ2 = 4 ·

(
ρ·τ1+2a

64·d5/4+a/2

)1/(1/2−a)
// Scaling factor

~z← ∑S
~xi
‖~xi‖ · yi

R←r ConstructBoxes(d) (Algorithm 8) // Rounding scheme R : Rd → Rd

~w← R(k ·~z)

return Hypothesis h(~x) def
= ~x
‖~x‖ ·

~w
‖~w‖

Theorem 3.5.14. Let D be a distribution over Rd , and let f : Rd → {±1} be a halfspace with

margin τ in D. Then rHalfspaceWkLbox(~s;r) is a (ρ,τ/4,ρ/4)-weak learner for halfspaces. That

is, Algorithm 9 ρ-replicably returns a hypothesis h such that, with probability at least 1−ρ/2,

Pr~x∼Dh(~x) f (~x)≥ τ/4, using a sample of size m =
(

64d3/2

τ2ρ

)5/2
.

Proof. Correctness (Advantage): The proof proceeds almost identically to the proof of Theo-

rem 3.5.2. By Lemma 3.5.8, the expected weighted vector E~x∼D

[
~x· f (~x)
‖~x‖

]
has advantage τ/2 on D

and f . Any rounding scheme R randomly generated by ConstructBoxes always rounds its input

to a point within distance
√

d/2, so the distance between vectors ~w
k·‖E[~z]‖ and E[~z]

‖E[~z]‖ is at most

4m1/2+a +
√

d/2k
τm

.

Simplifying, 4m1/2+a

τm = 4
τm1/2−a = 4τ

64
ρ

d3/2 < τ/8 and
√

d/2k
τm =

√
d

2τ

τ2

4
√

d
= τ/8. By applying

Lemma 3.5.9 with θ = τ/8+τ/8, we can conclude that h has advantage at least τ/2−(τ/8+τ/8)=

τ/4, as desired.
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Replicability: Let ~z1 and ~z2 denote the empirical sums of vectors ~xiyi from two sepa-

rate runs of rHalfspaceWkL. It suffices to show that the rounding scheme R constructed by

ConstructBoxes rounds k ·~z1 and k ·~z2 to the same vector ~w with high probability. The distance

between~z1 and~z2 is at most 2 ·4m1/2+a with probability at least 1−2e−m2a/2, by Corollary 3.5.11,

the triangle inequality, and a union bound. After scaling by k, this distance is at most 8km1/2+a. By

Lemma 3.5.12, the probability that R does not round k ·~z1 and k ·~z2 to same integer lattice point is

at most d ·8km1/2+a. Altogether, the replicability parameter is at most

2e−m2a/2 +8dkm1/2+a.

The second term satisfies 8dkm1/2+a = 8d(km/m1/2−a) = ρ/2, and the first term 2e−m2a/2 ≤

ρ/2 when m ≥ (2ln(4/ρ))1/(2a). So, as long as a is chosen such that m =
(

64d3/2

τ2ρ

)1/(1/2−a)
≥

(2ln(4/ρ))1/(2a), the algorithm is ρ-replicable. This occurs if
(

64
ρ

)2a/(1/2−a)
≥ 2ln(4/ρ), which

is true for all values of ρ ∈ (0,1) when a = .07. For simpler constants, we use a = .1.

Failure rate: The algorithm succeeds when the martingale concentration bound holds. So,

the failure probability of rHalfspaceWkL is at most e−m2a/2 ≤ ρ/4.

Sample complexity: Plugging in a = .1 in the expression m =
(

64d3/2

τ2ρ

)1/(1/2−a)
yields the

conclusion.

3.6 Replicable Boosting

In this section, we argue that a small modification of the boosting algorithm in [Ser03] is a

replicable boosting algorithm. Given access to a replicable weak learner, this boosting algorithm

ρ-replicably outputs a hypothesis. Boosting algorithms are a natural candidate for constructing

replicable algorithms — many boosting algorithms in the standard PAC-setting are deterministic,

and the final classifier returned is often a simple function of the weak learner hypotheses (e.g. a
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majority vote). Combining this replicable boosting algorithm with our replicable halfspace weak

learner from Section 3.5 yields a replicable strong learner for halfspaces.

Specifically, we modify the smooth boosting algorithm described in [Ser03] in the batch

setting, presenting it in the filtering setting [BS07]. This boosting algorithm has three main

components, all of which can be made replicable: (i) checking for termination (via a statistical

query), (ii) running the weak learner (replicable by assumption), and (iii) updating the weighting

function (deterministic). The final classifier is a sum of returned weak learner hypotheses. With

high probability over two runs, our boosting algorithm rBoost collects the exact same hypotheses

h1, . . . ,hT from its replicable weak learner.

3.6.1 Replicable Boosting Algorithm: An Overview

In smooth boosting algorithms, a “measure” function µ : X → [0,1] determines a reweight-

ing of distribution D. The induced reweighted distribution, denoted Dµ , is defined by the probability

density function Dµ(x) = µ(x) ·D(x)/d(µ), where d(µ) is a normalizing factor Ex∼Dµ(x). We

refer to d(µ) as the density of measure µ . A sample~s is drawn from Dµ and passed to the weak

learner rWkL. Sampling from Dµ using example oracle EX is done by rejection sampling — draw a

sample (x,y) from EX and a random b ∈r [0,1]; if r≤ µ(x), keep (x,y); otherwise, reject x and loop

until we keep (x,y). On expectation, we require m/d(µ) examples from D to sample m examples

from Dµ .

At the beginning of the algorithm, µ(x) = 1 for all x ∈ supp(D). Weak learner hypotheses

ht are used to modify update µ (and thus Dµ ) for future weak learner queries. The algorithm

terminates when the density d(µ) drops below the desired accuracy parameter ε — at this point, the

majority vote hypothesis h = sign(∑t ht) has accuracy at least 1− ε over D.

More specifically, we define µt+1(x) = M(gt(x)) using a base measure function M : R→

[0,1] and score function g : X →R. As in [Ser03], we use a capped exponential function as our base
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measure function M(a) =


1 a≤ 0

(1− γ)a/2 a > 0
. The score function is gt(x) = ∑

t
i=1(hi(x) f (x)−θ),

where θ < γ is chosen as a function of γ .

Algorithm 10. rBoostrWkL(~s;r) // a ρ-replicable boosting algorithm
Input: A sample~s of m examples (~xi,yi) drawn i.i.d. from distribution D.
Access to replicable weak learner rWkL with advantage γ and sample complexity mrWkL.
Parameters: desired replicability ρ , accuracy ε , constant θ

def
= γ/(2+ γ), round complexity T =

O(1/εγ2)
Output: A hypothesis h = sign

(
∑

T
t=1 ht

)
, where the ht’s are weak learner hypotheses.

g0(x)
def
= 0

µ1(x)
def
= M(g0) = 1 // “Measure” function for reweighting

t← 0

while 1 do

t← t +1

Dµt (x)
def
= µt(x) ·D(x)/d(µt) // Reweighted distribution

~s1← Õ(mrWkL/ε) fresh examples from~s // Samples for rejection sampling

~srWkL← RejSamp(~s1,mrWkL,µt ;r1)

Hypothesis ht ← rWkL(~srWkL;r2)

gt(x)
def
= gt−1(x)+ht(x) f (x)−θ // Reweight distribution using ht

µt+1(x)
def
= M(gt(x))

~s2← Õ
(

1
ρ2ε3γ2

)
fresh examples from~s // Run rSTAT to check if d(µt+1)≤ ε

if rSTATτ,ρ0,φ (~s2;r3)≤ 2ε/3 then // tolerance τ = ε/3, replicability ρ0 = ρ/(3T )

Exit while loop // failure rate ρ/(12T ), query φ(x,y) = µ(x)

return h← sign(∑t ht)
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Algorithm 11. RejSamp(~sall,mtarget,µ;r) // draw a sample from distribution Dµ

Input: sample~sall drawn i.i.d. from distribution D, target size of output sample mtarget ∈ [|~sall|], and
description of measure function µ : X → [0,1].
Output: ⊥ or a sample~skept of size |~skept|= mtarget

~skept← /0

for i = 1 to i = |~sall| do

Use randomness r to randomly pick a b ∈ [0,1]

if µ(xi)≥ b then // Reject (xi,yi) w. p. 1−µ(x)

~skept←~skept||(xi,yi) // Add example (xi,yi) to~skept

if |~skept|= mtarget then

return ~skept

return ⊥ // Ran out of fresh samples in~sall

A subtle note is that this boosting algorithm must precisely manage its sample~s and random

string r when invoking subroutines. In order to utilize the replicability of subroutines (e.g. rWkL),

the boosting algorithm needs to ensure that it uses random bits from the same position in r. A first-

come first-serve approach to managing r (i.e. each subroutine uses only the amount of randomness

it needs) fails immediately for rBoost — the amount of randomness RejSamp needs is dependent

on the sample, so the next subroutine (in this case, rWkL) may not be using the same randomness

across two (same-randomness r) runs of rBoost.

If one can precisely upper bound the amount of randomness needed for each of L subroutines,

then r can be split into chunks r1||r2|| . . . ||rL, avoiding any desynchronization issues. Alternatively,

one can split r into L equally long random strings by only using bits in positions equivalent to l

mod L for subroutine l ∈ [L].
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3.6.2 Analysis of rBoost (Algorithm 10)

As before, function f in concept class C is a function from domain X to {±1}. D is a

distribution over X .

Theorem 3.6.1 (Replicable Boosting). Let ε > 0,ρ > 0. Let rWkL be a (ρr,γ,δrWkL)-weak learner.

Then rBoostrWkL(~s;r) is ρ-replicable and with probability at least 1− ρ , outputs a hypothe-

sis h such that Prx∼D[h(x) = f (x)] ≥ 1− ε . rBoost runs for T = O(1/(εγ2
rWkL)) rounds and

uses Õ
(

mrWkL(ρ/(6T ))

ε2γ2 + 1
ρ2ε3γ2

)
samples, where the Õ notation hides log(1/(ρεγ2)) factors and

mrWkL(ρ/(6T )) denotes the sample complexity of rWkL with replicability parameter ρ/(6T ).

For readability, we break the proof into components for round complexity, correctness,

replicability, sample complexity, and failure probability.

Proof. Round Complexity: Theorem 3 in [Ser03] gives a T = O(1/(εγ2
rWkL)) round complexity

bound for this boosting algorithm in the batch setting. Analogous arguments hold in the filtering

setting, so we defer to [Ser03] for brevity.

Correctness: Similarly, since replicable weak learner rWkL satisfies the definitions of a

weak learner, the correctness arguments in [Ser03] also hold. A small difference is the termination

condition — rather than terminate when the measure satisfies d(µ)< ε , our algorithm terminates

when the density estimated by rSTAT is less than 2ε/3. We run rSTAT on query φ(x) = µ(x) with

tolerance parameter ε/3. Thus, when the rBoost terminates, d(µt)< ε .

Replicability: We show this boosting algorithm not only replicably outputs the same

hypothesis h, but that each returned weak learner hypothesis ht is identical across two runs of

the boosting algorithms (using the same randomness r) with high probability. The reweighted

distribution Dµt depends only on the previous weak learner hypotheses h1, . . . ,ht−1, so the only

possibilities for loss of replicability are: (i) returning ⊥ while rejection sampling from Dµ ; (ii)

running the replicable weak learner; and (iii) using a statistical query to decide to exit the while
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loop. We note that our choice of parameters adds non-replicabilty at most ρ/(3T ) for each and

apply a union bound over at most T rounds of boosting.

1. By Lemma 3.6.2, O(mrWkL
ε
· log(T/ρ)) examples suffice to guarantee RejSamp outputs ⊥ with

probability at most ρ/(6T ). Union bounding over two runs, this is at most ρ/(3T ).

2. By Lemma 3.6.4, running rWkL with replicability parameter ρ/(6T ) will add a ρ/(3T )

contribution to the non-replicability.

3. We run rSTAT with replicability parameter ρ/(3T ).

Sample Complexity: There are two contributions to the sample complexity: samples used

for the weak learner rWkL, and samples used by rSTAT to estimate the density of measure µt . Fresh

samples are used for each of T rounds of boosting. Together, by Theorem 3.2.3 and the definition

of~s1 (in Algorithm 10), the sample complexity is

O
(

T ·
(

mrWkL(ρ/(6T ))

ε
· log(T/ρ)+

log(T/ρ)

(ε2)(ρ)2

))
= Õ

(
mrWkL(ρ/(6T ))

ε2γ2 +
1

ρ2ε3γ2

)

where the Õ notation hides log(1/(ρεγ2)) factors and mrWkL(ρ/(6T )) denotes the sample complexity

of rWkL with replicability parameter ρεγ2.

Failure Probability: Assuming the weak learner returns correct hypotheses when it is

replicable, the boosting algorithm rBoost is correct when it is replicable, so the failure probability

is bounded above by ρ .5

3.6.3 Rejection Sampling Lemmas

Next, we show that replicability composes well with rejection sampling throughout the

execution of rBoost.
5 A more precise sample complexity statement in terms of the failure probability δ can be obtained by unboxing the

error probabilities. The algorithm can fail if RejSamp outputs ⊥, if rWkL fails, and if rSTAT fails. Bounding each of
these quantities by δ/(3T ) ensures that the rBoost has failure rate δ .

113



Lemma 3.6.2 (Failure Rate of RejSamp). Let measure µ have density d(µ) ≥ ε/3. Let~sall be a

sample drawn i.i.d. from distribution D. If |~sall| ≥
24mtarget

ε
· log(1/δ ), then RejSamp(~sall,mtarget,µ;r)

outputs ⊥ with probability at most δ .

Proof. The probability RejSamp outputs ⊥ is precisely the probability a binomial random vari-

able X ∼ B(|~sall|,d(µ)) is at most mtarget. By a Chernoff bound, Pr[X ≤ (1− .5)|~sall| · d(µ)] ≤

exp(−|~sall| ·d(µ)/8)≤ exp(−|~sall| · ε/24). Thus, Pr[X ≤ mtarget]≤ δ .

Remark 3.6.3. The following is a justification of why we may assume d(µ)≥ ε/3 in the previous

lemma.

When RejSamp is first called in round 1 of rBoost, µ(x) = 1 for all x, so d(µ) = 1. In

subsequent rounds t ≥ 2, RejSamp is only called if, in previous round t−1, rSTAT estimated d(µ)

to be at least 2ε/3. rSTAT is run with tolerance ε/3, so d(µ) ≥ ε/3 whenever rSTAT succeeds.

Whenever we apply the above lemma, we are assuming the success of previous subroutines (by

keeping track of and union bounding over their error).

The following lemma shows that rejection sampling before running a replicable algorithm

only increases the non-replicability ρ by a factor of 2. To be precise, we let p denote the probability

the rejection sampler returns⊥. However, when we apply this Lemma in the proof of Theorem 3.6.1,

we will have already accounted for this probability.

Lemma 3.6.4 (Composing Replicable Algorithms with Rejection Sampling). Let A (~s,r) be a

ρ-replicable algorithm with sample complexity m Let µ : X → [0,1]. Consider B, the algorithm

defined by composing RejSamp(~s′,m,µ;r′) with A (~s;r). Let q be the probability that RejSamp

returns ⊥. Then B is a 2q+2ρ-replicable algorithm.

Proof. Since A is ρ-replicable, Pr~s1,~s2,r [A (~s1;r) = A (~s2;r)] ≥ 1− ρ . However, the rejection

sampling is done with correlated randomness, so ~s1 and ~s2 are not independent. Consider an

imaginary third run of algorithm A (~s3;r), where~s3 is drawn from Dµ using separate randomness.
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We will use a triangle-inequality-style argument (and a union bound) to derive the conclusion.

Conditioned on RejSamp not returning ⊥, algorithm B(~s′1;r′||r) returns the same result as A (~s3,r)

(when both algorithms use randomness r for the execution of A ) with probability at least 1−ρ .

The same statement holds for the second run B(~s′1;r′||r). Thus,

Pr~s′1,~s′2,r′||r
[
B(~s′1;r′||r) = B(~s′2;r′||r)| neither run outputs ⊥

]
≥ 1−2ρ.

Finally, B may fail to be replicable if either RejSamp call returns ⊥, so we union bound

over this additional 2q probability.

3.6.4 Replicable Strong Halfspace Learner

We give two replicable strong learners for halfspaces by combining boosting algorithm

rBoost with replicable weak halfspace learners rHalfspaceWkL and rHalfspaceWkLbox.

Corollary 3.6.5. Let D be a distribution over Rd , and let f : Rd → {±1} be a halfspace with

margin τ in D. Let ε > 0. Then

• Algorithm rBoost run with weak learner rHalfspaceWkL ρ-replicably returns a hypothesis

h such that, with probability at least 1−ρ , Pr~x∼D[h(~x) = f (~x)]≥ 1− ε , using a sample of

size Õ
(

d10/9

τ76/9ρ20/9ε28/9

)
.

• Algorithm rBoost run with weak learner rHalfspaceWkLbox ρ-replicably returns a hypothe-

sis h such that, with probability at least 1−ρ , Pr~x∼D[h(~x) = f (~x)]≥ 1− ε , using a sample

of size Õ
(

d15/4

τ10ρ5/2ε9/2

)
.

Proof. For the first strong learner, we compose Theorem 3.6.1 with Theorem 3.5.2. rHalfspaceWkL

has advantage γ = τ/4, so rBoost has round complexity T = O(1/(εγ2)) = O(1/(ετ2)). rBoost

runs rHalfspaceWkL with parameter ρrWkL = ρ/6T , so the sample complexity mrHalfspaceWkL is

O
(

d10/9

τ58/9ρ20/9ε10/9

)
. Thus, the sample complexity for the boosting algorithm is
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Õ

(
d10/9

τ76/9ρ20/9ε28/9

)
For the second strong learner, we compose Theorem 3.6.1 with Theorem 3.5.14. As

before, rBoost has round complexity T = O(1/(ετ2)) and runs rHalfspaceWkLbox with parameter

ρrWkL = ρ/6T . The sample complexity mrHalfspaceWkLbox is O
((

d3/2

τ2ρrWkL

)5/2
)

=

((
d3/2

τ4ρε

)5/2
)

.

Thus, the sample complexity for the boosting algorithm is

Õ
(

mrWkL(ρ/(6T ))

ε2γ2 +
1

ρ2ε3γ2

)
= Õ

 1
ε2γ2

(
d3/2

τ2ρrWkL

)5/2
= Õ

(
d15/4

τ10ρ5/2ε9/2

)
.

Remark 3.6.6. rHalfspaceWkLbox runs in time polynomial in the input parameters. So, the strong

learner obtained by running boosting algorithm rBoost with weak learner rHalfspaceWkLbox is a

poly(1/ε,1/ρ,1/τ,d)-time algorithm. However, the other weak learner rHalfspaceWkL uses a

foams construction subroutine from [KORW12] that takes expected exponential in d runtime. The

corresponding strong learner runs in time polynomial in 1/ε,1/ρ, and 1/τ , but exponential in d.

3.6.5 Discussion

Algorithm 10 follows the smooth boosting framework of Servedio [Ser03], which also

shows how to boost a weak halfspace learner under a margin assumption on the data. They show

that their boosted halfspace learner obtains a hypothesis with good margin on the training data, and

then apply a fat-shattering dimension argument to show generalization to the underlying distribution

with sample complexity Õ(1/(τε)2). Notably, this gives sample complexity independent of d.

Moreover, their smooth boosting algorithm is tolerant to malicious noise perturbing an η ∈ O(τε)

fraction of its sample.

A generic framework for differentially private boosting was given in [BCS20], with an appli-
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cation to boosting halfspaces. Their boosting algorithm also follows the smooth boosting framework,

but uses a variant of the round-optimal boosting algorithm given in [BHK09]. Their halfspace

learner similarly requires a margin assumption on the data and tolerates random classification noise

at a rate η ∈ O(τε). They give two generalization arguments for their halfspace learner, both of

which are dimension-independent. The first follows from prior work showing that differential pri-

vacy implies generalization [BNS+16a] and gives sample complexity Õ( 1
εατ2 +

1
ε2τ2 +α−2 + ε−2)

for approximate differential privacy parameters (α,β ). The second follows from a fat-shattering

dimension argument and gives a tighter bound of Õ
(

1
εατ2

)
.

Boosting algorithms have been thoroughly studied over the past few decades, and there are

many types of boosting algorithms (e.g. distribution-reweighting, branching-program, gradient

boosting) with different properties (e.g. noise-tolerance, parallelizability, smoothness, batch vs.

filtering). It would be interesting to see which of these techniques can be made replicable, and at

what cost.

3.7 SQ–Replicability Lower Bound

How much does it cost to make a nonreplicable algorithm into a replicable one? In this

section, we show a lower bound for replicable statistical queries via a reduction from the coin

problem.

Theorem 3.7.1 (SQ–Replicability Lower Bound). Let τ > 0 and let δ ≤ 1/16. Let query φ : X →

[0,1] be a statistical query. Let A be a ρ-replicable SQ algorithm for φ with tolerance less than τ

and success probability at least 1−δ . Then A has sample complexity at least m ∈Ω(1/(τ2ρ2)).

Note that this nearly matches the replicable statistical query upper bound in Theorem 3.2.3,

in the case that δ ∈Θ(ρ).

Recall the coin problem: promised that a 0-1 coin has bias either 1/2− τ or 1/2+ τ for

some fixed τ > 0, how many flips are required to identify the coin’s bias with high probability?
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Proof of Theorem 3.7.1. A τ-tolerant ρ-replicable SQ algorithm A for φ naturally induces a ρ-

replicable algorithm B for the τ-coin problem — B runs A (the results of the coin flips are the

φ(x)’s), and B accepts (outputs 1) if A ’s output is≥ 1/2, otherwise rejects. The success probability

of B is at least that of A . As A is replicable for all distributions, B also satisfies the assumption

in Lemma 3.7.2 that B is ρ-replicable for coins with bias in (1/2− τ,1/2+ τ). By Lemma 3.7.2,

any replicable algorithm solving the coin problem with these parameter has sample complexity

m ∈Ω(1/(τ2ρ2)), implying the lower bound.

Lemma 3.7.2 (Sample Lower Bound for the Coin Problem). Let τ < 1/4 and ρ < 1/16. Let

B be a ρ-replicable algorithm that decides the coin problem with success probability at least

1−δ for δ = 1/16. Furthermore, assume B is ρ-replicable, even if its samples are drawn from a

coin C with bias in (1/2− τ,1/2+ τ). Then B requires sample complexity m ∈Ω(1/(τ2ρ2)), i.e.

ρ ∈Ω(1/τ
√

m).

Proof. Assume we have an algorithm B(b1..bm;r) of sample complexity m so that (i) if the bi’s are

chosen i.i.d. in {0,1} with bias 1/2− τ , B accepts with at most δ probability (over both random

r and the bi’s), and (ii) if the bi’s are drawn i.i.d. with bias 1/2+ τ , B accepts with at least 1−δ

probability.

Let p ∈ [0,1] denote the bias of a coin. Since B is ρ-replicable, B is ρ-replicable for any

distribution on p. In particular, pick p ∈U [1/2− τ,1/2+ τ]. Let C−τ denote a coin with bias

1/2−τ , and let C+τ denote a coin with bias 1/2+τ . By Markov’s inequality, each of the following

is true with probability at least 1−1/4 over choice of r:

• Prb1..bm∼i.i.d.C−τ
[B(b1..bm;r) accepts]≤ 4δ

• Prb1..bm∼i.i.d.C+τ
[B(b1..bm;r) accepts]≥ 1−4δ

• When p is chosen between 1/2−τ and 1/2+τ uniformly, and then b1..bm,b′1..b
′
m are sampled

i.i.d. with expectation p, Pr[B(b1..bm;r) = A(b′1..b
′
m;r)]≥ 1−4ρ .
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By a union bound, there exists an r∗ so that every above statement is true. Note that for

any p, given ∑bi = j, the samples b1..bm are uniformly distributed among all Boolean vectors of

Hamming weight j. Let a j
def
= Pr[B(b1..bm;r∗) accepts |∑bi = j]. Then the probability B accepts

using r∗ on bits with bias p is Acc(p) = ∑ j a j
(m

j

)
p j(1− p)m− j. In particular, this is a continuous

and differentiable function.

Since Acc(1/2− τ) < 4δ < 1/4 and Acc(1/2+ τ) > 1−4δ > 3/4, there is a q ∈ (1/2−

τ,1/2+τ) with Acc(q) = 1/2. We show that Acc(p) is close to 1/2 for all p close to q by bounding

the derivative Acc′(p) within the interval [1/4,3/4], which contains [1/2− τ,1/2+ τ].

By the standard calculus formulas for derivatives,

Acc′(p) = ∑
j

a j

(
m
j

)
( jp j−1(1− p)m− j− (m− j)p j(1− p)m− j−1)

= ∑
j

a j

(
m
j

)
p j(1− p)m− j( j/p− (m− j)/(1− p))

= ∑
j

a j

(
m
j

)
p j(1− p)m− j( j−mp)/(p(1− p)).

Since 1/4 < p < 3/4, p(1− p)> 3/16 > 1/6, and 0≤ a j ≤ 1. So this sum is at most

∑
j

(
m
j

)
p j(1− p)m− j6| j−mp|= 6E j[| j−mp|]

where the last expectation is over j chosen as the sum of m random Boolean variables of expectation

p. This expectation is O(m1/2) because the expectation of the absolute value of the difference

between any variable and its expectation is at most the standard deviation for the variable.

Since the derivative is at most O(
√

m), there is an interval I of length Ω(1/
√

m) around q so

that 1/3< Acc(p)< 2/3 for all p in this interval. Since Acc(p) 6∈ (1/3,2/3) at p= 1/2−τ and p=

1/2+τ , interval I is entirely contained in (1/2−τ,1/2+τ). So, there is an Ω(1/τ
√

m) chance that

a random p∈U [1/2−τ,1/2+τ] falls in interval I. For p∈ I, there is a 2Acc(p)(1−Acc(p))> 4/9
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conditional probability of non-replicability for B. Therefore, ρ ≥Ω(1/τ
√

m) and m ∈Ω(1/τ2ρ2).

3.8 Appendix: Replicability: Alternative Definitions and
Properties

In this section, we consider a few alternative criteria for replicability and show how they re-

late to our definition of replicability. We also demonstrate other robustness properties of replicability

such as amplifying the parameters, as well as data/randomness reuse.

Alternative Definitions and Amplification. In the main body of the paper, we have chosen to

define A as have two sources of random inputs: samples~s drawn from distribution D and internal

randomness r. A has no additional inputs. However, we could more generally define A to have

additional, nonrandom inputs. In this more general definition, we define A (x;~s;r) where~s and r are

as defined previously, and x is an auxiliary input (or tuple of inputs). A (x;~s;r) is ρ-replicable with

respect to distribution D if for every input x, A (x;~s;r) is ρ-replicable. This definition generalizes

both pseudodeterministic algorithms (in which there is no underlying distribution, so~s is empty) as

well as our definition of replicable learning algorithms (in which there are no additional inputs, so x

is empty).

Rather than parameterize replicability by a single parameter ρ , one could use two variables

(η ,ν).

Definition 3.8.1 ((η ,ν)-replicability). Let A (x;~s;r) be an algorithm, where~s are samples from D,

and r is the internal randomness. We say that a particular random string r is η-good for A on x

with respect to D if there is a single “canonical” output Zr such that Pr[A (x;~s;r) = Zr]≥ 1−η .

Then A is (η ,ν)-replicable with respect to D if, for each x, the probability that a random r is

η-good for A (on x and D) is at least 1−ν .

120



(η ,ν)-replicability is qualitatively the same as ρ-replicability, but might differ by poly-

nomial factors. If A is (η ,ν)-replicable, then A is ρ-replicable on D, where ρ ≤ 2η +ν . The

probability that two runs of A , using the same internal randomness r, output different results

is at most Pr[r not η-good] plus the probability that at least one run is not the special output Zr

(conditioned on r being η-good). In the other direction, if A is ρ-replicable, then A is (ρ/ν ,ν)-

replicable for any ρ ≤ ν < 1. Say there is a ν probability that r is not η-good. Conditioned on

picking a not η-good r, there is a conditional (at least) η probability of the second run of A

returning something different than the first run.6 Thus, ρ ≥ ην .

A similar definition called “pseudo-global stability”, developed independently to our work,

appears in [GKM21]. That definintion parametrizes by the sample complexity m and does not

explicitly parametrize by auxiliary input x. Additionally, their definition includes an (α,β )-accuracy

guarantee on Zr, the very likely output. To keep both definitions consistent with their original

conventions, we write η ′
def
= 1−η and ν ′

def
= 1−ν .

Definition 3.8.2 (Pseudo-global stability, Definition 15 in [GKM21]). A learning algorithm A with

sample complexity m is said to be (α,β )-accurate, (η ′,ν ′)-pseudo-globally stable if there exists a

hypothesis hr for every r ∈ supp(R) (depending on D) such that Prr∼R[errD(hr)≤ α]≥ 1−β and

Prr∼R
[
Pr~s∼Dm [A (~s;r) = hr]≥ η

′]≥ ν
′

where~s is a sample of m (labeled) examples (xi,yi) drawn from distribution D.

The final condition of Definition 3.8.2 is equivalent to saying that i) a randomly chosen

r is η ′-good with probability at least ν ′, and ii) for every r, hr is the output that witnesses the

η-goodness. Carrying the accuracy guarantee through the previous argument, an (α,β )-accurate

6If 1−η ≥ 1/2, then the probability that two runs of A using the same randomness returns the same result is at
most (1−η)2 +η2, i.e., when A has only two possible outputs. This is less than 1−η , assuming 1−η ≥ 1/2. If
1−η < 1/2, then there must be more than two outputs, and the probability of nonreplicability is again larger than η .
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(η ′,ν ′)-pseudo-globally-stable algorithm A implies a (2(1−η ′)+(1−ν ′)) = (2η +ν)-replicable

algorithm A also with (α,β )-accuracy.

If we are willing to increase the sample complexity of A , we can make the connection

stronger:

Theorem 3.8.3 (Amplification of Replicability). Let 0 < η ,ν ,β < 1/2 and m > 0. Let A be an

(η ,ν)-replicable algorithm for distribution D with sample complexity m and failure rate β . If

ρ > 0 and ν +ρ < 3/4, then there is a ρ-replicable algorithm A ′ for D with sample complexity

m′ = Õ(m(log1/β )3/(ρ2(1/2−η)2) and failure rate at most O(β +ρ). The construction of A ′

does not depend on D.

Proof. Set k = 3log1/β . For each random string r, let Dr be the distribution on outputs of A (x;~s;r)

(over random~s). Algorithm A ′ randomly picks k-many strings r1, . . . ,rk, runs the replicable heavy-

hitters algorithm (Algorithm 4) on the distributions Dr1, . . . ,Drk , and outputs the first returned

heavy-hitter (or ⊥ if each subroutine returns the empty list). We say there are k rounds of A ′, one

per random string r.

The replicability of rHeavyHitters implies the replicability of A ′. We show that a heavy-

hitter in Dr for randomly chosen r is often a correct answer, except with probability comparable to

β .

By definition, r is η-good iff Dr has a 1−η heavy-hitter. Since η < 1/2, this heavy-hitter

will be unique, and there will be no other 1−η > 1/2 heavy-hitters. Given any r, we can draw from

distribution Dr by running algorithm A with fresh samples~s. Consider running the replicable heavy-

hitters algorithm with parameters v = (3/2−η)/2, ε = (1/2−η)/2, and replicability ρ ′ = ρ/k.

These are chosen so that v+ ε = 1−η and v− ε = 1/2. If r is η-good, then rHeavyHitters will

return the (unique) majority element for Dr with probability at least 1−ρ/k. If r is not 1/2-good7,

the replicable heavy-hitters algorithm with the same parameters will return the empty list with

7Since η < 1/2 by assumption, r being not 1/2-good implies r is not η-good.
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probability at least 1−ρ/k.

Next, we compute the conditional probability that the first element that rHeavyHitters

returns is correct. The probability that rHeavyHitters produces an empty list in one round is at

most ν (when the randomly chosen r is not η-good) plus ρ/k (when r is η-good but the heavy-

hitters algorithm fails). At most a (2β )-fraction of random strings r satisfy both of the following two

conditions: i) Dr has a majority element Zr and ii) Zr is an incorrect output. Thus, the conditional

probability of outputting an incorrect answer, given rHeavyHitters produces a non-empty output,

is at most (2β +ρ/k)/(1−ν−ρ/k). By assumption, ν +ρ/k < 3/4, so this is O(β +ρ).

So far, we have bounded the probability that A ′ returns an incorrect answer. A ′ could also

fail if rHeavyHitters returns the empty list in each of k rounds. Since ν +ρ/k < 3/4, this happens

with probability at most (3/4)k ≤ β . So, the overall probability of error is at most O(β +ρ).

If two runs of A ′ use the same ri’s and same randomness for each heavy-hitters call, they

only produce different answers if a pair of rHeavyHitters calls produces different answers in the

same round. By the replicability of rHeavyHitters, this only happens with probability ρ/k each

round, for a total non-replicability probability at most ρ .

A ′ calls rHeavyHitters k = O(log1/β ) times. Each example used by rHeavyHitters is

created by running A , which has sample complexity m. By Lemma 3.3.3, rHeavyHittersρ ′,v,ε has

sample complexity Õ
(

1
ρ ′2ε2(v−ε)2

)
. Substituting in ρ ′ = ρ/k,ε = (1/2−η)/2, and v− ε = 1/2,

A has sample complexity km · Õ
(

k2

ρ2(1/2−η)2

)
= Õ

(
m log3(1/β )
ρ2(1/2−η)2

)
.

Corollary 3.8.4. Let α > 0 and ρ < 1/4−α . Let A be a ρ-replicable algorithm using m samples

is correct except with error at most β . Then for arbitrary ρ ′ satisfying ρ > ρ ′ > 0, there is a

ρ ′-replicable algorithm A ′ with sample complexity m′ = Õ
(

m log3(1/β )
ρ ′2α2

)
that is correct except with

error at most O(β +ρ ′).

Proof. By the arguments immediately after Definition 3.8.1, a ρ-replicable algorithm implies a

(ρ/x,x)-replicable algorithm. Choosing x = 1/2−α allows us to apply Theorem 3.8.3 for any
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ρ < 1/4. The (1/2−η) term in Theorem 3.8.3 simplifies to α/(1−2α) in this context. When α

can be chosen as a constant, the sample complexity simplifies to m′ = Õ(m log3(1/β )/ρ ′2).

Public versus Private Randomness. We define replicability as the probability that when run twice

using the same (public) randomness, but with independently chosen data samples, the algorithm

returns the same answer. In [GL19], the authors define a related concept, but divide up the

randomness into two parts, where only the first randomness part gets reused in the second run of

the algorithm. In their applications, there are no data samples, so re-running the algorithm using

identical randomness would always give identical results; rather, they were trying to minimize the

amount of information about the random choices that would guarantee replicability, i.e., minimize

the length of the first part.

Similarly, we could define a model of replicability that involved two kinds of random choices.

Define A (x;~s;rpub,rpriv),~s = (s1, . . . ,sm) to be ρ-replicable with respect to rpub and D if for every

x, random ~s1 and ~s2 drawn from Dm, and random rpub,rpriv,r′priv,

Pr[A (x;~s1;rpub,rpriv) = A (x;~s2;rpub,r′priv)]≥ 1−ρ.

If we want to minimize the amount of information we need to store to guarantee replicability,

keeping rpriv and rpub distinct may be important. However, if all we want is to have a maximally

replicable algorithm, the following observation shows that it is always better to make the entire

randomness public.

Lemma 3.8.5. If A (x;~s;rpub,rpriv) is ρ-replicable w.r.t. rpub over D, then A (x;~s;rpub,rpriv) is

ρ-replicable with respect to (rpub,rpriv) over D.

Proof. We show for each value of x and rpub,

Pr[A (x;~s1;rpub,rpriv) = A (x;~s2;rpub,r′priv)]≤ Pr[A (x;~s1;rpub,rpriv) = A (x;~s2;rpub,rpriv)].
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Fix x and rpub. For each possible value R of rpriv and output Z, let qR,Z = Pr[A [(x;~s1;rpub,R)] = Z],

and let~qR be the vector indexed by Z whose Zth coordinate is qR,Z . Then

Pr[A [(x;~s1;rpub,R) = A (x;~s2;rpub,R)] = ∑
Z
(qR,Z)

2 = ||~qR||22,

and

Pr[A (x;~s1;rpub,R) = A (x;~s2;rpub,R′)] = ∑
Z
(qR,ZqR′,Z) = 〈~qR,~qR′〉.

Thus,

Pr[A (x;~s1;rpub,rpriv) = A (x;~s2;rpub,r′priv)] = ER,R′[〈~qR,~qR′〉]

≤ ER,R′[||~qR||2||~qR′||2]

= (ER[||~qR||2])2

≤ ER[||~qR||22]

= Pr[A (x;~s1;rpub,rpriv) = A (x;~s2;rpub,rpriv)].

We will implicitly use this observation in the boosting algorithm section, since it will

be convenient to think of the two runs of the boosting algorithm as picking samples each step

independently, when using the same random string would create some correlation.

Replicability Implies Generalization. We show that a hypothesis generated by a replicable

algorithm has a high probability of having generalization error close to the empirical error. Let

h be a hypothesis, c be a target concept, and D be a distribution. The risk (generalization error)

of R(h) def
= Prx∼D[h(x) 6= c(x)]. If ~s is a sample drawn i.i.d. from D, then the empirical risk

R̂~s(h)
def
= Prx∈~s[h(x) 6= c(x)].

Lemma 3.8.6 (Replicability Implies Generalization). Let sample~s∼ Dn, and let δ > 0. Let h be a
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hypothesis output by ρ-replicable learning algorithm A (~s;r), where r is a random string. Then,

with probability at least 1−ρ−δ over the choice of~s and r, R(h)≤ R̂~s(h)+
√

ln(1/δ )/(2n).

Proof. Consider running A (~s2;r), where ~s2 is an independent sample of size m drawn from D,

but r is the same as before. Let h2 denote the returned hypothesis. Since h2 is independent of~s,

Pr~s∼Dn[R̂~s(h2)−R(h2)≥ ε]≤ exp(−2nε2) for ε > 0 by Hoeffding’s inequality. By the replicability

of A , h2 = h with probability at least 1−ρ . By a union bound, R(h)≥ R̂~s(h)+
√

ln(1/δ )/2n with

probability at least 1−ρ−δ .

In the above argument, we use the definition of replicability to create independence between

~s and h, allowing us to use Hoeffding’s inequality.

Connections to Data Reuse. We consider the adaptive data analysis model that appears in

[DFH+15b] and [DFH+15a], and we prove that replicable algorithms are resiliant against adaptive

queries (Lemma 3.8.7). The proof is via a hybrid argument.

Lemma 3.8.7 (Replicability =⇒ Data Reusability). Let D be a distribution over domain X . Let M

be a mechanism that answers queries of the form q : X →{0,1} by drawing a sample S of n i.i.d.

examples from D and returning answer a. Let A denote an algorithm making m adaptive queries,

chosen from a set of queries Q, so that the choice of qi may depend on q j,a j for all j < i. Denote

by [A ,M ] the distribution over transcripts {q1,a1, . . .qm,am} of queries and answers induced by

A making queries of M . Let M ′ be a mechanism that behaves identically to M , except it draws a

single sample S′ of n i.i.d. examples from D and answers all queries with S′.

If M answers all queries q ∈ Q with ρ-replicable procedures, then

SD∆([A ,M ], [A ,M ′])≤ (m−1)ρ,

where SD∆(D1,D2) denotes the statistical distance between distribtuions D1 and D2.
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Proof. For i ∈ [m], let [A ,Mi] denote the distribution on transcripts output by algorithm A ’s

interaction with Mi, where Mi is the analogous mechanism that draws new samples S1, . . . ,Si for

the first i queries, and reuses sample Si for the remaining m− i queries. Note that M ′ = M1 and

M = Mm.

For i ∈ [m− 1], consider distributions [A ,Mi] and [A ,Mi+1]. We will bound the statis-

tical distance by a coupling argument. Let S1, . . . ,Si+1 denote random variables describing the

samples used, and let r denote the randomness used over the entire procedure. [A ,Mi] can be

described as running the entire procedure (with randomness R) on S1, . . . ,Si−1,Si+1,Si+1, . . . ,Si+1,

and [A ,Mi+1] can be similarly described as running the entire procedure (with randomness R) on

S1, . . . ,Si−1,Si,Si+1,Si+1, . . . ,Si+1.

These distributions are identical for the first i− 1 queries and answers, so the i’th query

qi is identical, conditioned on using the same randomness. Both Si and Si+1 are chosen by i.i.d.

sampling from D, so PrSi,Si+1,r [A (qi,Si+1;r) = A(qi,Si;r)]≥ 1−ρ by replicability. Conditioned

on both transcripts including the same (i+1)’th answer ai+1 (and continuing to couple Si+1 and

r for both runs), the remaining queries and answers qi+1,ai+1, . . . ,qm,am is identical. Therefore,

SD∆([A ,Mi], [A ,Mi+1]) ≤ ρ for all i ∈ [m− 1]. Unraveling, SD∆([A ,M ], [A ,M ′]) ≤ (m−

1)ρ.

Remark 3.8.8. This connection may be helpful for showing that replicability cannot be achieved

efficiently in contexts where data reuse is not efficiently achievable.

3.9 Appendix: Concentration of Sum of Vectors

In this Section, we use Azuma’s inequality to prove a concentration bound on the sum of

vectors from a distribution.

Let D be a distribution on Rn. Let v = {v1, . . . ,vT} ∈ DT be a random sample of T vectors

from D with the following properties:
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1. Ev∈ DT [∑T
i=1 vi]−Ev∈ D[v] = 0.

2. ∀v ∈ D, ||v||2 ≤ c.

The following lemma shows that the length of v1 +v2 + . . .+vT is tightly concentrated.

Lemma 3.5.10. Let D,v ∈DT satisfy properties (1) and (2) above, and let v≤T = ∑
T
i=1 vi. Then for

all ∆ > 0,

Prv[||v≤T||2 ≥
√

T (1+ c/2)+∆]≤ e−∆2/2c2T .

The intuition behind Lemma 3.5.10 is similar to the one-dimensional case, where D is a

distribution over (−1,1), v ∈ DT , and ∑
T
i=1 vi is concentrated around zero, with standard deviation

√
T . Let v≤i denote ∑

i
i=1 vi. In the one-dimensional case, we can prove concentration of v≤T via a

Chernoff or martingale argument since the expected value of v≤i (the sum of the first i numbers) is

equal to v≤i−1. However for the higher dimensional case, v≤i is now the sum of the first i vectors,

and it is in general not the case that the expected length of v≤i is equal or even not much larger

than the length of v≤i−1. However, if the length of v≤i−1 is sufficiently large (greater than
√

T ),

then E[||v≤i||2 | v≤i−1] can be upper bounded (approximately) by ||v≤i−1||2 +1/
√

T . Therefore, if

we want to bound the probability that the length of v≤T is large (at least
√

T +∆), there must be

some time t such that the vector v≤t is outside of the ball of radius
√

T around the origin, and never

returns. So we can bound the probability that ||v≤T||2 ≥
√

t +∆, by considering the sequence of

random variables x≤t, . . . ,x≤T such that x≤t is equal to the length of v≤t, and for each t ′ ≥ t, x≤t′

is the length of v≤t′ minus a correction term (so that we can upper bound E[x≤t′+1 | x≤t′] by x≤t′ .)

We will show that x≤t, . . . ,x≤T is a supermartingale where |x≤t′+1−x≤t′| is bounded by a constant,

and then the concentration inequality will follow from Azuma’s Lemma.

Definition 3.9.1. Let D be a distribution over Rn satisfying the above two properties.

1. Let v = {v1, . . . ,vT′} ∈ DT ′ be a sequence of T ′ ≤ T random variables, and let v0 ∈Rn have

length
√

T . For 0≤ i≤ T ′, let v≤i = ∑
T ′
i=1 vi.
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2. The stopping time τ ∈ [T ′] (with respect to {v≤i}) is equal to:

min{{i ∈ [T ′] | ||v≤i||2 <
√

T}∪{T ′}}.

That is, τ is the first time i such that the length of v≤i drops below
√

T + i
3
√

T
(and otherwise

τ = T ′).

3. For each i ∈ [T ′], we define the sequence of random variables x≤0,x≤1,x≤2, . . . ,x≤T′ where

x≤0 = ||v0||2 =
√

T , and for all i ≥ 1, x≤i will be the adjusted length of the first i vectors,

||v≤i|| with stopping condition τ:

x≤i =


||v≤i||2− ci

2
√

T
if τ > i

x≤τ otherwise

Claim 3.9.2. The sequence of random variables x≤1, . . . ,x≤T′ is a supermartingale.

Proof. We need to show that for every i ∈ [T ′], E[x≤i | x≤i−1] ≤ x≤i−1. Fix i ∈ [T ′]; if τ ≤ i− 1

then x≤i = x≤i−1 so the condition holds. Otherwise assume that τ ≥ i. Since

E[x≤i | x≤i−1] = E[x≤i | v≤i−1] = E[||v≤i−1 +vi||2]−
ci

2
√

T

and x≤i−1 = ||v≤i−1||2− c(i−1)
2
√

T
, it suffices to show that E[||v≤i−1 +vi||2 ≤ ||v≤i−1||2 + c

2
√

T
.

To prove this, we can write vi = v‖i +v⊥i where v‖i is the component of vi in the direction of

v≤i−1, and v⊥i is the orthogonal component. Since the expected length of v≤i−1 +v‖i is equal to the

length of v≤i−1 (by property 1), we just have to show that the expected length of v≤i−1 +v⊥i is at

most c
2
√

T
. Since vi has length at most c, so does v⊥i , so we have:

E[||v≤i−1 +v⊥i ||2]≤ (||v≤i−1||22 + c)1/2 ≤ c
2
√

T
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where the last inequality holds since τ ≥ i implies ||v≤i−1||2 ≥
√

T .

Claim 3.9.3. For all i, |x≤i−x≤i−1| ≤ c.

Proof. Since vi has length at most c the absolute value of the difference between ||v≤i||2 and

||v≤i−1||2 is at most 2. The claim easily follows since x≤i = ||v≤i||+ ci
2
√

T
.

The above two Claims together with Azuma’s inequality gives:

Pr[|x≤T′−x≤0| ≥ ∆]≤ e−∆2/2c2T .

Proof. (of Lemma 3.5.10)

In order for v≤T to have length at least
√

T (1+ c/2)+∆, there must be some largest time

t ∈ [T ] such that ||v≤t||2 ∈ (
√

T ,
√

T +1]. That is, at all times t ′ ≥ t the vector v≤t′ is outside the

ball of radius
√

T . Thus by the above argument, the random variables x≤iT
i=t are a supermartingale

where the absolute value of the difference between successive variables is at most c, and by

Azuma, Pr[x≤T ≥
√

T +∆] is at most e−∆2/2c2T . Since x≤T = ||v≤T||2− T c
2
√

T
= ||v≤T||2−

√
T c
2 ,

Pr[||v≤T||2 ≥
√

T (1+ c/2)+∆] is at most e−∆2/2c2T .
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Chapter 4

Massart Boosting

We study the problem of boosting the accuracy of a weak learner in the (distribution-

independent) PAC model with Massart noise. In the Massart noise model, the label of each example

x is independently misclassified with probability η(x)≤ η , where η < 1/2. The Massart model

lies between the random classification noise model and the agnostic model. Our main positive

result is the first computationally efficient boosting algorithm in the presence of Massart noise that

achieves misclassification error arbitrarily close to η . Prior to our work, no non-trivial booster

was known in this setting. Moreover, we show that this error upper bound is best possible for

polynomial-time black-box boosters, under standard cryptographic assumptions. Our upper and

lower bounds characterize the complexity of boosting in the distribution-independent PAC model

with Massart noise. As a simple application of our positive result, we give the first efficient Massart

learner for unions of high-dimensional rectangles.

4.1 Introduction

4.1.1 Background and Motivation

Boosting is a general learning technique that combines the outputs of a weak base learner

— a learning algorithm with low but non-trivial accuracy — to obtain a hypothesis of higher

accuracy. Boosting has been extensively studied in machine learning and statistics since initial work
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by Schapire [Sch90]. The reader is referred to [Sch03] for an early survey from the theoretical

machine learning community, [BH07] for a statistics perspective, and [SF12] for a book on the

topic. Here we study boosting in the context of learning classes of Boolean functions with a focus

on Valiant’s distribution-independent PAC model [Val84]. During the past three decades, several

efficient boosting procedures have been developed in the realizable PAC model, i.e., when the data

is consistent with a function in the target class. On the other hand, boosting in the presence of noisy

data remains less understood.

In this work, we study the complexity of boosting in the presence of Massart noise. In

the Massart (or bounded noise) model, the label of each example x is flipped independently with

probability η(x)≤ η , for some parameter η < 1/2. The flipping probability η(x) is bounded but

is unknown to the learner and can depend on the example x in a potentially adversarial manner.

Formally, we have the following definition.

Definition 4.1.1 (PAC Learning with Massart Noise). Let C be a concept class over X = Rn,

Dx be any fixed but unknown distribution over X, and 0 ≤ η < 1/2 be the noise parameter. Let

f ∈ C be the unknown target concept. A noisy example oracle, EXMas( f ,Dx,η(x)), works as

follows: Each time EXMas( f ,Dx,η(x)) is invoked, it returns a labeled example (x,y), where x∼Dx,

y = f (x) with probability 1−η(x) and y =− f (x) with probability η(x), for an unknown function

η(x) : X → [0,η ]. Let D denote the joint distribution on (x,y) generated by the above oracle. A

learning algorithm is given i.i.d. samples from D and its goal is to output a hypothesis h such that

with high probability the misclassification error Pr(x,y)∼D[h(x) 6= y] is as small as possible. We will

use OPT def
= infg∈C Pr(x,y)∼D[g(x) 6= y] to denote the optimal misclassification error.

Background on Massart Noise.

The Massart model is a natural semi-random input model that is more realistic and robust

than random classification noise. Noise can reflect computational difficulty or ambiguity, as well as

random factors. For example, a cursive “e” might be substantially more likely to be misclassified as
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“a” than an upper case Roman letter. Massart noise allows for these variations in misclassification

rates, while not requiring precise knowledge of which instances are more likely to be misclassified.

That is, algorithms that learn in the presence of Massart noise are likely to be less brittle than those

that depend on uniformity of misclassification noise. Agnostic learning is of course even more

robust, but unfortunately, it can be computationally infeasible to design agnostic learners for many

applications.

In its above form, the Massart noise model was defined in [MN06]. An essentially equivalent

noise model had been defined in the 80s by Sloan and Rivest [Slo88, Slo92, RS94, Slo96], and a

very similar definition had been considered even earlier by Vapnik [Vap82]. The Massart model is a

generalization of the Random Classification Noise (RCN) model [AL88] and appears to be easier

than the agnostic model [Hau92, KSS94]. Perhaps surprisingly, until very recently, no progress had

been made on the efficient, distribution-free PAC learnability in the presence of Massart noise for

any non-trivial concept class.

In more detail, the existence of an efficient distribution-independent PAC learning algorithm

with non-trivial error guarantee for any concept class in the Massart model had been posed as

an open question in a number of works, including [Slo88, Coh97], and was highlighted in A.

Blum’s FOCS’03 tutorial [Blu03]. Recent work [DGT19] made the first algorithmic progress in this

model for the concept class of halfspaces. Specifically, [DGT19] gave a polynomial-time learning

algorithm for Massart halfspaces with misclassification error η + ε . We note that the information-

theoretically optimal error is OPT = Ex∼Dx [η(x)], which is at most η but could be much smaller.

Thus, the error achieved by the aforementioned algorithm can be very far from optimal. Very recent

follow-up work [CKMY20] showed that obtaining the optimal error of OPT+ ε for halfspaces

requires super-polynomial time in Kearns’ Statistical Query (SQ) model [Kea98]. Contemporaneous

to the results of the current paper, [DK20] showed an SQ lower bound ruling out any constant factor

or even polynomial factor approximation for this problem. The approximability of learning Massart

halfspaces remains a challenging open problem of current investigation.
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Comparison to RCN and Agnostic Noise.

Random Classification Noise (RCN) [AL88] is the special case of Massart noise where

the label of each example is independently flipped with probability exactly η < 1/2. RCN is a

fundamentally easier model algorithmically. Roughly speaking, RCN is predictable which allows

us to cancel out the effect of the noise on any computation, in expectation. A formalization of

this intuition is that any Statistical Query (SQ) algorithm [Kea98] is automatically robust to RCN.

This fact inherently fails in the presence of Massart noise. Roughly speaking, the ability of the

Massart adversary to choose whether to flip a label and if so, with what probability, makes this

model algorithmically challenging. Moreover, the uniform noise assumption in the RCN model

is commonly accepted to be unrealistic, since in practical scenarios some instances are harder to

classify than others [FV13]. For example, in the setting of human annotation noise [BK09], it has

been observed that the flipping probabilities are not uniform.

The agnostic model [Hau92, KSS94] is the most challenging noise model in the literature,

in which an adversary can arbitrarily flip an OPT < 1/2 fraction of the labels. It is well-known

that (even weak) learning in this model is computationally intractable for simple concept classes,

including halfspaces [Dan16].

The Massart model can be viewed as a reasonable compromise between RCN and the

agnostic model, in the sense that it is a realistic noise model that may allow for efficient algorithms

in settings where agnostic learning is computationally hard. This holds in particular for the

important concept class of halfspaces. As already mentioned, even weak learning of halfspaces is

hard in the agnostic model [Dan16], while an efficient Massart learner with non-trivial accuracy is

known [DGT19].

Boosting With Noisy Data.

An important research direction, which was asked in Schapire’s original paper [Sch90],

is to design boosting algorithms in the presence of noisy data. This broad question has been
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studied in the past two decades by several researchers. See Section 4.1.4 for a detailed summary of

related work. Specifically, prior work has obtained efficient boosters for RCN [KS03] and agnostic

noise [Ser03, Fel10]. It should be emphasized that these prior works do not immediately extend to

give boosters for the Massart noise setting. For example, while the agnostic model is stronger than

the Massart model, an agnostic booster does not imply a Massart booster, as it relies on a much

stronger assumption — the existence of a weak agnostic learner. That is, the complexity of noisy

boosting is not “monotone” in the difficulty of the underlying noise model. More broadly, it turns

out that the complexity of boosting with inconsistent data, and the underlying boosting algorithms,

crucially depend on the choice of the noise model.

In this work, we ask the following question:

Can we develop efficient boosting algorithms for PAC learning with Massart noise?

Our focus is on the distribution-independent setting. Given a distribution-independent

Massart weak learner for a concept class C , we want to design a distribution-independent Massart

learner for C with high(er) accuracy. Prior to this work, no progress had been made on this

front. In this paper, we resolve the complexity of the aforementioned problem by providing (1) an

efficient boosting algorithm and (2) a matching computational lower bound on the error rate of any

black-box booster.

This work is the first step of the broader agenda of developing a general algorithmic theory of

boosting for other “benign” semi-random noise models, lying between random and fully adversarial

corruptions.

4.1.2 Our Results

Our main result is the first computationally efficient boosting algorithm for distribution-

independent PAC learning in the presence of Massart noise that guarantees misclassification arbi-

trarily close to η , where η is the upper bound on the Massart noise rate. To state our main result,
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we will require the definition of a Massart weak learner (see Definition 4.2.5 for additional details).

Definition 4.1.2 (Massart Weak Learner). Let α,γ ∈ (0,1/2). An (α,γ)-Massart weak learner WkL

for concept class C is an algorithm that, for any distribution Dx over examples, any function f ∈ C ,

and any noise function η(x) with noise bound η < 1/2−α , outputs a hypothesis h that with high

probability satisfies Pr(x,y)∼D[h(x) 6= y]≤ 1/2− γ , where D is the joint Massart noise distribution.

