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Distributional Language Models and the Representation of Multiple Kinds of
Semantic Relations

Jingfeng Zhang (jz44 @illinois.edu)
Department of Psychology, 603 E Daniel St
Champaign, IL 61820 USA

Jon A. Willits (jwillits @illinois.edu)
Department of Psychology, 603 E Daniel St
Champaign, IL 61820 USA

Abstract

Distributional models (such as neural network language mod-
els) have been successfully used to model a wide range of lin-
guistic semantic behaviors. However, they lack a way to dis-
tinctly represent different kinds of semantic relations within a
single semantic space. Here, we propose that neural network
language models can sensibly be interpreted as representing
syntagmatic (co-occurrence) relations using their input-output
mappings, and as representing paradigmatic (similarity) rela-
tions using the similarity of their internal representations. We
tested and found support for this hypothesis on four neural net-
work architectures (SRNs, LSTMs, Word2Vec and GPT-2) us-
ing a carefully constructed artificial language corpus. Using
this corpus, we show that the models display interesting but
understandable differences in their ability to represent these
two kinds of relationships. This work demonstrates distribu-
tional models can simultaneously learn multiple kinds of re-
lationships, and that systematic investigation of these models
can lead to a deeper understanding of how they work.

Keywords: Computational modeling, Neural networks, Lan-
guage learning, Statistical Learning, Semantic Memory

Background

The distributional hypothesis is a hypothesis for one way peo-
ple learn semantic knowledge. From this perspective, repre-
sentations for linguistic units include information about the
contexts in which those units occur. Common to many dis-
tributional theories is that linguistic contexts can be used to
learn two kinds of relationships: 1) paradigmatic relation-
ship, the different categories to which a word belongs, and
2) syntagmatic relationships, the kinds of co-occurrence rela-
tionships a word can have (de Saussure, 1916/2011). There
is considerable behavioral evidence that infants, children, and
adults make use of distributional learning processes as a part
of the language acquisition process (Unger & Fisher, 2021).

Distributional semantic models have undergone significant
improvements in recent years. Distributional models have
been used to semantically categorize words (Baroni & Lenci,
2010; Huebner & Willits, 2018; Riordan & Jones, 2011),
model semantic priming (Mandera, Keuleers, & Brysbaert,
2017), and predict patterns of fMRI and EEG activation while
processing language (Anderson, Kelley, & Maxwell, 2017,
Michaelov & Bergen, 2022; Mitchell & Popham, 2008).
More recently, models like GPT3 and ChatGPT showed sig-
nificant success in applying distributional language models in
various applied domains.

Although both computational and experimental work has
shown that distributional information can be used to model

many aspects of language and language processing, distribu-
tional models are still criticized for many reasons. One rea-
son is that distributional models that represent information in
a single semantic space (defined by the model’s single, non-
modular set of weights) cannot independently represent dif-
ferent kinds of relations (like syntagmatic and paradigmatic
relationships)(Erk, 2016; Jones, Kintsch, & Mewhort, 2006;
Mohammad, Kiritchenko, & Zhu, 2013). A second reason
is that even when they do learn semantic relationships, they
often require an extraordinary amount of data and training in
order to do so. A final reason is that the models are so com-
plex and difficult to understand, that it is often difficult to
understand what it is they are and are not learning, and how
they differ from other theories and models of representation.

In this paper, we conducted simulations to try to better
understand different classes of neural networks models that
learn distributional representations, and their strengths and
weaknesses at learning certain kinds of relations (like syntag-
matic and paradigmatic relations). We tested four successful
neural network language models - the simple recurrent net-
work (SRN), the Long-short term memory network (LSTM),
the Word2Vec Skipgram model (W2V) and a GPT-like Trans-
former model on a carefully controlled artificial corpus to bet-
ter understand these four models’ differential capabilities at
learning syntagmatic and paradigmatic relationships. A pri-
mary motivation of this work was to approach these models
the way cognitive scientists treat theories and models of hu-
man psychology, trying to deeply understand how they work
and what predictions the models make. If neural network
models are going to be considered as candidate models of hu-
man cognition, we must have a much deeper understanding
of how they work than we get from typical machine learning
research.

