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Abstract

We report Raman and infrared absorption spectroscopy along with X-ray diffraction for brucite-

type β-Cd(OH)2 to 28 GPa at 300 K. The OH-stretching modes soften with pressure and disappear

at 21 GPa with their widths increasing rapidly above 5 GPa, consistent with a gradual disordering

of the H sublattice at 5–20 GPa similar to that previously observed for Co(OH)2. Asymmetry

in the peak shapes of the OH-stretching modes suggests the existence of diverse disordered sites

for H atoms in Cd(OH)2 under pressure. Above 15 GPa, the A1g(T) lattice mode shows non-

linear behavior and softens to 21 GPa, at which pressure significant changes are observed: new

Raman modes appear, two Raman-active lattice modes and the OH-stretching modes of the low-

pressure phase disappears, and the positions of some X-ray diffraction lines change abruptly with

the appearance of weak new diffraction features. These observations suggest that amorphization

of the H sublattice is accompanied by a crystalline-to-crystalline transition at 21 GPa in Cd(OH)2,

which has not been previously observed in the brucite-type hydroxides. The Raman spectra of

the high-pressure phase of Cd(OH)2 is similar to those of the high-pressure phase of single-crystal

Ca(OH)2 of which structure has been tentatively assigned to the Sr(OH)2 type.
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I. INTRODUCTION

High symmetry prompts considering the brucite-type hydroxides [M(OH)2, M = Mg, Ca,

Ni, Co, Fe, Mn, Cd] as a model for understanding the bonding of hydrogen within crystal

structures. In geophysics, high-pressure studies of this structure have provided valuable

information about the role of hydrogen in hydrous and nominally anhydrous minerals1.

The brucite structure is characterized by a hexagonal unit cell with cation–oxygen layers

stacked along the c-axis. A hydrogen atom is attached to each oxygen atom. At ambient

pressure, an O–H bond is aligned along the c-axis and points toward an empty tetrahedron

surrounded by three cation–oxygen octahedra in the neighboring layer (Fig. 1a). Each H

atom is surrounded by three H atoms attached to the neighboring layer (H· · ·H in Fig. 1).

With pressure, the structure initially compresses mostly along the c-axis and the interlayer

spacing decreases while the cation-oxygen layers remain relatively uncompressed2–5. This

promotes the interaction among H and O atoms in the neighboring layers (O· · ·H and H· · ·H

in Fig. 1), as is suggested by the decrease in frequency and broadening of the OH-stretching

vibration observed for all brucite-type hydroxides studied to date with compression6–9.

In addition, brucite-type hydroxides exhibit diverse behavior at high pressure. A re-

versible amorphization of the entire crystal structure has been reported for Ca(OH)2 com-

pressed to 11 GPa at room temperature6,10–12. However, single-crystal Ca(OH)2 undergoes

a transition to a crystalline phase, likely Sr(OH)2-type, at 6 GPa followed by reversible

amorphization around 20 GPa at room temperature13. In Co(OH)2, the hydrogen (H) sub-

lattice becomes amorphized at 11 GPa, while the Co–O sublattice remains in a crystalline

state14,15. In contrast, Mg(OH)2 remains stable and does not amorphize to at least 34 GPa

(Ref. 6).

The nature of the strong interaction among H and O atoms in the neighboring layers

of the brucite-type structures at high pressure remains controversial. Earlier experiments6

proposed that the negative shift and broadening of the OH-stretching vibration is due to

a strengthening of hydrogen bonding between H and O atoms in adjacent layers (O· · ·H

in Fig. 1). A later neutron diffraction study3 reported lengthening of the O–D bonds with

pressure, consistent with a strengthening of hydrogen bonding at high pressure. However,

a molecular dynamics simulation16 suggests that amorphization of the H sublattice results

from frustration of H atoms by the interplay of short-range repulsion and electrostatic forces.
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β-Cd(OH)2 is an interesting case because many of its structural parameters, such as

c/a, O—O, O· · ·H, and 6 O· · ·O—H (Table I), are similar to those of Ca(OH)2 at ambient

conditions. In particular, β-Cd(OH)2 is more compact along the c-axis (i.e., has the smallest

c/a ratio and interlayer spacing) than any other brucite-type hydroxides at ambient pressure.

Yet the O· · ·H distance in Cd(OH)2 remains one of the longest among the hydroxides. This

is mainly due to the fact that the O–H units are distant from each other along the a-axis, in

comparison with the other hydroxides (see O—O in Table I). Among the transition-metal

hydroxides (M = Ni, Co, Fe, Mn, and Cd), the magnitudes of the bond lengths and angle

are the largest for Cd(OH)2 (Table I). Therefore, it is of particular interest to compare the

behavior of Cd(OH)2 to Ca(OH)2 and other transition-mental hydroxides under pressure.

In addition, compounds with larger cations tend to show a given sequence of structural

changes at lower pressures than those with smaller cations, and Cd is the largest among the

brucite-type hydroxides listed in Table I. We have therefore investigated the high-pressure

behavior of Cd(OH)2 using Raman and infrared absorption spectroscopy along with X-ray

diffraction.

