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SUMMARY

Cellular reprogramming highlights the epigenetic plasticity of the somatic cell state. Long 

noncoding RNAs (lncRNAs) have emerging roles in epigenetic regulation, but their potential 

functions in reprogramming cell fate have been largely unexplored. We used single-cell RNA 

sequencing to characterize the expression patterns of over 16,000 genes, including 437 lncRNAs, 

during defined stages of reprogramming to pluripotency. Self-organizing maps (SOMs) were used 

as an intuitive way to structure and interrogate transcriptome data at the single-cell level. Early 

molecular events during reprogramming involved the activation of Ras signaling pathways, along 

with hundreds of lncRNAs. Loss-of-function studies showed that activated lncRNAs can repress 

lineage-specific genes, while lncRNAs activated in multiple reprogramming cell types can 

regulate metabolic gene expression. Our findings demonstrate that reprogramming cells activate 

defined sets of functionally relevant lncRNAs and provide a resource to further investigate how 

dynamic changes in the transcriptome reprogram cell state.

INTRODUCTION

Normal embryonic development proceeds through a progressive narrowing of cell fate 

potential and loss of cellular plasticity, coupled with the acquisition of increasingly 

specialized, mature cell phenotypes (Hemberger et al., 2009). This progression is reflected 

in the changing transcriptome and is driven by transcription factors and noncoding RNAs, 
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which comprise a regulatory network that is highly resistant to perturbation. Various classes 

of noncoding regulatory RNAs, including lncRNAs (Lee, 2012; Rinn and Chang, 2012) and 

small RNAs (e.g. Piwi-interacting RNAs) (Law and Jacobsen, 2010; Moazed, 2009), 

contribute to the establishment of epigenetic chromatin marks that stabilize cell state. Thus, 

to reprogram the somatic identity of a cell, the combined effects of epigenetic and regulatory 

circuit stability must be overcome.

Induced reprogramming to the pluripotent state can be initiated by the enforced expression 

of Oct4, Sox2, Klf4, and Myc (OSKM) (Takahashi and Yamanaka, 2006). These factors act 

in conjunction with other transcription factors and multiple chromatin-modifying enzymes 

(Onder et al., 2012) to initiate a cascade of changes that ultimately convert a somatic cell of 

limited potential to the pluripotent state (Apostolou and Hochedlinger, 2013; Papp and 

Plath, 2013; Theunissen and Jaenisch, 2014). Apart from induced pluripotent stem (iPS) cell 

reprogramming, these defined factors and chromatin regulators have also been shown to 

facilitate malignant transformation and progression, which might be viewed as a form of 

pathological reprogramming (Goding et al., 2014; Suva et al., 2013). For example, the 

catalytic subunit of Polycomb repressive complex 2 (PRC2), Ezh2, enhances the 

reprogramming potency of OSKM (Buganim et al., 2012) and is also overexpressed in 

multiple malignancies, including metastatic prostate cancer (Varambally et al., 2002) and 

lymphomas (Laugesen and Helin, 2014). PRC2 physically associates with lncRNAs in 

embryonic stem (ES) cells (Guttman et al., 2011; Zhao et al., 2010) and other cell types, and 

lncRNAs such as Xist and HOTAIR guide PRC2 complexes to their genomic targets (Rinn 

and Chang, 2012). Notably, loss of Xist can lead to the development of hematologic cancer 

(Yildirim et al., 2013), while HOTAIR overexpression can facilitate breast cancer metastasis 

(Gupta et al., 2010). However, only a small fraction of the thousands of mostly 

uncharacterized lncRNAs are known to affect cell state (Flynn and Chang, 2014), and the 

ways in which they do so are not fully understood. At this early stage of understanding, a 

clearer and more comprehensive portrait of lncRNA expression could provide missing 

information on how a cell overrides its starting identity and redefines a new one, whether in 

the context of OSKM reprogramming or cellular transformation.

Insights into many aspects of reprogramming are sought at the single-cell level (Buganim et 

al., 2012; Polo et al., 2012; Smith et al., 2010) because each cell reveals a possibly unique 

expression state, with its particular repertoire of regulatory factors and target gene behavior. 

