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The Chromatin Remodeler SPLAYED Regulates Specific
Stress Signaling Pathways
Justin W. Walley1, Heather C. Rowe2, Yanmei Xiao1, E. Wassim Chehab1¤, Daniel J. Kliebenstein2, Doris

Wagner3, Katayoon Dehesh1*

1 Department of Plant Biology, University of California, Davis, California, United States of America, 2 Department of Plant Sciences, University of California, Davis, United
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Abstract

Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism’s survival is the ability to
mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves
dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different
mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone
variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight
into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes
beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we
provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant
defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase
SPLAYED (SYD) is required for the expression of selected genes downstream of the jasmonate (JA) and ethylene (ET)
signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that
SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen
Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen
resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling
networks.
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Introduction

In eukaryotic organisms genomic DNA is packaged into

chromatin, which can repress transcription by blocking the access

of regulatory proteins to DNA. Dynamic changes in chromatin

structure are now recognized as a robust mechanism of

transcriptional control [1–3]. Changes in chromatin structure

are brought about by a number of different mechanisms including:

chromatin modifications, which covalently modify histone pro-

teins; incorporation of histone variants; and chromatin remodel-

ing, which utilizes ATP hydrolysis to alter histone-DNA contacts

[1,3–5]. ATP-dependent chromatin remodeling complexes are

present in all eukaryotic organisms and can be grouped into three

main classes: the SWI/SNF ATPases, the imitation switch (ISWI)

ATPases, and the chromodomain and helicase-like domain (CHD)

ATPases [2,3].

Significant advances have been made in understanding the

mechanism of ATP-dependent chromatin remodeling complex

action [1,4]. However, the biological role of chromatin remodeling

complexes remains poorly understood, particularly in multicellular

organisms where null mutations tend to be lethal [3,6]. Studies

that have investigated the biological role of chromatin remodeling

complexes in multicellular organisms have largely focused on their

role as regulators of cellular differentiation and development [2,3].

In particular, Arabidopsis has served as a valuable model due to the

fact that mutants in genes encoding a number of chromatin

remodeling complex proteins are viable. One of the most well

characterized chromatin remodeling complex proteins in Arabi-

dopsis is the SWI/SNF class chromatin remodeling ATPase

SPLAYED (SYD). Loss of SYD activity causes defects in many

different developmental pathways including stem cell mainte-

nance, patterning, developmental transitions and growth [3,7–9].

The biological role of altering chromatin structure in response

to stress via chromatin modifications and incorporation of histone

variants has been documented [10–14]. However, the biological

role of chromatin remodeling complexes or their specificity

remains poorly understood. The role of chromatin remodeling

in response to stress has been best studied in yeast where it has

been shown that chromatin remodeling complexes are required for

stress tolerance and are recruited to specific promoters upon stress

[15–19]. However, few studies performed in multicellular

organisms have investigated the role of chromatin remodeling in

mediating stress responses. One study conducted in the human cell

culture line SW480 demonstrated that chromatin remodeling
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complexes are recruited to specific promoters upon oxidative

stress, which suggests that chromatin remodeling plays a role in the

stress tolerance of multicellular organisms [20]. Additionally, it is

unknown in any eukaryotic organism whether reduced stress

tolerance in chromatin remodeling mutants is stress specific or

indicative of decreased overall fitness due to non-specific global

mis-regulation of gene expression.

In this study we examine the role chromatin remodeling plays in

biotic stress responses. We found that SYD is required for

expression of specific genes within biotic stress signaling networks.

This requirement is likely both direct and indirect as SYD is

recruited to the promoter of some, but not all, of the genes for

which it is required for expression. We show that SYD is required

for resistance against the necrotrophic pathogen B. cinerea but not

the biotrophic pathogen P. syringae. These findings demonstrate not

only that chromatin remodeling is required for selective pathogen

resistance, but also that chromatin remodelers, such as SYD can

regulate specific pathways within biotic stress signaling networks.