We prove two versions of our main algorithmic result. In Section 4.3, we present our

Massart noise-tolerant booster (Algorithm 12). In Appendix 4.6, we analyze this algorithm and

show that it converges within O(1/(ηγ2)) rounds of boosting (Theorem 4.6.1). In Section 4.7, we

give a more careful analysis of convergence, showing that the same algorithm in fact converges

in O(log2(1/η)/γ2) rounds (Theorem 4.7.1). In fact, the latter upper bound is nearly optimal for

distribution-independent boosters (see, e.g., Chapter 13 of [SF12]). We now state our main result:

Theorem 4.1.3 (Main Result). There exists an algorithm Massart-Boost that for every concept

class C , given samples to a Massart noise oracle EXMas( f ,Dx,η(x)), where f ∈ C , and black-

box access to an (α,γ)-Massart weak learner WkL for C , Massart-Boost efficiently computes a

hypothesis h that with high probability satisfies Pr(x,y)∼D[h(x) 6= y] ≤ η(1+O(α)). Specifically,

Massart-Boost makes O(log2(1/η)/γ2) calls to WkL and draws

polylog(1/(ηγ))/(ηγ
2) mWkL+poly(1/α,1/γ,1/η)

samples from EXMas( f ,Dx,η(x)), where mWkL is the number of samples required by WkL.

Prior to this work, no such boosting algorithm was known for PAC learning with Massart

noise. Moreover, as we explain in Section 4.1.4, previous noise-tolerant boosters do not extend to

the Massart noise setting. In Section 4.1.3, we provide a detailed overview of our new algorithmic

ideas to achieve this.
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Some additional comments are in order. First, we note that the η + ε error guarantee

achieved by our efficient booster can be far from the information-theoretic minimum of OPT+ ε .

The error guarantee of our generic booster matches the error guarantee of the best known polynomial-

time learning algorithm for Massart halfspaces [DGT19]. Interestingly, the learning algorithm

of [DGT19] can be viewed as a specialized boosting algorithm for the class of halfspaces, in

which the halfspace structure is used to downweight specific regions on which the current classifier

achieves high accuracy. Theorem 4.1.3 is a broad generalization of this result that applies to any

concept class. This connection was one of the initial motivations for this work.

A natural question is whether the error upper bound achieved by our booster can be improved.

Perhaps surprisingly, we show that our guarantee is best possible for black-box boosting algorithms

(under cryptographic assumptions). Specifically, we have the following theorem:

Theorem 4.1.4 (Lower Bound on Error of Black-Box Massart Boosting). Assuming one-way

functions exist, no polynomial-time boosting algorithm, given black-box access to an (α,γ)-Massart

weak learner, can output a hypothesis h with misclassification error Pr(x,y)∼D[h(x) 6= y]≤ η(1+

o(α)), where η is the upper bound on the Massart noise rate. In particular, this statement remains

true on Massart distributions with optimal misclassification error OPT� η .

The reader is referred to Theorem 4.4.1 for a detailed formal statement. Our lower bound

establishes that the error upper bound achieved by our boosting algorithm is best possible. It is worth

pointing out a related lower bound shown in [KS03] in the context of RCN. Specifically, [KS03]

showed that any efficient black-box booster tolerant to RCN must incur error at least η (with respect

to the target function f ), where η is the RCN noise rate. Since RCN is the special case of Massart

noise where η(x) = η for all x, the lower bound of [KS03] suggests a lower bound of OPT for

black-box Massart boosting. Importantly, our lower bound is significantly stronger, as it shows a

lower bound of η , even when OPT is much smaller than η .

Intriguingly, Theorem 4.1.4 shows that the error guarantee of the [DGT19] learning algo-
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rithm for Massart halfspaces cannot be improved using boosting, and ties with recent work [DK20]

providing evidence that learning with Massart noise (within error relative to OPT) is computationally

hard.

Application: Massart Learning of Unions of Rectangles.

As an application of Theorem 4.1.3, we give the first efficient learning algorithm for unions

of (axis-aligned) rectangles in the presence of Massart noise. Interestingly, weak agnostic learning of

a single rectangle is computationally hard in the agnostic model (see, e.g., [FGRW09]). Recall that

a rectangle R ∈ Rd is an intersection of inequalities of the form x · v < t, where v ∈ {±e j : j ∈ [d]}

and t ∈ R. Formally, we show:

Theorem 4.1.5. There exists an efficient algorithm that learns unions of k rectangles on Rd with

Massart noise bounded by η . The algorithm has sample complexity kdO(k)poly(1/ε,1/η), runs in

time (kdk/ε)O(k)poly(1/η), and achieves misclassification error η + ε , for any ε > 0.

See Theorem 4.9.4 for a more detailed statement. Theorem 4.1.5 follows by an application

of Theorem 4.1.3 coupled with a simple weak learner for unions of rectangles that we develop. Our

weak learner finds a rectangle entirely contained in the negative region to gain some advantage over

a random guess.

It is worth pointing out that the Massart SQ lower bound of [CKMY20] applies to learning

monotone conjunctions. This rules out efficient SQ algorithms with error OPT+ε , even for a single

rectangle.

4.1.3 Overview of Techniques

In this section, we provide a brief overview of our approach.

Boosting Algorithm Approach.

We start with our Massart noise boosting algorithm. Let D be the Massart distribution

Mas{ f ,Dx,η(x)} from which our examples are drawn. The distribution Dx on examples is fixed but
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arbitrary and the function η(x) is a Massart noise function satisfying η(x)≤ η < 1/2 with respect

to the target function f ∈ C . As is standard in distribution-independent boosting, our boosting

algorithm adaptively generates a sequence of distributions D(i), invokes the weak learner on samples

from these distributions, and incrementally combines the corresponding weak hypotheses to obtain

a hypothesis with higher accuracy.

The technical challenge of distribution-independent boosting is the adaptive generation of

new distributions D(i) that effectively use the weak learner to acquire new and useful information

about the target function f . To see why this requires some care, consider an adversarial weak learner

that attempts to give the booster as little information about f as possible, while still satisfying its

definition as a weak learner. Such an adversarial weak learner might, whenever possible, produce

hypotheses that correctly classify the same, small set of examples P, while classifying all other

examples randomly. Assuming the function f is balanced, and the intermediate distributions D(i)

assign probability at least γ to P, these adversarial hypotheses will have accuracy 1/2+ γ on

their corresponding distributions, while providing no new information about the target function

to the booster. To thwart this behavior, the booster must eventually restrict its distributions to

assign sufficiently small probability to P to ensure that the weak learner can no longer meet its

promised accuracy lower-bound by correctly classifying only the set P. In this way, the booster

can force the weak learner to output hypotheses correlating with f on other subsets of its domain.

Under reasonable conditions on the specific strategy for reweighting distributions, boosters that

incrementally decrease the probability assigned to examples as they are more frequently correctly

classified by weak hypotheses are known to eventually converge to high-accuracy hypotheses, by

reduction to iterated two-player zero-sum games [FS97]. This general approach to reweighting

intermediate distributions is common to all distribution-independent boosters, even in the noiseless

setting.

Our booster follows the smooth boosting framework [Ser03] with some crucial modifications

that are necessary to handle Massart noise. A smooth boosting algorithm generates intermediate
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distributions that do not put too much weight on any individual point, and so do not compel the

weak learner to generate hypotheses having good correlation only with noisy examples. This makes

the smooth boosting framework a natural starting point for the design of a Massart noise-tolerant

booster, though smoothness of the intermediate distributions alone is not a sufficient condition for

preservation of the Massart noise property.

To see why, note that to preserve the Massart noise property of the intermediate distributions,

it is not enough to enforce an upper bound on the probability that any (potentially noisy) example

can be assigned. We require an upper bound on the relative probabilities of sampling noisy and

correct labels for a given point, to ensure we always have a noise upper bound η(i) < 1/2. This

seems to suggest that preserving the Massart noise property requires a corresponding lower bound

on the probability assigned to any given example, so that we do not inadvertently assign more

probability to (x,− f (x)) than (x, f (x)). This is at odds with our strategy for making use of an

adversarial weak learner, since guaranteeing progress requires that our distributions can assign

arbitrarily small probability to some examples. So, we must use alternative techniques to manage

noise.1

The fix for this is to simply not include examples (x,y) in the support of D(i) whenever

including them could violate the Massart noise property or permit an adversarial weak learner to tell

us only what we already know. If many of the weak hypotheses obtained by our booster agree with

the label y on x, then we learn little from a marginal weak hypothesis that agrees with y on x. So,

we exclude (x,y) from the support of D(i). We must also symmetrically exclude (x,−y), otherwise

we risk violating the Massart noise property for D(i), since we have assigned no probability to (x,y),

and it may be the case that −y 6= f (x). Withholding these examples allows the booster to get new

information from the weak learner in each round, without ever invoking it on an excessively noisy

sample.

1We note that vanilla smooth boosting has been shown to succeed in the agnostic model. Interestingly, the above
subtle issue for Massart boosting does not arise in agnostic boosting, since agnostic noise is easy to preserve.
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This balance comes at the cost of updates from the weak learner on withheld examples. This

may not seem to pose a significant problem for our booster at first. After all, points on which many

hypotheses agree are points where our algorithm is already fairly confident about the correct value

of f (x). Unfortunately, this confidence may not be sufficiently justified to ensure an η + ε error at

the end of the day. In order to deal with this, our algorithm will need to make use of one further

idea. We directly check the empirical error of our aggregated hypotheses on the set of withheld

examples. If this error is too large (i.e., larger than η + ε), we conclude we are “overconfident” and

have more to learn about the withheld examples after all. Since even an adversarial weak learner

will give us new information about these examples in expectation, we include them in subsequent

distributions, with appropriate upper and lower bounds on their probabilities to preserve the Massart

noise property. If the empirical error is not too large, we are content to learn nothing new about

these examples, and so continue to withhold them for the next round of boosting.

Overall, our algorithm will alternate between the two steps of applying the weak learner to

an appropriately reweighted version of the underlying distribution, and checking the consistency

of our hypotheses with the set of withheld examples. Each step will allow us to make progress in

the sense of decreasing a relevant potential function. We iterate these steps until almost all points

are consistently being withheld from the weak learner. Once we reach this condition, we will have

produced a hypothesis with appropriately small error, and can terminate the algorithm. We analyze

the convergence of our algorithm to a low-error hypothesis via a novel potential function that can be

easily adapted to analyze other smooth boosting algorithms.

Error Lower Bound.

We show that no “black-box” generic boosting algorithm for Massart noise can have

significantly better error than that for our algorithm, i.e., η +Θ(ηα). While this seemingly matches

the lower bound for RCN boosting from [KS03], the RCN bound only implies a lower bound for

RCN weak learners in the special case of Massart noise when η = OPT. We show a similar lower
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bound in the Massart noise setting for a small but polynomial value of OPT. That is, Massart noise

boosting algorithms cannot be improved even when only a very small fraction of instances are

actually noisy.

To prove our lower bound, we consider a situation where the function to be learned is

highly biased, and there is a tiny fraction of inputs with the majority value that are noisy and

indistinguishable from non-noisy inputs. If the distribution queried by a boosting algorithm does

not reweight values in some way to favor the minority answer, an uncooperative weak learner can

return the majority answer and have advantage γ . On the other hand, if the boosting algorithm does

reweight values, it risks adding too much noise to the small fraction of already noisy examples,

violating the Massart condition. Specifically, we exhibit an adversarial weak learner rWkL that has

a stability property called replicability. rWkL returns a hypothesis h that outputs the maximum

likelihood label for each heavy-hitter of given distribution D′ and outputs a constant value for non-

heavy-hitters. Using replicability, we argue that i) boosting with rWkL can be efficiently simulated

without knowing the function f and ii) rWkL satisfies the definition of a Massart noise weak learner.

We conclude that a black-box boosting algorithm must be able to efficiently learn pseudorandom

functions in order to extract useful information from rWkL.

4.1.4 Comparison with Prior Work

The literature on boosting is fairly extensive. Since the initial work of Schapire [Sch90],

boosting has become one of the most studied areas in machine learning — encompassing both theory

and practice. Early boosting algorithms [Sch90, Fre95, FS97] were not tolerant in the presence of

noisy data. In this section, we summarize the most relevant prior work with a focus on boosting

techniques that have provable noise tolerance guarantees.

Efficient boosting algorithms have been developed for PAC learning in the agnostic model

[Hau92, KSS94] and in the presence of Random Classification Noise (RCN) [AL88]. The notion

of agnostic boosting was introduced in [BDLM01]. Subsequently, a line of work [Ser03, Gav03,

143



KMV08, KK09, Fel10] developed efficient agnostic boosters with improved error guarantees,

culminating in the optimal bound. These agnostic boosters rely on one of two techniques: smooth

boosting, introduced in [Ser03], or boosting via branching programs, developed in [MM02]. While

both of these techniques have been successful in the agnostic model, known RCN-tolerant boosters

from [KS03, LS05, LS08] are all based on the branching program technique [MM02]. In the

following paragraphs, we briefly summarize these two techniques.

Smooth boosting [Ser03] is a technique that produces intermediate distributions which do not

assign too much weight on any single example. The technique was inspired by Impagliazzo’s hard-

core set constructions in complexity theory [Imp95] (see also [KS99, Hol05, BHK09]) and is closely

related to convex optimization. Roughly speaking, smooth boosting algorithms are reminiscent

of first-order methods in convex optimization. Smooth boosting methods have been shown to be

tolerant to agnostic noise [Ser03, Gav03, KK09, Fel10]. Interestingly, [LS10] established a lower

bound against potential-based convex boosting techniques in the presence of RCN. While we do not

prove any relevant theorems here, we believe that our technique can be adapted to give an efficient

booster in the presence of RCN.

Another important boosting technique relies on branching programs [MM02]. The main

idea is to iteratively construct a branching program in which each internal node is labeled with a

hypothesis generated by some call to the weak learner. This technique is quite general and has led

to noise tolerant boosters for both RCN [KS03] (see also [LS05, LS08] for refined and simplified

boosters relying on this technique) and agnostic noise [KMV08]. Roughly speaking, the branching

programs methodology leads to “non-convex algorithms” and is quite flexible.

It is worth pointing out that the aforementioned branching program-based boosters do not

succeed with Massart noise in their current form. Specifically, the RCN booster in [KS03] crucially

relies on the uniform noise property of RCN, which implies that agreement with the true target

function is proportional to agreement with the observed labels. On the other hand, for the agnostic

booster of [KMV08], the generated distributions on which the weak learner is invoked do not
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preserve the Massart noise property — a crucial requirement for any such booster. While it should

be possible to adapt the branching program technique to work in the Massart noise model, we

believe that the smooth-boosting technique developed in this paper leads to simpler and significantly

more efficient boosters that are potentially practical.

Finally, we acknowledge existing work developing efficient learning algorithms for Massart

halfspaces (and related noise models) in the distribution-specific PAC model [ABHU15, ABHZ16,

ZLC17, DKTZ20a, ZSA20, DKTZ20b, DKK+20]. These works are technically orthogonal to the

results of this paper, as they crucially leverage a priori structural information about the distribution

on examples (e.g., log-concavity).

4.1.5 Organization

The structure of this paper is as follows: Section 4.2 contains preliminary definitions and

fixes notation. In Section 4.3 and Appendix 4.6 we present our Massart noise-tolerant boosting

algorithm. In Appendix 4.7, we prove an improved round complexity for our booster. In Section 4.4

and Appendix 4.8, we show that the error achieved by our booster is optimal by proving a lower-

bound on the error of any black-box Massart-noise-tolerant booster. In Appendix 4.9, we give an

application of our boosting algorithm to learning unions of rectangles. In Appendix 4.10, we give a

glossary of symbols.

4.2 Preliminaries

Throughout this work, we are primarily concerned with large finite domains X . For a

distribution D over X , let supp(D) be the set of all x ∈X such that D(x) 6= 0. Let S || z denote

appending z to sequence S. For f : X → R, x ∈X , we define sign( f )(x) = 1 if f (x)≥ 0 and −1

otherwise.
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4.2.1 Massart Noise Model

Let C be a class of Boolean-valued functions over some domain X , and let Dx be a

distribution over X . Let f ∈ C be an unknown target function, and let η(x) : X → [0,1/2) be an

unknown function.

Definition 4.2.1 (Noisy Example Oracle). When invoked, noisy example oracle EXMas( f ,Dx,η(x))

produces a labeled example (x,y) as follows: EXMas( f ,Dx,η(x)) draws x∼ Dx. With probability

η(x), it returns (x,− f (x)), and otherwise returns (x, f (x)).

Definition 4.2.2 (Massart Distribution). Massart distribution D = Mas{ f ,Dx,η(x)} over (X ,±1)

is the distribution induced by sampling from EXMas( f ,Dx,η(x)).

We refer to η(x) in this context as the Massart noise function. We say a Massart distribution

D has noise rate η if η(x)≤ η for all x ∈ supp(Dx). The noise bound of a Massart noise function is

η if maxx∈supp(Dx)η(x) = η . We emphasize that this model restricts the noise bound to be η < 1/2.

4.2.2 Learning under Massart Noise

Let f : X →{±1} be a function in concept class C . Let D= Mas{ f ,Dx,η(x)} be a Massart

distribution over X .

Definition 4.2.3 (Misclassification Error, Function Error). The misclassification error of hypothesis

h : X →{±1} over D is errD
0-1(h) = Pr(x,y)∼D[h(x) 6= y]. The error of hypothesis h : X →{±1}

with respect to f over D is errDx, f
0-1 (h) = Prx∼Dx [h(x) 6= f (x)].

Definition 4.2.4 (Advantage). Hypothesis h : X →{±1} has advantage γ > 0 against distribution

D if errD
0-1(h)≤ 1/2− γ .

We use the notation advD(h) to denote the largest γ ∈ [0,1/2] for which errD
0-1(h)≤ 1/2− γ .
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4.2.3 Boosting and Weak Learners

Definition 4.2.5 (Massart Noise Weak Learner). Let C be a concept class of functions f : X →

{±1}. Let α ∈ [0,1/2). Let γ : R→ R be a function of α . A Massart noise (α,γ)-weak learner

WkL for C is an algorithm such that, for any distribution Dx over X , function f ∈ C , and

noise function η(x) with noise bound η < 1/2−α , WkL outputs a hypothesis h : X → {±1}

such that PrS[advD(h) ≥ γ] ≥ 2/3, where the sample S is drawn from Massart distribution D =

Mas{ f ,Dx,η(x)}.

We let γ be a function of α because a given weak learning algorithm may satisfy stronger

advantage guarantees if its input distributions are less noisy. For example, the advantage guarantee

for our rectangle weak learner (Appendix 4.9) depends quadratically on α .

Our boosting algorithm operates in the filtering model of [BS07]. It generates intermediate

distributions by drawing examples (x,y) from its oracle EXMas( f ,Dx,η(x)) and keeping them with

probability µ(x,y), according to a function µ : X ×{±1}→ [0,1]. We refer to µ informally as a

measure to emphasize that it induces a distribution Dµ (Definition 4.5.3), but need not be one itself.

The expectation of the µ with respect to D is a useful quantity for analyzing distribution-independent

boosting algorithms. It affects the sample complexity of making calls to the weak learner and is

used to bound the error of the final hypothesis output by our algorithm.

Definition 4.2.6 (Density of a measure). Let D be a Massart distribution, and let µ be a measure.

The density of µ with respect to D is d(µ) = E(x,y)∼D[µ(x,y)].

4.3 Boosting Algorithm

In this section, we describe our Massart noise-tolerant boosting algorithm Massart-Boost

(Algorithm 12) and state our boosting theorem. More detailed pseudocode can be found in Ap-

pendix 4.6, along with a proof of convergence and sample complexity bounds. A proof of the tighter

round and sample complexity bounds in Theorem 4.3.5 below can be found in Appendix 4.7.
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Our algorithm maintains a working hypothesis sign(G) for G : X → R, initialized to 0. We

use G to determine measure µ(x,y), which induces a distribution Dµ on which we query the weak

learner. We update G with the resulting weak hypothesis, defining a new distribution over examples

by decreasing µ on examples (x,y) for which sign(G(x)) = y and increasing µ otherwise.

However, to preserve the Massart noise property, we must guarantee µ never assigns too

little weight to an example (x, f (x)) relative to the weight of (x,− f (x)). To ensure we maintain

a noise bound below 1/2−α for all intermediate distributions Dµ , we define µ(x,y) = 0 for any

example (x,y) at risk of violating this constraint. Since we have defined µ(x,y) to be anticorrelated

with yG(x), noisy example (x,− f (x)) may dominate clean example (x, f (x)) when |G(x)| is large

and sign(G(x)) = f (x). To preserve the Massart noise property, we pick a threshold s for |G(x)|

and partition X into two sets, X r and X s, based on whether |G(x)| ≥ s.

The set X r contains all x ∈X for which |G(x)| ≥ s. These x may have high effective noise

rate, so they “risk” violating the Massart noise property. Thus, we assign µ(x,y) = 0 for all x ∈X r,

regardless of y, removing them from the support of Dµ . The set X s contains all x ∈X for which

|G(x)| < s, ensuring that the effective noise rate of each x ∈X s (in distribution Dµ ) is bounded

above by 1/2−α . Thus, it is “safe” to call the weak learner on examples (x,y) where x ∈X s.

Initially, all x ∈X are in X s. Our weak hypothesis h is guaranteed to have advantage against Dµ ,

so we can use h to improve our predictions G(x) for x ∈X s.

To improve our predictions on x ∈X r, Massart-Boost performs an additional calibration

step. If the working hypothesis sign(G) misclassifies too many risky examples, it must be “overcon-

fident” in its predictions on X r; so, we can improve G by adding hypothesis −sign(G) (similar

to the balancing step of [Fel10]). This recalibration step decreases |G(x)| for x ∈X r, moves all

x ∈X r back into X s, and allows us to again call the weak learner on these examples. As more

examples are correctly classified by sign(G), the density of the measure µ decreases. When this

density is small, the algorithm terminates and returns the classifier sign(G).
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4.3.1 Definitions

Let function M : R→ [0,1] satisfy M(v) = 1 when v < 0, and M(v) = e−v when v ≥ 0.

This “base” measure function is used to both define µ , the measure function used for reweighting

intermediate distributions Dµ , and Φ, the potential function used to analyze convergence. We

consider a measure function µ : X ×{±1} → [0,1] that is parameterized by s ∈ R>0 and a real-

valued function F : X → R. In particular, µ assigns no weight to examples (x,y) such that

|F(x)| ≥ s.

Definition 4.3.1 (Measure function). Let µF,s(x,y)
def
= M(yF(x)) if |F(x)|< s and 0 otherwise.

At the start of the algorithm, we set s = log
(

1−η

η+c

)
, where c = 4ηα

1−2α
. This ensures that

the noise rate of distribution Dµ (see Definition 4.5.3) is at most 1/2−α . Our algorithm uses the

measure function µGt ,s in round t ∈ [T ], where Gt is the working hypothesis G after t rounds of

boosting. To simplify notation, let µt(x,y)
def
= M(yGt(x)) if |Gt(x)|< s and 0 otherwise.

In each round of boosting, we use Gt and s to partition the domain X into two sets: X s
t

and X r
t . If it is “safe” to run the weak learner on a sample containing x, we say x ∈X s

t . Otherwise,

x ∈X r
t .

Definition 4.3.2 (X s
t , X r

t ). For all x ∈X , x ∈X s
t if |Gt(x)|< s and x ∈X r

t if |Gt(x)| ≥ s.
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4.3.2 Pseudocode and Boosting Theorem

Algorithm 12. Massart-BoostEXMas( f ,Dx,η(x)),WkL(η ,ε,γ)
η : Massart noise rate, ε: Target error in excess of η , γ: Weak learner advantage guarantee

G← 0,

while d(µ)> η do

S← sample from Dµ

h← WkL(S)

hs(x)← h(x) if x ∈X s
G and 0 otherwise

G← G+λhs

if error of sign(G) on X r
G exceeds η + ε then

hr(x)←−sign(G(x)) if x ∈X r
G and 0 otherwise

G← G+λhr

update µ according to Definition 4.3.1

H← sign(Gt)

return H

Algorithm 12 is a simplified psuedocode description of our Massart noise-tolerant boosting

algorithm. To prove that Algorithm 12 converges, we show that it make progress in each round of

boosting against the following potential function (Lemma 4.3.3).

Φ(t) = E
(x,y)∼D

∫
∞

yGt(x)
M(z)dz.

To see how this function allows us to capture the incremental progress made at each round,

consider how the potential Φ(t) changes as we take a step of size λ in hypothesis space in the

direction of some hypothesis h, starting from Gt . If we take λ sufficiently small, then we have
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from the mean value theorem that the change in potential should be not too much smaller than

E(x,y)∼D λyht(x)M(yGt(x)). Hypothetically, if the function µG,s(x,y) used for reweighting were

exactly M(yG(x)), then a hypothesis h with advantage γ would guarantee a drop in potential of

roughly

E
(x,y)∼D

λyht(x)µt(x,y) = E
(x,y)∼D

λyht(x)Dµt (x,y)d(µt) = λγd(µt).

In other words, the advantage guarantee of the weak learner ensures that the potential will drop

by an amount proportional to the density of the current measure µt . Because d(µ0) = 1, and the

algorithm terminates once d(µt) falls below η , this guaranteed potential drop would allow us to

prove termination.

We cannot take µt(x,y) =M(yGt(x)) for all (x,y), however, because such a measure function

might overweight noisy examples. Instead, our measure function is exactly M(yGt(x)) only on

examples in X s
t . The proof idea above then guarantees progress on such examples. If an example

is not in X s
t , we permit the algorithm to make no progress or even regress. But, progress is made in

expectation over all examples in X r
t , implying the following lemma (proved in Appendix 4.6).

Lemma 4.3.3 (Potential Drop). Take λ = γ/8, δWkL = δηγ2/1536, and assume ε ≥ 8ηα

1−2α
. Then

for every round of boosting t, with all but probability δηγ2/768,

Φ(t)−Φ(t +1)≥ γ2

32

(
d(µt)−

η

2

)

The potential function Φ is bounded below by 0 and is initially equal to 1. The algorithm

terminates if d(µ) < η , so Lemma 4.3.3 implies that Massart-Boost terminates in O(1/(ηγ2))

rounds with high probability. A tighter analysis presented in Appendix 4.7 improves the round

complexity to O(log2(1/η)/γ2) rounds.

Next, we show that a low density measure implies small misclassification error. Among
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x ∈X s, the misclassification error is at most d(µ), since µ(x,y) = 1 for any example such that

sign(G(x)) 6= y. To analyze the misclassification error on x ∈X r, we proceed by casework on the

rebalancing step being applied in the last round of boosting. We show that either i) X r is at most

an ε/2-fraction of distribution D, or ii) the misclassification error on X r is at most η + ε . In the

first case, we can assume sign(G) misclassifies every x ∈X r and still achieves error η + ε . In the

second case, the error on both X s and X r is at most η + ε .

Lemma 4.3.4 (Label error). When Massart-Boost terminates, with all but probability δ/4, trained

classifier G satisfies errD
0-1(sign(G))≤ η + ε , assuming ε ≥ 8ηα

1−2α
.

The following theorem combines these arguments with analyses of sample complexity,

failure rate, and runtime to show that Massart-Boost efficiently converges to a low-error classifier.

Theorem 4.3.5 (Boosting Theorem). Let WkL be an (α,γ)-weak learner requiring a sample of size

mWkL. Then for any δ ∈ (0,1/2], any Massart distribution D with noise rate η < 1/2, and any ε ≥
8ηα

1−2α
, taking λ = γ/8 and κ = η , Massart-BoostWkL(λ ,κ,η ,ε,δ ,γ,α,mWkL) will, with probability

1−δ , run for T ∈ O
(
log2(1/η)/γ2) rounds, output a hypothesis H such that errD

0-1(H) ≤ η + ε

and errDx, f
0-1 (H)≤ η+ε

1−η
, make no more than

m ∈ O
(

log2(1/η)

γ2

(
log(1/(δηγ))

ε3 +
log(1/(δηγ))

η2 +
mWkL log(1/(δηγ))

η
+

log(1/(δηγ))

ηγ2

))

calls to EXMas( f ,Dx,η(x)), and run in time

m ∈ O
(

log4(1/η)

γ4

(
log(1/(δηγ))

ε3 +
log(1/(δηγ))

η2 +
mWkL log(1/(δηγ))

η
+

log(1/(δηγ))

ηγ2

))
,

neglecting the runtime of the weak learner.
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4.4 Lower Bound on Error for Massart Boosting

In this section, we show that no generic “black-box” boosting algorithm can achieve

significantly better misclassification error than that of our algorithm, i.e., η +Θ(ηα), given a

Massart noise oracle EXMas( f ,Dx,η(x)). While this seemingly matches the lower bound for RCN

boosting from [KS03], the RCN bound only implies a lower bound for the special case of Massart

noise when η = OPT. Moreover, that bound is not directly applicable in the Massart noise setting,

since an RCN weak learner is not required to tolerate Massart noise.

We show that a lower bound of η still holds in the Massart noise setting even if OPT is

much smaller than η . That is, boosting algorithms cannot be improved even when only a very small

fraction of instances are actually noisy.

We consider the case where the target function f ∈ C is a pseudorandom function that is

biased towards −1 labels. The noise function η(x) is non-zero only on a small, random subset of

preimages of −1 under f , and so there is a small fraction of examples (x,1) where it cannot be

distinguished if f (x) = 1 and η(x) = 0 or if f (x) =−1 and η(x)> 0. If the distributions Dµ queried

by the boosting algorithm never satisfy E(x,y)∼Dµ
[y] > −2γ , an uncooperative weak learner can

return the constant function −1 and have advantage γ . On the other hand, if the boosting algorithm

does query the weak learner on a distribution such that E(x,y)∼Dµ
[y]>−2γ , it risks overweighting

a noisy example (x,1) and violating the Massart condition. Our adversarial, “rude” weak learner

rWkL exploits this tension by only providing information attainable without knowing f .

4.4.1 Adversarial Weak Learner

Let BlackBoxBoost be a black-box boosting algorithm that draws m examples from EX

and queries the weak learner T times. Let SPt be a sampling procedure defining DSPt , the t’th

distribution queried to the weak learner. The following “rude” weak learner rWkLm,T (S) attempts to

only give information that BlackBoxBoost could discover alone: rWkL identifies the heavy-hitters
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of DSPt and defines h(x) as x’s majority label under DSPt . On non-heavy-hitters, h(x) is the constant

−1 function. For more details, see Appendix 4.8.3. For pseudocode, see Algorithm 19.

4.4.2 Error Lower Bound Theorem

Theorem 4.4.1 (Error Lower Bound Theorem). Let η ∈ [0,1/2),α ∈ (0,1/2−η). Let { fs} be

an η ′-biased pseudorandom function family with security parameter n, where η ′ = η(1+α/5).

Let η , α be at least inversely polynomially in n bounded away from 1/2. Then, for random s,

no efficient black-box boosting algorithm BlackBoxBoost with example bound m running for

T rounds, given query access to (α,γ(α)
def
= α/20)-weak learner rWkLm,T and poly(n,1/(1−

2η),1/γ) examples from example oracle EX(Un, fs,η(x)), can output a hypothesis with label error

at most η(1+o(α)). In particular, for all polynomials q, for all polynomial time black-box Massart

boosting algorithms BlackBoxBoost with query access to rWkL and example oracle EX, for n

sufficiently large, Prs∈Un

[
errUn, fs

0-1 (H)≤ η ′
]
< 1

q(n) , where H is the trained classifier output by

BlackBoxBoost.

A detailed proof is presented in Appendix 4.8. Intuitively, since rWkL can be simulated

without knowing f , rWkL cannot help the boosting algorithm learn f . So, no efficient algorithm can

use rWkL to learn pseudorandom f . The primary focus of the proof is showing that rWkL is a valid

Massart noise weak learner.

Adversarial weak learner rWkL has a stability property we call replicability. Assuming

DSPt is Massart, rWkL returns the same exact hypothesis hv with high probability over its sample

S ∼ DSPt . Using replicability, we argue that i) boosting with rWkL can be efficiently simulated

without knowing the function f and ii) rWkL satisfies the definition of a Massart noise weak learner.

By Massart-ness, the labels of heavy hitters x ∈X of DSPt must be biased towards the true label

f (x), guaranteeing advantage on heavy-hitters. To show rWkL also handles non-heavy-hitters

gracefully, we first show that boosting with rWkL can be efficiently simulated, and then we appeal

to the pseudorandomness of f . rWkL only fails to return a hypothesis with γ advantage if DSPt is
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supported on many non-heavy-hitters x whose true label f (x) = 1. We can conclude by observing

that finding many such non-heavy-hitters implies a violation of the pseudorandomness assumption.

Lemma 4.4.2 (Advantage of rWkL). Let DSPt denote the distribution induced by the sampling

procedure SPt and hEG at round t ∈ [T ] of boosting. Similarly, let DSPt
r denote the distribution

induced by SPt and rEG. Let St denote a sample drawn i.i.d. from DSPt
r . Then for all poly(n,1/(1−

2η),1/γ) rounds of boosting rWkL with rEG, if DSPt is Massart, then with probability 1−O(1/(mT ))

over its internal randomness, rWkL(St) outputs a hypothesis ht with advantage at least γ against

DSPt , except with negligible probability in m over the choice of SPt .
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4.5 Appendix: Additional Definitions and Proofs for Section
4.2

4.5.1 Boosting and Weak Learners

Recall the definition of a Massart noise weak learner.

Definition 4.2.5 (Massart Noise Weak Learner). Let C be a concept class of functions f : X →

{±1}. Let α ∈ [0,1/2). Let γ : R→ R be a function of α . A Massart noise (α,γ)-weak learner

WkL for C is an algorithm such that, for any distribution Dx over X , function f ∈ C , and

noise function η(x) with noise bound η < 1/2−α , WkL outputs a hypothesis h : X → {±1}

such that PrS[advD(h) ≥ γ] ≥ 2/3, where the sample S is drawn from Massart distribution D =

Mas{ f ,Dx,η(x)}.

Note that we define an (α,γ)-Massart noise weak learner to have failure probability at

most 1/3. For any desired δ ∈ (0,1/3), such a weak learner can be used to obtain a hypothesis

with advantage γ/2, with all but probability δ , by standard repetition techniques demonstrated in

Lemma 4.5.1.

Lemma 4.5.1 (WkL repetition). Let WkL be an (α,γ)-Massart noise weak learner requiring a sample

of size mWkL. Then for any δ ∈ (0,1/3), 2log(2/δ ) calls to WkL and 2log(2/δ )(mWkL+ 1/γ2)

examples suffice to obtain a hypothesis with advantage at least γ/2 with all but probability δ .

Proof. To drive down the failure probability of WkL, we draw 2log(2/δ ) samples of size mWkL and

run WkL on each of them to obtain a list of hypotheses, at least one of which has advantage γ with

all but probability δ/2. We then draw a sample of size 2 log(2/δ )/γ2 to test each hypothesis in our

list, keeping the best. The Chernoff-Hoeffding inequality guarantees that testing our hypotheses

overestimates the advantage by more than γ/2 with probability no greater than δ/2, and so we

obtain a hypothesis with advantage at least γ/2 with all but probability δ .

We are primarily interested in efficient Massart noise weak learners (Definition 4.5.2).
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Definition 4.5.2 (Efficient Massart Noise Weak Learner). Let WkL be an (α,γ)-Massart noise weak

learner. Let n be the maximum bit complexity of a single example (x,y) ∈X ×{±1}, and let mWkL

denote the number of examples comprising sample S. WkL(S) is efficient if

1. WkL uses mWkL(n,η ,γ) = poly(n,1/(1−2η),1/γ) examples.

2. WkL outputs a hypothesis h in time poly(n,1/(1−2η),1/γ).

3. Hypothesis h(x) has bit complexity poly(n,1/(1−2η),1/γ).

4. For all x ∈X , the hypothesis h(x) can be evaluated in time poly(n,1/(1−2η),1/γ).

Boosting algorithms can utilize the advantage guarantee of the weak learner by cleverly

reweighting its input distributions. To sample from these reweighted distributions, we sample from

the underlying distribution D via EXMas( f ,Dx,η(x)) and reject examples according to a function

µ : X ×{±1} → [0,1]. We refer to µ informally as a measure to emphasize that it induces a

distribution, but need not be one itself.

Definition 4.5.3 (Rejection Sampled Distribution Dµ ). Let D be a Massart distribution, and let

µ : X ×{±1} → [0,1] be an efficiently computable measure. We define Dµ as the distribution

generated from D by the following rejection sampling procedure: draw an example (x,y)∼ D. With

probability µ(x,y), keep this example. Otherwise, repeat this process (until an example is kept).

Note that some choices of µ may induce a distribution Dµ which is not Massart, as reweight-

ing examples may distort η(x), and so it is possible that we no longer have a noise bound less than

1/2. In particular, if there is an x ∈ supp(Dx) for which µ(x,− f (x))η(x)� µ(x, f (x))(1−η(x)),

then Dµ is not a Massart distribution and running the weak learner on a sample from this distribution

is not guaranteed to return a hypothesis with good advantage. In designing our boosting algorithm,

we will choose µ carefully to ensure that this never happens.
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Lemma 4.5.4 (Sampling from Dµ ). For any m > 0, δ ∈ (0,1/2), obtaining a sample of size m from

Dµ by rejection sampling from D requires no more than log(1/δ )
d(µ)2 + 2m

d(µ) examples from distribution

D, with all but probability δ .

Proof. From the definition of Dµ , we can sample from Dµ by drawing an example (x,y) from D

and keeping it with probability µ(x,y). By Definition 4.2.6, we expect to keep an example with

probability d(µ). Then the Chernoff-Hoeffding inequality allows us to conclude that, following

this procedure, if we draw log(1/δ )
d(µ)2 + 2m

d(µ) examples from D, we keep at least m of them with all but

probability δ .

4.6 Appendix: Additional Lemmas and Proofs for Section 4.3

4.6.1 Boosting Algorithm

In this appendix, we present our Massart noise-tolerant boosting algorithm Massart-Boost

(Algorithm 13) and prove the following theorem:

Theorem 4.6.1 ((Simplified) Boosting Theorem). Let WkL be an (α,γ)-weak learner requiring

a sample of size mWkL. Then for any Massart distribution D with noise rate η < 1/2, and any

ε > 8ηα

1−2α
, Massart-Boost will

• make at most T ∈ Õ
(
1/(ηγ2)

)
calls to WkL

• output a hypothesis H such that errD
0-1(H)≤ η + ε and errDx, f

0-1 (H)≤ η+ε

1−η

• make

m ∈ Õ
(

1
ηγ2ε3 +

mWkL

η2γ2 +
1

η2γ4

)
calls to its example oracle EXMas( f ,Dx,η(x))

• run in time

Õ
(

mWkL

η3γ4 +
1

η3γ6 +
1

η2γ4ε3

)
,
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neglecting the runtime of the weak learner.

4.6.2 Description of Boosting Algorithm

The pseudocode for our boosting algorithm is Algorithm 13. It makes calls to three sub-

routines in addition to the weak learner: Samp (Routine 14), Est-Density (Routine 15), and

OverConfident (Routine 16), which we first describe informally.

The Samp subroutine captures the procedure by which our algorithm draws samples for

the weak learner. These samples are drawn i.i.d. from the reweighted distributions constructed

by our booster. The Samp procedure is given oracle access to EXMas( f ,Dx,η(x)), so that is can

sample from D. The Samp procedure takes as input a function (the current hypothesis) G, the

size of the sample mWkL required by the weak learner, and the threshold s for |G(x)| that defines

which examples are to be withheld from the weak learner. Samp repeatedly draws examples from

EXMas( f ,Dx,η(x)), and keeps them with probability µG,s(x,y), the value of which is computed

using G and s. After Samp has drawn a sample of size mWkL, it returns the sample, and this is what is

given to the weak learner as input.

The subroutine Est-Density is used to estimate the current density of the measure µt , which

is necessary to test the termination condition of our algorithm. Ideally, the algorithm terminates

once d(µt)< κ , and so Est-Density is called at the end of each round of boosting to estimate this

density. Est-Density is given oracle access to EXMas( f ,Dx,η(x)) and takes as input G and s, so

that it can empirically estimate d(µ) using a sample drawn from D. Est-Density also takes as

input three parameters: δdens, ε , and η . The parameters ε and η are used to specify the desired

accuracy of the density estimation, β = min{ε/2,η/4}. The parameter δdens specifies the tolerable

probability of failure of the density estimation procedure (i.e., the probability that Est-Density

returns an estimate of d(µ) with error greater than β ).

The subroutine OverConfident determines when the error of sign(G) on examples withheld

from the weak learner (i.e., examples in X r
G) has grown too large. If, at round t, the probability
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mass on X r
t is large, and the error of sign(Gt) on X r

t exceeds η + ε , we must improve Gt on

these examples to reach our target error of η + ε . Because we withhold examples in X r
t from

the weak learner at round t + 1, we are not guaranteed that the next weak hypothesis, ht+1, will

provide any amount of progress in expectation on these examples, so some additional steps are

needed to improve Gt . The role of OverConfident is to estimate whether the probability mass of

X r
t is significant, and if so, whether the error of sign(Gt) on X r

t is large enough that an additional

correction step is necessary.

The subroutine OverConfident is given oracle access to EXMas( f ,Dx,η(x)) and takes

as input G, s, η , and ε . It also takes an additional parameter δerr, which specifies the tolerable

probability of failure for OverConfident (i.e., the probability that OverConfident returns a false

positive or false negative). OverConfident first estimates the probability that |G(x)| > s. If it

estimates Pr(x,y)∼D[|G(x)| ≥ s] < ε/4, then the overall contribution of examples in X r
G to the

total error of sign(G) is sufficiently small that the correction step is not needed. In this case,

OverConfident returns false. If it estimates the probability to be greater than ε/4, it draws a

new sample for estimating the conditional error of G on X r
G. The subroutine makes calls to

EXMas( f ,Dx,η(x)) and keeps only the examples (x,y) such that x ∈X r
G. It draws a sufficiently

large sample to estimate the error of G on this set to within ε/4 with all but probability δerr/2. If

the estimated error exceeds η +3ε/4, it returns true and the correction step takes place. Otherwise

it returns false, as the conditional error on these points is tolerable.
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Algorithm 13. Massart-BoostEXMas( f ,Dx,η(x)),WkL(λ ,κ,η ,ε,δ ,γ,α,mWkL)
λ : Learning rate
κ: Target density for measure µ

η : Massart noise rate
ε: Target error in excess of η

δ : Target failure probability for Massart-Boost
α: Weak learner parameter indicating WkL can tolerate noise γ: Weak learner advantage guarantee
η < 1/2−α

mWkL: Sample size for WkL

c← 4ηα

1−2α
, s← log

(
1−η

η+c

)
// set parameters for managing noise

δerr← δηγ2/1536, δdens← δηγ2/1024 // set failure probabilities for subroutines

G0← 0, t← 0 // initialize G, round counter

d̂← 1 // initialize density estimate

while d̂ > κ do

t← t +1

S← SampEXMas( f ,Dx,η(x))(Gt−1,n,s) // draw a sample for the weak learner

ht ← WkL(S) // obtain a weak hypothesis

hs
t (x)←


ht(x) if x ∈X s

t−1,

0 otherwise
// zero out hypothesis on X r

t

Gt ← Gt−1 +λhs
t // update working hypothesis

if OverConfidentEXMas
(Gt ,s,δerr,ε) then

hr
t (x)←


−sign(Gt(x)) if x ∈X r

t ,

0 otherwise
// if error on X r

t is high, be less confident

Gt ← Gt +λhr
t // update working hypothesis

d̂← Est-DensityEXMas
(Gt ,s,δdens,ε) // estimate density of measure

H← sign(Gt)

return H
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Routine 14. SampEXMas( f ,Dx,η(x))(G,mWkL,s), rejection sampling for Massart-Boost
S← /0
while |S| ≤ mWkL do
(x,y)← EXMas( f ,Dx,η(x))
With prob µG,s(x,y), S← S || (x,y) // draw a sample for WkL from Dµ

return S

Routine 15. Est-DensityEXMas( f ,Dx,η(x))(G,s,δdens,ε), estimate density of µ .
Used to decide when to terminate main loop of Massart-Boost

β ←min{ε/2,η/4}
Draw set S of log(1/δdens)/(2β 2) examples from EXMas( f ,Dx,η(x))
d̂← 1

|S|∑(x,y)∈S µG,s(x,y) // estimate the density of µ

return d̂

Routine 16. OverConfidentEXMas( f ,Dx,η(x))(G,s,δerr,ε), adjust the value of G on X r
G

Draw set S of 32log(2/δerr)/ε2 examples from EXMas( f ,Dx,η(x))
if |S∩X

r
G|

|S| ≤ ε/4 then
return false // if X r

G is small, return false
S← /0
while |S| ≤ 8log(2/δerr)/ε2 do
(x,y)← EXMas( f ,Dx,η(x))
if |G(x)| ≥ s then

S← S || (x,y)
ε̂ ← 1

2|S|∑(x,y)∈S |y− sign(G(x))| // if X r
G is large, estimate error on X r

G

if ε̂ ≥ η +3ε/4 then
return true // if error and X r

G are large, return true
else

return false // if error is small, return false
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4.6.3 Convergence of Massart-Boost

In this subsection, we bound the error of the final hypothesis output by Algorithm 13 and

the number of rounds of boosting required to achieve this error bound. We begin by showing an

invariant of our algorithm that will be useful in subsequent potential arguments.

Lemma 4.6.2 (Invariant for |Gt(x)|). For all rounds t of boosting and all examples (x,y) ∈ (X ,Y ),

at the end of round t, |Gt(x)|< s+λ .

Proof. We first show that at the end of round t, |Gt(x)| ≤ s+λ . On examples x such that |Gt−1(x)| ≥

s, either Gt(x) = Gt−1(x)−λ sign(Gt−1(x)) or Gt(x) = Gt−1(x), and so |Gt(x)| ≤ |Gt−1(x)|. Since

|Gt(x)| ≥ |Gt−1(x)| only when |Gt−1(x)| < s, we now consider how much larger it can be. For

examples such that |Gt−1(x)|< s, either Gt(x) =Gt−1(x)+λht(x)+λhr
t (x) (when OverConfident

returns true) or Gt(x) = Gt−1(x)+ λht(x). In the first case, if λhr
t (x) 6= 0, then sign(Gt−1(x)+

ht(x)) = −hr
t (x), and so |Gt(x)| ≤ |Gt−1(x)+λht(x)| for both cases. Since the hypothesis ht(x)

output by the weak learner has codomain [−1,1], it follows that |Gt(x)| ≤ |Gt−1(x)+λht(x)| <

s+λ .

We now recall the potential function introduced in Section 4.3.2. We denote by φt(x,y) the

function

φt(x,y) =
∫

∞

yGt(x)
M(z)dz.

Then our potential function is defined as

Φ(t) = E
(x,y)∼D

[φt(x,y)] = E
(x,y)∼D

∫
∞

yGt(x)
M(z)dz.

We will make use of the following upper-bound on d(µt) in terms of Φ(t).

Lemma 4.6.3 (Potential upper-bounds density). For every round t of Massart-Boost, d(µt)≤Φ(t).
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Proof. We show that d(µt) ≤ Φt by showing µt(x,y) ≤ φt(x,y). For examples (x,y) such that

yGt(x)> 0, we have

φt(x,y) =
∫

∞

yGt(x)
e−zdz = e−yGt(x) ≥ µt(x,y).

For the remaining points, we simply observe that either µt(x,y) = 1 or µt(x,y) = 0. In either

case, the potential

φt(x,y) =
∫

∞

yGt(x)
M(z)dz≥

∫
∞

0
e−zdz = 1

and so we have that µt(x,y)≤ φt(x,y), and therefore d(µt)≤Φt .

We now prove that Massart-Boost makes progress against Φ at each round.

Lemma 4.3.3 (Potential Drop). Take λ = γ/8, δWkL = δηγ2/1536, and assume ε ≥ 8ηα

1−2α
. Then

for every round of boosting t, with all but probability δηγ2/768,

Φ(t)−Φ(t +1)≥ γ2

32

(
d(µt)−

η

2

)

Proof. We first show that for all (x,y)∼ D such that x ∈X s
t ,

φt(x,y)−φt+1(x,y)≥ λ µt(x,y)(yht(x)−2λ ).

We prove this statement for examples such that 0≤ yGt(x),yGt+1(x)< s, i.e., in the non-constant

region of M, and observe that this suffices to prove the statement for all (x,y) such that x ∈X s
t . To

see that this is true, note that within the constant region of M, φt(x,y)−φt+1(x,y) = λ µt(x,y)yht(x).
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For examples moved by ht from constant to non-constant regions of M,

φt(x,y)−φt+1(x,y) =
∫ 0

yGt(x)
1dz+

∫ yGt+1(x)

0
e−zdz

≥
∫

λyht(x)

0
e−zdz

≥ λM(0)(yht(x)−2λ ) (by assumption)

= λ µt(x,y)(yht(x)−2λ )

Similarly, for examples moving into the constant region from non-constant,

φt(x,y)−φt+1(x,y) =−
∫ 0

yGt+1(x)
1dz−

∫ yGt(x)

0
e−zdz

=
∫ 0

yGt(x)
e−zdz+

∫ yGt+1(x)

0
1dz

≥
∫ yGt+1

yGt(x)
e−zdz

≥ λ µt(x,y)(yht(x)−2λ ) (by assumption/proved below)

and so it only remains to prove the claim for examples such that 0≤ yGt(x),yGt+1(x)< s. By the
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definition of φt , we have

φt(x,y)−φt+1(x,y) =
∫ yGt+1(x)

yGt(x)
M(z)dz

=
∫ yGt+1(x)

yGt(x)
e−zdz

= e−v(yGt+1(x)− yGt(x)) (for some v ∈ [yGt(x),yGt+1(x)])

≥ e−yGt+1(x)λyht(x)

= e−yGt(x)e−λyht(x)λyht(x)

≥ µt(x,y)λyht(x)−2µt(x,y)λ 2 ((xe−x ≥ x−2x2 for x ∈ [−1,1])

= λ µt(x,y)(yht(x)−2λ )

and so the contribution to the potential drop from (x,y) ∈X s
t is as claimed.

We now consider the contribution to the potential drop from examples (x,y) where x ∈X r
t ,

by analyzing two complementary cases.

1. OverConfidentEXMas( f ,Dx,η(x))(Gt ,s,δerr,ε) returns false

2. OverConfidentEXMas( f ,Dx,η(x))(Gt ,s,δerr,ε) returns true

In the first case, hr
t = 0, and so yGt+1(x) = yGt(x) holds for all these examples. Therefore

the contribution to the potential drop is

E
(x,y)∼D

[
φt(x,y)−φt+1(x,y)

∣∣x ∈X r
t
]
= 0.

In the second case, hr
t (x) =−sign(Gt(x)), and so yGt+1(x) = yGt(x)−sign(Gt(x)) for these

examples. OverConfidentEXMas( f ,Dx,η(x))(Gt ,s,δerr,ε) only returns true if it has estimated the

error on examples such that x ∈X r
t exceeds η + 3ε/4. This routine estimates the error from a

sample of size 8 log(2/δerr)/ε2, and so it holds by the Chernoff-Hoeffding inequality that with all
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but probability δerr/2, that

Pr(x,y)∼D
[
yGt(x)≤−s

∣∣x ∈X r
t
]
≥ η + ε/2.

This implies a contribution to the potential drop of

E
(x,y)∼D

[
φt(x,y)−φt+1(x,y)

∣∣x ∈X r
t
]
= Pr(x,y)∼D[yGt(x)≤−s

∣∣x ∈X r
t ]
∫ yGt(x)+λ

yGt(x)
1dz

+Pr(x,y)∼D[yGt(x)≥ s
∣∣x ∈X r

t ]
∫ yGt(x)−λ

yGt(x)
e−zdz

≥ (η + ε/2)λ +(1−η− ε/2)
∫ yGt(x)−λ

yGt(x)
e−zdz

≥ (η + ε/2)λ +(1−η− ε/2)e−s(1− e−λ )

(from yGt(x)≤ s+λ )

≥ (η + ε/2)λ − (1−η− ε/2)e−s(λ −λ
2)

(from e−λ ≤ 1−λ +λ 2)

= (η + ε/2)λ − (1−η− ε/2)(
η + c
1−η

)(λ −λ
2)

(by definition of s)

≥ ελ

2
(1+η−ηλ )− cλ (1−λ )−ηλ

2, (from η < η+c
1−η

)

and so as long as c≤ ε/2≤ ε(1+η−ηλ )
2(1−λ ) , we have

E
(x,y)∼D

[φt(x,y)−φt+1(x,y)
∣∣x ∈X r

t ]≥−ηλ
2.

Recall that we have assumed ε ≥ 8ηα

1−2α
= 2c and so the stated bound holds.

We now lower-bound the drop in the potential function. With probability at least 1−δerr,

Est-Density does not overestimate the error of the current hypothesis on points x for which x∈X r
t

by more than ε/4, and so we have
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Φ(t)−Φ(t +1) = E
(x,y)∼D

[φt(x,y)−φt+1(x,y)]

≥ Pr(x,y)∼D[x ∈X s
t ] E

(x,y)∼D
[λ µt(x,y)(yht(x)−2λ )

∣∣x ∈X s
t ]

−Pr(x,y)∼D[x ∈X r
t ]ηλ

2

= Pr(x,y)∼D[x ∈X s
t ] E

(x,y)∼D
[λ µt(x,y)(yht(x)−2λ )

∣∣x ∈X s
t ]

−Pr(x,y)∼D[x ∈X r
t ]ηλ

2

+Pr(x,y)∼D[x ∈X r
t ] E

(x,y)∼D
[λ µt(x,y)(yht(x)−2λ )

∣∣x ∈X r
t ]

(since µt(x,y) = 0 for x ∈X r
t )

≥ E
(x,y)∼D

[λ µt(x,y)(yht(x)−2λ )]−Pr(x,y)∼D[x ∈X r
t ](ηλ

2)

≥ E
(x,y)∼D

[λ µt(x,y)(yht(x)−2λ )]−ηλ
2.

From our weak learner guarantee and Lemma 4.5.1, we know that with all but probability

δWkL, ht has advantage γ/2 against Dµt . Therefore with all but probability δWkL+δerr,

Φ(t)−Φ(t +1)≥ λγ

2
d(µt)−2λ

2d(µt)−ηλ
2.

Then taking δWkL = δerr =
δηγ2

1536 and λ = γ/8, we have

Φ(t)−Φ(t +1)≥ γ2

32

(
d(µt)−

η

2

)
with all but probability δηγ2/768.

Now we use our guaranteed drop in potential to show bounds on termination, as well as the

density of the measure µt at the end of the final round t.
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Lemma 4.6.4 (Termination). Let WkL be an (α,γ)-weak learner requiring a sample of size

mWkL and let δWkL = δηγ2/1536. Let λ = γ/8 and κ ≥ η . Then with all but probability δ/3,

Massart-BoostWkL terminates within T ≤ 128/(ηγ2) rounds, and conditioned on termination,

d(µT )≤ κ + ε/2 with all but probability δ/8.

Proof. Massart-Boost terminates once Est-Density estimates d̂(µt) ≤ κ . Since Est-Density

draws a sample of size 2log(1/δdens)/β 2 for β = min{ε/2,η/4}, the Chernoff-Hoeffding in-

equality bounds the probability that Est-Density overestimates d(µt) by more than β by δdens.

Therefore the probability that Massart-Boost fails to terminate at the end of any round for which

d(µt)≤ κ−β is no more than δdens. We condition on this failure not occuring for the rest of the

proof.

From Lemma 4.3.3, we have that with probability at least 1−δWkL−δerr,

Φ(t)−Φ(t +1)≥ γ2

32

(
d(µt)−

η

2

)
.

We have taken κ ≥ η , and β ≤ η/4, so except with probability δWkL+δerr, the potential drops by

at least γ2

32(κ−β − η

2 )>
ηγ2

128 in each round. The potential function begins at

Φ0 = E
(x,y)∼D

∫
∞

0
M(z)dz = 1

and has minimum value 0, so taking T = 128
ηγ2 , it must be the case that d(µ)≤ κ−β by round T

with probability at least 1−T (δWkL+ δerr). So with all but probability 128(δWkL+ δerr)/(ηγ2),

d(µ) ≤ κ−β after T rounds, and so Massart-Boost must have terminated by then except with

probability δdens. This gives a total failure probability of

δdens+
128(δWkL+δerr)

(ηγ2)
= δdens+δ/6≤ δ/3

It remains to bound the probability that Massart-Boost terminates at round t with d(µt)>
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κ + ε/2. Again, using the Chernoff-Hoeffding inequality and the sample size of Est-Density, if

d(µt)> κ +ε/2, Massart-Boost terminates with probability no more than δdens. Union bounding

over all rounds gives a failure probability 128δdens/(ηγ2) = δ/8.