To gain a transcriptome-level understanding of how individual cells are reprogrammed, we 

used single-cell RNA sequencing (RNA-seq) (Ramskold et al., 2012), augmented by single-

molecule RNA-FISH (smFISH) (Raj et al., 2008). Further analysis of induced lncRNAs 

identified distinct groups with possible roles in suppressing somatic cell identity, conferring 

greater cellular plasticity, or promoting proliferation and self-renewal. Loss-of-function 

experiments of induced lncRNAs provided evidence for specific repression of genes 

characteristic of mature cell fates or regulation of genes involved in metabolic functions. We 

suggest that lncRNAs identified in the context of somatic cell reprogramming may also act 

in pathological reprogramming, especially in cancers that engage other parts of the OSKM 

pathway.
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RESULTS

Single-cell analysis of the reprogramming transcriptome

We performed single-cell RNA-seq on cells derived from the ‘reprogrammable’ mouse 

(Figure 1A) (Carey et al., 2010). Tail-tip fibroblasts (TTFs) from OSKM transgene-

inducible mice were cultured in the presence of doxycycline (dox) under ES cell culture 

conditions for two weeks. Flow cytometry analysis revealed that these transgene-expressing 

cells (Figure S1A), which we refer to as transitional cells, did not yet express the SSEA1 

antigen (Figure S1B). After three weeks of dox exposure, we obtained early-stage iPS cells 

that expressed SSEA1 (Figure S1B), exhibited ES cell-like morphology (Figure S1C), and 

had single-cell cloning efficiencies of ~50% when compared to ES cells (Figure S1D). We 

then cultured these early-stage iPS cells in the absence of dox for 4-6 additional weeks to 

profile the transcriptomes of late-stage iPS cells, along with pluripotent ES cells. Together, 

we generated 81 single-cell RNA-seq datasets (14-21 libraries per cell type) at a sequencing 

depth of 5-10 million mapped reads per cell. This unbiased experimental approach allowed 

us to detect and characterize the expression patterns of over 16,000 protein-coding and 

noncoding genes, including lncRNAs.

We analyzed these high-dimensional data using a self-organizing map (SOM) (Figure S2), 

which provides an intuitive way to visualize and interrogate single-cell heterogeneity based 

on the behavior of coordinately expressed gene sets. The SOM displays similarity 

relationships in a two-dimensional heat map in which spatial proximity reflects expression 

pattern similarity. We mapped 16,113 genes expressed at >10 RPKM (reads per kilobase per 

million mapped reads) onto a SOM, where each hexagonal unit represents a set of genes 

whose expression patterns are most similar to each other. These units are then clustered and 

are located in the same fixed positions across all single-cell components of the SOM. Each 

single-cell transcriptome can then be visualized as a component of the SOM (Figure 1A, five 

representative single-cell components shown for each cell type).

To examine how individual transcriptomes from different experimental time points were 

related, we performed principal component analysis (PCA), which revealed a clear 

separation between TTFs/transitional cells and early- and late-stage iPS/ES cells when 

projected onto the first two principal components (Figure 1B). We next examined genes 

with the highest correlation to Oct4 expression and identified many genes expected to be 

involved in reprogramming and pluripotency, including Nanog, Cdh1, Tdh, Utf1, Sall4, 

Tet1, Rex1, Trim71, Fbxo15, Dppa2, Tcl1, and Tcfcp2l1 (Figure 1C) (Orkin and 

Hochedlinger, 2011). The single-cell RNA-seq data also allowed us to identify genes of 

potential interest that may also contribute to somatic cell reprogramming (Figure 1C). Many 

of the genes that correlated most strongly with Oct4 expression were heterogeneously 

expressed at lower levels in transitional cells but then became coherently expressed at higher 

levels in both early- and late-stage iPS cells (Figure 1C). To examine all protein-coding 

genes that were specifically activated upon OSKM induction, we performed hierarchical 

clustering on genes that were expressed at >10 RPKM in transitional cells and iPS cells, 

while being expressed at <10 RPKM in primary TTFs. This group included 1,835 protein-

coding genes (Figure 1D).
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Activation of Ras signaling pathways during reprogramming

To examine how individual cells responded to OSKM induction, we analyzed single-cell 

components of the SOM. After two weeks of OSKM expression, transitional cells strongly 

expressed a cluster of genes (cluster: 0) that was significantly enriched for the gene ontology 

(GO) term “Ras protein signal transduction” (Bonferroni-corrected P-value: 5.50e-04) 

(Figure 2). 35 genes were annotated to this GO term, including Nrg1, which enhances self-

renewal and proliferation of tumor-initiating cells (Lee et al., 2014), and Git1 (Huang et al., 

2014) and Rap1a (Bailey et al., 2009), which are involved in cancer cell metastasis. 19 

lncRNAs (Table S1) were also coordinately expressed with these genes, suggesting their 

possible involvement in the regulation of Ras signaling pathways. Additionally, transitional 

cells exhibited strong upregulation of 16 lncRNAs (Table S1) within a cluster of genes 

(cluster: 21) significantly enriched for the GO term “regulation of signal transduction” 

(Bonferroni-corrected P-value: 5.55e-03) (Figure 2). 100 genes were annotated to this term, 

such as the oncogenes Myc and Hras1, and the Ras activator Rasgrp3 (Yang et al., 2010). 