Distributional Models of Relatedness

While the use of neural networks is currently very popular
in machine learning and NLP, distributional language mod-
els originated as cognitive models. One of their main ac-
complishments is modeling relatedness in cognitive tasks.
However, there are questions about the models’ abilities
to model different kinds of relationships. In earlier non-
neural network models, some understanding existed regard-
ing what kinds of models were better at different kinds of re-
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Jones (2014) and Jones, Willits, and Dennis (2015) com-
pared word-word co-occurrence models like HAL ((Lund &
Burgess, 1996) and word-frequency-within-document mod-
els like LSA (Landauer & Dumais, 1997), showing that
word-word co-occurrence models perform best at paradig-
matic (similarity) relations, and word-document models per-
form best at syntagmatic (co-occurring) relations. However,
no such understanding exists for the newer neural network-
based language models. Neural networks like SRNs, LSTMs,
Word2Vec and Transformer models are typically used as se-
mantic models by using either computing the similarity of
words’ weight matrices or the similarity of the patterns of ac-
tivation in their hidden layers when a word is activated. These
models are quite good at modeling semantic similarity in gen-
eral, but how do they fare on different kinds of relations?

In fact, there is an a priori reason to be skeptical that any
single model can be good at modeling more than one kind
of relation, at least in the way the models are currently used.
Consider a hypothetical model whose nearest neighbors for
dog are syntagmatic relations like pet, leash and bark. The
better this model is at syntagmatic relations (the more of its
nearest neighbors are these relations), but by definition, the
fewer of its neighbors will be paradigmatic (similarity) rela-
tions like cat, mouse, and wolf. By definition, a model cannot
do perfectly at both if it is using a single semantic space. As
a model’s nearest neighbors become more syntagmatic, this
will crowd out paradigmatic relations, and vice versa.

Neural Network Models

Neural network models, however, potentially provide an ac-
count of the syntagmatic-paradigmatic distinction. Most neu-
ral network models are trained to predict word sequences, and
use weighted connections and patterns of activation in hidden
layers in order to do so. It has long been noted that there
is a relationship between syntagmatic and paradigmatic rela-
tions that mirrors this distinction. Knowledge of paradigmatic
categories or similarity may be the mechanism by which a
person can make effective predictions about syntagmatic re-
lationships (De Saussure et al., 1916; Elman, 1990; Lund &
Burgess, 1996; Sloutsky, Yim, Yao, & Dennis, 2017).

Thus, it may make sense to think of neural network models
not as one model but as two: 1) the pattern of activation on the
output layer as a measure of a models’ syntagmatic relations
for an input word, and the pattern of activation at the hidden
layer as a model of its paradigmatic structure. To the extent
that the model’s training objective is ordered word prediction,
the output layer should be the better model of syntagmatic re-
lations, and the hidden layer should be the better model of
paradigmatic relations. In the following sections, we will de-
scribe how this general proposal leads to specific predictions
for the four different models.

We proposed a predictive framework for different distri-
butional models’ performance of learning syntagmatic versus
paradigmatic relations, positing that it is influenced by two
primary factors. Firstly, the method of extracting a measure
of relatedness from a model plays an important role. This

extraction can be done in two approaches: 1) evaluating the
output activation given an input, and 2) using the similarity of
the “embeddings” of a model (such as its weight matrices or
hidden state activations). We suggest that the former should
more straightforwardly model words’ syntagmatic relations,
and the latter, as a measure of words’ similarity or substi-
tutability, should be a better model of words’ paradigmatic re-
latedness. Secondly, the there are model-specific factors that
should influence how good the models are at each of these
kinds of relations. In this paper, we will examine four mod-
els (SRNs, LSTMs, GPT-style transformers, and Word2Vec),
which have interesting differences corresponding to different
theoretical claims about the nature of the cognitive or seman-
tic system. One major difference is the extent to which the
model has high encoding specificity for the exact word posi-
tion. As we will describe, this should make a difference on
the representations learned by the model.