Results/Discussion

We investigated the role of chromatin remodeling in stress

signaling using Arabidopsis, a multicellular organism where viable

chromatin remodeling null mutants exist [9]. In a previous study

we showed that the SWI/SNF class chromatin remodeling

ATPase SYD transcript is upregulated rapidly following mechan-

ical wounding [21]. We also demonstrated that mechanical

wounding is a response common to numerous biotic stresses that

a plant may encounter [21]. The upregulation of SYD in response

to wounding suggests that SYD may be recruited to remodel

promoters within stress signaling networks. To begin delineating

the placement of SYD in stress signaling we first examined

whether SYD is required for expression of other transcripts

upregulated rapidly in response to wounding. This demonstrated

that SYD is not required for the expression of the rapid wound

response genes ETHYLENE RESPONSE FACTOR #18 (ERF#18)

or CCR4 ASSOCIATED FACTOR 1-like (CAF1-like) (Figure S1A).

We next investigated the role of SYD in the ethylene (ET),

jasmonate (JA), and salicylic acid (SA) stress signaling pathways,

which respond to abiotic and biotic stresses such as wounding and

pathogen infection (Figure 1A) [22,23]. As shown in Figure 1B,

basal expression of the plant defensin PDF1.2a, a marker for intact

ET and JA signaling, is lost in syd-2 null mutants [9]. As basal

levels of PDF1.2a are generally low, but detectable, we increased

cycle number to improve our ability to detect basal differences

between syd-2 and wild-type (WT) [24,25]. In contrast, basal

expression of PATHOGENESIS-RELATED1 (PR1), a marker for

intact SA signaling, is maintained in syd-2 plants (Figure 1B).

These data suggest that SYD is required for ET and JA signaling

but not SA signaling.

The loss of basal PDF1.2a but not PR1 expression in non-

stressed syd-2 plants suggests that SYD impacts specific stress

signaling pathways. To explore the role of SYD under inductive

stress treatments we inoculated plants with the necrotrophic

pathogen Botrytis cinerea and the virulent biotrophic pathogen

Pseudomonas syringae. As resistance to B. cinerea requires ET and JA

signaling, whereas resistance to P. syringae is predominantly

mediated by SA signaling [22,26], use of these two pathogens

allows further experimental evaluation of requirements for SYD

function in defense signaling. We first monitored expression of key

genes in the ET/JA pathway in response to B. cinerea treatment.

The expression of the transcription factor ETHYLENE RESPONSE

FACTOR1 (ERF1), which requires both ET and JA for induction

[22,27–29], is similar in WT and syd-2 plants (Figure 2A). In

contrast to ERF1, the expression of PDF1.2a requires SYD in

response to B. cinerea (Figure 2A). In addition, we examined the

expression of PR1 in plants treated with B. cinerea and determined

that this gene is expressed at similar levels in WT and syd-2 plants

(Figure 2A). We next assayed the expression of a suite of genes

involved in SA biosynthesis and signaling in response to P. syringae

and found that SYD is not required for their expression (Figure 2B

and Figure S2). Additionally, expression of PR1, but not upstream

genes (PAD4, ICS1, NPR1, and WRKY70), is enhanced in syd-2

plants. The apparent lack of detectable enhancement in PR1

expression levels by RT-PCR (Figure 1B) is likely due to signal

saturation inherent to ETBr staining. However, this pattern of

transcriptional alteration is similar to what is observed in myc2/jin1

mutants, suggesting that MYC2 expression may be reduced in syd

(Figure 1A) [22,30]. Furthermore, as SWI/SNF class chromatin

remodeling ATPase’s are primarily considered activators of

transcription it is highly unlikely that SYD is acting directly to

Figure 1. SYD is required for ET and JA marker gene
expression. (A) Simplified model of the stress responsive network
involving ET, JA, and SA signaling pathways [22,23]. (B) RT-PCR analysis
of basal levels of SA responsive PR1 and ET and JA responsive PDF1.2a
expression in WT (Ler) and syd-2 rosette leaves.
doi:10.1371/journal.ppat.1000237.g001