4.6.4 Error Bounds

In this subsection we prove upper-bounds for the error of the final hypothesis H = sign(G),

both with respect to the distribution D and to the target function f on the marginal distribution Dx.

Lemma 4.6.5 (Label error). When the algorithm terminates at round t, with all but probability δ/4

over the randomness of Massart-Boost’s oracles and subroutines,

errD
0-1(H)≤ κ + ε

Proof. We begin by bounding the error on examples (x,y) ∈X s
t . For all (x,y) ∈X s

t , H(x) 6= y if

and only if yGt(x)≤ 0, and therefore µt(x,y) = 1. For all other examples, the measure µt(x,y)≥ 0.

From Lemma 4.6.4, we have that with all but probability δ/8, d(µt)≤ κ + ε/2 upon termination.

Conditioning on this event and considering the minimum contribution to the density by all examples

misclassified by H, we have

κ + ε/2≥ E
(x,y)∼D

µ(x,y)

= ∑
(x,y):

H(x)=y

D(x,y)µ(x,y)+ ∑
(x,y):

H(x)6=y

D(x,y)µ(x,y)

≥ ∑
(x,y):

H(x)6=y

D(x,y)

= Pr(x,y)∼D[H(x) 6= y
∣∣x ∈X s

t ].
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We now bound the error of H on examples (x,y) ∈X r
t . When the algorithm terminates at

round t, with all but probability δerr, at least one of the following holds.

1. Pr(x,y)∼D[x ∈X r
t ]≤ ε/2

2. Pr(x,y)∼D[H(x)) 6= y
∣∣x ∈X r

t ]≤ η + ε.

We first consider the case where, in the last round of boosting, OverConfident returns false.

In this case, either the OverConfident routine estimated Pr(x,y)∼D[x ∈X r
t ]≤ ε/4 or it estimated

that Pr(x,y)∼D[H(x)) 6= y
∣∣x ∈X r

t ]≤ η +3ε/4. The routine uses a sample of size 8 log(2/δerr)/ε2

to estimate the probability that x ∈X r
t , and so the probability of underestimating this quantity

by more than ε/4 is no more than δerr/2, by the Chernoff-Hoeffding inequality. Similarly, the

routine uses a sample of size 8 log(2/δerr)/ε2 to estimate the error on examples such that x ∈X r
t ,

and so underestimates this error by more than ε/4 with probability no greater than δerr/2. So if

OverConfident returns false, at least one of the lemma’s conditions hold with probability at least

1−δerr.

If OverConfident returns true, then |Gt(x)|= |Gt−1(x)+λhs
t (x)|−λ . From Lemma 4.6.2,

we know |Gt−1(x)|< s+λ for all x, and hs
t (x) = 0 for all x such that |Gt−1(x)| ≥ s. It follows that

x ∈X s
t for all x, and so Pr(x,y)∼D[x ∈X r

t ]≤ ε/2.

It remains to bound the total error of H. The error bound for x ∈X s
t shows

errD
0-1(H)≤ Pr(x,y)∼D[x ∈X s

t ](κ + ε/2)+Pr(x,y)∼D[x ∈X r
t ] ·Pr(x,y)∼D[H(x) 6= y

∣∣x ∈X r
t .]

We have also just shown tells us that with all but probability δerr, either

Pr(x,y)∼D[x ∈X r
t ]≤ ε/2

or

Pr(x,y)∼D[H(x) 6= y
∣∣x ∈X r

t ]≤ η + ε.
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We took κ ≥ η , so in either case,

errD
0-1(H)≤ κ + ε

and so the claimed error with respect to the labels holds except with probability δerr+ δ/8 ≤

δ/4.

Lemma 4.6.6 (Target function error). When the algorithm terminates, with all but probability δ/4,

errDx, f
0-1 (H)≤ κ + ε

1−η

Proof. Lemma 4.6.5 shows that when the algorithm terminates, with all but probability δ/4,

errD
0-1(H)≤ κ + ε,

so we consider the worst-case difference between misclassification error and target function error.

κ + ε ≥ errD
0-1(H)

= Prx∼Dx [H(x) 6= f (x)] ·Pr(x,y)∼D[y = f (x)
∣∣H(x) 6= f (x)]

+Prx∼Dx [H(x) = f (x)] ·Pr(x,y)∼D[y 6= f (x)
∣∣H(x) = f (x)]

≥ Prx∼Dx [H(x) 6= f (x)] ·Pr(x,y)∼D[y = f (x)
∣∣H(x) 6= f (x)]

≥ Prx∼Dx [H(x) 6= f (x)](1−η)

= errDx, f
0-1 (H)(1−η)

and so errDx, f
0-1 ≤

κ+ε

1−η
with all but probability δ/4.
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4.6.5 Sample Complexity Analysis

In this subsection, we give sample complexity bounds for Massart-Boost’s subroutines

during a single round of boosting. In all of the following lemmas, we assume that Massart-Boost is

being run with an (α,γ)-Massart noise weak learner requiring a sample of size mWkL. As elsewhere,

we use ε to denote the target error of the final hypothesis in excess of η , and use κ to denote

the density of µ below which Massart-Boost terminates. Let δdens denote the probability that

Est-Density fails to estimate the density of µ to within error β = min{ε/2,η/4} and let δerr

denote the probability that OverConfident fails to estimate the error of Gt on examples (x,y) such

that |Gt(x,y)| ≥ s.

Lemma 4.6.7 (Sample complexity of Samp). Let δsamp = δηγ2/(1536log(2/δWkL)) and δWkL =

δηγ2/1536. With all but probability δsamp, the Samp routine draws no more than

m ∈ O
(

log(1/δSamp)

κ2 +
mWkL

κ

)

examples from EXMas( f ,Dx,η(x)).

Proof. Because Massart-Boost terminates once the density of the measure µ is estimated to be

less than κ , and

log(1/δdens)/(2β
2)≥max{2log(1/δdens)/ε

2,8log(1/δdens)/η
2}

many samples are used to estimate d(µ), it holds with all but probability δdens that d(µ) ≥

κ−min{ε/2,η/4}.

Samp terminates once it has kept mWkL examples, and so from Lemma 4.5.4 we can conclude
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that

m =
log(1/δSamp)

(κ−min{ε/2,η/4})2 +
2mWkL

κ−min{ε/2,η/4}

∈ O
(

log(1/δSamp)

κ2 +
mWkL

κ

)

examples suffice except with probability δSamp.

Lemma 4.6.8 (Sample complexity of testing weak hypotheses). Let δWkL = δηγ2/1536. With all

but probability δηγ2/512, at most

m ∈ O
(

log(1/(δηγ))

κ2 +
mWkL log(1/(δηγ))

κ
+

log(1/(δηγ))

γ2κ

)

examples from EXMas( f ,Dx,η(x)) are drawn to identify a good enough weak hypothesis.

Proof. We have just shown in Lemma 4.6.7 that, with all but probability δsamp,

m ∈ O
(

log(1/δSamp)

κ2 +
2mWkL

κ

)

examples are required to draw a sample for WkL. Recall from Definition 4.2.5 that we assume WkL

has failure probability 1/3, and from Lemma 4.5.1, that we invoke WkL on 2log(2/δWkL) different

samples to ensure we have at least one hypothesis with advantage γ , except with probability δWkL/2.

To estimate which hypothesis is best, we draw 2log(2/δWkL)/γ2 examples from Dµ , against which

we test each hypothesis. To draw these additional 2 log(2/δWkL)/γ2 examples from Dµ , with all but

probability δsamp, we make at most

m ∈ O
(

log(1/δsamp)

κ2 +
log(1/δWkL)

κγ2

)

calls to EXMas( f ,Dx,η(x)).
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We took δWkL = δηγ2/1536 and δsamp = δηγ2/(1536log(2/δWkL)), so to repeatedly run

the weak learner and identify a good enough hypothesis, we require

m ∈ O
(

log(1/δWkL) log(1/δSamp)

κ2 +
mWkL log(1/δWkL)

κ
+

log(1/δWkL)

κγ2

)
∈ O

(
log(1/(δηγ))

κ2 +
mWkL log(1/(δηγ))

κ
+

log(1/(δηγ))

γ2κ

)

examples, except with probability

δSamp+2log(2/δWkL)δsamp ≤ 3log(2/δWkL)δsamp =
δηγ2

512
.

Lemma 4.6.9 (Sample complexity of OverConfident). With all but probability δηγ2/768, the

routine OverConfident draws no more than

m ∈ O
(

log(1/δηγ)

ε3

)

examples from EXMas( f ,Dx,η(x)).

Proof. OverConfident draws samples to estimate two population statistics: the probability that

x ∈X r
t and, if that estimate exceeds ε/4, the error of Gt on examples such that x ∈X r

t .

To estimate Pr(x,y)∼D[x ∈X r
t ] to within error ε/8 with all but probability δerr/2, it draws

32log(2/δerr)/ε2 examples. Then to estimate E(x,y)∼D[|y− sign(Gt(x))|
∣∣x ∈X r

t ] to within error

ε/4 with failure probability δerr/2, it uses a sample of size 8log(2/δerr)/ε2, but requires that

all these examples satisfy x ∈X r
t . As we know Pr(x,y)∼D[x ∈X r

t ]≥ ε/8 with all but probability

δerr/2, another use of the Chernoff-Hoeffding inequality allows us to upper-bound by 2δerr the
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probability that OverConfident draws more than

m =
64log(1/δerr)

ε2 +
128log(2/δerr)

ε3

∈ O
(

log(1/δerr)

ε3

)
∈ O

(
log(1/δηγ)

ε3

)

examples to estimate the error.

Therefore with all but probability 2δerr = δηγ2/768, OverConfident terminates having

drawn no more than

m ∈ O
(

log(1/(δηγ)

ε3

)
examples.

Lemma 4.6.10 (Sample complexity of one round). With all but probability 5δηγ2/1536, one round

of boosting with WkL draws no more than

m ∈ O
(

log(1/(δηγ)

min{ε,η}2 +
log(1/(δηγ)

ε3 +
log(1/(δηγ))

κ2 +
mWkL log(1/(δηγ))

κ
+

log(1/(δηγ))

γ2κ

)

examples from EXMas( f ,Dx,η(x)).

Proof. In a single round of boosting, at most one call is made to Est-Density and OverConfident

routines, and one weak hypothesis is chosen; no calls to the example oracle EXMas( f ,Dx,η(x)) are

otherwise made. The Est-Density procedure draws exactly

log(1/δdens)

2min{ε/2,η/4}2 ∈ O
(

log(1/(δηγ)

min{ε,η}2

)

examples. Lemma 4.6.9 shows that, with all but probability δηγ2/768, the OverConfident routine
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draws no more than

m ∈ O
(

log(1/(δηγ)

ε3

)
examples. Lemma 4.6.8 shows that, with all but probability δηγ2/512, at most

O
(

log(1/(δηγ))

κ2 +
mWkL log(1/(δηγ))

κ
+

log(1/(δηγ))

γ2κ

)

examples are drawn to choose a weak hypothesis. So with all but probability δηγ2( 1
768 +

1
512) =

5δηγ2/1536, a single round draws no more than

m ∈ O
(

log(1/(δηγ)

min{ε,η}2 +
log(1/(δηγ)

ε3 +
log(1/(δηγ))

κ2 +
mWkL log(1/(δηγ))

κ
+

log(1/(δηγ))

γ2κ

)

examples.

4.6.6 Boosting Theorem

We can now put together the Lemmas of Section 4.6.3, Section 4.6.4, and Section 4.6.5 to

prove our main result.

Theorem 4.6.1 (Boosting Theorem). Let WkL be an (α,γ)-weak learner requiring a sample of

size mWkL. Then for any δ ∈ (0,1/2], any Massart distribution D with noise rate η < 1/2, and

any ε ≥ 8ηα

1−2α
, taking λ = γ/8 and κ = η , Massart-BoostWkL(λ ,κ,η ,ε,δ ,α,γ,mWkL) will, with

probability 1−δ ,

• run for T ∈ O
(
1/(ηγ2)

)
rounds

• output a hypothesis H such that errD
0-1(H)≤ η + ε and errDx, f

0-1 (H)≤ η+ε

1−η

• make no more than m ∈ O
(

log(1/(δηγ))
ηγ2

(
1
ε3 +

1
η2 +

mWkL
η

+ 1
ηγ2

))
calls to EXMas( f ,Dx,η(x))

• run in time O
(

log(1/(δηγ))
η2γ4

(
1
ε3 +

1
η2 +

mWkL
η

+ 1
ηγ2

))
, neglecting the runtime of the weak

learner.
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Proof. Lemma 4.6.4 shows that Massart-Boost terminates within T ∈O
(
1/(ηγ2)

)
rounds, except

with probability δ/3. From Lemmas 4.6.5 and 4.6.6, we have that with all but probability δ/4,

errD
0-1(H)≤ κ + ε and errDx, f

0-1 (H)≤ κ+ε

1−η
, so taking κ = η gives

errD
0-1(H)≤ η + ε

and

errDx, f
0-1 (H)≤ κ + ε

1−η

To bound sample complexity, recall Lemma 4.6.10 implies that with all but probability

5δηγ2/1536, one round of boosting with WkL draws no more than

m ∈O
(

log(1/(δηγ))

min{ε,η}2 +
log(1/(δηγ)

ε3 +
log(1/(δηγ))

κ2 +
mWkL log(1/(δηγ))

κ
+

log(1/(δηγ))

γ2κ

)

examples. We have taken κ = η , so union bounding the error probabilities over all T ≤ 128/ηγ2

rounds of boosting gives us a sample bound of

m ∈ O
(

log(1/(δηγ))

ηγ2ε3 +
log(1/(δηγ))

η3γ2 +
mWkL log(1/(δηγ))

η2γ2 +
log(1/(δηγ))

η2γ4

)

exceeded with probability no more than

128
ηγ2 ·

5δηγ2

1536
=

5δ

12
.

To prove the bound on overall runtime, we first observe that the runtime of a single round

of Massart-Boost, neglecting calls to the weak learner, is linear in the runtime of subroutines

OverConfident and Est-Density, and quasilinear in the runtime of Samp (from repetition of WkL).

The runtime of each of these subroutines is dominated by computing Gt(x) for each example drawn

from EXMas( f ,Dx,η(x)), either to decide membership of x in X r
t or to compute µt(x,y). The cost
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of evaluating Gt is linear in t, and so from our round and sample complexity bounds, we have the

total runtime over all T ∈
(
1/ηγ2) rounds Massart-Boost is

O
(

T
(

log(1/(δηγ))

ηγ2ε3 +
log(1/(δηγ))

η3γ2 +
mWkL log(1/(δηγ))

η2γ2 +
log(1/(δηγ))

η2γ4

))
∈ O

(
log(1/(δηγ))

η2γ4ε3 +
log(1/(δηγ))

η4γ4 +
mWkL log(1/(δηγ))

η3γ4 +
log(1/(δηγ))

η3γ6

)

Finally, we observe that the total probability of failure to achieve all of the claimed bounds

is no more than δ

3 +
δ

4 +
5δ

12 = δ , completing the proof.

4.6.7 Final Hypothesis H

This subsection contains some explanation of the structure of the final hypothesis H output

by our algorithm. We show that these hypotheses can be both efficiently represented and evaluated.

Massart-Boost maintains a function G : X → {±1}, initialized to the zero function

G0(x) = 0. When Massart-Boost terminates at round t, it outputs the classifier sign(Gt). Gt can be

computed from the threshold parameter s and a length-t sequence of pairs ((h1,b1), . . . ,(ht ,bt)) ∈

(H × {0,1})t , where hi is simply the weak learner hypothesis from round i, and bi = 1 if

OverConfident returned true at round i. Gt(x) can then be efficiently computed by routine 17.
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Routine 17. ComputeG(x,s,(h1,b1), . . . ,(ht ,bt)), procedure for evaluating G, the classifier returned
by Massart-Boost

σ = 0

for i ∈ {1, . . . , t} do

if |σ |< s then

σ ← σ +λhi(x)

else

if bi = 1 then

σ ← σ −λ

return σ

Lemma 4.6.4 says we may assume T ∈ poly(1/η ,1/γ), so long as the weak learner’s

hypotheses can be efficiently represented and evaluated, GT can be as well, and of course H =

sign(GT ).

4.7 Appendix: Improved Round Complexity Analysis

In this section we revisit the round complexity of Massart-Boost. We show that a more

careful use of the lower-bound on progress against our potential function (Lemma 4.3.3) proves

convergence in O
(

log2(1/η)
γ2

)
rounds, saving nearly a factor η−1 in both time and sample complexity.

Recall that Lemma 4.3.3 shows that in each round of Massart-Boost we have

Φ(t)−Φ(t +1)≥ γ2

8

(
d(µt)−

η

2

)

for potential function

Φ(t) = E
(x,y)∼D

[φt(x,y)] = E
(x,y)∼D

∫
∞

yGt(x)
M(z)dz.
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For simplicity, Lemma 4.6.4 uses the fact that the algorithm terminates once it estimates d(µ)≤ κ

to approximately lower-bound d(µt) by κ . Since we take κ ≥ η , this lower-bounds the potential

drop in each round by O(ηγ2). However, this lower bound is loose at the beginning of the algorithm,

when d(µ0) = 1. To use this observation to obtain a tighter analysis, we first lower-bound the

density of the measure µt by the potential function Φ(t).

Lemma 4.7.1. For every round t, with all but probability δerr = δηγ2/1536 , Φt
s+λ+1−2(η +ε)≤

d(µt).

Proof. To show Φt
s+λ+1 − 2(η + ε) ≤ d(µt), we independently consider the contribution to the

density from examples (x,y) ∈X s
t and (x,y) ∈X r

t as follows,

d(µt) = E
(x,y)∼D

[µt(x,y)]

= E
(x,y)∼D

[µt(x,y)
∣∣x ∈X s

t ] · Pr
(x,y)∼D

[x ∈X s
t ]

+ E
(x,y)∼D

[µt(x,y)
∣∣x ∈X r

t ] · Pr
(x,y)∼D

[x ∈X r
t ].

If (x,y) ∈X s
t , one of two cases holds:

1. −s < yGt(x)≤ 0, so µt(x,y) = 1 and φt(x,y) =−yGt(x)+1≤ s+1

2. 0 < yGt(x)< s, so µt(x,y) = exp(−yGt(x)) and φt(x,y) = exp(−yGt(x))

both of which imply µt(x,y)≥ φt(x,y)/(s+1), and so

E
(x,y)∼D

[µt(x,y)
∣∣x ∈X s

t ]≥ E
(x,y)∼D

[
φt(x,y)
s+1

∣∣x ∈X s
t

]
≥ E

(x,y)∼D

[
φt(x,y)

s+λ +1

∣∣x ∈X s
t

]
−2(η + ε).

If (x,y) ∈X r
t , then we again have two cases to consider:

1. yGt(x)≤−s, so µt(x,y) = 0 and φt(x,y) =−yGt(x)+1≤ s+λ +1
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2. yGt(x)≥ s, so µt(x,y) = 0 and φt(x,y) = exp(−yGt(x))≤ (η + c)/(1−η).

We observe that examples (x,y) falling into case 2 satisfy

µt(x,y)≥ φt(x,y)− (η + c)/(1−η)≥ φt(x,y)−
η + c
1−η

,

and in case 1, µt(x,y)≥ φt(x,y)/(s+λ +1)−1, so to prove our lower-bound on d(µt), we must

upper-bound Pr(x,y)∼D[yGt(x) ≤ −s]. By the definition of Algorithm 13, with all but probability

δerr over the coins of OverConfident, at the end of each round t either Prx∼Dx [x ∈X r
t ]≤ ε/2 or

Pr(x,y)∼D[yGt(x)≤−s | x ∈X r
t ]≤ η + ε .

If Prx∼Dx [x ∈X r
t ]≤ ε/2, then this gives us

d(µt)≥
(

1− ε

2

)
E

(x,y)∼D

[
φt(x,y)

s+λ +1

∣∣x ∈X s
]
+

ε

2
E

(x,y)∼D

[
φt(x,y)

s+λ +1
−1
∣∣yGt(x)≤−s

]
≥ E

(x,y)∼D

[
φt(x,y)

s+λ +1

]
− ε

2

≥ Φ(t)
s+λ +1

−2(η + ε),

and so the stated bound holds.
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If Pr(x,y)∼D[yGt(x)≤−s | x ∈X r
t ]≤ η + ε , we have

E
(x,y)∼D

[µt(x,y)
∣∣x ∈X r

t ]

= E
(x,y)∼D

[
φt(x,y)

s+λ +1
−1
∣∣yGt(x)≤−s

]
· Pr
(x,y)∼D

[yGt(x)≤−s
∣∣x ∈X r

t ]

+ E
(x,y)∼D

[
φt(x,y)−

η + c
1−η

∣∣yGt(x)≥ s
]
· Pr
(x,y)∼D

[yGt(x)≥ s
∣∣x ∈X r

t ]

≥ (η + ε) E
(x,y)∼D

[
φt(x,y)

s+λ +1
−1
∣∣yGt(x)≤−s

]
+(1−η− ε) E

(x,y)∼D

[
φt(x,y)−

η + c
1−η

∣∣yGt(x)≥ s
]

≥ E
(x,y)∼D

[
φt(x,y)

s+λ +1

∣∣x ∈X r
t

]
−η− ε− (1−η− ε)(

η + c
1−η

)

≥ E
(x,y)∼D

[
φt(x,y)

s+λ +1

∣∣x ∈X r
t

]
−2(η + ε),

in which case it again holds that

d(µt) = E
(x,y)∼D

[µt(x,y)
∣∣x ∈X s

t ] · Pr
(x,y)∼D

[x ∈X s
t ]

+ E
(x,y)∼D

[µt(x,y)
∣∣x ∈X r

t ] · Pr
(x,y)∼D

[x ∈X r
t ]

≥
(

E
(x,y)∼D

[
φt(x,y)

s+λ +1

∣∣x ∈X s
t

]
−2(η + ε)

)
· Pr
(x,y)∼D

[x ∈X s
t ]

+

(
E

(x,y)∼D

[
φt(x,y)

s+λ +1

∣∣x ∈X r
t

]
−2(η + ε)

)
· Pr
(x,y)∼D

[x ∈X r
t ]

=
Φ(t)

s+λ +1
−2(η + ε).

Now that we have a lower-bound on d(µt) in terms of Φ(t), we can show faster convergence

and prove the following theorem.
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Theorem 4.7.1 ((Improved) Boosting Theorem). Let WkL be an (α,γ)-weak learner requiring a

sample of size mWkL. Then for any δ ∈ (0,1/2], any Massart distribution D with noise rate η < 1/2,

and any ε ≥ 8ηα

1−2α
, taking λ = γ/8 and κ = η , Massart-BoostWkL(λ ,κ,η ,ε,δ ,γ,α,mWkL) will,

with probability 1−δ ,

• run for T ∈ O
(
log2(1/η)/γ2) rounds

• output a hypothesis H such that errD
0-1(H)≤ η + ε and errDx, f

0-1 (H)≤ η+ε

1−η

• make no more than m ∈ O
(

log2(1/η) log(1/(δηγ))
γ2

(
1
ε3 +

1
η2 +

mWkL
η

+ 1
ηγ2

))
calls to example

oracle EXMas( f ,Dx,η(x)),

• run in time O
(

log4(1/η) log(1/(δηγ))
γ4

(
1
ε3 +

1
η2 +

mWkL
η

+ 1
ηγ2

))
, neglecting the runtime of the

weak learner.

Proof. It follows from Lemma 4.6.3, Lemma 4.3.3, and Lemma 4.7.1 that

Φ(t +1)≤Φ(t)− γ2

32

(
d(µt)−

η

2

)
≤Φ(t)− γ2

32

(
Φ(t)

s+λ +1
−2η− η

2

)
≤Φ(t)

(
1− γ2

64(s+1)

)
+

ηγ2

8
( from s > λ ).

Unrolling the recursion, we have that

Φ(t)≤
(

1− γ2

64(s+1)

)t

+
tηγ2

8

≤ e−γ2t/(64(s+1))+
tηγ2

8
,
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and so taking t = 64log(1/η)(s+1)/γ2 and Lemma 4.6.3 gives

d(µt)≤Φ(t)

≤ η +8η log(1/η)(s+1)

≤ η +8η log(1/η)(log(1/η)+1)

≤ η +24η log2(1/η)

where the last inequality follows from 2log(1/η) > 1 for all η < 1/2. As we have already

shown a potential drop of at least γ2η

32 at each step for which d(µ)≥ η , running for an additional

768log2(1/η)/γ2 rounds suffices to guarantee d(µ)≤ η = κ . This gives a total round complexity

of

T ∈ O
(

log2(1/η)

γ2

)
.

The stated error bounds are the same as those proved in Theorem 4.6.1, and the tighter

sample complexity and runtime follow immediately from the improved round complexity.

4.8 Appendix: Lower Bound on Error for Massart Boosting

In this section, we show that no “black-box” generic boosting algorithm for Massart noise

can have significantly better error than that of our algorithm, η +Θ(αη). While the error term

essentially matches the error lower bound of η for RCN boosters from [KS03], it is unclear from

their result whether generalizing to Massart noise should imply a lower bound of OPT or a lower

bound of η , since RCN is the special case of Massart noise where η = OPT. We show that the

lower bound generalizes to the worst-case noise η , so long as OPT is not negligible in the input

size. Therefore, no Massart-noise tolerant boosting algorithm can actually take advantage of a

distribution with small expected noise to achieve accuracy better than its worst-case noise.

We consider the case where the target function f ∈ C is highly biased towards −1 labels
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(w.l.o.g.) and there is a small fraction of examples (x,−1) where it cannot be distinguished whether

f (x) = 1 and η(x) = 0, or f (x) =−1 and η(x)> 0. As described in Section 4.1.3, if the booster

does not reweight the distributions on which it queries the weak learner to emphasize examples

labeled 1, an adversarial weak learner can return the constant function −1 and have high correlation.

At the same time, if it does reweight its distribution to emphasize positively labeled examples, it

risks violating the Massart condition by assigning to some x ∈X a probability of appearing with

its noisy label y =− f (x) that is greater than 1/2−α .

Our adversarial, “rude” weak learner rWkL exploits this tension by providing information

attainable without knowledge of f . rWkL returns a hypothesis h that does the following: on each

heavy-hitter x of given distribution D′, h(x) is the majority vote label from examples; on all non-

heavy-hitters, h(x) =−1. Assuming pseudorandomness of f , no efficient algorithm can use rWkL

to learn f . So, the focus of the proof is showing that rWkL is a valid Massart noise weak learner.

By drawing polynomially many more examples than the black-box boosting algorithm,

rWkL can replicably learn the heavy-hitters of its given distribution D′. Furthermore, assuming

D′ is Massart with noise rate 1/2−α , the labels of these heavy hitters x ∈X must be biased

towards the true label f (x), guaranteeing advantage on heavy-hitters. To show rWkL also handles

non-heavy-hitters correctly, we first show that boosting with rWkL can be efficiently simulated

without knowing f , and then we appeal to the pseudorandomness of f . If reweighted distribution D′

is Massart, then our adversarial weak learner only fails to return a hypothesis with γ advantage if D′

is supported on many non-heavy-hitters x whose true label f (x) = 1. We can conclude by observing

that finding many such non-heavy-hitters implies a violation of the pseudorandomness assumption.

Theorem 4.8.1. If one-way functions exist, then no black-box Massart noise-tolerant boosting

algorithm achieves label error η +o(αη), even when OPT� η .

We formalize the notion of black-box boosting and related definitions in Section 4.8.1. We

describe the hard learning problem for the lower bound in Section 4.8.2. We describe our adversarial
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weak learner and note its useful properties in Section 4.8.3. In Section 4.8.4, we state and prove our

lower bound.

4.8.1 Lower Bound Preliminaries

First, we define black-box boosting. In particular, we formalize the notion of a sampling

procedure SP, the subroutine a boosting algorithm uses to construct weak learner queries from

labeled examples. Recall the definition of an efficient Massart noise weak learner from Section 4.2:

Definition 4.2.5 (Massart Noise Weak Learner). Let C be a concept class of functions f : X →

{±1}. Let α ∈ [0,1/2). Let γ : R→ R be a function of α . A Massart noise (α,γ)-weak learner

WkL for C is an algorithm such that, for any distribution Dx over X , function f ∈ C , and

noise function η(x) with noise bound η < 1/2−α , WkL outputs a hypothesis h : X → {±1}

such that PrS[advD(h) ≥ γ] ≥ 2/3, where the sample S is drawn from Massart distribution D =

Mas{ f ,Dx,η(x)}.

Definition 4.5.2 (Efficient Massart Noise Weak Learner). Let WkL be an (α,γ)-Massart noise weak

learner. Let n be the maximum bit complexity of a single example (x,y) ∈X ×{±1}, and let mWkL

denote the number of examples comprising sample S. WkL(S) is efficient if

1. WkL uses mWkL(n,η ,γ) = poly(n,1/(1−2η),1/γ) examples.

2. WkL outputs a hypothesis h in time poly(n,1/(1−2η),1/γ).

3. Hypothesis h(x) has bit complexity poly(n,1/(1−2η),1/γ).

4. For all x ∈X , the hypothesis h(x) can be evaluated in time poly(n,1/(1−2η),1/γ).

We let CTWkL denote the time WkL takes to output a hypothesis, BCh denote the maximum

bit complexity of a returned hypothesis h, and Rh denote the maximum time to evaluate a returned

hypothesis h on any x ∈X . Recall that we define the runtime RWkL of WkL as an upper bound on

CTWkL+BCh +Rh.
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For a boosting algorithm to construct new distributions to query the weak learner, the

boosting algorithm must be able to convert examples from D into examples from a new distribution.

We refer to this part of the boosting algorithm as a sampling procedure SP.

Definition 4.8.2 (Sampling Procedure). A sampling procedure SPO is a probabilistic oracle algo-

rithm that uses (potentially many) examples from O to return an example (x,y) ∈X ×{±1}.

We prove a lower bound against the following formulation of a black-box Massart boosting

algorithm. In this setting, the boosting algorithm interacts with a example generator EG, which

generates examples for the weak learner. The boosting algorithm provides to EG an efficient

sampling procedure SP, as well as oracle access to its example oracle EX. The sampling procedure

SP will induce a new distribution over X ×{±1}. We denote by DSP the distribution induced by

SP when supplied with EX as its example oracle. The weak learner WkL uses mWkL examples drawn

i.i.d. by EG to compute a hypothesis h, returned to the boosting algorithm. Note that the weak

learner is required to return a hypothesis with advantage γ only if DSP is a Massart noise distribution

with noise bound 1/2−α . For simplicity, we assume that the boosting algorithm and EG know the

format of h and SP, and that executing these subroutines can be done efficiently in their respective

bit complexities.

Definition 4.8.3 (Black-box Massart Boosting Algorithm). Let C be a concept class over X , and

let f ∈ C be an unknown function. Let n denote the maximum bit complexity of an x ∈X . Let

Dx be a fixed but unknown distribution over X . Let EX = EXMas( f ,Dx,η(x)) be a noisy example

oracle for Massart noise distribution D = Mas{ f ,Dx,η(x)}. Let EG be an example generator with

query access to EX. Let WkL be an efficient (α,γ)-Massart noise weak learner with runtime RWkL,

hypothesis bit complexity BCh, and hypothesis evaluation time Rh. Let mWkL denote the number of

examples WkL requires. A black-box Massart boosting algorithm BlackBoxBoost, with round bound

T and sample complexity m, is a probabilistic polynomial-time algorithm with misclassification

error η∗ if BlackBoxBoost satisfies the following conditions:
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1. Sample complexity m: BlackBoxBoost draws m = poly(n,1/(1−2η),1/γ) examples from

sample oracle EX.

2. Round bound T : BlackBoxBoost queries WkL at most T = poly(n,1/(1−2η),1/γ) times.

3. Weak Learner Queries: BlackBoxBoost queries WkL by providing input SP to EG, where

SPEX is an efficient sampling procedure satisfying the following conditions:

• SP runs in time poly(n,mWkL,1/(1−2η),1/γ,Rh).

• SP draws at most poly(n,1/(1−2η),1/γ) examples from EX.

• SP is represented with bit complexity poly(n,mWkL,1/(1−2η),1/γ,Rh).

• SP may use previous weak learner hypotheses as subroutines in SP.

EG(SP) runs SP mWkL-many times to generate a sample S containing mWkL examples. EG gives

S to WkL, which returns a hypothesis h to BlackBoxBoost.

4. Correctness: If WkL returns a hypothesis with advantage γ over DSP in each round that DSP

is a Massart distribution, then BlackBoxBoost returns a classifier H : X → {±1} with

misclassification error errD
0-1(H)< η∗ with constant probability.

5. Runtime: BlackBoxBoost runs in time poly(n,mWkL,1/(1−2η),1/γ,Rh).

For clarity, the following pseudocode illustrates this black-box boosting framework.
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Algorithm 18. Black-box Boosting Framework
Black-box boosting algorithm BlackBoxBoost draws m examples from EX.

for t = 1 to t = T do

BlackBoxBoost constructs sample procedure SPt , possibly using hypotheses h1, . . . ,ht−1

BlackBoxBoost gives SPt to example generator EG

Weak learner WkL gives mWkL to EG

EG uses SPt to draw mWkL i.i.d. examples from DSPt . Let S denote the set of these examples.

EG gives sample S to WkL

WkL(S) returns hypothesis ht to BlackBoxBoost

BlackBoxBoost outputs trained classifier H

The example generator EG is primarily used to correct the type mismatch between the

boosting algorithm and weak learner. The boosting algorithm constructs distributions to query the

weak learner, and the weak learner is defined to run on samples.

We will show that black-box Massart boosting algorithms cannot learn functions from

pseudorandom function families with non-negligible probability. The following definition appears

in [KS03]. As noted in [KS03], if one-way functions exist, then p-biased pseudorandom function

families exist.

Definition 4.8.4 (p-biased Pseudorandom Function Family). For 0 < p < 1, a p-biased pseudoran-

dom function family is a family of functions { fs : {0,1}|s|→{±1}}s∈{0,1}∗ which can be efficiently

evaluated and satisfy the following p-biased pseudorandomness property:

• Efficient evaluation: There is a deterministic algorithm which, given an n-bit seed s and an

n-bit input x, runs in time poly(n) and outputs fs(x).

• p-biased pseudorandomness: Let Fn,p be the distribution over functions from {0,1}n to {±1}
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such that function F has weight p|F
−1(1)|(1− p)|F

−1(−1)|. For all probabilistic polynomial

time algorithms A , the distinguishing advantage of A is a negligible function in n,

∣∣∣PrF∼Fn,p[A
F(1n)⇒ 1]−Prs∼{0,1}n [A fs(1n)⇒ 1]

∣∣∣< negl(n)

4.8.2 Adversarial Massart Distribution

Next, we describe the hard Massart noise learning problem used to prove our lower bound

(Theorem 4.4.1). The following definitions apply to the remainder of this section.

Let η ∈ [0,1/2),α ∈ (0,1/2− η),γ(α) = α/20. Define η ′ = η(1 + α/5). Let { fs :

{0,1}|s| → {±1}}s∈{0,1}∗ be a η ′-biased pseudorandom random function family with minority

value 1.

Let n denote the security parameter, chosen to be at least a large polynomial in 1/(1−2η)

and 1/γ . Let X = {0,1}n, and let Dx be the uniform distribution over X . For s ∈ {0,1}n, let Cs

be the concept class containing only the function fs : {0,1}n→{±1}.

The noise function η(x) is chosen as follows. On the minority elements x ∈ f−1
s (1), let

η(x) = 0. On the majority elements x ∈ f−1
s (−1), let η(x) = η for a random ρ/(1−η ′)-fraction

of these x’s, where 1/poly(n)< ρ < α/1000. For the remaining elements, let η(x) = 0. Finally, let

Massart noise distribution D = Mas{ fs,Dx,η(x)} with example oracle EX = EXMas( fs,Dx,η(x)).

Note that the noise bound is η and OPT = ρη .

Throughout this section, we assume n is a polynomial in 1/(1−2η) and 1/γ , so that we

can assume the probability of EX returning the same data point x ∈X more than once during the

poly(n,1/(1−2η),γ) rounds of boosting is a negligible function in n.

4.8.3 Adversarial Weak Learner and Example Generator

In this section, we describe our adversarial weak learner rWkL, provide pseudocode, and

prove that it has some nice properties. We also describe an example generator rEG that does not
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directly call EX.

Adversarial Weak Learner

We now define our “rude” weak learner rWkLm,T (S), which attempts to be maximally

unhelpful by returning hypotheses h that rely entirely on majority vote labels. The weak learner

rWkL never provides the booster with any information about fs that the booster could not have

computed itself, and therefore the pseudorandomness of fs will guarantee that the booster cannot

boost rWkL to obtain a hypothesis with error noticeably less than η ′. The main technical challenge

of proving our lower bound will come from showing that it is in fact possible for rWkL to achieve

noticeable advantage γ against all Massart distributions supplied to it by the booster, without

revealing any information about fs that cannot be efficiently simulated.

Recall that boosting algorithm BlackBoxBoost invokes the weak learner by constructing

SP, an efficient sampling procedure, which induces a distribution DSP. The weak learner rWkL

attempts to return a hypothesis h : X →{±1} satisfying the following two conditions:

• For all x ∈X that have large probability mass in DSP (≈ γ

10m or larger), h(x) is the most

likely label for x under DSP, i.e., sign(E(x∗,y)∼DSP[y | x = x∗]). We will refer to such x’s as

“heavy-hitters”.

• For other x with smaller probability mass in DSP, h(x) is the most likely label for all non-

heavy-hitters under DSP, i.e., sign(E(x∗,y)∼DSP[y | x∗ 6∈X H]). The weak learner rWkL is given

access to m, the number of examples drawn by the boosting algorithm, so that rWkL may

accurately predict which examples x are heavy-hitters.

The weak learner identifies heavy-hitters using a two-step process. First, rWkL uses a subset

of its sample S to identify candidate heavy-hitters. It initially adds all x-values from this subset

to the set of candidate heavy-hitters, X H. Next, rWkL checks each x ∈X H to see if it is indeed

a heavy-hitter of DSP. Fresh examples from its samples S are used to empirically estimate this
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probability p̂x
def
= Pr(x′,y′)∼SSP[x = x′]. The weak learner then randomly picks a value v ∈ [ γ

20m ,
γ

10m ],

and removes from X H all x’s for which p̂x < v. This step ensures that, with high probability, X H

contains exactly v-heavy-hitters of DSP.

The random choice of vh and vy will allow us to argue that, for fixed v = (vh,vy), the

hypothesis output by rWkL is not too sensitive to the specific sample drawn by rWkL. That is, if

rWkL was repeatedly executed with the same choice of v, but different samples drawn from the same

distribution, rWkL would output the same hypothesis with high probability. This stability property

is fully justified in Subsection 4.8.3, but, informally, it will allow us to argue that the booster could

simulate the example oracle EX itself when generating samples for rWkL, without making additional

queries to its example oracle, and that with high probability the hypotheses output by rWkL would

be the same in this case as those output when the sampling procedure queries EX. Analyzing the

behavior of the boosting algorithm when the sampling procedure does not draw examples from EX

(and therefore the labels of examples do not depend on fs) simplifies the argument that rWkL can

satisfy the definition of a Massart noise-tolerant weak learner without leaking information to the

booster about fs.

We now present pseudocode for our adversarial (α,γ)-weak learner.
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Algorithm 19. rWkLm,T (S), adversarial weak learner
Precondition: S contains mWkL examples drawn i.i.d. from DSP

if m < n then

m = n

// Step 1: Draw candidate heavy-hitters

X H← x-values from O(m2/γ) examples from S

vh←r [
γ

20m ,
γ

10m ] uniformly at random

for all x ∈X H do // Step 2: Remove non-v-heavy-hitters

Estimate p̂x
def
= Pr[DSP returns x] using O(m11T 2/γ4) fresh examples from S

if p̂x < vh then

remove x from X H

vy←r [
1
2 ,

1
2 +

γ

10m ]

for all x ∈X H do // Step 3: Assign majority labels

Sx← m9T 2/γ4 fresh examples from S

p̂1← fraction of Sx with label 1

if p̂1 ≥ vy then

yx = 1

else

yx =−1

h(x) =


yx x ∈X H

−1 otherwise
// Step 4: Output hypothesis h

return h def
= {X H,{yx}}

This weak learner has polynomial sample complexity (Lemma 4.8.5), runs in polynomial

time (Lemma 4.8.6), and does not use any hardcoded information about fs, so WkL is efficiently
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simulatable (Lemma 4.8.7).

Example Generation

In this section, we define the two example generation procedures we will use in our lower

bound argument: hEG and rEG.

Recall that an example generator EG is tasked with interfacing between the boosting algo-

rithm, which creates reweighted distributions DSP, and the weak learner, which runs on samples S

whose elements are drawn from DSP. To accomplish this, the example generator needs information

from the weak learner and the boosting algorithm. The weak learner tells the example generator

mWkL, the sample size it needs, and the boosting algorithm provides oracle access to its example

oracle EX, as well as the sampling procedure SP. The example generator therefore invokes SP

mWkL-many times, returning sample S.

Algorithm 20. hEGEX
mWkL

(SP), honest example generator
Precondition: SP is a sampling procedure that returns an example (x,y)

S = /0

for i = 1 to i = mWkL do

(x,y)← SPEX

S← S‖(x,y)

return S

Our second example generation procedure rEG behaves identically, except it never calls its

oracle EX. Rather, rEG simulates calls to EX using EXSim. The routine EXSim draws x values

from the same marginal distribution over X that EX does, U (X ). It then generates the label y by

taking y = −1 with probability 1−η ′−ρ +ρη , and y = −1 otherwise, in effect sampling from

the same marginal distribution over ±1 that EX does, but independent of the value x it has already

drawn, and therefore independent of fs.
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Routine 21. EXSim, example oracle simulator
x←r Un

y =


−1 w. p. 1−η ′−ρ +ρη

1 o.w.
// i.e. Pr[y = 1] = Pr(x,y)∼D[y = 1]

return (x,y)

Algorithm 22. rEGEX
mWkL

(SP), “rude” example generator
Precondition: SP is a sampling procedure that returns an example (x,y)

S = /0

for i = 1 to i = mWkL do

(x,y)← SPEXSim

S← S‖(x,y)

return S

By pseudorandomness, we will show that with high probability over v = (vh,vy), and over

choice of S,S′, where S is generated by hEG and S′ is generated by rEG, we have rWkL(S;v) =

rWkL(S′;v) (Section 4.8.3).

Efficiency of rWkL and rEG

In this section, we show that weak learner rWkL and example generator rEG are efficient and

simulatable in polynomial time.

1. Efficiency of rWkL: polynomial sample complexity (Lemma 4.8.5) and polynomial runtime

(Lemma 4.8.6).

2. Boosting with rWkL and rEG can be efficienctly simulated (Lemma 4.8.7).
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Recall that SP is a probabilistic algorithm that returns a labeled example. Let mSP denote the

sample complexity of SP. Let RSP denote the runtime of SP (including the time to query its oracle).

Lemma 4.8.5 (Sample Complexity of rWkL). mrWkL = poly(n,1/(1−2η),1/γ).

Proof. By Definition 4.8.3, mSP = poly(n,m,1/(1−2η),1/γ), m = poly(n,1/(1−2η),1/γ), and

T = poly(n,1/(1−2η),1/γ). Step 1 requires O(m2T/γ) examples. Step 2 requires O(m13T 2/γ5)

examples. Step 3 requires O(m10T 2/γ5) examples. Therefore Step 2 dominates the sample com-

plexity of the weak learner, and mrWkL = poly(n,1/(1−2η),1/γ) as claimed.

Lemma 4.8.6 (Runtime of rWkL). rWkL runs in time RrWkL = poly(n,1/(1−2η),1/γ).

1. rWkL outputs hypothesis h in time CTrWkL = poly(n,1/(1−2η),1/γ).

2. The maximum bit complexity of h is BCh = poly(n,1/(1−2η),1/γ).

3. Hypothesis h can be evaluated in time Rh = poly(n,1/(1−2η),1/γ).

Proof. By Definition 4.8.3, m= poly(n,1/(1−2η),1/γ), and T = poly(n,1/(1−2η),1/γ). Recall

the runtime of a weak learner was defined as a bound on the sum of the three quantities listed in the

lemma statement.

The hypotheses h def
= {X H,{yx}} output by rWkL provides individual labels yx for a maxi-

mum of O(m2/γ) elements in X H. Thus, {X H,{yx}} has bit complexity at most poly(n,1/(1−

2η),1/γ). The instructions for executing this hypothesis can also be written using poly(n,1/(1−

2η),1/γ) bits. For all x ∈X , h(x) can be evaluated in time linear in the bit complexity of h. An

algorithm can check if x ∈X H by scanning the representation of h for x, outputting yx if found or

−1 if not. Each step of rWkL runs in time linear in the sample complexity of rWkL. By Lemma 4.8.5,

mWkL = poly(n,1/(1−2η ,1/γ). Thus, rWkL outputs h in time poly(n,1/(1−2η ,1/γ).

Next, we argue that black-box boosting with rWkL is efficiently simulatable. The following

Lemma permits us to apply use the boosting algorithm in a distinguisher for pseudorandomness.
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Lemma 4.8.7 (Boosting with rWkL and rEG can be efficiently simulated). Given query access to

a function oracle for fs, a probabilistic algorithm A can simulate BlackBoxBoost boosting the

weak learner rWkL, using rEG to generate samples for rWkL, in time poly(n,1/(1−2η),1/γ).

Proof. To simulate the initial m examples drawn by the booster, A simulates EX as follows. It

draws a data point x ∈ X uniformly at random from X , and queries its function oracle on this point.

If the label returned by the function oracle is 1, A returns (x,1). If the label is a −1, it will return

(x,1) with probability ρη , and (x,−1) otherwise. Because A only has negligible probability of

drawing the same x-value twice, and because the noise function η(x) is both random and non-zero

only on a ρ-sized fraction of negatively-labeled examples, the m examples drawn by this procedure

are computationally indistinguishable from m examples drawn from EX, and so A successfully

simulates the initial sample for BlackBoxBoost. The algorithm A can then run the algorithm

BlackBoxBoost, which by Definition 4.8.3, runs in time Rb = poly(n,mrWkL,1/(1−2η),1/γ,Rh).

To simulate samples generated by rEG, A can simply run Algorithm 22, using Routine 21

for the oracle to the sampling procedure SP. We have just shown in Lemma 4.8.5 and Lemma 4.8.6

that mrWkL and Rh are both poly(n,1/(1−2η),1/γ), and because the weak learner uses no special

hard-coded information about fs, it can also be efficiently simulated by A . These steps are repeated

for T = poly(n,1/(1− 2η),1/γ) rounds of boosting, each of which is efficiently simulatable in

time poly(n,1/(1−2η),1/γ). Any additional post-processing must also be efficiently simulatable,

since BlackBoxBoost is assumed to run in time poly(n,mWkL,1/(1−2η),1/γ,Rh), and we have

just shown that both mWkL and Rh are poly(n,1/(1−2η),1/γ). Therefore the entire interaction can

be simulated by a probabilistic algorithm A with a function oracle for fs, in time poly(n,1/(1−

2η),1/γ).
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rWkL is a Massart Noise-Tolerant Weak Learner

In this section, we analyze the advantage guarantee of rWkL. We begin by proving that the

hypotheses output by rWkL satisfies replicability. We then use this property, along with pseudo-

randomness of fs, to argue that with high probability over choice of sample S generated by hEG,

S′ generated by rEG, and randomness v = (vh,vy), that rWkL(S;v) = rWkL(S′,v)2. We then show

that the hypothesis generated by rWkL, when run on a sample generated by rEG, will have good

advantage against DSP. Therefore the hypothesis generated by rWkL during a real run of the boosting

algorithm, where the sample is generated by hEG, must also have good advantage against DSP.

Replicability of Weak Hypotheses.

Recall that rWkL and rEG (or hEG) utilize randomness in two ways: i) to draw the input

sample S, and ii) to pick thresholds vh and vy. Let hv be the hypothesis that is most often returned

when rWkL is run with thresholds v = (vh,vy). In this section, we show that weak learner rWkL has

the following property called replicability: for a fixed distribution D, with high probability over

S∼ D and randomly chosen v, the hypothesis output by rWkL(S) is exactly hv.3 For any fixed v, we

will refer to this hypothesis as the canonical v-hypothesis of rWkL.

First, we will show that rWkL run with hEG is replicable. In the next section, we apply

pseudorandomness to show that with high probability, rWkL run with rEG outputs the same canonical

v-hypothesis as it does when run with hEG.4

Recall that rWkL (Algorithm 19) is designed to return a hypothesis h that assigns majority

vote labels to vh-heavy-hitters of DSP, where vh is randomly chosen in the interval [ γ

20m ,
γ

10m ].

Definition 4.8.8 (Heavy-Hitter). Let D be a distribution over X ×{±1}. We call x ∈X a v-heavy-

2One can think of this property as a guarantee of replicability across shifted but close distributions.
3For this dissertation, this section was modified to more clearly connect this section to future work on replicability.
4Replicability is defined in [ILPS22] as stability of an algorithm between two runs, where the two samples sets are

drawn from the same distribution. This result is a specific instance of a replicable algorithm being stable across different
distributions. Here, the proof of “cross-distribution replicability” relies on the pseudorandomness assumption used
throughout the lower bound argument.
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hitter of D if Pr(x∗,y)∼D[x = x∗]> v.

Recall that rWkL returns a hypothesis h def
= {X H,{yx},b}. First, we show the consistency of

X H.

Lemma 4.8.9 (Consistency of X H; X H is the set of v-heavy-hitters). Let D be any distribution

over X ×{±1}, and let sample S be a set of mrWkL examples drawn i.i.d. from D. Then with

probability 1−O( 1
mT ) over the choice of S and vh ∈ [ γ

20m ,
γ

10m ] (Step 2 of Algorithm 19), the set

X H computed by rWkL(S) is exactly the set of vh-heavy-hitters of D.

Proof. Recall that rWkL constructs a candidate list of heavy-hitters X H in Step 1 of Algorithm 19,

and prunes that list in Step 2.

In Step 1, rWkLm,T (S) uses O(m2/γ) examples to produce the initial set X H. Let x be a

v-heavy-hitter. The probability that x 6∈X H by the end of Step 1 is at most

(1− γ/(20m))m2/γ < exp(−m/20).

Union bounding over the (at most) 20m/γ vh-heavy hitters, the probability that the set X H does

not initially contain all v-heavy hitters is negligible in m.

In Step 2, rWkL estimates p̂x for each x∈X H using O(m11T 2/γ5) examples. The probability

that a sample of this size contains fewer than O(m9T 2/γ4) instances of x, given that x is a heavy-

hitter, is negligible in m, by a Chernoff-Hoeffding bound. Given this many instances of x, the

probability that the estimate p̂x has error greater than O(γ2/(m4T )) is again a negligible function in

m by a Chernoff-Hoeffding bound. Recall rWkL chooses vh uniformly at random from the interval

[ γ

20m ,
γ

10m ]. The probability that vh is chosen to be within distance O(γ2/(m4T )) of the probability

of a specific γ/(20m)-heavy-hitter of DSP is therefore no more than O(γ/(m3T )). Union bounding

over the at most 20m/γ heavy hitters, we have the following. Let S0,S1 be samples of size mrWkL

drawn from DSP. Denote by X H
0 (vh) and X H

1 (vh) the sets of vh-heavy-hitters estimated by rWkL
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provided X H
0 and X H

1 respectively. Then

Pr
S0,S1

vh∼[ γ

20m , γ

10m ]

[X H
0 (vh) 6= X H

1 (vh)] ∈ O(1/(m2T )).

It remains to show that, with high probability, all non-v-heavy-hitters are not included in

X H after Step 2. There are at most O(m2/γ) candidate heavy hitters drawn in step 1. With all

but negligible probability in m, rWkL estimates p̂x for all candidate heavy hitters to within error

O(γ2/(m4T )). Then, as above, the probability that vh is chosen to be within distance O(γ2/(m4T ))

of the probability of a non-vh-heavy-hitter of DSP is no more than O(γ/(m3T )), and union bounding

over the O(m2/γ) candidates gives probability O(1/(mT )). Therefore with probability 1−O( 1
mT ),

at the end of Step 2, X H contains exactly the vh-heavy-hitters of DSP.

Next, we show the consistency of {yx}, the labels given by rWkL(S) to x ∈X H.

Lemma 4.8.10 (Replicability of h on heavy-hitters). Let D be a distribution over X ×{±1}, and

let S0 and S1 be samples of mrWkL examples drawn i.i.d. from D. Denote by hv
0 and hv

1 the output of

rWkL(S0;vh = v) and rWkL(S1;vh = v) respectively. Let X H
0 (v) and X H

1 (v) denote the respective

sets of v-heavy-hitters computed by rWkL(S0;vh = v) and rWkL(S1;vh = v). Then we have

Pr
S0,S1

v∼[ γ

20m , γ

10m ]

[X H
0 (v) 6= X H

1 (v) or ∃x ∈X H
0 (v) s.t. h0(x) 6= h1(x)] ∈ O(1/(mT )).

Proof. By Lemma 4.8.9, the probability that both X H
0 (v) and X H

1 (v) are exactly the set of v-heavy-

hitters of D is at least 1−O(1/mT ), over the choice of v,S0, and S1.

For each heavy-hitter x, rWkL uses O(m11T 2/γ4) examples to estimate the probability that

x has label 1 in D (Step 3 of Algorithm 19). Given that x ∈X H, the probability that this sample

contains fewer than O(m7T 2/γ4) instances of x is negligible in m. By a Chernoff-Hoeffding bound,

this estimate has error at most O(γ2/(m3T )) with all but negligible probability in m. By an argument
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similar to the one of Lemma 4.8.9, the probability that vy falls within O(γ2/(m3T )) of the true

probability that x is labeled 1 in D is O(γ/(m2T )). Union bounding over the (at most) 20m/γ

heavy-hitters proves the claim

Pr
S0,S1

v∼[ γ

20m , γ

10m ]

[X H
0 (v) 6= X H

1 (v) or ∃x ∈X H
0 (v) s.t. h0(x) 6= h1(x)] ∈ O(1/(mT )).

Observing that rWkL outputs the constant function −1 on all non-heavy-hitters, we have the

following corollary.

Corollary 4.8.11 (Replicability of h). Let D be a distribution over X , and let samples S0,S1 be

two sets of mrWkL examples drawn i.i.d. from D. Let hv
0 and hv

1 denote the hypotheses output by

rWkL(S0;v) and rWkL(S1;v) respectively. Then we have,

Pr
S0,S1,v

[hv
0 6= hv

1] ∈ O(1/(mT )).

We now use the replicability of h and the pseudorandomness of { fs} to show that boosting

rWkL run with rEG must also output the canonical v-hypothesis with high probability, unless

Prx∼DSP
x
[x 6∈X H]< γ .

Lemma 4.8.12 (rWkL does not distinguish between hEG and rEG). Assume { fs} is a pseudorandom

function family. Let {SPt}T
t=1 be a sequence of sampling procedures constructed by the black-box

boosting algorithm when boosting rWkL for T rounds. Let DSPt denote the distribution induced by

SPt and the honest example generator hEG, and let DSPt
r denote the distribution induced by SPt and

the random example generator rEG. Let S denote a sample of mrWkL examples drawn i.i.d. from

DSPt , and let Sr denote a sample of mrWkL examples drawn i.i.d. from DSPt
r . Let hv and hv

r denote the
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hypotheses output by rWkL(S;v) and rWkL(Sr;v) respectively. Then for all t ∈ [T ],

Pr
S,Sr

v

[hv
r 6= hv] ∈ O(1/(mT )).

Proof. By Corollary 4.8.11, we have that rWkL(S) returns the canonical v-hypothesis hv for DSPt

with high probability over choice of v and S. Then if the claim does not hold, then it must be the

case that there exists a round t ∈ [T ] such that, with probability ω(1/(mT )) over choice of v, S, and

Sr, we have rWkL(S;v) 6= rWkL(Sr;v). Assuming this, we can construct the following distinguisher

A against the pseudorandomness of { fs}.

The distinguisher A executes the following procedure. It first chooses a round t ∈ [T ]

uniformly at random, and simulates the interaction between the booster and rWkL until round t.

At round t, A draws a sample S0 of mrWkL examples from DSPt by simulating hEG. It then draws

a sample S1 of mrWkL examples by simulating rEG. It simulates rWkL on both of these samples

using the same choice of randomness v for both simulations, and checks whether rWkL(S0;v) =

rWkL(S1;v). If not, it returns 1, and otherwise returns 0.