SRNs. The SRN is an artificial neural network that acti-
vates one word at a time as an input. Activation is propa-
gated through weighted connections to a hidden layer (that
also receives recurrent input about its own state at the pre-
vious time step), which is then propagated through another
set of weighted connections to an output layer. The output
layer is trained using backpropagation to minimize error in
activating the next word in the sequence (Elman, 1990). The
SRN, by trying to predict the exact next word in a sequence,
should have highly specific (and context-constrained) repre-
sentations of co-occurrence relations. Words’ embeddings
(internal representations) should be similar to the extent that
those words both predict the exact same set of next words in
that exact context. One notable property of recurrent models
is that the representations they learn are very constrained by
the fact they are learning to predict in the forward direction.
This means they are learning independent representations for
each word based on what that word contributes to prediction
that has not already been predicted by previous items in the
sequence. If an SRN reliably sees a sequence like A-B-C,
where A and B both predict C, it may actually only learn that
A predicts B, and that A predicts C, but not that A predicts C
(Huebner & Willits, 2023). And because it operates only in
the forward direction, it won’t learn a representation of C that
has any relationship to the fact that it regularly comes after
A, because knowing that fact is not useful in any way for pre-
dicting C comes after A. These constraints can really affect
what internal representations it develops.

LSTMs. The Long Short-term Memory (LSTM) model is
similar to an SRN, but with a more complex architecture in
place of the SRN’s recurrent hidden layer. The LSTM uses
three multiplicative gating units to control the flow of infor-
mation to and from a central unit (Hochreiter & Schmidhu-
ber, 1997). The LSTM is even better than the SRN at its ex-
act task, predicting the next word in that exact context. That
means its output activations should be even better representa-
tions of syntagmatic relations. The LSTM’s embeddings will
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be even more context sensitive than the SRNs, as LSTMs are
better at “remembering” the context of a word and using it for
prediction. Thus, LSTMs embeddings will be even more con-
text sensitive and specific, with earlier elements in a sequence
encoding information about items coming downstream, and
leading to that information not being encoded in the repre-
sentations of the more adjacent words.

Transformers. Transformer models like GPT-2 (Radford
et al., 2019) use a window of input words to predict the
next word after the window. Transformers have a special
kind of hidden layer called an attention layer that uses a
unique method to determine which features should be at-
tended to, depending on which words are in the window.
The self-attention mechanism and the deepness of GPT-2 al-
lows it to not only more accurate predict tokens in sequences
but also generate high-dimensional linguistic space that rep-
resents words and sentences as vector projections (Hoover,
Strobelt, & Gehrmann, 2019), (Ethayarajh, 2019). However,
because GPT is not a recurrent model, but rather is operating
over a fixed and specific window, this should change its be-
havior relative to SRNs and LSTMs. The ability to have per-
fect memory of the past set of words should improve GPT’s
ability to learn relations within its span, and completely elim-
inate its ability to learn relations outside that length. This
will lead to GPT have an even more context specific rep-
resentation of words in its embeddings. However, because
the hidden layers of a transformer form a composite “gestalt”
representation of the entire sentence at once and use that to
predict the next word, that should lead to different outcomes
compared to the recurrent models. In the service of learning
the gestalt of the whole sequence, the GPT model might learn
backward relationships, and might be more likely to distribute
the co-ocurrence information more appropriately to the dif-
ferent words in a sequence, rather than encoding them in the
first words in a sequence.