II. EXPERIMENTAL TECHNIQUES

Synthetic β-Cd(OH)2 (Aldrich Chemicals, purity 99.99%) was loaded in a 150 µm hole

of a 20–30 µm thick indented stainless steel gasket sandwiched between two diamond anvils

of a symmetric diamond-anvil cell. All experiments were conducted at room temperature

and pressure was measured using the ruby fluorescence scale17.

For Raman measurements we used a pair of diamond anvils with ultra-low fluorescence.

These were performed at MIT using a dispersive-Raman system consisting of an Ar/Kr

mixed-ion laser, a single spectrometer, and a liquid nitrogen cooled CCD up to 28 GPa

(Fig. 2a-c). We focused a 514.5-nm laser beam on the sample to excite the Raman modes

and the sampling time was typically 5 minutes. The emission spectrum of neon was used

to calibrate the spectrometer. We conducted measurements with Ar as a pressure medium

(quasi-hydrostatic, QH) and without any pressure medium (non-hydrostatic, NH) in order

to determine the effects of deviatoric stresses at high pressure, and did not resolve any

systematic differences between these different runs.

Some IR-active lattice modes have been observed in previous Raman measurements on
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Mg(OH)2 (Ref. 18) and Co(OH)2 (Ref. 15). Similarly, we observe a mode at 270 cm−1

from the sample, with a pressure-induced shift of 5.2 cm−1/GPa, when we use a laser power

exceeding 3 mW. The frequency at ambient conditions shows reasonable agreement with

an IR-active Eu(T) mode (264 cm−1, Ref. 19) and we avoid this spectral contamination by

regulating the laser power below 0.5 mW throughout our measurements.

Synchrotron-based infrared (IR) absorption spectroscopy was performed up to 25 GPa

using beam line 1.4.3 at the Advanced Light Source, with samples loaded in an Ar pressure

medium (Fig. 2d). In comparison with bench-top FTIR, the advantages of synchrotron-

based FTIR include a 2–3 order-of-magnitude enhancement in flux and reduction of the

beam to a 10 µm diffraction-limited diameter20. Background spectra were measured for

areas filled only with Ar in the sample chamber and were subtracted from raw IR spectra

of the samples. The IR measurements were conducted in an open atmosphere. Although

much of the water signal has been nulled in the data processing, some absorption remains

and this becomes noticeable in spectra measured at high-pressure, where the signal from the

sample becomes very weak (Fig. 2d). In analysis of the spectroscopy data, symmetric peaks

were fitted to pseudo-Voigt profile shape functions. We used a split pseudo-Voigt function

for asymmetric peaks.

Angle-dispersive powder X-ray diffraction measurements were performed up to 36 GPa

at the GSECARS beam line of the Advanced Photon Source, the 10.3 sector of the Stan-

ford Synchrotron Radiation Laboratory, and the B-2 beamline of the Cornell High Energy

Synchrotron Source using imaging plates with beam energy of 24 keV (20 µm in diameter),

17 keV (50 µm in diameter), and 25 keV (35 µm in diameter), respectively. Cubic boron

nitride, which is semi-transparent to the X-ray beam, was used as seats for the diamonds

in order to increase the diffraction angle to 24◦2θ. The sample-to-detector distances were

measured using the diffraction from CeO2, NaCl, and MgO. To determine pressure, we used

either ruby17 or gold21 in different X-ray diffraction runs, and the samples were loaded ei-

ther in a CsCl pressure medium or without a pressure medium. Two-dimensional diffraction

images were integrated to one-dimensional diffraction patterns using the FIT2D program22

and individual peaks were fitted using a pseudo-Voigt profile function. Unit-cell parameters

and volume were calculated using the UNITCELL program23.
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III. RESULTS

A. Vibrational spectroscopy

For the brucite-type hydroxides, the lattice modes are translational [A1g(T), A2u(T),

Eg(T), and Eu(T)] and librational [Eg(R) and Eu(R)], and internal modes originate from

symmetric [Raman active, A1g(OH)] and antisymmetric [IR active, A2u(OH)] OH-stretching

vibrations. We observed Raman modes at 235 cm−1 [Eg(T)], 384 cm−1 [A1g(T)], and

3566 cm−1 [A1g(OH)] at ambient conditions (Figs 2, 3, and 6), consistent with earlier

reports19 (238, 384, and 3566 cm−1). The librational mode of β-Cd(OH)2 and other

transition-metal hydroxides have not been documented in the literature, but we observed a

mode at 755 cm−1 at ambient conditions in samples recovered from high pressure. This mode

is also observed at high pressure (Figs 2 and 6), and its low intensity and large width are

consistent with expectations for the libration mode, Eg(R). The librational modes are ob-

served at 680 and 725 cm−1 in Ca(OH)2 and Mg(OH)2, respectively, so we tentatively assign

the 755 cm−1 mode to the librational mode of β-Cd(OH)2. In IR measurements, we observed

the A2u(OH) mode at 3605 cm−1 at 1.8 GPa which agrees with previous measurements19 at

ambient conditions (3607 cm−1) after accounting for the pressure-induced shift in frequency.