One cluster in particular (cluster: 24) was significantly enriched for the GO term 

“intracellular signal transduction” (Bonferroni-corrected P-value: 3.52e-07) (Figure 2) and 

contained numerous Ras-related genes, including Rras, Rheb, and several members of the 

Ras oncogene family (e.g. Rab2a, Rab11a) and Ras homolog family (e.g. Rhog, Rhoa, Rhoc, 

Rhoq) of genes (Karnoub and Weinberg, 2008). Taken together, these results show that 

activation of Ras signaling pathways and associated lncRNAs are early molecular events in 

this reprogramming paradigm.

Coordinate expression of pluripotency factors and noncoding genes

Early-stage iPS cells strongly expressed numerous pluripotency factors and related genes in 

one prominent cluster (cluster 7), including Oct4, Sox2, Nanog, Lin28a, Rex1, Esrrb, Lifr, 

Fbxo15, Sall4, Epcam, Dppa2, Dnmt3l, Tet1, Jarid2, Klf5, Trim71, Nodal, Tcfcp2l1, Tcl1, 

Cdh1, Tdh, Utf1, and Eras (Figure 2). However, the most significantly enriched GO term in 

this cluster was for “unannotated” (Bonferroni-corrected P-value: 0) and included 285 

noncoding genes of unknown function, underscoring the need for a more in-depth 

characterization of the noncoding transcriptome. Among these genes were 29 lncRNAs 

(Table S1) and 27 processed transcripts, which are also classified as a type of lncRNA in the 

Ensembl annotation (Flicek et al., 2014), as well as numerous pseudogenes. A nearby cluster 

(cluster: 2) in the SOM also contained the Meg3 and Rian lncRNAs, along with 32 

additional lncRNAs (Table S1), Klf4, and Kras. Moreover, two clusters (cluster: 9, cluster: 

10) directly adjacent to the pluripotency cluster (cluster: 7) were significantly enriched for 

the core PRC2 components Ezh2, Suz12, and Eed and 14 lncRNAs (Figure 2 and Table S1). 

Taken together, these results demonstrate that early-stage iPS cells exhibit a significant 

upregulation of hundreds of noncoding genes, including lncRNAs, whose reprogramming 

functions are largely unknown.

LncRNAs activated during reprogramming

To systematically characterize the expression patterns of lncRNAs activated during 

reprogramming (Ladr), we focused further analysis on the lncRNA transcriptome. We 

mapped 437 lncRNAs expressed at >10 RPKM onto a new, lncRNA-specific SOM (Figure 
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3A, five representative single-cell components shown for each cell type) to assess single-cell 

heterogeneity and to analyze individual lncRNA variation. Of the 437 lncRNAs, we 

identified 312 activated lncRNAs that were expressed at >10 RPKM in transitional cells 

and/or iPS and ES cells, while being expressed at <10 RPKM in TTFs (Figure 3B and Table 

S2), indicating the dynamic nature of the lncRNA landscape during somatic cell 

reprogramming.

To assess the potential functions of activated lncRNAs, we first examined previously 

identified catalogs of Polycomb-associated lncRNAs (Guttman et al., 2011; Zhao et al., 

2010). This revealed substantial overlap between the PRC2 transcriptome and activated 

lncRNAs (n=150) (Figure 4A and Table S3), suggesting that many of these Polycomb-

bound lncRNAs may repress developmental genes. Although several coherent clusters of 

PRC2-bound lncRNAs were strongly upregulated in early- and late-stage iPS cells relative 

to transitional cells, hierarchical clustering analysis suggested that these lncRNAs were 

heterogeneously expressed in individual cells. To examine whether this apparent 

heterogeneity could be attributed mainly to technical noise or to biological variation, we 

calculated the coefficient of variation (CV) for lncRNAs expressed in late-stage iPS cells 

and determined the relationship between the CV and mean expression level. Numerous 

lncRNAs (e.g. Ladr83, Ladr91, Ladr55, Ladr1, Rian, Meg3) exhibited greater variability 

when compared to the average noise for a given mean expression level, strongly suggesting 

that biological variation is indeed elevated for these lncRNAs (Figure 4B). Consistent with 

our single-cell RNA-seq analysis, clonal iPS cell lines exhibit functionally relevant 

heterogeneity in Meg3 lncRNA expression, where iPS cell lines that lack Meg3 expression 

are unable to generate all-iPS cell mice (Stadtfeld et al., 2012).