In the case that A is give oracle access to a random function F , both S0 and S1 are drawn

from the same distribution, and so by Corollary 4.8.11, rWkL(S0;v) = rWkL(S1;v) with probability

1−O(1/(mT )) over the choice of v, and therefore A outputs 1 with probability O(1/(mT )).

In the case that A is supplied a pseudorandom function fs, by assumption there exists a

round t ∈ [T ] at which PrS0,S1
v

[rWkL(S0;v) 6= rWkL(S1;v)] ∈ ω(1/(mT )). Therefore in this case,

A outputs 1 with probability noticeably (in n) larger than in the random case, and so A is a

distinguisher against the pseudorandomness of fs. This is a contradiction, and therefore the claim

holds.

Informally, Lemma 4.8.12 will allow us to construct distinguishing adversaries against

the pseudorandomness of fs that make only m queries of their function oracle. In the following
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lemmas, we will prove that rWkL satisfies the definition of a Massart noise-tolerant weak learner

when invoked on distributions constructed by the booster. That is, when rWkL is given a sample

from a Massart distribution generated by the boosting algorithm, it returns a weak hypothesis with

advantage γ with probability at least 2/3. We will rely on appeals to the pseudorandomness of fs in

these proofs, by showing that failure of rWkL to return hypothesis with good advantage allows for

the construction of distinguishers against the pseudorandomness of fs. These distinguishers will

simulate the boosting procedure, but it will be useful for our proofs to claim that the distinguishers

can generate samples for rWkL without making additional queries to their function oracles to

generate labels for these samples. Lemma 4.8.12 allows us to design distinguishers that use rEG to

generate samples for rWkL, rather than generating samples using hEG. Recall that rEG makes no

calls to the example oracle EX, and simply generates labels randomly for examples drawn from the

underlying marginal distribution Dx. Therefore we will assume that our distinguishers only query

their function oracles for the purposes of simulating the first m examples drawn by the booster.

Advantage of rWkL.

We will prove the following lemma by separately considering the advantage of weak

hypotheses on heavy hitters of DSP and non-heavy hitters.

Lemma 4.4.2 (Advantage of rWkL). Let DSPt denote the distribution induced by the sampling

procedure SPt and hEG at round t ∈ [T ] of boosting. Similarly, let DSPt
r denote the distribution

induced by SPt and rEG. Let St denote a sample drawn i.i.d. from DSPt
r . Then for all poly(n,1/(1−

2η),1/γ) rounds of boosting rWkL with rEG, if DSPt is Massart, then with probability 1−O(1/(mT ))

over its internal randomness, rWkL(St) outputs a hypothesis ht with advantage at least γ against

DSPt , except with negligible probability in m over the choice of SPt .

Recall that n is chosen to be a polynomial in 1/(1−2η) and 1/γ , and Dx is the uniform

distribution over {0,1}n. By birthday-paradox-style arguments, with all but negligible probability

in n, no x ∈X is output more than once by EX throughout boosting. Henceforth, we assume no
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x ∈X is output more than once by EX.

Lemma 4.8.13 (rWkL advantage against heavy-hitters of DSP). Let DSPt be the distribution induced

by the sampling procedure SPt at round t. Similarly, let DSPt
r denote the distribution induced by

SPt and rEG. Let St denote a sample drawn i.i.d. from DSPt
r , and let ht be the hypothesis output by

rWkL(St). Then for all poly(n,1/(1−2η),1/γ) rounds of boosting rWkL with rEG, either

1. Pr
[

1
2 E(x,y)∼DSPt [ht(x)y | x ∈X H]≥ α

]
∈ 1−O(1/(mT ))

2. or DSPt is not Massart.

Proof. From replicability of ht (Lemma 4.8.12), we have that with probability 1−O(1/(mT )),

rWkL outputs the same hypothesis that it would have had it been given a sample from DSPt . For the

remainder of the proof then, we will analyze the behavior of rWkL given such a sample from DSPt ,

and show that it must have good advantage against the heavy-hitters of DSPt .

Suppose the second case does not hold, and therefore DSPt is Massart. To compute yx for

each x ∈X H, rWkL uses m9T 2/γ4 examples from DSPt
r . Because x ∈X H, DSPt

x (x) ≥ γ/(40m)

with high probability, and taking γ = α/20, we have that at least 4m/α2 instances of x occur in

Sx (Step 3 of Algorithm 19) with all but negligible probability in m. The majority label of these

4m/α2 examples is then taken to be the prediction of ht on x, which will agree with f (x) with all

but negligible probability in m, because we have assumed DSPt is Massart, and so

Pr(x,y)∼DSPt [y = f (x) | x ∈X H]≥ 1/2+α.

It then follows that

Pr
[

1
2 E
(x,y)∼DSPt

[ht(x)y | x ∈X H]< α

]
≤ negl(m)

or DSPt is not Massart, when ht is the hypothesis output by rWkL given a sample S from DSPt .
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Applying Lemma 4.8.12 allows us to conclude that

Pr
[

1
2 E
(x,y)∼DSPt

[ht(x)y | x ∈X H]< α

]
≤ O(1/(mT ))

or DSPt is not Massart, when ht ← rWkL(St).

Lemma 4.8.14 (rWkL advantage against non-heavy hitters of DSP). Let DSPt be the distribution

induced by the sampling procedure SPt at round t. Similarly, let DSPt
r denote the distribution induced

by SPt and rEG. Let St denote a sample drawn i.i.d. from DSPt
r , and let ht be the hypothesis output

by rWkL(St). Then for all poly(n,1/(1−2η),1/γ) rounds of boosting rWkL with rEG, with all but

negligible probability in m over choice of SPt , either

1. PrSt ,v

[
1
2 E(x,y)∼DSPt [ht(x)y | x 6∈X H]< γ

]
< 1/poly(n)

2. Pr(x,y)∼DSPt [x 6∈X H]< γ

3. or DSPt is not Massart

Proof. Suppose that the first two conditions fail, implying that there exists a round t of boosting for

which the advantage of ht on the non-heavy hitters of DSPt is less than γ , and that this will noticeably

impact the overall advantage. Because ht takes a constant value −1 on all non-heavy hitters, it must

then be the case that

Pr(x,y)∼DSPt [y = 1 | x 6∈X H]> 1/2− γ.

Since we are considering the advantage only on examples such that x 6∈X H, then DSPt (x,y) <

γ/(10m) for all these examples. Furthermore, since we have assumed ∑(x,y):x 6∈X H DSPt (x,y)≥ γ ,

there must be at least 5m non-heavy-hitter examples x such that DSPt (x,1)> DSPt (x,−1) in order

for DSPt to satisfy Pr(x,y)∼DSPt [y = 1 | x 6∈X H]> 1/2−γ. Then for DSPt to be Massart, it must hold

that f (x) = 1 for every example x such that DSPt (x,1)> DSPt (x,−1). However, if this is true with
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non-negligible probability in n, then we can construct the following distinguisher against fs, which

we denote by A .

The distinguisher A simulates the boosting procedure run with rWkL and rEG, as described

in Lemma 4.8.7 up until round t, chosen uniformly at random from [1,T ]. Once the boosting

procedure reaches round t, A simulates the t’th round of boosting and then queries its function

oracle on all examples from the sample of the weak learner at that round that satisfy DSPt (x,1)>

DSPt
x (x)(1/2−α). If f (x) = 1 for all these examples, A outputs 1, and otherwise outputs 0.

To lower bound the advantage of our distinguisher, we will first show that there must be a

significant number of examples drawn by rWkL in round t that satisfy DSPt (x,1)> DSPt
x (x)(1/2−α).

We begin by lower bounding the probability that this condition holds for a single non-heavy hitter

example.

Pr
x∼DSPt

x

[DSPt (x,1)> DSPt
x (x)(1/2−α) | x 6∈X H]

= 1− Pr
x∼DSPt

x

[DSPt (x,1)≤ DSPt
x (x)(1/2−α) | x 6∈X H]

= 1− Pr
x∼DSPt

x

[DSPt (x,−1)≥ DSPt
x (x)(1/2+α) | x 6∈X H]

≥ 1− 1+2γ

1+2α

=
2(α− γ)

1+2α

≥ α− γ

> α/2,

where the last line follows from taking γ = α/20, and the third line follows from observing that
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Pr
x∼DSPt

x

[DSPt (x,−1)≥ DSPt
x (x)(1/2+α) | x 6∈X H] = ∑

x 6∈X H

DSPt (x,−1)≥DSPt
x (x)(1/2+α)

DSPt (x) · 1
Prx∼DSPt

x
[x 6∈X H]

≤∑
x 6∈X H

DSPt (x,−1)≥DSPt
x (x)(1/2+α)

DSPt (x,−1)
1/2+α

· 1
Prx∼DSPt

x
[x 6∈X H]

≤
Pr(x,y)∼DSPt [y =−1 | x 6∈X H]

1/2+α
.

We have assumed that Pr(x,y)∼DSPt [y =−1 | x 6∈X H]< 1/2+ γ , and so

Pr
x∼DSPt

x

[DSPt (x,−1)≥ DSPt
x (x)(1/2+α) | x 6∈X H]≤ 1+2γ

1+2α
.

Then because rWkL has a sample of size O(m13T 2/γ5), we have that the probability that fewer than

n of them satisfy DSPt (x,1)> DSPt
x (x)(1/2−α) must be negligible in m by the Chernoff-Hoeffding

inequality.

Next, we bound the distinguishing advantage of A , beginning with PrF∼Fn,η ′
[A F ⇒ 1]. In

the case that f is a random function, the boosting procedure can correctly identify an x such that

f (x) = 1 with probability no greater than η ′

η ′+(1−η ′)ρη
. This follows immediately from taking the

largest of the following conditional probabilities:

Pr
(x,y)∼DSPt

[ f (x) = 1 | y = 1] =
η ′

η ′+(1−η ′)ρη

Pr
(x,y)∼DSPt

[ f (x) = 1 | y =−1] = 0

Pr
(x,y)∼DSPt

[ f (x) = 1 | y unknown ] = η
′.

So if f is a truly random function then the boosting procedure has probability no more
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than ( η ′

η ′+(1−η ′)ρη
)n of correctly identifying at least n non-heavy hitter preimages of 1 under f . We

have just shown that with all but negligible probability, rWkL draws at least n examples satisfying

DSPt (x,1) > DSPt
x (x)(1/2−α), and A returns 1 only if all of these examples are preimages of 1

under f . Therefore

Pr
F∼Fn,η ′

[A F ⇒ 1]≤
(

η ′

η ′+(1−η ′)ρη

)n

+negl(n),

where the additive negl(n) term comes from the probability that fewer than n qualifying examples

were drawn by rWkL in that round.

We now consider the case that A is provided fs as its oracle. Towards contradiction we

have assumed that there exists some round t at which, with probability p that is non-negligible in m,

the booster produces a Massart distribution DSPt for which Pr(x,y)∼DSPt [y = 1 | x 6∈X H]> 1/2− γ .

Therefore with probability 1/T the distinguisher A will halt its simulation at this round, and so

with probability p/T will produce such a distribution. Then with all but negligible probability, it

will draw n examples such that DSPt (x,1)≥ DSPt
x (x)(1/2−α). Since the distribution is Massart, all

of these examples must satisfy f (x) = 1, and so we have

Pr
s∼{0,1}n

[A fs ⇒ 1] = p/T −negl(m),

which is non-negligible in m, and therefore n. Therefore A has distinguishing advantage

Pr
s∼{0,1}n

[A fs ⇒ 1]− Pr
F∼Fn,η ′

[A F ⇒ 1]> negl(n),

which contradicts pseudorandomness of Fn,η ′ . Therefore it must be the case that the boosting

procedure only has negligible probability (in m) of generating a Massart distribution at any round

that has at least γ probability mass assigned to non-heavy hitters, and for which the constant function

−1 does not have advantage at least γ against non-heavy-hitters of DSPt .
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We can now combine Lemma 4.8.13 and Lemma 4.8.14 to show that rWkL, given a sample

generated by rEG, will output a hypothesis with good advantage against DSPt .

Lemma 4.4.2 (Advantage of rWkL). Let DSPt denote the distribution induced by the sampling

procedure SPt and hEG at round t ∈ [T ] of boosting. Similarly, let DSPt
r denote the distribution

induced by SPt and rEG. Let St denote a sample drawn i.i.d. from DSPt
r . Then for all poly(n,1/(1−

2η),1/γ) rounds of boosting rWkL with rEG, if DSPt is Massart, then with probability 1−O(1/(mT ))

over its internal randomness, rWkL(St) outputs a hypothesis ht with advantage at least γ against

DSPt , except with negligible probability in m over the choice of SPt .

Proof. The advantage of ht against DSPt is 1
2 E(x,y)∼DSPt [yh(x)] where

E
(x,y)∼DSPt

[yh(x)] = E
(x,y)∼DSPt

[yh(x) | x ∈X H] · Pr
x∼DSPt

x

[x ∈X H]

+ E
(x,y)∼DSPt

[yh(x) | x 6∈X H] · Pr
x∼DSPt

x

[x 6∈X H]

≥ α · (1− Pr
x∼DSPt

x

[x 6∈X H])+ E
(x,y)∼DSPt

[yh(x) | x 6∈X H] · Pr
x∼DSPt

x

[x 6∈X H]

= α− Pr
x∼DSPt

x

[x 6∈X H] · (α− E
(x,y)∼DSPt

[yh(x) | x 6∈X H]),

with all but probability O(1/(mT )), following from Lemma 4.8.13. From Lemma 4.8.14, we have

that if DSPt is Massart, then with all but negligible probability, either E(x,y)∼DSPt [yh(x) | x 6∈X H]≥ γ

or Prx∼DSPt
x
[x 6∈X H]< γ . Therefore h has advantage at least γ against DSPt with probability at least

1−O(1/(mT )), and the claim holds.
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4.8.4 Lower Bound for Black-Box Massart Boosting

Finally, we prove that no black-box boosting algorithm can boost rWkL to misclassification

error better than η(1+o(α)) with noticeable probability. At a high level, the proof idea is that any

black-box booster interacting with rWkL can be efficiently simulated, and so if a boosting algorithm

was able to achieve misclassification error noticeably better than η(1+o(α)) for { fs}, then there

must be a distinguisher against the pseudorandomness of this function family, and so such error

cannot be achievable via black-box boosting algorithms so long as pseudorandom functions exist.

Theorem 4.4.1 (Error Lower Bound Theorem). Let η ∈ [0,1/2),α ∈ (0,1/2−η). Let { fs} be

an η ′-biased pseudorandom function family with security parameter n, where η ′ = η(1+α/5).

Let η , α be at least inversely polynomially in n bounded away from 1/2. Then, for random s,

no efficient black-box boosting algorithm BlackBoxBoost with example bound m running for

T rounds, given query access to (α,γ(α)
def
= α/20)-weak learner rWkLm,T and poly(n,1/(1−

2η),1/γ) examples from example oracle EX(Un, fs,η(x)), can output a hypothesis with label error

at most η(1+o(α)). In particular, for all polynomials q, for all polynomial time black-box Massart

boosting algorithms BlackBoxBoost with query access to rWkL and example oracle EX, for n

sufficiently large, Prs∈Un

[
errUn, fs

0-1 (H)≤ η ′
]
< 1

q(n) , where H is the trained classifier output by

BlackBoxBoost.

Proof of Theorem 4.4.1. Let η ′ = η(1+ cα). Suppose that BlackBoxBoost achieves label error

better than η ′− ε , for some noticeable ε , and with noticeable probability δ . Then we can construct

a distinguisher A for fs as follows.

The distinguisher A simulates the interaction between the booster and rWkL, where the

samples for rWkL are drawn by rEG (as described in Lemma 4.8.7). Once the booster outputs

its final hypothesis H, A draws a set S of n/ε2 elements from the uniform distribution over X ,

restricted to examples on which it has not already queried its oracle. Because rWkL is being run on

samples drawn by rEG, A will only have simulated EX, and therefore queried its oracle, for the m

211



examples used by the booster itself, and therefore n/ε2 elements can be drawn efficiently and the

restricted distribution has only negligible statistical distance from Dx. The distinguisher A then

queries both H and its oracle on all elements of S, returning 1 if its oracle and H disagree on fewer

than an η ′− ε/2 fraction of the elements, and 0 otherwise.

To show that A has non-negligible advantage distinguishing fs from a truly random function,

we first consider the probability that A outputs 1 when given oracle access to a truly random

function, drawn from Fn,η ′ . Because A is checking H(x) 6= f (x) only on examples it has not

previously queried, once H is fixed, we have Prx∼U (X )[H(x) 6= f (x) | x not previously queried]≥

η ′. Therefore

Pr
F∼Fn,η ′

[A F ⇒ 1] = Pr
F∼Fn,η ′
S∼U (X )

[Pr
x∼S

[H(x) 6= F(x)]≤ η
′− ε/2]

≤ negl(n),

where the last line follows from a Chernoff-Hoeffding bound and the fact that A has drawn n/ε2

elements from X to check.

We now consider the probability that A returns 1 when given oracle access to pseudorandom

fs. We have assumed that our booster has noticeable probability δ of outputting a hypothesis H

with error less than η ′− ε , and from Lemma 4.8.12, we have that

Pr
s∼{0,1}n

[A fs ⇒ 1] = Pr
s∼{0,1}n

S∼U (X )

[Pr
x∼S

[H(x) 6= fs(x)]≤ η
′− ε/2]

≥ δ (1−negl(n)).

Since we have assumed δ is noticeable, and we have just shown that A has distinguishing

advantage
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Pr
s∼{0,1}n

[A fs ⇒ 1]− Pr
F∼Fn,η ′

[A F ⇒ 1]> δ/2,

the distinguisher A contradicts the pseudorandomness of fs, and therefore rWkL cannot be efficiently

boosted to construct a hypothesis with error noticeably better than η ′ with any noticeable probability.

4.9 Appendix: Application: Massart Learning of Unions of
High-Dimensional Rectangles

In this section, we exhibit a Massart weak learner for learning unions of rectangles and

apply our boosting algorithm.

Definition 4.9.1 (Rectangle). A rectangle B ∈ Rd is an intersection of inequalities of the form

x · v < t, where v ∈ {±e j : j ∈ [d]} and t ∈ R. We may write a rectangle as a set B of pairs (v, t),

that has size at most 2d.

We are interested in learning concepts f ∈ C that are indicator functions of unions of k

rectangles B1, . . . ,Bk. That is, the class C consists of functions:

f (x) =


+1 if x ∈ ∪i∈[k]∩(v,t)∈Bi [x · v < t]

−1 otherwise

We refer to the negation of ∪i∈[k]Bi as the “negative region”. Our weak learner aims to find if

possible a rectangle entirely contained in the negative region to get some advantage over a random

guess. To this end, we establish a structural result which shows that unless an overwhelming part of

the mass is positive, there always exists a rectangle with non-trivial mass that is contained in the

negative region. Moreover this rectangle has a lot of structure as it consists of at most k inequalities.
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Lemma 4.9.2 (Structural result). If the negative region has probability more than ε , there exists a

rectangle contained in the negative region that has mass at least ε/(2d)k. This rectangle can be

written as an intersection of at most k inequalities.

Proof. The negative region can be written as a union of (2d)k rectangles B′ with at most k inequali-

ties

∪B′∈B1×B2×···×Bk ∩(v,t)∈B′ [x.v≥ t]

by choosing which inequality is not satisfied in every rectangle.

Since the union of the rectangles covers is exactly the negative region and has mass at least

ε , at least one rectangle B′ has probability more than ε/(2d)k.

4.9.1 Weak Learner

Our weak learner exploits the structural result of Lemma 4.9.2 to obtain an advantage

over a random guess. If the probability mass is overwhelmingly positive, then the hypothesis

h(x) = +1 must correlate well with the observed labels. On the contrary, if there is sufficient

negative mass, there must exist a rectangle where predicting h(x) =−1 correlates with the labels of

the examples within that rectangle. This idea is presented in pseudo-code in WkLbox and formalized

in Lemma 4.9.3 which gives the guarantees of our weak learner.
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Algorithm 23. WkLboxEX( f ,Dx,η(x))(d,k,α), Massart noise weak learner for unions of rectangles

S← k O(d)k

α2 examples from EX

S−← number of these examples labeled −1

if |S
−|
|S| <

α

2 then

return h =+1 // the constant 1 hypothesis

else

for all Rectangles B = choice of k examples and k dimensions do

SB←{(x,y) ∈ S|x ∈ B}

S+B ←{(x,y) ∈ S|x ∈ B,y =+1}

Bbest ← B that minimizes |S+B |/|SB| and has |SB|/|S|> α

8(2d)k .

Let z ∈ {±1} be the best most popular label in S\SBbest

Hypothesis h(x) =


−1 x ∈ Bbest

z otherwise
return h

Lemma 4.9.3. The algorithm WkLbox is a (α, α2

O(d)k )-Weak Learner for unions of k rectangles in d

dimensions. It requires k O(d)k

α2 samples and runs in time kkO(d)k2+1

α2k .

Proof. The algorithm starts by drawing drawing a set S of N = k O(d)k

α2 examples from EX . Since the

VC-dimension of rectangles defined by k inequalities is O(k) this guarantees that, with probability

at least 2/3, for any rectangle B, the empirical probabilities computed over the sample S are close

to actual ones:

1. |Pr[x ∈ B]−PrS[x ∈ B]| ≤ α/O(d)k

2. |Pr[y =+1 and x ∈ B′]−PrS[y =+1 and x ∈ B′]| ≤ α/O(d)k
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3. |Pr[y =−1]−PrS[y =−1]| ≤ α/O(d)k ≤ α

4

Therefore, in the case that |S−|/|S|< α

2 , we have that Pr[y=−1]< 3
4α . Thus, the hypothesis

h =+1 gets error at most 3
4α +(1

2 −α)≤ 1
2 −

α

4 .

Otherwise, there is at least α

4 probability in the negative region. By Lemma 4.9.2, there

is a rectangle B∗ defined by k inequalities that is contained entirely in the negative region and

has probability at least α

4(2d)k . For this rectangle B∗ it holds that Pr[x ∈ B∗] ≥ α

4(2d)k and Pr[y =

+1|x ∈ B] ≤ 1
2 −α . This means that within the sample S it holds that PrS[x ∈ B∗] > α

8(2d)k and

PrS[y =+1|x ∈ B∗]≤ 1
2 −

α

2 . Thus, Bbest will also satisfy PrS[y =+1|x ∈ Bbest ]≤ 1
2 −

α

2 . By the

closeness guarantee of the empirical distribution, we get that Pr[y = +1|x ∈ Bbest ] ≤ 1
2 −

α

4 and

Pr[x ∈ Bbest ]>
α

9(2d)k .

We now bound the error of the hypothesis

h(x) =


−1 x ∈ Bbest

z otherwise

Within the region Bbest , it achieves error at most 1
2 −

α

4 , while outside of Bbest , the error is at most.

1
2 +

α

O(d)k . Thus, the total error is at most 1
2 −

α2

O(d)k given that Pr[x ∈ Bbest ]>
α

9(2d)k .

The main computational step of the algorithm is searching over all rectangles with k

inequalities. It suffices to only consider rectangles with samples as end points, thus the total runtime

of the weak-learner is O(dN)k = kkO(d)k2+1

α2k as for every inequality there are 2d choices for the

direction v and N choices for the threshold t.

4.9.2 Putting Everything Together

Lemma 4.9.3 shows that WkLbox is an (α, α2

O(d)k )-Weak Learner for unions of k high-

dimensional rectangles in d dimensions. Combined with Theorem 4.3.5 we get that:
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Theorem 4.9.4. There exists an algorithm that learns unions of k rectangles in d dimensions with

Massart noise bounded by η , achieving misclassification error η +ε for ε > 0. The total number of

samples is kdO(k)

η2ε8 and the total running time is 1
η3

(
kdk

ε

)k+O(1)
.

Proof. Follows by a direct application of the weak learner to Theorem 4.3.5 for α = ε/8 and

γ = ε2

O(d)k .

4.10 Glossary of Symbols

Problem Statement

X A large finite domain

Dx A distribution over X

C A class of concepts from X to {±1}

f The unknown function in C to be learned

η(x) The Massart noise function

η The Massart noise parameter, an upper bound on the Massart noise function

D = Mas{ f ,Dx,η(x)} A Massart distribution over X ×{±1}

EXMas( f ,Dx,η(x)) The noisy example oracle

Weak Learners

WkL The (α,γ)-weak learner to be boosted

h A hypothesis returned by the weak learner

α The Massart noise tolerance of the weak learner (1/2−α)
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γ The advantage of the weak learner

S A sample, i.e., a collection of labeled examples, S ∈ (X×{±1})m

mWkL The sample complexity of the weak learner

δWkL The failure rate of the weak learner

Boosting Algorithm

η + ε The target error rate of the boosting algorithm (PAC-learning parameter)

δ The target failure rate of the boosting algorithm (PAC-learning parameter)

G : X → R Determines the final classifier. Updated in each round of boosting

λ The learning rate of the boosting algorithm, chosen Θ(γ).

T The number of rounds of boosting (and weak learner queries)

t ∈ [T ] A single round of boosting, commonly used as a subscript

Samp,Est-Density,OverConfident The subroutines of boosting algorithm Massart-Boost

Boosting Algorithm – Reweighting Distributions

µ : X×{±1}→ [0,1] A “measure” function used to determine rejection sampling probabilities

Dµ The distribution induced by rejection sampling from EXMas( f ,Dx,η(x)) according to µ

d(µ) The density of µ , d(µ) = E(x,y)∼D[µ(x,y)]

κ The density below which the algorithm terminates. Needs to be larger than η for our potential

argument. We want κ ≈ η , since the algorithm cannot get error better than κ + ε .
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X r The set of “risky” x ∈X , i.e. {x ∈X | |G(x)| ≥ s}. The weak learner is never given examples

from X r (i.e. µ(x,y) = 0 if x ∈X r), to ensure that the induced distribution Dµ is a Massart

distribution with noise rate (1/2−α).

X s The set of “safe” x ∈X , i.e. {x ∈X | |G(x)|< s}.

s = log
(

1−η

η+c

)
The cutoff between risky and safe regions of G(x)

c = 4ηα

1−2α
A constant used to limit the noise rate of reweighted distributions

Boosting Algorithm – Analysis

Φ The global potential function E(x,y)∼D[φ(x,y)]

φ(x,y) The potential function of an example (x,y)

M : X → [0,1] The “base” measure function, used to define both φ(x,y) and µ(x,y)

Lower Bound

rWkL The adversarial, unboostable, “rude” weak learner

BlackBoxBoost A black-box boosting algorithm. For each weak learner query, BlackBoxBoost

generates a sampling procedure SP and passes it to the example generator

SP A sampling procedure, i.e. an efficient routine to generate a sample S using EXMas( f ,Dx,η(x))

DSP The distribution induced by SP and EXMas( f ,Dx,η(x))

EG An example generator. Generates a sample S ∼i.i.d. DSP using SP, and passes S to the weak

learner. Resolves a type mismatch between boosting algorithms (which generate a distribution

to query the weak learner) and weak learners (which take as input a sample drawn from a

distribution)
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hEG An “honest” example generator. Runs SP without any alterations.

rEG A “rude” example generator. Runs SP, but simulates sampling from Mas{ f ,Dx,η(x)} without

using EXMas( f ,Dx,η(x)). Used in conjunction with rWkL in the lower bound construction

η ′ The error lower bound parameter, η ′ = η(1+Θ(α))

ρ The fraction of examples that are noisy in the lower bound construction.

OPT The average noise rate E(x,y)∼D[η(x)]. In the lower bound construction, OPT = ρη

X H The set of heavy-hitters of distribution D

hv The canonical v-hypothesis of rWkL.
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Chapter 5

Stability is Stable: Connections between
Replicability, Privacy, and Adaptive Gener-
alization

The notion of replicable algorithms was introduced in [ILPS22] to describe randomized

algorithms that are stable under the resampling of their inputs. More precisely, a replicable algorithm

gives the same output with high probability when its randomness is fixed and it is run on a new

i.i.d. sample drawn from the same distribution. Using replicable algorithms for data analysis can

facilitate the verification of published results by ensuring that the results of an analysis will be the

same with high probability, even when that analysis is performed on a new data set.

In this work, we establish new connections and separations between replicability and stan-

dard notions of algorithmic stability. In particular, we give sample-efficient algorithmic reductions

between perfect generalization, approximate differential privacy, and replicability for a broad class

of statistical problems. Conversely, we show any such equivalence must break down computa-

tionally: there exist statistical problems that are easy under differential privacy, but that cannot be

solved replicably without breaking public-key cryptography. Furthermore, these results are tight:

our reductions are statistically optimal, and we show that any computational separation between DP

and replicability must imply the existence of one-way functions.

Our statistical reductions give a new algorithmic framework for translating between notions
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of stability, which we instantiate to answer several open questions in replicability and privacy.

This includes giving sample-efficient replicable algorithms for various PAC learning, distribution

estimation, and distribution testing problems, algorithmic amplification of δ in approximate DP,

conversions from item-level to user-level privacy, and the existence of private agnostic-to-realizable

learning reductions under structured distributions.
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5.1 Introduction

Replicability is the principle that the findings of an empirical study should remain the same

when it is repeated on new data. Despite being a pillar of the scientific method, replicability is

extremely difficult to ensure in today’s complex data generation and analysis processes. Ques-

tionable research practices including misapplication of statistics, selective reporting of only the

findings that appear most statistically significant, and the formulation of research hypotheses after

the results are already known have been identified as causes of an ongoing “crisis of replicability”

across the empirical sciences. Toward formulating solutions in the context of machine learning and

algorithmic data analysis, Impagliazzo, Lei, Pitassi, and Sorrell [ILPS22] recently put forth a new

definition of replicability for statistical learning algorithms.1

Definition 5.1.1. A randomized algorithm A : X n→ Y is ρ-replicable if for every distribution D

over X , we have

Pr[A(S1;r) = A(S2;r)]≥ 1−ρ,

where S1,S2 ∈X n are independent sequences of i.i.d. samples from D, and r represents the coin

tosses of the algorithm A.

That is, an algorithm (capturing an end-to-end data analysis process) is replicable if with

high probability over the choice of two independent samples from the same distribution, it produces

exactly the same output. If one research team shares both their replicable analysis process (A) and

the random choices made along the way (r), then another research team can independently verify

their conclusions by performing the same analysis on a fresh dataset.

Replicability is an extremely strong stability constraint to place on an algorithm. Informally,

an algorithm is stable if its output is insensitive to small changes to its input. Nevertheless,

replicability is achievable for many fundamental data analysis tasks, including statistical query
1[ILPS22] stated this definition under the name “reproducibility.” See Section 5.2.6 for a discussion of why we refer

to it as “replicability” instead.
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learning, heavy hitter identification, approximate median finding, and large-margin halfspace

learning [ILPS22, GKM21].

Replicability is not the first definition of algorithmic stability aimed at ensuring the utility

and safety of modern data analysis. Others have played central roles in relatively mature areas

such as differential privacy and adaptive data analysis. Some of the aforementioned replicable

algorithms were, in fact, motivated or inspired by differentially private counterparts. Is there

a systematic explanation for this? What can we learn about the capabilities and limitations of

replicable algorithms by relating replicability to other notions of algorithmic stability?

Let us briefly recall the types of algorithmic stability that arise in these other areas:

Differential privacy.

A randomized algorithm is differentially private [DMNS16] if changing a single input record

results in a small change in the distribution of the algorithm’s output. When each input record

corresponds to one individual’s datum, differential privacy guarantees that nothing specific to any

individual can be learned from the output of the algorithm. (See Section 5.2.4.) Differential privacy

comes with a rich algorithmic toolkit and understanding of the feasibility of fundamental statistical

tasks in query estimation, classification, regression, distribution estimation, hypothesis testing, and

more.

Generalization in adaptive data analysis.

Generalization is the ability of a learning algorithm to reflect properties of a population,

rather than just properties of a specific sample drawn from that population. Techniques for provably

ensuring generalization form a hallmark of theoretical machine learning. However, generalization is

particularly difficult to guarantee in settings where multiple analyses are performed adaptively on the

same sample. Traditional notions of generalization do not hold up to downstream misinterpretation

of results. For example, a classifier that encodes detailed information about its training sample

in its lower order bits may generalize well, but can be used to construct a different classifier that

224



behaves very differently on the sample than it does on the population. Interactive processes such

as exploratory data analysis or feature selection followed by classification/regression can ruin the

independence between the training sample and the method used to analyze it, invalidating standard

generalization arguments.

Adaptivity in data analysis has been identified as one contributing factor to the replication

crisis, and imposing stability conditions on learning algorithms offers solutions to this part of the

problem. A variety of such stability conditions have been studied [DFH+15a, DFH+15b, BNS+21,

RZ16, CLN+16, BF16, RRT+16, BMN+18, LS19, SZ20], each offering distinct advantages in

terms of the breadth of their applicability and the quantitative parameters achievable. Two specific

notions play a central role in this work. The first is perfect generalization [CLN+16, BF16], which

ensures that whatever can be inferred from the output of a learning algorithm when run on a sample

S could have been learned just from the underlying population itself:

Definition 5.1.2. An algorithm A : X n→ Y is (β ,ε,δ )-perfectly generalizing if, for every distri-

bution D over X , there exists a distribution SimD such that, with probability at least 1−β over S

consisting of n i.i.d. samples from D, and every set of outcomes O ⊆ Y ,

e−ε(PrSimD [O]−δ )≤ Pr[A(S) ∈ O]≤ eεPrSimD [O]+δ . (5.1)

The second is max-information [DFH+15a] which constrains the amount of information

revealed to an analyst about the training sample:

Definition 5.1.3. An algorithm A : X n→ Y has (ε,δ )-max-information with respect to product

distributions if for every set of outcomes O ⊆ (Y ×X n) we have

Pr[(A(S),S) ∈ O]≤ eεPr[(A(S),S′) ∈ O]+δ ,

where S and S′ are independent samples of size n drawn i.i.d. from an arbitrary distribution D over
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X .

As with differential privacy, both perfect generalization and max-information are robust to

post-processing.

Each stability definition described above is tailored to model a distinct desideratum. At

first glance, they may all appear technically incomparable. For instance, differential privacy is

stricter than the other definitions in that it holds in the worst case over all input datasets without

any assumptions on the data-generating procedure. On the other hand, it is weaker in that it only

requires insensitivity to changing one input record, rather than to resampling the entire input dataset

as in max-information, perfect generalization, or replicability. Meanwhile, differential privacy,

max-information, and perfect generalization quantify the sensitivity of the algorithm’s output in a

weaker way than replicability; the former three notions only require that the distributions on outputs

are similar, whereas replicability demands that precisely the same output realization is obtained

with high probability.

Nevertheless, the (surprising!) technical connections between these definitions have enabled

substantial progress on the fundamental questions in their respective areas. For example, it was

exactly the adaptive generalization guarantees of differential privacy that kickstarted the framework

of adaptive data analysis from [DFH+15b]; the definition of max-information was subsequently

introduced [DFH+15a] to unify existing analyses based on differential privacy and description

length bounds. As another illustration, variants of replicability were introduced in [BLM20,

GGKM21, GKM21] for purely technical reasons, as it was observed that such algorithms could be

immediately used to construct differentially private ones. This connection was essential in proving

the characterization of private PAC learnability in terms of the Littlestone dimension from online

learning [ALMM19, BLM20]. In fact, this characterization shows, that, in principle a private PAC

learner using n samples can be converted to a replicable PAC learner using a number of samples

that is an exponential tower of height n, but it is non-constructive and does not suggest what such a
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learner looks like in general.

5.1.1 Our Main Results

Equivalences

Our main result is a complete characterization of the relationships between these quantities.

We prove that all four central stability notions — replicability, differential privacy, perfect general-

ization, and bounded max-information w.r.t. product distributions — are equivalent to one another

via constructive conversions that incur at most a near-quadratic overhead in sample complexity.

Our equivalences apply to an abstract and broad class of statistical tasks that capture learning

from i.i.d. samples from a population. An instance of such a task is obtained by considering a

distribution D from a pre-specified family of distributions. Given i.i.d. samples from D, the goal

of a learning algorithm is to produce an outcome that is “good” for D with high probability. This

formulation of a statistical task captures problems such as PAC learning, where a sample from

D is a pair (x, f (x)) ∈X ×{0,1} where x is drawn from an arbitrary marginal distribution over

X , and f is an arbitrary function from a fixed concept class H. A “good” outcome for such a

distribution D is a hypothesis h : X →{0,1} that well-approximates f on D. Many other objectives

such as regression, distribution parameter estimation, distribution learning, hypothesis testing, and

confidence interval construction can be naturally framed as statistical tasks. (See Section 5.6.4 for

other examples.)

Figure 5.1 illustrates the known relationships between the various stability notions that hold

with respect to any statistical task.

From these equivalences we obtain the following consequences, resolving several open

questions.
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(0.1)-replicability (ε,δ )-differential privacy

(ε,δ )-max-information
w.r.t. product distributions

(δ ,ε,δ )-one-way
perfect generalization

n 7→ n · log(1/δ )
ε

, Thm. 5.3.1 [GKM21]

n 7→ n2

Cor. 5.3.13 [RRST16]

Lem. 5.3.14

n 7→ n
Thm. 5.3.17

n 7→ n · poly log(1/ε,1/δ )
ε2

Thm. 5.3.19

Figure 5.1. Algorithmic relationships among replicability, differential privacy, max information,
and perfect generalization.
The solid arrow from A to B means that every algorithm satisfying A also satisfies B. A dashed
arrow means that for every statistical task, a solution satisfying A can be computationally efficiently
transformed into a solution satisfying B with the stated blowup in sample complexity. The thin
dotted arrow means an explicit transformation exists, but is not always computationally efficient,
and assumes the outcome space is finite.
This figure suppresses constant factors everywhere and polynomial factors in δ , assumes ε is below
a sufficiently small constant, and assumes that δ is a sufficiently small inverse polynomial in n.

Sample-efficient replicable algorithms.

Any differentially private algorithm solving a statistical task (with a finite outcome space)

can be converted into a replicable algorithm solving the same task with a near-quadratic blowup in

its sample complexity. Thus, the wealth of research on private algorithm design can be brought to

bear on designing replicable algorithms. We illustrate this algorithmic paradigm by describing new

replicable algorithms for some PAC learning, distribution parameter estimation, and distribution

testing problems in Section 5.6.4.
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Equivalence between perfect generalization and differential privacy.

For simplicity, the relationships summarized in Figure 5.1 are stated in terms of a one-way

variant of perfect generalization, where only the inequality on the right of (5.1) is required to hold.

But the original two-way definition turns out to be statistically equivalent for tasks with a finite

outcome space. This is because a one-way perfectly generalizing algorithm can be converted to

a replicable algorithm using Theorem 5.3.17, and Theorem 5.3.19 actually yields the stronger

conversion back to a two-way perfectly generalizing algorithm (See Theorem 5.6.3). Thus, an

(ε,δ )-differentially private algorithm (with a finite outcome space) can be converted to a perfectly

generalizing one solving the same statistical task with a near quadratic blow-up in sample complexity.

This resolves an open question of [CLN+16]. Their work also gave a conversion from perfectly

generalizing algorithms to differentially private ones with no sample complexity overhead, and

while their transformation preserves accuracy for (agnostic) PAC learning, it is not clear how to

analyze it for general statistical tasks. Our conversion from perfect generalization to replicability

and then to differential privacy holds for all statistical tasks with a finite outcome space.

Converting item-level to user-level privacy.

Consider a “user-level” learning scenario in which n individuals each hold m training exam-

ples drawn i.i.d. from the same distribution. When is (ε,δ )-differentially private learning possible

if we wish to guarantee privacy with respect to changing all of any individual’s samples at once?

Ghazi, Kumar, and Manurangsi [GKM21] showed that this is possible when n≥ O(log(1/δ )/ε)

and the task admits a replicable learner. For the special case of PAC learning a concept class H,

they argued that this implies a user-level private learning algorithm whenever H is privately PAC

learnable with respect to changing a single sample. They posed the open problem of extending this

result beyond PAC learning, e.g., to private regression [JKT20, Gol21]. Our conversion from any

differentially private algorithm to a replicable one implies that such a transformation is possible for

any statistical task with a finite outcome space (Section 5.6.1). Moreover, one can always take each
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indvidual’s number of samples m to be nearly quadratic in the sample complexity of the original

item-level private learner.

Amplifying differential privacy parameters.

While almost all (ε,δ )-differentially private algorithms enjoy a mild ∝ log(1/δ ) dependence

in their sample complexity on the parameter δ , it was not known how to achieve this universally, say

by amplifying large values of δ to asymptotically smaller ones. [BLM20] showed that for private

PAC learning, such amplification is possible in principle, but posed the open question of giving an

explicit amplification algorithm. By converting an (ε,δ )-differentially private algorithm with weak

parameters to a replicable one, and then back to a differentially private one with strong parameters,

we resolve this question for the general class of statistical tasks with a finite outcome space, and

with a much milder sample complexity blowup (Section 5.6.2).

Agnostic-to-realizable reductions for distribution-family learning.

[HKLM22] introduced a simple and flexible framework for converting realizable PAC

learners to agnostic learners without relying on uniform convergence arguments. The framework

applies to diverse settings such as robust learning, fair learning, partial learning, and (as observed in

this work) replicable learning, with differential privacy providing a notable exception.2 While an

agnostic-to-realizable reduction for private PAC learning is known [BNS16b, ABMS20], it relies on

uniform convergence and is only known to hold in the distribution-free PAC model. By converting

a realizable private learner to a realizable replicable learner, then to an agnostic replicable learner,

and back to an agnostic private learner, we obtain a reduction that works in the absence of uniform

convergence (Section 5.6.3). In particular, this reduction applies to the distribution-family learning

model, where one is promised that the marginal distribution on unlabeled examples comes from a

pre-specified family of distributions.

2We note the technique we introduce to adapt [HKLM22] to the replicable setting has no clear translation to the
private setting.
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Separating Stability: Computational Barriers and the Complexity of Correlated Sampling

All of the transformations appearing in Figure 5.1 preserve computational efficiency, with

the lone exception of the transformation from perfectly generalizing algorithms to replicable ones.

This transformation makes use of the technique of correlated sampling from the distribution of

outputs of a perfectly generalizing algorithm A when run on a fixed sample S (elaborated on more

in Sections 5.1.2 and 5.2.5). This step can be explicitly implemented via rejection sampling from

the output space of A, with the rejection threshold determined by the probability mass function of

A(S), but in general it is not computationally efficient.

We show that under cryptographic assumptions, this is inherent (Section 5.4). Specifically,

we show that under standard assumptions in public-key cryptography, there exists a statistical task

that admits an efficient differentially private algorithm, but does not have any efficient replicable

algorithm. The task is defined in terms of a public-key encryption scheme with the following

rerandomizability property: Given a ciphertext Enc(pk,b), there is an efficient algorithm producing

a uniformly random encryption of b. Fixing such a rerandomizable PKE, the statistical task is as

follows. Given a dataset consisting of random encryptions of the form Enc(pk,b) where pk is a

fixed public key and b ∈ {0,1} is a fixed bit, output any encryption of b.

One can solve this problem differentially privately, essentially by choosing a random

ciphertext from the input dataset and rerandomizing it. On the other hand, there is no efficient

replicable algorithm for this task. If there were, then one could use the public key to produce

many encryptions of 0 and 1 and run the replicable algorithm on the results to produce canonical

ciphertexts c0 and c1, respectively. Then, given an unknown ciphertext, one could repeatedly

rerandomize it, run the replicable algorithm on the results, and compare the answer to c0 and to c1

to identify the underlying plaintext.

We also show that cryptographic assumptions are necessary even to separate replicability

from perfect generalization. Recalling again that the bottleneck in computationally equating the
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two notions is in implementing correlated sampling, we show in Section 5.4.2 that if one-way

functions do not exist, then correlated sampling is always tractable. In addition to addressing a

natural question about the complexity of correlated sampling, this shows that function inversion

enables an efficient transformation from perfectly generalizing algorithms into replicable ones. (See

Section 5.2.5 for more discussion.)

Separating Stability: Statistical Barriers

Our equivalences show that the sample complexities of perfectly generalizing and replicable

learning are essentially equivalent. Moreover: (1) An approximate-DP algorithm can be converted

to a perfectly generalizing/replicable algorithm with near-quadratic blowup; and (2) A perfectly

generalizing/replicable algorithm can be converted to an approximate-DP one using roughly the

same number of samples. We prove that both of these conversions are optimal by showing:

1. Quadratic separations between differential privacy and (perfect generalization, repli-

cability). We first consider the problem of estimating the parameters of a product of d

Bernoulli distributions. By simply taking the empirical mean of an input dataset, this problem

can be solved using O(logd) without any stability constraints. However, with differential

privacy, it is known that Θ̃(
√

d) samples are necessary and sufficient. By adapting the “fin-

gerprinting” method underlying these privacy lower bounds [BUV18, DSS+15, BSU19] to

perfect generalization, we prove that any perfectly generalizing or replicable algorithm for

this problem requires Ω̃(d) samples (Section 5.5.1).

By reducing from a variant of this one-way marginals problem, we also show a general

lower bound for replicable agnostic learning. Namely, we show that every concept class

H requires Ω̃(VC(H)2) samples. For concept classes of maximal VC dimension VC(H) =

log |H|, this too gives a quadratic separation between replicable learning and both private and

unconstrained learning (Section 5.5.2).
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2. No separation between differential privacy and (perfect generalization, replicability).

Complementing our lower bounds, we also show that every finite class H can be replicably

PAC learned (in the realizable setting) to error α with sample complexity ÕH(1/α) (Sec-

tion 5.5.3). Up to logarithmic factors, this matches the learning rate achievable for both

unconstrained and differentially private learning. Our learner works by selecting a random

threshold v, and selecting a random concept from H whose error with respect to the sample is

at most v. A more involved random thresholding strategy also yields an agnostic learner with

sample complexity ÕH(1/α2).

5.1.2 Overview of Proofs of Equivalences

Perfect generalization is equivalent to replicability.

Recall that an algorithm is replicable if it is likely to produce exactly the same output when

run on two independent samples from any given population. Replicability appears to be a dramatic

strengthening of perfect generalization, which only requires the distributions of A(S) and A(S′) to

be statistically close. Nevertheless, we prove that perfectly generalizing algorithms can always be

converted to replicable ones whenever the output space Y is finite (Theorem 5.3.17). This can

be done via a primitive called correlated sampling (See Section 5.2.5). A correlated sampling

algorithm for a class of distributions P = {P} is a procedure CS(P,r) such that 1) CS(P,r) produces

a sample distributed according to P when provided a uniformly random input r, and 2) Whenever

P,Q ∈P satisfy dTV (P,Q) ≤ η , we have Pr[CS(P,r) =CS(Q,r)] ≥ 1−O(η). That is, applying

correlated sampling to two similar distributions results in the same output with high probability –

exactly what is needed for replicability. We actually prove a stronger theorem, showing that the

larger class of one-way perfectly generalizing algorithms (where only the right-hand inequality in

5.1 holds) are replicable via correlated sampling.

Conversely, we show how to convert replicable algorithms to perfectly generalizing ones

(Theorem 5.3.19). While a ρ-replicable algorithm is automatically also a (β = O(ρ),ε = 0,δ =
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O(ρ))-perfectly generalizing one, these parameters are too weak for applications where one wants to

take β ,δ to be inverse polynomial in the dataset size n (e.g., to prove the lower bounds in Section 5.5).

To obtain a perfectly generalizing algorithm with stronger parameters, we repeatedly run the

replicable algorithm using k = O(log(1/δ )) different sequences of coin tosses r1, . . . ,rk, and using

Õ(1/ε2) independent samples for each sequence of coin tosses. Using the exponential mechanism

from differential privacy [MT07], we select an outcome yi that appears approximately the most

frequently amongst these repetitions in a manner that ensures (β = δ ,ε,δ )-perfect generalization.

This strategy allows us to obtain inverse polynomial β ,δ parameters with only a logarithmic

multiplicative overhead in the number of samples.

Bounded max-information implies perfect generalization. In Lemma 5.3.14, we show that

bounded max-information implies one-way perfect generalization with similar parameters. Namely,

if an algorithm A has (ε,δ )-max-information with respect to product distributions, then it is also

(
√

δ ,2ε,
√

δ )-one-way perfectly generalizing. The idea is to take the simulator distribution SimD

to be the distribution of A(S′), where the randomness is taken over both the coin tosses of A and

the randomness of a sample S′ ∼ D. A similar argument is implicit in [BF16, Proof of Lemma 4.5].

Then by combining Theorems 5.3.17 and 5.3.19, it follows that bounded max-information also

implies perfect generalization for finite outcome spaces (Theorem 5.6.3).

Replicability implies differential privacy.

In Theorem 5.3.1 we show that replicability implies differential privacy. Given a replicable

algorithm, one can run it k = O(log(1/δ )/ε) times using the same sequence of coin tosses, but

on independent samples, producing outcomes y1, . . . ,yk. Replicability ensures that most of these

outcomes are the same with high probability, and so this common outcome can be selected in a

standard differentially private way. This argument appears in the differential privacy literature as a

conversion from “globally stable” and “pseudo-globally stable” learners to private ones [BLM20,

GGKM21, GKM21]. Our presentation of Theorem 5.3.1 includes an additional amplification step
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that avoids union bounding over correctness, making the conversion suitable for a broader range of

parameters.

Differential privacy implies bounded max-information. The final conversion in Figure 5.1 is

from differentially private algorithms to algorithms with bounded max-information. This argument

is implicit in [RRST16] and we show how it follows from their work here (Corollaries 5.3.12

and 5.3.13).

5.1.3 Further Discussion of Related Work

Several elements of our approach were inspired by Ghazi, Kumar, and Manurangsi’s study

of the relationship between user-level and item-level differentially private learning [GKM21]. They

introduced a notion of “pseudo-global stability” that is essentially the same as replicability, and

showed that it implies differential privacy. Correlated sampling also played a crucial role in their

work by allowing individuals to use shared randomness to reach consensus on a learned hypothesis.

In fact, it provided a key step in their conversion from “list globally stable” algorithms [GGKM21]

(learning algorithms that output a short list of hypotheses, one of which is almost guaranteed to be

canonical for the given distribution) to pseudo-globally stable ones.

Stability has a long history as a tool for ensuring generalization. Early work [RW78,

DW79a, BE02, SSSSS10] showed that the stability of a learning algorithm with respect to a specific

loss function could ensure strong generalization guarantees with respect to that loss. A more

recent literature has focused on stability notions that are not tied to a specific loss, and which

ideally are robust under post-processing and adaptive composition. This includes understanding

the generalization guarantees of differential privacy [DFH+15a, DFH+15b, BNS+21, RRST16,

RRS+20, ZH19, JLN+20] and other constraints on the information-theoretic relationship between

the input and output of a learning algorithm [RZ16, BMN+18, XR17, RRT+16, LS19, SZ20]. A

related line of work [CLN+16, BF16, NSS+18] considers more “semantic” notions of stability,

defining it in terms of the difficulty of inferring properties specific to the sample rather than of

235



the underlying distribution. Perfect generalization, one of the main definitions we study in this

work, was introduced by [CLN+16] and is a special case of typical stability that was introduced in

independent work of Bassily and Freund [BF16].

Independent of this work, [KKMV23] study similar relationships between notions of sta-

bility. They focus on the PAC-learning setting, where they show a statistical equivalence between

differential privacy, replicability, and a notion called “TV-indistinguishability” which can be thought

of as a special case of perfect generalization with ε = 0. To clarify the differences between our

work and [KKMV23], first recall how we obtain replicability from differential privacy:

• First, we exploit existing connections between privacy and bounded max-information from

[RRST16] to obtain an algorithm with bounded max-information from a differentially private

one.

• We prove that bounded max-information implies perfect generalization.

• We then show that we can obtain a replicable algorithm from a perfectly generalizing one by

applying correlated sampling to its distribution over outputs. The relevant output distribution

is induced by fixing an input sample of the perfectly generalizing algorithm and redrawing its

internal randomness.

Recall that the correlated sampling procedure may not be efficient, and that we assume the

output domain of the differentially private algorithm is finite.

The work of [KKMV23] follows a different approach. First, they start from a differentially

private PAC learner, rather than a differentially private algorithm for a general statistical task, and

factor through TV-indistinguishability and Littlestone dimension. More specifically:

• They first observe a similar equivalence of TV-indistinguishability and replicability for general

statistical tasks.
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• They then show that a private PAC learner implies the existence of a TV-indistinguishable

learner, leveraging results from [ALMM19] showing that private PAC learning implies finite

Littlestone dimension, and results from [GKM21, GGKM21] showing that finite Littestone

dimension implies list global-stability.

Our approach gives us a constructive procedure for converting a private algorithm for a

general statistical task into a replicable algorithm, so long as the private algorithm has finite range.

Our transformations induce a modest sample complexity increase, resulting in a replicable algorithm

with sample complexity n2, given a private learner with sample complexity n. By contrast, the

results of [KKMV23], while non-constructive, apply to countably infinite domains (and therefore

to some uncountably infinite ranges). However, their results go through Littlestone dimension,

which may be an exponential tower in n, and so they obtain sample complexity bounds which are

an exponential tower in n as well.

5.1.4 Open Problems

We highlight several directions and open problems for future work.

1. Is a transformation from (one-way) perfectly generalizing algorithms to replicable algorithms

possible for infinite output spaces in general? While correlated sampling introduces no sample

complexity overhead in terms of the output space, it is only known to be possible when the

output space is finite or the class of distributions to be sampled from is structured. (E.g., the

distributions in the class all have uniformly bounded Radon-Nikodym derivative with respect

to some fixed base measure).3 In independent work, [KKMV23] make progress towards this

goal by giving a transformation from TV-indistinguishability to replicability when there are

only countably many options for the TV-indistinguishable algorithm {A(S)}S∈Xn . It follows

3Formally, such a case would fall into a restricted notion of correlated sampling over a subset of distributions, similar
to the multiple coupling of [AS19].

237



from Lemma 5.3.8 that (β ,ε,δ )-one-way perfect generalization implies (4ε +2δ +2β )-TV

indistinguishability, and so the result of [KKMV23] gives the following corollary.

Corollary 5.1.4. Fix n ∈N, β ,ε,δ ∈ (0,1]. Let X be a countable domain and A : X n→Y

be a (β ,ε,δ )-one-way perfectly generalizing algorithm for a statistical task. Then there

exists an algorithm A′ : X n→ Y that is
(

2ρ

1+ρ

)
-replicable for ρ = 4ε +2δ +2β , and for

all S ∈X n, A(S) = A′(S).

Whether a transformation exists for general measure spaces remains open.4 In Section 5.6.3

we discuss the list heavy-hitters problem that may be a candidate for separating perfect

generalization from replicability over infinite output spaces.

2. What are the minimal cryptographic assumptions under which a computational separation

between replicability and differential privacy exists? Our results in Section 5.4 show that

one-way functions are necessary, while public-key assumptions are sufficient.

3. [ILPS22, Lemma A.7] showed that replicable algorithms compose adaptively. That is, a

sequence of k adaptively chosen ρ-replicable algorithms yields a transcript that is O(kρ)-

replicable. One way to interpret this result is as follows: Given a sequence of k analyses

that are each (0.01)-replicable using a sample of size n, one can amplify their individual

replicability parameters to O(1/k) at the expense of increasing their sample complexity to

O(k2n). This yields a (0.01)-replicable algorithm for performing all k analyses at a sample

cost of O(k2n).

Our conversions between replicability and differential privacy yield a different tradeoff,

at least for simulating non-adaptive composition. Given k analyses that are each (0.01)-

replicable using a sample of size n, one can convert them to Õ(1/
√

k)-differentially private

4We note that in the PAC-setting one can resolve this issue via factoring through Littlestone Dimension and
[ILPS22]’s heavy-hitters, but this results in tower sample complexity.
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algorithms each using a sample of size Õ(
√

kn). “Advanced” composition of differential

privacy [DRV10] yields an (0.01,δ )-differentially private algorithm using Õ(
√

kn) samples,

which can then be turned back into a (0.01)-replicable algorithm using Õ(kn2) samples.

What is the optimal sample cost for conducting, or at least statistically simulating, the

(adaptive) composition of k replicable algorithms? Is it possible to do so at a cost of O(kn)

samples?