Both Raman- and IR-active OH-stretching modes decrease in frequency and intensity

with pressure (Figs 2c and d). The frequency of the A1g(OH) mode decreases linearly

(−4.1±0.4 cm−1/GPa) on compression to 10 GPa, becomes less sensitive to pressure between

10 and 20 GPa (−0.8±0.2 cm−1/GPa), and drops by 23 cm−1 before disappearing at 21 GPa

(Fig. 3). Above 21 GPa, we do not detect any mode other than a very weak feature at

3580 cm−1 in an internal-mode range (ν7 in the inset of Fig. 2c).

Upon decompression, the A1g(OH) mode re-appears at 20 GPa with some degree of

hysteresis in the frequency to 10 GPa (Fig. 3). Below 10 GPa, the frequencies agree well

with each other on compression and decompression. The weak feature (ν7) observed above

21 GPa becomes noticeably intense on decompression and persists to 7 GPa (Fig. 2c).

Its weak intensity and severe overlap with the strong A1g(OH) mode makes it difficult to

precisely track its frequency, but this mode appears to be much less sensitive to pressure in

comparison with A1g(OH) (Fig. 3).

Our IR data exhibit interference patterns in the background, likely caused by the di-
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amond anvils, and these affect peak fitting (Fig. 2d). However, we can still resolve the

behavior of the A2u(OH) mode under pressure, with a frequency decreasing linearly to

10 GPa (−1.4 ± 0.8 cm−1/GPa) and becoming almost insensitive to pressure between 10

and 20 GPa (−0.1± 0.4 cm−1/GPa), in qualitative agreement with our observations for the

A1g(OH) mode (Fig. 3). The A2u(OH) mode also weakens and broadens with pressure, and

finally becomes barely resolved above 19 GPa (Fig. 2d), and on decompression it re-appears

at 19 GPa with some degree of hysteresis.

The frequency of ν7 observed in Raman spectra appears to coincide with that of the IR-

active A2u(OH) mode between 10 and 20 GPa. Previous high-pressure studies on brucite-

type hydroxides have likewise documented IR-active modes in Raman spectra15,24 and vice-

versa14. However, ν7 is still observed above 21 GPa even though the A2u(OH) mode has

disappeared (Fig. 3). Furthermore, the fullwidth at half maximum (FWHM) of ν7 is much

smaller than that of the A2u(OH) mode (Fig. 2), so it is unlikely that ν7 is the IR-active

OH-stretching mode. Above the amorphization pressure of Ca(OH)2, a weak mode is also

observed (at 3638 cm−1) with a slightly negative pressure shift10. This mode is remarkably

similar to ν7 of Cd(OH)2.

Negative pressure shifts are well-documented for the A1g(OH) and A2u(OH) frequencies

of other brucite-type hydroxides, and are generally assumed to arise from increased hydrogen

bonding6 or enhanced electrostatic interactions16 among H and O atoms in the neighboring

layers decreasing the force constant of the O–H bond. Compared to the other brucite-type

hydroxides, the rate of frequency decrease of A1g(OH) is the lowest for Cd(OH)2, perhaps due

to the fact that Cd(OH)2 has the smallest c/a ratio and interlayer spacing yet the largest O—

O distance (Table I). The steep initial decrease in the c/a ratio does not change interactions

among the O–H units as effectively as in the other hydroxides, because in Cd(OH)2 the O–H

units are much more distant from each other along the a- than the c-axis in comparison

with any other brucite-type hydroxides. Both OH-stretching modes show saturation of the

negative mode shifts near 10 GPa (Fig. 3), consistent with our findings by X-ray diffraction

that Cd(OH)2 becomes very incompressible above 10 GPa (see below). Thus, changes in the

bond lengths and angles would be smaller above 10 GPa, making the interactions among

neighboring-layer H and O atoms less sensitive to pressure.

The A1g(OH) mode of Cd(OH)2 exhibits broadening with pressure with an increase of the

rate of change at 5 GPa (Fig. 4) and no significant hysteresis observed on decompression.
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The broadening is also observed for the A2u(OH) mode, again with an increase rate of change

above 5 GPa although less-well resolved due to the difficulties mentioned above (Fig. 4).

Pressure-induced broadening of the OH-stretching modes in the brucite-type hydroxides

has been attributed to disordering of the O–H bonds6,8,9,14 (Fig. 4). A Raman study of

Ca(OH)2 reported a steep increase in FWHM above 11 GPa (Ref. 10), whereas Mg(OH)2

shows a monotonous increase up to 34 GPa (Ref. 18). An increase in broadening rates

of the OH-stretching modes was observed above 10 GPa in Co(OH)2 (Refs 7,14,15). The

magnitudes and behavior of the FWHM of the OH-stretching modes of Cd(OH)2 are compa-

rable to those observed for Ca(OH)2 and Co(OH)2 with the broadening rate of A1g(OH) for

Cd(OH)2 is between those for Co(OH)2 and Ca(OH)2. Near 20 GPa, the magnitude of the

FWHM of the OH-stretching modes in Cd(OH)2 becomes similar to those of Ca(OH)2 and

Co(OH)2 near the region of the pressure at which the H sublattice is inferred to amorphize.