Author Summary

In eukaryotes, genomic DNA is organized into a complex
DNA-protein structure termed chromatin. The organization
of chromatin serves to compact DNA within the nucleus
and plays a central role in regulating transcription by
controlling the access of DNA to transcriptional machinery.
Chromatin structure can be altered through several
mechanisms, one of which is chromatin remodeling, a
process that disrupts DNA–protein interactions resulting in
altered accessibility of specific DNA regions to regulatory
proteins in the transcriptional machinery. In this study, we
investigated the biological role of chromatin remodeling in
defense responses to biotic stresses using the model plant
Arabidopsis. We found that a chromatin remodeling
protein, SPLAYED, is required for gene expression within
specific biotic stress signaling networks. Consistent with
this observation, loss of SPLAYED chromatin-remodeling
activity resulted in increased susceptibility to a fungal
pathogen, Botrytis cinerea, but not to a bacterial pathogen,
Pseudomonas syringae. These results demonstrate that
reduced stress tolerance in a chromatin-remodeling
mutant plant can be stress specific, and is not simply
due to a decrease in overall fitness as a result of non-
specific global mis-regulation of gene expression.

Chromatin Remodeling and Stress
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repress PR1 expression in WT plants [4]. Taken together these

data demonstrate that SYD is required within specific stress

signaling pathways in response to pathogen infection.

The finding that SYD is required for gene expression within

specific stress signaling pathways suggests that loss of SYD function

may reduce tolerance to specific biotic stresses. To test this

hypothesis we first examined the resistance of syd mutants to B.

cinerea. For this experiment we tested two independent syd null

alleles and compared them to their respective WT background. As

shown in Figure 3A and 3B, syd mutant plants are more susceptible

to B. cinerea infection. The increased susceptibility of the syd

mutants to B. cinerea is likely due to altered ET and/or JA signaling

impacting defence mechanisms. It should also be noted that the

phytoalexin camalexin plays a role in B. cinerea resistance [26].

However no significant difference in camalexin levels were

detected between syd mutant and WT plants after elicitor

treatment (data not shown). This suggests that SYD affects B.

cinerea resistance through ET/JA signaling independent of

camalexin production. To determine if reduced resistance was

specific to B. cinerea we inoculated syd mutants with virulent P.

syringae, for which resistance is predominantly mediated via SA

signaling [26]. In contrast to B. cinerea, syd mutants and WT plants

show similar resistance to P. syringae (Figure 3C and 3D). These

results demonstrate that chromatin remodeling via SYD is

required for stress specific disease resistance.

SYD was originally implicated in stress responses by the

observation that SYD transcripts accumulate upon wounding. [21].

We therefore examined which aspects of the ET and JA signaling

pathways are impacted in syd mutants following wounding.

Furthermore, we wished to directly compare gene expression levels

with SYD recruitment to specific promoters via chromatin

immunoprecipitation (ChIP) assays. Wounding is therefore advan-

tageous as it enables better synchronization of the stress stimulus and

is a feasible treatment for the large amount of tissue required for

ChIP. We first monitored the expression of ALLENE OXIDE

SYNTHASE, which is involved in JA biosynthesis, and found its

transcription to be similar in WT and syd-2 plants before and after

wounding (Figure S1B). Measurement of JA levels reveals that basal

Figure 2. SYD is required within specific stress signaling
pathways in response to biotic stress. (A) RT-PCR analysis of select
ET/JA responsive genes in Ler and syd-2 detached rosette leaves either
mock (M) or B. cinerea (B.c.) treated for 48 h. (B) RT-qPCR analysis of SA
biosynthesis and signaling genes 0 and 8 hours post inoculation (hpi)
with 26108 CFU/ml virulent P. syringae pv. tomato (Pst) DC3000.
Transcript levels were normalized to internal control genes measured in
the same samples. Data are means of 3 independent biological
replicates 6SEM.
doi:10.1371/journal.ppat.1000237.g002

