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Abstract: Production of California table olives has declined significantly in recent years due to hand
harvesting costs, often over 60% of gross return. Mechanical harvesting could sharply decrease
harvest costs, increasing economic viability. Mechanical harvester efficiency is a combination of
the percentage of the total fruit on a tree removed by a harvester, and the time required to do
so. A comparison between an experimental canopy contact shaker and a commercial trunk shaker
demonstrated low harvest efficiencies and no significant differences in harvester efficiency between
the two, averaging no more than 8%. However, simultaneously combining both shaking methods
increased fruit removal to an economically feasible 75% and produced better fruit quality. Combining
both shaking methods increased the price per ton by 63% versus trunk shaking and 35% versus
canopy shaking. These results suggest a mechanical olive harvester that simultaneously combines
trunk and canopy shaking is more efficient than either shaking method alone, and, has potential for
economically feasible mechanical table olive harvesting.

Keywords: amplitude; frequency; fruit removal; sensor; table olive

1. Introduction

Production of California’s major table olive, Olea europaea cv. ‘Manzanillo’ has
decreased by 60% in the last three decades due to the lack and high cost of hand labor [1–3].
Hand harvesting can account for up to 80% of the table olive labor input and 60% of the
production costs [4]. Traditional hand harvesting is neither economically nor logistically
feasible for the California table olive industry; mechanical harvesting is the only solution [5].
The mechanical harvesting options include robotic harvesting and mass harvesters such as
canopy and trunk shakers. Robotic harvesting has been developed for multiple vegetables
and fruit trees [6,7]. However, robotically harvesting an olive tree with its dense willowy
canopy with multiple small fruits is significantly more challenging in terms of fruit detection
and efficient fruit removal.

Trunk shakers are being increasingly used for table olive harvesting [8,9]. Trunk
shaking harvesters require between 0.6 and 1 m of straight trunk beneath the canopy.
Traditional table olive orchards generally have short, irregular trunks with branching below
one meter—see Figure 1.

Horvath and Sitkei [10] described a fruit tree as a vibrating system composed of
multiple vibrating components; branches, limbs, trunk, and root-soil mass. Maximum
fruit removal with a shaker is achieved when the shaking frequencies approach the tree’s
natural frequency. However, the proper shaking frequency varies for each individual tree,
as the tree’s natural frequency is a function of its size, age, morphology, wood properties,
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moisture content, and leaf density [11,12]. The tree’s natural frequency can even shift
during the harvest season due to mass changes during harvesting [13].
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Figure 1. Short (left) and irregularly shaped (right) trunks that prevent a trunk shaker from attaching.

Multiple table olive harvesting methods have been developed as prototypes, but few
are commercially available. Trunk and canopy shakers are the most popular mechanical
harvesters; the duration, amplitude, and frequency of shaking parameters differ between
them. However, for both the amplitude is greatest near the shaking point and decreases
with distance and angle [13].

Trunk shakers were introduced in the early 1960s [14]. The shaker vibration transfers
through the trunk to the branches, causing fruit detachment. Olive trees significantly damp
trunk vibrational energy due to their wood properties and branch orientation (Figure 2).
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Figure 2. The vibration dampens as it transfers from the trunk to the main branches and sec-
ondary branches.

The specific detachment force (force per fruit weight) for table olives is significantly
higher than for other fruits harvested by trunk shaking. For oil varieties, this ratio can
reach 200–400; for table olive varieties, it can be 100–200 [15]. Due to the olive canopy’s
damping action, trunk shaking must be at a higher intensity and a longer duration than for
nut trees to achieve an acceptable fruit removal rate [16]. This damages the trunk bark and
loosens the root system, though the latter had not been observed to cause problems.

O’Brien and Fridley [17,18] determined the maximum allowable stresses that did not
damage the trunk or limbs of fruit and olive trees. They reported a maximum radial stress
of 3.5 to 6.9 MPa and maximum longitudinal and tangential stresses of roughly 25% and
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33% of the radial stress, respectively. The main problem with trunk shakers is the shaking
intensity and duration required to achieve acceptable fruit removal rates bruises the fruit
and damages the trunk bark [19,20].

A canopy shaker, or canopy contact shaker, is an alternative to a trunk shaker [21,22].
The machine shakes the tree canopy with an array of rods attached to an eccentric wheel.
These rods may also contact the tree branches, impacting and shaking the entire tree
canopy periodically, resulting in fruit removal [23]. Sessiz and Özcan [24] created a pneu-
matic branch shaker that attained 50% efficiency without the use of abscission chemicals.
Shaking frequency and amplitude, like previous approaches, were found to be the most
critical parameters affecting canopy shaker efficiency. Shaking frequency and amplitude
were the most critical parameters affecting canopy shaker efficiency. High amplitudes
injure branches, low amplitudes may be insufficient to remove fruits [25]. For optimal
fruit removal rates, it is essential that the shaker and the tree canopy have continuous
contact [23].