Word2Vec. Making predictions for Word2Vec Skipgram
(W2V) is more complicated. W2V lacks the complex at-
tnetion mechanisms of GPT. It is just a simple feedforward
neural network with a single hidden layer. It activates a sin-
gle word as its input, and tries to predict a randomly selected
word from among the n words that come before or after that
word in the sequence. In this way, W2V is very different
from the other models because it is not trying to activate a
specific word. This lack of encoding specificity may mean
that the output activations of W2V might be more likely to
include paradigmatic relations (substitutable words), and as a
consequence its embeddings might be more likely to capture
syntagmatic relationships.

Experiment
Artificial Corpus

In order to really understand the nature of how these neural
networks operate, we opted to use a carefully constructed ar-
tificial corpus that systematically manipulated co-occurrence

and similarity relationships. The corpus had a set of se-
quences that followed a simple four-token AyB. structure,
similar to that used in previous studies of human and com-
putational model-based statistical learning (Gémez & Maye,
2005; Willits, 2013). In each sentence, the word in position
A belonged to a distributional category that allowed for per-
fect prediction of the category (and therefore the set of legal
words) in position B. The corpus is designed to mimic natural
language sentences like "dogs can eat”, where the category of
the first word (in this case, an animal) predicts the words that
can occur in the third position(a verb that an animal can do).
Each sentence in the corpus ended with a period.

In our corpus there were two A categories (Al and A2) and
two B categories (BI and B2), each containing three words
(e.g. AI_1,Al 2, and Al_3 for category Al). The dependency
between A and B was such that words in Al had to be in a
sentence with a word from B/, and words from A2 had to
be in a sentence with a word from B2. To continue with our
natural language example, imagine that A1 words are animals
(dog, cat, and mouse), and A2 words are vehicles (car, truck,
and bus). B1 words are then verbs that can co-occur with
animals but not vehicles (like eat, drink, and watch), and B2
words are words that can occur with vehicles but not animals
(like drive, park, and crash).

Each of these AB pairs were intervened by a set of words
in position y, which was equi-probable in our corpus with all
combinations of A and B and thus created a long-distance de-
pendency with no predictive value coming from the y-word.
The corpus of all three word sequences used in the study is
shown in Table 1.

Table 1: Stimulus inputs used in Study 1

Al Al2 Al3

Al_1ylBl2. Al2ylBl1. Al3yIBI1.
Al_1y2B12. Al2y2Bl.1. Al3y2BI.1.
Al_1y3B12. Al2y3Bl.1. Al3y3BI.1.
Al_1ylB13. Al2ylBI13. Al3ylBl2.
Al_1y2B13. Al2y2B13. Al3y2Bl2.
Al_1y3B13. Al2y3B13. Al3y3BIl2.
A21 A22 A23

A2 1ylB22. A22ylB2.1. A23ylB21.
A2.1y2B22. A22y2B2.1. A23y2B2.1.
A2.1y3B22. A22y3B2.1. A23y3B2.1.
A2.1y1B23. A22y1B23. A23ylB22.
A2.1y2B23. A22y2B23. A23y2B22.
A2.1y3B23. A22y3B23. A23y3B22.

This corpus will allow us to test each model’s ability to
learn paradigmatic structure, that all A, y, and B-words should
be more similar to each other than to words from the other
two categories; and that words should be more similar to the
words from their subcategories (i.e. Al, A2, Bl, and B2).
We can also test each model’s ability to learn syntagmatic
structure, that A’s should precede y’s, that y’s should precede
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B’s, and critically, that the subcategories of A and B should be
predictable from one another.

Model Training and Evaluation

For each of the four model types (SRN, LSTM, W2V, GPT)
we trained 50 different randomly initialized models. Based
on previous work using this size and complexity of an artifi-
cial corpus, each model had 16 hidden units. We trained each
model for a number of epochs (2000) until its performance
had reached asymptotic behavior.