4. In Section 5.5.3, we give a direct replicable algorithm for the task of realizable PAC learning

of finite classes with sample cost inverse linear in the accuracy parameter α . (As opposed to

inverse quadratic, which is what applying the reduction from replicability to approximate DP

gives – see Theorem 5.6.13 and the following discussion.) Are there other natural problems for

which there are (perhaps more dramatic) separations between what’s achievable via directly

constructing a replicable algorithm for a task, and what’s achievable using our reduction to

approximate DP? For example, can discrete distributions over [k] be replicably estimated

using O(k) samples (as opposed to quadratic in k, which is what is obtained through our

reduction)? Can the mean of a d-variate Gaussian with unknown covariance be estimated

directly using O(d) samples (as opposed to quadratic in d, which is what is obtained through

our reduction)? Even more ambitiously, is it possible to characterize the types of problems

for which our reduction from replicability to approximate DP gives tight bounds?

5. To what extent is replicability preserved under distributional shift? In Appendix 5.9, we give

a simple argument showing that a ρ-replicable algorithm is ρ(1−δ )2m-replicable across two

close distributions. Are there tighter replicability and non-replicability bounds for specific

families of distributions, problems, and algorithms under distributional shifts?
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5.2 Preliminaries

We start by formally defining a statistical task.

Definition 5.2.1. A statistical task with data domain X and output space Y is a set of pairs

T = {(D,GD)}, where D is a distribution over X and GD ⊆ Y is a “good” set of outputs for

distribution D. A randomized algorithm A solves statistical task T using m samples and with

failure probability β if for every (D,GD) ∈T ,

PrS∼Dm,A [A (S) ∈ GD]≥ 1−β .

5.2.1 Notions of Distributional Closeness

We recall the definition of total variation distance, that will be crucial in this work.

Definition 5.2.2 (Total Variation Distance). Let P and Q be probability distributions over some

domain S. Then

dTV (P,Q) := sup
E⊆S
|PrP[E]−PrQ[E]|.

We also define the notion of (ε,δ )-indistinguishability, the notion of closeness that is used

in differential privacy.

Definition 5.2.3 ((ε,δ )-indistinguishability). Let P and Q be probability distributions over some

domain Y . Then, we say that P is (ε,δ )-indistinguishable from Q (denoted as P≈ε,δ Q) if for all

O⊆ Y ,

e−ε [PrP[O]−δ ]≤ PrQ[O]≤ eεPrP[O]+δ .

We will frequently talk about random variables being (ε,δ )-indistinguishable, which means

that their distributions are (ε,δ )-indistinguishable.
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5.2.2 Differential Privacy

We say that two datasets S,S′ ∈X n are neighboring if they differ for the data of one

individual, i.e., their Hamming distance is one. Differential privacy is formulated as a notion of

indistinguishability between the results of an algorithm when run on neighboring datasets.

Definition 5.2.4 (Differential Privacy [DMNS16]). A randomized algorithm A : X n→ Y is said

to be (ε,δ )-differentially private if for every pair of neighboring datasets S,S′ ∈X n, we have that

for all subsets O⊆ Y ,

Pr[A (S) ∈ O]≤ eε ·Pr[A (S′) ∈ O]+δ .

That is, we have A (S)≈ε,δ A (S′) for all neighboring S,S′.

One important property of differential privacy is that it is closed under post-processing by

arbitrary functions.

Lemma 5.2.5 (Post-Processing [DMNS16]). If A : X n→ Y is (ε,δ )-differentially private, and

B : Y →Z is any randomized function, then the algorithm B ◦A is (ε,δ )-differentially private.

Differential privacy can be achieved by adding some carefully chosen noise to a function

and calibrating the noise to the sensitivity of the function: a measure of how different can the results

of the function be when run on adjacent datasets.

Definition 5.2.6 (`1-Sensitivity). Let f : X n→ Rd be a function. Its `1-sensitivity is

∆ f = max
S,S′∈X n

S,S′neighbors

‖ f (S)− f (S′)‖1.

There are many techniques that can be used to design differentially private algorithms. One

important technique that we will use in some of our applications is the exponential mechanism.
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Lemma 5.2.7 (Exponential Mechanism [MT07]). Let L be a set of outputs and g : L×X n→ R

be a function that measures the quality of each output on a dataset. Assume that for every m ∈ L,

the function g(m, .) has `1-sensitivity at most ∆. Then, for all ε > 0, there exists an (ε,0)-DP

mechanism that, on input S ∈X n, outputs an element m ∈ L such that, for all a > 0, we have

Pr
[

max
i∈[L]

g(i,S)−g(m,S)≥ 2∆
ln |L|+a

ε

]
≤ e−a.

Standard (ε,δ )-differential privacy automatically protects the privacy of groups of individu-

als.

Lemma 5.2.8 (Group Privacy [DMNS16]). Let k ∈ N+ and let A : X m→ Y be an (ε,δ )-DP

algorithm. Then for all datasets S,S′ ∈X m such that ‖S−S′‖0 ≤ k,

A (S)≈
kε,δ ekε−1

eε−1
A (S′).

Another property of differential privacy that we will use in many of our algorithms is privacy

amplification by subsampling. This says that we can have a stronger privacy protection when we

run a differentially private algorithm on a subsample of a dataset.

Lemma 5.2.9 (Secrecy of the sample, [KLN+11, BBG18]). Let A : X n → Y be an (ε,δ )-

differentially private algorithm. Consider the algorithm A′ : X m → Y that, given a dataset

of size m, randomly samples n items without replacement and runs A on the resulting subsample.

Then A′ is (ε ′,δ ′)-differentially private for

ε
′ =

n
m
(eε −1), δ

′ =
n
m
·δ .
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5.2.3 Replicability

Replicability is a strong stability property for randomized algorithms, requiring that the

algorithm produce the exact same output with high probability when invoked on two i.i.d. samples

from the same distribution, so long as the internal randomness is held fixed. We recall the definition

of replicability given in [ILPS22].

Definition 5.2.10 ([ILPS22]). Let D be a distribution over domain X . Let A be a randomized

algorithm that takes as input samples from D. We say that A is ρ-reproducible if

PrS,S′,r[A (S;r) = A (S′;r)]≥ 1−ρ,

where S,S′ are sets of samples drawn i.i.d. from D and r represents the internal randomness of A .

We will sometimes use the alternative 2-parameter definition of replicability defined in

[ILPS22]. Here we assume that the auxiliary inputs described in their original definition are empty.5

Definition 5.2.11 ([ILPS22]). Let A(S;r) be an algorithm operating on a sample set S ∈X n and

internal coins r. We say that coin tosses r are η-good for A on distribution D if there exists a

“canonical output” zr such that PrS∼Dn[A(S;r) = zr]≥ 1−η . We say that A is (η ,ν)-replicable if,

for every distribution D, with probability at least 1−ν , the coin tosses r are η-good on distribution

D.

[ILPS22] observed that the two parameter and the original single parameter definition

(Definition 5.1.1) are essentially equivalent:

Claim 5.2.12 ([ILPS22]). For every 0≤ ρ ≤ v≤ 1,

1. Every ρ-replicable algorithm is also (ρ/v,v)-replicable.

5See Section 2.5 for an explanation of our renaming of this definition to “replicable.”

243



2. Every (ρ,ν)-replicable algorithm is also ρ +2ν-replicable.

It was proved in [ILPS22] that we can amplify the replicability parameter at an inverse

quadratic cost in the desired replicability parameter. We state a version of this theorem with slightly

different constants.

Lemma 5.2.13 (Amplification of Replicability, Theorem A.3, [ILPS22]). Let 0 < η ,ν ,β < 1
2 and

m > 0. Let A be an (η ,ν)-replicable algorithm for distribution D with sample complexity m

and failure probability β . If ρ > 0, and ν +ρ < 0.25, there exists a ρ-replicable algorithm A ′

for D with sample complexity m′ = Õ(m(log1/β )3/ρ2(1/2−η)2) and failure probability at most

4(β +ρ).

5.2.4 PAC-Learning

We start by defining PAC Learning, which is a canonical definition of supervised learning

proposed by Valiant [Val84] and Vapnik and Chervonenkis [VC74]. We first consider the realizable

setting.

Definition 5.2.14 (Realizable PAC learning, [Val84, VC74]). A learning problem is defined by

a hypothesis class H. For any distribution D over the input space X , consider m indepen-

dent draws x1,x2, . . . ,xm from distribution P. For f ∈ H, a labeled sample of size m is the set

{(x1, f (x1)),(x2, f (x2)), . . . ,(xm, f (xm))}. We say an algorithm A is an (α,β )-accurate PAC learner

for the hypothesis class H if for all functions f ∈ H and for all distributions D over the input space,

A on being given a labeled sample of size m drawn from D and labeled by f , outputs a hypothesis h

such that with probability greater than or equal to 1−β over the randomness of the sample and the

algorithm,

Prx∈D[h(x) 6= f (x)]≤ α.

We also consider a variant called agnostic PAC learning, where the labels of the input dataset

can be noisy.
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Definition 5.2.15 (Agnostic PAC learning, [Hau92, VC74]). A learning problem is defined by a

hypothesis class H. We say an algorithm A is an (α,β )-accurate PAC learner for the hypothesis

class H if for all distributions D over input, output pairs, A on being given a sample of size m

drawn i.i.d. from D outputs a hypothesis h such that with probability greater than or equal to 1−β

over the randomness of the sample and the algorithm,

errD(h)≤ inf
f∈H

errD( f )+α.

where errD(h) = Pr(x,y)∈D[h(x) 6= y]. In this context, we will sometimes refer to PAC-learning as

the realizable setting.

We will need uniform convergence for several of our results.

Theorem 5.2.16 (Uniform Convergence, e.g., [BEHW89]). Let H be a binary class of functions

with domain X . Let its VC dimension be d. Then, for any distribution D over X , for all m > 0,

Prx1,...,xm∼D

[
sup
hz∈H

∣∣∣∣∣ 1
m

m

∑
i=1

1[hz(xi) = 1]−Prx∼D[hz(x) = 1]

∣∣∣∣∣≥ γ

]
≤ 4(2m)de−γ2m/8.

5.2.5 Correlated Sampling

In the correlated sampling problem, two (or more) players are given probability distributions

P,Q over the same finite set, and with access to shared randomness. The players (without

communicating) want to sample from their respective distributions, while minimizing the probability

that their outputs disagree.

More formally, let Y = {0,1}, and for a set Ω, 2Ω denotes the set of all functions from Ω to

Y , and ∆Ω denotes the set of all sampleable distributions on Ω. For two distributions P , Q over Ω,

let dTV (P,Q) denote the total variational distance between P and Q.

Definition 5.2.17. (Correlated Sampling) A correlated sampling strategy for a finite set Ω with
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error ε : [0,1]→ [0,1] is an algorithm CS : ∆Ω×R ′ and a distribution R ′ on random strings such

that:

• (Marginal Correctness) For all P ∈ ∆Ω and w ∈Ω, Prr′∼R′[CS(P,r′) = w] = P(w).

• (Error Guarantee) For all P,Q ∈ ∆Ω, Prr′∼R′[CS(P,r′) 6=CS(Q,r′)]≤ ε(dTV (P,Q))

Several independent papers [KT02, Hol09, Bro97] give correlated sampling strategies over

finite sets, with ε(δ ) = 2δ

1+δ
. These algorithms use consistent sampling strategies, which are also

used in several other contexts such as sketching algorithms, approximation algorithms, and parallel

repetition theorems. However, despite the many uses of correlated sampling, some basic questions

remain open. Notably, it is not known whether or not correlated sampling is possible for infinite

domains, or whether correlated sampling can be made efficient. (All known algorithms run in

exponential-time in the worst-case.) For a nice discussion as well as new results on the optimality

of these constructions see [BGH+16]. In Section 5.3.3, we give another application of correlated

sampling, showing how any perfectly generalizing algorithm can be transformed into a replicable

one, via correlated sampling. As noted in the introduction, this is the only implication that does not

preserve computational efficiency, due to the inefficiency of the correlated sampling strategy.

In Section 5.4.1, we prove that this is inherent: under standard cryptographic assumptions

any such transformation is intractable, and therefore under the same cryptographic assumption,

correlated sampling is intractable. Moreover, we show in Section 5.4.2 that some assumption is

necessary: if one-way functions do not exist (that is, all poly-time computable functions can be

efficiently inverted), we show that this implies a polynomial-time algorithm for correlated sampling.

5.2.6 Terminology: “Reproducibility” and “Replicability”

[ILPS22] introduced a mathematical definition referring to a particular stability notion

of a randomized learning algorithm which they originally called “reproducibility” (reproducible
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algorithms). In this paper, we use the term “replicability” (replicable algorithms) to refer to the

same mathematical definition.

This terminology choice is more in line with the most current Association for Computing

Machinery (ACM) guidance regarding artifact review and badging [Ass20], version 1.1, updated

on August 24, 2020. This update changed the ACM’s definitons of the terms “reproducible” and

“replicable” to be more agreeable with the terminology currently used by the National Academies of

Sciences, Engineering and Medicine (see Chapter 3: Understanding Reproducibility and Replicabil-

ity, page 46, in [Nat19]).

According to both the ACM’s and National Academies’ current definitions, “reproducibility”

refers to the ability of a second experimental group to obtain similar results using the same input

data. Meanwhile, “replicability” refers to the ability of a second experimental group to obtain

similar results using input data and methods that may be different than those used by the original

experimental group.

The mathematical definition introduced in [ILPS22] is a guarantee that, with high probability,

two executions of the same algorithm with the same randomness and different sample sets will

produce the same answer. Since this guarantee is over different sample sets, the mathematical

definition does not fit the “same input data” condition in the above definitions of reproducibility.

Instead, the mathematical definition is a specific type of replicability — if the second experimental

group runs the same algorithm with the same random string (but on a new sample), the two groups’

results are guaranteed to be identical with high probability.
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5.3 Equating Stability: Differential Privacy, Perfect General-
ization, and Replicability

5.3.1 Replicability implies Approximate-DP

In [GKM21], the authors show a sample-efficient reduction from differentially private PAC

learning to replicable PAC learning. In this section, we show their technique generalizes to arbitrary

statistical problems.6

Recall the definition of a statistical task in Definition 5.2.1. We will show that any statistical

task with a “good” replicable learner can also be solved privately, without substantial blowup in

runtime or sample complexity.

Theorem 5.3.1 (Replicability→ DP). Let T be a statistical problem. For all β > 0, if there is

a 0.01-replicable algorithm solving T using nR samples and with failure probability β , then for

any 0 < ε,δ ≤ 1 there is an (ε,δ )-DP algorithm for T using nDP samples with failure probability

O
(

β log 1
β

)
, where

nDP(ε,δ ,β )≤ nR ·O
(

logδ−1 logβ−1

ε
+ log2

β
−1
)

This conversion relies on the following private algorithm for selecting an approximate mode.

Theorem 5.3.2 (DP Selection [KKMN09, BNS16c, BDRS18]). There exists some c > 0 such that

for every ε,δ > 0 and m ∈ N, there is an (ε,δ )-DP algorithm that on input S ∈X m, outputs with

probability 1 an element x ∈ X that occurs in S at most c logδ−1

ε
fewer times than the true mode of S.

Moreover, the algorithm runs in poly(m, log(|X |)) time.

The idea, as in [GKM21], is to use replicablity to construct a sample over the output space

where some correct solution appears many times. In particular, given a replicable algorithm A on n

6The argument remains similar to [GKM21], but requires a few changes to avoid union bounding over failure
probability which can be costly in settings beyond PAC learning.
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samples, consider the following simple procedure adapted from [GKM21]: partition a larger data

set, run A on each part, and privately output a commonly repeated element.

Algorithm 24. DP-to-Replicability Reduction
Result: Privately ouputs solution to (X ,R)

Input: Statistical Problem (X ,R). Distribution D over X , Replicable algorithm A on n samples

Parameters:

• Privacy and Correctness β ,ε,δ > 0

• Seed Number k1 = O(logβ−1)

• Partition Number k2 = O
(

logδ−1

ε
+ logβ−1

)
· k1

Algorithm:

1. For every j ∈ [k1] and i ∈ [k2
k1
] sample Si, j ∼X n

2. Sample k1 random strings {r j}.

3. Let yi, j = A (Si, j;r j).

4. Run (ε,δ )-DP Selection on {yi, j} and denote the output by y∗.

return y∗

Recalling the two-parameter definition of replicability (5.2.11 and 5.2.12), since our subrou-

tine is 0.01-replicable and β -correct, it is also (0.1,0.1)-replicable and β correct. Therefore, the

proof of Theorem 5.3.1 is an immediate consequence of the following proposition.

Proposition 5.3.3. For all sufficiently small β ,ε,δ > 0, if A is (0.1,0.1)-replicable and has failure

probability β , then Algorithm 24 is (ε,δ )-private and has failure probability O(β log1/β ).

Proof. Privacy is essentially immediate from DP Selection. This follows because the input to

249



selection based on a neighboring input database T ′ differs in at most one of the {yi} (as we’ve

partitioned the sample disjointly). Thus the reduction automatically inherits (ε,δ )-privacy from DP

Selection. The main interest in the reduction, then, is maintaining correctness which we argue next.

The proof breaks into two parts:

1. With probability 1−β/2, some y∗ ∈ {yi} appears at least t1 := 2c
(

logδ−1

ε
+ logβ−1

)
times.

2. With probability 1− β log1/β , any element appearing at least t2 := c
(

logδ−1

ε
+ logβ−1

)
times is correct.

The result then follows from observing that by a union bound both conditions hold with probability

at least 1−O(β log1/β ), and conditioned on this fact DP-Selection always outputs an element that

occurs at least t1− c logδ−1

ε
≥ t2 times (which is then guaranteed to be correct).

It remains to prove the claims. For the first, note that since A is (0.1,0.1)-replicable, there

exists some .1-good random string r∗ ∈ {r j} with probability at least 1−β/4. By a Chernoff bound,

the probability that the canonical element corresponding to r∗ appears fewer than t1 times is at most

β/4, which proves the claim (for a large enough choice of k2).

Finally, we argue any common element is correct. Since A is a β -correct algorithm, in

expectation, the number of incorrect outputs is βk2. Hence, by Markov’s inequality, the probability

that there are more than b = O( k2
logβ−1 ) incorrect outputs is at most β log1/β . For small enough

choice of constant in the correctness of our replicable algorithm,7 we can make b < t2, so no element

appearing at least t2 times can be incorrect as desired.

7Note this choice can be taken universally with respect to all parameters and the statistical problem itself.
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5.3.2 Approximate-DP Implies One-Way Perfect Generalization

Preliminaries about Perfect Generalization

Perfect generalization (Definition 5.1.2) is a notion of stability that captures the idea (like

differential privacy) that an algorithm A does not depend on its input samples too much.

We also consider the following “two-sample” version of this definition. This is frequently

easier to work with for symmetry reasons.

Definition 5.3.4. An algorithm A : X m→ Y is said to be (β ,ε,δ )-sample perfectly generalizing,

if for every distribution D over X , with probability at least 1−β over the draw of two i.i.d. samples

S1,S2 ∼ Dm, A (S1)≈ε,δ A (S2).

Cummings et al. [CLN+16] prove the following lemma relating perfect generalization to

sample perfect generalization.

Lemma 5.3.5 ([CLN+16]). If algorithm A : X m→ Y is (β ,ε,δ )-perfectly generalizing, then it

is also (β ,2ε,3δ )-sample-perfectly generalizing.

We can also prove a partial converse to this result; this will be frequently useful since it

allows us to prove sample perfect generalization and invoke this result to get perfect generalization.

Lemma 5.3.6. Fix β ,ε,δ ∈ (0,1]. If algorithm A : X m→ Y is (β ,ε,δ )-sample perfectly gener-

alizing, then it is also (
√

β ,ε,δ +
√

β )-perfectly generalizing.

Proof. Since A is (β ,ε,δ )-sample PG, we have that for any distribution D over X , with probability

at least 1−β over the draw of two i.i.d. datasets S1,S2 ∼ Dm, we have that A (S1) ≈ε,δ A (S2).

This guarantees by the reverse Markov inequality that for d = 1−
√

β ,

ES1[PrS2(A (S1)≈ε,δ A (S2))]≥ 1−β =⇒

PrS1[PrS2(A (S1)≈ε,δ A (S2))≥ d]≥ 1−β −d
1−d

=⇒

PrS1[PrS2(A (S1)≈ε,δ A (S2))≥ 1−
√

β ]≥ 1−
√

β .
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Now, set SimD to be the distribution of A (S2) where the randomness of the distribution is taken

over both the randomness of the algorithm and the dataset.

For any fixed dataset S1, let GS1 be the set of datasets S2 such that A (S1)≈ε,δ A (S2).

Then, we get that with probability at least 1−
√

β over the draw of S1, for any O⊆ Y ,

PrSimD[O] = PrS2,A [A (S2) ∈ O]

= PrS2,A [A (S2) ∈ O | S2 ∈ GS1]Pr[S2 ∈ GS1]

+PrS2,A [A (S2) ∈ O | S2 6∈ GS1]Pr[S2 6∈ GS1]

≤ PrS2,A [A (S2) ∈ O | S2 ∈ GS1 ]+
√

β

≤ eεPrA [A (S1) ∈ O]+δ +
√

β .

Similarly, we can also argue that

PrSimD[O] = PrS2,A [A (S2) ∈ O]

= PrS2,A [A (S2) ∈ O | S2 ∈ GS1]Pr[S2 ∈ GS1]

+PrS2,A [A (S2) ∈ O | S2 6∈ GS1]Pr[S2 6∈ GS1]

≥ PrS2,A [A (S2)] ∈ O | S2 ∈ GS1)(1−
√

β )

≥ e−ε (PrA [A (S1) ∈ O]−δ )(1−
√

β )

≥ e−ε

(
PrA (A (S1) ∈ O]−δ −

√
β

)
.

Hence, with probability at least 1−
√

β over the draw of S1,

SimD ≈ε,δ A (S1).
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We also define a notion of “one-sided” perfect generalization which only requires the

probability of events under A(S) not to increase too much relative to their probability under the

simulator distribution SimD. This new definition will be crucial to show the equivalence between

replicability and perfect generalization, as well as for some of our applications.

Definition 5.3.7 (One-way perfect generalization). An algorithm A : X m → Y is said to be

(β ,ε,δ )-one-way perfectly generalizing if for every distribution D over X , there exists a distribu-

tion SimD such that with probability at least 1−β over the draw of an i.i.d. sample S ∼ Dm, for

every output set O⊆ Y we have that

Pr[A (S) ∈ O]≤ eεPrSimD[O]+δ .

Next, we prove a simple lemma relating the parameters achievable with perfect generaliza-

tion.

Lemma 5.3.8. Fix m ∈ N, β ,ε,δ ∈ (0,1]. Let A : X m → Y be a (β ,ε,δ )-one-way perfectly

generalizing algorithm. Then, A is also (β ,0,2ε +δ )-perfectly generalizing.

Proof. By the definition of one-way perfect generalization, we have that for all distributions D over

X , there exists a distribution SimD, such that with probability 1−β over the draw of S, for all

O⊆ Y ,

PrA [A (S) ∈ O]≤ eεPrSimD[O]+δ .

Using the fact that for ε ≤ 1, eε ≤ 1+2ε , we get that

PrA [A (S) ∈ O]≤ PrSimD[O](1+2ε)+δ ,

which gives us that

PrA [A (S) ∈ O]≤ PrSimD[O]+2ε +δ .
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Now, since this works for any set O, consider applying it to Oc. Then, we get that

PrA [A (S) ∈ Oc]≤ PrSimD[O
c]+2ε +δ ,

which implies (by writing PrA [A (S)∈Oc] = 1−PrA [A (S)∈O] and likewise for SimD and doing

some algebraic manipulation) that

PrSimD[O]≤ PrA [A (S) ∈ O]+2ε +δ .

Hence, the lemma is proved.

[CLN+16] also proved a strong relationship between (ε,0)-differential privacy and perfect

generalization. Specifically, they proved the following.

Theorem 5.3.9 ([CLN+16]). If algorithm A : X m→ Y is (ε,0)-differentially private, then for

all β > 0, it is (β ,ε
√

2m ln(2|Y |/β ),0)-perfectly generalizing.

They left establishing similar relationships between (ε,δ )-differential privacy and perfect

generalization as an open question. We resolve this question for finite outcome spaces. Our

argument is indirect and involves showing that any approximate differentially private algorithm is

one-way perfectly generalizing. We will later use this to prove that any approximate differentially

private algorithm can be compiled into another algorithm that is perfectly generalizing (under the

original definition). We do this through the tool of max information, that we discuss next.

Preliminaries about Max Information

The notion of max information was formulated in work on the connection between differen-

tial privacy and adaptive data analysis. It quantitatively captures the degree of correlation between

two random variables, by comparing the joint distribution of the random variables to the product
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measure. Intuitively, if the joint distribution and the product measure are “close”, then the random

variables are not too correlated with each other.

Definition 5.3.10 (Based on [DFH+15a]). The β -approximate max information between two corre-

lated random variables X and Z, denoted Iβ
∞(X ,Z), is defined as the minimum (infimum) value k

such that for all output sets O, we have that

Pr(a,b)∼(X ,Z)[(a,b) ∈ O]≤ 2kPr(a,b)∼X⊗Z[(a,b) ∈ O]+β (5.2)

where X⊗Z represents the product measure of the 2 random variables.

In this paper, we will be concerned about the degree of correlation between a randomly

sampled dataset, and the output of an algorithm run on that dataset. Intuitively, replicability requires

that an algorithm’s output does not depend too much on the specific input sample it gets, so the max

information between these two random variables will be a useful quantity to analyze.

Approximate Differential Privacy to Bounded Max Information

Connections between max information and differential privacy have been previously studied.

Rogers, Roth, Smith and Thakkar [RRST16] give a bound on the max information between an

approximate DP algorithms’ outputs and its inputs (Theorem 3.1 in their paper). In fact, they prove

the following general statement that can be seen by examining their proof of Theorem 3.1.

Lemma 5.3.11 ([RRST16]). Fix m ∈ N, ε ∈ (0,1/2] and δ ∈ [0,ε/15). Let A : X m→ Y be an

(ε,δ )-DP algorithm. Then, for any distribution D over X , if S∼ Dm, for all t > 0, Iβ
∞(S;A (S))≤

mν+6tε
√

m, where β = e−t2/2+cm
√

δ

ε
, and ν =C(ε2+

√
δ

ε
) for some sufficiently large constants

c,C.

We instantiate this lemma with parameters that are suitable for our application.
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Corollary 5.3.12. Fix m ∈ N, sufficiently small ρ ∈ (0,1). Let ε = ρ√
8m log(1/ρ)

, δ ≤ ερ6

m2 . Let

A : X m → Y be an (ε,δ )-DP algorithm. Then, for any distribution D over X , if S ∼ Dm,

Iρ3

∞ (S;A (S))≤ O(ρ).

Proof. Substituting the value of ε , δ , and setting t =
√

8log(1/ρ) in the expression for β in

Lemma 5.3.11, we get

β = e−4log(1/ρ)+ cm

√
ρ6

m2 = O(ρ3).

Substituting in the expression for ν in Lemma 5.3.11 gives

ν =C

(
ε

2 +

√
δ

ε

)
≤C

(
ρ2

m
+

ρ3

m

)
= O

(
ρ2

m

)
.

Substituting the values of ν , t, and ε in the upper bound for max information gives

Iρ3

∞ (S;A (S))≤ mν +6tε
√

m = ρ
2 +6ρ = O(ρ).

In general, one can convert an (ε,δ )-differentially private algorithm with ε = O(1) and

δ = 1/poly(n) into a bounded max-information algorithm by first amplifying the privacy parameters:

Corollary 5.3.13. There are constants c,C > 0 such that the following holds. Let γ > 0. Suppose

A : X n→Y is an (ε,δ )-differentially private algorithm solving a statistical task up to some failure

probability β such that ε ∈ (0,1) and δ ≤min{γ2/c2,ρ2/C2}ρ4/64ε3(2Cρ +
√

72log(2/γ))2n4.

Then there is an algorithm A ′ : X m→ Y solving the same statistical task with the same failure

probability β , such that

m = 4ε
2n2 ·

(
2C
ρ

+

√
72log(2/γ))

ρ2

)
,
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and for every distribution D over X , if S∼Dm we have Iγ
∞(S;A (S))≤ ρ . Moreover, the conversion

from A to A ′ preserves computational efficiency.

Proof. The algorithm A ′ simply samples n items without replacement from S and runs A on the

result. This perfectly preserves correctness with respect to any statistical task. By Lemma 5.2.9, we

have that A ′ is (ε ′,δ ′)-differentially private for

ε
′ =

2n
m
≤ 1√

m
min

{√
ρ

2C
,

ρ√
72log(2/γ)

}
, δ

′ =
n
m
·δ .

Note that these parameters ensure that

δ ′

ε ′
=

δ

eε −1
≤ δ

ε
≤min

{
γ2

4c2m2 ,
ρ2

4C2m2

}
.

Now set t =
√

2log(2/γ) in the statement of Lemma 5.3.11, which ensures that

e−t2/2 + cm

√
δ ′

ε ′
≤ γ

2
+ cm

√
γ2

4c2m2 ≤ γ.

Then the lemma implies that

Iγ
∞(S;A (S))≤Cm

(
(ε ′)2 +

√
δ ′

ε ′

)
+6tε ′

√
m

≤Cm
(

ρ

2Cm
+

ρ

2Cm

)
+6
√

2log(2/γ) · ρ√
72log(2/γ)

≤ ρ.
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Bounded Max Information to One-Way Perfect Generalization

Next, we prove a key lemma relating bounded max-information to one-way perfect general-

ization. The approach we follow is similar to that used to derive relationships between pointwise

(ε,δ )-indistinguishability and (ε,δ )-indistinguishability in Lemma 3.3 of [KS14].

Lemma 5.3.14. Fix m ∈N, k > 0, β ∈ (0,1) and β̂ =
√

β

1−2−k . Let A : X m→Y be an algorithm.

Then, for every distribution D over X and S∼Dn, if Iβ
∞(S;A (S))≤ k, then A is (β̂ ,2k, β̂ )-one-way

perfectly generalizing.

Proof. The canonical distribution SimD we will consider is the distribution of A (S′), where the

randomness is over both S′ ∼ Dm, and the internal randomness of A .

We start by defining a set of ‘bad’ outputs for each fixed dataset S, i.e. outputs on which

the probability mass of A (S) is substantially larger than that of the canonical distribution SimD.

Formally, for each dataset S, let

BS = {y ∈ Y : PrA [A (S) = y]≥ 22kPrS′∼Dm,A [A (S′) = y]}.

Next, we define a set of ordered pairs consisting of datasets and their corresponding ‘bad’

outputs. Formally, let

Θ = {(S,y) : S ∈ supp(Dm),y ∈ BS}.

Our goal will be to prove that with high probability over a draw of a dataset S, A (S)

lands in the bad set BS with small probability. This can then be used to establish one-way perfect

generalization.

With this in mind, consider the expression ES[PrA [A (S)∈ BS]] =ES[PrA [(S,A (S))∈Θ]].

By the law of total probability, this is equal to PrS∼Dm,A [(S,A (S)) ∈ Θ]. Using the definition of
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max-information, we get that

PrS∼Dm,A [(S,A (S)) ∈Θ]≤ 2kPrS,S′∼Dm,A [(S,A (S′)) ∈Θ]+β . (5.3)

Now, analyzing the term PrS,S′∼Dm,A [(S,A (S′)) ∈Θ], we get

PrS,S′∼Dm,A [(S,A (S′)) ∈Θ] = ∑
T∈supp(Dm)

Pr[S = T ]PrS′∼Dm,A [A (S′) ∈ BT ]

≤ ∑
T∈supp(Dm)

Pr[S = T ]2−2kPrA [A (S) ∈ BT ]

= 2−2k
∑

T∈supp(Dm)

Pr[S = T ]PrA ,S∼Dm[A(S) ∈ BS | S = T ]

= 2−2kPrS∼Dm,A [(S,A (S)) ∈Θ],

where the first inequality is by the definition of BT and the last equality is by the law of total

probability. Substituting the above in (5.3), we get that

PrS∼Dm,A [(S,A (S)) ∈Θ]≤ 2−kPrS∼Dm,A [(S,A (S) ∈Θ]+β .

Rearranging, this gives us that

ES[PrA [A (S) ∈ BS]] = PrS∼Dm,A [(S,A (S)) ∈Θ]≤ β

1−2−k = β̂
2. (5.4)

Finally, by Markov’s inequality and the above equation, we can write the following.

PrS[PrA [A (S) ∈ BS]> β̂ ]≤ ES[PrA [A (S) ∈ BS]]

β̂
≤ β̂ . (5.5)

This implies that with probability 1− β̂ over S ∼ Dm, PrA [A (S) 6∈ BS]> 1− β̂ . Finally, we can
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write with probability 1− β̂ over S∼ Dm, for every O⊆ Y ,

PrA [A (S) ∈ O] = PrA [A (S) ∈ O |A (S) ∈ BS]Pr[A (S) ∈ BS]

+PrA [A (S) ∈ O,A (S) 6∈ BS]

≤ 1 · β̂ +PrA [A (S) ∈ O,A (S) 6∈ BS]

≤ β̂ +22kPrS′∼Dm,A [A (S′) ∈ O,A (S′) 6∈ BS′]

≤ β̂ +22kPrS′∼Dm,A [A (S′) ∈ O].

This completes the proof.

We note that the above proof sets the failure probability due to data sampling and that due to

bad coins of the algorithm to be the same. Other tradeoffs between these can be obtained by using

Markov’s inequality with different parameters in Equation 5.5. We chose them to be equal to each

other for simplicity of presentation and because that is the setting of interest in our applications.

Observe that combining Lemma 5.3.11 and Lemma 5.3.14 above gives the following

connection between differential privacy and one-way perfect generalization.

Corollary 5.3.15. Fix m ∈ N, ε ∈ (0,1/2] and δ ∈ [0,ε/15). Let A : X m→ Y be an (ε,δ )-DP

algorithm. Then, for sufficiently large constants c,C, for all t > 0, A is (δ ′,ε ′,δ ′)-one-way perfectly

generalizing, where ε ′ =Cm(ε2 +
√

δ

ε
)+6tε

√
m, and δ ′ = β

1−2−O(ε ′) , where β = e−t2/2 + cm
√

δ

ε
.

As an example of the kind of result this can give, we show what we’d get if we instantiated

it with our parameters of interest (as in Corollary 5.3.12).

Corollary 5.3.16. Fix m ∈ N, sufficiently small ρ ∈ (0,1]. Let A : X m → Y be an (ε,δ )-DP

algorithm, where ε = ρ√
8m log(1/ρ)

, δ ≤ ερ6

m2 . Then, A is (O(ρ),O(ρ),O(ρ))-one-way perfectly

generalizing.

Proof. From Corollary 5.3.12, we get that Iρ3

∞ (S;A (S))≤ O(ρ). Substituting k = ρ and β = ρ3
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in Lemma 5.3.14, we get that β̂ =
√

cρ3

1−2−O(ρ) ≤ O(
√

ρ2) = O(ρ) (where the first inequality is

since 1
1−2−O(ρ) =

2O(ρ)

2O(ρ)−1
≤ 2

2O(ρ)−1
≤ C

ρ
for some constant C, since 2cρ = ecρ ln2 and ex ≥ 1+ x for

all real x). This gives us from Lemma 5.3.14 that A is (O(ρ),O(ρ),O(ρ))-one-way perfectly

generalizing.

5.3.3 Perfect Generalization Implies Replicability

In this section will show that the class of one-way perfectly generalizing algorithms, which

includes the special case of (two-way) perfectly generalizing algorithms, can be transformed to

replicable algorithms.

Let CS(Q,Y ,r′) represent a correlated sampling procedure over domain Y sampling from

a distribution Q over Y with public randomness r′. (See Section 5.2.5 for background on correlated

sampling). We now describe our transformation.

Algorithm 25. Transformation from one-way perfectly generalizing algorithm to replicable algo-
rithm

Input: dataset S = (s1, . . . ,sn), description of one-way perfectly generalizing algorithm A :

X m→ Y

Output: i ∈U

1: Let QS represent the distribution of A (S).

2: Output CS(QS,Y ,r′) where r′ is the random string drawn in the correlated sampling algorithm.

The key idea is that correlated sampling converts total variation distance into collision

probability, which is the notion that is used in the definition of replicability.

We now use this to prove the main theorem of this section.

Theorem 5.3.17. Fix m∈N and β ,ε,δ ∈ (0,1). Let A : X m→Y be a (β ,ε,δ )-one-way perfectly

generalizing algorithm with finite output space. Then, for any distribution D over X , if S ∼ Dm,

Algorithm 25 when run on dataset S and with access to A is 4(β +2ε +δ )-replicable.
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Proof. By Lemma 5.3.8, we have that A is also (β ,0,2ε + δ )-perfectly generalizing. For any

distribution D over X , let SimD be the canonical distribution witnessing the perfect generalization

property. Then, by the definition of (0,2ε +δ )-indistinguishability, we have that with probability at

least 1−β over a draw of a random dataset S∼ Dm,

dTV (A (S),SimD)≤ 2ε +δ .

From the guarantee of correlated sampling, we have that

Prr′∼R[CS(QS,Y ,r′) 6=CS(SimD,Y ,r′)]≤ 2dTV (QS,SimD).

Using the bound on TV distance from perfect generalization, we get that with probability at least

1−2β over the draw of two datasets S1,S2 ∼ Dm, we have that

Prr′∼R[CS(QS1,Y ,r′) 6=CS(SimD,Y ,r′)]≤ 2(2ε +δ )

and

Prr′∼R[CS(QS2,Y ,r′) 6=CS(SimD,Y ,r′)]≤ 2(2ε +δ ).

Consider the event CS(QS1 ,Y ,r′) 6=CS(QS2 ,Y ,r′). Clearly, this implies either CS(QS1,Y ,r′) 6=

CS(SimD,Y ,r′) or CS(QS2,Y ,r′) 6= CS(SimD,Y ,r′). Hence, we can write that with probability

1−2β over draws of S1 and S2,

Prr′∼R[CS(QS1,Y ,r′) 6=CS(QS2,Y ,r′)]≤ 4(2ε +δ ).

Taking the expectation with respect to the draws of S1 and S2 gives us

Prr′∼R,S1,S2∼Dm [CS(QS1,Y ,r′) 6=CS(QS2,Y ,r′)]≤ 4(2ε +δ +β )
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which proves the result.

Combining the above result and Corollary 5.3.16, we get a transformation from approximate

differentially private algorithms to replicable algorithms.

Corollary 5.3.18. Fix m ∈ N, sufficiently small ρ ∈ (0,1). Let ε = ρ√
8m log(1/ρ)

, δ ≤ ερ6

m2 . Let

A : X m → Y be an (ε,δ )-DP algorithm with finite output space. Fix a distribution D over

X , and let S ∼ Dm. Then, Algorithm 25 run with inputs S and algorithm A is O(ρ)-replicable.

Additionally, on any fixed dataset, the output distribution of Algorithm 25 is the same as that of A .

Proof. From Corollary 5.3.16, we have that Algorithm A is (O(ρ),O(ρ),O(ρ))-one-way perfectly

generalizing. Then, applying Theorem 5.3.17 proves that the transformation in Algorithm 25 gives

a O(ρ)-replicable algorithm. Correlated sampling does not change the marginal distribution of the

algorithm applied to a dataset and hence the second part of the corollary is proved.

5.3.4 Replicability Implies Perfect Generalization

In this section, we show how to convert a replicable algorithm to a perfectly generaliz-

ing algorithm at a poly-logarithmic cost in 1/δ (where δ is the additive perfect generalization

parameter).

It’s straightforward to show that (δ ,δ )-replicability can be used to obtain (O(δ ),0,O(δ ))-

perfect generalization by translating from collision probability to total variation distance. However,

since we typically want δ to be very small (often inverse polynomial in the number of samples

m), obtaining such small parameters starting from, say, 0.1-replicability comes at a significant cost.

This is because amplifying 0.1-replicability to (δ ,δ )-replicability incurs a multiplicative sample

complexity overhead of O(1/δ 2), which is tight by known lower bounds for replicability [ILPS22,

Theorem 7.1], and prohibitively large for many applications. For example, our lower bounds

showing tasks where replicability has quadratically higher sample cost than differential privacy

(see Section 5.5) follow from proving such lower bounds on perfectly generalizing algorithms with
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δ polynomially small in the dataset size, and then applying our conversion from replicability to

perfect generalization. If such a conversion required 1/δ 2 samples, then this would not give us any

non-trivial lower bounds on the sample cost associated with replicably solving these problems.

However, this idea still leaves hope, because it achieves ε = 0. Hence, by settling for larger

ε , we hope to avoid this problem.

Our approach is inspired by a natural attempt to amplify weak replicability parameters into

strong parameters. Suppose we wish to turn a (0.01,0.01)-replicable algorithm A into a (0.01,δ )-

replicable one. We know that with probability at least 0.99 over the choice of the randomness r

for A, there is a canonical output z such that A(S;r) = z with high probability over the sample S.

Consider running A using k = O(log(1/δ )) independent sequences of coin tosses, r1, . . . ,rk, then

with probability 1−δ , at least one of these sequences will have such a canonical output. Moreover,

when such a canonical output exists, we can identify it by running A(·;r j) on many independent

samples S and choosing the plurality outcome if it appears enough times. Unfortunately, there is

an obstacle here to directly designing a replicable algorithm. The problem is that there may be

many good sequences of coin tosses, each with their own canonical outputs, and it is unclear how to

replicably identify a single one.

By relaxing our goal to achieving perfect generalization instead of replicability, we can

instead use the exponential mechanism to sample from the set of plurality outcomes. We define the

score of the plurality output c j for coin r j to be the number of datasets S on which A(S;r j) = c j, and

sample such a c j with probability proportional to exponential in its score. We are able to show that

the resulting algorithm is (δ ,ε,δ )-perfectly generalizing with ε > 0, but there are several technical

nuances that make our analysis not quite straightforward from the standard guarantees of the

exponential mechanism. For instance, we need to deal with the fact that the sets of plurality outputs

could differ when our algorithm is run on two i.i.d. datasets drawn from the same distribution.

Another interesting feature of this proof is that unlike standard uses of the exponential mechanism

to obtain differential privacy or perfect generalization, we need to invoke the accuracy of the
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exponential mechanism in our proof of perfect generalization.

Algorithm 26. Transformation from replicable algorithm A to perfectly generalizing algorithm A ′

Input: Sample access to distribution D, description of (0.01,0.01)-replicable algorithm A :

X ∗→ Y , sample complexity parameter m, perfect generalization parameters ε,δ ,β

Output: y ∈ Y

1: Let k = O(log(1/δ )), and t = O
(

log4(1/β ) log(1/ε)
ε2

)
.

2: Draw uniformly random coins r1,r2, . . . ,rk for algorithm A .

3: Draw k sets Si, each of t samples Si, j ∼ Dm.

4: for all j ∈ [k] do

5: for all i ∈ [t] do

6: Run A with coins r j and sample Si, j to get output zi, j.

7: Let c j = argmaxz∈Y ∑
t
i=11[zi, j = z], and let score

(
( j,c j),(S1,S2, . . . ,Sk)

)
= ∑

t
i=11[zi, j =

c j].

8: Let C = {(1,c1), . . . ,(k,ck)}. Run the exponential mechanism on the set C with the score

function score(., .), sensitivity parameter 4
√

t log(8kt/β ), and privacy parameter ε to get value

( j∗,c j∗).

9: return output c j∗ of the previous step.

We prove that the above algorithm is sample perfectly generalizing. Note that this can

be converted to a perfectly generalizing algorithm with asymptotically the same parameters (for

both perfect generalization and accuracy) by setting the δ parameter to be δ 2 instead and invoking

Lemma 5.3.6.

Theorem 5.3.19. Fix sufficiently small δ ,γ > 0 and 0 < ε ≤ 1. Every (0.01,0.01)-replicable al-

gorithm A with m samples that successfully solves a statistical task with probability at least

1− γ2 can be converted to a (2δ ,ε,2δ )-sample perfectly generalizing algorithm A ′ taking

O
(

m log(1/ε)
ε2 poly log(1/δ )

)
samples, that succeeds on the statistical task with probability at least
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1−O(δ )− γ log(1/δ ).

Proof. Fix a distribution D over the input set X . Our proof is constructive; the corresponding

algorithm is given in Algorithm 26 (A ′), and we feed it with the following inputs: a description of

algorithm A , sample complexity parameters m, and perfect generalization parameters (δ ,ε,δ ). (We

also give it sample access to distribution D). We will start by proving sample perfect generalization

of Algorithm 26.

Claim 5.3.20. Algorithm A ′ (represented in Algorithm 26) with the input parameters specified in

the previous paragraph is (2δ ,ε,2δ )-sample perfectly generalizing.

Proof. Consider two samples S and S′ drawn independently from Dmkt . We consider Algorithm 26

run on both of these samples and argue that their output distributions are close in the sense required

by sample perfect generalization.

Step 1: At least one coin sequence is good w.h.p.

We say that a choice of the random coin tosses of Algorithm A is “good” if it has a 0.99-

canonical output and call it “bad” otherwise. Then by the two parameter definition of replicability, a

random coin sequence is “bad” with probability at most 0.01. Hence, the probability that all k coins

sequences drawn in Step 2 of Algorithm 26 are bad is at most (0.01)k ≤ δ 2 for k = O(log(1/δ )).

Let Ecoin represent the event that there is at least one good coin. We will now condition on Ecoin

occurring; fix any set of coins r1, . . . ,rk that has non-zero probability of occurring under this

conditioning. We will first consider A run on the two independent datasets S and S′ with the same

random coins fixed above.

Step 2: Empirical output frequencies are close on two independent datasets.

We define stage j of Algorithm 26 as the process involved in generating c j (i.e., one

iteration of the outer loop in Step 4). We now use uniform convergence to argue that with high
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probability over the samples, the empirical frequencies of the outputs of all stages, i.e. all values of

Score
(
( j,c j),(S1,S2, . . . ,Sk)

)
, are close to their expectation.

Start by defining H to be the function class consisting of point functions, i.e., functions of

the form h`(x) = 1 if x = `, and h`(x) = 0 otherwise, for every ` ∈ Y . It is easy to prove that the

VC dimension of H is equal to 1. Let Q j be the distribution of the output of the replicable algorithm

A when run with coin r j on a random sample.

Then, using uniform convergence (Theorem 5.2.16), we get for every fixed j and for every

γ > 0, that

Prz1, j,...,zt, j∼Q j

[
sup
h`∈H

∣∣∣∣∣1t t

∑
i=1

1[h`(zi, j) = 1]−Prz∼Q j [h`(z) = 1]

∣∣∣∣∣≥ γ

]
≤ 8te−γ2t/8.

Observe that 1
t ∑

t
i=11[h`(zi, j) = 1] = 1

t ∑
t
i=11[zi, j = `]. Similarly, Prz∼Q[h`(z) = 1] =

Prz∼Q j [z = `]. Hence, we get that

Prz1, j,...,zt, j∼Q j

[
sup
`∈Y

∣∣∣∣∣1t t

∑
i=1

1[zi, j = `]−Prz∼Q j [z = `]

∣∣∣∣∣≥ γ

]
≤ 8te−γ2t/8.

Setting γ = 2
√

log(8kt/δ )
t , we get that

Prz1, j,...,zt, j∼Q j

[
sup
`∈Y

∣∣∣∣∣ t

∑
i=1

1[zi, j = `]− tPrz∼Q j [z = `]

∣∣∣∣∣≥ 2
√

t log(8kt/δ )

]
≤ δ 2

2k
.

Using a union bound over all k stages of the algorithm, this guarantees us that the empirical

frequencies (and the values score
(
( j,c j),(S1,S2, . . . ,Sk)

)
are all within 2

√
t log(8kt/δ ) of their

expectations with probability at least 1−δ 2/2.

Note that since we conditioned on a fixed random coin sequence, all the randomness in zi, j

comes from the data sample. Hence, if we consider another sample S′ = (S′1,S
′
2, . . . ,S

′
k) drawn i.i.d

.from Dmkt , we have that with probability at least 1−δ 2 over the draws of S and S′ that for all j ∈ [k]
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and all ` ∈ Y that score(( j, `),(S1,S2, . . . ,Sk)) and score
(
( j, `),(S′1,S

′
2, . . . ,S

′
k)
)

are both within

2
√

t log(8kt/δ ) of their expectations, and are hence within 4
√

t log(8kt/δ ) of each other. We call

this event Esample, and fix any sample pairs (S,S′) that occur with non-zero probability conditioned

on this event. This allows us to argue that with probability at least 1−δ 2, for all j ∈ [k],

|score
(
( j,c j),(S1,S2, . . . ,Sk)

)
− score

(
( j,c′j),(S

′
1,S
′
2, . . . ,S

′
k)
)
| ≤ 4

√
t log(8kt/δ ). (5.6)

This follows directly from the above argument if c j = c′j, but if they are not equal, it also holds

since otherwise either c j or c′j would not be a plurality output in stage j of the corresponding

runs (since there would be an output that occurs more times in stage j). This is because uniform

convergence guarantees us that if c j occurs a times in stage j when the algorithm is run on dataset

S, then c j occurs atleast a−4
√

t log(8kt/δ ) times in stage j when the algorithm is run on dataset

S′. Hence, if c′j occurs less than a− 4
√

t log(8kt/δ ) in stage j, then we’d get that c j would be

the plurality output of stage j in the run on dataset S′ and not c′j, which is a contradiction. This

shows that score
(
( j,c j),(S1,S2, . . . ,Sk)

)
− score

(
( j,c′j),(S′1,S

′
2, . . . ,S

′
k)
)
≤ 4
√

t log(8kt/δ ); the

other direction can be proved similarly.

Step 3: Arguing that there is at least one canonical output c j with high score.

Conditioned on Ecoin, we know that the run of Algorithm 26 on S has at least one coin

sequence with a 0.99-canonical output z. Suppose r j is such a coin sequence. From the set-

tings of k and t, we get that 2
√

t log(8kt/δ ) ≤ 0.09t. Hence, conditioned further on Esample,

we know that this canonical output z is equal to the plurality output c j in stage j, and that

score
(
( j,c j),(S1,S2, . . . ,Sk)

)
is at least 0.9t. Hence, there exists an candidate ( j,c j) with score at

least 0.9t.
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Step 4: Arguing that probable outputs ( j∗,c j∗) are in both output sets C and C′.

By the accuracy guarantee of the exponential mechanism (Lemma 5.2.7), we have that

Pr
[

max
j∈[k]

score
(
( j,c j),(S1,S2, . . . ,Sk)

)
− score

(
( j∗,c j∗),(S1,S2, . . . ,Sk)

)
≥ 2∆

lnk+ k
ε

]
≤ e−k,

where ∆= 4
√

t log(8kt/δ ). So, for the settings of t and k, we get that 2∆
lnk+k

ε
=O(

k
√

t log(8kt/δ )
ε

) =

o(t). Hence, we have that

Pr
[

score
(
( j∗,c j∗),(S1,S2, . . . ,Sk)

)
≥ 0.9t−2∆

lnk+ k
ε

]
≤ e−k = δ ,

which implies that for sufficiently small δ ,

Pr
[
score

(
( j∗,c j∗),(S1,S2, . . . ,Sk)

)
≥ 0.8t

]
≤ e−k = δ .

Let’s consider any such c j∗ . By the conditioning on Esample, we have that c j∗ occurs more than

0.8t−4
√

t log(kt/δ ) > 0.5t times in the output set of stage j∗ when Algorithm 26 is run on the

sample S′. Hence, c′j∗ is also equal to c j∗ .

Step 5: Proving that A ′(S,r)≈ε,δ A ′(S′,r) w.h.p.

We exploit the fact that two random variables C and D are (ε,δ )-indistinguishable if w.p.

≥ 1−δ over a draw o from the distribution of C, we have e−εPr[D = o]≤ Pr[C = o]≤ eεPr[D = o],

and vice versa for a draw from the distribution of D [KS14, Lemma 3.3, Part 1].

We proved in Step 4 that fixing any coins and sample pairs that have non-zero probability of

occurring conditioned on Ecoin and Esample, with probability at least 1−δ from a draw of A′(S,r)

(where the randomness is only that of the exponential mechanism), the output ( j∗,c j∗) occurs in

both the sets C and C′. For all such outputs, our idea is to use the differential privacy analysis of the

exponential mechanism.
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A technical obstacle we need to surmount is that the output sets C and C′ might be different,

and so the normalizing factors used in the exponential mechanism will vary accordingly. We deal

with this by invoking Inequality 5.6, which points out that even though the output sets are different,

the scores score
(
( j,c j),(S1,S2, . . . ,Sk)

)
and score

(
( j,c′j),(S′1,S

′
2, . . . ,S

′
k)
)

can differ by at most

the sensitivity specified in Step 8 where the exponential mechanism is invoked.

Hence, exactly mimicking the differential privacy analysis of the exponential mechanism

(see e.g., [DR14], Theorem 3.10) conditioned on Ecoin and Esample, with probability at least 1−δ

from a draw ( j∗,c′j∗) of A ′(S,r), we get that

e−εPr[A ′(S,r) = ( j∗,c j∗)]≤ Pr[A ′(S′,r) = ( j∗,c′j∗)]≤ eεPr(A ′(S,r) = ( j∗,c j∗)]

and, moreover, c′j∗ = c j∗ . By symmetry (since S and S′ are both independent samples from the

distribution with the same properties), conditioned on Ecoin and Esample, we get that with probability

at least 1−δ from a draw ( j∗,c j∗) of A ′(S′,r),

e−εPr[A ′(S,r) = ( j∗,c j∗)]≤ Pr[A ′(S′,r) = ( j∗,c j∗)]≤ eεPr[A ′(S,r) = ( j∗,c j∗)].

Hence, we have proved that conditioned on any fixed coins and sample pairs with non-zero

probability of occurring conditioned on Ecoin and Esample, we have A ′(S,r)≈ε,δ A ′(S′,r). Now,

using the law of total probability, we get that

Prr1,...,rk

[
PrS,S′∼Dmkt

[
A ′(S;r1, . . . ,rk)≈ε,δ A ′(S′;r1, . . . ,rk)

]
≥ 1−δ

2
]
≥ 1−δ

2. (5.7)
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Step 6: Switch quantifiers to get sample perfect generalization:

Now, we switch the quantifiers in equation 5.7.

PrS,S′∼Dmkt ,r1,...,rk

[
A ′(S;r1, . . . ,rk)≈ε,δ A ′(S′;r1, . . . ,rk)

]
≥ 1−2δ

2

=⇒ ES,S′∼Dmkt

[
Prr1,...,rk

[
A ′(S;r1, . . . ,rk)≈ε,δ A ′(S′;r1, . . . ,rk)

]]
≥ 1−2δ

2

=⇒ PrS,S′∼Dmkt

[
Prr1,...,rk

[
A ′(S;r1, . . . ,rk)≈ε,δ A ′(S′;r1, . . . ,rk)

]
≥ d
]
≥ 1−2δ 2−d

1−d
.

Here, the last inequality holds by the reverse Markov inequality. Setting d = 1−δ , we get that

PrS,S′∼Dmkt

[
Prr1,...,rk

[
A ′(S;r1, . . . ,rk)≈ε,δ A ′(S′;r1, . . . ,rk)

]
≥ 1−δ

]
≥ 1−2δ .

Now, using the fact that if X ≈ε,δ Y and M ≈ε,δ N, then αX +(1−α)M ≈ε,δ αY +(1−α)N for

every α ∈ [0,1] (i.e., (ε,δ )-indistinguishability is preserved under convex combinations), we get

that

PrS,S′∼Dmkt
[
A ′(S)≈ε,2δ A ′(S′)

]
≥ 1−2δ .

This proves that A ′ with the specified inputs is (2δ ,ε,2δ )-sample perfectly generalizing, as

required. Next, we deal with accuracy.

Claim 5.3.21. If Algorithm A succeeds at a statistical task with probability at least 1− γ2, Algo-

rithm A ′ succeeds at the same statistical task with probability at least 1−O(δ )− γ log(1/δ ).

Proof. Recall the definition of success for a statistical task. The statistical task is defined by a set of

distribution, set pairs. For every distribution D, there is an associated good set of outputs OD. An

algorithm succeeds at this task with probability at least 1− γ if it outputs a member of this good

set with at least that probability (taken over random samples from D and any internal coins of the

algorithm).