We also examined single-cell lncRNA heterogeneity at the transcriptome- and single-

molecule levels using the lncRNA SOM and smFISH, respectively. For the lncRNA SOM, 

we calculated the component (single-cell) variance for each hexagonal cluster of lncRNA 

genes (Figure 4C). The lncRNA Ladr83 mapped to a cluster with high variance, while 

Ladr49 mapped to a lower variance cluster (Figure 4C; Figures S3A and S3B). We validated 

these lncRNA SOM results using smFISH as an orthogonal approach to determine the 

number of Ladr83 and Ladr49 molecules in hundreds of cells (n=351) (Figure 4D). Ladr83 

was more heterogeneously expressed in both early- and late-stage iPS cells relative to ES 

cells, with a subset of late-stage iPS cells expressing high levels of Ladr83 (61-113 lncRNA 

molecules/cell) when compared to ES cells (median: 14 lncRNA molecules/cell). However, 

the distributions of Ladr49 expression in both early- and late-stage iPS cells were 

indistinguishable from ES cells (Figure 4E). Taken together, these results demonstrate the 

utility of the SOM in characterizing cell-to-cell variation and suggest that defined sets of 

lncRNAs are heterogeneously expressed in iPS cells.

Suppression of lineage-specific genes by activated lncRNAs

To examine the functional roles of Ladr49 and Ladr83, we used a pool of 2-4 small 

interfering RNAs (siRNAs) per lncRNA to knock down their expression levels in late-stage 

iPS cells (Figure S4A). While knockdown of Ladr49 or Ladr83 had modest effects on 

reprogramming efficiencies (Figure S4B), Ladr49 knockdown resulted in the upregulation of 
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muscle-related genes in iPS cells (Figure 5A). GO analysis revealed significant enrichment 

for the terms “contractile fiber,” “sarcomere,” and “striated muscle thin filament”. These 

muscle-related genes were strongly expressed in TTFs and clustered together in the SOM, 

while they were expressed at low levels in late-stage iPS cells (Figure 5B). These results 

indicate that Ladr49 is required to repress a subset of the myogenic program during somatic 

cell reprogramming.

Notably, Ladr83 knockdown resulted in the upregulation of muscle genes that were also 

upregulated upon Ladr49 loss-of-function (Figure 5C), suggesting that lncRNAs may act 

cooperatively and/or redundantly during cell fate reprogramming. However, both Ladr83 

and Ladr49 knockdowns did not significantly perturb expression levels of the 

reprogramming/pluripotency genes Oct4, Sox2, Klf4, Myc, Lin28, and Nanog (Figure 5C), 

consistent with a specific role for these lncRNAs in repressing developmental genes during 

reprogramming. When we analyzed the differential expression of all Ensembl-annotated 

lncRNAs in populations of ES cells and TTFs by RNA-seq, Ladr49 and Ladr83 were among 

the 48 most significantly upregulated lncRNAs in ES cells versus TTFs (Figure 5D). 22 of 

these lncRNAs (46%), including Ladr49 and Ladr83, were previously shown to physically 

associate with PRC2 (Guttman et al., 2011; Zhao et al., 2010) (Figure 5E), suggesting that 

other PRC2-bound lncRNAs are likely to have functional roles in regulating lineage-specific 

genes.

To examine the cell-type specificity of activated lncRNAs, we also analyzed the 

transcriptome data from iPS cells derived from CD117+ hematopoietic progenitor cells 

(HPCs) (Chang et al., 2014). 130 lncRNAs were significantly upregulated during HPC 

reprogramming into iPS cells (Figure 6A), with 64 lncRNAs overlapping with the activated 

lncRNAs that we characterized during TTF reprogramming (Figure 6B). Of the remaining 

66 lncRNAs specifically activated in HPC-iPS cells (Table S2), we examined one lncRNA 

in particular, Ladr317, using smFISH in early- and late-stage iPS cells derived from TTFs 

(Figure 6C). Ladr317 was expressed at both stages, with lower levels in early-stage iPS cells 

relative to ES cells. However, late-stage iPS cells exhibited comparable levels of Ladr317 

when compared to ES cells. Loss-of-function experiments in late-stage iPS cells revealed 

that Ladr317 is required to repress genes involved in interferon signaling: Irgm1, Usp18, and 

Ifit3 (Figure 6D), consistent with a functional role in repressing hematopoietic lineage-

specific genes. When we examined lncRNAs activated during HPC reprogramming in our 

single-cell data from TTF reprogramming, only a small fraction of these lncRNAs were 

expressed in TTF-iPS cells (Figure 6E), suggesting that most of these lncRNAs are not 

involved in silencing fibroblast lineage genes.

Regulation of metabolic genes by activated lncRNAs

To explore the potential functions of lncRNAs activated in multiple reprogramming cell 

types, we performed hierarchical clustering on lncRNAs upregulated in both TTF-iPS and 

HPC-iPS cells. Many of these overlapping lncRNAs were strongly upregulated in early- and 

late-stage TTF-iPS cells (Figure 7A), in contrast to the same analysis performed using 

lncRNAs specific to HPC reprogramming (Figure 6E). We selected two of these robustly 

expressed lncRNAs for loss-of-function analysis, based additionally on their sequence 
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conservation in the human genome (Figure S5A) (Kuhn et al., 2013) and their high 

correlation with Oct4 expression (Figure S5B). Knockdown of either Ladr86 or Ladr91 

(Figures S3C, S3D, and S4A) repressed a common set of mitochondrial genes. 