Thus, we conclude that the H sublattice of Cd(OH)2 also disorders gradually between 5 and

20 GPa.

The shapes of the OH-stretching peaks become increasingly asymmetric with pressure to

5 GPa (Figs 2c, 2d, and 5), whereas the lattice modes are well fitted with a symmetric profile.

The asymmetry parameter shown in Fig. 5 increases steeply up to 5 GPa and becomes less

sensitive to pressure above 10 GPa. We found no systematic difference in this parameter

between runs with and without an Ar pressure medium, implying that the asymmetry is not

caused by deviatoric stress. Our IR spectra do not provide sufficient resolution to measure

the asymmetry parameter precisely, but it is notable that this is the first report of significant

asymmetry in the OH-stretching modes in a brucite-type hydroxide at high pressure.

Asymmetric peak shapes have been observed for the OH-stretching modes of some ma-

terials. The Raman-active mode of water bearing SiO2 glass shows strong anisotropy, with

the lower-frequency side side being broader than the higher-frequency side25, similar to our

observation for Cd(OH)2. The asymmetry was attributed to the existence of a range of

hydrogen-bonding environment25: the higher-frequency side of the peak would represent

O–H groups associated with weaker or no hydrogen bonding whereas the lower-frequency

side of the peak would indicate the presence of diverse range of stronger hydrogen-bonded

environment. An asymmetric OH-stretching mode was also reported in hydrous wadsleyite26

for which a high degree of disordering among several different sites was documented by 1H

MAS NMR (Ref. 27).
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The translational lattice modes stiffen linearly to 15 GPa (Figs 2a and 6). Above 15 GPa,

the Eg(T) mode becomes very weak (Fig. 2a) and the pressure-induced shift of the A1g(T)

mode becomes non-linear and finally shows softening as 20 GPa is approached (Fig. 6).

Above 10 GPa, we also observe a noticeable intensity increase for the lower-frequency shoul-

der of the A1g(T) mode (∼430 cm−1). Inclusion of a new peak at this position significantly

improves our spectrum fitting above 15 GPa (ν3 in Fig. 2a). The position of this peak shows

scatter in Fig. 6 because of its small intensity and severe overlap with strong adjacent peaks.

Nevertheless, we find that this peak persists up to the highest pressure we reached. The

appearance of this peak coincides with the pressure where Cd(OH)2 becomes incompress-

ible as documented by X-ray diffraction (see below), but we do not observe any changes in

diffraction patterns below 21 GPa. If this is a new phonon mode, the combined vibrational

spectroscopy and X-ray diffraction results suggest that Cd(OH)2 undergoes a minor modifi-

cation or distortion in crystal structure. It is notable that the intensity of this peak is more

pronounced in non-hydrostatic runs (i.e., without pressure medium).

At 21 GPa, significant changes are observed in the lattice modes: both lattice modes of β-

Ca(OH)2 disappear and new modes appear at 260 (ν1), 360 (ν2), and 477 (ν4) cm−1 (see the

spectra at 20.5 and 27.9 GPa in Fig. 2). Except for ν1, which is very difficult to resolve under

non-hydrostatic conditions, data from runs with and without and Ar pressure medium agree

with each other. We infer that ν2 and ν4 are from a crystalline phase because their FWHM

are smaller than those of A1g(T) and Eg(T). The three new modes shift linearly with pressure

and persist to 28 GPa, the peak pressure of our Raman measurements. These changes in

the lattice modes indicate that the Cd–O sublattice undergoes a structural transition.

Upon decompression, some degree of hysteresis is observed for the mode frequencies of

ν1, ν2, ν3, and ν4 with larger dν/dP on decompression (Fig. 6). However, the apparent

slope changes in ν1 and ν3 could be due to the difficulty in reliably fitting the positions of

the weak peaks. In comparison, ν2 is well-resolved and the mode shift of ν4 is reversible

during decompression (Fig. 2a). These new modes persist below 21 GPa and disappear at

10 GPa except for ν2. In fact, ν2 shifts toward Eg(T) with decompression and follows the

trend of Eg(T) below 5 GPa. The A1g(T) mode re-appears at 22 GPa during decompression

and gains intensity with a decrease of pressure (Fig. 2a), showing a reversible frequency

shift during decompression. The spectra obtained from recovered samples agree well with

those obtained before compression (Fig. 2a), indicating that the high-pressure phase is not
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quenchable. However, the observation of the new modes during decompression to 10 GPa

indicates that the high-pressure phase does persist metastably over a significant pressure

range at room temperature.

The librational mode, Eg(R), is difficult to observe at ambient conditions, but we observe

the mode at 779 cm−1 at 2.5 GPa. This peak gains intensity with pressure and becomes

clear above 8 GPa (Fig. 2b), exhibiting a non-linear mode shift with pressure: dν/dP is

higher below 10 GPa and above 20 GPa than between 10 and 20 GPa (Fig. 6). The mode

again becomes very weak above 21 GPa (Fig. 2b), and it reverts without hysteresis upon

decompression, remaining as a weak feature at 755 cm−1 in the recovered sample. For

comparison, the Eg(R) mode was not detected in Mg(OH)2 or Ni(OH)2 under pressure

(Refs 8,18), but it has been detected with a linear increase with pressure up to 31 GPa in

Co(OH)2 (Ref. 15).