If A succeeds at the task with probability at least 1− γ2, by using reverse Markov’s
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inequality as in Step 6 of the previous proof, we have that

Prr

[
PrS∼Dm

[
A (S;r) ∈ OD

]
≥ 1− γ

]
≥ 1− γ (5.8)

We say a coin sequence r j is “accurate” if the inner inequality under the probability is

satisfied. Recall that we call a coin sequence r j “good” if it has a 0.99-canonical output. By the

analysis in Step 1 of the previous proof, we have that with probability at least 1− δ 2, there is a

good coin sequence among the runs r1, . . . ,rk. Now, the probability that all k coin sequences are

“accurate” is equal to (1− γ)log(1/δ ) ≥ 1− γ log(1/δ ). (This follows from Bernoulli’s inequality

(1+ a)k ≥ 1+ ak for all a ≥ −1 and non-negative integers k.) Hence, by a union bound, the

probability that the set of runs r1, . . . ,rk both contains a good coin sequence and that all the coin

sequences in the set are accurate is at least 1− γ log(1/δ )− δ 2. Call this event Ecoin−acc and

condition on it. Additionally, condition on Esample as defined in Step 2 of the previous proof. Then,

by the analysis in Step 4 of the previous proof, we have that

Pr
[
score

(
( j∗,c j∗),(S1,S2, . . . ,Sk)

)
≥ 0.8t

]
≤ e−k = δ ,

which implies that the exponential mechanism outputs a plurality output that occurs at least 0.8t

times in its stage with probability at least 1−δ . Since we have conditioned on Esample, we have

that empirical frequencies are close to their expected values, and hence the exponential mechanism

outputs the canonical output of a coin sequence that is at least 0.25-good with probability at

least 1− δ . Using the law of total probability to remove the conditioning on Esample, we get

that the exponential mechanism outputs the canonical output of a coin sequence that is at least

0.25-good with probability at least 1− δ − δ 2 (since event Esample happens with probability at

least 1−δ 2). Note that since all the drawn coin sequences are accurate, we get that the canonical

output for every such sequence is in the good set OD (otherwise, the inequality inside the outer
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probability in equation 5.8 would not be satisfied). Hence, conditioned on Ecoin−acc, we have

that A ′ outputs an element of the good set with probability at least 1−δ −δ 2. Using the law of

total probability, we then get that A ′ outputs an element of the good set with probability at least

1−δ −2δ 2− γ log(1/δ ) = 1−O(δ )− γ log(1/δ ).

Hence, combining the two claims on perfect generalization and accuracy, we complete the

proof of the theorem.

5.4 Separating Stability: Computational Barriers

In this section, we show that standard cryptographic assumptions imply there cannot exist

computationally efficient transformations from differentially private algorithms to replicable ones.

Moreover, such cryptographic assumptions are necessary: if one-way functions do not exist, there

exists an efficient algorithm for correlated sampling (and therefore for converting DP to replicability

as well via Corollary 5.3.18).

In Section 5.4.1, we define ΠRandEnc, a statistical promise problem. Given a public key

pk and a dataset of ciphertexts encrypting the same bit b under pk, a solution to ΠRandEnc is

any encryption of b under pk. In Section 5.4.1, we give a simple algorithm DPRandEnc solving

ΠRandEnc. DPRandEnc is (ε,δ )-differentially private and runs in polynomial time. In Section 5.4.1,

we show that the existence of an efficient replicable algorithm for ΠRandEnc would violate the

security guarantee of the encryption scheme. Thus, assuming randomizable encryption schemes

exist, there is no efficient transformation from DP algorithms to replicable algorithms for ΠRandEnc.

ΠRandEnc can be instantiated with any PKE satisfying the requirements of Definition 5.4.2, but to

demonstrate that these requirements are not unreasonable, in Section 5.4.1 we show that they are

satisfied by the Goldwasser-Micali public-key encryption scheme [GM82]. Therefore the hardness

of quadratic residuosity is sufficient to show hardness for the transformation from differential

privacy to replicability.
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In Section 5.4.2, we give an algorithm for correlated sampling that is efficient so long as

no one-way functions exist. This algorithm can in turn be used in Algorithm 25, to implement the

correlated sampling step of the transformation from a one-way perfectly generalizing algorithm to a

replicable one, giving an efficient transformation.

5.4.1 Cryptographic Hardness of Replicability

We define a promise problem ΠRandEnc (Definition 5.4.3) for a public-key encryption scheme.

ΠRandEnc is parameterized by a public-key pk for a public-key encryption scheme E with message

space {0,1} and ciphertext space C . An instance of ΠRandEnc consists of a sample of m elements ci,

drawn i.i.d. from an unknown distribution D over C . Promised that either

1. D is supported entirely on encryptions of 0 under pk or

2. D is supported entirely on encryptions of 1 under pk,

Problem ΠRandEnc asks the algorithm to output an encryption of 0 under pk in the first case and an

encryption of 1 under pk in the second case.

We show that if the public-key encryption scheme supports a strong form of rerandomization,

Problem ΠRandEnc can be efficiently solved with a differentially private algorithm. At the same time,

ΠRandEnc cannot be efficiently solved using a replicable algorithm, assuming the security of the

underlying encryption scheme. Thus, in this setting, there cannot be an efficient black-box reduction

from DP algorithms to replicable algorithms.

For our construction, we use a standard definition for public-key encryption.

Definition 5.4.1 (Public-Key Encryption Scheme). Let λ ∈ N be a security parameter and E =

(KeyGen,Enc,Dec) be a tuple of algorithms running in time poly(λ ), with KeyGen : 1∗→Kp×Ks,

Enc : Kp×{0,1} → C , and Dec : Ks×C → {0,1}∪⊥. We say E is a public-key encryption

scheme if it has the following properties.
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• Correctness: Let (sk,pk)← KeyGen(λ ), b ∈ {0,1}, and c← Enc(pk,b). Then Dec(sk,c) =

b.

• Security: There exists a negligible function ε(λ ), such that for all adversaries A running in

time poly(λ ), letting (sk,pk)← KeyGen(λ ) we have

|Pr[A (pk,c) = 1 | c← Enc(pk,1)]−Pr[A (pk,c) = 1 | c← Enc(pk,0)]|< ε(λ ).

We also require that a public-key encryption scheme allows for efficient, publicly computable

ciphertext verification and rerandomization procedures.

Definition 5.4.2 (Randomizeable Encryption Scheme). Let E = (KeyGen,Enc,Dec) be a public-key

encryption scheme. We call E a randomizeable encryption scheme if it supports the following

additional procedures.

• (Perfect) Verification of Ciphertexts: There exists a deterministic polytime algorithm V such

that, for an honestly generated key pair (sk,pk)← KeyGen(λ ) and value c,

– If Dec(sk,c) ∈ {0,1}, then V (pk,c) = 1

– If Dec(sk,c) =⊥, then V (pk,c) = 0

• (Perfect) Randomization of Ciphertexts: There exists a randomized polytime algorithm

Rerandomize such that, for all honestly generated key pairs (sk,pk)← KeyGen(λ ), and all

ciphertexts c1,c2 such that Dec(sk,c1) = Dec(sk,c2),

– dTV (Rerandomize(pk,c1),Rerandomize(pk,c2)) = 0

– Dec(sk,Rerandomize(pk,c)) = Dec(sk,c)

Consider the following search problem ΠRandEnc. Given a public key pk for an encryption

scheme E , and an i.i.d. sample of m elements from a distribution D supported on encryptions under

pk of a fixed bit b ∈ {0,1}, output an encryption of b under pk.
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Definition 5.4.3 (Ciphertext Identification Problem). An instance of ΠRandEnc is defined as follows.

Let E = (KeyGen,Enc,Dec) be a randomizeable encryption scheme (Definition 5.4.2). Let λ ,m∈N,

and let D be a distribution over the ciphertext space C of E . Given public key pk, honestly generated

as (pk,sk)← KeyGen(λ ), and a sample S∼Dm drawn i.i.d. from D, output an element c∗ ∈ C ∪⊥

such that

1. If Dec(sk,c) = 1 for all c ∈ supp(D), Dec(sk,c∗) = 1

2. If Dec(sk,c) = 0 for all c ∈ supp(D), Dec(sk,c∗) = 0

DP Algorithm for ΠRandEnc

In this subsection, we present a differentially private algorithm DPRandEnc for ΠRandEnc.

Our algorithm removes from the dataset S all ci for which verification fails, i.e., V (pk,ci) = 0. It

then pads the remaining elements with k encryptions of 0 under pk and k encryptions of 1 under pk.

An element ci from the new dataset is then chosen uniformly at random, and the algorithm outputs

Rerandomize(pk,ci).

Padding the dataset with additional ciphertexts, balanced between encryptions of 0 and 1,

guarantees privacy by ensuring that exchanging any element of S for another will not significantly

change the probability that the ciphertext chosen for rerandomization encrypts a particular bit. If

the distribution D is supported on one of the two promised distributions, DPRandEnc will be correct

unless it chooses to rerandomize an inserted ciphertext which encrypts the incorrect bit. So long as

the input sample is of size m much larger than k, this will happen only with small probability.
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Algorithm 27. DPRandEnc, differentially private algorithm for ΠRandEnc
Result: Outputs a ciphertext c ∈ C

Input: Sample S of m elements drawn i.i.d. from D

Parameters:

• Privacy ε , failure probability β , padding length k = 1
ε

• Sample Complexity m = m(ε,β ) ∈ O
(

1
εβ

)
Algorithm:

1. For i ∈ [m], remove ci from S if V (pk,ci) = 0

2. Add k ciphertexts Enc(pk,0) to the dataset

3. Add k ciphertexts Enc(pk,1) to the dataset

4. Choose c uniformly at random from the new dataset

return Rerandomize(pk,c)

Lemma 5.4.4. Let ε,β ∈ (0,1/2). Then for m ∈Ω(1/(εβ )) and k = 1/ε , ΠRandEnc (Algorithm 27)

runs in time poly(λ ,1/ε,1/β ), is ε-DP, and correct except with probability at most β .

Proof. We begin by showing DPRandEnc is ε-DP. Note that the last step of DPRandEnc calls

Rerandomize on a ciphertext c that is guaranteed to be a valid encryption of a bit b ∈ {0,1}, since

all inputs failing verification are removed from S before c is drawn, and only valid ciphertexts under

pk are added to the input dataset.

We will bound how much the probability that c encrypts a fixed bit b can differ across

neighboring data sets. Let c be a random variable denoting the ciphertext chosen for rerandomization.

For all b ∈ {0,1} and neighboring datasets S,S′, let Sb, S¬b, and S⊥ denote the subsets of S such

that Dec(sk,c) = b, Dec(sk,c) = ¬b, and Dec(sk,c) =⊥ respectively, and let S′b, S′¬b, and S′⊥ be
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defined analogously. Then

Pr[Dec(sk,c) = b | S]
Pr[Dec(sk,c) = b | S′]

=
|Sb|+ k

m−|S⊥|+2k
·

m−|S′⊥|+2k
|S′b|+ k

=
|Sb|+ k

|Sb|+ |S¬b|+2k
·
|S′b|+ |S′¬b|+2k
|S′b|+ k

≤ |Sb|+ k
|Sb|+ |S¬b|+2k

· |Sb|+ |S¬b|+2k
|Sb|−1+ k

=
|Sb|+ k
|Sb|−1+ k

≤ k+1
k

,

where the first inequality follows from S,S′ neighboring, and the fact that for a > b, a
b−1 > a+1

b ,

so assuming |Sb| ≥ 1 and |S′b| = |Sb| − 1 maximizes the rightmost fraction. Because the output

distribution of Rerandomize(pk,c) is the same for all ciphertexts encrypting the same bit under pk,

it follows that for all subsets T ⊆ C ,

Pr[DPRandEnc(S) ∈ T ] = Pr[Rerandomize(pk,c) ∈ T | Dec(sk,c) = 1] ·Pr[Dec(sk,c) = 1 | S]

+Pr[Rerandomize(pk,c) ∈ T | Dec(sk,c) = 0] ·Pr[Dec(sk,c) = 0 | S].

Using pb to denote Pr[Rerandomize(pk,c) ∈ T | Dec(sk,c) = b], for b ∈ {0,1}, we then have that

Pr[DPRandEnc(S) ∈ T ] = p1 ·Pr[Dec(sk,c) = 1 | S]+ p0 ·Pr[Dec(sk,c) = 0 | S]

≤ k+1
k

(
p1 ·Pr[Dec(sk,c) = 1 | S′]+ p0 ·Pr[Dec(sk,c) = 0 | S′]

)
=

k+1
k
·Pr[DPRandEnc(S′) ∈ T ]

≤ eε ·Pr[DPRandEnc(S′) ∈ T ]

278



where the final inequality follows from taking k = 1/ε and observing 1+ x≤ ex.

It remains to argue correctness of DPRandEnc when the sample S is drawn from one of the

promised distributions. In this case, the input sample S consists of m valid encryptions of the same

bit b under pk. Because Rerandomize(pk,c) is plaintext-preserving, the probability that ΠRandEnc

is incorrect given S, i.e., outputs a ciphertext encrypting ¬b, is exactly the probability that one of

the inserted ciphertexts encrypting ¬b is chosen for rerandomization. This happens with probability

k
m+2k , so taking m > k/β = 1/(εβ ) ensures ΠRandEnc is correct except with probability β .

Cryptographic Adversary from Replicable Algorithm for ΠRandEnc

In this subsection, we show that if there exists a replicable polytime algorithm, B, for

ΠRandEnc, instantiated with a randomizable encryption scheme E , then there exists an adversary

breaking the security guarantee of E . To break security, the adversary must be able to distinguish

whether a ciphertext c encrypts a 1 or a 0 with probability noticeably better than a coin flip.

The high level idea is as follows. The adversary can first use the ciphertext rerandomization

procedure to generate a dataset of ciphertexts encrypting the same bit as c. It can then generate a

dataset of ciphertexts encrypting 0 by encrypting 0 under the public key and rerandomizing the

resulting ciphertext. The adversary will then invoke B on both datasets, fixing the same randomness

for both invocations. If the outputs of both invocations are equal, the adversary will guess that c

encrypts a 0, and guess c encrypts 1 otherwise.

Because rerandomization is perfect and B is a replicable algorithm for ΠRandEnc, if c

encrypts a 0, B will with high probability produce the same output ciphertext for both invocations.

If c encrypts a 1, B will can only output the same ciphertext for both invocations if one of the two

invocations is incorrect, and so with good probability, the two outputs will differ. This implies

the adversary will have good distinguishing probability, breaking the security of the underlying

cryptosystem.
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Algorithm 28. Adversary A , cryptographic adversary given a replicable algorithm for ΠRandEnc

Result: Outputs a bit b′

Input: public key pk, ciphertext c

Algorithm:

1. Draw a random string r

2. c0← Enc(pk,0)

3. Generate a set S0 of m ciphertexts by running Rerandomize(pk,c0) m times

4. c0←B(pk,S0;r)

5. Generate a sample S of m ciphertexts by running Rerandomize(pk,c) m times

6. c←B(pk,S;r)

7. if c0 = c, then b′ = 0, otherwise b′ = 1

return b′

Lemma 5.4.5. Let E be a randomizeable encryption scheme, let ΠE
RandEnc denote the instantiation

of ΠRandEnc with E . Let B be a ρ-replicable algorithm for ΠE
RandEnc with failure probability β ,

running in time poly(λ ,ρ,β ), and with sample complexity m ∈ poly(λ ,ρ,β ). Then there exists an

adversary A running in time poly(λ ,ρ,β ) such that

Pr[A (pk,c) = 1 | c← Enc(pk,1)]−Pr[A (pk,c) = 1 | c← Enc(pk,0)]≥ 1−2β −ρ.

Proof. The adversary A (pk,c) outputs 1 whenever c0 6= c. The distribution from which S0 is drawn

is supported entirely on encryptions of 0 and, conditioned on c← Enc(pk,1), the distribution from

which S is drawn is supported entirely on encryptions of 1. Then c0 6= c except when one of the two

calls to B is incorrect, which happens with probability at most 2β . Conditioned on c← Enc(pk,0),
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S0 and S comprise i.i.d. samples from the same distribution over encryptions of 0. In this case,

c0 6= c if either call to B fails to be replicable, which happens with probability at most ρ . Therefore

Pr[A (pk,c) = 1 | c← Enc(pk,1)]−Pr[A (pk,c) = 1 | c← Enc(pk,0)]≥ 1−2β −ρ.

In particular, taking β ,ρ to be constant in Lemma 5.4.5 gives an adversary breaking the

security of E , yielding the following theorem as a corollary.

Theorem 5.4.6. Let E be a randomizeable encryption scheme, and let ΠE
RandEnc denote the instan-

tiation of ΠRandEnc with E . Then there does not exist a ρ-replicable algorithm for ΠE
RandEnc with

failure probability β , running in time poly(1/λ ), for ρ < 1/4 and β < 1/8.

Proof. If there exists a ρ-replicable algorithm B for ΠE
RandEnc with failure probability β < 1/8 and

replicability parameter ρ < 1/4 running in time poly(λ ), then by Lemma 5.4.5, there exists an

adversary A running in time poly(λ ) such that

Pr[A (pk,c) = 1 | c← Enc(pk,1)]−Pr[A (pk,c) = 1 | c← Enc(pk,0)]≥ 1/2 > negl(λ ),

and therefore A breaks the security of E .

Instantiating ΠRandEnc with the Goldwasser-Micali Cryptosystem

Here we recall the high-level structure of the Goldwasser-Micali public-key cryptosystem,

introduced in [GM82]. The security of the cryptosystem relies on the hardness of deciding quadratic

residuosity for integers modulo a semiprime N. Informally, encryptions of 0 are quadratic residues

modulo N, while encryptions of 1 are non-residues. Because multiplying an integer c by a quadratic

residue modulo N preserves quadratic residuosity of c, Goldwasser-Micali ciphertexts can be

efficiently rerandomized with only a public key. The rerandomization procedure will pick a
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quadratic residue r2 uniformly at random, and output its product with the given ciphertext modulo

N.

Definition 5.4.7 (Goldwasser-Micali Cryptosystem ([GM82])). The Goldwasser-Micali cryptosys-

tem is defined over a plaintext message space M = {0,1} and ciphertext space C = Z∗N , for N a

semiprime. The cryptosystem comprises the following routines.

• KeyGen(λ ): Sample p,q distinct primes of bit-length O(λ ) and let N = pq. Choose x to be

a quadratic non-residue modulo N with Jacobi symbol
(

x
p

)
=
(

x
q

)
= −1. Let sk = (p,q),

pk = (N,x), and output (sk,pk).

• Enc(pk,b): To encrypt a bit b ∈ {0,1}, sample u←U Z∗N and output u2xb mod N.

• Dec(sk,c): To decrypt a ciphertext c, output ⊥ if gcd(c,N) 6= 1, 1 if c is not a quadratic

residue modulo N and 0 otherwise.

We now show that the Goldwasser-Micali cryptosystem satisfies the strong rerandomization

property described above. We define the verification procedure V (pk,c) to output 1 if gcd(c,N) = 1

and 0 otherwise. We define Rerandomize(pk,c) to be the procedure that samples r uniformly at

random from Z∗N and outputs (pk,r2c mod N).

Lemma 5.4.8. The Goldwasser-Micali cryptosystem is a rerandomizeable encryption scheme

(definition 5.4.2), for the rerandomization procedure described above.

Proof. Because Dec(sk,c) = ⊥ if and only if gcd(c,N) 6= 1, and V (pk,c) = 0 if and only if

gcd(c,N) 6= 1, V satisfies the requirement of definition 5.4.2. The rerandomization procedure

multiplies a ciphertext c by a random quadratic residue modulo N, and therefore preserves quadratic

residuosity of c. This in turn preserves the plaintext message encrypted by c, and so Rerandomize

satisfies Dec(sk,Rerandomize(pk,c)) = Dec(sk,c).
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Next, we will show that dTV (Rerandomize(pk,c),Rerandomize(pk,c′)) = 0 for all c,c′ such

that Dec(sk,c) = Dec(sk,c′). Let b ∈ {0,1}, c = u2xb mod N and c′ = v2xb mod N be honest

encryptions of b under pk = (N,x). It follows that

Pr[Rerandomize(pk,c) = a] = Pr[Rerandomize(pk,u2xb mod N) = a]

= Pr[r2u2xb = a mod N]

= Pr[r2 = u−2x−ba mod N]

= Pr[(u−1vr)2 = u−2x−ba mod N]

= Pr[r2v2xb = a mod N]

= Pr[Rerandomize(pk,c′) = a],

where the fourth equality follows from r being chosen uniformly at random from Z∗N .

5.4.2 Correlated Sampling via One-Way Function Inverters

As we saw in Section 5.3.3, correlated sampling gives a generic way for converting a

perfectly generalizing algorithm into a replicable one. In this section, we show that the existence of

efficient one-way function inverters implies the ability to efficiently perform correlated sampling on

arbitrary distributions over {0,1}n. Specifically, we show that if there are no non-uniform one-way

functions, then there is polynomial time implicit correlated sampling.

Theorem 5.4.9. Assuming uniform one-way function inverters exist (Definition 5.4.11), Algorithm

CorrSamp is an (m,n,ν)-implicit correlated sampling algorithm that runs in time polynomial in m,

n, and 1/ν .

Proof. The distributional accuracy property is shown in the proof of Lemma 5.4.14. The correlated

sampling property is shown in the proof of Lemma 5.4.16. The runtime of CorrSamp is shown in

the proof of Lemma 5.4.17.
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Relevant Definitions

We model samplable distributions by considering the distribution induced by giving random

inputs to circuits. Furthermore, we allow for a distributional error parameter ν , giving some slack

in the correctness of a correlated sampler.

Definition 5.4.10 (Implicit Correlated Sampling Algorithm). Let m,n ∈ Z+, and let C : {0,1}m→

{0,1}n denote a circuit. Let distributional error parameter ν > 0. B(C,ν ;r) is an (m,n,ν)-implicit

correlated sampling algorithm if the following conditions hold:

1. Inputs/Outputs: B takes as input a circuit C : {0,1}m → {0,1}n, a distributional error

parameter ν , and a random string r. B outputs a string in {0,1}n.

2. ν-distributional accuracy: For all circuits C : {0,1}m→ {0,1}n, the distributions DC and

DB(C,ν) satisfy dTV (DC,DB(C,ν))≤ O(ν).

Here, DC denotes the distribution over {0,1}n induced by querying C(r) on uniformly random

inputs r, i.e., probability density function pDC(x) = Prr∼Um[C(r) = x]. Similarly, DB(C,ν)

denotes the distribution over {0,1}n induced by querying B(C,ν ;r) with uniformly random

strings r.

3. Correlated sampling: For all pairs of circuits C1,C2 : {0,1}m→{0,1}n, Prr[B(C1,ν ;r) 6=

B(C2,ν ;r)] ∈ O(dTV (DC1 ,DC2)+ν).

We assume we can invert any one-way function on almost all inputs. Specifically, we assume

that there is no non-uniform one-way function family, so that there is a uniform way of inverting

any circuit computing a function via a polynomial-time inverter.

Definition 5.4.11 (Uniform One-Way Function Inverters). Let ν ′ > 0. Iν ′(C,y) is a uniform one-

way function inverter with error ν ′ if I runs in randomized polynomial time in m, n, and 1/ν ′ and

if, for any circuit C : {0,1}m→{0,1}n, Prr′∼{0,1}m[C(Iν ′(C,C(r′))) =C(r′)]≥ 1−ν ′.
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In this argument, we will choose ν ′ to be inverse polynomially small in m,n, and 1/ν . In

addition, we assume that C(r) can be efficiently computed.8 Thus, we can check if and when the

inverter succeeds. For notational convenience, we say that the inverter I returns “⊥” if it does not

succeed.

Our correlated sampler randomly samples from pairwise-independent hash families in its

subroutines.

Definition 5.4.12 (Pairwise-Independent Hash Family). A family of Boolean functions H =

{H|H : {0,1}m→{0,1}n} is pairwise-independent if, for all r1 6= r2 ∈ {0,1}m and x1,x2 ∈ {0,1}n,

PrH∈H [H(r1) = x1∧H(r2) = x2] = 2−2n.

Algorithm Overview

A correlated sampling algorithm B accomplishes two goals. First, B(C,ν ;r) needs to

accurately sample from the distribution DC. Second, B must convert a random string r into the

same output when run on distributionally close circuits C1 and C2, with high probability. In other

words, B must choose a consistent way to map random strings r to elements in the support of DC.

For intuition, consider a restricted case of correlated sampling problems in which the

distributions DC induced by random inputs to circuits C : {0,1}m→ {0,1}n are promised to be

uniformly supported on 2` elements x ∈ {0,1}n for some fixed `. Let k be a small slack parameter,

and consider the following sampler:

1. Draw a random hash function H : {0,1}n→{0,1}`+k

2. Draw a random string u ∈ {0,1}`+k

3. Run the inverter on u: r = Iν ′(C ◦H,u)

4. If r =⊥ (i.e. u is not in the support of C ◦H), repeat. Else return y∗ =C(r)
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Randomness
{0,1}m

Step 3.
r = Iν ′(C ◦H,u)

supp(DC)
{0,1}n

Step 4.
y∗ =C(r)

Hash range
{0,1}`+k

Step 2.
u∼U ({0,1}`+k)

Step 1.
Draw H

C H

Iν ′(C ◦H, ·)

Figure 5.2. High-level structure of correlated sampler CorrSamp for uniform DC

The high level idea is that k can be chosen large enough such that supp(DC) has few

collisions with good probability (for random H), but small enough s.t. 2k (and therefore the runtime)

remains polynomial in the relevant parameters. Assuming no collisions occur, it is easy to see this

process is a correlated sampler since each element in the support of DC is sampled uniformly at

random, and moreover applied to distinct circuits C1 and C2, y∗ only differs if the sampler hits a

hash value u that contains an element in the symmetric difference supp(C1)∆supp(C2). Since there

are no collisions, this occurs exactly with probability dTV (DC1,DC2) as desired.

Moving to the general case, our algorithm CorrSamp applies this idea as follows. CorrSamp

divides the distribution DC into “levels” `, such that each level contains elements in the support

with probability density near 2−` (specifically, those in the range (2−`−1,2−`]). We now pick a

level uniformly at random, and hope to apply the above process. Intuitively, the main challenge is

that given the output y∗, we need to ensure y∗ actually belongs at level `. This is done through the

introduction of a second hash function H2 : {0,1}m→{0,1}m−`+k. In particular, fixing u and y∗ as

in the simplified variant, we wish to estimate |C−1(y∗)|= |(H ◦C)−1(u)| (assuming no collisions).

8Note that if there is no such efficient circuit C that produces a sample from a distribution DC (on a uniformly
random input), then DC is hard to sample from, and designing an efficient correlated sampling algorithm whose marginal
distribution is DC (when given circuit C) is hopeless.
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To do this, we call the inverter on the concatenated function FC,l,H,H2(r)
def
= H(C(r)) ‖H2(r)9 on

many pairs of the form (u||v), where v ∈ {0,1}m−`+k is chosen uniformly at random. Since we have

fixed u, the inverter can only succeed on this call when v = H2(r) for some r ∈ (C ◦H)−1(u). Since

v is chosen uniformly at random, the success probability of the inverter is then directly proportional

to the density of y∗, allowing us to determine whether or not y∗ is in level ` with high probability.10

We can then return y∗ if it is in the chosen level, and repeat the process from the beginning if not.

Because we have chosen u uniformly at random from {0,1}`+k, for any x it holds that x = H−1(u)

with probability 2−`−k (assuming no collisions). Then this approach allows us to sample uniformly

from level `, where every x in level ` is output with probability proportional to 2−`. Note that since

the true density may be a constant factor away from 2−`, this is not yet quite enough to achieve our

true target distributional accuracy—we will address this detail in the next section.

Algorithm Description and Pseudocode

We now give pseudocode for the CorrSamp algorithm and its subroutines, in addition to a

more detailed description. The main algorithm CorrSamp takes as input a circuit C and an error

parameter ν . As described in Section 5.4.2, at each iteration of the main loop, CorrSamp picks

a level ` uniformly at random, and then tries to sample an element that has probability roughly

2−` under DC. In addition to drawing a hash function H1 with range {0,1}`+k, and an element

u from that range, it will also sample a random threshold parameter β ∈ (1,2], and invoke the

subroutine ElemFindC,ν ,`,β (H1,u) with these parameters and inputs. We will properly motivate this

new parameter β shortly, but looking ahead, it will help us avoid the distributional accuracy issues

present in Section 5.4.2.

In the pseudocode for CorrSamp (Algorithm 29), k is chosen to be large enough that we will

be able to avoid problematic collisions for all hash functions with high probability, but small enough

9 We use ‘‖’ to denote concatenation of strings.
10Of course this only holds assuming few collisions. To handle the general case, we actually draw a new H2 with

every choice v to ensure this holds across all rounds.

287



`= 0 | x : pD(x) ∈ (1/2,1]

`= 1 | x : pD(x) ∈ (1/4,1/2]

...
`= m−1 | x : pD(x) ∈ [2−m,2−m+1 ]

supp(DC)
{0,1}n

Step 1.
Pick `

Step 2.
Pick H1

H1 range
{0,1}`+k

Step 3.
u∼U ({0,1}`+k)

H2 range
{0,1}m−`+k

Step 5.
Sample many

v(i) ∼U ({0,1}m−`+k)

Randomness
{0,1}m

Step 6.
Estimate pD(y∗)
by inverting F on
all (u,v(i)) pairs

Step 7.
If pD(y∗) in chosen `

return y∗,
o/w go to Step 1.

Step 4.
Pick H2

H1

H2

C

Iν ′(F, ·, ·)

Figure 5.3. High-level structure of correlated sampler CorrSamp for general DC

to ensure polynomial runtime. The value T1 is chosen to be large enough that CorrSamp returns

x 6=⊥ with high probability, but also small enough such that we can guarantee certain simplifying

assumptions will hold with high probability across all rounds of CorrSamp.

288



Algorithm 29. CorrSamp(C,ν ;r), correlated sampling algorithm
Input: Circuit C : {0,1}m→{0,1}n, distributional error parameter ν , and random string r
Output: An element x ∈ {0,1}n

k←Θ(log(m)+ log(1/ν))

T1←Θ(mk2k log(1/ν))

for t = 1 to t = T1 do

β ←r [1,2]

`←r {0,1, . . . ,m}

H1←r pairwise independent hash function from n bits to `+ k bits

u←r {0,1}`+k

x← ElemFindC,ν ,`,β (H1,u;r)

if x 6=⊥ then

return x

return ⊥

The subroutine ElemFindC,ν ,`,β (H1,u;r) follows the approach described in Section 5.4.2,

estimating the probability of y∗=H−1
1 (u) under DC by drawing many pairs (H2,v) of hash functions

with elements from their range, and invoking the subroutine HashCheckC,ν ,`,H1,u(H2,v) to invert

H(C(r))||H2(r) on each (u,v). This procedure approximates the density of random strings r

mapped to y∗ by C. If y∗ is in or nearly in level `, then ElemFind will obtain an estimate q̂(y∗)

that is close to pD(y∗)2`−k. It will then return y∗ only if β

2 2−k < q̂(y∗)≤ β2−k, i.e. roughly when

β2−`−1 < pD(y∗)≤ β2−`.

We now reach the core reason for choosing our threshold β randomly. As in Section 5.4.2,

if we did fix β , then any y∗ at level ` will be sampled whenever y∗ ∈ H−1
1 (u), which happens with

probability proportional to 2−`. Since this occurs for any pD(y∗) ∈ [β2−`−1,β2−`], this is not a

good enough estimate. The key is to observe that choosing β randomly allows us to avoid this kind
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of uniform sampling over any particular level. Instead we sample from “fuzzy” levels, where the

choice of β shifts the boundaries while maintaining that the fuzzy levels partition [0,1]. In slightly

more detail, observe that for any y∗ there is some j such that pD(y∗) = α2− j−1 +(1−α)2− j for

α ∈ [0,1]. This means we want y∗ to belong to ‘level’ ( j+1) with probability α , and to level j with

probability (1−α). We will show in Lemma 5.4.14 that choosing β uniformly at random exactly

achieves this.

In the pseudocode for ElemFind (Algorithm 30), k is chosen to balance the same constraints

we have described for CorrSamp. The value for T2, the number of hash function and element pairs

(H2,v) used to estimate the probability pD(y∗), is large enough to ensure a good empirical estimate

for y∗, but small enough to ensure ElemFind still runs in time polynomial in m,n, and 1/ν .

Algorithm 30. ElemFindC,ν ,`,β (H1,u;r), find an x to return in “fuzzy” level l
(Explicit) Input: Hash function H1 : {0,1}n→{0,1}`+k, string u ∈ {0,1}`+k, random string r
(Implicit) Input: Circuit C : {0,1}m → {0,1}n, distributional error parameter ν , integer ` ∈
{0,1, . . . ,m}, interval rescaling parameter β

Output: String x ∈ {0,1}n and probability qx ∈ ((β/2)2−k,β2−k].

k←Θ(log(m)+ log(1/ν))

T2←Θ(ν−2 log(1/ν)T−1
1 log(T−1

1 ))

for i = 1 to i = T2 do

H i
2←r pairwise independent hash function from m bits to m− `+ k bits

vi←r {0,1}m−`+k

Run HashCheckC,ν ,`,H1,u(H
i
2,v

i;r)

Let q̂x denote the fraction of times x was returned by HashCheck

if ∃ unique x s.t. x 6=⊥ and q̂x ∈ ((β/2)2−k,β2−k] then

return x

else

return ⊥
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Algorithm 31. HashCheckC,ν ,`,H1,u(H2,v;r), use inverter to check for valid inverses of H1 and H2
(Explicit) Input: Hash function (circuit) H2 : {0,1}m→ {0,1}m−`+k, string v ∈ {0,1}m−`+k, and
random string r
(Implicit) Input: Circuit C : {0,1}m → {0,1}n, distributional error parameter ν , integer ` ∈
{0,1, . . . ,m}, hash function H1 : {0,1}n→{0,1}`+k and string u ∈ {0,1}`+k

Output: String x ∈ {0,1}n

Define circuit FC,`,H1,H2(r
′) = H1(C(r′))‖H2(r′)

ν ′← inverse polynomial quantity in m,n,1/ν .

r′←Iν ′(FC,`,H1,H2,(u‖ v);r)

if r′ =⊥ then

return ⊥

else

return C(r′)

Analysis – Structure and Simplifying Assumptions

In this section, we analyze the CorrSamp algorithm. Before proceeding with the analysis, we

first introduce several simplifying assumptions below we will use throughout. In Section 5.4.2, we

analyze the distributional accuracy of CorrSamp, showing that its distribution over outputs is close

to the target distribution. In Section 5.4.2, we analyze the success probability of CorrSamp as a cor-

related sampler, showing that for two circuits C1 and C2, CorrSamp(C1,ν ;r) = CorrSamp(C2,ν ;r)

except with probability proportional to dTV (DC1,DC2). In Section 5.4.2, we show that CorrSamp

runs in time polynomial in the m, n, and 1/ν . Finally, in Section 5.4.2 we show that our simplifying

assumptions hold for the entire execution of CorrSamp, except with high probability. Thus, all

statements about the behavior of CorrSamp under the ideal conditions will still hold without these

assumptions, except with probability O(ν).

Definition 5.4.13 (Ideal Conditions). We collectively refer to the following as the ideal conditions.
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• The inverter Iν ′ never fails: for all x and r on which CorrSamp invokes Iν ′(x;r), Iν ′(x;r) 6=

⊥.

• For every `, there is at most one y∗ ∈ H−1
1 (u) s.t.

pD(y∗) ∈ [2−`−4,2−`+4]

• ElemFind always returns y∗ or ‘⊥’. Furthermore, for y∗ returned by ElemFind, we have the

stronger condition that pD(y∗) ∈ [2−`−2,2−`+2].

• The empirical estimate of q̂(y∗) is good:

q̂(y∗) ∈ (1±O(ν)) pD(y∗)2`−k

Analysis – Distributional Accuracy.

In this section, we analyze the distributional accuracy of CorrSamp. Denote by DCorrSamp the

distribution over outputs of CorrSamp(C,ν). We show that dTV (DCorrSamp,DC)≤ O(ν), assuming

the ideal conditions of Definition 5.4.13.

Lemma 5.4.14 (Distributional Accuracy of CorrSamp). For all circuits C : {0,1}m→{0,1}n, the

distributions DC and DCorrSamp satisfy dTV (DC,DCorrSamp)≤O(ν), assuming the ideal conditions of

Definition 5.4.13 hold for all rounds of CorrSamp. Here, DC and DCorrSamp denote the distributions

over {0,1}n induced by querying C(r) and CorrSamp(C,ν ;r) respectively with uniformly random

strings r.

We first prove the following useful lemma, bounding the probability that any x ∈ supp(DC)

is returned in a single round.

Lemma 5.4.15. Fix an x ∈ supp(DC). Then PrH1,u,`,β [ElemFindC,ν ,`,β (H1,u) = x] ∈ pD(x)(1+O(ν))
(m+1)2k .
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Proof. For any `, we have that PrH1,u[x = H−1
1 (u)] = 2−`−k. Conditioned on x being selected by

H1 and u, by construction, ElemFindC,ν ,`,β returns x whenever q̂(x) ∈ (β

2 2−k,β2−k]. Rewriting

pD(x) = γ2− j for γ ∈ [1/2,1], we observe that x will only ever have non-zero probability of being re-

turned by ElemFindC,ν ,`,β (H1,u) when j−1≤ `≤ j+2, from the assumptions of Definition 5.4.13.

Since we have q̂(x) ∈ (1±O(ν))pD(x)2`−k for any ` in this range, it follows that for these `,

Prβ

[
q̂(x) ∈ (β

2 2−k,β2−k]
]
∈ Prβ [

β

2 < pD(x)2`(1±O(ν))≤ β ]

∈ Prβ [
β

2 < pD(x)2` ≤ β ]±O(ν)p(x)2`.

Recalling that ` is chosen uniformly at random from {0, . . . ,m}, we can then write the probability

that ElemFind returns x as

PrH1,u,`,β [ElemFindC,ν ,`,β (H1,u) = x] ∈ ∑
`∈[ j−1, j+2]

Prβ [
β

2 < pD(x)2` ≤ β ]±O(ν)pD(x)2`

(m+1)2`+k

∈

(
∑

`∈[ j−1, j+2]

Prβ [
β

2 < pD(x)2` ≤ β ]

(m+1)2`+k

)
± O(ν)pD(x)

(m+1)2k .

293



Observing that Prβ [
β

2 < pD(x)2` ≤ β ] = 0 except for ` ∈ { j, j+1}, we can simplify the series:

∑
`∈[ j−1, j+2]

Prβ [
β

2 < pD(x)2` ≤ β ]

(m+1)2`+k = ∑
`∈[ j, j+1]

Prβ [
β

2 < pD(x)2` ≤ β ]

(m+1)2`+k

=
Prβ [

β

2 < pD(x)2 j ≤ β ]

(m+1)2 j+k +
Prβ [

β

2 < pD(x)2 j+1 ≤ β ]

(m+1)2 j+k+1

=
Prβ [

β

2 < γ ≤ β ]

(m+1)2 j+k +
Prβ [

β

2 < 2γ ≤ β ]

(m+1)2 j+k+1

=
Prβ [β < 2γ]

(m+1)2 j+k +
Prβ [β ≥ 2γ]

(m+1)2 j+k+1

=
2γ−1

(m+1)2 j+k +
2−2γ

(m+1)2 j+k+1

=
2γ−1+1− γ

(m+1)2 j+k

=
pD(x)

(m+1)2k .

Plugging back into the probability that ElemFind returns x, we have

PrH1,u,`,β [ElemFindC,ν ,`,β (H1,u) = x] ∈ pD(x)(1+O(ν))

(m+1)2k .

Finally, we can show that the output distribution of CorrSamp and that of circuit C are

O(ν)-close in variation distance.

Proof. Proof of Lemma 5.4.14:

From Lemma 5.4.15, we have that in each round, x is returned by ElemFind with probability
pD(x)(1±O(ν))

(m+1)2k .

Summing over all x, the probability that CorrSamp terminates in any individual round is in

the range 1±O(ν)
(m+1)2k . So, conditioned on a round of CorrSamp returning, the algorithm returns x with

probability in (1±O(ν))pD(x). Finally, CorrSamp does not return by the final T1’th round with
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probability at most O(ν), by the choice of T1. Altogether, this implies dTV (DC,DCorrSamp) ∈ O(ν)

as desired.

Analysis — Correlated Sampling.

Next, we show that CorrSamp satisfies the correlated sampling requirement of Defini-

tion 5.4.10. To simplify notation in this subsection, we will denote the probability of an element x

under DC1 and DC2 by p1(x) and p2(x) respectively.

Lemma 5.4.16 (Correlated Sampling of CorrSamp). For all circuits C1,C2 : {0,1}m → {0,1}n,

assuming the ideal conditions hold for all rounds of CorrSamp(C1,ν ;r) and CorrSamp(C2,ν ;r),

Prr[CorrSamp(C1,ν ;r) 6= CorrSamp(C2,ν ;r)]≤ O(dTV (DC1,DC2)+ν).

Proof. Let E0 denote the event that CorrSamp(C1,ν ;r) 6= CorrSamp(C2,ν ;r), and for simplicity

of notation, shorten ElemFind to EF, and write EF
(i)
C j

to denote the output of ElemFind in the

ith round. We start by making some simplifying assumptions. First, observe that since the

probability CorrSamp returns ⊥ is always at most O(ν), we can condition on the fact that both

CorrSamp(C2,ν ;r) 6= ⊥ and CorrSamp(C1,ν ;r) 6= ⊥ without loss of generality. Second, we can

assume by symmetry that CorrSamp(C1,ν ;r) does not return before CorrSamp(C2,ν ;r) (else

relabel C1 as C2).

With this in mind, let Ei denote the event that CorrSamp(C2,ν ;r) returns in round i. The

event E0 can then be bounded by

Pr[E0]≤∑
i

Pr[Ei]Prβ ,`[EF
(i)
C1
6= EF

(i)
C2
| Ei].

To bound the probability of this inner event, observe that under our assumptions, this occurs

exactly when x = EF
(i)
C2

, but for the empirical estimate computed by EF
(i)
C1

, q̂1(x) 6∈ [β

2 2−k,β2−k]. We
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will show conditioned on any value of x and `, this occurs with probability at most:

Prβ [EF
(i)
C1
6= x | Ei,EF

(i)
C2

= x, `]≤ O(2`|p2(x)− p1(x)|+ν). (5.9)

In this case, we can bound E0 by conditioning further on x and ` as:

Prr[E0]≤ ∑
i∈[T1]

Prβ ,`[Ei]Prβ ,`[EF
(i)
C1
6= EF

(i)
C2
| Ei]

≤ ∑
i∈[T1]

Prβ ,`[Ei] ∑
x 6=⊥

Prβ ,`[EF
(i)
C1
6= EF

(i)
C2
| Ei,EF

(i)
C2

= x]Prβ ,`[EF
(i)
C2

= x|Ei]

≤ O(ν)+ ∑
i∈[T1]

Prβ ,`[Ei] ∑
x 6=⊥

Prβ ,`[EF
(i)
C1
6= EF

(i)
C2
| Ei,EF

(i)
C2

= x]p2(x)

≤ O(ν)+ ∑
i∈[T1]

Prβ ,`[Ei] ∑
x 6=⊥

p2(x)∑
`

Pr[` | Ei,EF
(i)
C2

= x]Prβ [EF
(i)
C1
6= EF

(i)
C2
| Ei,EF

(i)
C2

= x, `]

≤ O(ν)+ ∑
i∈[T1]

Prβ ,`[Ei] ∑
x 6=⊥

p2(x)∑
`

Pr[` | Ei,EF
(i)
C2

= x]O(2`|p2(x)− p1(x)|).

Under the ideal conditions, the posterior of ` is 0 unless p2(x) ∈ [2−`−2,2−`+2], so altogether:

Prr[E0]≤ O(ν)+ ∑
i∈[T1]

Prβ ,`[Ei] ∑
x 6=⊥

p2(x)∑
`

Pr[` | Ei,EF
(i)
C2

= x]O
(

1
p2(x)

|p2(x)− p1(x)|
)

≤ O(ν)+ ∑
i∈[T1]

Prβ ,`[Ei] ∑
x 6=⊥

O(|p2(x)− p1(x)|)

≤ O(dTV (DC1,DC2)+ν)

as desired.

It is therefore left to prove Equation (5.9), which we analyze the probability by splitting into

two cases based on p1(x):

1. p2(x)/4≤ p1(x)≤ 4p2(x)

2. p1(x)< p2(x)/4 or p1(x)> 4p2(x)
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Case 1:

In this case, because we are assuming the ideal conditions of Definition 5.4.13 and have

conditioned on ElemFindC2,ν ,`,β (H1,u;r) = x for some x in this round, it must be the case that for

this x we have:

• p2(x) ∈ [2−`−2,2−`+2]

• p1(x) ∈ [2−`−4,2−`+4] (from our assumption that p2(x)/4≤ p1(x)≤ 4p2(x))

• q̂2(x) ∈ (1±O(ν))p2(x)2`−k

• q̂1(x) ∈ (1±O(ν))p1(x)2`−k.

From the uniqueness of x satisfying x = H−1
1 (u) and p1(x) ∈ [2`−4,2−`+4], we can as-

sume that ElemFindC1,ν ,`,β (H1,u;r) outputs either x or ⊥ in this round. Therefore, we can

bound the probability ElemFindC1,ν ,`,β (H1,u;r) 6= ElemFindC2,ν ,`,β (H1,u;r) by the probability

that ElemFindC1,ν ,`,β (H1,u;r) outputs ⊥ conditioned on ElemFindC2,ν ,`,β (H1,u;r) returning x.

This occurs whenever β is chosen so that either

(1+O(ν))p1(x)2`−k <
β2−k

2
≤ p2(x)2`−k(1+O(ν))

or

p2(x)2`−k(1−O(ν))≤ β2−k < p1(x)2`−k(1+O(ν)).

Observing that these cases are mutually exclusive and the first interval is the largest, we

consider only that worst case and rearrange to obtain the condition

β ≤ 2`+1|p2(x)− p1(x)|+O(ν)(p2(x)+ p1(x))2`

≤ 2`+1|p2(x)− p1(x)|+O(ν),
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where the last inequality follows from our previously stated bounds p1, p2 ∈ [2−`−4,2−`+4].

Since β is chosen uniformly at random from the interval [1,2], it follows that β satisfies

the condition above with probability no greater than 2`+1|p2(x)− p1(x)|+O(ν). Conditioning on

ElemFindC2,ν ,`,β (H1,u;r) = x and p2(x) ∈ [2−`−4,2−`+4], we have

Prβ [ElemFindC1,ν ,`β (H1,u;r) =⊥]≤ Prβ [β ≤ 2`+1|p2(x2)− p1(x2)|+O(ν)]

≤ 2`+1|p2(x)− p1(x)|+O(ν).

Case 2:

In this case, we have either p1(x)< p2(x)/4 or p1(x)> 4p2(x), and so p2(x) ∈ O(|p2(x)−

p1(x)|). Conditioning on ElemFindC2,ν ,`,β (H1,u;r) = x in this round also gives us that p2(x) =

Θ(2−`), so

Prβ [ElemFindC1,ν ,`,β (H1,u;r) 6= x | ElemFindC2,ν ,`,β (H1,u;r) = x]≤ 1

≤ O(2`p2(x2))

≤ O(2`|p2(x2)− p1(x2)|).

Then for any value of p1(x) (either in Case 1 or Case 2) we have that

Prβ [ElemFindC1,ν ,`,β (H1,u;r) 6= x | ElemFindC2,ν ,`,β (H1,u;r) = x] ∈ O(2`|p2(x)− p1(x)|+ν)

as desired.

Analysis — Runtime

Lemma 5.4.17 (Runtime of CorrSamp). Assuming inverter I runs in time polynomial in m, n, and

1/ν , algorithm CorrSamp also runs in time polynomial in m, n, and 1/ν .

Proof. Algorithm CorrSamp runs for at most O(mk2k log(1/ν)) rounds. Parameter k is chosen in
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Θ(log(m)+ log(1/ν)), so 2k ∈O(poly(m,1/ν)). Randomly sampling a pairwise-independent hash

function from n bits to `+ k bits can be done in poly(m,n,1/ν) time.

Each round of CorrSamp invokes ElemFind. In ElemFind, there are O(poly(m,1/ν))

rounds in which a hash function from m bits to m−`+k bits is randomly sampled (O(poly(m,1/ν))

time). Furthermore, each round contains a call to HashCheck, which runs in time poly(m,n,1/ν)

by the assumption that inverter Iν ′ does as well.

Multiplying these nesting terms together, CorrSamp runs in time polynomial in m, n, and ν .

Note that the randomness management, which ensures that the same bits of the random string

r are always used across multiple executions of CorrSamp, can also be done in time polynomial in

m, n, and 1/ν . Each algorithm and subroutine has a finite number of randomness calls, and each call

can be made using poly(m,n,1/ν) random bits. Thus, r can efficiently be canonically proportioned

for all uses of randomness in the algorithm. For more details, see Appendix 5.9.1.

Parameter β is chosen uniformly randomly in [1,2] in each loop of CorrSamp. Only

polynomial in m, n, and 1/ν bits of precision are needed to choose β so that the errors introduced

by not using uniformly random values are altogether small relative to distributional error parameter

ν .

Analysis – Removing Assumption of Ideal Conditions

Proposition 5.4.18. The ideal conditions of Definition 5.4.13 hold across all steps of CorrSamp

with probability at least 1−O(ν).

We break the proof into its four constituent part.

Lemma 5.4.19 (Inverter Never Fails). Let S denote the set of strings (x;r) on which CorrSamp

invokes Iν ′(x;r). The probability the inverter fails on S is negligible:

Pr[∃(x;r) ∈S : Iν ′(x;r) =⊥]≤ O(ν),

299



as long as ν ′ = poly(ν−1,m,n) is sufficiently small.

Proof. Recall our inverter has the following guarantee

Prr′∼{0,1}m [C(Iν ′(C,C(r′));r) =C(r′)]≥ 1−ν
′,

where r stands for the internal randomness of I and ν ′ can be taken to be polynomially small in

m,n and ν . It will be enough to take the failure rate ν ′ ≤O( ν2

T1T2
) = poly(ν−1,m,n). We will bound

the probability such an inverter fails on a random input (u||v).

First, observe that by Markov’s inequality, most choices of internal randomness r for the

inverter random work for almost all r′ ∈ {0,1}m:

Prr

[
Prr′

[
Iν ′(C,C(r′));r) 6=C(r′)

]
≥ O

(
ν

T1T2

)]
≤ O(ν).

Assume then this event does not occur. Our algorithm only fails if the random choice of (u||v) is

hashed to by a string for which Iν ′(C,C(r′));r) 6=C(r′). In the worst case, these bad strings each

correspond to unique (u||v) ∈ {0,1}m+2k, in which case we have a total of ν

T1T2
2m out of 2m+2k bad

inputs. Union bounding over the T1T2 applications of the inverter in CorrSamp gives a total failure

probability of 1−O(ν) as desired.

To prove the remaining conditions, it will be useful first to bound the number of collisions

experienced by our hash functions.

Claim 5.4.20 (Collision Avoidance). With probability at least 1−O(ν), for all choices of H1, u,

and ` in CorrSamp:

1. H1 has no relevant collisions:

∀pD(x), pD(x′) ∈ [2−`−4,2−`+4] : H1(x) 6= H1(x′),

300



2. For all x ∈ H−1
1 (u), the total number of collisions across choices of H2 is at most:

∣∣{H2,(r,r′) ∈C−1(x) : H2(r) = H2(r′)}
∣∣≤ δxT2|C−1(x)|,

where δx = O
(

2`pD(x) · mk log(1/ν)
ν

·2−k
)

Proof. To prove the first condition, observe there are at most 2`+4 elements x ∈ {0,1}n with

measure in the range pD(x) ∈ [2−`−4,2−`+4]. Since our hash function is pairwise-independent, the

probability a collision exists in this range is therefore bounded by 22`+8

22`+2k = 24−2k. Union bounding

over the T1 choices of H1, u, and `, a collision still occurs with probability at most 2−Ω(k) ≤ O(ν)

as desired.

To prove the second condition, fix x ∈ H−1
1 (u) and observe that by pairwise independence,

the expected number of total collisions across all choices of H2 is at most

T2
|C−1(x)|2

22m−2`+2k .

by linearity of expectation, so by Markov’s inequality the probability there are more than

T2
|C−1(x)|2

22m−2`+2k ·
T12m

ν
≤ T2|C−1(x)| · 2

`pD(x)mk log(1/ν)

ν2k

total collisions is at most O(ν)/(T12m), so union bounding over all choices of H1, u, and x gives the

desired result.

Lemma 5.4.21 (Uniqueness of y∗). With probability at least 1−O(ν) over all choices of H1 and u,

there is at most one element y∗ ∈ H−1
1 (u) satisfying

pD(y∗) ∈ [2−`−4,2−`+4].
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Proof. This is immediate from the fact that H1 has no collisions on [2−`−4,2−`+4] with high

probability.

Lemma 5.4.22 (Correctness of q̂). With probability at least 1−O(ν), every run of ElemFind

accurately estimates pD(y∗) in the following sense:

q̂(y∗) ∈
(
(1±O(ν))pD(x)2`−k

)

Proof. For intuition, first consider the setting where no collisions occur in any H2. In this case,

observe that the density of the pre-image of x mapped into the range of H2 is exactly pD(x)2`−k by

construction, that is:
|H2(C−1(y∗))|

2m−`+k = pD(x)2`−k.

As such q̂(y∗) is distributed as a Binomial distribution Bin(pD(y∗)2`−k,T2), and Chernoff promises

that

Prv,H2 [|q̂(x)− pD(x)2`−k| ≥ O(ν)pD(y∗)2`−k]≤ e−Ω(ν2T2) ≤ O(ν)

T1

by our choice of T2. The desired result then follows from union bounding over all choices of H1 and

u.

We now modify this analysis under the assumption that at most

Ccol := O
(

2`pD(y∗)mk log(1/ν)

ν2k

)
· |C−1(y∗)|T2

total collisions occur, which holds across all rounds except with probability O(ν) (Claim 5.4.20).

In this case, since pD(y∗)≤ 2`+4, we have

Ccol ≤ O(ν)|C−1(y∗)|T2

for k = Θ(log(m/ν)) sufficiently large, and therefore that the expectation of our adjusted binomial
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trial is close enough to its ideal expectation:

∑
H2

|H2(C−1(y∗))|
2m−`+k ∈ T2 ·

[
(1−O(ν))pD(y∗)2`−k, pD(y∗)2`−k

]
,

that the collisions have no asymptotic effect on the original Chernoff bound.

Lemma 5.4.23 (Correctness of ElemFind). With probability at least 1−O(ν), all calls to ElemFind

return y∗ or ‘⊥’. Furthermore, for y∗ returned by ElemFind, we have the stronger condition that

pD(y∗) ∈ [2−`−2,2−`+2].

Proof. For the first claim, it is enough to argue that any x ∈ H−1
1 (u) distinct from y∗ satisfies:

q̂(x) /∈ [(β/2)2−k,β2−k].

Assuming y∗ is unique (Lemma 5.4.21), we have either that pD(x)< 2−`−4 or pD(x)> 2−`+4.

Consider the former. We will show q̂(x)< 2−k−1 ≤ (β/2)2−k. Note that since collisions only lower

q̂, they can be ignored in this setting. By construction, the pre-image of x consists of at most 2m−`−4

strings r′ map to x, so |H2(C−1(x))| is at most a

2m−`−4

2m−`+k =
2−k

16

fraction of the range of H2. A Chernoff and Union bound give that all such x have empirical

estimates less than (β/2)2−k except with probability 2me−Ω(2−kT2) ≤ O(ν).

Finally, consider x satisfying pD(x)≥ 2−`+4. In this case, we will aim show q̂(x)> 2
2k ≥

β2−k, so it is sufficient to consider the worst case when pD(x) = 2−`+4. By Claim 5.4.20, we can

assume there are at most

Ccol ≤
1
4

T2|C−1(x)|

total collisions over the choices of H2, thus as in Lemma 5.4.22, the collision-corrected Chernoff
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bound still promises q̂(x)> 2
2k with probability at least e−Ω(2−kT2) ≤ O(ν)

2mT1
. Union bounding over all

choices of H1, u, and values of x completes the proof of the first claim.