Downregulated genes in both experiments were enriched for the GO terms “membrane-

bounded organelle” and “mitochondrion” (Figures 7B and 7C), suggesting that these 

lncRNAs are involved in regulating metabolic aspects of reprogramming in at least two 

different lineages, and perhaps very broadly.

DISCUSSION

Normal somatic cells are understood to have restricted developmental and epigenetic 

plasticity (Hemberger et al., 2009). Multiple mechanisms stabilize the mature cell state and 

must be overcome during cellular reprogramming. To examine both known and novel 

regulators of cell state conversion, we measured the transcriptomes of individual cells at 

defined stages of reprogramming to pluripotency. As shown in earlier studies (Apostolou 

and Hochedlinger, 2013; Papp and Plath, 2013; Theunissen and Jaenisch, 2014), we 

observed coordinated expression of known OSKM pathway genes in early- and late-stage 

iPS cells, while identifying new co-expressed protein-coding and lncRNA genes.

Activation of many lncRNA and Ras-related genes are early molecular events that are 

prominent in transitional cells. While the significance of this observation is yet to be 

established, findings from other systems suggest that such mechanisms might be common to 

multiple reprogramming systems. For example, reprogramming by somatic cell nuclear 

transfer (SCNT) (Gurdon and Melton, 2008) may also involve lncRNA and Ras-related 

genes upregulated in our transitional cells, based on mapping oocyte single-cell RNA-seq 

data onto our SOM (Figures 2 and S2B) (Ramskold et al., 2012). Similarities between SCNT 

and iPS cell reprogramming are also highlighted by iPS cell activation of germ cell-related 

genes (Figures S6A, S6B, and S6C) and expression of Piwi-interacting RNA (piRNA)-like 

small RNAs (Figures S6D, S6E, and S6F), which are also detected in oocytes (Tam et al., 

2008) and human iPS cells (Marchetto et al., 2013). Given their known functions in 

imprinting (Watanabe et al., 2011) and epigenetic regulation (Stuwe et al., 2014), piRNAs 

may also be involved in regulating imprinted loci during reprogramming. Because SCNT-

derived pluripotent stem cells have less epigenetic and imprinting defects than iPS cells, 

investigating oocyte-enriched noncoding RNAs in OSKM-mediated reprogramming may 

provide insights for minimizing unwanted epigenetic signatures.

Our loss-of-function experiments argue that at least some OSKM-induced lncRNAs are 

functionally relevant in reprogramming. We have shown that individual lncRNAs are 

required to properly silence lineage-specific genes. OSKM-induced variation in lncRNA 

expression levels, however, might contribute to a form of “epigenetic memory” in iPS cells 

(Kim et al., 2010; Polo et al., 2010). For example, lower levels of Ladr49, generated by 

experimental knockdown, gave elevated expression of specific muscle-related genes in iPS 

cell populations. Failure to activate Ladr49 in iPS cells might introduce a bias favoring 

muscle derivatives and/or produce an inappropriate mixed phenotype. This scenario is 

consistent with prior reports that differences in OSKM stoichiometry during reprogramming 
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can produce varying and functionally relevant effects on the expression of specific imprinted 

lncRNAs (Carey et al., 2011; Stadtfeld et al., 2010).

OSKM-mediated reprogramming also results in the elevated expression of specific lncRNAs 

in iPS cells relative to ES cells (Figure 4E) (Loewer et al., 2010), but the functional 

consequences of these observations are unclear. One potential role for such lncRNAs is 

suggested by studies of lincRNA-RoR, which is required for iPS cell reprogramming 

(Loewer et al., 2010). LincRNA-RoR acts as a repressor of the tumor suppressor gene p53 

(Zhang et al., 2013), conferring reprogrammed cells with the ability to overcome p53-

mediated apoptosis. p53 inactivation, whether through genetic mutation or experimental 

perturbation, promotes cancer and somatic cell reprogramming (Krizhanovsky and Lowe, 

2009). Additionally, leukemia cells activate the expression of many novel, unannotated 

lncRNAs that are regulated by oncogenic Notch signaling (Trimarchi et al., 2014). We also 

found that perturbing signaling pathways in iPS cells under “2i” conditions (Mek and Gsk3 

inhibition) (Ying et al., 2008) activates a unique set of lncRNAs (Figure S7). Collectively, 

these results suggest that lncRNAs activated during reprogramming might also participate in 

oncogenic signaling pathways. Finally, we identified Ladr lncRNAs that are activated in 

multiple reprogramming cell types. Loss-of-function experiments for Ladr86 and Ladr91 

affected genes acting in mitochondrial functions, including electron transport (Figures 7B 

and 7C). While the downstream consequences are unknown, a prior study linked aberrant 

mitochondrial membrane potential in pluripotent stem cells with elevated teratoma 

frequency (Schieke et al., 2008).

