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Abstract

This paper considers the optimization of public infrastructure systems, recognizing that these sys-
tems serve multiple user classes. Example application domains include: public transportation
systems, electricity distribution grids, urban water distribution systems, and maintenance of pave-
ment and bridge systems. Under the guidance of a policy-making body, the analyst chooses both
the system design, including its layout and control, and the prices to be charged for the service. The
goal of the optimization is to maximize society’s welfare recognizing that the system’s performance
will in general depend on the system’s demand, and vice versa.

The optimization problem is first formulated in its full complexity, where the prices, the demand
and the system design are to be determined. It is then shown that if the user classes recognized in
the analysis can be priced independently, and if the policy setting body specifies either the demand
levels or the generalized prices experienced by each user group, then the problem decomposes into
three sub-problems that can be solved sequentially: demand estimation, system design and pricing.

It also turns out that the optimum design can always be obtained by minimizing the generalized
cost of the system to society for a known fixed demand, as is conventionally done in practice. The
resulting design is independent of how net user benefits are measured.

If the policy-making body does not specify cost or demand targets, and instead assesses benefits
by means of consumer surplus then the optimum design is still the solution of a conventional design
problem with fixed demand. In this case, however, the demand has to be obtained iteratively using
a marginal cost pricing rule.

1 The problem

Public infrastructure systems (e.g., a light rail network or an electricity system for a new suburb)
are often designed for a fixed target demand. Although this assumption simplifies the resulting
optimization problem, it is often questioned: would the optimum system design change if the effects
of elastic demand were included as part of the optimization? Could the induced demand and added
externalities of a good design negate some of its benefits? These questions are reasonable because
the effects of induced demand can be quite significant; see e.g. Downs (1962), Owens (1985), Hansen
and Cervero (2002). Therefore it makes sense to include them explicitly in the design framework.

This paper addresses these questions. It unveils conditions under which the the optimum
(welfare-maximizing) design for elastic demand is the optimum design for the fixed “optimum”
demand. These conditions allow the complex, joint demand estimation/pricing/design optimization
problem to be simplified by being broken into parts.

The paper is organized as follows. Section 2, below, formulates the welfare maximization prob-
lem in its full complexity, with endogenous demand and a generic net user benefit function. Section
3, shows that if a policy-making body specifies either the generalized prices that should be expe-
rienced by the various user groups, or the demand that each group should generate, then the full
problem decomposes into parts. Furthermore, the design problem can be treated as if the demand
was fixed, by minimizing a generalized cost function for a known fixed demand. Section 4 exam-
ines the special case where the policy-setting body does not specify any price or demand targets,
and instead stipulates that net user benefits are to be measured by the consumer surplus metric.
Finally, Section 5 summarizes the main findings.

1



Daganzo

2 The modeling framework

The general optimization problem is now introduced. Section 2.1 introduces the notation and some
basic ideas, and Section 2.2 expresses the mathematical program to be solved.

2.1 Definitions

It is assumed that the system’s design is encapsulated by a vector x of decision variables. For a
transit system, this vector would include the set of routes, stops, schedules, vehicle runs and driver
tasks. This list could be time-dependent, for a planning horizon that could span days, months or
years depending on the application.

The design is to be evaluated for a set of user classes {i = 1, 2, ...I}. A user class consists
of people from a demographic group that use the system in a similar way. For a transportation
system, a user class could consist of all the users that travel by bus from a specific origin region to
a destination region during the rush hour of a particular day or a particular year. The number of
users in each class is called the demand, and will be expressed as a vector: q = {qi}.

To provide and operate the design, the agency (or agencies) will endure monetary costs that
depend on x and q. It also assumed that the monetary costs of the system’s externalities can be
expressed as a function of x and q. The sum of the external and agency costs will be denoted
S = S(x, q).

It is also assumed that associated with each user class there is a non-monetary user cost Li

that is expressed in monetary terms. This “level-of-service” cost is also a function of x and q. The
dependence on demand expresses the fact that level of service may drop if too many users use the
system; e.g., roads get crowded during the rush hour, brown-outs may arise during hot weather, etc.
Note that the level of service for a specific class is allowed to depend on all the design and demand
variables, so the formulation is quite general. The non-monetary user costs for all classes combined
will also be expressed in vector form: L = L(x, q). It is also assumed that a separate monetary
price can be assigned to each user class, and these prices are also expressed as a vector: p = {pi}.
Finally, the sum of the non-monetary and monetary prices for a user class is the generalized price
for the class, ci = Li + pi; and these too will be expressed in vector form, c.

The net benefit for users is assumed to be a function of the generalized prices and the demand:
U = U(c, q). This function is notoriously hard to define. Thus, it will be assumed to exist, but no
particular form will be attributed to it. The special case where U is the consumer surplus metric
will also be discussed.

Finally, it is assumed that the demand that materializes is a function of the design and the
system attributes through the generalized prices only; i.e., there is a vector-valued demand function
such that q = D(c). Again note, that the demand for one user group is allowed to depend on the
generalized prices of all the user classes, not just its own. Thus, this demand framework is quite
general. It includes as special cases most of the models used in the evaluation of public service
systems; e.g., all random utility model forms, and combinations of them.