To prove the second claim, we observe that q̂(y∗)∈ (1±O(ν))pD(y∗)2`−k by Lemma 5.4.22.

Bounding (1±O(ν)) ∈ (1/2,2), we have

pD(y∗) ∈ (q̂(y∗)2k−`−1, q̂(y∗)2k−`+1).

If ElemFind returned y∗, it must be the case that

q̂(y∗) ∈ (β

2 2−k,β2−k] ∈ (2−k−1,2−k+1],

and so

pD(y∗) ∈ [2−`−2,2−`+2],

conditioned on ElemFind returning y∗, as claimed.

5.5 Separating Stability: Statistical Barriers

5.5.1 Quadratic Separation: One-way Marginals

We start by defining the one-way marginals problem over d coordinates, which corresponds

to outputting a good estimate of the expectation of a product of Rademacher distributions in

`∞-distance.

Definition 5.5.1. Consider a product of d Rademacher distributions with expectations (p1, . . . , pd)

respectively. Let p = (p1, . . . , pd). A vector v ∈ Rd is said to be an α-accurate solution to the

one-way marginals problem if ‖v− p‖∞ ≤ α .

304



Definition 5.5.2. Let C be the class of products of d Rademacher distributions. Fix any distribution

D in C. We say that an algorithm (α,β )-accurately solves the one-way marginals problem over d

coordinates, if it observes samples from the distribution D, and with probability at least 1−β (over

the randomness of the samples and the algorithm), produces an α-accurate solution v ∈ Rd .

In this section, we show that any 0.0001-replicable, (0.01,0.01)-accurate algorithm for the

one-way marginals problem over d coordinates requires at least Ω̃(d) samples.

On the other hand, under the constraint of (1, 1
n2 )-differential privacy, this problem can

be solved using Õ(
√

d) samples, via the Gaussian mechanism. This gives a quadratic separation

between differential privacy and replicability, and proves that our reduction is asymptotically tight

(up to logarithmic factors) in some settings (since our reduction would give a Õ(d)-sample replicable

algorithm for this task).

The main theorem we prove in this section is the following.

Theorem 5.5.3. Fix sufficiently large d > 0. If algorithm A is 0.0001-replicable and (0.01,0.001)-

accurately solves the one-way marginals problem over d coordinates with m samples, then m =

Ω̃(d).

Sketch of our approach

Our techniques for proving the lower bound for replicability draw inspiration from those

used to prove lower bounds in privacy. Specifically, tight lower bounds for the one-way marginals

problem over d coordinates under the constraint of differential privacy are obtained using the

fingerprinting method [DSS+15, BUV18, BSU19]. The fingerprinting method captures the idea

that there is a trade-off between accuracy and correlation with the input sample. It quantifies the

idea that if the algorithm obtains a sample of small size, and is also very accurate, then it must be

heavily correlated with one of its input examples, which is prohibited by differential privacy. Since

replicability also prohibits such correlation (at least at a high level), one might expect the same

method to be useful toward this end.
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More formally, given an algorithm A solving the one-way marginals problem, the correla-

tion of coordinate j of the output with the input sample S can be measured by the quantity

Z = ∑
j∈[d]

A j(S) ∑
i∈[m]

(S j
i − p j).

Note that the quantity (S j
i − p j) represents the drift between an input example coordinate and the

expectation of the distribution it’s drawn from. E[Z] is large when on average, for many j, A j(S) is

on the same side of 0 as the sample drift ∑i(S
j
i − p j), implying that the algorithm’s outputs are on

average correlated with its input.

We now recall the formal statement of the fingerprinting lemma.

Lemma 5.5.4 (Fingerprinting Lemma, Lemma 3.6 in [BSU19]). Let f be any function from

{−1,1}m → [−1,1]. Suppose r is sampled from the uniform distribution over [−1,1] and q ∈

{−1,1}m is a vector of m independent Rademacher RVs each with expectation r. Then, if µq is the

empirical average of q, we get that

Er,q[ f (q)∑
i
(qi− r)+2| f (q)−µq|]≥

1
3
.

The lower bound for differential privacy proceeds by arguing E[Z] = E[∑ j A
j(S)∑i(S

j
i −

p j)] is large (via an appropriate application of the fingerprinting lemma), and hence, by an averaging

argument, there exists an example Si∗ ∈ S correlated with the output, i.e. some i∗ ∈ [m] such that

E[Zi∗] = E[ ∑
j∈[d]

A j(S)(S j
i∗− p j)]

is large. With this in hand, consider an independently drawn example g = (g1
i∗, . . . ,g

d
i∗), and the

neighboring dataset S′ obtained by replacing Si∗ in the original dataset with g. Since g is independent
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of Si∗ , A j(S′) is uncorrelated with (S j
i∗− p j), and hence the “1-neighboring” quantity

E[Z′i∗] = E[ ∑
j∈[d]

A j(S′)(S j
i∗− p j)]

should be small. On the other hand, differential privacy promises that Zi∗ is distributionally close to

Z′i∗ , and hence E[Z′i∗ ] and E[Zi∗] must be close. Balancing these considerations gives a lower bound

on the number of samples needed for differential privacy.

For replicability, the idea is to obtain a stronger lower bound by avoiding averaging. Specifi-

cally, for Z defined as above, we can argue that E[Z] is large (as we would for the differential privacy

lower bound). Then, we can consider a freshly sampled dataset S′ (drawn from a product distribution

with the same expectation p = (p1, . . . , pd)), and consider the quantity Z′ = ∑ j A
j(S′)∑i(S

j
i − p j).

We can argue that Z′ is a sum of uncorrelated random variables, and hence that E[Z′] is small.

On the other hand, by replicability, Z and Z′ are distributionally close, since they correspond to

post-processing of the algorithm applied to independent datasets. Note that this does not follow from

differential privacy, since datasets S and S′ may differ in many entries. Now, following a similar

approach to the differential privacy lower bound, we’d get a stronger lower bound for replicability

(since we have eliminated the averaging argument).

Unfortunately, this approach does not work directly for technical reasons. Specifically,

ρ-replicability tells us that Z and Z′ are distributionally close, but their expectations can have

absolute value difference as large as ρdm (since A (S) and A (S′) could differ completely with

probability ρ). Since we are interested in constant ρ , this turns out to be too large for the lower

bound technique to work.

We deal with this by instead applying the fingerprinting method to prove a lower bound

against ( 1
m3 ,1, 1

m3 )−perfectly generalizing algorithms. We find this lower bound interesting in

its own right, as it gives the first sample complexity separation between approximate differential

privacy and perfect generalization. Perfect generalization roughly asks that the algorithm’s output
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distributions be (1, 1
m3 )-close on two independent datasets drawn from the product distribution. This

can be used to argue that E[|Z|] is within 1
m2 of (a constant multiple of) E[|Z′|], which turns out to

be sufficient for the lower bound technique to apply.

Finally, appealing to our generic method of converting replicable algorithms to perfectly

generalizing ones, this method extends to a tight lower bound on replicability (up to the loss of

logarithmic factors in the number of coordinates d). It remains an interesting problem whether such

a lower bound can be shown directly, ideally in a manner that avoids the resulting logarithmic loss.

Formal argument

We start by proving our new lower bound for perfectly generalizing algorithms.

Theorem 5.5.5. Fix any m > 0 and sufficiently large d > 0. Let A be a ( 1
m3 ,1, 1

m3 )-perfectly

generalizing, (0.01,0.01)-accurate algorithm for the 1-way marginals problem over d attributes

using m samples. Then, m = Ω(d).

Proof. Assume without loss of generality that m = Ω(logd).11 Let p∼ [−1,1]d , and draw S,S′ ∼

Dm
p independently where Dp is a product of Rademachers with expectation p = (p1, . . . , pd). Define

the random variables

Z = ∑
j∈[d]

A j(S) ∑
i∈[m]

(S j
i − p j), Z′ = ∑

j∈[d]
A j(S) ∑

i∈[m]

(S′ ji − p j).

As discussed above, we will argue that E[Z] is large (by the fingerprinting lemma):

E[|Z|]≥ d
10

, (5.10)

11We will show under this condition that m = Ω(d). Any algorithm on O(logd) samples implies one between
O(logd) and O(d), which would give a contradiction.
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that E[|Z′|] is small (since S′ is independent of S):

E[|Z′|]≤ 2
√

dm, (5.11)

and finally that E[|Z|] and E[|Z′|] are close (by perfect generalization):

E[|Z|]≤ e2E[|Z′|]+ 8d
m2 . (5.12)

Combining the inequalities we get

d
10
≤ E[|Z|]≤ e2E

[
|Z′|
]
+

8d
m2 ≤ 2e2

√
dm+

8d
m2

which implies m≥Ω(d) as desired.

It remains to show Inequalities (5.10), (5.11), (5.12). We start with the first. Apply the

fingerprinting lemma to the function corresponding to the jth coordinate of the output of A , when

run on the jth column of the input S with all other columns set to any fixed values. Then, we get that

Ep j∼[−1,1],S j∼Rad(p j)m [A j(S;r)∑
i
(S j

i − p j)+2|A j(S;r)−µ j|]≥
1
3
,

where µ j is the empirical average of the jth column of the dataset. Since this is true for all fixed

coins of the algorithm and fixed values of the other columns, by the law of total expectation, it is

also true for random coin tosses and any distribution over the values of the other columns, and we

get that

Ep,S∼Dm
p ,A [∑

j
A j(S)∑

i
(S j

i − p j)+2|A j(S)−µ j|] = E[Z]+2E[∑
j
|A j(S)−µ j|]≥

d
3

where we have used that S is drawn from a product distribution. It is therefore enough to argue that
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E[∑ j |A j(S)−µ j|] is small.

Since A is (0.01,0.01)-accurate, we can say that with probability at least 0.99, for all

j ∈ [d], |A j(S)− p j| ≤ 1
100 . Taking expectation, we get that E[∑ j∈[d] |A j(S)− p j|] ≤ 3d

100 . By a

Chernoff bound, we can argue that since m = Ω(logd), max j |p j−µ j| ≤ 0.01 with probability at

least 0.99. By the triangle inequality, this gives us that E[∑ j∈[d] |A j(S)− µ j|] ≤ 6d
100 . Since this

holds for a fixed product of Rademachers, it also holds when the expectation of the Rademacher

random variables are chosen at random which proves Equation (5.10).

Next, we show Equation (5.11), that E[|Z′|] is small. Towards this end, first note that

Z′ is a sum of mean 0 uncorrelated random variables. To see this, consider random variables

M = A j(S)(S′ ji − p j) and N = A j(S)(S′ ji′ − p j) for indices i 6= i′. We claim that E[M] = E[N] = 0.

This is by the following sequence of inequalities (we prove this for M, the same argument holds for

N).

E[M] = EpES,S′,A [M | p]

= EpES,S′,A [A j(S)(S′ ji − p j) | p]

= Ep

[
ES,S′,A [A j(S) | p] ES,S′,A [(S′ ji − p j) | p]

]
= 0,

where the last equality follows because conditioned on the vector p, the expectation of the

Rademacher S j
i is exactly equal to p j. Hence, by linearity of expectation, we get that the ex-

pectation of Z′ is also 0.

Next, we show that M and N are uncorrelated. First, conditioning on p we can write

Ep,S,S′,A [MN] = EpES,S′,A [MN | p]

= Ep

[
ES,S′,A [A j(S)2 | p] ES,S′,A [(S′ ji − p j)(S

′ j
i′ − p j) | p]

]

since S and S′ are independent after conditioning. Since this is also the case for (S′ ji − p j) and
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(S′ ji′ − p j) we have

E[(S′ ji − p j)(S
′ j
i′ − p j) | p] = E[(S′ ji − p j) | p] E[(S′ ji′ − p j) | p] = 0.

Since we have already seen that E[M]E[N] = 0 (since E[M] = 0), this implies that M and N are

uncorrelated as desired.

Now assuming without loss of generality that A outputs values between [−1,1] (rounding

inputs to this range only improves the accuracy and doesn’t affect perfect generalization, which is

robust to post-processing), we have that

E2[|Z′|] = E2
p,S,S′,A

[∣∣∣ ∑
j∈[d]

A j(S)∑
i
(S′ ji − p j)

∣∣∣] (S and S′ are i.i.d)

≤ Ep,S,S′,A

[(
∑

j∈[d]
A j(S)∑

i
(S′ ji − p j)

)2]
(Jensen’s Inequality)

=Var(Z′). (E[Z′] = 0)

Since Z′ is a sum of uncorrelated random variables and A j(S)2 ≤ 1, we then get

Var(Z′) = ∑
j
∑

i
Var(A j(S)(S′ ji − p j))

≤∑
j
∑

i
E[(S′ ji − p j)

2]

≤ 4dm

as desired.

It is left to show Equation (5.12). Let Zp be the random variable Z conditioned on fixed

p (and likewise for Z′). Let Zp,S,S′ be the random variable Z conditioned on fixed p, S and S′

(and likewise for Z′). If A is perfectly generalizing, then by Lemma 5.3.5 and Lemma 5.2.5, for

all fixed p, with probability at least 1− 1
m3 over the draw of S,S′, we have that Zp,S,S′ and Z′p,S,S′
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are distributionally close, as are |Zp,S,S′| and |Z′p,S,S′|. For any fixed p, let E be the event that

|Zp,S,S′| ≈2, 3
m3
|Z′p,S,S′|, where the randomness in E comes from the randomness of sampling S and

S′. Then, by the guarantee of perfect generalization, we have that for all fixed p, E occurs with

probability at least 1− 1
m3 and for any fixed p we can write:

E[|Zp|] = ES,A

[∣∣∣ ∑
j∈[d]

A j(S)∑
i
(S j

i − p j)
∣∣∣]

=
∫ 2dm

0
Pr[|Zp|> z]dz

=
∫ 2dm

0

[
Pr[|Zp|> z | E]Pr[E]+Pr[|Zp|> z | E]Pr[E)

]
dz

≤
∫ 2dm

0
(e2Pr[|Z′p|> z | E]+ 3

m3 )Pr[E]+Pr[E]dz

≤
∫ 2dm

0
e2Pr[|Z′p|> z | E]Pr[E]dz+

∫ 2dm

0

[
3

m3 +Pr[E]
]

dz

≤
∫ 2dm

0
e2Pr[|Z′p|> z]dz+

∫ 2dm

0

[
3

m3 +
1

m3

]
dz

= e2ES,S′,A [|Z′p|]+
8d
m2 ,

where the first inequality follows since |Zp| and |Z′p| are distributionally close conditioned on E, the

second inequality is by the fact that Pr(E)≤ 1, and the third since E corresponds to the probability

of failure in the definition of perfect generalization.

Finally taking expectation with respect to p, we get that

E[|Z|]≤ e2E[|Z′|]+ 8d
m2

as desired.

Now, we are ready to prove the lower bound for replicable algorithms.

Proof of Theorem 5.5.3. Let m be larger than an absolute constant K, without loss of generality.12

12We will show under this condition that m = Ω̃(d). Any algorithm taking fewer than K samples implies one taking
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By Claim 5.2.12, we have that A is (0.01,0.01)-replicable and (0.01,0.001)-accurate when given

m samples. Consider any sufficiently small γ > 0, and sufficiently large constant c > 0. Applying

Theorem 5.2.13, we get that there is a 1
c log(1/γ) -replicable and (0.01,0.008+ 1

log(1/γ)) = (0.01,0.01)-

accurate algorithm A ′ for one-way marginals over d coordinates, which takes O
(
m log2(1/γ)

)
samples.

Next, we give a way of replicably amplifying the failure probability to γ . We run the

algorithm A ′ k = 20log(1/γ) times on different samples, and take the coordinate-wise median of

the outputs. Observe that for each coordinate, if more than half the values in that coordinate are

within 0.01 of the true bias, then the median is correct. Consider the probability that more than half

the output values in a coordinate are not within 0.01 of the true bias. By a Chernoff bound, we have

that the number of outputs which are within 0.01 of the true expectation in l∞ norm are more than

0.5k with probability at least 1− γ2, which guarantees that we get a (0.01,γ2)-accurate algorithm

for one-way marginals. Using composition of replicability, we have that the resulting algorithm is

(0.01,0.01)-replicable and takes O
(
m log3(1/γ)

)
samples.

Consider any sufficiently small δ > 0. By Theorem 5.3.19, there is a (2δ ,1,2δ )-PG algo-

rithm with failure probability at most δ +γ log(1/δ ) when given m′=O(m log3(1/γ)polylog(1/δ ))

samples. Setting γ = 0.005
log1/δ

, we get that that for sufficiently small δ > 0, there is a (2δ ,1,2δ )-

PG algorithm with failure probability at most δ + 0.005 (i.e. (0.01,δ + 0.005)-accurate), when

given m′ = O(m · polylog(1/δ )) samples. Setting δ = 1
2m′3 and simplifying, we get that m′ =

Cm ·polylog(m) for some constant C. Then, since m′ > m is larger than K, we get that δ is smaller

than 1
K and setting K sufficiently large gives us a (0.01,0.01)-accurate algorithm with m′ samples.

Now, using the lower bound for perfect generalization in Theorem 5.5.5, we get that

m′ = Ω(d), which gives us that m = Ω̃(d), completing the proof.

between K and Õ(d) samples, which would give a contradiction.
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5.5.2 Quadratic separation: Agnostic Learning

In this section, we prove a lower bound for agnostic learning (See Section 5.2.4 for the

definition of agnostic learning) under the constraint of replicability.

Theorem 5.5.6. Fix sufficiently large d > 0 and a hypothesis class H with VC dimension d. Any

(0.01,0.001)-accurate, 0.0001-replicable agnostic learner A for H requires at least Ω̃(d2) exam-

ples.

The key idea is that we will reduce a variant of the one-way marginals problem over d

coordinates to the problem of agnostically learning any hypothesis class with VC dimension d (with

quadratically more samples). The variant we consider loosely corresponds to predicting the signs of

the biases of the product distribution. We show that this is possible using an agnostic learner as a

subroutine. We start by defining this problem more precisely.

Sign-One-Way Marginals

Definition 5.5.7. Consider a product of d Rademacher distributions with expectations p1, . . . , pd .

A vector v ∈ [−1,1]d is said to be an α-accurate solution to the sign-one-way marginals problem

for this distribution if 1
d ∑

d
j=1 v j p j ≥ 1

d ∑
d
j=1 |p j|−α .

Observe that if every p j is either −1 or 1, an accurate solution requires the v j’s to do a very

good job of predicting the signs on average. On the other hand, if the p j values are all 0, then every

value of v is a 0-accurate solution. Thus, this definition of error scales depending on how biased the

expectation is to either 1 or −1, penalizing solutions more when they do a poor job of predicting

heavily biased coordinates. (Indeed, we’d expect biased coordinates to be easier to predict, so it

makes sense to penalize solutions more on these coordinates.) Now, we are ready to define the

accuracy of an algorithm for the sign-one-way marginals problem.

Definition 5.5.8. Let C be the class of products of d Rademacher random variables. We say that

an algorithm A : {{−1,1}d}m→ [−1,1]d (α,β )-accurately solves the sign-one-way marginals
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problem over class C if for all fixed distributions D in C, with probability at least 1−β over the

randomness of the examples it obtains from D and the internal randomness of the algorithm, it

outputs an α-accurate vector v for D.

Solving Sign-One-Way Marginals using Agnostic Learning

Our reduction in Algorithm 32 shows how to use an agnostic learner Aag for any class H of

VC dimension d to construct an algorithm A for the sign-one-way marginals problem.

The main idea of the algorithm is as follows. Fix a distribution D that is a product of

Rademachers and let its expectation be p = (p1, . . . , pd). Consider a shattered set x1, . . . ,xd for

hypothesis class H. Consider a distribution D′ corresponding to sampling a uniformly random point

x j from the shattered set and then sampling a label in (−1,1) from a Rademacher with expectation

p j. Note that given a sample S of d independently drawn examples from D, we can create a dataset

Sag of size roughly d2 that looks like an i.i.d. sample from D′, by sampling a uniformly random x j

and labeling it with a new unused entry from coordinate j of S (we won’t run out of entries with

high probability). Now, note that since the set x1, . . . ,xd is shattered by H, there is a hypothesis

h in H that outputs sign(p j) on input x j (such a hypothesis also achieves lowest possible error

on D′ among hypotheses in H). If the agnostic learner is accurate when given d2 samples, then

the function f it outputs is a good approximation to h and as a result f (x j) is also likely to be an

accurate prediction of the sign of p j. Hence, function f can be used to obtain an accurate solution

to the sign-one-way marginals problem.
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Algorithm 32. Algorithm A for sign-one-way marginals
Input: Sample access to a product distribution D over {−1,1}d , agnostic learner Aag for

hypothesis class H with VC dimension d

Output: Estimated biases (v1, . . . ,vd).

1: Draw d
logc d i.i.d. examples from D for some c > 0. Call the corresponding sample Sinp.

2: Let x1, . . . ,xd be a shattered set of points for H. Let Ud be the uniform distribution over

x1, . . . ,xd .

3: Draw m = d2

100log2c d
examples S j from Ud . Call the sample Sag. If any element xi occurs more

than d
logc d times, then output (1, . . . ,1), else move to the next step.

4: For each example S j, label it with a new entry from coordinate j of the input sample Sinp. Call

the labeled sample Sag,lab.

5: Run agnostic learner Aag on the labeled sample Sag,lab. Let the output function be f .

6: return ( f (x1), f (x2), . . . , f (xd)).

Theorem 5.5.9. Fix sufficiently large d > 0. Let Aag be a (0.01,0.001)-accurate, 0.0001-replicable

agnostic learner for a hypothesis class H with VC dimension d. Then algorithm A is a (0.02,0.002)-

accurate, 0.0003-replicable algorithm for the sign-one-way marginals problem over d coordinates.

Proof. Let D be a Rademacher distribution with expectation (p1, . . . , pd). Define a distribution

Dideal over {x1, . . . ,xd}×{−1,1} as follows. First, uniformly draw s∈ {x1, . . . ,xd}. Then, if s = x j,

draw y from a Rademacher with expectation p j. Let Dideal be the distribution of the random variable

(s,y) obtained using this procedure.

First, we observe that by a Chernoff bound and union bound, the probability that any element

xi occurs more than d
logc d times in Sag (where Sag is sampled as described in Step 3) is exponentially

small in d (hence less than 0.01 for sufficiently large d). Call this bad event E.

Next, consider the following method for sampling a dataset Sideal of d
100log2c d

i.i.d. samples

from Dideal: first draw `= d
100log2c d

i.i.d. examples si ∼Ud and then for each of them, if the value
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obtained is x j, sample y j ∼ Rad(p j). Consider the event Eideal that the number of occurrences of

any example xi is larger than d
logc d . The probability of this event is exactly equal to Pr[E]. Notice

that the distribution of Sag,lab is identical to the distribution of Sideal conditioned on event Eideal .

For any distribution D′ and event E, a simple calculation shows dTV (D′,D′|E)≤ Pr[E]. Hence, we

get that the total variation distance between the distribution of Sideal conditioned on event Eideal and

the distribution of Sideal is at most 0.0001 for sufficiently large d.

Now, we know that with probability at least 0.999 over the coins of the algorithm and the sam-

ple, the agnostic learner produces an output that is accurate with respect to its input sample. By the

data-processing inequality for total variation distance, we have that dTV (Aag(Sideal),Aag(Sag,lab))≤

0.0001. Consider the distribution Dideal and the subset O of 0.01-accurate functions w.r.t. the best

function in the class H (i.e. the function that minimizes Pr(x,y)∈Dideal
[h(x) 6= y]) . By the definition

of total variation distance, we have that the probability that learner Aag produces outputs in this

subset O on seeing Sag,lab is within 0.0001 of the probability that Aag produces outputs in this

subset O on seeing Sideal . Since the latter happens with probability at least 0.999, we have that with

probability at least 0.9989, the agnostic learner is 0.01-accurate when fed the sample Sag,lab. This

implies by the definition of the accuracy guarantee that with probability at least 0.9989 over the

randomness of the learner Aag and sample Sag,lab, that

Pr(x,y)∼Dideal
[ f (x) 6= y]≤ inf

h∈H
Pr(x,y)∼Dideal

[h(x) 6= y]+0.01,

where f is the output function of the agnostic learner. For x ∈ {x1, . . . ,xd}, let px be p j if x = x j.

Observe that the function that predicts sign(px) achieves the infimum on the right hand side of the

above equation.

Now, using the fact that expectation of an indicator is the probability of the indicated event,

and that 1[a 6= b] = 1−ab
2 when a and b are in {−1,1}, we get that with probability at least 0.9989
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over the randomness of the learner Aag and sample Sag,lab,

E(x,y)∼Dideal
[1[ f (x) 6= y]]≤ inf

h∈H
E(x,y)∼Dideal

[1[h(x) 6= y]]+0.01

=⇒ E(x,y)∼Dideal

[
1− f (x)y

2

]
≤ inf

h∈H
E(x,y)∼Dideal

[
1−h(x)y

2

]
+0.01

=⇒ E(x,y)∼Dideal

[
1− f (x)y

2

]
≤ E(x,y)∼Dideal

[
1− sign(px)y

2

]
+0.01

=⇒ E(x,y)∼Dideal
[ f (x)y]≥ E(x,y)∼Dideal

[sign(px)y]−0.02.

Now, Algorithm A calls the agnostic learner except with probability 0.0001. Unraveling the

expectations, accounting for the fact that A outputs (1,1 . . . ,1) when it doesn’t call the agnostic

learner, and using the fact that the randomness of sample Sag,lab is from the randomness of the

algorithm A as well as the randomness of Sinp, we get that with probability at least 0.998 over the

randomness of the algorithm A and input sample, Sinp, that

1
d

d

∑
j=1

f (x j)p j ≥
1
d

d

∑
j=1

sign(p j)p j−0.02,

proving that A is a (0.02,0.002)-accurate algorithm for sign-one-way marginals over d coordinates.

Next, we prove that A inherits the replicability of the agnostic learner Aag. Consider

two sets of independent samples Sinp,1 and Sinp,2. Consider any set of random coins r drawn for

algorithm A . Note that when the coins dictate that when some point in the shattered set occurs too

many times, the algorithm always outputs (1, . . . ,1). Recall that this is event E, which we previously

showed occurs with probability at most 0.0001. Hence, in this case A (Sinp,1;r) =A (Sinp,2;r) with

probability 1. Hence, it is sufficient to consider coins such that every point in the shattered set occurs

fewer than d
log2c d

times in the sample Sag. Now, as argued previously, the total variation distance

between the distribution of Sag,lab (call it Dag) and the same number of i.i.d. samples from Dideal

is at most 0.0001 for sufficiently large d. Thus, we have that the probability of any event changes
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by at most 0.0002 under samples Sag,lab,S′ag,lab ∼ Dm
ideal versus samples Sag,lab,S′ag,lab ∼ Dm

ag. This

allows us to conclude that

PrSinp,1,Sinp,2∼Dm,r[A (Sinp,1;r) = A (Sinp,2;r)]

≥ PrSinp,1,Sinp,2∼Dm,r[A (Sinp,1;r) = A (Sinp,2;r) | E]

≥ PrSag,lab,S′ag,lab∼Dag,rag[Aag(Sag,lab;rag) = Aag(S′ag,lab;rag)]

≥ PrSag,lab,S′ag,lab∼Dm
ideal ,rag[A (Sag,lab;rag) = A (S′ag,lab;rag)]−0.0002

≥ 0.9999−0.0002 = 0.9997.

Hence, we have proved that A is 0.0005-replicable.

Lower Bound for Sign-One-Way Marginals

In this section, we show that accurately and replicably solving the sign-one-way marginals

problem over d coordinates requires a number of samples that is nearly linear in d. We will use

a variant of the fingerprinting method used to prove the lower bound for the one-way marginals

problem for perfectly generalizing algorithms, and then extend this to a lower bound for replicable

algorithms. This argument is similar to that used to prove the lower bound for the one-way marginals

problem (Theorem 5.5.5), except that the notion of accuracy is different, and so we use a different

version of the fingerprinting lemma, given below.

Lemma 5.5.10 ([BSU19], Lemma A.1 and A.2). Let f be a function from {−1,1}m→R. Let p be

a uniformly random variable between −1 and 1, and~x be a random vector of length m, consisting

of i.i.d. Rademacher random variables with expectation p.
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Then,

Ep,~x[ f (~x)
m

∑
i=1

(xi− p)] = Ep[2pg(p)]

where g(p) = E~x∼p[ f (~x)].

Theorem 5.5.11. Fix any m > 0, sufficiently large d > 0. Let A be a ( 1
m3 ,1, 1

m3 )-perfectly general-

izing, (0.05,0.05)-accurate algorithm for the sign-one-way marginals problem over d coordinates

using m samples that always outputs a vector in [−1,1]d . Then, m = Ω(d).

Proof. Without loss of generality, let m be larger than a constant K.13 Let S be the input dataset

to the algorithm A . Following the framework in Theorem 5.5.5, we will first argue the expected

correlation of our algorithm and its input is large:

d

∑
j=1

Ep,A ,S∼Dm
p
[A j(S)

m

∑
i=1

(S j
i − p j)]≥ 0.35d.

To see this, observe that by the accuracy of the algorithm, for any fixed distribution Dp that is

a product of Rademachers with expectation p = (p1, . . . , pd), we have that we have that with

probability at least 0.95 over the randomness of the algorithm A and its input sample,

1
d

d

∑
j=1

v j p j ≥
1
d

d

∑
j=1

sign(p j)p j−0.05,

where v is the vector output by the algorithm.

Now, taking expectation over the randomness of the algorithm A and the input sample S,

13We will show under this condition that m = Ω(d). Any algorithm on ≤ K samples implies one taking between K
and O(d) samples, which would give a contradiction.
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we get that

EA ,S∼Dm
p

[
1
d

d

∑
j=1

A j(S)p j

]
≥ 0.95

[
1
d

d

∑
j=1
|p j|−0.05

]
−0.05,

which implies that

EA ,S∼Dm
p

[
1
d

d

∑
j=1

A j(S)p j

]
≥ 1

d

d

∑
j=1
|p j|−0.15,

Now, consider each coordinate of expectation vector p drawn uniformly from [−1,1]. Then,

we have that conditioned on any fixed p, the above equation holds. Hence, using the law of total

expectation, we get that

Ep,A ,S∼Dm
p

[
d

∑
j=1

A j(S)p j

]
≥ Ep

[
d

∑
j=1
|p j|

]
−0.15d (5.13)

=⇒
d

∑
j=1

Ep,A ,S∼Dm
p

[
A j(S)p j

]
≥

d

∑
j=1

Ep j∼[−1,1]
[
|p j|
]
−0.15d = 0.35d, (5.14)

where we have used the fact that Ep j∼[−1,1][|p j|] = 1
2 . Now, fix a coordinate j ∈ [d]. For any

fixed internal randomness r of algorithm A , and for any values of columns of S that are not the jth

column, we get from Lemma 5.5.10 applied to the function f corresponding to the algorithm A on

the complete dataset S with internal randomness r, that

Ep j,S j∼Rad(p j)m
[
A j(S;r)p j

]
= Ep j,S j∼Rad(p j)m[A j(S;r)

m

∑
i=1

(S j
i − p j)].

Now, since this holds for any fixed values of internal randomness r and for any values of

columns of S that are not the jth column, it holds for any distribution over the internal randomness r

and any distribution over values of other columns of S. Hence, we get that
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Ep,A ,S∼Dm
p

[
A j(S)p j

]
= Ep,A ,S∼Dm

p
[A j(S)

m

∑
i=1

(S j
i − p j)],

where we have used that Dp is a product distribution. Now, summing over all coordinates j ∈ [d],

we get that

d

∑
j=1

Ep,A ,S∼Dm
p
[A j(S)

m

∑
i=1

(S j
i − p j)] =

d

∑
j=1

Ep,A ,S∼Dm
p

[
A j(S)p j

]
≥ 0.35d, (5.15)

where we have used Equation (5.14).

Now, we can proceed exactly as in the proof of Theorem 5.5.5 (we repeat high-level details

for completeness; for more details, see that proof).

Let S′ be another dataset drawn from the same distribution Dp. Let Z =∑ j∈[d]A
j(S)∑i(S

j
i −

p j) and Z′ = ∑ j∈[d]A
j(S′)∑i(S

j
i − p j).

First, note that Z′ is a sum of uncorrelated random variables with mean 0 (see the proof of

Theorem 5.5.5 for a proof of this).

We can then prove (as in the proof of Theorem 5.5.5) that

E[|Z′|] = Ep,A ,S,S′∼Dm
p

[∣∣∣ ∑
j∈[d]

A j(S′)∑
i
(S j

i − p j)
∣∣∣]≤ 2

√
dm,

Then, we can invoke the perfect generalization guarantee to prove (as in the proof of

Theorem 5.5.5) that

E[|Z|]≤ e2E[|Z′|]+ 8d
m2 ,

Hence, combining the inequality above with equation 5.15, we get that

0.35d ≤ E[|Z|]≤ e2E[|Z′|]+ 8d
m2 ≤ 2e2

√
dm+

8d
m2 .
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Simplifying, this gives that

m = Ω(d).

Now, we are ready to apply our conversion from replicability to perfect generalization to

prove a similar lower bound for replicable algorithms.

Theorem 5.5.12. Fix sufficiently large d > 0. For any 0.0005-replicable algorithm A that is

(0.02,0.002)-accurate on the sign-one-way marginals problem over d coordinates with m samples,

m = Ω̃(d).

Proof. Without loss of generality, let m be larger than a constant K.14 By Claim 5.2.12, we have

that A is (0.01,0.05)-replicable and (0.02,0.002)-accurate when given m samples. Consider any

sufficiently small γ > 0. Next, applying Theorem 5.2.13, we get that for sufficiently large constant

c > 1, there is a 1
c log(1/γ) -replicable and (0.01,0.008+ 4

c log(1/γ)) = (0.01,0.01)-accurate algorithm

A ′ for sign-one-way marginals over d coordinates, which takes O
(
m log2(1/γ)

)
samples.

Next, we give a way of replicably amplifying the failure probability to γ . We run the

algorithm A for k = 20log(1/γ) times on different samples, and take the mean of the outputs. Using

composition of replicability, we have that the resulting algorithm is 0.0001-replicable and takes

O
(
m log3(1/γ)

)
samples. Now, we analyze the failure probability of this algorithm. Let the output

vectors of A on the k runs be v1, . . . ,vk. We are interested in the quantity 1
d ∑

d
j=1

[
|p j|−

p j
k ∑

k
i=1 vi

j

]
.

14We will show under this condition that m = Ω̃(d). Any algorithm on ≤ K samples implies one taking between K
and Õ(d) samples, which would give a contradiction.
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First, we analyze the expectation of this quantity.

E

[
1
d

d

∑
j=1

[
|p j|−

p j

k

k

∑
i=1

vi
j

]]
= E

[
1
d

d

∑
j=1

p j

[
sign(p j)−

1
k

k

∑
i=1

vi
j

]]

= E

[
1
d

d

∑
j=1

1
k

k

∑
i=1

p j
[
sign(p j)− vi

j
]]

=
1
k

k

∑
i=1

E

[
1
d

d

∑
j=1

p j
[
sign(p j)− vi

j
]]
≤ 0.03

where the last inequality is because the quantity inside the last expectation is less than 0.02 with

probability at least 0.99 (and because all the vi are identically distributed). Next, observe that

the quantity 1
k ∑

k
i=1

(
1
d ∑

d
j=1 p j

[
sign(p j)− vi

j

])
is a sum of k independent random variables (since

the ith term in the sum only depends on random variable vi) in the interval [−2,2]. Hence, using

Hoeffding’s inequality, we have that the probability that the sum is larger than 0.05 is less than γ2.

Now, by Theorem 5.3.19, we have that there is a (2δ ,1,2δ )-PG algorithm with failure

probability at most δ + γ log(1/δ ) when given m′ = O(m log3(1/γ)poly log(1/δ )) samples (where

failure in this case means outputting a solution that is not 0.05-accurate). Setting γ = 0.005
log(1/δ ) , we get

that that for sufficiently small δ > 0, there is a (2δ ,1,2δ )-PG algorithm with failure probability at

most δ +0.005 (i.e., one that is (0.05,δ +0.005)-accurate), when given m′ = O(m ·poly log(1/δ ))

samples. Setting δ = 1
2m′3 and simplifying, we get that m′ =C ·m ·poly logm for some constant C.

Hence, since m′ > m is larger than K, we get that δ is smaller than 1
K and setting K to be sufficiently

large, we get a (0.05,0.05)-accurate algorithm with m′ samples.

Now, using the lower bound for perfect generalization in Theorem 5.5.11, we get that

m′ = Ω(d), which gives us that m = Ω̃(d), completing the proof.

Now, we can use the reduction from sign-one-way marginals to agnostic learning to obtain

the sample complexity lower bound for agnostic learning.

Proof of Theorem 5.5.6. If there were a (0.01,0.001)-accurate, 0.0001-replicable agnostic learning
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algorithm using fewer than d2

100log2c d
(where c is some sufficiently large constant) samples, then

by Theorem 5.5.9, there would be a (0.02,0.002)-accurate, 0.0005-replicable algorithm for the

sign-one-way marginals problem over d coordinates taking only d
logc d samples, which contradicts

Theorem 5.5.12.

We note that our agnostic learning lower bound as stated only holds only for constant

accuracy, and might not give the optimal dependence on the accuracy parameter α for general

(α,β )-agnostic learning. We leave it as an open problem to determine the right dependence on α .

5.5.3 Closing the Gap: Realizable Learning

Now that we’ve seen natural settings in which our reduction is tight (and therefore exhibited

a quadratic statistical separation between privacy and replicability), it is reasonable to ask whether

there are any settings under which the reduction is loose, or even where privacy and replicability

might have the same statistical cost. In this section, we’ll show this is indeed the case for (certain

regimes of) a closely related problem: realizable PAC-learning. In particular, in this section we ex-

hibit a replicable algorithm for PAC-learning that gives a quadratically improved dependence on the

accuracy and confidence parameters over applying our reduction from privacy (see Theorem 5.6.13).

Theorem 5.5.13 (Finite Classes are Replicably Learnable). Any class H is replicably Agnostic

learnable with sample complexity:

m(ρ,α,β )≤ O

(
log2 |H|+ log 1

ρβ

α2ρ2 log3 1
ρ

)
.

In the realizable setting, the α-dependence can be improved to linear:

m(ρ,α,β )≤ O

(
log2 |H|+ log 1

ρβ

αρ2 log3 1
ρ

)
.
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Theorem 5.5.13 gives a quadratic improvement over the sample complexity via reduction

from private learning in both confidence and accuracy, and in particular has the same asymptotic

dependence as in private PAC-learning (and hence avoids any statistical blowup in the setting where

log |H| is thought of as small). In fact, it’s worth noting the result is tight in these parameters, as

even standard PAC-learning requires the same dependencies.

Algorithm

At its core, the algorithm achieving Theorem 5.5.13 relies on a simple random thresholding

trick. In particular, the idea is roughly to estimate the risk of each concept in the class H by standard

uniform convergence bounds, choose a random error threshold v ∈ [OPT,OPT +α], and finally

output a random f ∈H with empirical error errS( f ) = 1
|S| ∑

(x,y)∈S
1[ f (x) 6= y] at most v. Implementing

this strategy requires a bit more effort, and is achieved formally by the following algorithm.
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Algorithm 33. (Intermediate) Replicable Learner for Finite Classes
Result: Replicably outputs hypothesis with error at most OPT +α

Input: Finite Class H, Joint Distribution D over X×{0,1} (Sample Access)

Parameters:

• Replicability, Accuracy, Confidence ρ,α,β > 0

• Sample Complexity m = m(ρ,α,β )≤ O
(

log2 |H| log 1
ρ
+ρ2 log 1

β

α2ρ4

)
• Replicability bucket size τ ≤ O( αρ

ln |H|)

Algorithm:

1. Draw a labeled sample S∼ Dm and compute errS( f ) for every f ∈ H.

2. Replicably output initialization vinit ∈ [OPT,OPT +α/2] (see Algorithm 35)

3. Select random threshold v←r {vinit +
3
2τ,vinit +

5
2τ, . . . ,vinit +α/4− τ/2}

4. Randomly order all f ∈ H

return Output the first hypothesis f in the order s.t. errS( f )≤ v.

We note that Step 2, estimating OPT, follows essentially the same argument as the ba-

sic replicable statistical query algorithm of [ILPS22]. We give the argument in Section 5.7 for

completeness.

We note that while Algorithm rFiniteLearner is a replicable agnostic PAC learner, it is

not quite sufficient to prove Theorem 5.5.13 due to its poor dependence on ρ . We’ll see in the next

section how to obtain the stated parameters by separately amplifying rFiniteLearner starting

from good constant replicability.
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Analysis

We’ll start by proving the following weaker bound for our intermediate learner.

Theorem 5.5.14 (Intermediate Learnability of Finite Classes). Let H be any finite concept class.

Algorithm rFiniteLearner is a (proper) agnostic replicable learning algorithm for H with sample

complexity:

m(ρ,α,β )≤ O

(
log2 |H| log( 1

ρ
)+ρ2 log 1

β

α2ρ4

)
.

In the realizable setting, the (α,β )-dependence can be improved to:

m(ρ,α,β )≤ O

(
log2 |H| log( 1

ρ
)+ρ4 log 1

β

αρ4

)
.

The main challenge in Theorem 5.5.14 is proving replicability. (Accuracy and failure

probability are essentially immediate from standard uniform convergence arguments.) To this end,

note that the randomness r used by rFiniteLearner is largely broken into three parts: estimating

OPT, choosing a random threshold, and ordering the concepts in H. We’ll focus first on the latter

two, where the choice of v restricts H to two subsets H1 and H2 (those with empirical error at most

v), depending on input samples S1 and S2. We first appeal to the classical observation of Broder

[Bro97] to argue that as long as the symmetric difference of H1 and H2 are small, outputting the

first concept from these sets (according to the random ordering) is a replicable procedure.

Observation 5.5.15. Let O(H,r) be a random ordering of concept class H. Let /0⊂ H1,H2 ⊆ H,

and let f1 and f2 be the first elements of H1 and H2 respectively according to O(H,r). Then

Prr[ f1 6= f2] =
|H1∆H2|
|H1∪H2| , where ∆ denotes the symmetric difference.

The key to proving replicability is then to observe that most choices of v induce small

symmetric difference between the corresponding H1 and H2. Namely, the idea is to observe that for
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any fixed joint distribution D, intervals

I0 = [OPT,OPT + τ], . . . , Iα/(2τ) = [OPT +α/2− τ,OPT +α/2],

and corresponding threshold positions vi = OPT + (2i+1)
2 τ , the sets

H(i)
1 = {h ∈ H : errS1(h)≤ vi}, H(i)

2 = {h ∈ H : errS2(h)≤ vi}

are close for most choices of vi, S1, and S2. To adjust for the fact that we don’t know the value of

OPT, we will in fact prove something slightly more general that allows our starting point to range

anywhere from OPT to OPT +α/2.

Lemma 5.5.16. Let vinit ∈ [OPT,OPT +α/2] and τ ≤ O
(

αρ2

log |H|

)
a parameter that divides α/4.

Define the intervals

I0 = [vinit,vinit + τ), I1 = [vinit + τ,vinit +2τ), . . . , I α

4τ
=

[
vinit +

1
4

α− τ,vinit +
1
4

α

]

and corresponding thresholds vi = vinit +
(2i+1)

2 τ , and let

H(i)
1 = {h ∈ H : errS1(h)≤ vi}, H(i)

2 = {h ∈ H : errS2(h)≤ vi}

denote the hypotheses with empirical error at most vi across two independent samples S1 and S2

of size O( logρ−1

τ2 ). Then with probability at least 1−ρ/4, a uniformly random choice of i ∈ [ α

4τ
]

satisfies:
|H(i)

1 ∆H(i)
2 |

|H(i)
1 ∪H(i)

2 |
≤ ρ/4.

Proof. For convenience of notation, let |Ii| denote the number of hypotheses whose true risk lies in

interval Ii, and |I[i]| the number of hypotheses in intervals up through Ii. We call a threshold vi “bad”
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if any of the following conditions hold.

1. The ith interval has too many elements:

|Ii|>
ρ

30
|I[i−1]|.

2. The number of elements beyond Ii increases too quickly:

∃ j ≥ 1 : |Ii+ j| ≥ e j|I[i−1]|.

and “good” otherwise. We will argue the following two claims.

1. If vi is a good threshold, then H(i)
1 and H(i)

2 are probably close

Pr
S1,S2

[
|H(i)

1 ∆H(i)
2 |

|H(i)
1 ∪H(i)

2 |
≤ ρ

4

]
≥ 1− ρ

8
.

2. At most a ρ

8 fraction of thresholds are bad.

Since we pick a threshold uniformly at random, it is good with probability at least 1−ρ/8 and a

union bound gives the desired result.

It remains to prove the claims. For the first, observe that for any fixed hypothesis h with true

risk errD(h) ∈ Ii+ j, the probability that the empirical risk of h is less than vi is at most

Pr[errS(h)≤ vi]≤ e−Ω( j2τ2|S|) (5.16)

by a Chernoff bound. Let xi denote the variable which counts the number of hypotheses with true

risk beyond Ii that cross the threshold vi empirically. If vi is “good,” we can bound E[xi] by

E[xi]≤ |I[i−1]|∑
j>0

e−Ω( j2τ2|S|− j) ≤ ρ2

2000
|I[i−1]|
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for our choice of |S|. Markov’s inequality then promises

Pr
[
xi ≥

ρ

30
|I[i−1]|

]
≤ ρ

64
.

On the other hand, the probability any hypothesis in I[i−1] crosses vi is at most e−Ω(τ2|S|), so similarly

the probability that more than a ρ

30 fraction of such hypotheses cross vi is at most ρ

64 . Finally, since

vi is ‘good,’ Ii itself contributes at most ρ

30 |I[i−1]| hypotheses that cross the threshold in the worst

case, so in total we have that with probability at least 1− ρ

32 , at most ρ

10 |I[i−1]| hypotheses cross

the threshold in either direction. Considered over two runs of the algorithm, this implies that with

probability at least 1− ρ

16 , |H(i)
1 ∆H(i)

2 | cannot be too big

|H(i)
1 ∆H(i)

2 | ≤
ρ

5
|I[i−1]|.

Furthermore, since the probability that more than a ρ

30 fraction of hypotheses in I[i−1] cross vi is at

most ρ

64 , we also have that |H(i)
1 ∪H(i)

2 | cannot be too small:

|H(i)
1 ∪H(i)

2 | ≥
(

1− ρ

15

)
|I[i−1]|

with probability at least 1− ρ

64 . Thus altogether a union bound gives

Pr
S1,S2

[
|H(i)

1 ∆H(i)
2 |

|H(i)
1 ∪H(i)

2 |
≤ ρ

4

]
≥ 1− ρ

8

as desired.

Finally, we need to show that almost all thresholds are good. To see this, first observe that

since vinit ≥ OPT , |I[i]|> 0 for all i≥ 0. To count the number of bad thresholds, let i1 ≥ 1 be the

position of the first bad threshold, and t1 denote the largest index such that i1 + t1 fails a condition.

Define i j and t j recursively as the first bad threshold beyond i j−1 + t j−1 and its corresponding latest
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failure. Observe that by construction, any interval that does not lie in any [i j.i j + t j] is good, so

there are at most ∑ t j bad thresholds.

Let ` denote the final index of the above greedy process. By definition of a bad interval,

each t j multiplicatively increases the number of total hypotheses from I[i j] by at least
(
1+ ρ

30

)t j .

Since |I0| ≥ 1 and the total number of hypotheses is |H| by definition, we may therefore write:

|H| ≥ |I[i`+t`]| ≥
(

1+
ρ

30

) `
∑

j=1
t j

and thus that the total number of bad intervals is at most

`

∑
j=1

t j ≤ O
(

log(|H|)
ρ

)
.

Since we have chosen τ such that the total number of intervals altogether is at least Ω

(
log(|H|)

ρ2

)
,

the appropriate choice of constant gives that at most a ρ/8 fraction are bad as desired.

To complete the argument, it is enough to show we can find a good starting point vinit.

Lemma 5.5.17. There exists a ρ-replicable algorithm over O
(

log( |H|
ρβ

)

ρ2α2

)
samples that outputs a

good estimate of OPT with high probability:

Prr,S
[
A (S) ∈ [OPT,OPT +α/2]

]
≥ 1−β

Proving this Lemma largely follows from prior techniques but is a bit tedious, so we leave

the proof for Section 5.7. With these tools in hand, we are finally ready to prove Theorem 5.5.13.

Proof of Theorem 5.5.14. We first show rFiniteLearner is ρ-replicable. rFiniteLearner starts

by running a replicable subroutine (with parameters ρ ′ = ρ/2 an β ′ = β/2) to find an estimate for

OPT. Using new (independent) randomness, it then selects a threshold vi and a random ordering
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over H, and outputs the first hypothesis in H(i) = {h : Remp(h,S) ≤ vi}. By Lemma 5.5.16 and

Observation 5.5.15, this latter process is ρ/2-replicable. By composition of replicability, the entire

algorithm is therefore ρ-replicable as desired.

Correctness of rFiniteLearner follows from standard uniform convergence type argu-

ments. In particular, by our choice of |S|, any hypothesis with empirical risk at most OPT +α/2

has true risk less than OPT +α with probability at least 1−β/2. Furthermore, as long as our

estimation of OPT is successful (which occurs with probability at least 1−β/2), we always output

such a hypothesis. Thus altogether we output a hypothesis with true error at most OPT +α with

probability at least 1−β as desired.

Finally, we need to argue that the dependence on α can be improved to linear in the realizable

setting. Note that in this case, we can simply set vinit to 0, and ignore the estimation of OPT. The

improvement then follows immediately from noting that when OPT = 0, a standard Chernoff bound

improves Equation (5.16) to

Pr[errS(h)≤ vi]≤ e−Ω(
j2τ|S|
(i+ j) ) ≤ e−Ω(

j2τ2|S|
α

).

Similarly, only O(
log |H|

β

α
) examples are needed to ensure hypotheses with O(α) empirical risk have

O(α) true risk with high probability, and the rest of the proof follows as in the agnostic case.

Finally, we amplify the above to prove Theorem 5.5.13.

Proof of Theorem 5.5.13. Our amplification algorithm is a modification of the original technique

introduced in [ILPS22], designed to take advantage of the fact that the dependence on β (failure)

and ρ (replicability) are highly unbalanced in learning tasks. Draw k = O(log(1/ρ)) random strings

r1, . . . ,rk, and consider the distributions {Di}k
i=1 generated by running rFiniteLearner(ri,S) with

parameters ρ ′ = .01 and β ′ = β · poly(ρ) on a large enough sample S. The idea is to argue that

with good probability over the choice of random strings r, at least one of these distributions has
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an Ω(1)-heavy-hitter (which is also a good hypothesis with extremely high probability). Roughly

speaking, we can then use the heavy hitters algorithm of [ILPS22] across these distributions to

ρ/2-replicably output a good hypothesis, and union bound over all applications to argue correctness

of the final output.

Let’s formalize this argument. First, observe since our setting of rFiniteLearner is .01-

replicable, at least 90% of the random strings have a ‘canonical element,’ i.e. one that appears

across at least 90% of random samples. Call such strings good, and observe that any good string ri

corresponds to a distribution Di with a .9-heavy-hitter by construction. Over a random choice of

O(logρ−1) such strings, the former guarantee then promises at least one of these strings is good

with probability greater than 1−ρ/4 and therefore that at least one distribution in {Di}k
i=1 has a

.9-heavy-hitter. With this in mind, we now appeal to the heavy-hitter algorithm of [ILPS22], which

draws O( logρ−1

ρ2 ) samples from a distribution to replicably output a list of all Ω(1)-heavy-hitters.15

To make our entire process ρ-replicable, we will run the above process for ρ ′ = O( ρ

logρ−1 ). To

this end, we draw samples S1, . . . ,St for t = O( log3
ρ−1

ρ2 ) and generate t corresponding samples from

each {Di}k
i=1 (re-using S j between distributions), which we use to run [ILPS22]’s heavy-hitters

algorithm. Union bounding over all applications, this process is ρ/4-replicable, and with probability

at least 1−ρ/4 outputs a non-empty list of hypotheses. Finally, we break in to one of two cases. If

the result list is indeed non-empty, simply output a random element of the list (a fully replicable

procedure). Otherwise, run rFiniteLearner on a fresh random string and sample, and output the

result.

Finally, we argue replicability and correctness of the above process. First, note the output

list is non-empty with probability at least 1− ρ/4, and two independent samples produce the

same list (with fixed randomness) with probability at least 1−ρ/2 by replicability of the repeated

heavy hitter process discussed above. Therefore the entire process is ρ-replicable as desired. For

15We note the technique actually outputs a list of some weight close to c, but this is largely irrelevant in our setting
where c (and the shift in c) are constant.
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correctness, note that we have used at most poly(ρ−1) instances of rFiniteLearner. Recall that

we set the failure probability of rFiniteLearner to be very small, with β ′ = β ·poly(ρ−1). Since

each individual application of rFiniteLearner fails with probability less than β ′, union bounding

over all applications of the algorithm implies every output hypothesis is ‘good’ (within α of OPT)

with probability at least 1−β . Since we only output hypotheses generated by this process, the

probability of outputting a bad hypothesis is then less than β as desired.

Altogether, the sample complexity of the above algorithm is given by the size of samples

t|Si|= O

(
log3

ρ−1

ρ2 ·
log2 |H|+ log 1

ρβ

α2

)
,

or

O

(
log3

ρ−1

ρ2 ·

(
log |H|+ log 1

ρβ

α
+ log2 |H|

))
in the realizable case.

5.6 Applications

In this section we take advantage of our reductions between notions of stability to resolve

(or otherwise make progress on) several open problems in the algorithmic stability literature.

5.6.1 Item-level to User-level Privacy Transformation

The original motivation of introducing the definition of pseudo-global stability in [GKM21]

was to come up with PAC learning algorithms in the example-rich, user-level privacy setting. In

this setting, there are a number of users with many samples (the regime we will be interested in is

when there are a few users who have enough samples to solve the problem for themselves). The

motivation behind this setting is to leverage the data of example-rich users to obtain statistical
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insights without compromising their privacy. Such statistical analyses could then be released and

used widely, even by users who didn’t have as much data.

The technique of [GKM21] involves coming up with pseudo-globally stable algorithms for

PAC learning, and then having each user run a pseudo-globally stable algorithm with the same coins.

Then, you can privately identify a heavy hitter among the outputs of the users (such a heavy hitter

exists with high probability because of the property of pseudo-global stability), and since changing

an entire user’s sample will affect only one output, this procedure will be user-level differentially

private. One open question raised in their paper was whether their techniques could be extended

beyond the PAC setting.

Our argument that pseudo-global stability and differential privacy are two sides of the same

coin answers this question in the affirmative, and has the additional benefit of eliminating the need to

cleverly design pseudo-globally stable (replicable) algorithms. We showed previously that item-level

differentially private algorithms can be compiled into replicable algorithms with only a quadratic

overhead in sample complexity (See Sections 5.3.2 and 5.3.3). Hence, our results allow for a general

transformation from item-level to user-level privacy for statistical tasks in the example-rich setting;

each user applies correlated sampling to the same item-level differentially private algorithm applied

to their specific sample, and then a heavy hitter is identified via differentially private selection.

Theorem 5.6.1. There are universal constants c,K > 0 such that the following holds. Let T be a

statistical task with a finite output space. Given a (0.1, c
n3 )-item level differentially private algorithm

A that solves T using n samples and with failure probability β , for every 1 ≥ ε,δ > 0, there

exists an (ε,δ )-user level differentially private algorithm Au that solves T with failure probability

O(β log 1
β
), when given access to the data of O( log1/β

ε
log log1/β

δ
) users, each of whom have at least

Kn2 log(1/β ) examples.

Proof. Firstly, we can amplify the privacy parameters of A by subsampling. By Lemma 5.2.9, the

algorithm A ′ that, given m = Kn2 samples, subsamples n items without replacement and runs A ′
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on the result is (1/
√

Km,cK/m2)-differentially private. Moreover, when run on inputs consisting

of i.i.d. samples from a distribution D, the output of A ′ is identically distributed to that of A , so

A ′ also solves T with m examples and failure probability β .