Lutz et al.19 took the librational mode frequency as a proxy for the interaction among

adjacent O–H units, with a higher frequency indicating stronger interaction. The steeper

increase of the librational mode of Cd(OH)2 below 10 GPa is mainly due to the fact that

the distance between O–H units decreases due to preferential compression along the c-axis,

although the magnitude of the distance decrease should not be as large as observed in the

other brucite-type hydroxides based on the mode shift of the OH-stretching vibration. The

diminished slope between 10 and 20 GPa is due to stiffening of the structure as observed by

X-ray diffraction (see below). After the phase transition at 21 GPa, the librational mode

becomes more sensitive to pressure again.

A new mode appears on the higher-frequency side of the librational mode above 5 GPa

(ν6 in Figs 2b and 6). At 21 GPa, another new mode appears on the lower-frequency side of

the librational mode (ν5 in Figs 2b and 6). Both modes show linear increases in frequency

with pressure, indicating that these are not from the diamond anvils. In fact, we observe a

peak from the diamond anvil at 1110 cm−1 and it shows little pressure-induced shift. Thus,

ν6 could be related to a modification or distortion of the Cd–O sublattice as there is no

evidence from X-ray diffraction of any phase transition around 5 GPa. The appearance of

the ν5 mode at 21 GPa coincides with significant changes in the other lattice modes, as well

as changes in the diffraction patterns (see below), so we identify this mode with a phase

transition emerging at 21 GPa.
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B. X-ray Diffraction

X-ray diffraction measurements to 37 GPa (Fig. 7) help us interpret the spectroscopic

measurements. We observed the diffraction lines of β-Cd(OH)2 up to 21 GPa with no new

peaks appearing below 21 GPa (Figs 7a-c). Above 21 GPa, diffraction lines become weak

and broad, (010) line shape becomes asymmetric, and some weak features appear near (011)

(Fig. 7e) (note that in order to avoid overlapping diffraction lines, gold was not loaded in

the runs of Fig. 7e-g). The (001) line also disappears at this pressure, but its intensity is

already weakening at lower pressures and this is likely due to the development of preferred

orientation of crystals with pressure. The remaining lines and the new features persist to

37 GPa, suggesting that Cd(OH)2 retains some long-range ordering of the Cd–O sublattice

at least up to the peak pressure reached in our experiments.

The new features disappear on decompression below 20 GPa (Fig. 7f), but all the other

diffraction lines remain broad to 5 GPa. That the (001) line does not re-appear until 5 GPa

on decompression supports the idea that the its disappearance above 21 GPa is at least

partly due to strong texturing. All the major diffraction lines of the low-pressure phase are

then recovered upon complete unloading (Fig. 7f), and these results are in good agreement

with our Raman observations for the lattice modes: a crystalline-to-crystalline transition

takes place at 21 GPa and the high-pressure phase survives upon decompression to 10 GPa.

We observe that the c-axis is a factor of 3.7 times more compressible than the a-axis.

The c/a ratio of Cd(OH)2 decreases steeply below 5 GPa and more gently above 10 GPa

(Fig. 8). Because of the evidence for a phase transition at 21 GPa, the Miller indices of the

lower-pressure phase are no longer valid above 21 GPa. Nevertheless, we calculate hexagonal

unit-cell parameters from the positions of the (010) and (011) lines in order to document

the effect of pressure on the structure at pressure above 21 GPa (note that the c/a ratios

are determined by at least 6–7 different lines at pressure below 21 GPa). The c/a value

then shows a discrete change at 21 GPa, supporting our inference that Cd(OH)2 transforms

to a crystalline phase. According to our Raman measurements, both the high- and low-

pressure phases coexist during decompression to 10 GPa. Thus, the observed c/a ratio

during decompression may be contaminated by diffraction peak overlaps between the low-

and high-pressure phases. Nevertheless, little hysteresis is observed in the c/a ratio during

decompression. This may indicate that the high-pressure phase may be spectroscopically
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more active than the low-pressure phase and/or the amount of the high-pressure phase below

20 GPa is smaller than that of the low-pressure phase.

The c/a ratio of the other brucite-type hydroxides exhibit a similar behavior11,14,28,29

(Fig. 8). The initial rapid decrease in the c/a ratio has been attributed to the presence of

weak O–H bonds in the c-direction and the relatively rigid cation–oxygen octahedra forming

layers parallel to the a-axis. Thus, most of the strain on compression is expected to be

accommodated along the c-direction as compare to the cation-oxygen plane2. However,

once the c/a ratio reaches a certain value, it stops changing, perhaps due to an increase of

the repulsive force between adjacent H atoms brought into proximity by the compression

along the c-axis.

The volume of Cd(OH)2 is plotted as a function of pressure in Fig. 9, where we show a

fit of the data between 0 and 21 GPa to the 3rd order Birch-Murnaghan equation of state.