2.2 The optimization problem

The objective is maximizing the net benefit to society, i.e., the welfare, W , which is the sum of the
user net benefits, U , and the net benefit to the rest of society. The latter is the difference between
the revenue extracted from the users,

∑
i qipi, and S. To be determined are: c, q, p and x. The
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welfare maximization problem is therefore:

max
x,p,c,q

{
W = U(c, q) +

∑
i

qipi − S(x, q)

}
(1a)

s.t. q = D(c) and (1b)
c = L(x, q) + p. (1c)

Note, this formulation is quite general because demand is endogenous, the effects of decreased
user experience with crowdedness are captured, and benefits and costs are captured by arbitrary
functions. The demand model is quite general too. The main limitation is that there is no constraint
on the price vector, which can take positive or negative values, expressing subsidies. This means
that user classes can be differentially priced in any way. This level of pricing freedom may be
reasonable if the demographic classes are defined by location, time and age, but not reasonable
or feasible for finer gradations, e.g., using gender or race. For most design, problems, however,
the level of disaggregation cannot be great, for otherwise the optimization problem becomes too
complex. So we proceed, but with with this caveat in mind.

3 The solution

This section presents two different ways in which optimization problem (1) can be solved, depending
on the targets set by the policy-setting body.

3.1 The forecasting approach

It is assumed here that the policy-setting body has specified a set of generalized prices that should be
achieved, and the goal is to maximize welfare subject to this constraint. Note from (1b) that if c is
given (c = co) then, q is also given (q = qo = D(co)). Therefore the only remaining variables after
this forecasting step are x and p, and the first term of the objective function becomes a constant
that can be dropped. Furthermore, p can be eliminated from the optimization by inserting (1c)
into (1a). This is possible because we can find a posteriori one (or more) sets of prices that will
achieve the original generalized prices regardless of the non-monetary prices that arise from the
design optimization. The result of the insertion is the following unconstrained objective function
for maximization with x as the decision vector:

∑
i q

o
i (co

i − Li(x, qo)) − S(x, qo). Ignoring the
constant term, we can rewrite this as the following minimization problem:

min
x

{
G(x) =

∑
i

qo
i Li(x, qo) + S(x, qo)

}
(2)

Note, this is the conventional way in which design problems are often formulated–by minimizing
a generalized cost to society for a fixed demand.1 Clearly, if the generalized cost function G(x) is
chosen as recommended here, then the conventional way achieves the same result as the original
welfare-maximization problem with endogenous demand.

To complete the analysis we need to identify the optimum prices. Let xo denote the solution
of (2) and Lo .= L(xo, qo) the optimum non monetary price arising from (2). Then, the optimum

1Prices do not appear in the conventional approach because they are just a transfer between members of society.
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prices po are given by:

po = co −Lo. (3)

One nice thing about the described approach is that the user net benefit function does not
influence the result and therefore does not have to be known. The generalized price targets are
a proxy for this function. In fact, when the policy-setting body specifies the generalized prices it
is indirectly stipulating how welfare is to be evaluated. The procedure requires a demand model,
D(c), however.

3.2 The backcasting approach

The sequence in which the analysis is carried out can be changed because most demand models D
are surjective mappings; i.e., a generalized price vector always exists for any demand vector. In
these cases no generality is lost if we assume that the policy-setting body specified qo instead of
co, because we could always obtain a suitable co by solving an inverse demand problem.

Note, if the demand is specified one can start directly with the design problem (2) to obtain
xo; then find a co consistent with qo by solving the inverse demand problem; and finally solve (3)
to find po. The result is the same as if we had used the forecasting approach, starting with the
co obtained in step two. So the two approaches are equivalent if their two initial data vectors are
mutually consistent with the demand model.

If, as before, we use Lo to denote the optimum non-monetary prices obtained in the design
step, the last two steps can be reduced to solving for p in:

qo = D(Lo + p). (4)

This equation merely states that the system should be priced to achieve the target demand. This is
always possible because the demand function is invertible and prices/subsidies can be freely chosen.

What is different with this approach is that it is less dependent on demand modeling. Note that
the optimum design is identified first without any modeling to precede it because a target demand
rather than a set of generalized prices were specified. This specification is not just analytically
simpler, it may also be more likely to happen in practice since policy-making bodies may find it
easier to specify a target demand vector than a target vector of generalized prices. This proclivity
can perhaps be seen in the behavior of long term transportation planning agencies, which often
stipulate demand targets, such as desired modal splits.

The demand model may also be unnecessary to determine the prices in the second step. If the
demand in a time period only depends on the prices in the same period, and if these prices can
be set in real-time, period by period, then it may be possible to tweak the prices in the real world
until the desired demand materializes, ensuring that (4) is satisfied. Of course, a demand model
can be used to accelerate convergence of the tweaking process, but lack of a good model model is
not an impediment for success. The name “backcasting” alludes to this feature of the approach:
one chooses the target demands to optimize the system and then manages it in real time to make
sure that they arise in retrospect.