It is critical to choose an appropriate harvesting strategy and apply the necessary force
at the proper region to ensure an effective harvest without fruit or tree damage. These
elements differ based on the type, size, and morphology of the tree [9]. Other parameters
including the fruit’s weight, shape, size, and maturity level also need to be taken into
account when choosing the harvesting technique [26].

UC Davis researchers built a canopy shaker prototype that produced economically
feasible harvest efficiency in properly prepared olive canopies, demonstrating that canopy-
contacting harvesting has potential [22]. Similar canopy shakers have been used for citrus
harvesting [27,28]. However, when used on olive trees, the harvester was bulky and could
not easily adapt to the olive trees’ shapes.

The objectives of this study were to develop an affordable mechanical harvester for
California’s table olive industry and to compare its shaking characteristics to those of the
commercially available trunk shakers. The quantity and quality of the harvested olives
were also evaluated.

2. Materials and Methods
2.1. Design Procedures

A canopy shaker was designed specifically for the ‘Manzanillo’ table olive. The
mechanism had three improvements compared to existing shakers:

1. It could compress the tree canopy.
2. It could adjust to tree size and height.
3. It could harvest fruit within the tree row.

Vibration efficiency is improved by canopy compression while shaking; this decreases
the duration and intensity required and increases harvester efficiency.

Figure 3 depicts the shaker design. The shaker consists of two wings and two vibrating
wheels with rods. Two wings, each with one linear hydraulic cylinder, were utilized in
this design to squeeze the canopy and to enhance the vibration efficiency by retracting and
releasing each wing. These wings allow the shaker to follow the canopy’s form dynamically
and freely. A shaking pattern was produced using an off-center mechanism. The off-
centered shaft on each wing was driven indirectly by the hydraulic motor through a chain
and sprocket reducer system. The vibration frequency and amplitude can be adjusted by
altering the rotary speed of the hydraulic motor and the eccentricity of the shaking wheel,
respectively. As can be seen in Figure 3, an adjustable counterweight attachment was also
added to the off-centered shaft; this additional part dampens the undesirable vibration
transmitted back toward the harvester shaker.

This new canopy shaker mechanism was attached through a retractable boom to a
Bobcat 337. Using this configuration, the harvester head could climb to 4.5 m and harvest
up to a 6.0 m-tall tree (Figure 4).
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2.2. Acceleration Sensor and Wireless Data Logging

The vibration produced by the canopy shaker head was transmitted through the tree
canopy to the branches, fruits, leaves, and trunk.

The generated acceleration was gauged by accelerometer sensors in real time [29].
Commercially available accelerometers were not sufficiently durable. Connecting sensors
through wires is impractical for delivering the data and electric power from the power
source to the accelerometer, due to the damage caused during shaking [5]. We developed
an accelerometer equipped with a micro-SD and wireless data logger (Figure 5). A 9-volt
battery and independent storage was incorporated into each sensor. All the sensors were
wirelessly connected to the wireless router. The wireless router used for this experiment
was a 300 Mbps wireless N router (TL-WR841N; version: 14.6; TP-Link; Vientnam). For
quick access to each sensor during the field experiment, a unique static IP address was
assigned to each sensor. To remotely control the sensors, a Raspberry Pi 3 A+ single-board
computer was utilized along with a 5 V battery pack. The controller unit could select which
sensors to activate or deactivate remotely, or begin recording data simultaneously. Each
record had a predetermined shaking duration.
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and data logging system. (c) Diagram and flowchart of accelerometer data acquisition system.

To measure the impact of each machine’s operation on the tree and harvesting effi-
ciency, we utilized LIS3DH accelerometers to gauge the resulting vibration. We analyzed
the data collected from each sensor to evaluate how each shaker affected the harvest. The
data from each sensor was recorded in a labeled *.CSV file on a MicroSD (16 GB) inserted
into the memory socket (model: Adafruit MicroSD card breakout board+) of each wireless
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sensor system. More technical details for this wireless sensor network were discussed
by [5].