The fit yields a pressure derivative of the bulk modulus (at zero pressure), K ′
0 = 10.6, the

highest value among the brucite-type hydroxides which typically lie near 5 (Table II). Our

X-ray measurements were conducted with a solid medium or with no pressure medium, so it

is possible deviatoric stresses play a role for such a high value. Nevertheless, considering the

fact that the values of K ′
0 differ by less than 20–25 % between non- and quasi-hydrostatic

measurements for Mg(OH)2, the K ′
0 of Cd(OH)2 has to be considered abnormally high

(Table II). The abnormally high K ′
0 value may be related to Cd(OH)2 having the smallest

c/a ratio and interlayer spacing of the brucite-type hydroxides (Table I). Because Cd(OH)2

has the smallest interlayer spacing at ambient conditions, a small contraction along the c-

axis can induce significant repulsion between atoms in the neighboring layers. Thus, the

axial compressibility along the c-axis will become small and may be even comparable to

that along the a-axis which is controlled by the more rigid CdO6 octahedra, as shown in

the c/a ratio. We tentatively calculate the volume above 21 GPa using the unit cell of the

brucite-type structure and find a volume drop of 5% at 21 GPa.

IV. DISCUSSION

The changes observed in Cd(OH)2 below 20 GPa are similar to those in Co(OH)2, which

exhibit rapid broadening of the OH-stretching modes and the c/a ratio becoming insensitive

to pressure above 11 GPa (Refs 14,15). Above 20 GPa, the rate of the negative shift of the
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A1g(OH) mode becomes gradually smaller and the widths of the OH-stretching modes do

not change with pressure15. Therefore, as in Co(OH)2 (Refs 14,15), we infer that the rapid

broadening of the OH-stretching modes between 5 and 20 GPa indicates gradual disordering

of the H sublattice in Cd(OH)2. At 20 GPa before the OH-stretching modes disappear,

their FWHM reach 150–250 cm−1. As pointed out in previous studies14,15, this magnitude

is comparable to those observed in hydrogen-bearing oxide glasses, water, and some dense-

hydrous minerals with disordered H sublattice, indicating amorphization of the H sublattice

in Cd(OH)2 at this pressure.

The OH-stretching modes of Cd(OH)2, however, show a significant degree of asymmetry

in their peak shape, whereas no evidence of asymmetry was reported for Co(OH)2 (Ref. 15).

As pointed out above, the asymmetry may indicate the existence of a range of distinct

environment for the H atoms in Cd(OH)2.

One way of explaining the range of H environments in Cd(OH)2 is that these are related

to the unusually large distance between the O–H units along the a-axis as compared with

the other brucite-type hydroxides, such as Co(OH)2. Neutron diffraction studies4,30,31 have

suggested that the H position in some brucite-type materials can be described by a three-

site disordered model (Fig. 1b): H atoms are displaced from the threefold axis, 2d sites

(1/3, 2/3, z), to three symmetry-related positions around the threefold axis with an equal

probability of occupancy, 6i sites (x, 2x, z). Parise et al.32 considered two different cases

for the three-site disordered model for Co(OD)2 (Fig. 1b). Assuming that the minimum

distance between non-bonded H atoms (H· · ·H) is 1.8 Å in ionic systems, they found that

neither XGT (x > 1/3 for 6i sites) nor XLT (x < 1/3 for 6i sites) sites alone can form

an extended structure with D· · ·D larger than 1.8 Å. Instead, a mixture of XLT and XGT

sites is needed and this allows for only one particular set of site mixing below 10 GPa for

Co(OD)2. Above 10 GPa, the mixing site model no longer provides any arrangements with

acceptable D· · ·D distances32. Thus, they proposed that the D(or H) atoms exist in a range

of positions along circles with a constant distance from the threefold axis over the pressure

range that the OH-stretching mode broadens rapidly.

Assuming that the magnitude of the H displacement in Cd(OH)2 is the same as that in

Co(OH)2 at ambient conditions, we examine whether XLT or XGT can yield an extended

structure in Cd(OH)2. The 10% larger O–O distance in Cd(OH)2 makes the distance between

different H sites greater than 1.8 Å for all but the 1–1′ case (1.3 Å) (e.g., 1–2′ or 1–3′ =
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2.00 Å; 2–3′ or 3–2′ = 2.30 Å; 2–2′ or 3–3′ = 2.33 Å in Fig. 1b) in the case of the XGT model.

All H· · ·H distances are larger than 1.8 Å for the XLT model (e.g., a–c′ or b–c′ = 2.21 Å;

c′–c = 2.52 Å; a–b′ or b–a′ = 1.88 Å; a–a′ or b–b′ = 1.92 Å in Fig. 1b). This demonstrates

that the H—H distances remain large enough to allow for an extended structure using either

XLT and XGT site models for Cd(OH)2 at least at lower pressure. That the asymmetry

parameter increases rapidly to 5 GPa, and becomes much less sensitive to pressure above

10 GPa, may indicate that diverse styles of disordering coexist below 5 GPa.

Another possibility for the cause of the asymmetry of the OH-stretching vibration is

changes in the Cd–O sublattice, e.g., distortion in the brucite-type structure. There are

some minor changes observed in the lattice modes of Cd(OH)2 below 21 GPa which could

support this hypothesis, namely the appearance of weak new modes (ν3 and ν6) and a

slope change in the pressure-induced shift of the librational mode. Our X-ray diffraction

measurements do not resolve any significant changes in the crystal structure below 21 GPa,

but it is possible that a modification or distortion of the Cd–O sublattice occurs below

21 GPa and affects the disordering of the H sublattice.

So far no crystalline-to-crystalline phase transition associated with H-sublattice amor-

phization has been reported for the brucite-type hydroxdies at high pressure. The appear-

ance of many new modes and disappearance of the modes of the low-pressure phase in the

lattice-mode range suggest that the Cd–O sublattice undergoes a crystalline-to-crystalline

transition. Furthermore, our diffraction measurements show new diffraction lines and a dis-

crete change in relative positions of (010) and (011) lines above 21 GPa, which can be also

related to a crystalline-to-crystalline transition.