Taken together, our results suggest a model in which somatic cells activate lineage-specific 

lncRNAs to repress developmental genes, while also upregulating a common set of 

lncRNAs that facilitate metabolic reprogramming in a lineage-independent manner (Figure 

7D). Our single-cell transcriptome analysis of induced pluripotency provides a resource to 

further examine the molecular mechanisms by which lncRNAs reprogram somatic cell state. 

In addition to lncRNAs, other classes of noncoding genes, such as pseudogenes, are also 

activated during reprogramming and have emerging roles in cancer development (Cooke et 

al., 2014; Han et al., 2014). Further studies of the noncoding transcriptome in various 

reprogramming contexts are likely to advance our basic understanding of cell state plasticity 

and cellular transformation.

EXPERIMENTAL PROCEDURES

iPS cell reprogramming

Tail-tip fibroblast (TTF) cultures were established from 3-8 day old reprogrammable mice 

homozygous for both the tet-inducible OSKM polycistronic cassette and the ROSA26-

M2rtTA allele (Carey et al., 2010). Maintenance of animals and tail tip excision were 

performed according to a mouse protocol approved by the Caltech Institutional Animal Care 

and Use Committee (IACUC). TTFs (+ doxycycline), iPS cells, and ES cells were cultured 

in ES medium (DMEM, 15% FBS, sodium bicarbonate, HEPES, nonessential amino acids, 

penicillin-streptomycin, L-glutamine, b-mercaptoethanol, 1000 U/ml LIF) and grown on 6-

well plates coated with 0.1% gelatin and irradiated MEF feeder cells (GlobalStem). For “2i” 

conditions, iPS cells were grown in ESGRO-2i medium (Millipore). For lncRNA loss-of-
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function, iPS cells were transfected with siRNAs (IDT) using Lipofectamine RNAiMAX 

(Life). For SSEA-1 detection, StainAlive SSEA-1 DyLight 488 antibody (Stemgent) was 

used to detect SSEA-1 positive cells at specified time-points during reprogramming, which 

were isolated using flow cytometry on an iCyt Mission Technology Reflection Cell Sorter 

inside a Baker Bioguard III biosafety cabinet.

Single-cell and bulk sample cDNA synthesis and amplification

cDNA synthesis was performed using the Smart-Seq protocol as previously described 

(Ramskold et al., 2012). Briefly, the SMARTer Ultra Low RNA kit for Illumina sequencing 

(Clontech) was used to generate and amplify cDNA from single cells isolated using a 

micromanipulator or from bulk samples. Intact single cells were deposited directly into 

hypotonic lysis buffer. Poly(A)+ RNA was reverse transcribed through oligo dT priming to 

generate full-length cDNA, which was then amplified using 20-22 cycles. cDNA length 

distribution was assessed using High Sensitivity DNA kits on a Bioanalyzer (Agilent), and 

only samples showing a broad length distribution peak centered at 2kb were subsequently 

used for library generation.

Single-cell and bulk sample RNA-seq library generation and sequencing

Single-cell and bulk sample RNA-seq libraries were constructed using the Nextera DNA 

Sample Prep kit (Illumina). Briefly, cDNA was ‘tagmentated’ at 55° C with Nextera 

transposase, and tagmented DNA was purified using Agencourt AMPure XP beads 

(Beckman Coulter). Purified DNA was amplified using 5 cycles of Nextera PCR, and library 

quality was assessed using High Sensitivity DNA kits on a Bioanalyzer (Agilent). Libraries 

were sequenced on the Illumina HiSeq2000. Single-end reads of 50bp or 100bp length were 

obtained.

Read mapping and expression quantification

All reads were trimmed down to 50bp (if necessary) and mapped to the mouse genome 

(version mm9) with TopHat (Trapnell et al., 2009) (version 1.2.1) while supplying splice 

junctions annotated in the ENSEMBL63 set of transcript models. RPKMs for the 

ENSEMBL63 annotation were obtained using Cufflinks (Trapnell et al., 2010) (version 

1.0.3) with otherwise default settings. For downstream analysis, the biotype classification of 

genes and transcripts in the ENSEMBL annotation was used to identify noncoding genes. 