Figure 3. The chromatin remodeling ATPase SYD is required
for resistance to B. cinerea. (A) Visual symptoms 4 d following spot
inoculation with B. cinerea spores. (B) Lesion size 4 d after spot
inoculation with B. cinerea spores. Data are means of 16 independent
biological replicates 6SEM. Asterisks denote a significant difference
from WT (P,0.05) as determined by t-tests. B. cinerea susceptibility
assays were performed 3 times with similar results. Statistically different
lesion size was also observed 3 d after inoculation. (C,D) Bacterial
growth in WT and syd inoculated with 26104 CFU/ml virulent P.
syringae pv. tomato (Pst) DC3000. Data are means of 8 independent
biological replicates 6SD. No significant differences were detected by t-
tests. Pathogen assays comparing Ler versus syd-2 were repeated 3
times with similar results.
doi:10.1371/journal.ppat.1000237.g003

Chromatin Remodeling and Stress
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and wound-induced JA biosynthesis is intact in syd-2 plants

(Figure 4A). In agreement with B. cinerea treatment (Figure 2A),

expression of ERF1 is similar in WT and syd-2 in response to

wounding (Figure 4B). Furthermore, an additional ethylene response

factor (ERF2), which when overexpressed results in enhanced

PDF1.2a levels [31], was similar in WT and syd-2 (Figure S1B).

These data collectively indicate that SYD activity is required

downstream of ET and JA biosynthesis and ERF1&2 expression.

Downstream of ERF1 the expression of PDF1.2a is severely

reduced, to similar levels, before and after wounding in syd-2

mutants (Figure 5A). SYD is also required downstream of JA

biosynthesis for the expression of the bHLH Leu zipper

transcription factor MYC2 (Figure 5B). The reduced expression

of MYC2 suggests that the increased level of PR1 may indeed be

due to decreased MYC2 levels in syd plants. Consistent with the

reduced level of MYC2 transcripts, the expression of VEGETA-

TIVE STORAGE PROTEIN 2 (VSP2), a gene in the JA signaling

pathway which requires MYC2 for expression [22,32–35], is

severely reduced in syd-2 mutants (Figure 5C). Taken together

these data show that while chromatin remodeling via SYD is not

required for expression of ET and JA biosynthesis genes, SYD

activity is required for expression of PDF1.2a, MYC2 and VSP2.

The finding that MYC2 transcript levels are reduced in syd-2

plants (Figure 5B), even though syd-2 is more susceptible to B.

cinerea (Figure 3A and 3B), appears to conflict with published

models of defense signaling where MYC2 acts as a negative

regulator of PDF1.2a expression and resistance to necrotrophic

pathogens (Figure 1A) [22,34]. However, the apparent discrepan-

cy can be reconciled. The slight increase in resistance against B.

cinerea of myc2/jin1 mutants is thought to be due to derepression of

pathogen defense genes such as PDF1.2a [34]. In syd-2 mutants

derepression of PDF1.2a does not occur even though the level of

MYC2 is reduced, suggesting that the requirement of SYD for

PDF1.2a expression precedes repression of PDF1.2a by MYC2. It is

also possible that the level of MYC2 transcript reduction in syd-2 is

not great enough to have a measurable biological impact.

Additionally, increases in resistance to B. cinerea exhibited by the

myc2/jin1 mutants, assayed by qualitative disease symptom rating,

appeared to be subtle [34], suggesting that the myc2/jin1 effect

could be masked in syd mutants. To better quantify the impact of

MYC2 on resistance to B. cinerea, we measured lesion development

on leaves of myc2/jin1 mutant plants following infection with

multiple B. cinerea isolates. We found no significant quantitative

difference in lesion formation between WT and myc2/jin1 mutants

(Figure 6A and Figure S3A and S3C). We also measured defense-

associated secondary metabolites, including camalexin and

glucosinolates, in mock- and B. cinerea- treated WT and myc2/

jin1 plants. Glucosinolates are associated with Arabidopsis defense

against insect herbivores and pathogens and some are regulated by

JA signaling [36]. Of the five measured metabolites known to be

regulated by JA, camalexin and indole-3-yl-methyl were unaffect-

ed by the myc2/jin1 mutation in comparison to WT, 3-

methylsulfinyl and 4-methylsulfinyl decreased only in mock treated

myc2/jin1 while 4-methoxy-indole-3-yl-methyl was present at

higher concentrations in only B.cinerea treated myc2/jin1

(Figure 6B and Figure S3B, S3D and S3E and Table S1).