While the H sublattice undergoes gradual disordering at 5–20 GPa, the disordering seems

to be affected by the change in the Cd–O sublattice at 21 GPa: A1g(OH) mode drops by

23 cm−1 at 20 GPa just before the amorphization of the H sublattice and a weak yet relatively

sharp mode (ν7) appears at 3588 cm−1 after the phase transition. This indicates that the

H sublattice may be almost completely disordered near 20 GPa but due to the transition at

least part of the H sublattice is reorganized.

This can be supported by our observation during decompression. The high-pressure phase

exists metastably below 21 GPa based on the observed lattice modes. In addition, during

decompression, ν7 gains intensity and A1g(OH) mode shift is distinct from that observed

during compression, at least to 10 GPa where most of the new features in the lattice-mode

14



range disappear. Thus, the distinct behavior of the modes in the OH-stretching vibrational

range indicates that the high-pressure phase may provide a different environment for the H

sublattice.

Although the quality of our X-ray diffraction data does not allow us to investigate the

crystal structure of the high-pressure phase, due to strong texturing and peak broadening,

our Raman spectra can be interpreted in terms of the Sr(OH)2-type structure that was

reported as a transformation product for single crystal of Ca(OH)2 at 6 GPa (Ref. 13) (dis-

tinct from the amorphization observed in powder samples11). Remarkable similarities were

reported between the Raman spectra of the high-pressure phase of single-crystal Ca(OH)2

and Sr(OH)2, and it is notable that the c/a ratio and many of bond lengths in Cd(OH)2 are

similar to those in Ca(OH)2 (Table I). The spectra of the high-pressure phases of Cd(OH)2

and Ca(OH)2 are also closely similar: A sharper new peak appears on the high-frequency

side of the A1g(OH) mode during the phase transition in Ca(OH)2 which is very similar

to the new mode we observed near A1g(OH) in Cd(OH)2 (ν7 in Fig. 2 and 3). Another

new mode is observed on the low-frequency side of A1g(OH) in Ca(OH)2 while A1g(OH)

disappears, which could be related to the apparent frequency drop of A1g(OH) in Cd(OH)2

(Fig. 3). New modes appears at the lower-frequency shoulder of A1g(T) and the higher-

frequency shoulder of Eg(T), which is very similar to ν2 and ν4 in Cd(OH)2 (Fig. 2 and 3).

In addition, 2–3 weak modes appear at 200–300 cm−1 region in Ca(OH)2, which could be

related to a broad new feature observed in Cd(OH)2 (ν1 in Figs 2a and 6). The librational

mode in Ca(OH)2 splits to two modes which could be related to Eg(R) and a new peak, ν5,

in Cd(OH)2 (Fig. 6).

V. CONCLUSION

Based on crystal-structural parameters, Cd(OH)2 is expected to show similar behavior as

Ca(OH)2 under pressure, yet because it belongs to the transition-metal group19, Cd(OH)2

may instead behave similarly to the other transition-metal hydroxides, e.g., Co(OH)2. Below

20 GPa, we have observed a negative mode shift and peak broadening of the OH-stretching

modes without any significant changes in X-ray diffraction. We interpret this as indicating

disordering of the H sublattice, as observed in Co(OH)2, while the Cd–O sublattice remains

in the brucite-type structure. The asymmetry of the OH-stretching mode peak shapes
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under pressure, which has not been reported for other brucite-type hydroxides, suggests the

presence of diverse H sites in Cd(OH)2 below 21 GPa, based on similar observations for H–O

in other glasses and minerals with disordered H atoms and the models previously examined

for Co(OH)2.

At 21 GPa, we observed significant changes in the lattice modes and X-ray diffraction

patterns that indicate a crystalline-to-crystalline transition in Cd(OH)2. From the similarity

in Raman spectra between the high-pressure phases of Cd(OH)2 and single-crystal Ca(OH)2,

we propose that the high-pressure phase of Cd(OH)2 has the Sr(OH)2-type structure. In

the high-pressure phase, the H sublattice is largely amorphized. Yet observation of a weak

but sharp mode at higher frequency than A1g(OH) supports the existence of new H sites

with less interaction between H and O atoms in this high-pressure phase. The high-pressure

phase remain metastably during decompression to 10 GPa along with the low-pressure phase

(brucite-type) of Cd(OH)2. To our knowledge, this is the first report of amorphization of

the H sublattice associated with a crystalline-to-crystalline transition for the brucite-type

hydroxides.

Future studies should investigate the disordered sites for H atoms in Cd(OH)2 some of

which could be distinct from those observed in the other brucite-type hydroxides. Further-

more, the crystal structure of the high-pressure phase of Cd(OH)2 remains to be solved.
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TABLE I: Selected crystal structure parameters of the brucite-type hydroxides. The classification

follows that of Ref. 19.