Syntagmatic (Co-occurrence) Evaluation To evaluate
each model’s syntagmatic (co-occurrence) performance, we
evaluated average output activation of the target words given
the input word. Of particular interest was the the output acti-
vation given a y as input, in the context of a specific A-input.
As an example, consider the sequence "Al_1, yl, B1.2 .”.
The y1 preceded by Al_1 has outputs that fall into the fol-
lowing categories: period (.); y (y1, y2, and y3); present-B
(B1_2, the actual B that came next in the sentence); legal-B
(B1_1 and B1_3, the B’s from the legal category but which
were not in that sentence); illegal B (B2_1, B2_2, and B2_3,
the B’s from the other category that couldn’t co-occur with
A1_1); present-A (A1_1, the output with the same label as the
A in that sentence); legal-A (A1_2 and A1_3, the A’s from the
same subcategory as the A in that sentence); illegal A (A2_1,
A2.2, and A2.3, the A’s from the other subcategory that
didn’t occur in that sentence). Thus, if the model is correctly
representing syntagmatic (co-occurring) relations, it should
have only high activations for the present and legal B’s, and
low activations for the others. High values for present and
legal A’s would indicate the presence of paradigmatic (sim-
ilarity) relationships, and high values for other units would
indicate learning illegal or ungrammatical relationships.

Paradigmatic (Similarity) Evaluation. To evaluate each
model’s paradigmatic (similarity) performance, we evaluated
the similarity of the models’ weight vector from each input
word to its first hidden layer. For example, in the SRN, the
input unit "A1_1" had a set of weighted connections to its hid-
den layer, and a separate set of connections from "A1_2” to its
hidden layer. We took these two weight vectors and computed
the correlation to determine the similarity of A1_1 and A1_2.
Similarity relations were computed over static weight matri-
ces that did not vary by sentence, so the “legal” vs. ”present”
distinction was not present. Therefore, the comparisons of in-
terest were just the similarity comparisons of A’s to Legal A’s,
Illegal A’s, Legal B’s and Illegal B’s. If the model’s weights
grouped an A with its Legal A’s as most similar, followed
by Illegal A’s, and then followed by Legal B’s and then Ille-
gal B’s, this would indicate a model with strong paradigmatic
only relations. If instead the model’s similarity space for an A
had Legal B’s more similar than Illegal B’s, this would mean
it would grouping items syntagmatically (by co-occurrence)
rather than paradigmatically (by substitutability).
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Results and Discussion

Output Activation as Syntagmatic Relation. For the pre-
diction accuracy of the models, we compared the average out-
put activation for categories of words that could occur in the
next position, and compared that to the other categories. For
the less interesting transitions in the sequence (.— A, A—y,
B—;.) the SRN, LSTM, and GPT models all reliably predicted
the correct next element in the sequence, with other values
near zero. W2V, because it predicts windows of words in-
stead of the exact next word, had nonzero activations for other
words, but still had the next items as the sequence among the
highest output activation.

For the more critical comparison of what followed a y-
word, we show the results in Figure 1. All four of the models
correctly learned to predict a legal B after a y, a B that was
allowed to co-occur with that A. None of the models were
able to learn to predict the exact next B, as there was no sta-
tistical structure in the corpus giving them the information in
order to do so. The sentences were presented in a random
order, and since every legal B co-occurred with every A in
its subcategory, there was no information that could be used
to predict which exact B should occur. All models showed
a very short period of overgeneralizing the B-prediction, and
being equally happy with legal and illegal B’s, before quickly
learning to not activate the illegal Bs.

Thus, all four models’ output activation served as a good
model of syntagmatic (co-occurring) relations when rigor-
ously defined and tested in this manner.

Weight Similarity as Paradigmatic Relation. Unlike their
syntagmatic performance, the models varied considerably
in the paradigmatic (similarity) performance. As predicted,
SRNs had very high similarity scores for A’s to Legal A’s,
and B’s to Legal B’s. Also as predicted, SRNs had very high
similarity for B’s to illegal B’s. Given the forward directional
nature of SRN’s, they had little reason to distinguish B sub-
categories (Huebner & Willits, 2023). The SRN considered
A’s to be very dissimilar to illegal A’s, as well considered all
A’s and B’s to be very dissimilar to each other. The LSTM be-
haved qualitatively very similar behavior to the SRN, as one
would expect since these models are very similar except for
exactly how their recurrent hidden layers operate.