Together these data suggest that MYC2 has neither directionally

consistent nor major impacts on all molecular JA responses. It is

therefore not surprising that syd mutants are more susceptible to B.

cinerea even though MYC2 levels are reduced in syd-2.

The requirement of SYD for the expression of select ET and JA

responsive genes suggests that SYD may be directly recruited to

remodel their promoter regions, thereby enabling transcriptional

induction. To test this hypothesis in vivo we performed ChIP followed

by quantitative polymerase chain reaction (ChIP-qPCR) assays using

the SYD specific antibody, which was previously used in ChIP

experiments to show that SYD binds the WUSCHEL promoter to

regulate stem cell fate [8]. Additionally, ChIP-qPCR was performed

using IgG (negative control) and RNA polymerase II (POLII)

(positive control for actively transcribed regions) antibodies. The

background level of SYD binding to non-specific genomic loci

Figure 4. SYD activity is required downstream of ET and JA
biosynthesis. (A) Measurement of JA metabolite levels in non-
wounded and wounded Ler and syd-2 plants. Data are means of 3
independent biological replicates 6SD. (B) Total RNA was extracted
from non-wounded and mechanically wounded rosette leaves and
subjected to RT-qPCR analysis. ERF1 transcript levels were normalized to
At4g26410 measured in the same samples. Data are means of 3
independent biological replicates 6SEM.
doi:10.1371/journal.ppat.1000237.g004

Figure 5. SYD regulates expression of ET and JA responsive defense genes. (A–C) Total RNA extracted from non-wounded and wounded
Ler and syd-2 rosette leaves was subjected to RT-qPCR analysis. Transcript levels were normalized to both At4g34270 and At4g26410 measured in the
same samples. Data are means of 3 independent biological replicates 6SEM.
doi:10.1371/journal.ppat.1000237.g005

Chromatin Remodeling and Stress
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(dashed line in Figure 7A and Figure S4) was determined by ChIP-

qPCR performed on the promoters of two seed specific genes,

OLEOSIN1 and AT2S3, which are subject to repressive histone H3

lysine 27 trimethylation and are not expressed in Arabidopsis leaf

tissue [37]. Additionally, ChIP-qPCR was performed on syd-2 tissue

wounded for 12 h to further ensure that the results are SYD specific

(Figure S5). Under the experimental conditions tested, SYD does not

bind the promoter of either PDF1.2a or ERF1 above the background

level of detection (Figure 7A and Figure S4). To further verify the

lack of SYD binding to PDF1.2a a second region of the PDF1.a

promoter was assayed and SYD binding was not detected (Figure

S4). As shown in Figure 7A, SYD binds the promoter of MYC2

before and after wounding. Finally, SYD is recruited to the promoter

of VSP2 following wounding (Figure 7A).

Based on our findings we propose a model (Figure 7B) that

summarizes the roles of SYD in response to wounding. Although

Figure 6. Role of MYC2 in response to B. cinerea. (A) Lesion size 3 d after spot inoculation with B. cinerea spores. (B) Camalexin levels of
detached rosette leaves either mock (M; black bar) or B. cinerea (B.c.; grey bar) treated for 3 d. Results for B. cinerea isolate Grape are shown. Two
alleles were tested, jin1-8 and jin1-9 [33,34], and no significant differences between alleles were detected. We therefore pooled the two alleles to
increase statistical power and refer to them as myc2/jin1. Data are means of 8 (Col) or 16 (myc2/jin1) independent biological replicates 6SEM.
Experiments were independently repeated with similar results.
doi:10.1371/journal.ppat.1000237.g006