The intensity of vibrations can be quantified as acceleration. Unlike earlier studies, in
this trial, both the acceleration peak and root mean square (RMS) were used to express the
vibration in terms of acceleration. To determine these metrics, first, the acceleration resultant
(ar) was calculated using the acceleration components in the x, y, and z directions by
Equation (1) [30]; after that, the acceleration peak and RMS were obtained using Equations
(2) and (3)—where n in Equation (3) was the number of acceleration resultant samples
during the experimental trials.

|ar| =
√

a2
x + a2

y + a2
z (1)

peak = (|ar|) (2)

RMS =

√(
1
n

) n

∑
i=1

(ari )
2 (3)

2.3. Experimental Tests

This experiment was conducted at Leslie J. Nickel’s Trust in Arbuckle California, USA
(38◦58′01′′ N, 122◦04′36′′ W) in an Olea europaea cv. Manzanillo orchard planted in 2001
with N–S rows at 3.7 m in-row and 5.5 m between rows: 486 trees per hectare. The trees
were topped at 3.7 m, and every other row middle was double side hedged 0.9 m from the
trunk, annually. The experimental trials were designed to study the vibration properties of
the newly developed canopy shaker and to compare them with a commercial trunk shaker
made by the Orchard Machinery Corporation (OMC). Four accelerometers were attached
to different parts of each tree: one to the tree trunk, one to the main branch, and two other
sensors to the secondary branches on both sides of the canopy, to measure the propagation
of vibrations through the tree in each trial.

Three distinct shaking frequencies were chosen for each shaker machine (trunk and
canopy shaker). Eleven trials were completed: nine different combinations of shaking
frequencies using both shakers simultaneously (Figure 6), one trial using only the trunk
shaker, and one trial using only the canopy shaker (Table 1). Each trial was repeated three
times (a total of 33 trees). The canopy shaker was tuned to a five cm off-center distance,
generating a ten cm displacement. The rotary speed of the hydraulic motor was adjusted to
100, 150, and 200 rpm for each experiment. The shaking intensity of the commercial trunk
shaker was adjusted by the machine interface to three preset shaking modes (low, medium,
and high). The shake period was 15 s.
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Table 1. Experiment design for selecting the optimum combined shaking frequency. Each treatment
was replicated three times.

Canopy Shaker
(rpm)

Trunk Shaker Intensity

Low Medium High

100 Trial-1 Trial-2 Trial-3
150 Trial-4 Trial-5 Trial-6
200 Trial-7 Trial-8 Trial-9

Canopy shaker Trial-10

Trunk shaker Trial-11

Four to six tarps were spread on the ground before each shaking to catch the detached
olives. Following the shaking, the mechanically detached olives were weighed, and a
sample submitted to the Musco Company commercial receiving station for quality grading
and value per ton [31]. A hand gleaning team harvested the olives remaining on the tree.
The hand-harvested olives were also weighed. The harvest efficiency was calculated using
Equation (4) [32]:

E f f iciency(%) =

(
Mechanically harvested (kg)

Manually harvested (kg) + Mechanically arvested (kg)

)
100 (4)

The data was analyzed using a one-way ANOVA in a completely randomized design
with eleven treatments (Table 1) of 3 replications each and α = 0.05. The multi-range Duncan
post-hoc test was used to compare the means of the treatments.

3. Results and Discussion

Figure 7 illustrates the maximum acceleration of the two harvesting machines. The
data demonstrates that the canopy shaker vibration amplitude was higher in thin branches
than in the trunk or larger branches; this is directly due to their relative sizes. The result was
less energy being transmitted to the tree trunk and root system, and therefore less potential
damage to the tree compared to the trunk shaker. The opposite trend was observed for the
trunk shaker, with the vibration amplitude in the trunk higher than in the small branches
due to their proximity to the point of the applied vibration. This suggests that the canopy
shaker applies most energy to the fruit-bearing zone and is therefore more energy efficient.
An examination of the maximum amplitude of both shakers shows that the canopy shaker
increased the peak acceleration by 76.5% in small branches and decreased it by 70% in the
trunk. A previous study on mechanical harvesting for citrus also reported the ability of
larger peaks to successfully detach fruits with fewer cycles [33].
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Comparing the vibration frequency of both harvesters demonstrates the canopy shaker
produced a lower vibrating frequency (3.5 Hz) than the trunk shaker (15.5 Hz) in small
limbs and higher amplitudes, producing less damage to the fruits. Similar results have
been reported for cherry and other olive mechanical harvesting trials; higher frequencies
cause more fruit damage [26,34].

As Figure 8 shows, the harvest efficiency was not significantly different among the
eleven field trials (p value = 0.054). However, using both shakers simultaneously—except
for Trial 8—produced better harvester efficiency than either shaker alone. The average
harvest efficiency of all three shaking methods demonstrated that the combined shaker
method improved harvester efficiency by 41% and 19% compared to the canopy shaker
and trunk shaker, respectively.
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The results of the combined shaking trials versus the solo shaking trials (Trials 10
and 11) demonstrated that shaking olive trees simultaneously with both canopy and trunk
shakers resulted in higher harvest efficiencies by 22% and 10%, on average, respectively.
Among the nine trials in which both shakers were employed, Trials 4 and 6 showed the
best harvest efficiencies of 75% and 68%, respectively.