Main group Transition-metal group

Mg(OH)2 Ca(OH)2 β-Ni(OH)2 β-Co(OH)2 Fe(OH)2 Mn(OH)2 β-Cd(OH)2

Volume (Å3) 41.02 54.81 38.87 40.60 42.45 45.24 49.78

c/a 1.518 1.368 1.469 1.461 1.411 1.425 1.347

Interlayer spacing (Å) 2.687 2.616 2.553 2.666 2.578 2.594 2.530

M—O (Å) 2.097 2.369 2.073 2.083 2.139 2.196 2.292

O· · ·O (Å) 3.244 3.337 3.126 3.237 3.193 3.226 3.236

O—O (Å) 3.148 3.589 3.126 3.178 3.263 3.322 3.495

O· · ·H (Å)a 2.517 2.663 2.418 2.525 2.449 2.467 2.543

6 O· · ·O—H (◦) 46.2 51.1 48.3 46.6 50.3 51.0 52.5

Refs [30] [31] [34]b [35]b [19]b [36] [37]

aThermal correction is not made
bDeuterated samples are used

TABLE II: Bulk modulus (K0) and its pressure derivative (K ′
0) of the brucite-type hydroxides.

Material K0 (GPa) K ′
0 Reference

Mg(OH)2 54.3 ± 1.5 4.7 ± 0.2 Nonhydrostatic, [29]

42 ± 2 5.7 ± 0.5 Quasi-hydrostatic, [38]

Ca(OH)2 37.8 ± 1.8 5.2 ± 0.7 [11]

β-Ni(OH)2 88.0 4.7 [28]

β-Co(OH)2 73.3 ± 9.5 4.0 a [14]

Mn(OH)2 41 ± 3 4.7 a [4]

β-Cd(OH)2 37.6 ± 2.2 10.6 ± 0.8 This study b

aFixed values
bV0 is fixed to 49.92 Å3
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FIG. 1: The O–H unit and its surroundings in the brucite-type hydroxides. The large dark grey

balls, the large light grey balls, and the small balls represent cations, oxygen atoms, and hydrogen

atoms, respectively. The notations for various bond lengths used in Table I are shown in (a). (b)

Projections of the structures along the c-axis for two different H disordering models, i.e., three-site

disordered models. In these models H atoms are displaced from the threefold axis and occupy 6i

(x, 2x, z) sites. XGT represents a case with x > 1/3 and XLT represents a case with x < 1/3. The

individual sites are labeled following the notation used in Ref.32.
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FIG. 2: Vibrational spectra of Cd(OH)2 at high pressure: (a) Raman-active lattice modes, Eg(T)

and A1g(T), (b) Raman-active librational mode, Eg(R), (c) Raman-active OH-stretching mode,

A1g(OH), and (d) IR-active OH-stretching mode, A2u(OH). The backgrounds are subtracted from

the spectra. In each sub-figure, the bottom four spectra are measured during compression and

the top three spectra are measured during decompression. The spectra shown in (a) are measured

during quasi-hydrostatic runs except for the spectra at 16.2 and 25.8 GPa. The spectra shown in

(b) are measured during non-hydrostatic runs. The spectra shown in (c) and (d) are measured

during quasi-hydrostatic runs. The inset in (c) shows a very weak peak existing at 3588 cm−1

observed at 27.9 GPa, ν7. This becomes more visible during decompression. In (a), some peak

fitting results are presented together with measured spectra.
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FIG. 3: Pressure-induced shift of the OH-stretching modes of Cd(OH)2. Solid and open symbols

represent compression and decompression data, respectively. Circle and square symbols represent

runs with and without Ar pressure medium, respectively. The thick solid lines are guides for the

eye. The OH-stretching modes of the other hydroxides are shown for comparison: solid lines are for

Ca(OH)2 [A2u(OH) from Ref.6 and A1g(OH) from Ref.12], dashed lines are for Mg(OH)2 [A2u(OH)

from Ref.6 and A1g(OH) from Ref.18], dotted lines are for Co(OH)2 [A2u(OH) from Ref.7 and

A1g(OH) from Ref.15], and dash-dotted lines are for Fe(OH)2 [A2u(OH) and A1g(OH) from Ref.9].

The error bars represent 1σ uncertainties. New modes observed at high pressure are assigned as

νi (i = 1 ∼ 7) in order of lowest frequency.

22



150

100

50

0

A2u(OH)

300

250

200

150

100

50

0

F
W

H
M

 (
cm

-1
)

302520151050

Pressure (GPa)

A1g(OH) QH, Comp  QH, Decomp
 NH, Comp  NH, Decomp
 Ca(OH)2  Mg(OH)2

 Co(OH)2  Fe(OH)2

FIG. 4: Full-widths at half maxima (FWHM) of the OH-stretching modes of Cd(OH)2 at high

pressure. Notation is the same as in Fig. 3.
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FIG. 7: X-ray diffraction patterns of Cd(OH)2 at high pressures. Patterns (a–d) were measured
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the ruby pressure was used for these patterns. The indexed peaks are from β-Cd(OH)2. The weak
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