Figure 7. SYD is recruited to the promoters of ET and JA responsive defense genes. (A) ChIP-qPCR analysis of SYD (grey bars; left y-axis)
and POLII (black bars; right axis) recruitment to the promoters of PDF1.2a (2323 to 2151), MYC2 (2320 to 2222), and VSP2 (2226 to 2147). Data
presented are normalized to input DNA and expressed as fold enrichment of SYD or POLII relative to IgG. ChIP-qPCR was performed on non-wounded
and wounded Ler plants. Data are means of 3 or 4 independent biological replicates 6SEM. The dashed line represents the mean SYD background
fold enrichment at non-specific genomic loci assayed at the seed specific promoters of OLEOSIN1 and AT2S3. (B) Model summarizing the roles of SYD
in response to wounding.
doi:10.1371/journal.ppat.1000237.g007

Chromatin Remodeling and Stress
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SYD is required for the expression of PDF1.2a we were unable to

detect SYD enrichment at the promoter of PDF1.2a, suggesting that

SYD may act indirectly through an unknown factor(s) to enable

transcription of PDF1.2a. Additionally, SYD is bound to the MYC2

promoter, which is consistent with the reduced expression of MYC2

in syd-2. The direct recruitment of SYD to the MYC2 promoter may

also help explain the reduced transcript levels of VSP2, in non-

wounded syd-2, even though SYD binding to the VSP2 promoter

region was only detected following wounding. Altogether these data

suggest that the altered expression of ET and JA responsive genes in

syd-2 is likely a result of the loss of SYD acting both directly and/or

indirectly on their promoters to regulate transcription.

Conclusions
Our results show that ATP-dependent chromatin remodeling is

required for expression of specific genes within stress signaling

networks. Additionally, this requirement is likely both direct and

indirect as the chromatin remodeling ATPase SYD binds several,

but not all, of the stress responsive promoters examined in vivo.

Loss of chromatin remodeling activity also results in increased

susceptibility to B. cinerea but not P. syringae. These results provide

biological evidence that chromatin remodeling complexes, which

are evolutionarily conserved within eukaryotes, are required for

stress tolerance not only in yeast but also multicellular organisms.

Furthermore, the requirement of ATP-dependent chromatin

remodeling complexes is pathogen-specific and not a result of a

general reduction in fitness.

Materials and Methods

Plant growth conditions and treatment
Arabidopsis thaliana plants were grown in a 16 h light/8 h dark

photoperiod at 22uC; except plants for pathogen treatments, which

were grown in a 12 h light/12 h dark photoperiod. Wounding was

performed as previously described [21]. All experiments were

performed on 4 to 5-wk-old plants, which exhibited no disease

symptoms or insect herbivory prior to treatment. Detached leaf

assays were performed using the B. cinerea isolates DN, Grape, B05.10

and 83-2 [38]. Arabidopsis leaves were inoculated with 5 ml of spores at

a concentration of 50,000 spores/ml [38,39]. For P. syringae bacterial

growth assays Arabidopsis leaves were inoculated with 26104 CFU/

ml P. syringae pv. tomato (Pst) DC3000 by hand injection.

Expression analyses
Total RNA from rosette leaves was isolated by TRIzol

extraction (Life Technologies, Grand Island, NY) and treated

with DNAaseI to control for DNA contamination. RNA was

reverse transcribed using Superscript III (Invitrogen, Carlsbad,

California). PCR for RT-PCR were conducted in 25 ml reactions

containing 20 ng cDNA, 1.5 mM MgCl2, 0.2 mM each dNTP,

0.05 mM each primer, and 1 U Choice-Taq Blue (Denville

Scientific, Metuchen, NJ) and amplified for 29 cycles except for

PDF1.2a in Figure 1B and ERF1 in Figure 2A, which were

amplified for 34 cycles. Quantitative RT-PCR was conducted in

50 ml reactions containing 10 ng cDNA, 16 iQ SYBR Green

supermix (Bio-Rad Laboratories, Hercules, CA), and 200 or

250 nM each primer. Amplification and data analysis were carried

out as previously described [21]. The internal controls At4g34270

and At4g26410 previously described were used for transcript

normalization [40]. Primers are listed in Table S2.