Hierarchical clustering was carried out using Cluster 3.0 (de Hoon et al., 2004) and 

visualized using Java Treeview (Saldanha, 2004). For differential expression analysis, we 

aligned reads against the refSeq mouse transcriptome using Bowtie version 0.12.7 

(Langmead et al., 2009). Expression levels were then estimated using eXpress (Roberts and 

Pachter, 2013) (version 1.3.0), with gene-level effective counts and RPKM values derived 

from the sum of the corresponding values for all isoforms of a gene. The effective count 

values were then used as input to DESeq (Anders and Huber, 2010) to assess differential 

expression. For ChIP-seq analysis, sequencing data were downloaded from accession 

numbers GSM307140, GSM623989, GSM307137, GSM307138, EMTAB-1600, 

GSM307155, and GSM623991. Reads were extracted using the fastq-dump program in the 

SRA ToolKit and mapped to the mm9 version of the mouse genome using Bowtie 0.12.7 

with the following settings: “-v 2 -k 2 -m 1 -t --best -- strata”, i.e. retaining only unique 
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reads and allowing for up to 2 mismatches in a read. Enriched regions were called using 

ERANGE 3.2 (Johnson et al., 2007) with the following settings: “-minimum 2 -ratio 3 -shift 

learn -revbackground”.

Self-organizing maps

The 5000 genes with the greatest variance among the libraries were used for training a self-

organizing map. Prior to SOM training, the data vectors were normalized on a gene-by-gene 

basis by subtracting each vector mean and dividing by its standard deviation. The SOM was 

constructed using the R package ‘kohonen.’ The total number of map units was set to the 

heuristic value 5*sqrt(N), where N is the number of data vectors. The map grid was 

initialized with the first two principal components of the data multiplied by a sinusoidal 

function to yield smooth toroidal boundary conditions. Training lasted 200 epochs 

(presentations of the data) during which the radius within which units were adapted toward 

the winning unit decreased linearly from h/8 to 2 units, where h is the map height (always 

chosen as the direction of largest length). Further analysis, including clustering and 

visualization, was performed with custom python code. Clusters were seeded by the local 

minima of the u-matrix, with a value for each unit defined as the average of the vector 

difference between that unit's prototype and its six neighbors on the hexagonal grid. All 

other unit prototypes were then assigned to clusters according to the minimum vector 

distance to a seed unit. The lists of clustered genes were submitted to the Princeton GO 

TermFinder (Boyle et al., 2004) server (http://go.princeton.edu) in order to determine 

enriched terms.

Single-molecule fluorescence in situ hybridization

smFISH was performed as previously described (Raj et al., 2008). Up to 48 DNA probes per 

target mRNA or lncRNA were synthesized and conjugated to Alexa fluorophore 488, 555, 

594, or 647 (Life Technologies) and then purified by HPLC. Cells were trypsinized, fixed in 

4% Formaldehyde, and permeabilized in 70% ethanol overnight. Cells were then hybridized 

with probe overnight at 30° C, in 20% Formamide, 2X SSC, 0.1g/ml Dextran Sulfate, 

1mg/ml E.coli tRNA, 2mM Vanadyl ribonucleoside complex, 0.1% Tween 20 in nuclease 

free water. Samples were washed twice in 20% Formamide, 2X SSC, and Tween 20 at 30° 

C, and then twice in 2X SSC+0.1% Tween at RT. 1μl of hybridized cells was placed 

between #1 coverslips and flattened. Automated grid-based acquisition was performed on a 

Nikon Ti-E with Perfect Focus System, Semrock FISH filtersets, Lambda LS Xenona Arc 

Lamp, 60x 1.4NA oil objective, and Coolsnap HQ2 camera. Semi-automated dot detection 

and segmentation was performed using custom-built MATLAB software with a Laplacian-

of-Gaussian Kernel, using Otsu's method to determine “dotness” threshold across all cells in 

the dataset.

Small RNA sequencing and analysis

Oxidation and beta-elimination of small RNAs were performed as previously described 

(Ameres et al., 2010). The Illumina-compatible NEBNext Small RNA Sample Prep Set 1 

(New England Biolabs) was used to prepare small RNA libraries for sequencing on the 

Illumina platform. Sequencing adapters were removed from reads by finding the 3'-most 

complete match to the adapter sequence and trimming the read after that position. The 

Kim et al. Page 10

Cell Stem Cell. Author manuscript; available in PMC 2016 January 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://go.princeton.edu


resulting were first mapped to the collection of ribosomal repeats (annotated using the 

RepeatMasker file downloaded from the UCSC genome browser), snoRNAs and snRNAs in 

the mouse genome (version mm9) using Bowtie version 0.12.7 in order to remove common 

contaminant reads. The unmapped reads from this filtering step were then aligned against 

the mm9 genome to determine the number of mappable reads. Both bowtie mapping steps 

were carried out with the following settings: ‘-v 0 -a -t --best --strata’, i.e. no mismatches 

and an unlimited number of locations to which a read could map to. Enrichment of repeat 

classes in sequencing was estimated by calculating RPM (Reads Per Million mapped reads) 

scores for each individual repeat annotated in the UCSC RepeatMasker file, then summing 

over all the instances of each repeat class in order to derive a total repeat class RPM score.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Single-cell transcriptome analysis of cellular reprogramming
(A) Schematic illustration of reprogramming experiments and single-cell RNA-seq analysis 

using the self-organizing map (SOM). Five representative SOM components are shown for 

each cell type. (B) Principal component (PC) analysis of 81 single-cell transcriptomes using 

all genes expressed at >1 RPKM. (C) Heatmap of protein-coding genes that correlate most 

highly (Pearson correlation) with Oct4 expression during the reprogramming time course. 