The GPT (Transformer) model also behaved very similar
to the SRN and LSTM, with A’s and B’s very similar to
their same subcategory members, and with A’s very dissimi-
lar from their opposite subcategory members, as should need
to be the case to correctly predict which B comes after a par-
ticular A-y sequence. However, the transformer did show a
bigger difference between B’s and illegal B’s than the SRN or
LSTM, reflecting how Transformers, even though they don’t
need to represent different subcategories of B’s, still end up
doing so because of the way they represent the sequence as a
whole.

Word2Vec, as expected, behaved quite different from the
other three models. Word2Vec, because it was predicting
the whole window rather than the next word, showed equally
large differences between Legal and Illegal A’s, and between
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Figure 1: Mean output activation for all four models when input word is a y-word, in the context of a specific A-word. Solid
orange lines denote activation of legal B-words, dotted orange line of illegal B-words. Blue lines (solid and dotted) represent

the activation of legal and illegal A-words.

Legal and Illegal B’s. Also unlike the other three models, for
W2V the A-illegal A and B-Illegal B’s were more similar to
each other than A’s were to Bs, or Bs were to As. Word2Vec,
unlike any of the other models, seemed to more clearly be
picking out the hierarchical nature of the category structure.
This is interesting: the more a model was singularly focused
on predicting the exact next word, the more it adjusted its
similarity space to distinguish the words that were most likely
to come next from all the other words. Word2Vec, which was
trying to predict all the co-occurring words, developed a more
complex similarity space.

General Discussion

In this research, we had one major goal, to use a carefully
controlled artificial corpus to test neural network distribu-

tional language models, to see if they can be used to model
both syntagmatic (co-occurring) and paradigmatic (similar-
ity) relations. Our hypothesis was that this could be done by
using the models’ output layer activation as a model of syn-
tagmatic relations, and the model’s internal representational
embeddings as a model of paradigmatic (similarity) relations.
Our results are strongly in support of this hypothesis. This
work has several important implications both for cognitive
psychology and machine learning. The first implication per-
tains to the theoretical status of distributional learning mech-
anisms. This research adds additional evidence that distri-
butional learning mechanisms may be a useful component of
human language learning, with the clear and unambiguous
demonstration that the models can distinctly learn and be used
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Figure 2: Mean similarity of input weight vectors for all four models. when input word is a y-word, in the context of a specific
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Dotted lines represent the similarity of words in different subcategories (A in blue, B in orange, e.g., A1_1 with A2_2). Black
lines represent the similarity of A words to B words: legal pairs dashed (e.g. A1_1-B1_1), illegal pairs dotted (e.g. A1_1-B2_1).

to model both kinds of relationships necessary for a linguistic
system.

The second implication pertains to how these models are
used (when trained on natural language corpora) to model
cognitive psychology behavior experiments. This practice
has become common, with considerable success (Kumar,
2021). However, one notable failure has been the ability to
model different kinds of semantic relations simultaneously,
and in particular a failure to model co-occurrence relations
(Jones et al., 2006). With our research, the reason for this is
now clear. All attempts to use these models have typically
used exclusively the models’ internal representations. But we
have shown that in carefully controlled situations, these in-

ternal representations are actually quite bad at co-occurrence
relations. Instead, researchers should use the model’s out-
put activations for model associations, and internal represen-
tations for modeling similarity. The third and final implica-
tion is about the proper treatment of complex neural network
language, both as cognitive models but also as tools. This
work clearly demonstrates that neural network models, de-
spite their complexity, need not be treated as black boxes that
cannot be understood. Careful experimental studies of how
the models work can lead to a much deeper understanding of
their principles, and allow us to better adjudicate both their
plausibility as cognitive models, as well as the usefulness in
applied situations.
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