JA measurement
Extraction of JAs (MeJA and JA) were carried out as previously

described [41] and further analyzed by GC-MS using a Hewlett

and Packard 6890 series gas chromatograph coupled to an Agilent

Technologies 5973 network mass selective detector operated in

electronic ionization (EI) mode.

Camalexin and glucosinolate measurement
Camalexin and glucosinolates were measured 72 h after mock or

B. cinerea inoculation as previously described [42]. Briefly, individual

leaves were collected into deep 96-well plates containing 0.5 ml 90%

methanol in each well. Following tissue disruption and centrifuga-

tion, 150 ml of leaf extract was removed for camalexin measurement.

De-sulfo glucosinolates were extracted from an additional 150 ml of

the same sample by passing the methanolic extract over a column of

DEAE Sephadex A-25 (Sigma-Aldrich) and, after methanol and

water washes, incubating the samples overnight with an excess of

sulfatase before eluting with 150 ml H20. Extractions were performed

largely as previously described, but using centrifugation rather than

vacuum to remove liquid from the Sephadex columns [43].

Separation of 50 ml of aqueous extracts was performed on a 5-mm

column (Lichrocart 250-4 RP18e, Hewlett-Packard, Waldbronn,

Germany) attached to a Hewlett-Packard 1100 series HPLC, using

the following series of solvent gradients: 6-min 1.5% to 5.0% (v/v)

acetonitrile, 2-min 5% to 7% (v/v) acetonitrile, 7-min 7% to 25% (v/

v) acetonitrile, 2-min gradient from 25% to 92% (v/v) acetonitrile,

6 min at 92% (v/v) acetonitrile, 1-min 92% to 1.5% (v/v)

acetonitrile, and a final 5 min at 1.5% (v/v) acetonitrile. Compounds

were detected at 229 nm using a diode array detector, identified by

comparison with retention time and absorption spectra of purified

references, and quantified using response factors as previously

published (Table S1) [44,45].

ChIP-qPCR
ChIP-qPCR assays were performed as previously described [8]

with the following modifications. Each ChIP was conducted using

500 mg of Ler rosette leaf tissue. DNA was sonicated to a size

range of 0.3–1.5 kb. For the IgG control ChIP 2 mg of IgG from

rabbit serum (Sigma, St. Louis, MO) was used. Following reverse

cross-linking of the immunoprecipitation reactions the samples

were treated with RNase A solution (CalBiochem, La Jolla, CA)

and Proteinase K (Sigma, St. Louis, MO). qPCR of the ChIP

eluates was performed with iQ SYBR Green supermix according

to manufacturer. ChIP-qPCR results were calculated based on the

DDCt method using the SuperArray ChIP-qPCR Data Analysis

Template (Frederick, MD) according to the SuperArray manual,

as described [46]. Briefly, ChIP DNA fractions were first

normalized to input DNA (DCt) to account for chromatin sample

preparation differences. Input normalized SYD and POLII ChIP

fractions were then adjusted for the normalized non-specific

background (IgG) giving the DDCt value. Fold differences relative

to the IgG reference were then calculated by raising 2 to the DDCt

power. The primers used in this study are listed in Table S2.

Statistical analysis
To determine statistical significance of treatment effects

comparing WT versus syd t-tests were performed using Sigma

Stat v3.5 (San Jose, CA). For comparison of WT versus myc2/jin1

factorial ANOVA performed within SAS (Cary, NC) was used to

analyze the effects of genotype and treatment on measured

phenotypes, with significance of differences determined via t-tests

of pre-selected comparisons.