(D) Hierarchical clustering of activated protein-coding genes during the reprogramming 

time course using genes expressed at >10 RPKM in non-TTFs and <10 RPKM in all TTFs. 

See also Figure S1.
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Figure 2. Analysis of transcriptome dynamics using the self-organizing map
Single-cell transcriptomes depicted as individual components of the self-organizing map 

(SOM). Boxes represent individual cells at defined stages of reprogramming, with clusters 

outlined in white. Significantly enriched gene ontology (GO) terms for indicated clusters are 

shown (Bonferroni-corrected P-values). See also Figure S2 and Table S1.

Kim et al. Page 16

Cell Stem Cell. Author manuscript; available in PMC 2016 January 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. LncRNAs activated during reprogramming
(A) Schematic illustration of lncRNAs activated during defined stages of reprogramming 

(>10 RPKM) and lncRNA transcriptome analysis using the self-organizing map (SOM). 

Five representative SOM components are shown for each cell type. (D) Hierarchical 

clustering of activated lncRNA genes during the reprogramming time course using genes 

expressed at >10 RPKM in non-TTFs and <10 RPKM in all TTFs. See also Table S2.
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Figure 4. Activated lncRNA expression variability in iPS cells
(A) Heatmap of activated lncRNAs previously shown to physically associate with Polycomb 

repressive complex 2 in pluripotent stem cells. (B) Plot showing the relationship between 

average lncRNA expression and coefficient of variation in single late-stage iPS cells . (C) 

Individual cell components of the lncRNA SOM (left) and component variance for each 

hexagonal unit of the lncRNA SOM (right). (D) Representative phase contrast (merged with 

fluorescence) and fluorescence images of a single early-stage iPS cell using smFISH. Scale 

bar, 10 um. (E) Cumulative distribution function plots of lncRNA molecules per cell, as 

determined by smFISH. See also Figure S3 and Table S3.
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Figure 5. Repression of developmental genes by Ladr49 and Ladr83
(A) Differential expression analysis of significantly upregulated or downregulated genes in 

late-stage iPS cells deficient for Ladr49, as determined by population level RNA-seq, and 

gene ontology (GO) analysis for significantly enriched GO terms in upregulated genes. 

Bonferroni-corrected P-values are shown. (B) Individual cell SOM components of indicated 

cell types with muscle-related genes labeled. (C) Effective read counts (normalized reads) 

for muscle-related (top) and reprogramming/pluripotency (bottom) genes in late-stage iPS 

cells, as determined by population level RNA-seq. (D) Differential expression analysis of 

significantly upregulated or downregulated lncRNA genes in ES cells versus TTF cells, as 

determined by population level RNA-seq. (E) Fraction of upregulated or downregulated 

lncRNAs that are physically associate with Polycomb repressive complex 2 in ES cells. See 

also Figure S4.
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Figure 6. Lineage-specific role for Ladr317 in hematopoietic reprogramming
(A) Differential expression analysis of significantly upregulated or downregulated lncRNA 

genes in HPC versus HPC-iPS cells, as determined by population level RNA-seq. (B) 

Fraction of lncRNAs that are upregulated in HPC-iPS or both HPC-iPS and TTF-iPS cells. 

(C) Representative phase contrast (merged with fluorescence) and fluorescence images of a 

single early-stage iPS cell using smFISH, and cumulative distribution function plots of 

lncRNA molecules per cell, as determined by smFISH. Scale bar, 10 um. (D) Differential 

expression analysis of significantly upregulated or downregulated genes in late-stage iPS 

cells deficient for Ladr317, as determined by population level RNA-seq. (E) Hierarchical 

clustering of lncRNAs activated in HPC-iPS cells, as determined by single-cell RNA-seq. 

RPKM, reads per kilobase per million mapped reads.
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Figure 7. Regulation of metabolic genes by Ladr86 and Ladr91
(A) Hierarchical clustering of lncRNAs activated in both HPC-iPS and TTF-iPS cells, as 

determined by single-cell RNA-seq. RPKM, reads per kilobase per million mapped reads. 

Differential expression analysis of significantly upregulated or downregulated genes in late-

stage iPS cells deficient for Ladr86 (B) or Ladr91 (C), as determined by population level 

RNA-seq, and gene ontology (GO) analysis for significantly enriched GO terms in 

downregulated genes. Bonferroni-corrected P-values are shown. (D) Model showing 

lineage-specific and lineage-independent functions of activated lncRNAs during fibroblast 

and blood cell reprogramming. See also Figures S5-S7 and Tables S4-S5.
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