For a sufficiently large constant K and sufficiently small constant c, Corollary 5.3.18 then

implies that A ′ gives rise to a c-replicable algorithm solving T with m examples and failure

probability β .

Now, consider Algorithm 24 adapted to the user-level setting as follows (with number of

users as specified in the theorem): instead of partitioning a centralized sample (as done in that

algorithm), each of the users applies algorithm A ′ to their own set of O(log(1/β )) i.i.d. samples

(with the same set of O(log(1/β )) different coins—this can be achieved through a common random

string that they share). Then, the outputs are sent to a central server, and (ε ′= ε

C log1/β
,δ ′= δ

2log1/β
)-

DP selection is then applied to choose a heavy hitter (as discussed in Algorithm 24). Let’s call this

algorithm Au.

The accuracy guarantees proved for Algorithm 24 give us that the failure probability of this

Algorithm Au is at most O(β log1/β ). Hence, we are left to argue privacy. Note that changing a sin-

gle user’s sample can change at most C log1/β outputs to which the (ε ′,δ ′)-DP selection algorithm

is applied to. Hence, by group privacy (Lemma 5.2.8), we have that Au is (ε ′ log1/β ,δ ′ e
ε ′ log1/β−1

eε ′−1
)-

user level differentially private. Substituting the value of ε ′ and δ ′ then gives an (ε,δ )-user level

private algorithm. This completes the proof.

5.6.2 Parameter Amplification for Differential Privacy and Perfect Gener-
alization

The equivalence between replicability and differential privacy gives us the first generic

amplification theorem for the δ parameter of approximate differential privacy for general statistical

tasks. Prior to our work, it was known that the ε parameter could be amplified algorithmically

and efficiently. That is, using random sampling (Lemma 5.2.9), one can improve an (ε0,δ0)-
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differentially private algorithm to a (pε0, pδ0)-differentially private one with an O(1/p) blowup

in the sample complexity. However, this technique is unable to improve the δ parameter of such

an algorithm asymptotically as a function of the number of samples n, e.g., from δ (n) = 1/n10 to

δ ′(n) = exp(−n0.99).

The recent characterization of private PAC learnability in terms of Littlestone dimen-

sion [ALMM19, BLM20, GGKM21] implies that such an amplification of δ is (at least, in principle)

possible for private PAC and agnostic learning and for private query release. Given a target class

C in one of these settings, the existence of a (ε = 0.1,δ = O(1/n2 logn))-differentially private

algorithm using a finite number of samples n implies that C has some finite Littlestone dimension

d. This in turn implies that, for every ε,δ > 0, there is an (ε,δ )-differentially private agnostic PAC

learning algorithm for C using poly(d,1/ε, log(1/δ )) samples and a private query release algo-

rithm for C using poly(22d
,1/ε, log(1/δ )) samples. Unfortunately, the first part of this argument is

non-constructive, and in the worst-case, leads to a final algorithm using a number of samples that is

an exponential tower in Ω(n)! [BLM20] posed the open question of whether such amplification

could be done algorithmically, even for the special case of private PAC learning.

Our approach is to first convert a differentially private algorithm with weak parameters to

a replicable one. We may then use the fact that replicable algorithms can be converted back to

differentially private ones with excellent privacy parameters. Altogether we obtain a constructive

amplification theorem that achieves only a modest blowup in sample complexity, and which applies

to general statistical tasks with finite output spaces.

Theorem 5.6.2. There is a universal constant c > 0 such that the following holds. Let T be a

statistical task with a finite output space. Suppose there is an (ε = 0.1,δ = c/n3)-differentially

private algorithm that solves T using n samples and with failure probability β . Then for every
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ε,δ > 0, there exists an (ε,δ )-differentially private algorithm solving T using

O
(

log(1/δ ) log(1/β )

ε
+ log2(1/β )

)
·n2

samples and with failure probability O(β log1/β ).

Proof. Let A be a (0.1,c/n3)-differentially private algorithm solving T with n samples and failure

probability O(1/ log(1/β )). By Lemma 5.2.9, the algorithm A′ that, given m = Kn2 samples,

subsamples n items without replacement and runs A on the result is (1/
√

Km,cK/m2)-differentially

private. Moreover, when run on inputs consisting of i.i.d. samples from a distribution P, the

output of A′ is identically distributed to that of A, so A′ also solves T with m samples and failure

probability β .

For a sufficiently large constant K and sufficiently small constant c, Corollary 5.3.18 implies

that A′ gives rise to a c-replicable algorithm solving T with m samples and failure probability β .

Applying Theorem 5.3.1 thus results in an (ε,δ )-differentially private algorithm solving T with

m ·O
(

log(1/δ ) log(1/β )

ε
+ log2(1/β )

)

samples and failure probability O(β log1/β ).

We can also show a similar amplification of the parameters for perfect generalization, indeed,

even from one-way perfect generalization to perfect generalization itself.

Theorem 5.6.3. There is a universal constant c > 0 such that the following holds. Let T be a

statistical task with a finite output space. Suppose there is an (β ′ = 10−5,ε = 10−5,δ = 10−5)-one-

way perfectly generalizing algorithm that solves T using n samples and with failure probability β .

Then for every ε,δ > 0, there exists an (δ ,ε,δ )- perfectly generalizing algorithm solving T using

O
(

n · log(1/ε)poly log(1/δ )

ε2

)
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samples and with failure probability O(δ )+
√

β log(1/δ ).

Proof. Let A be a (10−5,10−5,10−5)-perfectly generalizing algorithm solving T with n samples

and failure probability β . By Lemma 5.3.17, there is a (0.0001)-replicable algorithm solving

T with the same failure probability and the same number of samples. By Claim 5.2.12 and

Theorem 5.3.19, there exists a (δ 2/4,ε,δ 2/4)-sample perfectly generalizing algorithm solving T

using O(n · log(1/ε)poly log(1/δ )
ε2 ) samples with failure probability O(δ )+

√
β log(1/δ ). Lemma 5.3.6

converting sample perfect generalization to perfect generalization gives the result.

5.6.3 An Agnostic-to-Realizable Reduction for Structured Distributions

One of the main running examples throughout this work (and indeed a focal point in

[ILPS22, GKM21] as well) is the PAC-learning paradigm. Traditionally, PAC-learning has two

main settings, realizable learning (where the adversary must choose a hypothesis in the class),

and the agnostic setting (which allows an arbitrary adversary). It is a well known fact in the

study of traditional statistical learning that realizable and agnostic learning are equivalent up to

polynomial blowup in sample complexity [VC74, BEHW89, Hau92]. Furthermore, an analog of

this fact holds for most supervised paradigms (see e.g. [BI91, BLW96, Lon01, BDPSS09, DMY16,

MHS19, AHHM21]), including privacy [BNS16b, ABMS20]. This was originally shown by Beimel,

Nissim, and Stemmer [BNS16b], who gave a sample-efficient agnostic-to-realizable reduction for

approximately differentially private PAC-learning. Their result has since been used extensively (see

e.g. [BNS16c, BMNS19, BMA19, ABMS20, BLM20]), and is often used to justify focus on the

realizable setting.

While certainly impactful, Beimel, Nissim, and Stemmer’s reduction (and later improve-

ments on the same [ABMS20, BLM20]) are complicated and limited in application. Like the

results that came before them (in the traditional setting), their techniques rely heavily on uniform

convergence, and therefore always incur a cost in VC dimension of the class (or analogously in

log |H| in many settings we consider). Such bounds are typically only useful in the distribution-free
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setting, where the adversary is free to choose arbitrary (often strange, combinatorial) distributions

over the data that don’t appear in practice. Outside of such cases, it is typically possible to learn

in many fewer samples than VC dimension would predict (see e.g. [NK19]), so it is reasonable

to ask whether this efficiency can be generically maintained in the agnostic setting. Towards this

end, Hopkins, Kane, Lovett, and Mahajan [HKLM22] recently gave a more generic reduction

independent of VC dimension, but their techniques do not adapt directly to the private setting, which

was left as an open problem in their work.

We resolve this problem (at least in finite domains) via reduction to and from replicability:

agnostic private learning requires only a small polynomial blowup over the realizable case that is

independent of class-size, even under arbitrary distributional assumptions. With this in mind, we

briefly introduce the distribution-family variant of the PAC-model, which first appeared (implicitly)

in seminal work of Benedek and Itai [BI91] on learning under fixed distributions. We use bold font

below to highlight the differences from the standard model.

Definition 5.6.4 (Distribution-Family Model [BI91]). A learning problem is defined by a hypothesis

class H and family of distributions DDD over the instance space X . We say an algorithm A is an

(α,β )-accurate Agnostic learner for the hypothesis class (H,D) if for all distributions D over

input, output pairs whose marginal DX ∈DDX ∈DDX ∈D , A on being given a sample of size m drawn i.i.d.

from D outputs a hypothesis h such that with probability greater than or equal to 1−β over the

randomness of the sample and the algorithm,

errD(h)≤ inf
f∈H

errD( f )+α,

where errD(h) = Pr(x,y)∈D[h(x) 6= y]. When the adversary is additionally restricted to choosing D

s.t. inf f∈H errD( f ) = 0, we call the problem realizable.

We give the first private agnostic-to-realizable reduction from the distribution-family model,

and in general the first reduction with no reliance on uniform convergence or VC dimension.
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Theorem 5.6.5. Let (H,D) be a hypothesis class that is (1, 1
poly(n))-privately (α,0.01)-PAC learn-

able in n = n(α) samples in the realizable setting. Then (H,D) is (1, 1
poly(m))-privately (α,β )-

agnostically learnable in

m(α,β )≤ O
(

n2α2 + log3(ΠH(cn2))

α2 logβ
−1 log

(
n logβ−1

α

))

samples for some universal constant c > 0.

In the statement of Theorem 5.6.5, ΠH(n) denotes the growth function of (X ,H). The growth

function captures the maximum number of labelings functions from H can induce on samples of

size n, and is at most nO(d) for classes with VC dimension d. Moreover, since ΠH(cn2)≤ 2cn2
, this

means agnostic learning experiences at most a polynomial blowup over the realizable setting:

Corollary 5.6.6. Let (H,D) be a hypothesis class that is (1, 1
poly(n))-privately (α,0.01)-PAC learn-

able in n = n(α) samples in the realizable setting. Then (H,D) is (1, 1
poly(m))-privately (α,β )-

agnostically learnable in

m(α,β )≤ Õ
(

n6 logβ−1

α2

)
samples.

At a high level, the proof of this result is (comparatively) simple. Given a realizable private

learner A , we will transform A into a replicable learner, apply a variant of [HKLM22]’s agnostic-

to-realizable reduction, and finally lift the resulting agnostic learner back to differential privacy.

The main challenge lies in adapting [HKLM22] to the replicable setting, which is roughly done via

the following procedure (see Algorithm 35):

1. Sample: Draw an unlabeled sample S∼ Dn, and random string r

2. Generate Candidates: Run A on all labelings of S with internal randomness r

3. Prune: Using fresh samples, remove any high error candidates
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The result then follows from replicably outputting a heavy hitter of this procedure.

List Heavy-Hitters

It is this final step, it turns out, that contains most of the subtlety in this reduction. While

estimating heavy hitters of a given distribution is a core subroutine in many replicable algorithms

(used, e.g., in Theorem 5.5.13), and was studied in [ILPS22], our setting is more challenging

since our goal is to output a heavy hitter from a distribution over lists, where the list size may be

exponential in the desired parameters. In this section, we show how similar arguments used for our

efficient finite learner can also be used to output a heavy hitter with cost only polylogarithmic in the

list size.16

More formally, let Ω be a finite set, and D a distribution over subsets of H. We call h ∈ H

an η-heavy-hitter of D if

PrS∼D [h ∈ S]≥ η .

We prove it is possible to replicably output a heavy hitter with complexity scaling that is only

polylogarithmic in the largest set supported by D .

Theorem 5.6.7. For any finite set Ω, ρ,η ,β > 0, and distribution D over subsets of Ω with an

η-heavy-hitter, there exists a ρ-replicable algorithm A with the following guarantees:

1. A outputs a η

2 -heavy-hitter with probability at least 1−β

2. A uses at most O

 log2
|D | log 1

ρβ

η
log 1

ρ
+log 1

ρβ

η2ρ2 log3 1
ρ

 samples from D ,

where |D | is the maximum size subset supported by D .

We note that it is easy to modify this result to remove the assumption that D has a heavy

hitter (the algorithm instead outputs ‘⊥’ in this case, or can test for the heaviest element), but the

16We note that a similar result also appears implicitly in [GKM21, Theorem 20], albeit with worse sample complexity.
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simpler version above is sufficient for our applications. We now give the algorithm itself, which

combines [ILPS22]’s heavy hitters with our thresholding technique for finite learning.

Algorithm 34. Replicable List Heavy Hitters
Result: Replicably outputs a heavy hitter

Input: Distribution D over subsets of universe Ω (Sample Access)

Parameters:

• Replicability, confidence, and heaviness ρ,β ,η > 0

• Sample sizes t1 = O
(

log( |D |
ρβ

)

η

)
, t2 = O

 log2
|D | log 1

ρβ

η
log 1

ρ
+log 1

β

η2ρ4


• Threshold accuracy τ ≤ O( ρη

log |D |)

Algorithm:

1. Sample t1 subsets C ∼A , and call their union T .

2. Sample an additional t2 subsets C ∼A , and call their collection S = {Ci}.

3. For each t ∈ T , let p̂t denote its empirical measure over S:

p̂t =
1
|S|
|{C ∈ S : t ∈C}|.

4. Choose a random threshold v ∈ {η/4+2τ,η/4+6τ, . . .3η/4−2τ}

5. Randomly order Ω

return first t ∈ T with respect to the order satisfying p̂t ≥ v

It is not hard to see this algorithm succeeds via the same analysis as for Theorem 5.5.13.

Proof. By a Chernoff and union bound, we first note that with probability at least 1−βρ/4, T
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contains every η-heavy-hitter of D .

Similar to the proof of Theorem 5.5.13, we consider intervals of the form

I0 = [η/4,η/4+4τ], . . . , I1/(2τ) =

[
3η

4
−4τ,

3η

4

]
,

with corresponding threshold positions vi = η/4+ (2i+1)
2 τ , and the sets

H(i)
1 = {t ∈ T : p̂(t,S1)≤ vi}, H(i)

2 = {t ∈ T : p̂(t,S2)≤ vi}.

In the proof of Theorem 5.5.13, we argued that replicability followed from bounding the quantity

|H(i)
1 ∆H(i)

2 |
|H(i)

1 ∪H(i)
2 |

with high probability, as this promised that choosing the first element from a joint random ordering

of Ω usually gives the same answer over H(i)
1 and H(i)

2 . Here we need to be slightly more careful,

in that we need to ensure not only that the same element is chosen, but also that it is truly an

η/4-heavy-hitter. This ensures replicability despite the fact that our set T depends on samples,

because we are promised that all η/4-heavy-hitters lie in T except with probability 1− βρ

4 (and

therefore have no dependence T itself).

Thankfully, this is already implicit in the proof of Lemma 5.5.16, since it is actually proved

that, with high probability, the number of elements of T that cross threshold vi is at most O(ρ|I[i−1]|),

where we recall |I[i−1]| denotes the number of elements with true weight in buckets I1, . . . , Ii−1. This

followed from the fact that any element t ∈ T whose true weight lay in the jth interval for j > i

satisfied:

Pr[p̂(t,S j)≤ vi]≤ e−Ω( j2τ2|S j|),

which remains true in this setting for our choice of |S| by Chernoff. As such, our full process
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remains ρ-replicable for the correct choice of constants as desired. Furthermore, correctness holds

with probability at least 1−β , since all weight estimates are correct up to η/4. Finally, to get

the correct dependence on ρ we simply apply the amplification technique used in the proof of

Theorem 5.5.13.

We note that this result is similar to the pseudo-globally stable learner of [GKM21], which

also uses a method of replicably finding a heavy hitter from a distribution on lists. Their algorithm

uses a variant of the exponential mechanism instead of random thresholding, and loses polynomial

factors over our bound as a result. Both [GKM21] and our algorithm have the downside of only

working over finite universes (or more generally in settings where correlated sampling is possible).

On the other hand, the problem can be solved privately without this assumption. This raises a natural

question: does list heavy hitters give an exponential separation between privacy and replicability

over infinite domains?17

Before moving on, we note the following immediate implication of list heavy hitters for

learning classes with low Littlestone dimension, giving a moderate improvement over the analogous

result of [GKM21].

Corollary 5.6.8. Let (X ,H) be a class with Littlestone dimension d. Then the sample complexity of

realizably replicably learning (X ,H) is at most:

n(ρ,α,β )≤ Õ
(

d12 log3(1/β )

α2ρ2

)

We give the proof in Section 5.8.

17Recall the problem can be solved replicably with poly(|D |) dependence by [ILPS22] even in the infinite setting.
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Replicable Agnostic-to-Realizable Reduction

We now show how to combine List Heavy-Hitters with [HKLM22]’s agnostic-to-realizable

technique to generalize their reduction to replicable learning.

Theorem 5.6.9. Let (X ,H) be a replicably learnable class with sample complexity n(ρ,α,β ), and

n′ = n(1/4,α/4,β/4). Then (X ,H) is agnostically learnable in

m(ρ,α,β )≤ O

(
log2(ΠH(n′) log 1

ρβ
) log 1

ρ
+ log 1

ρβ

α2ρ2

(
α

2n′+ log
ΠH(n′)

β

)
log3 1

ρ

)

samples, where ΠH(n) is the growth function of (X ,H).

Since ΠH(n) ≤ 2n, this means agnostic learning experiences only a small polynomial

blow-up in sample complexity compared to the easier realizable setting. Furthermore, this bound

holds even with distributional assumptions, since it does not rely on external quantities such as

VC-dimension.

The proof of Theorem 5.6.9 is based on the following variant of a sub-routine from

[HKLM22]’s agnostic-to-realizable reduction that generates a small list of good hypotheses.
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Algorithm 35. List Distribution Generator
Result: Outputs a list of good hypotheses

Input: Replicable learner L on n = n(ρ,α,β ) samples, family of O(log(1/β )) random strings

{r}

Parameters:

• Accuracy and confidence parameters α,β > 0

• Labeled sample size t = O
(

log(ΠH(n(1/4,α/4,β/4))+log(1/β )
α2

)
Algorithm:

1. Sample n (unlabeled) samples SU ∼ Dn
X , and t labeled samples SL ∼ Dt

2. Run L across all strings in r on all possible labelings of SU to receive:

Cr(SU) := {L ((SU ,h(SU));ri) : h ∈ H,ri ∈ {r}}

3. Prune sub-optimal hypotheses from Cr(SU):

Cα
r (SU ,SL) :=

{
h ∈Cr(SU) : RSL(h)≤ min

h′∈Cr(SU )
(RSL(h

′))+α/2
}

return Cα
r (SU ,SL)

Algorithm 35 generates a sample from a distribution over families of hypotheses with near-

optimal error. The accuracy of A promises that Cα
r (SU ,SL) will be non-empty, and its replicability

guarantees the distribution will have heavy-hitters. This means we can apply list heavy hitters to

find a good hypothesis replicably.

Proof of Theorem 5.6.9. It is enough to prove that for any distribution D over X×Y , the distribution
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over lists defined by Cα
r (SU ,SL) satisfies

1. Correctness:

Pr[∀h ∈Cα
r (SU ,SL) : R(h)≤ OPT +α]≥ 1−β/2

2. Heaviness:

∃h ∈ H : Pr[h ∈Cα
r (SU ,SL)]≥ 1/2

For β a small enough constant, any Ω(1)-heavy-hitter has error at most OPT +α , so the result then

follows immediately from applying list heavy hitters.

The first of these facts, correctness, is essentially trivial and just follows from observing that

the size of Cr(SU) (the pre-pruned set) is at most O(log(1/β )ΠH(n)) by construction. Since we use

empirical estimates over t = O( log(ΠH(n)/β )
α2 ) samples, standard Chernoff and union bounds imply

that the empirical error of every element is estimated within α/4 of its true value which implies the

desired correctness guarantee.

It is left to show that Cα
r (SU ,SL) has a heavy hitter. Fix some hOPT ∈ H achieving error

OPT. Any 1
4-replicable learner has the property that over at least half its random strings r, there

exists some hr ∈ H such that:

PrSU [L ((SU ,hOPT (SU)),r) = hr]≥ 1/2.

Furthermore, since L is additionally a PAC-learner, it must also be the case that hr is within α/4

of hOPT over a 1−β/4 fraction of these “good” strings. Since our family consists of O(log(1/β ))

random strings and L ((SU ,hOPT (SU)),r) ∈Cr(SU) by construction, this means the pre-pruned set

Cr(SU) has a 1/2-heavy-hitter with error at most OPT +α/4 over a 1−β/2 fraction of families {r}.

Finally, since our empirical estimates are good with high probability, hr also appears in the pruned

set Cα
r (SU ,SL) with at least constant probability as desired. Finally, the sample complexity bound

then follows from combining Theorem 5.6.7 with the observation that generating a sample from
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Cα
r (SU ,SL) requires O

(
α2n′+log(ΠH(n′))+log(1/β )

ρ2α2

)
samples and |Cα

r (SU ,SL)| ≤ O(log(1/β )ΠH(n′))

by construction.

Private Agnostic-to-Realizable Reduction

We are finally ready to prove our agnostic-to-realizable reduction for private learning. We

restate the Theorem for ease of reading.

Theorem 5.6.10 (Theorem 5.6.5 Restated). Let (H,D) be a hypothesis class that is (1, 1
poly(n))-

privately (α,0.01)-PAC learnable in n = n(α) samples in the realizable setting. Then (H,D) is

(1, 1
poly(m))-privately (α,β )-Agnostically learnable in

m(α,β )≤ O
(

n2α2 + log3(ΠH(cn2))

α2 logβ
−1 log

(
n logβ−1

α

))

samples for some universal constant c > 0.

Proof. Recall we are given a realizable (1,poly(n−1))-DP, (α,0.01)-accurate PAC learner A on n

samples. We will convert A into an agnostic learner via the following 5 step process:

1. Amplify privacy to (m−1/2,poly(m−1)) by “secrecy of the sample” for m≈ n2

2. Convert A to a 0.01-replicable realizable learner R

3. Convert R into an agnostic learner Ragn

4. Convert Ragn back into an agnostic private learner Aagn

5. Privately amplify correctness of Aagn

Let’s formalize this procedure. In the first step, we convert A into a (cm−1/2,poly(m−1))-DP,

(α, .01)-accurate PAC learner on m samples for some small enough constant c > 0. This can be

done by the so-called “secrecy of the sample” method (Lemma 5.2.9): draw m = O(n2) examples,
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construct a subset S by selecting m elements uniformly at random, and return A (S). For an

appropriate choice of constants this is (cm−1/2,poly(m−1))-DP. Accuracy is maintained since S is

equidistributed with a standard size m sample.

Now that we have our (cm−1/2,poly(m−1))-DP, (α, .01)-accurate PAC learner, we invoke

Corollary 5.3.18 (applying correlated sampling) to build the .01-replicable learner R on O(n2)

samples that maintains (α, .01)-correctness. Applying our agnostic-to-replicable reduction for

replicable learning, this gives an .01-replicable (α, .01)-correct agnostic learner on

m′ ≤ O
(

n2 +
log3(ΠH(c′n2))

α2

)

samples for some constant c′ > 0. Finally, we move back to the private regime via Theorem 5.3.1,

which gives an (ε,δ )-DP, (α, .1)-correct agnostic learner on O(m′ logδ−1

ε
) samples.

It is left to amplify the correctness probability β . This can be done by running the above

algorithm independently log(1/β ) times, and privately outputting the best hypothesis on the output

set via the exponential mechanism, which one can check results in a (2ε ,δ )-DP (2α,β )-accurate

learner (see e.g. [SBG21, Theorem A.1]).

We have now seen how to build a (ε ,δ )-DP (α ,β )-accurate learner on

m′′ ≤ O
(

m′ logδ−1 logβ−1

ε

)

samples. To give the form of the result in the theorem statement, it is enough to choose sample size

t satisfying the recurrence t ≥Ω(m′ log t logβ−1). Selecting t = c2m′ logβ−1 log(m′β−1) for large

enough c2 > 0 then completes the proof.

5.6.4 Replicable Algorithms from Reduction

In this section, we show how we can use our reduction from replicability to differential

privacy to obtain new replicable algorithms. Our reduction preserves accuracy, because on any fixed
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dataset, the output distribution of the replicable algorithm is identical to that of the differentially

private algorithm (since our reduction simply applies correlated sampling to the output distribution

of the differentially private algorithm on the input dataset—see Sections 5.3.2 and 5.3.3).

PAC Learning

We note that what we term “replicable” PAC learning corresponds to settings where the

algorithm A is a PAC learner, and additionally is replicable for all input distributions D.

We show that our reduction gives the best known sample complexity bounds for replicable

realizable and agnostic PAC learning for many hypothesis classes. Prior work also had to prove

sample complexity bounds separately for all of these frameworks, whereas we are able to translate

bounds proved for differential privacy directly through our reduction.

Thresholds/Approximate Median:

Fix any integer d ≥ 0. We apply our framework to the hypothesis class T hreshd consisting

of thresholds over the domain {0,1, . . . ,d}. A threshold function fz parameterized by integer

0≤ z≤ d, is defined as follows.

fz(x) =


1 if x > z

0 if x≤ z
(5.17)

Impagliazzo et al. [ILPS22] asked whether a PAC learner could be obtained for this class

with sample complexity polynomial in log∗ d. Our reduction answers this question by using a result

of [KLM+20] on learning thresholds privately. 18

We first introduce the interior point problem.

Definition 5.6.11. An algorithm solves the interior point problem over a totally ordered domain

18We note that a similar approach (taking a differentially private algorithm for learning distributions under Kolo-
mogorov distance (guaranteed by a reduction in [BNSV15] to the interior point problem), and applying our conversion
from approx DP to replicability) also gives a replicable algorithm for releasing approximate median of a distribution
with accuracy α and sample complexity Oα(poly log∗(d)). This closes an exponential gap in [ILPS22].
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X with error probability β , if for all datasets S ∈X m, if

Pr[min
i

Si ≤A (S)≤max
i

Si]≥ 1−β .

Now we are ready to apply our reduction to obtain the improved sample complexity.

Theorem 5.6.12. For all sufficiently small ρ,α,β ∈ (0,1), there exists a ρ-replicable, (α,β )-

accurate realizable PAC learner for the hypothesis class T hreshd with sample complexity

m = Õ
(
(log∗ d)3 log2(1/β ) log4(1/ρ)

α2ρ2

)

Proof. Let ε and δ be set as specified in Corollary 5.3.18. The work of [KLM+20] (Theo-

rem 4.1 in their paper) gives an (ε/2,δ/2) algorithm for solving the interior point problem

with sample complexity O(1
ε
(log∗ d log(1/δ ))1.5) and error probability at most 1/10. By a re-

sult of Bun et al. [BNSV15, Theorem 5.6, Part 1], this gives an (ε,δ )-DP, (α,2/10)-proper

PAC learner for T hreshd with sample complexity O( 1
εα

(log∗ d log(1/δ ))1.5). Now, by work of

[BCS20] (See [SBG21, Theorem A.1] for a formal statement we use directly) this can be boosted

to give an (ε,δ )-DP, (α,β )-accurate proper PAC learner for T hreshd with sample complexity

O( 1
εα

(log∗ d log(1/δ ))1.5 log(1/β )).

First, we note that correlated sampling does not affect the accuracy guarantees since it

maintains the distribution of the differentially private algorithm. Now, applying Corollary 5.3.18,

and substituting in the values of ε and δ we get that there is a ρ-replicable (α,β )-accurate PAC

learner for T hreshd , whose sample complexity is the solution to the equation

m =C

√
m log(1/ρ)

ρα
(log∗ d log(m/ρ))1.5 log(1/β )
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This gives us that

m = Õ
(

log4(1/ρ)

ρ2α2 (log∗ d)3 log2(1/β )

)
.

Finite Binary Hypothesis Classes:

By applying a result of [KLN+11] on privately (agnostically) learning finite classes H, we

get a learner with sample complexity that’s polynomial in log |H|.

Theorem 5.6.13. For all sufficiently small ρ,α,β ∈ (0,1), and for all finite hypothesis classes H,

there exists a ρ-replicable, (α,β )-accurate agnostic PAC learner for H with sample complexity

m = O
(
(log |H|+ log(1/β ))2 log(1/ρ)

α2ρ2

)

Proof. Let ε be set as specified in Corollary 5.3.18. The work of [KLN+11] gives an (ε,0)-DP ag-

nostic learner for finite classes with sample complexity m = O
(
(log |H|+ log(1/β ))

(
1

αε
+ 1

α2

))
.

We note that correlated sampling does not affect the accuracy guarantees since it maintains

the distribution of the differentially private algorithm. Hence,substituting the value of ε and applying

Corollary 5.3.18, we get a ρ-replicable (α,β )-accurate agnostic PAC learner for finite class H,

whose sample complexity is the solution to the equation

m = O

(
(log |H|+ log(1/β ))

(√
m log(1/ρ)

αρ
+

1
α2

))
,

which gives us a quadratic in
√

m. Solving, we get that

m = O
(
(log |H|+ log(1/β ))2 log(1/ρ)

α2ρ2

)
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The dependence on the accuracy parameter obtained via directly using our transformation

here is suboptimal for realizable learners, and we cannot hope to improve it using our reduction

alone, since the private finite class learner described above is optimal for realizable learners as

well. See the finite class learner presented in Section 5.5.3 (that achieves the right inverse linear

dependence on α) for more discussion. There also isn’t a known replicable boosting algorithm with

an inverse linear dependence on the accuracy parameter α . It is an interesting open question to

investigate whether such a boosting algorithm exists.

We also observe that via our reduction, we obtain ρ-replicable (α,β )-PAC learners with

sample complexity scaling as Oρ,α,β (PRDim(H)2) for finite hypothesis classes with finite proba-

bilistic representation dimension (denoted by PRDim), and ρ-replicable (α,β )-PAC learners with

sample complexity scaling as Õρ,α,β (LDim(H)12) for finite hypothesis classes with finite Littlestone

dimension (denoted by LDim) by instantiating our general transformation with private learners due

to [BNS13] and [GGKM21] respectively. This improves on the sample complexities obtained in the

work by Ghazi, Kumar and Manurangsi [GKM21]. We also give a direct version of the argument in

Theorem 5.8.1.

Distribution Estimation Problems

As another illustration of the generality of our reduction, we instantiate it to give the first

replicable algorithms for some distribution estimation problems.

Discrete distribution estimation

Consider the set Pk of all distributions over the domain [k] = {1,2,3, . . . ,k} (where k is a

natural number). The problem of discrete distribution estimation involves getting samples from any

unknown fixed distribution D from Pk, and having to output a distribution D′ that is close in some

measure of distance to D (we call the closeness the “accuracy” of the algorithm).

We now describe the problem more formally. An algorithm is said to solve the discrete

distribution estimation problem with accuracy α and m(k) samples, if for all k > 1, and for all fixed
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distributions D over [k], there exists an algorithm taking m(k) independently drawn examples from

D and outputting a distribution D′ such that in expectation over the coins of the algorithm and the

randomness of the sample, dTV (D,D′)≤ α .

It is known that the sample complexity of solving this problem with accuracy α (with no

stability constraints) is Θ(k/α2).

If we add privacy constraints to the picture, it is known that there is an ε-DP algorithm for

discrete distribution estimation that requires O(k/α2 + k/αε) examples (see e.g., [ASZ21]). They

show that this is tight even for (ε,δ )-DP algorithms, (when δ ≤ ε , which is most often the regime

of interest).

We can instantiate our reduction with this algorithm to get the first replicable algorithm for

discrete distribution estimation.

Theorem 5.6.14. Fix any k > 2. For all sufficiently small ρ,α ∈ (0,1), there exists an α-accurate,

ρ-replicable algorithm that solves the discrete distribution estimation problem with α-accuracy,

and m examples, where

m = O
(

k2 log1/ρ

α2ρ2

)
.

Proof. Let ε be set as specified in Corollary 5.3.18 (which gives the parameters for our conversion

from differential privacy to replicability). The work of [ASZ21] and [DHS15] give an (ε,0)-DP

algorithm A for discrete distribution estimation that takes in m = O(k/α2 + k/αε) samples.

Now, we post-process this algorithm to get a finite output space to apply our reduction to.

For every i ∈ [k], round every coordinate of the output distribution d to the closest multiple of α

k , to

get a vector v. Now, apply the procedure given in Corollary 5.3.18 to convert this to a replicable

algorithm. Call the output of the replicable algorithm v̂. Finally do an `1 projection from v̂ back to

the k-simplex to get a new distribution d̂.

We now argue that the above transformation preserves accuracy. Let the original distribution
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be p. Then, by the triangle inequality, we can write that

E[‖d̂− p‖1]≤ E[‖d̂− v̂‖1]+E[‖v̂− p‖1].

Now, since v̂ is identically distributed to v (since the transformation to replicability simply involves

correlated sampling), we have that for every such vector, there is a distribution in the k-simplex that

is within α of it in `1 distance (because every output vector v prior to applying correlated sampling

was obtained by rounding each coordinate of a distribution in the k-simplex to the closest multiple

of α

k ). Hence, since d̂ is the `1 projection of v̂ onto the k-simplex, we have that E[‖d̂− v̂‖1]≤ α .

Hence, we can write that

E[‖d̂− p‖1]≤ α +E[‖v− p‖1],

where in the second term on the right hand side, we have used again that v̂ and v are identically

distributed.

Finally, since E[‖v− p‖1]≤ E[‖v−d‖1]+E[‖d− p‖1] (by triangle inequality), and each of

these terms is smaller than α (since v is obtained by discretizing d to a grid of length α

k , and the

second term can be bounded by the accuracy of algorithm A ), we get that

E[‖d̂− p‖1]≤ α,

as required.

Replicability of this transformation follows from the fact that the transformation prior to

projection onto the simplex is replicable (by Corollary 5.3.18), and the fact that replicability is

preserced under post-processing.

Hence, substituting the value of ε into the number of samples needed for the algorithm A

to be α-accurate, we get a ρ-replicable α-accurate algorithm for discrete distribution estimation,
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whose sample complexity is the solution to the equation

m = O

(
k

α2 +
k
√

m log1/ρ

αρ

)
,

which gives us a quadratic in
√

m. Solving, we get that

m = O
(

k2 log1/ρ

α2ρ2

)
,

completing the proof.

It is unclear from our results whether there is an algorithm for replicable discrete distribution

estimation over [k] that can achieve sample complexity linear in k; we leave this as an open problem.

Gaussian mean estimation

In this section, we give a replicable algorithm for high-dimensional Gaussian mean estima-

tion (in the unknown covariance case).

In Gaussian mean estimation in d dimensions, algorithms are given examples drawn inde-

pendently from a Gaussian distribution N(µ,Σ2), where µ ∈ Rd is the unknown mean, and Σ is

an unknown d×d positive definite matrix. The goal is to estimate µ . The metric we will use to

evaluate the quality of an estimate is the “Mahalanobis distance”, which measures the error scaled

according to the covariance matrix of the Gaussian distribution.

That is, with probability at least 1−β over the examples and the internal randomness of the

algorithm, we want the algorithm given sample access to N(µ,Σ2) to output a value µ̂ such that

‖µ̂−µ‖Σ = ‖Σ−1/2(µ̂−µ)‖2 ≤ α.

Without stability constraints, it is known that this problem can be solved using m = Θ(d/α2)

examples.
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Under the constraints of approximate differential privacy, the picture is more complicated.

For a long time, the best dependence on d that was known, was d3/2, with the bottleneck being

private covariance estimation. However, in recent work, Brown, Gaboardi, Smith, Ullman, and

Zakynthinou [BGS+21] gave a sophisticated differentially private algorithm that achieved a linear

dependence on d, by avoiding covariance estimation entirely. It is not clear how to make similar

techniques work to obtain replicable algorithms via a direct analysis. Our reduction allows us to lift

the analysis from [BGS+21] to give a replicable algorithm for this task.

Since correlated sampling is known to only work on finite output spaces, we need to assume

that the mean falls in a bounded `∞ ball (though our accuracy will not depend on the bounds of

this ball). Additionally, we will need to discretize the output of the differentially private algorithm.

However, discretization in this case is non-trivial, as the measure of accuracy is with respect to

the unknown covariance matrix, and hence, we will first have to replicably estimate the minimum

eigenvalue of the covariance matrix in order to decide the right level of discretization. For this

purpose, we once again use our reduction and apply it to a differentially private algorithm for

this task, also [BGS+21]. We will assume that the covariance matrix’s minimum eigenvalues are

between non-negative numbers k and ` (known to the algorithm),19 to guarantee finiteness of the

output space for this algorithm. Again, our sample complexity is independent of these parameters.

Theorem 5.6.15. Fix R > 0, 0 < k < `, and sufficiently small ρ > 0. Fix a distribution D = N(µ,Σ),

where ‖µ‖∞ ≤ R, and the minimum eigenvalue of Σ is between k and `. Then, there is ρ-replicable

algorithm that outputs an α-accurate estimate of the mean µ (in Mahalanobis distance) with

probability at least 1−β , when given m independently drawn samples from D, where

m = Õ
(
(d log(1/α)+ log(1/β ))2 log3(1/ρ)

α2ρ2

)
.

19Note that this assumption can be relaxed by directly estimating the minimum eigenvalue using replicable heavy
hitters instead of reducing to the DP algorithm
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Proof. First, consider Lemma C.2 in [BGS+21]. This gives a general way to privately estimate

the minimum eigenvalue of Σ. We first discretize and truncate the output space of this algorithm

as follows (and round outputs to their closest point in the corresponding grid). The discretization

length will be k/8, and the upper bound will be 4`. Since the algorithm in their paper guarantees a

4-approximation of the minimum eigenvalue with probability at least 1−β , and takes O(d log(1/βδ )
ε

)

examples, by the assumed bounds on the covariance matrix, the discretized version guarantees an

8-approximation.

Now, since the output space of the eigenvalue estimation algorithm has been made fi-

nite, we apply the transformation in Corollary 5.3.18 with ε,δ set accordingly (with ρ being

ρ/2). This gives a ρ/2-replicable algorithm that gives an 8-approximation to the minimum

eigenvalue of the covariance matrix with sample complexity that is the solution to the equation

m1 = O
(

d
√

m1 log(1/ρ) log(m1/βρ)
ρ

)
, which gives us that

m1 = Õ
(

d2 log3(1/ρ) log2(1/β )

ρ2

)
.

Let the output of this algorithm A1 be λ̂ .

Now, we are ready to use the mean estimator described in Theorem 2 from [BGS+21] (on

a fresh set of samples). We will assume that hardcoded into this algorithm is an eigenvalue λ̂ ,

which is an 8-approximation to the minimum eigenvalue λd of the covariance matrix. Consider a

postprocessing of the output µ̂ of the algorithm described in that theorem such that the value of

each coordinate is truncated to have `∞ norm at most R, and has been projected to an α ′-grid, where

α ′ = min(λ̂ 1/2,1) α√
d

. Let the post-processed mean be µdisc. Then, by the guarantee of Theorem 2
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in their paper, we have that with probability at least 1−3β ,

‖µdisc−µ‖Σ ≤ ‖µdisc− µ̂‖Σ +‖µ̂−µ‖Σ

≤ ‖Σ−1/2[µdisc− µ̂]‖2 +α

≤ 1√
λd
‖µdisc− µ̂]‖2 +α

≤ α ′√
λd

√
d +α

≤ α
√

λ
√

d
√

λd

√
d +α

≤ α
√

8λd√
d
√

λd

√
d +α = O(α)

Note that the sample complexity of this (ε,δ )-DP algorithm (where privacy is wrt the fresh sample)

is

m2 = O
(

d + log(1/β )

α2 +
log(1/δ )

ε
+

d log(1/α)+ log(1/β )

αε

)
.

Now, we are ready to apply our transformation (recall that it preserves accuracy, since the

distribution is unchanged by correlated sampling). Setting ε,δ as in Corollary 5.3.18 (with ρ set to

ρ/2), and applying our transformation we can convert this to a ρ/2-replicable algorithm A2, with

sample complexity that is the solution to the equation

m2 = O

(
d + log(1/β )

α2 + log
m2

ρ

√
m2 log(1/ρ)

ρ
+

(d log(1/α)+ log(1/β ))
√

m2 log(1/ρ)

αρ

)
.

Solving this equation gives that

m2 = Õ
(
(d log(1/α)+ log(1/β ))2 log3(1/ρ)

α2ρ2

)
.

Now, note first that by adaptive composition, running A1 and then using its estimate in the algorithm
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A2 together gives a ρ-replicable algorithm (since each is individually ρ/2-replicable). Additionally,

the composed algorithm is α-accurate with probability 1−4β (taking a union bound of the failure

probabilities of A1 and A2). Note that m2 asymptotically dominates m1, so the sample complexity

of this entire procedure is

m = Õ
(
(d log(1/α)+ log(1/β ))2 log3(1/ρ)

α2ρ2

)
.

Gaussian Identity Testing

As a final example of the generality of our reduction, we consider the problem of identity

testing of multivariate Gaussian distributions. In this problem, we are given samples from either a

fixed Gaussian distribution D with known mean and covariance, or from a Gaussian distribution

that is α-far in Mahalanobis distance from D. The goal is to correctly guess which case we’re in

with probability at least 2/3 (we will say the algorithm successfully distinguishes the two cases if

this is satisfied). Without stability constraints, this problem can be solved with O(
√

d
α2 ) samples.

This problem was studied subject to privacy constraints in [CKM+20], and their results were

then improved in [Nar22]. We apply results of the latter to get a replicable algorithm for Gaussian

identity testing.

Theorem 5.6.16. Fix d ∈ N+ and sufficiently small ρ,α > 0. Fix known µ ∈ Rd and known

covariance matrix Σ ∈ Rd×d . Then, there is a ρ-replicable algorithm A that can succesfully

distinguish between Case H0, where A receives m samples from N(µ,Σ) and Case H1 where A

receives m samples from any distribution N(µ ′,Σ), such that ‖µ ′−µ‖Σ ≥ α , as long as

m = Õ

(
d1/2

α2ρ2

)
.

Proof. Note that Theorem 1.7 of [Nar22] gives an (ε,0)-algorithm for this task that achieves sample
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complexity m = Õ
(

d1/2

α2 + d1/4

αε

)
. We directly instantiate this algorithm with our reduction in order

to get the result (since the output space is finite (just a single bit), we can do this without modifying

the algorithm).

Set ε as in Corollary 5.3.18. Note that since our reduction maintains the same distribution

as the differentially private algorithm, the accuracy guarantees are the same. Hence, there is a

ρ-replicable algorithm for this task with sample complexity that is the solution to the equation

m = Õ

(
d1/2

α2 +
d1/4

√
m log1/ρ

αρ

)
.

Then, solving this equation, we get that

m = Õ

(
d1/2

α2ρ2

)
.
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5.7 Appendix: Estimating OPT

In this section, we give an algorithm for replicably estimating the minimum error hypothesis

in a class (X ,H) over an arbitrary joint distribution D over X×{0,1}.

Algorithm 36. Replicably estimate OPT
Result: Outputs v ∈ [OPT,OPT +α/2]

Input: Finite Class H, Joint Distribution D over X×{0,1} (Sample Access)

Parameters:

• Replicability, Accuracy, Confidence ρ,α,β > 0

• Sample Complexity m = m(ρ,α,β )≤ O
(

log(|H|/βρ)
α2ρ2

)
Algorithm:

1. Draw a labeled sample S∼ Dm and compute errS( f ) for every f ∈ H.

2. a←r [0,α/16]

3. Bi = [iα +a,(i+1)α +a)

return j
8α +a, where OPTS +α/4 ∈ B j

Lemma 5.7.1. Let D be a joint distribution over X×{0,1} and H a concept class over X. Then for

any α,β ,ρ > 0, Algorithm 36 is a ρ-replicable algorithm over O
(

log( |H|
ρβ

)

ρ2α2

)
samples that outputs a

good estimate of OPT with high probability:

Prr,S
[
A (S) ∈ [OPT,OPT +α/2]

]
≥ 1−β .

Proof. The proof uses an argument similar to the randomized rounding trick introduced in [ILPS22]

for replicable statistical queries. Assume for simplicity that 1
8α

is integer (the argument is essentially
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no different otherwise), and break the interval [0,1] into α

8 -sized buckets:

B1 =
[
0,

α

8

)
, . . . ,B 1

α

=
[
1− α

8
,1
]
.

Consider the rounding scheme ROUND that maps OPTS to the upper limit of its corresponding

bucket. Notice that as long as OPT is not within ρα

64 of the threshold value between two buckets,

uniform convergence promises that OPTS1 and OPTS2 will lie in the same bucket with probability at

least 1− ρ

2 . As such the problem only occurs at the boundaries, which can be fixed by randomly

shifting the thresholds between each bucket by a ∈ [0, α

16 ]. Then for any fixed value of OPT , the

probability it lies within ρα

64 of a shifted boundary is at most ρ

2 , which combined with the previous

observation proves the algorithm ρ-replicable.

Towards correctness, observe that uniform convergence of finite classes promises that

the empirical optimum OPTS is within α

16 of the true optimum with probability at least 1− β .

Furthermore, rounding shifts any value by at most 3α

16 . Thus ROUND(OPTS +α/4) ∈ [OPT,OPT +

α

2 ] with high probability as desired.

5.8 Appendix: Learning Finite Littlestone Classes

One immediate application of list heavy-hitters is a sample-efficient replicable algorithm for

classes with finite Littlestone dimension, as in [GGKM21], leading to a modest improvement in

sample complexity over the best known bound of Õ(d14).

Theorem 5.8.1. Let (X ,H) be a class with Littlestone dimension d. Then the sample complexity of

realizably replicably learning (X ,H) is at most:

n(ρ,α,β )≤ Õ
(

d12 log3(1/β )

α2ρ2

)

Proof. In their work on user level privacy, Ghazi, Kumar, and Manurangsi [GKM21] build on the
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work of [GGKM21] to show the existence of an algorithm outputting lists of hypotheses satisfying

the following guarantees:

1. Optimality: With probability at least 1−β/2, all hypotheses output by L have risk at most

α/2

2. Heavy Hitter: There exists h ∈ H output with probability Ω(1/d)

3. Size: L outputs at most exp(d2 +d log d
αβ

) hypotheses

4. Sample Complexity: L uses at most Õ(
d6 log2 1

β

α2 ) samples.

Note that for β ≤ O(1/d), any heavy hitter of this distribution is a good hypothesis, so it is enough

to replicably output such a heavy hitter. Applying Theorem 5.6.7, this can be done ρ-replicably and

with probability at least 1−β using

O

 log2 |D | log 1
ρβ

η
log 1

ρ
+ log 1

ρβ

η2ρ2 log3 1
ρ

= Õ

(
d6 log 1

ρ
+d2 log 1

ρβ

ρ2 log3 1
ρ

)

i.i.d outputs of the list algorithm. Each output itself costs Õ(
d6 log2 1

β

α2 ) samples to generate, leading

to the stated sample complexity.

5.9 Appendix: Additional Properties of Replicability

5.9.1 Randomness Management

Often, we design replicable algorithms which use randomness for multiple purposes. How

do we ensure that they use the same sections of random string r for the same subroutines? What

if the number of bits used for each purpose varies between runs of the algorithm? The following

arguments show that we can typically guarantee that the same sections of r are used for the same

purposes across both runs.
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Lemma 5.9.1. Say an algorithm A makes at most k calls to its randomness oracle, using at

most b1, . . . ,bk bits of randomness for each call respectively. Then there is an algorithm A ′ that

replicably uses at most k ·maxi∈[k]{bi} bits of randomness.

Here, by “replicably uses” we mean that algorithm A ′ uses the same positions in the random

string for each subroutine in every run of the algorithm.

Proof. Have A ′ interpret its random string as follows: rather than using randomness sequentially

for each of k purposes (non-replicable if the required number of bits changes), portion the random

string into k pieces in a modular way. In other words, use the bits of r in positions i mod k solely for

the i’th call to the randomness oracle by algorithm A . At most k ·maxi∈[k]{bi} bits of randomness

are used.

Note that the algorithm itself does not need to know how much randomness it will use a

priori to use this method.

What if the algorithm does not have a fixed number of calls to the randomness oracle? As

long as the randomness calls occur sequentially, one can assign consistent subsections of the random

string to each possible call. To do so, we use the same snake-path trick (i.e., the Cantor pairing

function) often used to equate the cardinality of the natural numbers and rational numbers.

Lemma 5.9.2. Say an algorithm A makes at most k calls to its randomness oracle, using at

most b1, . . . ,bk bits of randomness for each call respectively. Then there is an algorithm A ′ that

replicably uses at most (k+maxi∈[k]{bi})2/2+(k+maxi∈[k]{bi})/2 bits of randomness.

Proof. We allocate bits from our randomness oracle to different (unknown bit-length) calls using

the Cantor pairing function. The maximum overhead in bit complexity of the randomness occurs

when the k’th randomness call uses the most bits. In this case, roughly half of (k+maxi∈[k]{bi})2

random bits must be drawn.
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Again, the algorithm itself does not need to know how much randomness it will use a priori

to use this method. It also does not need to know how many different calls k to the randomness

oracle will be performed, so long as these calls can be ordered sequentially in some canonical way.

For example, if the algorithm operates in rounds with a finite number of (conditional) random calls

in each round, then the algorithm can reserve specific sections of its random tape for each of the

possible calls without requiring infinite randomness.

More generally, if a replicable algorithm uses the Cantor pairing function to allocate portions

of its randomness, then the Cantor pairing function can be replaced by any deterministic pairing

function f : Z+×Z+→ Z+ (and the ensuing algorithm will still be replicable). However, different

or more situational pairing functions may give a specific replicable algorithm A improvements in

complexity parameters such as amount of random bits used, time complexity, and space complexity.

When designing replicable algorithms with very small parameters, one may have to be careful to

ensure that the randomness management can also be done within these constraints.

5.9.2 Replicability across Two Close Distributions

Next, we prove a simple Lemma bounding the effect of distributional shift on replicability.

Lemma 5.9.3 (Replicability under Distributional Shift). Let D1 and D2 be two distributions over X

with total variational distance dTV (D1,D2) = δ . Let ρ ≥ 0, and let A be a ρ-replicable algorithm

that uses a sample of size exactly m. Then

PrS1∼Dm
1 ,S2∼Dm

2 ,r[A (S1;r) = A (S2;r)]≥ (1−δ )2m
ρ.

Proof. Since dTV (D1,D2) = δ , there exist distributions D,D′, and D′′ such that D1 = (1−δ )D+
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δD′ and D2 = (1−δ )D+δD′′. Thus,

PrS1∼Dm
1 ,S2∼Dm

2 ,r[A (S1;r) = A (S2;r)] = (1−δ )2mPrS1∼Dm,S2∼Dm,r[A (S1;r) = A (S2;r)]

+ . . .

+δ
2mPrS1∼D′m,S2∼D′′m,r[A (S1;r) = A (S2;r)]

≥ (1−δ )2mPrS1∼Dm,S2∼Dm,r[A (S1;r) = A (S2;r)]

= (1−δ )2m
ρ.

However, Lemma 5.9.3 may not be tight for specific class of algorithms, functions, or

distributions.
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5.10 Glossary

ρ replicability parameter

(η ,ν) 2-parameter definition of replicability

(ε,δ ) differential privacy parameters

H hypothesis classes

f ,g,h target functions and functions from hypothesis classes

X input spaces

Y output spaces

(α,β ) accuracy parameters (failure probability is β ).

m sample complexity, size of datasets

D distributions (subscripts for multiple distributions)

P family of distributions

err learning error (subscripts for sample and distribution)

S input datasets

x,y single data point and single output respectively

r internal coins

d (notions of) dimension

∆ symmetric difference
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dTV total variation distance

≈ε,δ approximate max-KL indistinguishable

p Bernoulli biases

b bit used for message

c ciphertext

i, j subscripts for (dual) indexing

O set of outputs

A ,B algorithms

I interval

v threshold values

‖ concatenation of strings

Acknowledgements

We thank Adam Smith for helpful discussions on max information, Zhiwei Wu for pointing

us to perfect generalization, Shay Moran for helpful discussions regarding the relation of our work

to [KKMV23], and Christopher Ye for helpful comments on a prior version of this manuscript. The

views expressed in this paper are those of the authors and not those of the U.S. Census Bureau or

any other sponsor.

Chapter 5, in full, is a reprint of the material as it appeared on Arxiv at https://arxiv.org/abs/

2303.12921v2. This material is the full version of the paper that appeared in the Proceedings of

the 55th Annual ACM SIGACT Symposium on Theory of Computing 2023. Bun, Mark; Gaboardi,

Marco; Hopkins, Max; Impagliazzo, Russell; Lei, Rex; Pitassi, Toniann; Sivakumar, Satchit;

371

https://arxiv.org/abs/2303.12921v2
https://arxiv.org/abs/2303.12921v2


Sorrell, Jessica. “Stability is Stable: Connections between Replicability, Privacy, and Adaptive

Generalization”. For this dissertation, minor formatting edits were made to improve readability.

The dissertation author was the primary investigator and author of this paper.

372



Bibliography

[ABHU15] P. Awasthi, M. F. Balcan, N. Haghtalab, and R. Urner. Efficient learning of linear
separators under bounded noise. In Proceedings of The 28th Conference on Learning
Theory, COLT 2015, pages 167–190, 2015.

[ABHZ16] P. Awasthi, M. F. Balcan, N. Haghtalab, and H. Zhang. Learning and 1-bit compressed
sensing under asymmetric noise. In Proceedings of the 29th Conference on Learning
Theory, COLT 2016, pages 152–192, 2016.

[ABMS20] Noga Alon, Amos Beimel, Shay Moran, and Uri Stemmer. Closure properties for
private classification and online prediction. In Conference on Learning Theory, pages
119–152. PMLR, 2020.

[AH18] Aws Albarghouthi and Justin Hsu. Synthesizing coupling proofs of differential
privacy. Proc. ACM Program. Lang., 2(POPL):58:1–58:30, 2018.

[AHHM21] Noga Alon, Steve Hanneke, Ron Holzman, and Shay Moran. A theory of PAC learn-
ability of partial concept classes. In 62nd IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages
658–671. IEEE, 2021.

[AL88] D. Angluin and P. Laird. Learning from noisy examples. Mach. Learn., 2(4):343–370,
1988.

[ALMM19] Noga Alon, Roi Livni, Maryanthe Malliaris, and Shay Moran. Private pac learning
implies finite littlestone dimension. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, pages 852–860, 2019.

[AS19] Omer Angel and Yinon Spinka. Pairwise optimal coupling of multiple random
variables, 2019.

[Ass20] Association for Computing Machinery. Artifact review and badging - current. version
1.1. 2020.

373



[ASZ21] Jayadev Acharya, Ziteng Sun, and Huanyu Zhang. Differentially private assouad,
fano, and le cam. In Vitaly Feldman, Katrina Ligett, and Sivan Sabato, editors,
Algorithmic Learning Theory, 16-19 March 2021, Virtual Conference, Worldwide,
volume 132 of Proceedings of Machine Learning Research, pages 48–78. PMLR,
2021.

[Bak16] Monya Baker. 1,500 scientists lift the lid on reproducibility. Nature News,
533(7604):452, May 2016.

[BBG18] Borja Balle, Gilles Barthe, and Marco Gaboardi. Privacy amplification by subsam-
pling: Tight analyses via couplings and divergences. In Proceedings of the 32nd
International Conference on Neural Information Processing Systems, NIPS’18, page
62806290, Red Hook, NY, USA, 2018. Curran Associates Inc.

[BCK+21] Gilles Barthe, Rohit Chadha, Paul Krogmeier, A. Prasad Sistla, and Mahesh
Viswanathan. Deciding accuracy of differential privacy schemes. Proc. ACM Pro-
gram. Lang., 5(POPL):1–30, 2021.

[BCS20] Mark Bun, Marco Leandro Carmosino, and Jessica Sorrell. Efficient, noise-tolerant,
and private learning via boosting. In Jacob D. Abernethy and Shivani Agarwal,
editors, Conference on Learning Theory, COLT 2020, 9-12 July 2020, Virtual Event
[Graz, Austria], Proceedings of Machine Learning Research. PMLR, 2020.

[BDLM01] S. Ben-David, P. Long, and Y. Mansour. Agnostic boosting. In Proceedings of the
14th Annual Conference on Computational Learning Theory, pages 507–516, 2001.
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