Accession numbers
PR1: At2g14610, PDF1.2a: At5g44420, UBQ10: At4g05320,

ERF1: At3g23240, PAD4: At3g52430, ICS1: At1g74710, NPR1:
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At1g64280, WRKY70: At3g56400, ERF#18: At1g74930, CAF1-like:

At3g44260, AOS: At5g42650, ERF2: At5g47220, MYC2:

At1g32640, VSP2: At5t24770, Oleo1: At4g25140, AT2S3: At4g27160

Supporting Information

Figure S1 Expression of wound responsive transcripts in syd-2.

(A) RT-PCR analysis of select rapid wound response genes in Ler

and syd-2 plants in response to wounding (B) RT-PCR analysis of

the JA biosynthesis gene AOS and the ET/JA responsive ERF2 in

response to wounding.

Found at: doi:10.1371/journal.ppat.1000237.s001 (0.65 MB EPS)

Figure S2 RT-PCR expression analysis of genes involved in SA

biosynthesis and signaling in response to P. syringae.

Found at: doi:10.1371/journal.ppat.1000237.s002 (0.71 MB EPS)

Figure S3 Role of MYC2 in response to B. cinerea. (A) Lesion size

3 d after spot inoculation with B. cinerea isolate 83-2. (B) Camalexin

levels of detached rosette leaves either mock (M; black bar) or B.

cinerea isolate 83-2 (B.c.; grey bar) treated for 3 d. (A and B) Two

alleles were tested, jin1-8 and jin1-9. No significant differences

between alleles were detected, therefore the two alleles were

pooled (myc2/jin1). Data are means of 8 (Col) or 16 (myc2/jin1)

independent biological replicates 6SEM. Experiments were

repeated with similar results. (C) Lesion size 3 d after spot

inoculation of Col and jin1-9 plants with B. cinerea isolate B05.10.

Data are means of 8 independent biological replicates 6SEM. (D)

Camalexin levels of detached rosette leaves treated with B. cinerea

isolate B05.10 for 3 d. Data are means of 8 independent biological

replicates 6SEM. (E) Camalexin levels of detached rosette leaves

treated with 5 mM AgNO3 for 3 d. Data are means of 8

independent biological replicates 6SEM.

Found at: doi:10.1371/journal.ppat.1000237.s003 (0.62 MB EPS)

Figure S4 SYD does not bind the promoter of PDF1.2a or

ERF1. ChIP-qPCR analysis of SYD (grey bars; left y-axis) and

POLII (black bars; right axis) recruitment to the promoter of (A)

PDF1.2a (2836 to 2604) and (B) ERF1 (21035 to 2942). Data

presented are normalized to input DNA and expressed as fold

enrichment of SYD or POLII relative to IgG. ChIP-qPCR was

performed on non-wounded and wounded Ler plants. Data are

means of 3 or 4 independent biological replicates 6SEM. The

dashed line represents the mean SYD background fold enrichment

assayed at the promoters of OLEOSIN1 and AT2S3.

Found at: doi:10.1371/journal.ppat.1000237.s004 (0.57 MB EPS)

Figure S5 Background levels of SYD ChIP-qPCR signal in syd-2

plants. ChIP-qPCR analysis of SYD recruitment to the promoters

of PDF1.2a (2323 to 2151), ERF1 (21035 to 2942), MYC2

(2320 to 2222), and VSP2 (2226 to 2147). Data are expressed as

fold enrichment of SYD relative to IgG. ChIP-qPCR was

performed on 12 h wounded Ler and syd-2 plants. Data are

means of 3 or 4 independent biological replicates 6SEM.

Found at: doi:10.1371/journal.ppat.1000237.s005 (0.47 MB EPS)

Table S1 Glucosinolate levels in myc2/jin1 plants.

Found at: doi:10.1371/journal.ppat.1000237.s006 (0.03 MB XLS)

Table S2 Primers used for expression and ChIP-qPCR analysis.

Found at: doi:10.1371/journal.ppat.1000237.s007 (0.02 MB XLS)
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