4 The special case of consumer surplus as the net user benefit

In some cases, e.g., when the population is not disaggregated into diverse socioeconomic subgroups,
it may make theoretical sense to use consumer surplus, Ũ = Ũ(c), as the metric for net user benefit.
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This metric does not exist for all demand functions, however, so the results in this section are a
special case.

Consumer surplus only exists for D(c) that can be expressed as the gradient of a scalar function,
and then it is defined as the negative of this function;2 i.e.:

Di(c) = −∂Ũ(c)/∂ci . (5)

We assume now that consumer surplus exists and that the decision-making body wishes to
maximize welfare using Ũ as the measure of net user benefit, and without stipulating any demand
or generalized price targets. Thus, the problem to be solved is (1) with Ũ substituted for U .

To do this, insert (1b) and (1c) into (1a) to eliminate q and p from the formulation. The result
is the following unconstrained minimization problem in x and c:

max
x,c

{
W = Ũ +

∑
i

Di(ci − Li(x, D))− S(x, D)

}
, (6)

where it should be remembered that Ũ , Di and D are functions of c alone.
Consider now the first order optimality conditions for (6):

∂W

∂xn
= −

∑
i

Di
∂Li

∂xn
− ∂S

∂xn
= 0 , ∀n, (7a)

∂W

∂cj
= −Dj +

∑
k

∂Dk

∂cj
(ck − Lk)−

∑
ik

Di
∂Li

∂Dk

∂Dk

∂cj
+ Dj −

∑
k

∂S

∂Dk

∂Dk

∂cj
= 0 , ∀j. (7b)

Note condition (7a) is the first order condition of (2) so it is satisfied by the solution of the
forecasting approach. Note too that condition (7b) can be rewritten as:

∂W

∂cj
=

∑
k

∂Dk

∂cj

{
(ck − Lk)−

∑
i

Di
∂Li

∂Dk
− ∂S

∂Dk

}
= 0 , ∀j. (8)

If, as is usually the case, the Jacobian matrix of the demand is non-singular3 then (8) is satisfied
if and only if the quantity in braces vanishes for all k. Thus, an equivalent condition to (8) is:

(ck − Lk)−
∑

i

Di
∂Li

∂Dk
− ∂S

∂Dk
= 0 , ∀k. (9)

2Recall from microeconomics that consumer surplus exists only if the line integral of the demand between two
price points is path-independent. In our case, since the demand and price vectors have the same dimension, we know
from vector calculus that for the the integral to be path independent the demand function D(c) must be the gradient
of a scalar function of the prices. Furthermore, if the demand function is differentiable, vector calculus also implies
that the Jacobian matrix of D(c) must be symmetric. Although this is somewhat restrictive, the property is satisfied
by many commonly used demand models. It is satisfied for example if qi = Di(ci), as in this case the Jacobian matrix
is diagonal. The property is also satisfied by all demand models derived from random utility, since consumer surplus
is in this case the “satisfaction function” expressing the sum of the expected values of the experienced utilities across
all users; see e.g., Daganzo (1979), Sec. 4.4.

3This is true of demand models derived from random utility choice theory if one assigns zero cost to a no-travel
alternative that is not included as part of the demand function.
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Define now the following generalized cost function:

G(x, q|qo) =
∑

i

qo
i Li(x, q) + S(x, q), (10)

which weighs the non-monetary user costs functions with the fixed demand, qo. Remembering from
(1c) that ck − Lk = pk, one can rewrite necessary condition (9) as follows:

pk =
∂G(x, q|qo)

∂qk
, ∀k. (11)

This simply restates a classical result of microeconomic theory: at optimality the prices for each
user group should equal the marginal generalized cost with respect to the demand of the group,
taking the weights of each user group as constants.

This suggests that to solve the problem one can use the forecasting method with some initial
guess (co, qo) to identify a test solution: (xo, po). If this solution satisfies (11) approximately, one
is done. Otherwise, one can use the the new prices predicted by (11), pn, to compute a new set of
generalized prices: cn = Lo + pn, and use cn − co as a search direction in which to move from co

and approach a solution.
It is characteristic of design problems of type (2) in the logistics and public transportation fields

that both the optimum designs and the cost they produce are rather insensitive to the input data;
see e.g., Daganzo (1991). This suggests that in at least some applications, the iterative procedure
can be stopped after the first iteration so that the design problem is only solved once.

5 Conclusion

The main finding of this note is that if a system designer uses as inputs demand levels given to
him or her by a policy-making body, and then uses these inputs to obtain an optimum design by
minimizing the system’s generalized cost for the given demand, the solution so obtained maximizes
welfare. The user net-benefit function does not have to be known to obtain the design: the target
demands act as proxy for it. The only caveat to this result is that society must be able and willing
to intervene after the design is implemented to ensure that the assumed demand materializes by
pricing the various user groups appropriately. If prices cannot be independently charged to each
user class then the result does not hold.

In applications where consumer surplus is used as the metric for user benefit, the same procedure
can be adapted within an iterative process that converges when the predicted prices match the
marginal costs of increased demand to society.

Conclusion

Research supported by the Volvo Research and Educational Foundations and by NSF Grant CMMI-
0856193.
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