Combined shaking methods previously reported in the literature also showed promis-
ing results compared to solo shaking methods. Zipori et al. [35] reported that using a
trunk shaker while three to four workers simultaneously beat the tree with fiberglass
rods improved harvester efficiency to above the 80% economic threshold. Without the
four-man beating crew, the harvester efficiency dropped to 40–58%. Similar results were
reported using hand-held pneumatic combs, mechanical beaters, and trunk shakers for
large 60 to 100-year-old olive trees. Harvesting with a hand-held comb and mechanical
beater removed 87.2–89.9% of the olives versus a solo trunk shaker removing 40–72.5% [36].
These high harvesting efficiencies used two to four workers per tree and were 60 s long; a
potential reason for the high efficiencies reported. Their reported efficiencies for mechanical
operation without the simultaneous beating teams reported values consistent with the
results reported here. Table 2 compares our results with those of earlier studies.

Figure 9 shows the root mean square (RMS) of vibrations measured by the accelerom-
eter sensors installed in the olive tree canopies; it reveals that the vibrations were more
uniform when the two shakers were operated simultaneously versus using the shakers
individually. These results are consistent with the higher harvest efficiency observed when
using the combined method.



Horticulturae 2023, 9, 640 9 of 12

Table 2. Comparison of fruit removal and shaking period in different studies on mechanical harvesting.

Crop Fruit Removal Efficiency Shaking Period Description Ref.

Olive 50% — No obsession chemical [24]
Citrus 69.1% — — [16]
Olive >80% 30–60 s Trunk shaker + 3 to 4 beating crews [35]
Olive 40–60% 30–60 s Trunk shaker + 3 to 4 beating crew [35]

Olive 87.2–89.9% 60 S Trunk shaker + Mechanical comb
+2 Beating crews [36]

Olive 40–72% 60 S Trunk shaker [36]

Olive
54–75%

15 S
Trunk Shaker + Canopy shaker This

study52% Trunk Shaker
44% Canopy shaker
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Fruit size and damage were measured at a commercial grading station to produce a
price per ton. The results of the ANOVA test for the Price Per ton index were significantly
different (p value = 0.035). Mean comparisons using the multi-range Duncan test are
presented in Figure 10. Trials 5 and 6 received the highest values among all the trials and
were also distinguishably different.
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By comparing the mean price per ton of the three shaking methods, it was confirmed
that using both shakers simultaneously could increase this index by 63% and 37% compared
to a trunk shaker and canopy shaker, respectively. These results again prove the higher
performance of combined shaking compared to using a canopy or trunk shaker individually.

Figure 11 shows the fruit size distribution by percent among the individual and
combined shaking methods. The uniformity of spread in the vibrations inside the tree
canopy in the combined shaking method detached significantly more extra-large, large,
and medium size olives compared to the other two solo harvest methods.
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Since harvested fruits with extra-large, large size, and medium size affect the final
quality evaluation metrics more than the other size categories, the combined percentages of
harvested fruits in these categories were statistically analyzed. The results of the ANOVA
test for these size categories were highly significant (p value = 0.0004). Comparing the
means also revealed that Trials 5 and 6 harvested significantly more fruit in these size
categories versus those trials with 89% and 79% of total harvested fruits, respectively.

4. Conclusions

This study evaluated a new canopy contact shaker prototype versus a commercial
trunk shaker harvesting machine in a moderate-density hedgerow table olive orchard.
Although the canopy shaker harvested fruits with higher quality, the harvest efficiency was
unacceptable as the shaker could not properly access the space between the trees within
the row.

Combining the canopy and trunk shaking methods improved the efficiency and quality
of the harvested olives. A canopy shaker rotational speed of 150 rpm and a trunk shaker
vibration intensity setting of medium and high, respectively, produced significantly higher
harvest efficiency and better removal of larger fruit than either harvester individually.
This suggests that incorporating both trunk and canopy shaking technologies into a single
harvester would produce a more efficient harvester.

Compared to prior studies with fruit removal efficiencies above 80%, our final har-
vester efficiency was 5% lower at 75%. However, our trial had a significantly shorter
shaking time of 15 s compared to the 30 to 60 s reported in the previous studies. Also, our
method did not use manual labor; the earlier studies used 2 to 4 man beating crews per tree.
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